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Abstract

Hardware Software Co-design and Architectural Optimization of Deep Learning Models for
Natural Language Processing

by

Thanakul Wattanawong

Master of Science in Computer Science

University of California, Berkeley

Professor Kurt Keutzer, Advisor

Assistant Professor Sophia Shao, Co-chair

Transformer models are achieving state of the art performance across tasks in natural lan-
guage processing, computer vision, and others. However, the amount of compute required to
perform inference using Transformers has grown significantly over the past few years, mak-
ing them unusable at the edge or in low-power electronics. Therefore, there is an increasing
need to improve their efficiency with opportunities ranging from performing architectural
modifications to designing domain-specific accelerators (DSA). In this work we present two
approaches to optimizing the inference of Transformer models. One is a Hardware Software
Co-design approach that jointly optimizes the hardware architecture alongside the Trans-
former architecture. We present a framework based on Neural Architecture Search (NAS)
and evolutionary search that practitioners may use to find the best-matched hardware con-
figuration and Transformer architecture that satisfy the required performance criteria. We
optimize the Transformer for both inference latency and power consumption using a metric
called Energy-Delay Product (EDP), and find that the framework can attain a 2.2× EDP
improvement while tolerating a 0.1 point perplexity degradation, and 10.6× with a 1 point
degradation over the baseline. The survey [19] that this work contributed to further com-
bined other improvements such as insights from [20] for an overall 88.7× speedup. Based
on the insights gained from the survey paper, we were able to conduct experiments on ar-
chitectural optimizations on feedforward networks for small Transformers that are designed
to reduce inference FLOPs and energy consumption. We find that the feedforward network,
which accounts for roughly 60% of the parameter count and inference FLOPs of the model
T5-Mini, can be removed with only a 2.7 point loss on MNLI-mm, a standard natural lan-
guage inference benchmark. Along with a number of other ablations, we find that structural
weight reparametrization can be used to reduce inference FLOPs and parameters by about
30% with only a one point drop on MNLI-mm.
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Chapter 1

Introduction

In recent years, the Transformer architecture [35] has revolutionized the field of natural lan-
guage processing. Transformers are characterized by their use of the attention mechanism,
which allows the model to learn to focus on specific tokens in the input that are important
for making predictions or generating new output.

However, as these models have grown, their compute requirements have also outpaced the
hardware available to run them. Most modern deep learning models are currently run on
either GPUs (Graphics Processing Unit) or specialized accelerators such as the TPU (Tensor
Processing Unit), and while flagship model sizes have been growing at the rate of 240x every
two years, the amount of memory available on accelerators has only grown by about 2x every
two years [14]. This makes the cost of training and inference untenable for all but the most
well-funded organizations, and thus we must find ways to create more efficient Transformers,
especially in inference as that is where the majority of their lifetime compute will come from.

Although alternative scale-out techniques such as model parallelism have been proposed
to alleviate this issue, here we focus on designing efficient Transformers for the single node
case. In particular, I focus on two main directions. One is using Hardware Software Co-
design to design an efficient Transformer pairing with an accelerator configuration. The
other is optimizing the Transformer architecture directly for efficient inference.
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Chapter 2

Related Works

2.1 The Transformer Architecture

The Transformer is characterized by its use of the attention mechanism [35], and models
based on this architecture have become the backbone of modern natural language processing
as they excel in tasks ranging from Natural Language Understanding, to translation, to
generating human-like text. For example, BERT [11], an encoder-only model, achieved state
of the art on Natural Language Understanding tasks such as GLUE [36] and SQuAD [27].
Other variants such as the encoder-decoder T5 model [26] further improved performance on
these language understanding tasks by converting all problems to a text-to-text pretraining
objective. More recently, the GPT family of Transformers [24, 25, 3, 22] have shown superior
performance in generating human-like text, invigorating the field of generative AI research.

