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Abstract

3D scene reconstruction for static scenes is a challenging and difficult prob-
lem. There has been a rise in highly unconstrained neural 3D representations
like NeRF which use neural networks as black box functions to model the den-
sity and color of the scene, with no constraints on geometry or feasibility. While
the expressive nature of NeRFs can lead to high visual fidelity, it can also lead
to overfitting and poor geometry. In this work, we detail a number of avenues
for attempting to constrain the expressive nature of modern 3D reconstruction
methods, through decomposing the scene into simpler basic components. We
experiment with novel representations and seek to exploit the inductive bias
that the world around us is simply a composition of basic shapes and parts, and
examine the pros and cons of such a strong inductive bias. We first attempt
to regularize geometry by constraining not the individual shapes, but rather
constrain that the shapes be reusable, experimenting with neural field repre-
sentations. We then explicitly regularize geometry as being a composition of
simple parts and simple geometric shapes.
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Chapter 1

Introduction

3D scene reconstruction and creation is a difficult and challenging problem even
for humans tasked with modeling the 3D world. While highly unconstrained
neural 3D representations have taken off for their potential for high visual fi-
delity, they ignore inductive biases that humans use when modeling. When a
human artist models a scene or an object, the process usually involves starting
from basic shapes and composing them to form more complex shapes and geom-
etry. A water bottle can be represented by two cylinders, one for the lid and one
for the bottle itself, a table is just a rectangular platform and four cylindrical
legs. At a high level, a scene is also just a composition of objects. A room might
be a table composed with a water bottle and whatever other objects are sitting
on the table. The real world also features repeated objects being composed, say
if there are multiple water bottles of similar shape and size sitting on the table.

The following inductive biases are used by humans in modeling a scene by
hand that we seek to bring into our representations when we reconstruct the
world

1. Scenes are composed of (repeated) objects and parts

2. Objects are composed of basic shapes

All of these inductive biases should be represented in the way that our al-
gorithms reconstruct 3D scenes. Our representations in the automated 3D re-
construction process should explicitly feature a composition of more primitive
components. This is the primary aim of this work that we seek to explore. We
discuss the effectiveness of this inductive bias in the following experiments

1. NeRF based reconstruction that allows for unconstrained geometry and
explicit reuse of our learnt shapes

2. Mesh based reconstruction that only allows for basic shapes to be com-
posed in scene reconstruction
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In all of these experiments, we follow the same test time optimization setup
as NeRF [52], where the input is a set of posed images and we optimize our
representation through differentiable rendering. In all cases, a photometric loss
will be used, and sometimes additional loss terms will be applied.

In the end, we will try to identify a set of minimum conditions for convergence
of primitive based methods.
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Chapter 2

Related Works

2.1 Multi-view Stereo

Our work can be seen as an end-to-end primitive-based approach to multi-view
stereo (MVS), whose goal is to output a 3D reconstruction from multiple images
taken from known camera viewpoints. We refer the reader to [26, 17] for an
exhaustive review of classical methods. Recent MVS works can be broadly split
into two groups.

Modular multi-step approaches typically rely on several processing steps
to extract the final geometry from the images. Most methods [89, 19, 80,
81, 86, 24, 72], including the widely used COLMAP [70], first estimate depth
maps for each image (through keypoint matching [70] or neural network pre-
dictions [80, 81, 86, 24, 72]), then apply a depth fusion step to generate a
textured point cloud. Finally, a mesh can be obtained with a meshing algo-
rithm [35, 40]. Other multi-step approaches directly rely on point clouds [18, 40]
or voxel grids [71, 39, 30, 57]. Note that, although works like [30, 57] leverage
end-to-end trainable networks to regress the geometry, we consider them as
multi-step methods as they still rely on a training phase requiring 3D super-
vision before being applied to unknown sets of multi-view images. Extracting
geometry through multiple steps involves careful tuning of each stage, thus in-
creasing the pipeline complexity.

End-to-end approaches directly optimize a 3D scene representation using
photometric consistency across different views along with other constraints in
an optimization framework. Recent methods use neural networks to implicitly
represent the 3D scene, in the form of occupancy fields [59], signed distance
functions [83] or radiance fields, as introduced in NeRF [52]. Several works in-
corporate surface constraints in neural volumetric rendering to further improve
the scene geometry [60, 82, 78, 10, 16], with a quality approaching that of tradi-
tional MVS methods. Other methods [20, 85, 22, 56] instead propose to leverage
recent advances in mesh-based differentiable rendering [51, 34, 47, 9, 65, 41] to
explicitly optimize textured meshes. Compared to implicit 3D representations,

5



meshes are highly interpretable and are straightforward to use in computer
graphic pipelines, thus enabling effortless scene editing and simulation [56].
However, all the above approaches represent the scene as a single mesh, mak-
ing it ill-suited for manipulation and editing. We instead propose to discover
the primitives that make up the scene, resulting in an interpretable and ac-
tionable representation. A concurrent work PartNeRF [75] introduces parts in
NeRFs. However, only synthetic scenes with a single object are studied and
the discovered parts mostly correspond to regions in the 3D space rather than
interpretable geometric primitives.

2.2 Static Scenes

Scene decomposition into 3D primitives. The goal of understanding a
scene by decomposing it into a set of geometric primitives can be traced back
to the very fist computer vision thesis by Larry Roberts on Blocks World [66]
in 1963. In it, Roberts shows a complete scene understanding system for a
simple closed world of textureless polyhedral shapes by using a generic library
of polyhedral block components. In the 1970s, Binford proposes the use of
Generalized Cylinders as general primitives [3], later refined by Biederman into
the recognition-by-components theory [2]. But applying these ideas to real-
world image data has proved rather difficult.

