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Abstract—An enclave is an execution environment isolated
from the rest of the system, including the OS, providing secu-
rity and privacy guarantees. The technology is maturing and
seeing more adaptation in large and security-niche products,
for security and confidentiality, but is still too difficult to use
for wider adoption to occur. Specifically, the trust derivation
from a measurement of the loaded memory proves incompatible
with the design of modern applications because applications are
redeployed with different workloads, load resources gradually,
can be optimized by using available dependencies, etc. This leads
to workarounds, inefficiencies, and unnecessary complexity.

We introduce Dynamic and Composable Measurement – fol-
lowing a design paradigm shift to the measurement securely
relaying a collection of resources to be used instead of blindly
capturing exact runtime state. The report takes on the abstraction
of guaranteeing that only these resources can be used, indepen-
dently of how and when they are delivered. This approach is
especially helpful for dealing with resources that vary across
instances, like dynamic libraries, inputs, and configurations; or
that come from mutually distrusting providers. The measurement
design is modular and implementation-agnostic, without having
any side effects on trust assumptions. New use cases of enclaves
become feasible thanks to new capabilities.

I. INTRODUCTION

Enclaves protect and isolate the execution of a program
and its private contents from the OS, applications, and many
physical attacks. Their popularity has been growing greatly
with new use-cases being developed on top of enclaves, and
cloud providers providing support for enclaves on both x86
platforms – Intel SGX & TDX and AMD SEV-SNP [1] [2].

However, the usability of these platforms is lagging behind
and slowing adoption. Linear measurement of enclave apps
used by all Enclave Platforms is the core cause for most
remaining issues that make enclave app development more
difficult than regular applications. The Enclave Platform pro-
duces measurements of the initial enclave state because it
needs to prove that the untrusted host had set it up correctly.
We define linear measurement as a single hash of the
entire enclave memory contents from start to end; the most
important implications are that any small change requires
redoing the entire measurement, and the measurement is tied
to the necessary runtime view of all initial resources.

Prior work has improved the application environment to
closer match regular applications, but not much is being done
to support actual application lifecycles and deployment needs.

The main issues caused by this (discussed in detail in
Section 3) are as follows:

• Managing expected measurements is hard due to frequent
library updates and many possible target configurations.

• The library selection at deployment time is inflexible,
which prevents host-side optimizations to decrease cost,
deployment latency, run time, and vulnerable library trust
revocation recovery latency.

• The trust abstraction imposes unnecessary restrictions
on implementation because it’s tied to initial state and
runtime factors, causing any novel trust relationships to
be complex to support.

Managing expected measurements is often very difficult for
many applications because any variable configurations and
inputs must be provided and installed by custom code by app
developers. Microservice and cloud platform trends exacerbate
this issue because the number of dependencies and therefore
frequency of updates continues to rise.

Both meeting required demands such as important updates,
and brute-force approaches to optimizations are exponential in
cost. This is because each library will have some number of
updates and some number of candidates, so the average time
to next important update shrinks exponentially and the number
of total combinations grows exponentially. Each measurement
must start over from scratch by forming and hashing the
entire runtime view of the initial state, so the constants on
the exponential costs are significant.

This thesis addresses these issues by designing and building
Dynamic and Composable Measurement. Dynamic means that
multiple different measurements can satisfy the same expected
measurement and policy, and composable means that when
the set of components is changed, updating the expected
measurement is cheap and does not re-hash any components
that have been hashed before.

The design is flexible, platform-agnostic, detached from
enclave implementation and runtime view, and is able to
describe arbitrary application structure fitting all developers’
needs. Specifically, we make the following contributions:

• Measurement is dynamic: developers can match enclave
instance variants to enclave app. Measurement is compos-
able, simple, and flexible: it captures granular information
and resources and is detached from enclave build, runtime
view, and host optimizations.

• Dynamic negotiation of flexible dynamic libraries and
dependencies: host can propose a complete enclave app
instance, and the developer can securely decide if the
proposal is acceptable.

• Exclusion of non-defining resources from enclave iden-
tity: enclaves can have the same sealing key for stable
private storage.
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• Private third-party resources: enclaves can be securely
provided with private binaries, and the measurement
prevents equivocation of provided resources.

• Open-source implementation: an implementation is avail-
able online and is being reviewed in PR’s to be merged
with the Keystone Enclave Platform [3]. Work on relevant
features is in progress.

II. BACKGROUND

A. Threat Model

This work seeks to maintain the same guarantees as current
enclaves while providing new functionality and better design.
The guarantee is that if the enclave is set up correctly and no
denial of service occurs, it passes attestation, runs correctly,
and does not leak any data.

Permitted attacks are based on a malicious host with phys-
ical access to the machine and control over the software.
The host can mount physical attacks by reading, sending, and
modifying signals and data not inside the SOC with the CPU
securing the enclave. The host can mount software attack by
manipulating the OS, user applications, and network.

Denial of service attacks are not currently possible because
a malicious host can simply cut power to the computer or
network hardware. Side-channel attacks are an active area
of research as no comprehensive full-performance solution
doesn’t exist, and defenses can be done in hardware and in
application software [4] [5] [6].

B. Enclave Basics

An enclave provides an execution environment fully iso-
lated from the rest of the system, including the OS. It is
accomplished by having a trusted manufacturer supply the
CPU firmware with functionality that track enclave contexts
and limit access to sections of memory to only the enclave
context. The CPU also manages switching into and out of
the enclave context, so the execution of the enclave is correct
because the in-memory code cannot be accessed by the CPU
when not running the owning enclave. This allows a developer
to build an application and request that a host deploy it on their
machine, without trusting the host.