2.2 Efficient Transformer Architectures

The high compute costs of Transformers have motivated many works attempting to reduce
it’s cost. There are a multitude of works that focus on reducing the cost of self-attention [21,
2, 43, 31, 7, 32, 40, 38, 17, 9], which grows quadratically with the sequence length due to
the all-to-all computation required. A minority of works focus on improving the cost of the
feedforward network. In our survey paper [19], we have found that in smaller networks and
smaller sequence lengths, the feedforward network dominates the overall cost, and so we
have chosen to focus on this area.

For a more thorough survey of efficient Transformers refer to [29].
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Chapter 3

Hardware Software Co-design

3.1 Overview

While general purpose computing devices such as CPUs and GPGPUs have been common-
place in deep learning for a while, modern specialized accelerators are becoming more popular
due to their ability to perform the required operations needed in a more efficient manner.
Additionally, the rich design space offered by technologies such as Chipyard [1] and Gem-
mini [13] have now enabled the ability to co-design a well-matched pairing of hardware
alongside the software in order to achieve high efficiency.

The survey paper [19] that this work contributed to analyzed the runtime characteris-
tics of Transformers, surveyed methodologies for designing efficient transformers, and finally
performed a case study to apply the studied methods using Gemmini, the full-stack deep
neural network accelerator generator. This work specifically focuses on the Neural Architec-
ture Search (NAS) implenmentation and its merits. Sehoon Kim contributed to much of the
implementation of the NAS framework. In the survey paper, others contributed performance
increases that total up to 88.7×.

3.2 Key Findings

First I summarize the key findings that we discovered with regards to both the Gemmini
accelerator and Transformer inference.

To set the background, other parts of the survey paper [19] found that:

• Gemmini, which was originally designed and benchmarked on CNN workloads, is not
well suited for Transformer inference. In fact, due to the requirement to offload floating-
point non-linear operations as well as (de)quantization operations, hardware utilization
could be less than 1%.

• By using I-BERT for integer-only quantization and implementing dedicated accelera-
tion units for nonlinear operations, a 39.6× improvement.
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• Despite the fact that matrix multiplication schedules in Transformers only require three
loops, they can be challenging to schedule, with the difference between the best and
worst solutions being up to four orders of magnitude.

The contributions of this work and to the survey paper are as follows:

• By running our Neural Architecture Search framework over several hardware config-
urations, we found that Transformers benefit from having a large accumulator and
smaller scratchpad size, whereas the opposite is more optimal for CNNs.

• Our Neural Architecture Search (NAS) can obtain a 2.24x EDP reduction with only
0.1 point perplexity drop and a 10.56x EDP reduction with only 1 point perplexity
drop on the WikiText-2M dataset.

3.3 Codesign Methodology

Approach

As a case study, we applied our findings on the Gemmini [13] deep neural network accelerator
platform in order to find a well-matched Transformer and hardware configuration. Although
there are many previous works on designing deep learning architectures that perform well
on a specific hardware ([39, 4, 5] among many others), most often assume the underlying
hardware is fixed. Gemmini and the Chipyard infrastructure are able to simulate many
hardware configurations, and so we have chosen to take advantage of that fact.

The Neural Architecture Search framework is summarized in Fig. 3.1 from [19]:
At a high level, we train a supernet that we can sample architectures from, and then

conduct an evolutionary search process to find pareto-optimal architectures. The advantage
of our method is the supernet only has to be trained once as it can take time, while the
second phase only has to take place once given a set of lookup tables for delay and energy.

Experimental Setup

We use Neural Architecture Search (NAS) and adopt a BigNAS-style [42] strategy to train
a supernet that we can draw random architectures from. Then, we use an evolutionary
algorithm to search for pareto-optimal sub-networks out of the fully trained supernet. The
NAS search space is composed of various combinations of the number of layers, number of
heads, hidden dimension, and FFN dimension as described in Tab. 3.1.

