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Mapspace Optimization for Tensor Computations
with Bayesian Learning

Iniyaal Kannan Jegadesan Valsala

Abstract—Tensor computations are becoming increasingly im-
portant with the emergence of fields such as Al, data analytics,
and robotics. Memory access cost is the bottleneck in perfor-
mance for these workloads. New architectures with specialized
memory layouts and parallelizable elements are being designed
for faster computation. To fully exploit such an architecture’s
capabilities and achieve maximum improvement in performance,
an optimal communication avoiding mapping from algorithm
to hardware is needed. Manually finding this hardware-specific,
energy efficient mapping is time-consuming and requires exper-
tise in multiple domains. Traditional optimization methods like
gradient descent are unsuccessful in finding an optimal mapping
because the mapping space is non-smooth and non-convex. Other
ML based feedback-driven approaches find good solutions, but
do not generalise well to new architectures.

In this paper, we propose using GPTune—an autotuning
framework based on Bayesian optimization —to navigate this
search space. Our experiments show that GPTune finds efficient
mappings in far fewer iterations compared to Timeloop-mapper’s
random search. GPTune also builds surrogate models that can
be used for transfer learning and to potentially reduce the
dimensionality of the mapspace. Furthermore, this paper analyses
mapspace encodings that work best for tuning.

I. INTRODUCTION

The slowing down of Moore’s law along with the
widespread adoption of ML in recent years has led to an
increased focus on developing specialized hardware for ML
models like DNNs and Transformers. While these domain
specific hardware architectures have sped up computations,
they are more complex and offer flexibility that requires
expertise to exploit.

Tensors and their computations like matrix multiplication or
convolutions are fundamental to DNN training and inference
applications. A tensor computation can be executed in very
large number of ways depending on the target architecture’s
properties. A mapping specifies how a parameterized tensor
problem is translated to hardware instructions and executed in
the target architecture. The cost of a mapping is the runtime,
energy or another metric measuring the performance of the
problem mapping on the target hardware architecture. The
mapspace consists of all the possible ways a problem can
be mapped onto the target hardware and executed correctly.
Exploring this mapspace to find the optimal mapping that
minimizes the cost of running the problem on the architecture
is critical to fully utilising the hardware architecture. An
unguided, poor choice of mapping could hurt performance by
multiple orders of magnitude.

The mapspace is very challenging to search because it is
highly non-convex and differs with problem and architecture.
There are also many algorithmic constraints (e.g. loop carried

dependencies in computation have to be respected) and hard-
ware constraints (e.g. data mapped to buffer has to fit into
buffer) that need to be satisfied when optimizing over this
space. So it is difficult to use straightforward, well-understood
optimization methods like linear programming or gradient
descent to minimize the cost function. There are broadly 3
approaches utilised to prune the mapping space and find a
good mapping.

e Heuristics perform one-shot analytic optimizations over
an (either explicit or implicit) performance model. This
method generalizes across architectures and problems,
but it is often limited to optimizing only some of the
optimizable parameters (e.g. loop tilings or reorderings
only). This leads to sub-optimal outcomes especially with
complicated architectures because the interactions be-
tween optimization parameters has an impact on the per-
formance. These methods also rely on analytical model
evaluations, which only approximate the true performance
of the mapping.

e Random search methods sample mappings randomly
from the search space to find an efficient mapping. The
size of the mapspace necessitates a large number of
samples to achieve good performance, so these methods
use cheap, analytical performance models that are able
to evaluate 1000s of mappings in minutes. Since the
mapspace exploration is not guided, mapping high di-
mensional problems on complicated architectures would
take a long time to converge to a reasonable mapping.

o Feedback-driven methods use statistical or ML methods
to iteratively explore and learn the mapspace. These
approaches encompass black-box optimization techniques
such as genetic algorithms, and gradient-based methods,
which can build surrogate functions for performance
based on input parameters. However, these approaches
do not generalize well across architectures.

In this thesis, we focus on exploring the use of Bayesian
optimization [17] techniques to search the mapspace using
Gaussian processes. GPTune [5] is an autotuning framework
based on Bayesian optimization to find optimal performance
tuning parameters for high performance computing applica-
tions. We conducted experiments and evaluated results for
the following questions to determine the feasibility of using
GPTune to find high performance mappings.

o Does GPTune converge faster than random search?
GPTune’s mapspace exploration consistently finds per-
formant mappings in far fewer iterations than random



search. For matrix-multiplication and 2D-convolutions,
GPTune converges in less than 50 runs (on average) to
performance values that require a random mapper over
600 iterations to beat.

e Does GPTune converge to a better mapping than

random search?
GPTune converges to better mappings faster than a ran-
dom mapper. For 2D-convolutions, The random mapper
took ~ 350 iterations to achieve an energy usage value
attained by GPTune in 50 iterations (on average).

o Does GPTune’s surrogate model enable transfer learn-

ing between architectural parameters (e.g. buffer
sizes)?
GPTune has transfer learning algorithms that enable
learning across various parameters of a problem. We
focus on learning the mapspace of the same problem size
mapped onto architectures with different memory capaci-
ties. Based on our experiments for matrix multiplication,
GPTune with transfer learning achieved a performance
value that took 2X iterations for standard GPTune and
800X iterations for the random mapper to beat.

o Does GPTune’s surrogate model enable us to deter-

mine the effect of different mapspace parameters on
the cost of the mapping?
By using Sobol analysis [18] on the surrogate model, we
were able to identify the mapspace parameters that had
the most significant impact on performance. For matrix
multiplication, we found that the top 4 most sensitive
parameters affected the performance almost 2X more than
the other parameters.

o Does GPTune’s surrogate model reduce the dimen-

sionality of the problem by finding the most important
mapspace parameters?
This is our ongoing work. We are experimenting with
using only the highest valued parameters from the sensi-
tivity analysis instead of all the parameters for mapspace
search.

+ What mapspace encodings lead to better results with

GPTune?
Since GPTune is a general autotuning framework, it does
not provide specific mapspace parameter encodings. So
we need to encode mapspace parameters as numerical or
categorical values. We have found out that the quality
of the encoding has an impact on the mapspace search.
Our experiments show that categorical encodings for
loop order work better for matrix multiplication (lower-
dimensional), and numerical encodings work better for
2D-convolutions (higher-dimensional).