Trust is established through a measurement of the initial
enclave state. The host delivers developer resources to a
section of memory and calls a CPU procedure to keep that
memory for the enclave once it’s done setting up. The CPU
blocks off all access to that memory, creates the enclave to own
that memory, and measures the entire enclave memory. It signs
the measurement with a hardware-embedded key provisioned
by the CPU manufacturer, and the host sends this to the
developer to prove that the enclave is in the correct initial
state. This procedure is called Remote Attestation, and the
Attestation Report also includes measurements of the hardware
platform revisions and a generated public key for the enclave
instance. Because the enclave is in the correct initial state, it
will also execute correctly.

A typical usage that the developer writes an application that
uses only the features available on a particular Enclave and

Framework combination, generates the expected measurement,
sends the plain-text binary and dependencies to an untrusted
host. The host sets up the enclave, and the enclave starts
running and remotely attests to the verifier. The attestation
report includes a public key from a public-private pair se-
curely generated by the platform from the measurement, so
the enclave and the verifier are able to establish a secure,
encrypted channel. If the verifier accepts the attestation report,
it facilitates the enclave getting a developer-provisioned key or
proof that the enclave is trusted. Finally, the enclave requests
private data payloads to work on over the secure channel with
the proof attached, or decrypted by the key.

Intel SGX is the most widespread enclave technology, and
the first fully isolating, but has the most limitations such as
supporting only user-level privilege mode inside the enclave.
The development of this is ongoing, with new features, such
as allocation of memory after initial start, being bundled into
SGXv2 [7]. AMD SEV-SNP and Intel TDX are VM enclaves,
providing a VM-like experience that is protected through the
same concepts [8] [9]. ARM Trustzone is not used much as
an Enclave Platform due to very weak isolation [10].

Figure 1 shows an example architecture for an Enclave Plat-
form, the open-source Keystone platform. Here, the Security
Monitor manages enclaves, memory access, and measurement.
The Runtime is responsible for serving syscalls by passing
them through to the host OS.

Fig. 1. Keystone Diagram [11]

C. Measurement

When developing an enclave app, the developer will form
the expected measurement after finalizing its contents. The
developer sends the contents to a host to deploy, the host
loads the binaries and files into a memory region, and signals
to the Enclave Platform to take this region to create an
enclave. The Enclave Platform blocks access to this region
of memory for everything except the enclave, and hashes
the memory contents. It saves the enclave measurement to
an attestation report in Enclave Platform’s memory, which
also not accessible by the OS. The attestation report includes
additional information, like CPU firmware version, a generated
enclave public key, etc. The enclave app can request this report
and send it to a verifier to attest itself and receive private
data payload through an encrypted network channel. The exact
details of various platforms are summarized in [12].
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The measurement implemented in all current platforms is
what we will call a linear measurement: a single hash of the
entire enclave memory contents from start to end.

There are a lot of alternatives to the core design as summa-
rized in [13], but the problems presented in our work are not
address here.

D. Sealing Key

The Sealing Key is an enclave primitive available in all En-
clave Platforms. The procedure call mixes together a hardware-
embedded manufacturer key with the enclave measurement to
create an encryption key. This encryption key can be used for
secure local storage accessible to all instances of this same
enclave, since they all will measure the same. This provides
easy key that persists across enclave restarts and does not need
to be managed and provisioned by the developer.

A highly important use of the sealing key is when the
enclave receives data from a third-party that wants to remain
private to the developer. This creates secure storage with the
trust vested in the code itself, not the developer. Successful
use-case examples of this are Signal providing contact search
without ever reading a user’s contacts [14], and Opaque
providing a platform where mutually distrusting (i.e. due to
legal reasons) parties can compute on pooled data [6].

III. MOTIVATION

All current Enclave Platforms use linear measurement:
a single hash of the entire enclave memory contents from
start to end, for Remote Attestation. This leads platforms
to hash loaded binary files, meaning all expected measure-
ments require re-creating the exact memory view. Furthermore,
changing any part of the memory will require redoing the
entire expected measurement from scratch. These properties
lead to a myriad of issues, which are as follows.

Managing expected measurements is difficult due to fre-
quent library updates and many possible target configura-
tions. Linear measurement means we will have an exponential
number of final hashes, and calculating each is expensive.
The number of dependencies swells very high due to libraries
directly ingested relying on other libraries themselves, and
the average frequency of both mundane and critical updates
will grow exponentially. A typical application can exceed 100
total dependencies easily, as the average count of dependencies
within 254 popular Java packages is 14 [15]. The ubiquitous
logging library Log4j alone has 141 dependencies. This is
exacerbated by emerging microservice and cloud application
industry trends, as functionality is split into more separate
components that are still updated often. The most popular
web app package manager is affected by the microservice
trend, leading to the average count of dependencies climbing
to 77. Cloud providers are also dividing their offerings into
small components, leading the AWS Java SDK reaching 331
dependencies. Lastly, this also requires developers to sup-
ply per-run arguments such as arguments, options, and data
payload after the enclave starts. This goes against typical
deployment flows where the worker node will receive the

application and simply modify the command to point to the
per-run files, and means that developers must implement non-
standard methods for retrieving and installing the options and
files. Beyond run configuration, the host platform may vary
a lot in OS, OS version, and CPU architecture, leading to
many possible required combinations of dependencies. An
example use case is if Netflix wanted to use enclaves to
protect streaming of copyrighted materials from piracy. Netflix
would have to manage all library builds that could possibly be
needed, and the exponential number of expected measurements
due to different required library combinations. Even without
using enclave technology, Netflix fails to tackle the complexity
today. Full HD (1080p) or better on desktop is supported only
on Windows-Edge, Windows-Chrome, Mac-Safari, and Mac-
Chrome clients [16]. So, no OS gets the reasonable quality on
Firefox, and no browser at all gets it on Linux. Chrome is the
only browser that plays Full HD Netflix content on multiple
platforms, but it can’t do 4K (2160p) – only Windows-Edge
and Mac-Safari can.