Our baseline is a Language Modeling task and we train a randomly initialized 6-layer
Transformer model on the WikiText-2 [33] benchmark using the biggest architecture possible
in our NAS search space. We optimize for both latency and energy using simulated values
from Timeloop [23] which were contributed by Minwoo Kang.
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Phase 1: BigNAS-style supernet training Phase 2: HW-Aware Evolutionary Search

Randomly Sampled
Architectures

Supernet of largest size in search space

Train using

Largest / Smallest

EDP

Latency Energy

Sample Architectures

Compute cost on
 target hardware

Evaluate Performance

Perplexity

Prune non-pareto optimal architectures
and mutate/crossover

Figure 3.1: NAS Framework from Kim et al. 2023 [19]

Parameter Range of Values

N {3, 4, 5, 6}
h {4, 6, 8, 10, 12}
d 384 − 768, step size=96

dFFN 768 − 3072, step size=128

Table 3.1: NAS Search Space.

For the target hardware, we use an optimized version of Gemmini with dedicated nor-
malization units for running non-linear operations on-chip that was implemented by Hasan
Genc and Ruohan Yan. Based on some initial experiments with the Neural Architecture
Search framework, we also configure Gemmini with a scratchpad size of 64kB and accumu-
lator size of 256kB to maximize the available accumulator size, as this seemed to lead to
better performance overall.

For more details on the experimental methodology, please refer to the survey paper [19].



CHAPTER 3. HARDWARE SOFTWARE CO-DESIGN 6

20 40 60 80 100 120
Latency (109 Cycles)

22.5

23.0

23.5

24.0

24.5

25.0

Pe
rp

le
xi

ty

NAS Results: Latency vs. Perplexity
(Scratchpad 64kB, Accumulator: 256kB)

NAS
Trained from scratch

+1 Perplexity

+0.1 Perplexity

0 20 40 60 80 100 120
Energy (10 3 J)

22.5

23.0

23.5

24.0

24.5

25.0

Pe
rp

le
xi

ty

NAS Results: Latency vs. Energy
(Scratchpad 64kB, Accumulator: 256kB)

NAS
Trained from scratch

+1 Perplexity

+0.1 Perplexity

Figure 3.2: (Left) Latency-perplexity and (Right) Energy-perplexity plots of the Transformer
architectures found via evolutionary search on our optimal Gemmini hardware configuration.
Lower perplexity indicates better performance, and we plot lines to illustrate +0.1 and +1
point perplexity degradation.

3.4 Results

The results from NAS including are shown in the tables below. As can be seen in Fig. 3.2, the
NAS framework allows us to obtain multiple Transformer architectures with good hardware
cost to perplexity trade-offs. Note that for energy, we use values from Timeloop [23], and for
latency, we use RTL simulated values from Ruohan Yan and Hasan Genc. The key findings
are summarized below:

• A diverse search space is important, as many ideal architectures have varying number
of heads and fully connected layer dimensions between layers. For example, one ar-
chitecture we found that the number of heads varied between 6 and 12, and the fully
connected layer dimensions varied from 768 to 2560, the maximum permitted by our
search space.

• We achieved 2.2x EDP reduction with imperceptible perplexity degradation. If we are
willing to lerate 1 point of perplexity degradation, these gains can go up to 10.6x on
our target hardware.

• The supernet can offer the same perplexity at the same or lower EDP cost compared
to the model trained from scratch, and we think this may be due to the regularizing
effect of BigNAS.
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Chapter 4

Architectural Optimization of Small
Transformers

4.1 Overview

Although large language models have shown impressive performance, they are somewhat
impractical to run on the edge. This has motivated a whole series of work in designing more
efficient architectures such as SqueezeNet [18] or MobileBERT [28]. We focus specifically
on the sub-BERT regime (less than 300M parameters). Transformers at this scale have the
potential to run quickly on edge and mobile hardware, and if we can make them perform
well on specific tasks there will be many applications that open up.