GPTune’s mapspace exploration consistently finds perfor-
mant mappings in far fewer iterations than random search. This
enables optimization for hardware architectures where evalu-
ations can be extremely expensive. We have promising results
for transfer learning using the surrogate model generated by
GPTune. Using transfer learning, performance of algorithms
on new, unseen architectures can be evaluated. Using Sobol

analysis [18] on the surrogate model, we were also able to find
the mapspace parameters that had the most impact on perfor-
mance. Only optimizing the important parameters reduces the
dimensionality of the problem and could potentially lead to
better mappings.

II. MAPSPACE OPTIMIZATION
A. Mapspace

The mapspace is defined as the set of all valid mappings
of a problem onto a target architecture. A mapping is a
specification of how a problem is to be laid out and executed
in hardware. In this paper, we focus on 2 main mapping
parameters - tiling and ordering. The tiling determines how
the problem is broken down into smaller blocks and processed
at each memory level. The loop ordering determines the
computation’s dataflow, affecting data reuse. For a mapping to
be valid, it must satisfy (1) algorithmic constraints to ensure
correctness of computation and (2) the hardware constraints
of the architecture.

The size of a mapspace is the product of the sizes of
the optimization attributes. So, the number of optimization
parameters in a mapping leads to a combinatorial explosion
of valid mappings. Moreover, the mapspace is non-convex
and non-smooth even for basic cost functions like energy and
runtime.
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Fig. 1. Mapspace of a CNN layer from Mind Mappings [9] paper

Figure 1 shows the energy cost surface of Convolutional
Neural Network(CNN) layers evaluated on an accelerator [9].
The x and y axes represent values for different mapspace
parameters (tile sizes for the tensors) and the z axis represents
the cost (energy-delay product, or EDP). As we can see, the
mapspace is highly irregular with many local minima. Hence,
for feedback-driven methods like genetic algorithms, random
starting points and increased mapspace exploration can lead to
better mapping results. It is due to this mapspace complexity
that random search methods are still relevant and can produce
high performance mappings (though a significantly higher
number of iterations compared to other guided search methods
(GAMMA [12], Mind Mappings [9]) are needed).



B. Mapspace Search

The size of the mapspace makes exhaustive search infea-
sible, and a guided approach to exploring and evaluating
mappings requires fewer iterations to converge to a high per-
formance mapping. To navigate the space, (1) cost evaluation
of a mapping on the hardware and (2) method to determine
the next mapping to explore are needed.

To obtain a mapping’s cost on a target architecture, several
methods can be utilised.

o Using cycle-accurate simulators is expensive. Firesim
[13] takes approximately 3 minutes to run and evaluate a
mapping on a standard AWS FPGA; For feedback-driven
algorithms like GAMMA [12] and Mind Mappings [9], a
large number of function evaluations are needed to train
the model for a specific problem and hardware. Since
these methods do not generalise well to new problems and
architectures, additional evaluations are needed to retrain
the model and determine an efficient mapping for the new
hardware.

o Fast analytical models like Timeloop [16] are used by
methods that require a large number of iterations to
converge. Timeloop, when given a problem, hardware
architecture and mapping, computes a cost-estimation
for the mapping. Timeloop is cheap and fast to run.
Several thousand mapping evaluations can be completed
within minutes. However, these analytical models can
be inaccurate by up to two orders of magnitude. For
feedback-driven methods, these significantly incorrect
evaluations could mislead the mapspace exploration and
lead to inferior choices of mappings.
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Fig. 2. Scatter plot of the ratios of figures generated by Timeloop [16] and
Firesim [13]

Figure 2 shows a log-log plot of the ratios of the cycle
counts generated by Timeloop and Firesim for approximately
2000 mappings on the GEMMINI accelerator [8]. The plot
shows how analytical model evaluations could deviate by
over 2 orders of magnitude from the true value. Optimization
methods that converge to high performance mappings in
fewer iterations can utilise expensive, cycle-accurate simula-
tors. The increased precision in mapping evaluations enhances

mapspace search and enables the discovery of more efficient
mappings.

Different techniques are utilised by Mind Mappings [9],
GAMMA [12] and Ansor [20] to choose candidate points to
evaluate. The selection of these points directly impacts the
exploration of the mapspace.

e Mind Mappings uses a gradient based approach to find
mappings to evaluate. Since the mapspace is non-convex
and non-smooth, an approximate cost function is used to
obtain a differentiable surrogate function. This surrogate
is used to generate gradients that show the direction of
steepest descent from a mapping. Following this direc-
tion, a new mapping is chosen to evaluate and the process
continues till termination.

o GAMMA uses evolutionary search methods to determine
new mappings. Mapspace optimization parameters (e.g.
tile sizes), are mutated to generate new valid mappings.
Figure 3 shows GAMMA'’s logical flow and structure.
After randomly initializing a population size of P map-
pings, different evolutionary methods are used to mutate
the population. A gene represents the encoded value of
one of the mapspace optimization parameters (e.g. tile
size). A genome comprises a set of genes and represents
a complete mapping. Genes and genomes are mutated in
the evolution phase. For example, the crossover mutation
shown in Figure 3 involves picking two genomes from P
and interchanging their genes, and the reorder mutation
picks two genes and swaps their positions within the
genome, leading to a different ordering of the loops in
the mapping. After the evolution phase, each genome
is decoded to a mapping and its performance value
is computed. GAMMA [12] uses MAESTRO [14], an
analytical model to evaluate the mapping. The subset of
P that performs better is selected to proceed to the next
evolution phase.
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Fig. 3. Genetic Algorithm (GAMMA) [12] flow

o Ansor uses a hierarchical representation of the mapspace
to explore new combinations of optimization parameters.
Ansor’s input is a set of DNNs to be optimized. Figure
4 shows the hierarchical approach utilised by Ansor



to construct a large mapspace and search it efficiently.
The program sampler in Figure 4 enumerates high-level
structures of tensor programs and leaves low-level op-
timization parameters (e.g. tile size, parallelization) as
annotations that need to be tuned. Random sampling
is used to select programs from this stage to proceed
to the next stage. In the performance tuning module,
evolutionary search operations — mutation and crossover
— are used to fine tune the annotated optimization
parameters. A learned cost model is used to evaluate
the mappings generated after fine-tuning. While a learned
cost model is significantly faster than utilizing a cycle-
accurate simulator, Figure 2 indicates that its performance
measurement may deviate considerably, resulting in infe-
rior performance when executed on real hardware.
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Fig. 4. Ansor [20] Hierarchical flow

C. Our Approach

Bayesian optimization can be applied to the mapspace
search problem by encoding mapspace parameters appropri-
ately. Bayesian methods have shown to optimize complex,
multidimensional functions with irregular search spaces using
limited function evaluations [22]. Bayesian methods are crucial
to optimize models in domains where obtaining samples to
evaluate are very expensive. In the case of mapspace explo-
ration, obtaining cycle-accurate simulations is expensive.