The library selection at deployment time is inflexible,
which prevents host-side optimizations to decrease cost,
deployment latency, run time, and vulnerable library trust
revocation recovery latency. The inflexibility is due to the
exact match requirement of linear measurement. This makes
it unlikely that cost is reduced by enclaves sharing libraries,
deployment latency by cache avoiding large downloads, and
run time by host selection of platform-optimized libraries.
Downloading all libraries is a significant deployment latency
because modern applications use many common libraries for
many subroutines, and sizes are large: the aforementioned
AWS Java SDK is over 300 MB [17], and a popular linear
algebra Python library NumPy is 70 MB itself and relies on
OpenBLAS which is another 30 MB [18]. Notably, NumPy
can also by configured to use other, proprietary platform-
optimized linear algebra backends by publishers like Intel,
which can automatically be selected by hosts if available.
Revocation is slow because the following needs to happen to
revoke and recover: the verifier and private data serving com-
ponents are updated to stop accepting the old measurement,
the running enclaves are shut down, a new enclave app is built
and the corresponding expected measurement is re-generated,
new enclave app is downloaded to host, and enclave app is
restarted and re-attested. So, the build process, host, enclave
app, verifier, and data serving are all involved.

The trust abstraction imposes unnecessary restrictions
on implementation because it’s tied to initial state and
runtime factors, causing any novel trust relationships to
be complex to support. All components of an enclave app are
public to the app developer because the app developer needs to
be able to form the expected measurement which is the hash
of the enclave memory. Due to this, dependency providers
cannot provide private builds for developers to use inside of
enclaves, and have to instead deploy users’ workloads as data
instead of regular code. It could instead be possible that a
dependency provider runs an enclave collocated on the same
host that serves and protects the dependency, thus providing
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full native performance and flexibility in how it’s used. Linear
measurement prevents this because there’s no mechanism to
extend the trust chain to this, other than custom enclave app
code. There is a split of trust between what’s testified to by
the measurement, and the correctness of implementation for
getting the correct private data retrieval. This puts the burden
of correct setup on custom code developers have to write.
This also undermines use cases where end users do not trust
the app developer, but do trust the open-source app and the
Enclave Platform. If the payload data was attested to in the
measurement, and the enclave code could send an attested
done message, the user would be confident that the data
payload was actually processed. It is difficult for mutually-
trusting enclaves to work together because sealing key changes
on any change to the initial state, so the same enclave with
different initialization-time arguments cannot access sealed
data. Furthermore, fine-grain policies based on initial app
arguments are difficult due to cost of expected measurement
generation. There are many works that have had to implement
lots of functionality on top Linear Measurement to solve
their trust settings, including Signal Contact Discovery [14],
Opaque [6], MAGE [19], and Ryoan [20].

IV. RELATED WORK

Some works tackle some novel trust relationships arising
from enclave trust design described before, but most issues
are not addressed by any works.

A. Attestation

There has been work attempting to solve some of the above
issues through dynamic, but still linear measurement.

In Securing Remote Policy Enforcement by a Multi-Enclave
based Attestation Architecture [21], Niemi et al. tackle the
problem of 2 distrusting parties providing private arguments
into a public code template, but don’t address any other
issues, and deployment is slow due to re-creating a full
linear measurement every time. The parties share a public
template that has parameters variables. A deployer enclave,
open-sourced, is created and is supplied with private data from
one party and the values for the parameters defining what
exactly to do with the data from the other. The template insures
that the parameters don’t cause any data to leak. The deployer
enclave generates the expected measurement of the worker
enclave for the request, and runs and validates the worker
enclave. Our work makes the deployer enclave a lot easier.

MAGE [19] implements mutual enclave attestation. Each
enclave must include trusted expected measurements, includ-
ing itself, in its initial state, which is a self-reference. To
avoid this, the enclave is split up into a main enclave part,
and a trusted measurements set part. After startup, the enclave
generates the expected measurement by extending all items in
the trusted set by the trusted section. This solves only mutual
attestation, but demonstrated an online-generated (but not dy-
namic) measurement, and somewhat composable measurement
by having a checkpoint to extend from. Our work natively
splits up the measurement into sections, so we support the

same design, and can even extend it by including the entire
verifier to allow arbitrary policy verification.

Various works change attestation to solve problems not in
scope of this work. Opera [22] cuts Intel Attestation Service
out of the Intel SGX attestation critical path, allowing for
custom and developer-scalable attestation; notably, Keystone
does not have problems addressed by Opera. Confidential
Attestation: Efficient in-Enclave Verification of Privacy Policy
Compliance [23] generates proofs that attest to no leaks of
developer designated data in developer annotated binaries.
Intel SGX Quote [24] introduces more custom fields for the
developers to specify in the attestation report, but does not
have an effect on the actual measurement.

B. Enclave Frameworks

Enclave Platforms generally come with SDK’s, making it
easier to develop. Enclave Frameworks seek to make adoption
and usability easier by further simplifying the underlying
mechanisms. Open Enclave aims to help create platform-
agnostic code base by providing a single interface that uses
different backends; it supports Linux and Windows, and Intel
SGX and preview of ARM Trust-Zone [25]. Gramine is
meant to allow regular applications to be built into enclave
applications without modification by providing a library OS
[26].