We focus specifically on FFN runtime due to results found from our survey paper [19]
that at low sequence lengths, FFN is roughly half of the total runtime for a Transformer
block. Furthermore, we have spoken with a large cloud hyperscaler and they have indicated
that most of their workloads are the aforementioned short sequence length workloads.

4.2 Experimental Setup

We run our experiments using the T5 model from [26]. T5 is an encoder-decoder foundation
language models that is the basis of many modern advances such as the multilingual model
mT5 [41], the Byt5 [41] trained on UTF-8 Bytes directly, Long-T5 [15] trained with longer
attention context length, and Flan-T5 [8], which was instruction-finetuned. Specifically, we
use the T5-Mini variant from [30]. T5-Mini’s architecture is presented in Tab. 4.1.

We pretrain the model on the C4 dataset using a batch size of 128 for 524,288 steps using
an inverse square-root learning rate schedule. Then, we fine-tune for 262,144 steps with a
constant learning rate of 10−3 on a proportional mix of all GLUE tasks [36] such that the
model sees an equal proportion of examples from each task since some tasks are smaller than
others.
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Table 4.1: T5-Mini Model Specifications

Parameter Value

Model T5-Mini
NL (number of layers) 4/4
dff (FFN Dimension) 1536
dmodel (Hidden dimension) 384
dkv (Key-value vector size) 32
NH (Number of heads) 8
#Params 31M

For benchmarking, we measure the maximum value over three runs on MNLI-mm, one
of the tasks from the GLUE benchmark. This was done as we had observed high variance in
results, and often one of several runs would have drastically lowered performance compared
to the rest of the group. By taking the maximum, we can lower this variance when we want
to compare ablations.

4.3 Results

We present our results as a series of ablations based on a specific idea, and in the end
present a pareto frontier curve that illustrates the tradeoff between FLOPs and parameter
count versus performance on MNLI-mm.

Ablations

Skipping FFN

First we want to establish the contribution of the FFN layer, and so we ran experiments
that skip the FFN block completely. The results are described in Tab. 4.2.

Model max(MNLI-mm) Difference FLOPs (M) Params (M)

Baseline 78.2 0.0 1.909 15.351
Skip FFN 75.5 -2.7 0.682 5.907

Skip Encoder FFN 76.1 -2.1 1.296 10.629

Table 4.2: Skip FFN Ablation
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In general, it seems that the FFN layer is responsible for 2.7 MNLI-mm points, and we
have around 9.4M parameters to try and reinvest for better performance.

Training Longer

Next, we wanted to establish the upper bound for performance that can be achieved if we
trained longer. The training settings that we are using is the T5-baseline setting, which was
optimized for running many ablations due to the number of ablations that are present in
[26]. However, the published T5 models are trained on significantly more data. We wanted
to investigate how much more training and data benefits performance as has been studied
in Chinchilla [16] and LLaMA [34]. The results are described in Tab. 4.3.

Steps max(MNLI-mm) Difference Tokens (B) FLOPs (M) Params (M)

500k 78.2 0.0 34 1.909 15.351
1M 79.0 0.8 68 1.909 15.351
2M 79.4 1.2 136 1.909 15.351
5M 80.1 1.9 340 1.909 15.351

Table 4.3: Training Longer

As one can see, although there are still some gains to be had, the advantage of training
longer quickly diminishes, as going from 500k to 1M steps yielded a 0.8 point increase but
going from 1M to 2M only yielded a 0.4 point increase, and 2M to 5M only as 0.5 point
increase.

Weight Reparametrization

Next we looked at the idea of structural weight reparametrization, which has been suggested
in the Computer Vision area before in works such as [12]. The idea is to design a train time
architecture that can be reparametrized into a more efficient inference time architecture. For
example, during training you may have a linear neural network that computes ABx where
A and B are suitable matrices, but at inference you may reparametrize them as C = AB
and apply just Cx instead. With greater capacity at training time, you may achieve better
performance than training using the smaller reparametrized matrix.