A large family of methods does not consider images at all, instead focusing on
finding primitives in 3D data. Building upon the classical idea of RANSAC [14],
works like [5, 7, 69, 68, 45, 58, 64] accurately extract various primitive shapes
(e.g ., planes, spheres and cylinders for [69, 68, 45]) from a point cloud. In
particular, MonteBoxFinder [64] is a recent RANSAC-based system that ro-
bustly extracts cuboids from noisy point clouds by selecting the best proposals
through Monte Carlo Tree Search. To avoid the need for RANSAC hyperparam-
eter tuning while retaining robustness, Liu et al . [48] introduce a probabilistic
framework dubbed EMS that recovers superquadrics [1]. Other methods instead
leverage neural learning advances to robustly predict primitive decomposition
from a collection of shapes (e.g ., ShapeNet [6]), in the form of cuboids [76],
superquadrics [63, 61, 79], shapes from a small dictionary [44, 42] or learnable
prototypical shapes [12, 62, 49]. However, they are typically limited to shapes of
known categories and require perfect 3D data. AutoSDF uses an auto-regressive
transformer to predict shape primitives to complete a shape, where each prim-
itive is an SDF, and all primitives are learnt and exist in a codebook, allowing
shapes to be reused. More generally, the decomposition results of all 3D-based
methods highly depend on the quality of the 3D input, which is always noisy
and incomplete for real scenes. For a complete survey of 3D decomposition
methods, we refer the reader to [32].

More recently, there has been a renewed effort to fit 3D primitives to var-
ious image representations, such as depth maps, segmentation predictions or
low-level image features. Attend infer repeat [13] is an early example of this
where in the 2D case, we are attempting to reconstruct multi-MNIST digits by
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reconstructing them one at a time, predicting the next primitive (a digit) that
is then subtracted from the image, repeating the process again, applying this
to meshes in 3D scenes as well. CMR [33] or U-CMR [23] have a pre-computed
mean shape for different classes, a mean shape that is transferred / used as
a starting point for mesh deformation that will give us our specific instance,
but the idea of using a mean shape across different instances is very much re-
lated, especially since deformations are leant from only images. Depth-based
approaches [31, 15, 46, 21, 37] naturally associate a 3D point cloud to each
image which is then used for primitive fitting. However, the resulting point
cloud is highly incomplete, ambiguous and sometimes inaccurately predicted,
thus limiting the decomposition quality. Building upon the single-image scene
layout estimation [27, 28], works like [25, 43] compute cuboids that best match
the predicted surface orientations. Façade [11], the classic image-based render-
ing work, leverages user annotations across multiple images with known camera
viewpoints to render a scene with textured 3D primitives. In this work, we do
not rely on 3D, depth, segmentation, low-level features, or user annotations to
compute the 3D decomposition. Instead, taking inspiration from Façade [11]
and recent multi-view modeling advances [77, 59, 52], our approach only re-
quires calibrated views of the scene and directly optimizes textured primitives
through photometric consistency in an end-to-end fashion. That is, we solve the
3D decomposition and multi-view stereo problems simultaneously.

Most closely related to our experiments on unconstrained shape repetition
are Mixture of Volumetric Primitives [50], Nerflets [88] and AutoSDF [53], all of
which are entirely data driven in that the shape primitives have unconstrained
geometry within the bounding box. Mixture of Volumetric Primitives and Ner-
flets use composed implicit fields each transformed by a rotation and translation.
However, these primitives aren’t reusable, and these method relies on strong
initialization of the primitives, whereas in this work we will only use random
initialization of primitive poses.

Single Scene Codebook Learning Codebook learning has also seen great
success in the case of Variable Bitrate Neural Fields [73]. This paper puts a
strong prior on repetition and reuse of color and local shape throughout the
scene, however the grid interpolation provides no strong inductive bias towards
large scale shape regularization and reuse. A strong direction for future work
will be in unifying our approach with this paper to provide strong inductive
bias about local texture and color in addition to the strong inductive bias about
large scale structure and shape which we pursue in this work. vMAP [38] even
comes close as to explicitly represent a scene in with radiance fields per-object in
the scene, although detection of objects is not done in a learnt way but instead
through SLAM.
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Chapter 3

Composable NeRFs

3.1 Problem Statement

In this set of experiments, we want to test the first inductive bias to see if
allowing arbitrary geometry, but using a representation which explicitly contains
repeated parts has an effect on reconstruction quality. To test this, we choose
to represent the world with composable, posed NeRFs, each of which is a linear
combination of a set of basis NeRFs. In this way, because our set of basis shapes
are NeRFs, we can represent arbitrary geometry and shapes, but because each
placed NeRF in the scene is a linear combination of our basis shapes, we have
a way to represent repeated components.

3.2 Method

We will start with some definitions to be used over this chapter.

• Primitive: A primitive is some small radiance field that only outputs for
queries that are inside the 0-1 aabb box

• Basis / Codebook: The set of primitives

• Object: A linear combination of primitives that has been placed in the
scene according to a (randomly initialized) parameterized pose transfor-
mation

• BaseRF: Our set of objects which when composed make an entire scene

The parameters associated with our codebook are our individual volumetric
primitives themselves. This can be a single hashgrid with an MLP, a set of
triplanes, or any other NeRF representation that has an aabb box.

The parameters associated with an object are 1) the coefficients on the lin-
ear combination for scaling primitives in our basis (one linear combination for
shape (S1, S2, ...) and one linear combination for texture (T1, T2, ...)) 2) 6DOF
pose (translation ∆x,∆y,∆z, rotation θ, ϕ, ψ) + per-axis scale parameterization
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(X,Y, Z) that determine the pose / size of the object 3) an existence coefficient
between [0, 1] that scales the density, allowing an object to turn itself on or off.
We also ablate using distributions to represent object poses instead of explic-
itly representing pose, using reparameterized samples to get gradients onto the
parameters of the distribution.

We will always have as many or more objects in a scene than primitives.

Figure 3.1: Each shape primitive is backed by a NeRF of some kind, be it a
triplane or a set of 3 TensoRF [8] components, or a hash grid [55]. These objects
can be placed around the scene multiple times, each with a unique pose and axis
aligned stretch, and the implicit functions are composed where they overlap.