Gramine for Intel SGX doesn’t solve any of the above
problems, but takes a step in the composable measurement
direction. It uses a customized Graphene user-space library
OS to service syscalls. It includes support for file reads
and dynamic libraries. These are secured by a manifest file
included in the initial enclave state as well as the Gramine
libOS, which then reads and loads files into memory, com-
paring the read hashes to expected. It has some limitations
due to being user-space only and not being able to modify
page table permissions. The inclusion of the manifest file ties
the measurement to the exact configuration of the enclaves’
dependencies. For remote attestation, Gramine requires an
Intel SGX Quote Quoting enclave to be ran by the host [27].

Academic extensions to Gramine are also done, such sup-
port for devices through memory mapping and ioctl calls
[28]. They also supply the Gramine manifest file with the
expected devices, which shows the advantage of having a flex-
ible resource collection. If there’s platform support, measured
items can even be enforced, such as a confidential computing
enabled GPU.

Some Function as a Service (FaaS) work has been done
on taking advantage of enclaves naturally fits what we will
call the Blank-Slate Worker (BSW). We define it as a stable
worker base that is ran as the initial enclave, and which then
accepts the enclave app, commands, and resources sent by
the developer through a secure channel. A minimal base must
have some runtime, TLS termination, and ability to load and
start applications; a bigger base could include anything that
is shared across many enclave instances and changes rarely,
however, which is the case for FaaS.
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S-FaaS [29] manages a pool of attested Blank-Slate Workers
by attesting them as they come up. When a workload comes,
the (regularly-attested) Key Distribution Enclave generates
keys and gives them to the worker enclave and code and
data providers. The providers send resources through secure
channels based on the keys, and can then be confident that
the worker will execute their task correctly and privately. This
avoids the providers from having to deal with complexities
and measurements, and provides a faster attestation and setup
flow than the regular multi-round. The runtime is trusted
and provides extra functionality like measuring and attesting
to resource usage of the enclave. Other works had similar
circumstances where there was a large, stable, shared runtime
that was used as the base, with smaller apps and data being
what actually changed from task to task: SCL [30] also uses
a FaaS runtime, but with efficient shared communication and
storage between enclaves, and Ryoan [20] uses a more general
sandbox that prevents untrusted app code from leaking private
input, allowing output only in a few sandbox-protected ways.

BSW eliminates the difficulty with managing expected mea-
surements, because the base doesn’t change often, and every-
thing else including application code, dependencies, configura-
tions, and data are supplied post-measurement; essentially, we
no longer rely on the measurement for correctness, but rather
the worker code correctly responding to secure communica-
tion. However, the other issues are not addressed: developer
must still manage all possible required library versions, there
cannot be optimizations performed by the host or host cache,
and novel trust relationships are still unsupported. Some of
these issues are tempered somewhat by the fact that in FaaS,
the runtime being ready to go is the biggest savings to be had,
but are still important.

BSW itself doesn’t support trust settings where the data
provider is a different entity from the code provider and
doesn’t trust the code, or when there are even more mutually-
distrusting resource providers. Ryoan in particular implements
another layer of measurement to support private but untrusted
code with private data: it performs linear measurement on the
code itself to attest to the data provider for non-equivocation,
and has further protections from data leakage. Lastly, outside
of FaaS, splitting resource distribution across two stages with
no flexibility on moving things around makes developing de-
ployment hard due to the complexity of managing retries and
various bad system states is hard; furthermore, the deployment
split is very uncharacteristic for modern deployment flows.

Gramine is the most mature and feature-rich Enclave Frame-
work, and Blank-Slate Worker is very light-weight, so we be
comparing our work against these.

C. Non-Standard Trust Settings

These arise when there are multiple entities providing re-
sources to an enclave instance, with different entities possibly
wanting different properties to be ensured about privacy and
correctness. Works here generally implement sandboxes or ad-
ditional measurements within the existing linear measurement,
and design only for their particular trust setting.

Private data pooling: multiple data providers may want to
pool data for processing, but no one entity can be trusted
with it. In Opaque [6], there are multiple hospitals or banks
who have critically private data, but want to train models and
do data analysis on pooled data to make better predictions
on health issues and for fraud detection. Opaque provides
a sandboxed data analysis platform in enclaves, where the
sandbox is known to all parties and performs data analysis
and parameterizes requests to prevent output from being too
revealing about the input. The data analysis enclaves attest to
all data providers, then each data provider establishes a private
channel and sends data over it, and finally all data providers
can make requests. Data is encrypted at rest.

Privacy-conscious users: e2e systems can take advantage
of enclaves when work must be done on plain-text data. In
Signal Contact Discovery [14], the message app users send
their contact list to Signal-managed enclaves that find what
phone numbers are associated with a Signal account, and the
communication is e2e encrypted between the enclave and the
trusted Signal client. Generally, on-premise requirements from
privacy-sensitive industry entities can also be replaced with
enclave-attested code.

Service component authentication via measurements: dis-
tributed systems can rely on attestation reports instead of a key
distribution component managing key distribution and rotation.
MAGE [19] implements mutual enclave attestation.

Host as enclave user: a content or code provider may
want to protect their intellectual property by serving them
into enclaves on user machines. However, this means that
users will want some guarantees that what runs on their
machine is safe for their machine and respects user resources.
This can be provided by measurements that report additional
information about either the components or properties of the
whole application, but even a single hash is useful for at
least non-equivocation. In Ryoan [20], private consumers can
rent their resources out and have the Ryoan sandbox attest to
resource usage to ensure they are paid it correctly, as well as
limiting what the application can do.