In our experiments, we trained the following linear neural architectures for the FFN as
described in 4.4. We exclude the ReLU activation in the middle and keep the bias term for
now.

As the results in 4.5 indicate, there is a a lot of promise in using bigger weight matrices
at train time, using 3 weight matrices was only 1.0 points off the baseline, which has ReLU
in between the weight matrices. We may be able to reinvest the parameters saved here into
making the model bigger.
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Name Weight 1 Activation Weight 2 Weight 3

Baseline 1536x384 ReLU 384x1536 -
1W 384x384 - - -
1W w/ ReLU 384x384 ReLU - -
2W 1536x384 - 384x1536 -
3W 1536x384 ReLU 1536x1536 384x1536

Table 4.4: Reparametrizable Architectures Studied

Model max(MNLI-mm) Difference FLOPs (M) Params (M)

Baseline 78.2 0.0 1.909 15.351
1W 76.5 -1.7 1.291 10.626

1W w/ ReLU 76.1 -2.1 1.299 10.626
2W 76.7 -1.5 1.291 10.626
3W 77.2 -1.0 1.291 10.626

Table 4.5: FFN Reparametrization Results

Adjusting FFN Expansion with Weight Reparametrization

Expansion Rate max(MNLI-mm) Difference FLOPs (M) Params (M)

Baseline 4x 77.2 0.0 1.291 10.626
2x 77.3 0.1 1.291 10.626

1.5x 76.7 -0.5 1.291 10.626
1.2x 76.6 -0.6 1.291 10.626

Table 4.6: Adjusting FFN Expansion with Weight Reparametrization

Next, we combine the idea of structural weight reparametrization with reducing the FFN
expansion rate from the baseline 4x, in order to see how this changes the performance. We
use three linear weight matrices (3W) for all experiments in this subsection.

Our results in Tab. 4.6 indicate that performance is generally correlated with the FFN
expansion rate, but that this only matters up to about 2x FFN expansion.
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Adjusting Head Dimensions

We also examine the effect of adjusting the number and dimensions of heads to see if further
gains can be made here. Our results in Tab. 4.7 indicate that in general you can increase
performance by 1-2 points with up to 3M increase in parameter count, but this requires more
investigation.

Architecture max(MNLI-mm) Difference FLOPs (M) Params (M)

Baseline 78.2 0.0 1.909 15.351
1.5x # Heads 79.2 1.0 2.246 16.530
2x Head Size 79.2 1.0 2.245 16.530

Both combined 80.0 1.8 2.741 18.273

Table 4.7: Adjusting Head Dimensions
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Chapter 5

Conclusion

In this thesis, I discussed two lines of research about optimizing the performance of modern
Transformer models. For the co-design direction, we managed to achieve a 2.2× EDP re-
duction with no perceptible performance loss and a 10.6x reduction if one point is tolerable.
For optimizing the architecture of smaller models, we were able to reduce the parameter
count and inference FLOPs of T5-Mini by about 60% with only a 2.7 point loss on MNLI-
mm, a standard natural language inference benchmark. We also perform a number of other
ablations and find that one can use structural weight reparametrization to reduce inference
FLOPs and parameters by about 30% with only a one point drop on MNLI-mm.

There is plenty of work that could be done in both directions. For the co-design aspect, we
should look into better ways to jointly optimize the hardware and Transformer architecture
at the same time, perhaps by using a similar method to [37], as this paves the way for an
end-to-end flow that does not require two stages. For the architecture aspect, we should
look into where we can reinvest the saved parameters. A first step would be to try and scale
up the modified Transformers to match the parameter count of the baseline and see if we
can exceed the performance of the original model. Experiments on other tasks must also be
investigated as it is not known whether how our architectural changes affect performance on
other tasks such as open-ended text generation or question-answer for example. We can also
look into alternative FFN structures such as those that rely on structured matrices [10] or
sparsity [6].
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