3.2.1 Method Notation

Our primary objective function is the same as NeRF [52], we are simply re-
gressing onto the rendered RGB of the BaseRF , where we use the same volume
rendering over samples σ and c along a ray. As we will demonstrate, all our op-
erations are simple and therefore fully differentiable, allowing us to use gradient
descent to backprop onto all our parameters. The uniqueness of this method
comes from how we calculate each σ and c at each point along the ray.

Say we want to query our model BaseRF (x) for the density σ and color c at
a location xquery. We first transform xquery into each of our object’s coordinate
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frames

xquery
i = OC(xquery, ϕi, θi, ψi,∆xi,∆yi,∆zi, Xi, Yi, Zi) (3.1)

where OC is the transform operation that takes in the pose parameters asso-
ciated with the ith object, taking us into object coordinates from world co-
ordinates; rotating, translating, and re-scaling the world coordinate into the
object’s frame. Now we have the location of where to query each one of our
objects BaseRFi.

Our objects BaseRFi are a linear combination of each of the NeRFs in our
basis / codebook, allowing us to smoothly change an object between shapes in
our codebook. To get the density and color σi and ci of object BaseRFi, we need
to linearly combine the n density fields andm color fields in our basis / codebook
at location xquery

i which is in object coordinates. We do this directly, using our
shape and texture weights for BaseRFi. This gives the object BaseRFi a color
and density of

σi =

n∑
j=0

Si
jσ

i
j ci =

m∑
k=0

T i
kc

i
k (3.2)

where σi
j is the value of the jth density field in the codebook queried at xquery

i,

cik is the value of the kth color field in the codebook queried at xquery
i, Si

j

are our learnt linear combination weights for the basis density fields making up
object i, and T i

k are our learnt linear combination weights for the basis color
fields making up object i. In practice, we set j = k, giving you the same number
of basis density and color fields, allowing us to treat pairs of density and color
fields as a NeRF, giving

σi
j , c

i
j = NeRFj(xquery

i) (3.3)

where NeRFj is the jth basis NeRF in our codebook. You can allow the linear
combination coefficients to be unbounded and negative, but we find that in
testing this causes the model to diverge to being empty, so we softmax over the
coefficients before using them in the linear combination.

Once we have the density and color of object BaseRFi, σi and ci, we need
to combine our i densities and colors of our objects, since these objects overlap
in 3D space. The density σ of all our objects BaseRFi combined is simply

σ =
∑

αiσi (3.4)

where αi is the existance coefficient of object i between [0,1]. We naively com-
bine the colors based on the relative densities as

c = softmax(αiσi)ci (3.5)

When we ablate using distributions over poses instead of explicitly parame-
terizing the pose of each object, we simply exchange the ϕi, θi, ψi,∆xi,∆yi,∆zi
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in equation 3.1 with reparameterized samples from distributions whose param-
eters we are now optimizing. Specifically,

ϕi, θi, ψi = SphericalNormal(γRi).rsample() (3.6)

∆xi,∆yi,∆zi = Normal(γ∆i).rsample() (3.7)

where γRi and γ∆i are the new parameters for the distributions that we are now
updating with gradient descent instead of the explicit values we were updating
before, backpropagating through the reparameterized samples ϕi, θi, ψi,∆xi,∆yi,∆zi
we use in 3.1 onto these new parameters. We use Pyro’s [4] implementations
for reparameterized samples through a spherical normal distribution.

3.2.2 Method Analysis and Information.

Let us assume that a NeRF query of position p runs in O(1). For our primitive
approach, we will assume we have a codebook of size c and n objects in the scene,
in order to query point p, we will need to compose O(nc) primitive densities
and colors. For each of the n objects we need to query, the point p needs to be
transformed according to the object-specific 6DOF pose + scales before we can
query the codebook, resulting in a lot of pose transforms. Every point in the
resulting set of n points needs to be used to query each of the c primitives.

The O(nc) runtime of a single query is the major bottleneck in training. At
test time, this can likely be baked into a single compressed NeRF or mesh, but
it is the major factor for why this method is slow, and requires a smaller batch
size than other methods. To get some performance back, we mask out and don’t
query primitives for points outside the aabb box which works fairly well, with
the negative consequence of having this method’s memory consumption change
over time.

To combine primitives, we take a naive approach of simply adding the densi-
ties and colors. A more comprehensive follow up work will need to do better for
the sake of having more interpret-able primitives, using a more complex NeRF
composition technique akin to Nerflets [88].

3.3 Experiments

The high level idea is that we will be trying to examine the viability of primi-
tives as a representation by using radiance fields. We will do this through the
following experiments:

1. Experimenting with the NeRF representation of primitives: low rank vs
unconstrained, hash grid with MLP vs dense grid, high resolution vs low
resolution

2. Experimenting with reuse of said primitives: how does reuse effect the
end quality vs not reusing, how does the ratio of objects total vs size of
primitive set effect quality
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3. Gradient Flow: We will experiment with learning parameterized pose dis-
tributions to explore the space and get better gradients, and with things
like blurring for better pose gradients. We use the reparameterization trick
to get gradients through samples of these distributions when we render

4. Rendering shortcuts: Can we approximate the rendering by only consid-
ering the closest objects in the render

5. Multi-Scene Training: training jointly one shape basis across many scenes

To do this, we will use a combination of blender data and simpler custom data
with scenes that have duplicate objects scattered throughout. For testing 1-5
we will be trying to reconstruct common blender scenes like the lego bulldozer
so that a comparison can be made between our method and other SOTA NeRF
methods, giving us a nice view of how viable our method is in this landscape of
high performing methods.

We will implement these experiments in nerfstudio [74], an open source NeRF
framework.

Minimum Conditions for Convergence In a naive implementation with-
out any regularizers, it is very common for primitives to shrink down to zero
scale early on in training, or move out of sampling range as a way to minimize
RGB loss on synthetic data, where our white background matches the default
end of ray color. The following regularizers are required to prevent the recon-
struction from degenerating early on in training. Failure to use these regularizers
will result in a blank scene.