D. Dynamic Library Works

Dynamic libraries inherently introduce composability to the
enclave contents, but existing dynamic library works only
focus on getting the base functionality. Gramine supports
dynamic libraries but not sharing them, motivated by modern
applications not being compiled statically [26]. Multiple works
explore sharing specifically, by having multiple applications
in the same enclave and rely on a trusted runtime to isolate
them [31], or to have a dummy enclave control the library
memory and allow that memory to be mapped as execute only
to untrusted other enclaves [32]. None of the works propose
a negotiation procedure to avoid requiring exact version and
build of libraries, which makes sharing unlikely as each
enclave may require a slightly different version or build.
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V. DESIGN

A. Design Principles

The design should be able to fully describe a modern
application and reflect developer-perspective semantics. The
key insight is that files should be measured, and set up post-
enclave start by standard tools for full interoperability. To this
end, our design will resemble an in-memory filesystem.

We have some important desired properties:
• The measurement is efficiently Dynamic and Compos-

able, and easy to construct.
• The measurement is completely detached from the im-

plementation of enclave functionality.
• The design is flexible to fit arbitrary use cases.
• Measurement is simple and achieves a small TCB inside

Enclave Platform.
To detach the measurement from implementation and initial

state, we identify 2 dimensions to what type of component we
are measuring: a component can be present in the initial state
or only in the future, and a component can be defining for the
enclave, or is unique to this instance and therefore shouldn’t
affect the sealing key.

B. Measurement

We seek to measure everything about an enclave app. To
make the measurement composable, we will view a single
enclave app as mostly a collection of files. The measurement
should prove that the enclave will run correctly, however, so
it needs to relay how this is going to be ran as well. The
measurement will signify one of the components as the start
component, the component to whose start the CPU PC will be
set. This component must be resident because it needs to be
present for the enclave to start and be able to accept absent
resources later. Furthermore, Enclave Platforms may be able
to enforce some runtime properties, so we will also record
facts like amount of memory given to the enclave.

So far we have all enclave initial state aspects. Notably, we
changed the initial state of the enclave from what it needs for
functionality or implementation to what the correct identity
representation is. However, the measurement is a superset of
this; we will also allow components that are not yet present.
To do this, we will include a set of allowed hashes, so the
enclave application is able to enforce that it will receive further
resources that match the measurement.

We will place arrays of hashes and component pointers at a
designated location in the enclave, so that the filesystem can
be read both for measurement, and from inside the enclave
app to find files and expected hashes. Placing files inside the
array would make freeing loaded components expensive. The
resulting structure and memory layout is summarized in Figure
2.

All resources need to have a name so that they can be used
by the application. type is a bitvector to be used by developers
as needed, for instance for file read write execute permissions.
Offset from enclave bundle base is used because various code
reading this structure will be in physical and different virtual

1 struct enclave_bundle {
2 uintptr_t runtime_arr, id_res_arr,
3 id_abs_arr, res_arr, abs_arr,
4 data_start; // point to below
5 resource_value_t runtime_values[];
6 resource_ptr_t identity_resident[];
7 resource_hash_t identity_absent[];
8 resource_ptr_t resident[];
9 resource_hash_t absent[];

10 byte data[];
11 };

Fig. 2. enclave_bundle holds arrays of hashes of absent resources and
pointers to present resources.

1 struct resource_ptr_t {
2 uintptr_t offset;
3 uintptr_t size;
4 uintptr_t type;
5 char name[64];
6 };
7 struct resource_hash_t {
8 hash_t hash;
9 uintptr_t type;

10 char name[64];
11 };
12 struct resource_value_t {
13 uintptr_t value;
14 uintptr_t resource;
15 };

Fig. 3. Resource Definitions

address spaces. The measurement will include the name, type,
and actual contents or hash, while offset and size are excluded
because the offset is a runtime property of the memory layout
and the size is implicit from the file itself. The name and type
are needed because the components will be presented as being
that, so we need to ensure that the mapping is not tampered
with maliciously. The resulting structures are shown in Figure
3.

To actually construct the measurement, we iterate over each
array in-order and advance a single hash by the hash of
each component. An important consequence is that whenever
the component set changes, we can reconstruct an expected
measurement in O(count of components · hash size) when
we already know component hashes, which is very fast
compared to O(total size of components) of linear measure-
ment. We chose this over a Merkle Tree to make the CPU
firmware measuring code execute in constant memory, and
for simplicity; this would speed the expected measurement
to O(count of updates · log2(count of components)) which is
not a worthwhile gain. Lastly, measurement from scratch is
parallelizable, but doing so in CPU firmware would complicate
the TCB too much, and is not significant enough to optimize
for in builds.

When producing the measurement, we contribute identity
components to both the measurement and the sealing key, and
non-identity components to only the measurement.

Because the sealing key is not affected by non-identity
components, we must protect against malicious hosts that may
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supply arbitrary data to non-identity resources in an attempt
to leak data encrypted with the sealing key. Possible attacks
include the host replacing a dynamic library with hooks into
a script that dumps all encrypted data, and changing the
configuration to trust a bad certificate, allowing the enclave
app to output results to the host instead of the developer. There
are 2 possible defenses: 1) enclave app must wait for verifier to
approve it, and the verifier must validate that the entire setup
is safe, or 2) only the most benign resources can be made non-
identity, such as input data and mode selection. The first option
is much better, and it resembles existing mechanisms, like
Apple servers approving OS installations. The start resource is
required to be identity because 1 becomes impossible without
it, and by definition in 2 it must be identity.

C. Host and Developer Interactions

The Enclave Platform sends just a single hash as the
measurement, and because the host can select some values
like flexible libraries and inexact memory allocations, the
verifier needs to be able to figure out what went into the hash.
The host sends the resource_hash_t for all resources, and
the verifier validates that all the proposed resources match
what is desired and allowed. Then, the verifier constructs the
expected measurement based on this proposal, and checks that
the enclave measurement it receives matches the claimed and
approved proposal.