In this thesis, we utilise Bayesian methods to navigate the
mapspace for tensor computations. GPTune is the tool we
use to build Gaussian Process surrogate models for Bayesian
Learning. Surrogate models can facilitate transfer learning
between different hardware architectures or problem sizes.
If a surrogate model is generated for a given hardware X
and problem P, the model can be used to guide GPTune’s

search to faster convergence for hardware Y. We also use
surrogate models to understand how optimization parameters
interact with each other, and to identify which parameters
have the biggest impact on performance. Fewer optimization
parameters reduces the dimensionality of the problem. We are
also exploring how convergence and performance mappings
are affected by dimensionality reduction.

III. BACKGROUND
A. Example Tensor Computation — Matrix Multiplication

A Tensor is defined as a generalized, multidimensional
array, represented by an array of components that are functions
of the coordinates of a space. Tensors are basic building blocks
of modern ML. They are used to organize and represent large
datasets and their computations are vital to training and testing
models. Matrix multiplication and convolutions are the tensor
computations we focus on optimizing using GPTune. To access
and manipulate elements in a tensor, nested loops are required.
So, tensor operations typically have a nested loop structure that
can be optimized for the hardware architecture.

Matrix multiplication between two matrices can be defined
as

n
Ci; = ZAikBkj (1)
k=1
A and B are matrices of dimensions m X n and n X p,
respectively, and C'is the resulting matrix of dimensions m X p.
Equation (1) can be represented with a nested loop structure
as follows

for i in range (m) :
for j in range(p):
for k in range(n):

Clil[j] += A[i]l[k] = B[k][]]

Listing 1: Python code implementation of matrix multiplica-
tion

Memory access cost is the bottleneck in performance for
such tensor computations. By changing the nested loop struc-
ture, it is possible to take advantage of faster levels of memory
and achieve improved performance.

B. Loop Optimizations

A DNN accelerator typically contains multiple hierarchical
memory levels, spatial arrays of processing elements (PEs)
and networks-on-chip (NoC). In a memory hierarchy, higher
levels of memory are limited in size but offer fast data retrieval.
Lower levels of memory are bigger in size but it takes multiple
orders of magnitude more time to retrieve data. Temporal and
spatial locality are typical data access patterns.

o temporal locality refers to the tendency of programs to
access the same data repeatedly over a period of time.

o spatial locality refers to the tendency of programs to
access data that is stored near recently accessed data.



Caches exploit these access patterns to improve efficiency.
When a piece of data is accessed from a lower level of
memory, the entire block of data around the accessed location
is brought into the higher level (spatial locality) and the
location of the data access is stored for future reference
(temporal locality). By optimizing the nested loop structure,
memory accesses can be restricted to higher, faster levels of
memory leading to significant improvement in performance.

1) Loop Tiling: Nested loops can be tiled to split a loop’s
computation into smaller chunks that fit into memory levels.
Loops have to be tiled ensuring correctness of computation.
Nested loops that have data or control dependencies between
iterations must be tiled carefully to respect dependencies.
Some loop tilings may incur high communication overheads
and perform poorly. The optimal tile size for a problem heavily
depends on the target architecture and the characteristics of
the problem. Hence, the tile size is an important mapspace
parameter to determine.

for x in range(0, m, tl):

for y in range (0, p, t2):
for z in range (0, n, t3):
for i in range(x, min(x + tl, m)):
for j in range(y, min(y + t2, p)):
for k in range(z, min(z + t3, n)):
C[i][J] += A[i]l[k] = Blk]I[7J]

Listing 2: Python code implementation of tiled matrix multi-
plication

The python code snippet in Listing 2 describes a tiled matrix
multiplication nested loop structure. A loop with range(start,
end, stepsize) means the loop runs from start to end(exclusive)
in increments of stepsize, with a total of | #42t=c"d | jterations.
The implementation of tiled matrix multiplication partitions
matrix C into sub-matrices of dimensions t1 x t2, matrix A
into sub-matrices of dimensions ¢1 X ¢3, and matrix B into sub-
matrices of dimensions ¢3 x t2. The variables x, y, z represent
the starting indices of each tile. The loops are tiled for a 2-level
memory hierarchy. Loops can be tiled at each level of memory,
so for more complicated architectures, there are more tile sizes
to choose. Furthermore, tiles need not be split perfectly. They
could be split imperfectly and a tail case could be added
to complete the remaining computation. Finding the optimal
values for each tile size, ensuring correctness and satisfying
memory level constraints is the optimization problem.

2) Loop Reordering: Loops in a loop nest can be reordered
to change the data access pattern of the computation. Changing
the loop order can enable sequential access of data that
improves cache usage leading to better performance.

Assume the matrices are stored in row-major order in
memory. Listing 3 shows a simple reordering of the matrix
multiplication problem in Listing 1. The loop reordering
from 4,5,k to i, k,j can lead to significant improvements in

for i in range (m) :
for k in range (n) :
for j in range(p):

Clil[J] += A[i]l[k] = B[k][]]

Listing 3: Python code implementation of reordered matrix
multiplication

performance because the innermost loop has increased cache
utilisation. The i, j, k loop ordering accesses the elements of
matrix B in column-major order. When the size of the cache
block is smaller than the matrix size, accessing the elements
in column-major order can result in thrashing. This leads to
cache misses and worse performance. By reordering the loops
to i, k,j, the innermost loop now accesses the elements of
matrix B in row-major order. Since the entire row is retrieved
into the cache, future accesses of matrix B elements are
faster. Computation correctness has to be preserved when
reordering loops. Not all reorderings are valid because of loop
dependencies.