1. Out of bounds loss

2. Primitive border interpolation

3. Per axis + Per volume minimum scale loss

We will penalize the primitives for existing outside an aabb box of [-1, 1]
for blender scenes that largely exist within this aabb box, just to avoid having
primitives that escape the scene to minimize the rgb reconstruction loss since
most of the pixels in blender synthetic scenes are the uniform white background.
We penalize it as the L1 distance to the unit cube, with the loss being zero if
it is inside the cube already. We found that without this, objects (especially
when using distributions for pose) would often leave the scene and go outside
of sampling range.

Primitive border interpolation: To encourage the primitives to grow, we will
have the primitive’s density linearly interpolated to zero in the outer 10% of the
primitive on any side. We find that this is a make or break factor for keeping
the primitives from shrinking down to scale of zero, giving stronger gradients to
the scale parameters for the NeRF that encourage larger primitives.

Scale losses: To help avoid numerical instabilities with primitives that grow
small as they also lower their existence parameter, we will penalize the model
for having object scales lower than some minimum threshold.
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As a final note, if you desire subtractive modeling (where objects can sub-
tract density from each other) and would like existence to be between [−1, 1],
you will need an additional regularizer penalizing the system for having sub-
tractive volumes. We found that early on in training, objects will minimize rgb
loss by subtracting all density and color from the entire scene.

3.4 Results

Figure 3.2: This figure shows the aabb boxes of all objects in our scene trained
with no pose distribution with existence value greater than .9 . You can also see
the issue of duplicate objects presented, as multiple objects clearly have aligned
and are using the same linear combination of primitives.

In all, we were able to get this method working, but the general results
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are mixed. Training for a single scene on 30k iterations was 12 hours, with
a codebook size of 4 and 30 objects in the scene. In general, with our best
method (using instant-ngp hash grid backed primitives), we find that while
reconstruction quality is faithful, the objects themselves are not individually
very semantically meaningful or semantically singular (semantically singular
meaning each object would correspond to one semantic idea). On our custom
blender scene with basic shapes, we find that the most likely convergence is
when one large object is learnt in the middle of the scene, a degenerate result
considering that we are hoping for a natural scene decomposition to emerge.
Fig. 3.4 shows the scene decomposition for the ficus plant scene, the primary
benchmark we used due to its repeated fractal structure. Fig. 3.2 shows the
aabb boxes of all objects with existance value of .9 or greater. This graphic is
using a distribution for pose. At best, on this scene we can get 24.4 PSNR at
best with no distribution for pose on this scene, which we show later, which is
below most modern NeRF methods. Most objects in the scene turn themselves
off or learn to duplicate another object (same linear combination of primitives
and same location).

3.4.1 Rank Constraints

Figure 3.3: Left is ground truth, middle is our reconstruction using a pose
distribution and tensorf backed components, and on the right is one prominent
object in our scene. You can observe that the reconstruction is grainier (a
common artifact in using pose distributions), and the component on the right
is attempting to learn the entire plant in one shot.

We experimented with 2 primitive designs: one with triplanes (bringing
inherent rank constraints) and a small MLP, and one with instant-NGP [55]
hash grids and a small MLP. In general, we find that instant-NGP hashgrids
have the fastest training time and give the best reconstruction quality. Fig. 3.3
shows the quality drop off when using triplanes, with the artifact of oversized
and blocky primitives being a common artifact of using triplanes in this method.
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Figure 3.4: An example decomposition of the blender ficus scene. Two dominant
objects are learnt by the codebook, whether we use the default of 4 basis NeRFs,
or go down to 2 basis NeRFs as done in section 3.4.2.

3.4.2 Reuse of Primitives

We experimented with two setups: 1) constraining our codebook to only having
4 primitives, and 2) using one independent primitive per object, which reduces
down to [50] but with random initialization. We find that using repeated com-
ponents does not make a huge difference in what we converge to, due to our
primitives growing to be fairly large in both cases. What we mean by this is
rather than one object being some small repeatable shape, the primitives just
grow to be the size of the entire region with repeatable geometry, rendering the
ability to reuse primitives that is baked into our method unused. We believe
this is a result of not having semantic constraints on the primitives themselves,
allowing the scene to be reconstructed by as few as 2 objects without penalty.
This choice may become relevant when you begin constraining the maximum
scale of objects, though we chose not to do this in this work which is more con-
cerned with establishing convergence with minimal constraints. Another choice
would be to explicitly initialize the primitives sizes to be very small and their
locations to be exactly where we know the geometry to be in 3D space, just
as [50] does, but this is a heavy assumption we don’t want to make as we are
again concerned about using a minimal set of constraints and assumptions on
the scene.

An example of the parsimony that emerges in the ficus scene regaurdless of
the codebook size and number of objects can be seen in figure 3.4. In lots of
different random initializations, no matter how many codes in the codebook or
objects in the scene, this is the most common decomposition that emerges for
this scene.

3.4.3 Gradient Flow

We experimented with explicitly parameterizing pose and parameterizing pose
with distributions (spherical normal distribution for rotation, normal distri-
bution for translation) using the reparameterization trick and reparameterized
samples. We find that using a distribution is not necessary, nor do you need to
blur the input images or rendered patches for this to work. Ideal gradient flow
likely comes from 3x3 blurring (similar to what is used for differentiable mesh
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Figure 3.5: Left is ground truth, right is our reconstruction without a distri-
bution backing the pose. You can see that without a distribution backing our
poses, we get much crisper reconstructions, with branches being better formed
and clearer compared to 3.3 The individual objects look to be about the same
size and shape as when using the distributions, with one main object for leaves,
and one main object for the pot and stem.

rasterization) of rendered patches, but in general this is not necessary. Not us-
ing a distribution for pose results in clearer scene texture. In general, using a
distribution for pose is more robust to initialization, whereas directly estimat-
ing pose is a bit more brittle and has a higher likelihood of not converging to
a good solution. The optimal solution is to use a distribution for the first half
of training so the primitives can ”explore” the highly non-convex optimization
landscape that is optimal primitive pose prediction, and then using the mean
pose explicitly instead of sampling during the second half of training after the
distributions have settled down, so the texture no longer has to account for
small changes in primitive location. Fig. 3.5 demonstrates this upper bound
quality texture and accumulation obtained when not using pose distributions.
Fig. 3.2 as shown earlier demonstrates that we do indeed get good object poses
despite not using a distribution or blurring for good gradients.