Dynamic libraries can be proposed by the host. Once the
untrusted host receives a request to locally deploy an enclave,
the host examines all resident files given by the developer
for deployment, and any ELF files it finds it ensures that
dynamic libraries are present for. If some dynamic library is
not provided, the host will choose an available library and
add it as a resource to the enclave bundle. It can be added
as either resident or absent, with absent allowing for potential
lazy loading of the resources.

The host can choose to support proposing other types of
dependencies, such as Python packages. This functionality is
not implemented in this work, but should rely on standard
dependency requirement specifications, like requirements.

txt.
In either case, these choices will be sent through to the

verifier, which will verify that the given hash matches a valid,
trusted library build. This means that the developer doesn’t
need access to the actual library, only to hashes reported by
the resource publisher.

There are TOCTOU issues with library proposals, and
remote attestation in general, because an old exact enclave app
version may be found to be insecure. When the verifier issues
the approval, it should also securely send server time and
security policy version, which is a strictly increasing number,
incrementing whenever at least one library version becomes
insecure. The enclave app should communicate periodically
with the verifier to shut down if necessary to protect data that
is already retrieved, and include the security policy version on
any data retrieval to prevent new data from entering insecure
enclaves.

At this point, we can build a deployment flow of an enclave
application, shown in Figure 4.

Fig. 4. Deployment. 1. New work or run is needed. 2. Application to
service the work is retrieved. 3. The work is copied in and added to the
enclave_bundle, and sent to a cloud service. The request is kept track of
for validation and retry. 4. The host selects libraries that fit the requirements. 5.
The enclave is built with the updated enclave_bundle. 6. The host sends
response with library choice proposal. 7. The enclave starts attesting itself
by sending the attestation report provided by the Enclave Platform. 8. The
verifier gets publicly available library hashes for the libraries chosen by the
host and rebuilds the measurement using expected values. The measurement
should match, and the chosen libraries should be considered secure by the
developer’s policy. 9. If all checks pass, the verifier responds with proof of
approval to be used for retrieving private data.

The last consideration is when the host does not have
an acceptable library available. For this to work well, the
developer needs to evaluate which libraries are available on
the target service and package the libraries that will not be
available in the initial request. The developer should test their
enclave on the service they expect to deploy to, and the host
can return errors if it is unable to fulfill all missing libraries.
This will cover most use cases, but alternatively the developer
can manage a fallback that re-makes the request with extra
libraries supplied.

D. On Top of Linear Measurement

Ideally, the measurement is implemented on the Enclave
Platform, but this design fits very easily on top of linear
measurement. We will start by examining on how Gramine
on Intel SGX can be modified to implement this design, and
then present the generic solution. Our work does not do the
implementation.

Gramine has a blank-slate libOS that is loaded by the
host into the enclave environment along with a manifest. The
manifest specifies all resources and exact hashes allowed for
it. The Gramine starts executing, receives the resources from
the untrusted host, verifies that they match the hashes, and
install them appropriately. This is similar to having only the
bare minimum bootstrap as resident resources in this work,
and all other resources are absent.

Our modified Gramine will thus mimic having only absent
resources; for now, only absent identity resources that affect
the sealing key. When we send a deployment request, the
untrusted host will be able to make proposals by editing the
Gramine manifest file. The host will send the final manifest file
instead of the enclave bundle of this work; alternatively, the
enclave can send it instead if for some systems this is more
convenient. Notably, we will require the manifest to be the
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last thing added to enclave memory; this allows the verifier
to reconstruct the expected measurement quickly by taking
a frozen Gramine blank-slate hash and advance it with the
new manifest (converting the manifest to the memory view).
This is not as efficient as this work, but is on the same order
of complexity. The rest of the remote attestation process will
remain the same.

To support non-identity absent resources, we will have the
enclave retrieve the array from the host after it starts. It will
send this array along with the attestation report, and the verifier
will service it as usual. This means that the correctness of
the reported non-identity absent resources relies on Gramine
being correct, as opposed to the Intel SGX measurement being
correct, which is worse in terms of TCB size for this part of
functionality.

The same can be done on an arbitrary linear measurement
platform. The developer will elect a blank-slate base that will
simply enforce a manifest file when accepting files from the
host, and set those files up. The blank-slate can either include
an entire library OS or runtime as in the Gramine case, or be
more minimalist. The main limitation is that this blank-slate
should be secure and change infrequently. Lastly, the manifest
file should be placed inside the enclave such that it is the last
thing that the hash is extended on, so that the verifier can
cheaply continue from just before the manifest for calculating
expected measurements.

VI. IMPLEMENTATION

Our implementation is build on Keystone, a RISC-V En-
clave Platform. We chose this platform because it is open
source and fully extensible.

The core TCB is the new measurement code that traverses
the enclave_bundle, which is 100 LoC in the SM. The code
mainly simply traverses the arrays and follows pointers. It also
does bounds checks to make sure anything measured is in the
enclave-owned memory, and checks for the resident resource
whose address is equal to the start Program Counter for filling
in that field. It also validates runtime_values provided by
the host – the total memory allocated and untrusted memory
allocated to the enclave. The host fills in arrays and files, so
it’s easier for it to create the resource values.

We moved binary loading from host to inside enclave, al-
lowing us to supply the enclave with files rather than memory-
view loaded binaries. The bootloader is directly an executable
code section in assembly and loads the runtime ELF into
virtual memory. Runtime runs the enclave application. The
bootloader is the start resource, and all current examples use
these 3 files for enclave apps. These programs look for files
in the enclave_bundle.

The SDK provides a function used for declaring one re-
source at a time, in which the SDK keeps track of the set of
resources we want in the enclave. Once done, it creates the
enclave_bundle based on it, automatically arranging every-
thing in memory.