C. GPTune

1) Overview: GPTune is a Bayesian autotuning framework
used to find the best values of performance parameters for
applications where obtaining function evaluations is expensive
and limited. The performance metric used for autotuning
can be any measurable quantity. GPTune carefully samples
points from the search space to evaluate. Using these points,
GPTune builds a Gaussian process (GP) surrogate model.
Once the model is built, GPTune predicts a point it believes
will perform well. The performance of the predicted optimal
point is measured and is used to update the model for future
iterations [5]. A GPTune problem can be defined by the
following parameters.

o Task Parameter Input Space: Describes the input space
for the optimization problem. In the context of matrix
multiplication optimization, the input space comprises the
dimensions of the matrices involved in the computation
as well as the architectural parameters of the hardware
(e.g. sizes of different levels of memory hierarchy).

o Tuning Parameter Space: Represents the parameter con-
figurations we are trying to optimize. GPTune samples
points from this space to evaluate. Hence, the tuning
parameter space should span the entire mapspace of a
problem. The point sampled also needs to be encoded
to a mapping onto hardware. For matrix multiplication
optimization, the tuning parameter space consists of the
mapspace optimization parameters like tile sizes and loop
orders.

o Output Space: Defines the cost model space. This is the
metric used to compare and evaluate different candidate
solutions. It can be any measurable quantity like runtime,
energy, cycle count.



2) GPTune Database: GPTune also enables crowd-based
autotuning [6]. Essentially, GPTune collects function eval-
uation data used by users to build surrogate models for
their problems. These expensive evaluations are retained in
the GPTune DB (database). These evaluations are then used
to build accurate surrogate models without having to run
expensive evaluations. For mapspace exploration, a cheap, fast
analytical performance model like Timeloop or MAESTRO
can be used to generate 1000s of mapping evaluations. Once
these evaluations are loaded into the DB, GPTune can use it
to build a surrogate model and converge in fewer iterations.

3) Transfer Learning: Transfer Learning based Autotuning
(TLA) leverages the information in a GPTune DB to tune
a new, unseen problem. The evaluations in the DB must
have a correlation to the new problem to obtain good results.
For mapspace exploration, TLA can be used to generalize
over (1) different problem dimensions on the same hardware
architecture and (2) same problem on different hardware
configurations. GPTune offers two types of TLA algorithms.
Both these methods can be employed for mapspace TLA
optimization, but the high dimensionality of the mapspace
could hinder the usage of Type II TLA [5].

o Type I TLA: Builds a surrogate model using data in the
GPTune DB. The surrogate model is further improved
by obtaining evaluations from the new target task. Pre-
collected DB data enables GPTune to learn the mapspace
and converge to a high performance point for a new task
in fewer iterations. If different tasks are present in the
DB, a surrogate model is built for each task and can be
combined by summing, stacking or computing weighted
averages.

e Type I TLA: In this method, a surrogate model is
not built using the function evaluations from all the
tasks. Instead surrogate models are developed for the
function pairing the task to its optimal tuning parameter
configuration. No samples are obtained from the new
target architecture to incorporate into the surrogate model.
Using the newly generated “task to optimal mapping”
surrogate models, GPTune samples a single configuration
as the optimized point for the unseen problem. TLA_II
could serve as a cost-effective one-shot optimizer to
obtain reasonably efficient mappings in the mapspace.

D. Timeloop

Timeloop is a framework for modeling and evaluating dense
and sparse tensor algebra workloads on DNN accelerator
architectures. Timeloop is a fast, analytical model for per-
formance evaluations. It provides good approximations of a
mapping’s performance by calculating throughput and access
counts analytically. This is possible because computation and
data-movement patterns in DNN operations are mostly deter-
ministic. Timeloop consists of timeloop-model and timeloop-
mapper.

1) Timeloop-model: takes as input a problem specification,
hardware architecture, a valid mapping and outputs a cost
estimation for the mapping. Timeloop-model can compute

performance, area and energy projections within seconds. It
also provides detailed statistics for each level of the memory
hierarchy. Loop optimizations are specified in the mapping
section using keys. An error is thrown if the mapping is invalid.
Timeloop-model directly invokes Accelergy [1] for its internal
computations.

2) Timeloop-mapper: takes as input a problem specifica-
tion, hardware architecture and mapper configuration to con-
struct and search the problem’s mapspace. Timeloop-mapper
uses the model cost function to evaluate and compare different
mappings. It focuses on 3 primary optimization parameters —
loop tiling, loop reordering and spatial execution. Timeloop-
mapper can search the mapspace using algorithms like ex-
haustive search, linear-pruned, random-pruned and hybrid. For
mapspace exploration, random-pruned seems to work best.
If after sampling a point from the mapspace, the point is
invalid for the specified architecture (e.g. tile size doesn’t fit
in memory), the sample is rejected and the sampling process
continues.

IV. METHOD
A. Overview

Our work leverages GPTune — a Bayesian autotuning
framework to build surrogate functions that guide mapspace
search. We enable optimization of software taking the target
hardware into consideration. This enables us to find high
performance mappings that exploit the features specific to the
hardware.

We conducted experiments for two important tensor algebra
computations — matrix multiplication and 2-D convolution.
Timeloop provides the performance evaluations for mappings
chosen by GPTune. Bayesian optimization requires a per-
formance metric to minimize. Energy is the performance
metric we focus on optimizing, but a different metric could
also be optimized with minor changes to the method. We
use GPTune’s multi-task learning (MLA) framework for the
mapspace optimization. MLA has a (1) Modeling Phase and
(2) Search Phase. In the Modeling Phase, GPTune randomly
samples points from the tuning parameter space and obtains
their performance evaluations using Timeloop. These function
evaluations are used by GPTune to generate a surrogate model
for the Search Phase. The Search Phase uses PyGMO, pymoo
or SciPy algorithms to search for the next candidate sample
point [5]. The evaluations computed in the Search Phase are
used to further improve the surrogate model. The number of
pilot samples and total iterations of the Search Phase are user
specified parameters.

Our objective is to evaluate whether Bayesian optimization
techniques present benefits in contrast to alternative optimiza-
tion methods. We expand on the questions discussed in Section
I and explain the experimental procedure to determine if
Bayesian optimization offers the benefits expected.