3.4.4 Rendering Shortcuts

We experimented with only rendering the closest object to the camera, changing
our O(nc) runtime down to O(c), making our method scale better with the
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Figure 3.6: Our initial reconstruction results experimenting with rendering
shortcuts, rendering only the component with the closest center.

number of objects in the scene. We find that this does not converge well,
giving very blurry results, even if we are able to have orders of magnitude more
primitives in our scene. Fig. 3.6 has an example of this blurry result.

3.4.5 Multi-Scene Training

Training jointly across multiple scenes was also not helpful. We trained one
shared codebook across 2 custom synthetic blender scenes, both with the same
set of basic shapes that have random poses. The hope was that this would
regularize the codebook and prevent objects from learning to grow large, yielding
a scene where one large object in the middle learns the entire scene. This was not
what happened, and we still observed one object in the middle of the scene. Fig.
3.7 shows the results of this experiment on custom data. For multi-scene training
to be effective, it would require many more scenes than you have primitives in
your codebook to avoid the overfitting to specific scenes as we see here. In
general on in the wild data, it may also not be the case that you have shared
shapes as we had here, which makes this even harder.

3.5 High Level Takeaways

The minimum convergence conditions we identified for our method to work were

1. Out of bounds loss

2. Primitive border interpolation

3. Per axis + Per volume minimum scale loss
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Figure 3.7: Custom data scene. From left to right: the ground truth, our recon-
struction, and then one single object in our scene. There is no decomposition
happening as the entire scene is just one object. The two scenes we jointly
optimize over have the same set of shapes but in a different configuration.

and the most common artifacts that we found were

1. Primitive overlap

2. General lack of parsimony due to expressivity of primitives

3. Primitive overlap

Future work using highly unconstrained geometric primitives backed by im-
plicit fields like NeRFs that don’t use explicit 3D information as input to the
system while training will require another prior like Segment Anything [36] in
order to create a loss that will give gradients that explicitly encourage individ-
ual codes in the codebook to correspond to semantically similar concepts, unlike
what we saw with the blender ficus plant, where one object would contain the
pot of the plant and the stem which are semantically and geometrically very
different.

The hypothesis was that the ability to represent repeated geometry would
lead to learning the repeated shapes as elements in our codebook, but because
of the expressivity of the codebook NeRFs, we found that it was still far too
easy for the model to cheat and represent unrelated shapes or concepts as part
of the same NeRF, and our hypothesis was disproved. In order to get parsimony
where individual objects correspond to individual shapes and concepts, in the
next chapter, we will use simpler geometric representations that don’t have the
expressivity of NeRFs as a means to extract more parsimonious scene decom-
positions. We will also use better regularization to prevent primitive overlap to
the degree that we saw with this set of experiments.
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Chapter 4

Meshes

4.1 Problem Statement

In this set of experiments, we want to simply test the second inductive bias,
that when reconstructing a scene we should only allow geometry composed of
basic shapes. To this end, we explicitly model the scene as a set of transparent
superquadric meshes, whose parameters, texture and number are optimized to
maximize photoconsistency through differentiable rendering. Note that com-
pared to recent advances in neural volumetric representations [59, 52, 84], we
do not use any neural network and directly optimize meshes, which are straight-
forward to use in computer graphic pipelines.

Introduced by Barr in 1981 [1] and revived recently by [63], superquadrics
define a family of parametric surfaces that exhibits a strong expressiveness with
a small number of continuous parameters, thus making a good candidate for
primitive fitting by gradient descent. To be exact, a superquadratic has exactly
2 parameters controlling shape, which continuously deform the surface from
cylinders to cubes to spheres, and other basic shapes like that. More concretely,
we derive a superquadric mesh from a unit icosphere. For each vertex of the
icosphere, its spherical coordinates η ∈ [−π

2 ,
π
2 ] and ω ∈ [−π, π] are mapped to

the superquadric surface through the parametric equation [1]:

Φ(η, ω) =

s1 cosϵ1 η cosϵ2 ωs2 sin
ϵ1 η

s3 cos
ϵ1 η sinϵ2 ω

 , (4.1)

In this equation, s1, s2, s3 are axis aligned scale parameters updated through
gradient descent during training, and ϵ1, ϵ2 are the 2 learnt degrees of freedom
controlling the superquadratic shape, updated also through gradient descent.

Superquadratics and differentiable mesh rendering allow us to explicitly rep-
resent a scene through basic shapes, and get gradients from an RGB loss onto
the superquadratic parameters, pose, and texture, allowing us to test our hy-
pothesis effectively.
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Input (subset) Init Iter 200 Iter 1k Iter 10k Final Output

Figure 4.1: Overview. (top) We model the world as an explicit set of learnable
textured meshes that are assembled together in the 3D space. (bottom) Start-
ing from a random initialization, we optimize such a representation through
differentiable rendering by photometric consistency across the different views.

Notations. In this chapter, we use bold lowercase for vectors (e.g ., a), bold
uppercase for images (e.g ., A), double-struck uppercase for meshes (e.g ., A)
and write a1:N the ordered set {a1, . . . , an}.

4.2 Method

We propose to represent the world scene as an explicit set of textured meshes
positioned in the 3D space. 4.1 summarizes our modeling and the parameters
updated (top) during the optimization (bottom). Specifically, we model each
scene as a union of primitive meshes: (i) an icosphere B modeling a background
dome and centered on the scene, (ii) a plane G modeling the ground, and (iii)
K primitive blocks P1:K in the form of superquadric meshes, where K is fixed
and refers to a maximum number of blocks. Unless mentioned otherwise, we
arbitrarily use K = 10.