Dynamic library support is not implemented yet, but there
a design is done. Runtime will allow a modified ld subrou-

tine to discover shared objects that correspond to entries in
enclave_bundle. If absent, the hash must match, otherwise
the file can be used directly.

Notably, enforcement of any other absent resources is up to
the application and framework developers.

The best way to combine this work with library sharing
works is to combine it with Lu’s work in RISC-V Dynamic
Linking [32]. There should be one simple enclave that man-
ages libraries – simply loads them into memory and tracks
what hash value the ELF file was. An application enclave can
check the attestation report of the library enclave, then get the
library that corresponds to the specific hash. It may need to
do symbol resolution, but the library itself does not need to
be loaded again as the memory can just be mapped into the
application enclave. The shared library can be protected by
the SM mapping it only as executable and neither readable
nor writable by non-hosting enclave.

VII. EVALUATION

We evaluate by examining how well the new system solves
the presented problems, ease of use, and new use-cases.

A. Achieved Properties

The design has some key properties that allow it to address
the presented problems, summarized in Table I. We compare
against Gramine because it’s the most developed Enclave
Framework and is strictly additive to Intel SGX, and Blank-
State Worker because this approach has seen some practical
adoption in unrelated projects to reduce measurement man-
agement burden. For BSW, equivalent features are achieved by
not having to do verification on the actual enclave application,
not literal verifier and measurements. The comparison of the
designs themselves is in Figure 5.

Property DCM Gramine BSW
One verifier policy matches differ-
ent input args & lib versions.
One verifier policy matches host
proposals for libraries.
Fast revocation recovery.
Data providers can verify app.
Mutually private code within app.
Sealing key features.
Fast generation of expected mea-
surements.
Deployment flexibility.

TABLE I
OVERVIEW OF PROPERTIES ACHIEVED BY DYNAMIC AND COMPOSABLE
MEASUREMENT (THIS WORK), GRAMINE, AND BLANK-STATE WORKER,

RESPECTIVELY. , , ARE FULL SUPPORT, PARTIAL, AND NONE.

One verifier policy refers to a policy where no manual work
needed from developer to specify additional exact matches
that are allowed except the first one. For both of the rows,
we achieve this by having Dynamic and Composable mea-
surement that works with file hashes. This also leads to
fast generation of expected measurements. Fast revocation
recovery is enabled by the fact that the verifier can seamlessly
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Fig. 5. Comparison of Gramine, DCM (this work), and BSW. Green is initial
enclave state, gray is runtime, cyan is semi-stable resources, dark blue is per-
run resources, light orange is for hashes, yellow checks untrusted resources
against trusted hashes. Arrow colors indicate what resource is being carried.
1a is developer requesting an app to be ran, 1b is host relaying that to the
enclave, 2 is attestation report, 3 is additional resources over secure channel.
In DCM, the host has one file cached, so it adds one of the hashes and
provides the file, without getting it from the developer.

switch to requiring a higher version of a library, so the build
doesn’t have to update the verifier and propagation is less
synchronous; a high quality host will also be able to propose
the new secure version fast, in which case the developer
doesn’t need to update their build to bring the app back
up. Data providers are able to verify the app because the
measurement actually reflects the code that will be ran, as is
with Gramine. Mutually private code is enabled by Dynamic
and Composable Measurement because private code providers
can send the hash and not the actual code to allow the
developer to conveniently verify that the code is as expected.
Sealing key features come from being able to make it not
depend on the entire initial state. Deployment flexibility comes
from being able to supply resources at any time, and still
include them in the measurement as desired through resident
and absent options.

Managing expected measurements is now easy because
there is only one measurement of the actual app binary file
to keep track of, and all libraries and initial arguments are
composed automatically to produce the expected measurement
as needed.

The library selection is now aided by the host’s proposal that
uses the flexible selection to find the version that will gain
some benefit. Trust revocation recovery latency and deploy-
ment latency are often more critical than the other potential
benefits, of which we measured the deployment latency. The
bottleneck in deployment is the download of resources, which
is often optimized via caching of cloud providers, who each
recommend using specific libraries and resources available by
default. We graph the results in Figure 6. This latency is
especially important due to the industry trend of having on-
demand availability of many services, meaning resources like
databases and stateless functions are kept off and come on
only when a user makes a request to avoid renting a machine
24/7.

The testing methodology for the Startup Time is as follows.

Fig. 6. Startup Time vs Enclave Size. Optimized is libraries cached on host
instead of downloaded. Simulated and timed in QEMU.

QEMU gives a very rough idea of performance, so we used
microbenchmarks of different code sections to minimize sim-
ulation inaccuracies. We found that QEMU limits disk reads
and writes to just 5 MBps as opposed to a typical NVME SSD
achieving 1000-4000 MBps. We standardized network speed
to 20 MBps, which is reasonable for unoptimized internet
traffic that happens when source and destination are not within
the same organization. We found that enclave setup has a
small constant of 49ms, after which the cost is dominated by
the measurement hashing the files, which came out to 2000
MBps, with both numbers averaged over 5 trials. We modeled
an application with 60% of its size being dynamic libraries
replaceable by host caching. At 300MB, we get the startup
time down to 6.5s from 15.5s, and at 900MB, to 19.4s from
46.4s. This is a performance gain of 58%, approaching the
60% limit; this shows that image download is by far the biggest
bottleneck in deployments.

The trust abstraction is now that the measurement asserts
what is and what is going to be in the enclave. It does
so through hashes of present components, so the expected
measurement can be constructed based on provided expected
hashes without the actual resource. The initial state must
include everything to ensure that the correct exact execution
will happen. This is detached from the sealing key, that
is responsible for allowing the same enclave to store data
conveniently, regardless of execution.