(1) How effective are Bayesian optimization methods
at finding high performance mappings compared to one-
shot and random methods? The efficacy of a mapspace
exploration method can be evaluated based on factors such



as the time to solution or the rate of convergence. Our focus
with GPTune is the rate of convergence. If only a small
number of function evaluations are required to find a high
performance mapping, expensive cycle-accurate simulators
can be leveraged. Other methods like random search utilise
analytical models because they are much faster, but their
approximations could deviate significantly as shown by Figure
2. GPTune has the added advantage of crowd-tuning. This
allows for the storage of costly function evaluations in the
GPTune DB, which can then be utilized to construct a more
accurate surrogate function.

To compare the rate of convergence to a high performance
mapping, we should evaluate GPTune [5], CoSA [11] (one-
shot optimizer), and Timeloop-mapper [16] (random search)
for identical problem dimensions and target architecture. For
a GPTune run, the number of pilot samples and search phase
iterations is user specified. Based on our experiments, high
tuning space dimensionality and large number of function
evaluations (in the pilot or search phase) leads to very slow
iterations of the search phase.

(2) Can GPTune enable transfer learning between prob-
lem sizes or between target architectures? We would like
to understand how well GPTune’s surrogate models gener-
alise to generate efficient mappings for new, unseen target
architectures. Optimization techniques like GAMMA [12] and
Mind Mappings [9] need to be re-run from scratch for new
hardware architectures and problem sizes. This is especially a
problem when obtaining function evaluations are expensive. If
Bayesian optimization techniques are able to learn mapspace
structures, the surrogate models can facilitate the discovery of
high performance mappings for new architectures in very few
iterations.

Transfer learning can be enabled by using MLA, TLA_I,
or TLA_II techniques. GPTune incorporates MLA and TLA
to share knowledge of obtained performance samples among
multiple tasks, improving tuning results. It’s possible to do
transfer learning of new problem sizes on the same hardware
architecture or the same problem sizes on a new target
architecture. When both the problem dimensions and the
hardware are modified, there is a lack of correlation between
the mapspaces for the existing function evaluations and the
target. To use TLA_I to find mappings for a problem P on
a new hardware Y, the DB should be pre-populated with
function evaluations for problem P on hardware A, B, C....
TLA_I works better when the DB contains evaluations from
different mapspaces. TLA_I requires function evaluations from
the target architecture in the search phase. This technique
improves the convergence rate by leveraging evaluations from
previous mapspaces to learn the new mapspace faster. TLA_II
on the other hand, does not require evaluations on the target
architecture. It uses previously built surrogate models to per-
form a one shot optimization to find an efficient mapping on
the new architecture.

(3) What encodings for mapspace parameters work well
for Bayesian optimization approaches? Since GPTune is a
general framework for autotuning applications, it only provides

numerical or categorical encodings for tuning parameters.
Although tile sizes are numeric variables, it is necessary to
impose constraints on them to ensure computational correct-
ness and to satisfy hardware specifications. While GPTune en-
ables the specification of constraints, including all algorithmic
and hardware constraints results in a slow sampling process
where the majority of sampled points get rejected. So, after
GPTune samples a tiling parameter, it has to be encoded into
a valid mapping for Timeloop to evaluate its performance.
For other mapspace parameters, such as loop orderings and
spatial mappings, there is no obvious numeric encoding that
would work best. They could also be sampled as categorical
variables. Different encodings could work better depending on
the problem and hardware architecture, so mapspace encodings
are definitely worth exploring.

We have experimented with different encodings for GPTune.
For tiling parameters, we sampled them as (1) integers and
rounded them to ensure perfect factorization of the loop and
(2) real numbers representing the aspect ratios of the tile and
modified them to be tile sizes. For loop ordering, we sampled
reordering parameters as (1) real numbers and used a ranking
based approach to tile the loops and (2) categorical variables
with each variable representing a permutation of the loops and
the sampled permutation is used as the loop ordering for the
memory level.

4) Can we use performance evaluations from analytical
models to reduce the cost of optimizing with a cycle-
accurate simulator? Surrogate models built by GPTune can
be used to model the function evaluations from a cheap, less
accurate performance model. These surrogate functions can
be used as input parameters for the model of the expensive
simulator. The non-convex nature of the mapspace makes
exploration of new regions necessary. Assuming that the cheap
model provides reasonably accurate approximations, it enables
the discovery of localities with high performance mappings.
Using the surrogate model built with a large number of cheap
evaluations, GPTune gains a better understanding of the search
space, thereby reducing the number of evaluations required
from the expensive simulator to converge to an optimal map-

ping.

B. Hardware Architecture

For the experiments we run, we use a hardware architecture
based on GEMMINI [8]. It has a 4 level memory hierarchy: a
register, accumulator, scratchpad and DRAM. As an example,
consider a 2D-Conv with b batches, ¢ input channels, k£ output
channels, and filters of size r x s and outputs of size w X h.

e Registers are typically the smallest level of memory
and the fastest. They are single storage units. Multiple
registers can be accessed in parallel. For the 2D-Conv
problem, when tiling the loops, only the input, weight
and output tensor data tiles can be stored in this level.

o Accumulators are a type of register used to store inter-
mediate accumulated data in multistep computations. In
DNN architectures, they are typically used in multiply-



accumulate (MAC) operations. For the 2D-Conv problem,
only the output tensor’s data tiles can be kept at this level.

e Scratchpad memory is a small, high speed on-chip mem-
ory level that is used to temporarily store data during
computations. Processing elements in the architecture can
access data stored in the scratchpad relatively fast because
it is on-chip. When tiling a 2D-Conv problem, only the
input and weight tensor data tiles can be stored at this
level.

e DRAM is typically the main memory for the architecture
and stores the the entire input, weight and output tensor
data. It is located off-chip so it is much more expensive
to access than the other memory levels that are on-chip. It
is also much bigger in size in comparison to the on-chip
levels.

After an architecture is defined, Timeloop-model requires
a mapping of the problem onto the hardware to perform
its evaluations. Listing 4 shows an untiled implementation
of 2D-Conv. We use Timeloop to evaluate a mapping of
this problem onto a 4 memory level GEMMINI architecture.
Listing 5 describes how a Timeloop mapping is specified.
The factors represent the loop sizes, permutation specifies the
loop ordering for the memory level and the rype key specifies
whether the loop is mapped sequentially or parallelised in
hardware. The yaml mapping description in Listing 5 generates
a tiled, reordered loop nest as shown in Listing 6.