The goal of the background dome is to model things far from the cameras
that can be well approximated with a planar surface at infinity. In practice,
we consider an icosphere with a fixed location and a fixed scale that is much
greater than the scene scale. On the contrary, the goal of the planar ground and
the blocks is to model the scene close to the cameras. We thus introduce rigid
transformations modeling locations that will be updated during the optimiza-
tion. Specifically, we use the 6D rotation parametrization of [90] and associate
to each block k a pose pk = {rk, tk} ∈ IR9, transforming the vertices of the
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mesh. Similarly, we associate a rigid transformation pgr = {rgr, tgr} to the
ground plane.
Block existence through transparency. Modeling a variable number of
primitives is a difficult task as it involves optimizing over a discrete random
variable. Recent works tackle the problem using reinforcement learning [76],
probabilistic approximations [63] or greedy algorithms [54], which often yield
complex optimization strategies. In this work, we instead propose to handle
variable number of primitive blocks by modeling meshes that are transparent.
Specifically, we associate to each block k a learnable transparency value αk,
parametrized with a sigmoid, that can be pushed towards zero to change the
effective number of blocks. Such transparencies are not only used in our render-
ing process to softly model the blocks existence and occlusions (4.2), but also
in regularization terms during our optimization, e.g ., to encourage parsimony
in the number of blocks used (4.2.1).
Texturing model. We use texture mapping to model scene appearance. Con-
cretely, we optimize K + 2 texture images {Tbg,Tgr,T1:K} which are UV-
mapped onto each mesh triangle using pre-defined UV mappings. Textures for
the background and the ground are trivially obtained using respectively spher-
ical coordinates of the icosphere and a simple plane projection. For a given
block k, each vertex of the superquadric mesh is associated to a vertex of the
icosphere. Therefore, we can map the texture image Tk onto the superquadric
by first mapping it to the icosphere using a fixed UV map computed with spher-
ical coordinates, then mapping the icosphere triangles to the superquadric ones
(see supplementary material for details).

Differentiable Rendering We leverage PyTorch3D [65] and their differen-
tiable rasterization and rendering in order to differentiably render images of
our scene. This works through soft rasterization and alpha compositing all the
semi-transparent faces, giving gradients even to partially occluded objects.

4.2.1 Optimizing a Differentiable Blocks World

We optimize our scene parameters by minimizing a rendering loss across batches
of images using gradient descent. Specifically, for each image I, we build the
scene mesh and use the associated camera pose to render an image Î using the
differentiable mesh rendering engine [65]. We optimize an objective function
defined as:

L = Lrender + λparsiLparsi + λTVLTV + λoverLover , (4.2)

where Lrender is a rendering loss between I and Î, λparsi, λTV, λover are scalar
hyperparameters and Lparsi,LTV,Lover are regularization terms respectively en-
couraging parsimony in the use of primitives, favoring smoothness in the tex-
ture maps and penalizing the overlap between primitives. Our rendering loss is
composed of a pixel-wise MSE loss LMSE and a perceptual LPIPS loss [87]
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Lperc such that Lrender = LMSE + λpercLperc. In all experiments, we use
λparsi = 0.01, λperc = λTV = 0.1 and λover = 1.
Encouraging parsimony and texture smoothness. We found that regular-
ization terms were critical to obtain meaningful results. In particular, the raw
model typically uses the maximum number of blocks available to reconstruct
the scene, thus over-decomposing the scene. To adapt the number of blocks
per scene and encourage parsimony, we use the transparency values as a proxy

for the number of blocks used and penalize the loss by Lparsi =
∑

k

√
αk

K . We
also use a total variation (TV) penalization [67] on the texture maps to encour-
age uniform textures. Given a texture map T of size U × V and denoting by
T[u, v] ∈ IR3 the RGB values of the pixel at location (u, v), we define:

Ltv(T) =
1

UV

∑
u,v

(∥∥T[u+ 1, v]−T[u, v]
∥∥2
2
+
∥∥T[u, v + 1]−T[u, v]

∥∥2
2

)
, (4.3)

and write LTV = Ltv(Tbg) + Ltv(Tgr) +
∑

k Ltv(Tk) the final penalization.
Penalizing overlapping blocks. We introduce a regularization term encour-
aging primitives to not overlap. Because penalizing volumetric intersections of
superquadrics is difficult and computationally expensive, we instead propose
to use a Monte Carlo alternative, by sampling 3D points in the scene and pe-
nalizing points belonging to more than λ blocks, in a fashion similar to [62].
Following [62], λ is set to 1.95 so that blocks could slightly overlap around their
surface thus avoiding unrealistic floating blocks. More specifically, considering
a block k and a 3D point x, we define a soft 3D occupancy function O3D

k as:

O3D
k (x) = αk sigmoid

(1−Ψk(x)

τ

)
, (4.4)

where τ is a temperature hyperparameter and Ψk is the superquadric inside-
outside function [1] associated to the block k, such that Ψk(x) ≤ 1 if x lies
inside the superquadric and Ψk(x) > 1 otherwise. Given a set of M 3D points
Ω, our final regularization term can be written as:

Lover =
1

M

∑
x∈Ω

max
( K∑

k=1

O3D
k (x), λ

)
. (4.5)

Note that in practice, for better efficiency and accuracy, we only sample points
in the region where blocks are located, which can be identified using the block
poses p1:K .
Optimization details. We found that two elements were key to avoid bad
local minima during optimization. First, while transparent meshes enable dif-
ferentiability w.r.t. the number of primitives, we observed a failure mode where
two semi opaque meshes model the same 3D region. To prevent this behavior,
we propose to inject gaussian noise before the sigmoid in the transparencies
α1:K to create stochasticity when values are not close to the sigmoid saturation,
and thus encourage values that are close binary. Second, another failure mode
we observed is one where the planar ground is modeling the entire scene. We
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Table 4.1: Quantitative results on DTU [29]. We use the official DTU
evaluation to report Chamfer Distance (CD) between 3D reconstruction and
ground-truth, best results are highlighted. We also highlight the average
number of primitives found (#P) in green (smaller than 10) or red (larger than
10). Our performances correspond to a single random run (random) and a run
automatically selected among 5 runs using the minimal rendering loss (auto).
We augment the best concurrent methods with a filtering step removing the
ground from the 3D input.