B. Ease of Use

The measurement is very flexible, providing developers
with a type field they can set for privilege and permission
management, and other annotations. Files can absent, so only
declared at measurement time, or resident. Files can affect
the sealing key, or not. This allows the developer to fully
select at file granularity what should be in each measurement,
fitting arbitrary system designs. The resources are simply files,
including raw binary files, so anything can be included.

The Enclave Platform simply iterates through the arrays
of resources. This means that bootstrapping, which files do
what, and the file types are fully configurable by developers
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without any changes to the Enclave Platform. In Keystone, the
bootloader and runtime are open source, so developers can use
these as a highly modular base for their particular needs; the
same on other platforms may be more difficult.

Individual Enclave Platforms can choose what resource
values they are able to enforce and attest to, so future work on
for instance CPU time guarantees can take advantage of this.

The hashes used in the measurement are file hashes, so
standard tooling can be used at all points for subroutines
involving the measurement.

The enforcement and delivery of absent resources is fully
up to the choice or implementation of the developer, and
the host is free to offer optimizations on the delivery in
any design that a developer will agree and support. Resource
distribution can be split across the phases in any way as
needed. For example, some dependencies may be fulfilled
by shared libraries, or shared objects pre-loaded and handed
off to the enclave. Either way, it is the enclave runtime’s
responsibility to correctly enforce the measurement attested to.
Alternatively, all optimizations can be turned off for simplicity,
or when there are software supply chain concerns.

Revocation and recovery is a lot easier, as developers
simply update the policy on the verifier to require a higher
version number, meaning the verifier is able to validate new
reports with virtually no work. As before this work, private
data serving components should also be updated to start
rejecting all new request on old attestations, and enclaves app
should discover through polling that they should shut down to
minimize attack surface on data that was already served.

Forming the expected measurement no longer requires com-
plex building. So for re-deployment with an updated resource,
the developer simply creates an image, then builds it as a
part of testing, and finally deploys the image, without having
to build it for the measurement as well. This means the
deployment process is broken up into independent steps that
are similar to regular build and deployment workflows.

Sealing key migration can be done a lot easier if an enclave
app has a low-TCB short-circuit that can be activated to run a
developer-signed migration script. This means that migration
doesn’t have to be planned across version changes, and there
is no danger of having to do two version changes in case the
already-running version did not correctly account for possible
desired migration target.

C. Use Case Examples

New functionality and simplicity achieved by Dynamic and
Composable Measurement paves the way to many use cases
becoming much easier to implement, with near no additional
work on top of the measurement.

Private LLM serving. An entity such as OpenAI likely
has both the Large Language Model and the hardware to run
it for private use-cases. However, a developer and the model
provider can be mutually distrusting. They can agree on a
public runtime component that loads a PyTorch checkpoint
and runs private data on it. The enclave can run on model
provider hardware, where the model provider can propose the

checkpoint model into the Enclave Bundle. The developer
can still re-create the final measurement by using just the
model hash without knowing the model itself. This gives the
developer a non-equivocation guarantee, and that private data
will stay private. The model provider is guaranteed that the
model will remain private. In Linear Measurement, any time
the data provider wanted to use a different model tier, or any
time OpenAI wanted to make a small update to the model, they
would have to coordinate to guarantee a different model hash
(or expand the allowlist), recompute the measurement, and re-
deploy from the new image, in contrast to simply swapping
out the hash in the configuration that the image is a part of.

Serving private data to clients. For example, a content
hosting company may want to prevent piracy of intellectual
property. They can launch an enclave on the client machine
that is protected from the OS and any software on the
computer, which in turn can establish a secure connection to
the display monitor, encrypting the signal until then. This is
now feasible because the startup time is very short for arbitrary
enclaves that rely on popular libraries, and most customers will
generally have roughly the same libraries available. With the
recent deployment of WebGL in WebAssembly, browsers are
on the path to efficiently exposing more hardware to websites.
In Linear Measurement, this is not feasible because there
would be many different libraries and builds on various clients;
Netflix would have to manage possibly builds and at mini-
mum expected measurements for all possible combinations of
resource builds, and various versions of each for the same
platform to not force excessive updates.

Blockchain orchestrator for a distributed application.
Because all functionality is a lot simpler than before due to just
file hashes being needed, application lifecycle can be hosted
as a Smart Contract on the blockchain. End-to-end encrypted
services like Signal already base trust in privacy on application
code, not the organization; with this, the availability and
transactions are also guaranteed by code instead of organi-
zations. The contract could respond to democratic votes on
application updates, and issue migration requests to enclaves,
where old-version and new-version enclaves can establish
secure channels if they observe the blockchain committing to
the command. This allows for arbitrary functionality without
an application secret. Furthermore, the smart contract could
also pay in cryptocurrency for the cloud services running
the enclaves, and application users can pay for features or
donate to the contract. Only the verifier needs to run on the
blockchain, and code development and build can be handled
by the community. This means that a company providing the
service cannot mount a DoS or data deletion attacks, and the
community can always stay on current version or rollback
to restore functionality. In Linear Measurement, producing
expected measurements would be too expensive to host on
blockchain as resources would have to be downloaded and the
enclave built.
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VIII. CONCLUSION

We presented Dynamic and Composable Measurement of
enclave applications, which brings features that greatly sim-
plify usability of enclaves. New optimizations and use cases
are also enabled by the flexibility. The design’s modularity
allows for high interoperability and customizability to the
particular needs of an application or a framework. It also
provides a powerful abstraction barrier where the enclave
platform can measure contents in any way an application may
require, but it does not do any more or less. This removes
the need to build workaround solutions for measuring on
top of enclaves, but leaves the more complex and rapidly
developing enforcement and provisioning work out of the
enclave platform. This will encourage further adoption and
investment in enclave technologies, and bring new capabilities
to users.
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