As an example, the Output’s dimensions of the problem are
N,P,Q,M. Output data is tiled at the AccumulationBuffer as
shown in Listing 6. This means a block of output tensor data of
size 6 (register output tile size) * 2 (M) * 4 (N) * 8 (Q) = 384
is retrieved from DRAM and stored in the AccumulationBuffer
level for computation. A block of this size is retrieved from the
DRAM 3136 times (we multiply the loop sizes for dimensions
N,P,Q,M at levels before the AccumulationBuffer to obtain
this value) during the entire computation to process all the
ouput data. The correctness of this mapping can be verified
by ensuring that the tiled implementation traverses all the
dimensions of the tensors correctly.

DRAM [ Weights:31104 (31104) Inputs:7750656 (7750656) Outputs:1204224 (1204224) ]
| for M in [0:24)
| for Q in [0:56)
for R in [0:3)
for P in [0:56)
for N in [0:16)

for C in [0:144)
Output [N] [P1[Q1 [M] +=
Weight[C] [R][S][M] x

|
|
|
| for S in [0:3)
|
|
|
| Input[C] [N][S+Q] [P+R]

Listing 4: Original, untiled 2D-Conv problem

C. Mapspace Encoders

GPTune can sample numerical mapspace optimization pa-
rameters (e.g. tile sizes) as integers or real numbers. Categor-
ical mapspace parameters (e.g. loop ordering) can be sampled

mapping:

- factors: N=1 M=4 S=1 P=28 Q=1 R=1 C=4
permutation: CQRSPMN
target: DRAM
type: temporal

- factors: N=4 M=1 S=1 P=1 Q=7 R=1 C=9
permutation: QCMPNSR
target: Scratchpad
type: temporal

- factors: N=4 M=2 S=1 P=1 Q=8 R=1 C=1
permutation: CMPNROQS
target: AccumulationBuffer
type: temporal

- factors: N=1 M=3 S=3 P=2 Q=1 R=3 C=4
permutation: NCPMSRQ
target: Registers
type: temporal

Listing 5: A valid 2D-Conv mapping description for Timeloop-
model. Note that the loop permutation is specified from
innermost to outermost loop

DRAM [ Weights:31104 (31104) Inputs:7750656 (7750656) Outputs:1204224 (1204224) ]

| for M in [0:4)
| for P in [0:28)
| for C in [0:4)

Scratchpad [ Weights:1944 (1944) Inputs:133632 (133632) |

for N in [0:4)
for C in [0:9)
for Q in [0:7)

AccumulationBuffer [ Outputs:384 (384) ]

for Q in [0:8)
for N in [0:4)
for M in [0:2)

Registers [ Weights:108 (108) Inputs:48 (48) Outputs:6 (6) ]

for R in [0:
for S in [0:3)
for M in [0:3)
for P in [0:2)
for C in [0:4)

Listing 6: The mapping described in Listing 5

as categorical variables or as numerical variables and then
appropriately encoded.

To obtain valid mappings, the tilings and orderings obtained
after the encoding must satisfy hardware constraints. To ensure
tile sizes are less than the loop dimensions, we sample tiling
parameters from the (0, 1] space, then scale and round the
tile sizes to factors of the loop dimension. Rounding is
done to ensure perfect factorization. To meet the hardware
memory constraints for higher dimensional problems, more
complicated inequalities have to be satisfied by the tiles.

As an example, let’s take a 2D-Conv defined by b batches,
c input channels, k& output channels, and filters of size r X s
and outputs of size w x h. To tile the problem, the tile sizes
ty, te, ... must satisfy constraints that ensure the dimensions fit



in the level of memory. (2) is the constraint to be satisfied for
a scratchpad level (only inputs and weights can be stored) of
size S. (3) is the constraint to be satisfied for the accumulator
level (only outputs can be stored here) of size A.

tetptrts +totc(tw +60)(th +1s) < S 2)

tntmtpty < A 3)

Rejection sampling could be used in this scenario instead
of constraining the space. In our initial rejection sampling
approach, we set the objective value to le+30 when an
invalid mapping was found. This approach did not work well
because the large value could overwhelm the surrogate model
computations. We also noticed that as the problem dimension
increased, rejections also increased, driving up the number of
GPTune iterations required.

So, encoding every sampled point to be a valid mapping in
the architecture improves GPTune’s performance. In our new
encoding scheme, we optimize over the aspect ratio of the tiles.
Instead of sampling tiling parameters from the (0, 1] space, we
sample the tile aspect ratios ay, a, ... from (0, 1]. We believe
this approach improves the generalizability of the model over
problem sizes, as communication-optimal tiles tend to retain
their aspect ratios over large problem sizes. So, instead of
directly optimizing over 1, t., ..., we optimize over the scaled
aspect ratios. (2) and (3) now become

tb,c,... N Qlp,e,... (4)

®)

at [acararas + apac(ayw + ar)(ap + as)] < S

ot [anapamay] < A (6)

The resulting tile sizes are rounded down to the nearest valid
factor of the loop dimension to ensure perfect factorization of
the loop.

Loop ordering parameters can be sampled as categoricals
or numericals. The approach we use to sample loop orders
as categoricals is to enumerate the possible permutations of
a nested loop and let GPTune sample a point from this
categorical space. This method seems to work well for low
dimensional problems like matrix multiplication, but its per-
formance suffers for the high dimensional 2D-Conv problem.

When sampling numerical values for loop ordering, a score-
based approach is used to determine the ordering in the map-
ping. We sample ordering parameters from the [0,1) space.
The sampled parameters are ordered according to the NAAS
[15] “importance-based” encoding method. The importance
value of each loop is sampled by GPTune as the ordering
parameter. The sampled values are sorted in decreasing value
and the ordering is determined by associating the loop to its
sampled value in the sorted list.

V. EVALUATION

Despite our approach being aimed at costly performance
models, we use Timeloop to evaluate the mappings selected
by GPTune because of its random search algorithm, Timeloop-
mapper. Using a cycle-accurate simulator to run random search
would be infeasible because it requires 1000s of evaluations
to converge.

We optimize two tensor computations — matrix multiplica-
tion (matmul) and 2D-convolution (2D-Conv) on a hardware
architecture based on GEMMINI with 4 memory levels. We
selected these 2 algorithms because 2D-Conv has high dimen-
sionality and matmul is relatively low dimensional. Loop tiling
and ordering is done for each memory level.