Chamfer Distance (CD) per scene Mean Mean

Method Input S24 S31 S40 S45 S55 S59 S63 S75 S83 S105 CD #P

EMS [48] NeuS-mesh 8.42 8.53 7.84 6.98 7.2 8.57 7.77 8.69 4.74 9.11 7.78 9.6
EMS [48] 3D GT 6.77 5.93 3.36 6.91 6.52 3.50 4.72 7.08 7.25 6.10 5.82 7.4
MBF [64] NeuS-mesh 3.97 4.28 3.56 4.76 3.33 3.92 3.63 5.58 5.3 6.07 4.44 53.5
MBF [64] 3D GT 3.73 4.79 4.31 3.95 3.26 4.00 3.66 3.92 3.97 4.25 3.98 16.4
Ours (random) Image 5.41 3.13 1.57 4.93 3.08 3.66 3.40 2.78 3.94 4.85 3.67 4.6
Ours (auto) Image 3.25 3.13 1.16 3.02 2.98 2.32 3.40 2.78 3.43 5.21 3.07 5.0

EMS [48] + filter 3D GT 6.32 4.11 2.98 4.94 4.26 3.03 3.60 5.44 3.24 4.43 4.23 8.3
MBF [64] + filter 3D GT 3.35 2.95 2.61 2.19 2.53 2.47 1.97 2.60 2.60 3.27 2.65 29.9

avoid this by leveraging a two-stage curriculum learning scheme, where texture
maps are downscaled by 8 during the first stage.

4.3 Experiments

Benchmark details. DTU [29] is an MVS dataset containing 80 forward-
facing scenes captured in a controlled indoor setting, where the 3D ground-
truth points are obtained through a structured light scanner. We evaluate on
10 scenes (S24, S31, S40, S45, S55, S59, S63, S75, S83, S105) that have different
geometries and a 3D decomposition that is relatively intuitive. We use standard
processing practices [83, 82, 10], resize the images to 400×300 and run our model
with K = 10 on all available views for each scene (49 or 64 depending on the
scenes). We use the official evaluation presented in [29], which computes the
Chamfer distance between the ground-truth points and points sampled from
the 3D reconstruction, filtered out if not in the neighborhood of the ground-
truth points. We evaluate two state-of-the-art methods for 3D decomposition,
EMS [48] and MonteboxFinder (MBF) [64], by applying them to the 3D ground-
truth point clouds. We also evaluate them in a setup comparable to ours, where
the state-of-the-art MVS method NeuS [78] is first applied to the multi-view
images to extract a mesh, which is then used as input to the 3D decomposition
methods. We refer to this input as “NeuS-mesh”.
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4.4 Results

4.4.1 Benchmark Results.

We compare our Chamfer distance performances to these state-of-the-art 3D
decomposition methods in 4.1. For each method, we report the input used
and highlight the average number of discovered primitives #P in green (smaller
than 10) or red (larger than 10). Intuitively, overly large numbers of primitives
lead to less intuitive and manipulative scene representations. Our performances
correspond to a single random run (random) and a run automatically selected
among 5 runs using the minimal rendering loss (auto). We augment the best
concurrent methods with a filtering step using RANSAC to remove the planar
ground from the 3D input. Overall, we obtain results that are much more satis-
factory than prior works. On the one hand, EMS outputs a reasonable number
of primitives but has a high Chamfer distance reflecting bad 3D reconstruc-
tions. On the other hand, MBF yields a lower Chamfer distance (even better
than ours with the filtering step) but it outputs a significantly higher number
of primitives, thus reflecting over-decompositions.

Our approach is qualitatively compared in 4.2 to the best EMS and MBF
models, which correspond to the ones applied on the 3D ground truth and
augmented with the filtering step. Because the point clouds are noisy and in-
complete (see 360◦ renderings in our supplementary material), EMS and MBF
struggle to find reasonable 3D decompositions: EMS misses some important
parts, while MBF over-decomposes the 3D into piecewise planar surfaces. On
the contrary, our model is able to output meaningful 3D decompositions with
varying numbers of primitives and very different shapes. Besides, ours is the
only approach that recovers the scene appearance (last column). Also note that
it produces a complete 3D scene, despite being only optimized on forward-facing
views.

4.4.2 Influence of K and λparsi.

In 4.2, we evaluate the impact of two key hyperparameters of our approach,
namely the maximum number of primitives K and the weight of the parsimony
regularization λparsi. Results are averaged over the 10 DTU scenes for 5 random
seeds. First, we can observe that increasing K slightly improves the reconstruc-
tion and rendering performances at the cost of a higher effective number of
primitives. Second, these results show that λparsi directly influences the effec-
tive number of primitives found. When λparsi = 0.1, this strong regularization
limits the reconstruction to roughly one primitive, which dramatically decreases
the performances. When λparsi is smaller, the effective number of primitives in-
creases without significant improvements in the reconstruction quality.
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Input view GT point cloud EMS [48] MBF [64] Ours Ours rendering

Figure 4.2: Qualitative comparisons on DTU [29]. We compare our model
to state-of-the-art methods (augmented with a preprocessing step to remove the
3D ground) which, unlike ours, find primitives in the ground-truth point cloud
that is noisy and incomplete. Additionally, our approach is the only one able
to capture the scene appearance (last column).

Table 4.2: Effect of hyperparameters on DTU [29]. We evaluate the
influence of two key hyperparameters of our model: the maximum number of
primitives K (left) and the parsimony regularization λparsi (right).

Method #P↓ CD↓ PSNR↑ SSIM↑ LPIPS↓

K = 10 (default) 4.60 3.63 20.5 73.5 23.9
K = 25 7.00 3.58 21.0 74.6 22.5
K = 50 9.26 3.52 20.9 74.7 22.8

Method #P↓ CD↓

λparsi = 0.001 7.44 3.61
λparsi = 0.01 (default) 4.60 3.63
λparsi = 0.1 1.30 6.88
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(a) Missing parts
(b) Unnatural decomposi-
tion

(c) Parsimony/fidelity
trade-off

Figure 4.3: Failure cases. We show typical failure cases of our approach.
All models are optimized with K = 10 except the rightmost model which is
optimized with K = 50. See text for details.

4.4.3 Limitations and failure cases.

In 4.3, we show typical failure cases of our approach. First, for a random run, we
may observe bad solutions where parts of the geometry are not reconstructed
(4.3a). This is mainly caused by the absence of primitives in this region at
initialization and our automatic selection among multiple runs alleviates the
issue, yet this solution is computationally costly. Note that we also tried to apply
a Gaussian kernel to blur the image and propagate gradients farther, but it had
little effect. Second, our reconstructions can yield unnatural decompositions as
illustrated in 4.3b, where tea boxes are wrongly split or a single primitive is
modeling the bear nose and the rock behind. Finally, in 4.3c, we show that
increasing K from 10 (left) to 50 (right) allows us to trade-off parsimony for
reconstruction fidelity. However, while this provides a form of control over the
decomposition granularity, the ideal decomposition in this particular case does
not seem to be found: the former seems to slightly under-decompose the scene
while the latter seems to over-decompose it.

The other notable shortcoming of this method is in that we require multiple
runs and select the best one by looking at the run with the lowest rendering loss.
In practice, if you just take one run, you will often get a sub-optimal decom-
position. This demonstrates the complexity of the optimization landscape and
just how sensitive to initialization this method is, bringing back the potential
need for off the shelf priors like Segment Anything [36] as a means to get better
gradients and more consistent optimization that is less sensitive to initialization.
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4.5 High Level Takeaways

The convergence conditions for higher quality convergence with this method are

1. TV Texture loss

2. Loss on total number of primitives active (use transparency for proxy)

3. Penalizing overlapping blocks

4. Adding noise to transparency

By more explicitly constraining the primitives to be simple shapes, we get
better parsimony. By putting a loss on the total number of primitives, we can
actually control just how expressive this method is without explicitly constrain-
ing the number of primitives at initialization.

All that being said, we do still find that the complexity of the optimization
landscape and not all primitives yielded from this method in any one decom-
position actually correspond with semantically meaningful concepts, furthering
the need for future work to use off the shelf priors for stronger semantically
meaningful grouping.

We do find that just by strongly constraining the expressivity of the geometry
in contrast to other attempts with NeRFs, we are able to achieve better and more
meaningful decompositions, but it still isn’t enough to guarantee a meaningful
decomposition.
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Chapter 5

Takeaways for Primitive
Based Reconstruction

In all, from using different representations for our primitives, we come to the
following conclusions about primitive based approaches for the analysis-by-
synthesis pipeline of using only posed images for optimizing a single scene re-
construction (as opposed to using 3D information like depth or pointclouds in
the reconstruction and decomposition process).

1. Primitive overlap must be constrained

2. Simple primitive geometry (whether through representations that only
allow simple geometry or regularizing the geometry) leads to better par-
simony, but it is not enough to yield meaningful decompositions

3. The optimization landscape is complex and sensitive to initialization even
with strong regularization

4. In general representations that enable parsimonious and repeatable parts
to be explicitly represented (just by itself) is not enough to guarantee that
your method yields decompositions that are broken down into meaningful
parts or repeated parts

5.1 Constraining Overlap

We see in both methods qualitatively and quantitatively that it is almost a
certainty that your primitives will attempt to overlap, and overlap of primi-
tives needs to be regularized for decompositions. When you have a set number
of primitives and multiple of them overlap and represent the same object in
a purely redundant way, your model’s maximum expressively is greatly dimin-
ished. This in itself is no guarantee of your method working, but is a best
practice that needs to be followed for better quality.
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5.2 Geometry Regularization

By simply switching from a NeRF based primitive to a superquadratic (ignoring
the repeated parts idea from the first method), we get significantly nicer decom-
positions. With NeRFs, we would get arbitrary decompositions that didn’t align
with semantics OR basic geometric shapes, like how one primitive could repre-
sent the blender ficus stem and the plant’s pot at the same time. While switch-
ing to superquadratics and their simple geometry is not a guarantee of semantic
meaningfulness of the primitives, it does at least mean that our primitives will
align with basic shapes in the scene which is a step in the right direction.

5.3 Optimization Landscape Complexity

We experimented with distributions over poses in the first method, and lots
of regularizers in the second method, but in both methods, we observed a high
sensitivity to initialization, where different random seeds for initialization would
give very different final decompositions. In the first method, these decomposi-
tions would be purely random and not aligned with borders of different shapes,
and in the second method, these decompositions wouldn’t always align to the
basic shapes. Occasionally, as seen in our failure modes you can get one large
primitive that will take the place of what should ideally be many smaller basic
shapes. For example, a set of boxes nearby each other will sometimes end up
being represented by one large blob of a superquadratic which is a subopti-
mal result considering how easy and optimal it seems for the method to assign
a rectangular prism superquadratic to each box. No matter how you slice it,
the optimization landscape is very complex and photometric constraints alone
aren’t enough to guarantee you a parsimonious and accurate decomposition, no
matter how much or how little you constrain the geometry, as we went from
NeRFs which are highly expressive all the way to superquadratic meshes which
are simplistic and minimally expressive.

5.4 Future Work

In general, no matter how much or how little you constrain the geometry, it
simply is not enough to yield simple decompositions that make sense for a
human. Because a human observer looking at the resulting decomposition sees
that the decomposition is not along semantic lines or is missing important parts,
or is assigning too many primitives to the wrong part of the scene that is least
important, moving forward it may be necessary to use off the shelf priors that
can do grouping of the input images (whether this be in a supervised manner
like with [36] or an unsupervised 2D grouping algorithm), potentially providing
more meaningful signal than photometric constraints alone. At the end of the
day, geometric groupings of a 3D scene are not the same as or as meaningful as
semantic groupings, which needs to be the direction of this line of work in order
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to get better, more pleasing, more meaningful for downstream applications, and
more robust decompositions.
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