To perform Bayesian optimization, GPTune’s MLA and
TLA_I algorithms are used. We define GPTune’s problem
parameters as follows:

o Task Parameter Input Space : Sizes of each of the
problem dimensions as well as the storage capacities of
the memory levels. In general, the input space should
include problem dimensions that affect the mapspace of
a problem. The aim of our transfer learning approach is to
enable generalization over the sizes of the memory levels
and problem dimensions for the GEMMINI architecture.
This would enable GPTune to learn the mapspaces for
unseen problem and memory sizes with fewer iterations.

o Tuning Parameter Space : The tile size and loop order
parameters. As an example, matmul has 3 nested for
loops. Each loop has to be tiled at every memory level
and there are 4 memory levels in total. Computing the tile
size at the last level is trivial because we need a perfect
factorization of the loop, so the

lastTile = productOfLooL;;}i)lizszAftOtherLevels
so in total there are 3 X 3 = 9 tiling parameters for the 4
memory levels and 3 loops at each memory level. There
are also 3 X 4 = 12 loop ordering parameters for the
4 memory levels and 3 loops at each memory level. In
total there are 21 optimization parameters to tune. The
number of optimization parameters varies according to
the number of loops and memory levels in the problem.

o Output Space : Real value space from —inf to +inf
representing the energy or runtime evaluations of the
sample point chosen by GPTune. For our experiments,
we use the energy metric (measured in pJ/compute)
evaluated for mappings by Timeloop.

For all experiments, we average over three independent runs
to reduce statistical variance.

A. Convergence

Moving forward, we will use the term iteration to describe
the evaluation of one point chosen by GPTune. Figures 5 and
6 show the energy value of the best mapping found so far at
each iteration, comparing Timeloop and GPTune (we run 100
iterations for GPTune).

For both matmul and 2D-Conv, GPTune converges to a
good mapping much faster than for random search. As the
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Fig. 5. Energy (lower is better) attained by Timeloop’s random-pruned search
mapper and GPTune for matrix multiplication. 100 iterations of GPTune are
run. The blue dotted line indicates the energy value for the best mapping
found by Timeloop. Timeloop attains this value at 420 iterations.
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Fig. 6. Energy (lower is better) attained by Timeloop’s random-pruned search
mapper and GPTune for 2D-convolution. 100 iterations of GPTune are run.

dimensionality of matmul is relatively small, random search
performs reasonably well, but for 2D-Conv, random search
performs significantly worse than GPTune. For GPTune, the
plots show optimization results for both the score based
numerical and categorical encodings for loop ordering. For
matmul, categorical encoding seems to work better for tuning,
whereas for 2D-Conv the numerical encoding works better.
This is likely because of the number of possible loop orderings
for the problems. Matmul (3 nested loops) has (3!)* = 1296
choices for loop orderings over the four levels of the memory
hierarchy, while the 2D-Conv (7 nested loops) results in
(71)* ~ 6e14 choices.

For matmul in Figure 5, GPTune_Categorical converges in
less than 30 runs to 2.98 pJ/compute. Timeloop is run a total
of 4000 iterations. The best value found by Timeloop is 3.56
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pJ/compute, a value 16% worse than GPTune’s result. After
~ 420 iterations, the minimum performance value found by
Timeloop remains the same. No better mapping is found by
Timeloop after 420 iterations.

For 2D-Convs in Figure 6, GPTune converges in (on av-
erage) 50 iterations to a minimum of 5.26 pJ/compute, a
value that it took an average of 627 iterations for Timeloop-
mapper to beat. Timeloop is run a total of 4000 iterations.
The best performance value obtained by Timeloop was 4.32
pJ/compute, only 17% better than GPTune’s. The minimum
performance value found by Timeloop-mapper remains the
same from ~ 627 to 4000 iterations (no better mapping is
found in this interval).

Future work for convergence experiments include (1) de-
termining if convergence could be improved by using crowd-
tuning methods using a GPTune DB, (2) varying the size of
the DB to determine how many prior evaluations would lead
to improvements in optimization, (3) analysing the mapspace
exploration done by GPTune to determine how and why it
performs well, (4) reducing GPTune’s runtime using par-
allelism, (5) exploring new encoding schemes that lead to
better performance, (6) benchmarking GPTune’s optimization
against other algorithms like GAMMA and Mind Mappings,
(7) using multi-objective tuning (e.g optimizing both runtime
and energy), and (8) incorporating other loop optimizations
like spatial mapping, loop unrolling etc.

~
~

B. Transfer Learning

In hardware-software codesign settings, generalizable learn-
ing methods are preferred because they enable improved opti-
mization of unseen problem configurations. Random search
methods and feedback-driven algorithms like GAMMA or
Mind Mappings are not able to transfer learn effectively. For
every new problem to be optimized, they must be rerun and
modeled from scratch. Differentiable surrogate functions are
constructed by Mind Mappings. However, when these models
are applied for transfer learning on unseen hardware architec-
tures, they result in a significant decrease in performance, by
one or two orders of magnitude compared to Timeloop-mapper
and GAMMA [9].

Surrogate models built by GPTune using evaluations from
different problem and hardware specifications can be used
for transfer learning. We fixed the dimensions of a matmul
problem and changed the target architecture specifications
to obtain a collection of different function evaluations for
the GPTune DB. Figure 7 shows transfer learning for a
matrix multiplication problem. The surrogate model used was
trained using 100 total evaluations from 4 different hardware
architectures for the same matmul problem dimensions. This
model was further fine-tuned for the target architecture with 20
evaluations (in the search phase) from the target architecture
(this architecture was not present in the DB).

TLA_I in Figure 7 converges to a mapping of energy
3.81pJ/compute (on par with an uninitialized GPTune) in 10
iterations (roughly half that of uninitialized GPTune). This
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Fig. 7. Transfer learning to a new (not in training set) hardware configuration
for matrix multiplication, compared to GPTune with no prior knowledge and
Timeloop-mapper. The blue dotted line indicates the energy value for the best
mapping found by Timeloop. Timeloop attains this value at 1600 iterations.

performance value requires Timeloop an average of 1600
iterations to beat.

Future work for transfer learning experiments include (1)
problem dimension transfer learning, (2) finding mapspace
encodings that work best for TLA algorithms, (3) multi-fidelity
TLA, i.e. using cheap analytical model results as a guide to
enhance tuning using expensive simulators, and (4) determin-
ing if TLA_II can be used as a one-shot optimization method
to obtain a reasonable mapping for an unseen architecture.

C. Sensitivity Analysis

The surrogate models generated by GPTune can be used
to determine the most important optimization parameters for
the mapspace. GPTune offers a sensitivity analysis framework
that analyzes how different tuning parameters affect the per-
formance output results. GPTune currently applies Sobol [18]
Analysis to measure the contribution of each of the inputs
to the variance of the output. Sobol is a global sensitivity
analysis method that assesses parameter sensitivity. GPTune
also internally invokes SALib [10] to compute Sobol indices
from the trained surrogate model.

We use a large number of cheap, function evaluations from
Timeloop to build the surrogate model. Then a variance based
mathematical analysis is conducted to compute the sensitivity
values. We are primarily interested in the total effect index ST;
which measures the fotal contribution (including interactions
between other variables) of a parameter to the total variance.

In Figure 8, we see the results after running sensitivity
analysis on 1000 evaluations of a 64 x 128 x 512 size matrix
multiplication problem. There are 4 memory levels and the
memory levels are 0 indexed starting from the smallest level
of memory (register) to the biggest level of memory (DRAM)
at index 3. So the indices are (0) registers, (1) accumulator, (2)
scratchpad, (3) DRAM. Each tiling parameter is formatted as
loopName_ar_memoryLevel. For example, k_ar_1 is the tiling
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—=——————————————— Matrix Multiplication Problem
164, J:128, K:512

Total 21 parameters for tiling and reordering
4 levels of memory - registers, accumulation buffer, weight input buffer, DRAM

Sensitivity Analysis results:
Most Significant Dimensions:
(0.32804218572066973, 'k_ar_1')
(0.3249392780242742, 'j_ar_0')
(0.3133317356437882, 'k_ar_0')
(0.2796376291276565, 'i_ar_2')

[(0.32804218572066973, 'j_ar_0'), (0.3133317356437882,
'k_ar_0'), (0.2796376291276565, 'i_ar_2'), (0.18660164806894583, 'j_ar_1'), (0.1574832
517223692, 'i_ar_0'), (0.1354613464086091, 'i_ar_1'), (0.08818905560839485, 'j_ar_2'),
(0.07476340204849422, 'k_ar_2'), (0.04848590473136041, 'j_order_1'), (0.03850987794083
757, 'j_order_3'), (0.03293284277029876, 'k_order_2'), (0.032787791269463115, 'j_order
_2'), (0.006883781913935937, 'j_order_0'), (7.088867202673393e-06, 'k_order_3'), (4.17
9731822316962e-07, 'k_order_1'), (3.200426545098471e-07, 'i_order_0'), (1.911037213090
7196e-07, 'k_order_0'), (5.2160288899668155e-08, 'i_order_1'), (1.596262276232857e-08,
'i_order_3'), (1.3701548906990463e-10, 'i_order_2')]

‘k_ar_1'), (0.3249392780242742,

Fig. 8. Matrix multiplication sensitivity analysis with 1000 function evalua-
tions

parameter for the k loop at the 1st memory level (accumulator).
The numerical loop ordering encoding is used and each order-
ing parameter is formatted as loopName_order_memoryLevel.
For example, n_order_2 represents the ordering parameter for
loop n at the 2nd memory level (scratchpad).

We see that the most important axes are the tilings of &
at the register and accumulator levels and the tiling of j
at the register level. The surrogate model is several orders
more sensitive to tiling parameters as compared to ordering
parameters. This is an interesting result because it aligns with
previous work showing that loop tilings are the most important
mapspace parameter for optimization.

These results are significant because it shows that most
parameters in the space have a marginal impact on the per-
formance. This reduces the dimensionality of the problem and
could lead to better results. GPTune’s sensitivity analysis tool
enables us to extract the most imporant mapspace parameters
and fine-tune them further to potentially discover more effi-
cient mappings.

Future work for sensitivity analyisis include (1) running
sensitivity analysis for other tensor computations like 2D-Conv
to determine if low dimensionality is a general property for
mapspaces, (2) setting up an automated dimension reduction
framework and further fine tuning the important mapspace
parameters, (3) running sensitivity analysis with a cycle-
accurate simulator for more precise sensitivity results, and
(4) multi-objective sensitivity analysis to determine which
mapspace optimization parameters have an impact on different
objective functions.

VI. RELATED WORK

There has been a significant amount of work done in
the mapspace exploration domain. CoSA [11] is a one-shot
optimizer that takes into account hardware and problem spec-
ifications to formulate the mapspace into a mixed-integer
program (MIP) and solves it to find an efficient mapping.
Similarly, polyhedral compilation methods like Tensor Com-
prehensions [19] and Pluto [7] model the mapspace as integer
linear programs (ILP) and minimize the communication cost.
Mind Mappings [9] uses gradient-based methods. Most other



mapspace exploration techniques use machine learning to
navigate the mapping search space. GAMMA [12] uses ana-
lytical models for mapping evaluation and evolutionary search
methods for space exploration. FlexTensor [21] uses a heuristic
method based on simulated annealing to find mappings and
reinforcement learning to guide the search from the chosen
mappings. AutoTVM [4] uses a statistical cost model based on
Gradient Boosted Trees (GBTs) and an ML based exploration
model with a rank loss function. Adams et. al [3] presents a
method to optimize Halide [2] using tree search for mapping
space generation and a variant of beam search to navigate the
mapspace.

VII. CONCLUSION

In this thesis, we demonstrate the feasibility of using
Bayesian optimization techniques for mapspace optimization
using very few (less than 100) samples. Our work will prove
beneficial to optimize mapspaces where the cost of obtaining
performance data is expensive. Our method facilitates transfer
learning. Transfer learning enables faster convergence to
high performance mappings and uses knowledge from prior
evaluations to optimize searching an unseen mapspace. It
also enables efficient tailoring of architectures to execute
specific problems efficiently. The results of our sensitivity
analysis experiments are optimistic; they signify that the
dimensionality of the mapspace can be reduced, further
improving Bayesian optimization techniques. We list future
work and potential research paths in the sub-sections under
Section V. Although there are more enhancements to be
made, we are excited to present these promising Bayesian
optimization results. With further refinement of our method,
we anticipate achieving even better outcomes and significantly
accelerating tensor computations.
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