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Abstract

Do Vision and Language Encoders Represent the World Similarly?

by

Raiymbek Akshulakov

Master of Science in Computer Science

University of California, Berkeley

Aligned text-image encoders such as CLIP have become the de-facto model for vision-
language tasks. Furthermore, modality-specific encoders achieve impressive performances
in their respective domains. This raises a central question: does an alignment exist be-
tween uni-modal vision and language encoders since they fundamentally represent the same
physical world? Analyzing the latent spaces structure of vision and language models on
image-caption benchmarks using the Centered Kernel Alignment (CKA), we find that the
representation spaces of unaligned and aligned encoders are semantically similar. In the ab-
sence of statistical similarity in aligned encoders like CLIP, we show that a possible matching
of unaligned encoders exists without any training. We frame this as a seeded graph-matching
problem exploiting the semantic similarity between graphs and propose two methods - a
Fast Quadratic Assignment Problem optimization, and a novel localized CKA metric-based
matching/retrieval. We demonstrate the effectiveness of this on several downstream tasks
including cross-lingual, cross-domain caption matching and image classification. Code avail-
able at github.com/mayug/0-shot-llm-vision.
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Chapter 1

Introduction

The recent success of deep learning on vision-language tasks mainly relies on jointly trained
language and image encoders following the success of CLIP and ALIGN [20, 40]. The stan-
dard procedure for training these models aims at aligning text and image representation
using a contrastive loss that maximizes the similarity between image-text pairs while push-
ing negative captions away [19, 36, 10]. This achieves a statistical similarity across the two
latent spaces, which is key to retrieving the closest cross-modal representations using cosine
similarity. This property is not valid for unaligned encoders, hence, extra transformations
are needed to bridge the gap. These transformations can be training a mapping network that
captures the prior distribution over the text and image representations [31, 34, 35]. The
work of [31] has shown that it is possible to train a linear mapping from the output embed-
dings of vision encoders to the input embeddings of language models and exhibit impressive
performance on image captioning and VQA tasks. This indicates that the representations
between the unaligned uni-modal vision and language encoders are sufficiently high level and
differ only by a linear transformation. However, this linear layer is trained on CC-3M [9]
consisting of three million image-caption pairs.

Is this training step necessary? In an ideal scenario, we anticipate an alignment between
vision and language encoders as they inherently capture representations of the same physical
world. To this end, we employ Centered Kernel Alignment (CKA) [41, 12, 22], which is
known for measuring representation similarity both within and between networks. As shown
in Figure 4.1, we measure the CKA between a variety of unaligned vision and language
encoders [16, 47, 28, 37, 8], on the image-caption pairs of the COCO [27] dataset and observe
that some have comparable scores to that of aligned encoders like CLIP [40], affirmative of
semantic similarities.

We then ask the question: If the unaligned image and text encoders are semantically
similar, is there a way to connect them in a zero-shot manner? Do they build a similar
representation graph over the same information coming from the two modalities? We study
these questions, revealing key similarities between unaligned image and text encoders, and
how these similarities can be exploited for downstream tasks. Furthermore, we devise a
caption matching downstream task and show using two novel methods that latent space
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Figure 1.1: Methodology. For matching, we calculate the kernels for image and text
embeddings and employ QAP-based seeded matching to maximize CKA for obtaining the
optimal permutation P . For retrieval, we append query embeddings to base embeddings
and retrieve the best caption that maximizes the local CKA for a query image.

communication between unaligned encoders could be achieved by leveraging the semantic
similarities between the cross-modal spaces. Our contributions are:

• We present a matching method that seeks to find the permutation of the captions
that maximizes the CKA (see Fig. 1.1). Hence, We formulate maximizing CKA as a
quadratic assignment problem and introduce transformations and normalizations that
greatly improve the matching performance.

• We propose a local CKA metric and use it to perform retrieval between two unaligned
embedding spaces, demonstrating superior performance with that of relative represen-
tations [34] on the COCO caption image retrieval.

• The method is benchmarked on COCO, NoCaps [2] cross-domain caption and image
retrieval as well ImageNet-100 [15] classification tasks despite our method not being
optimized to align the representation in any manner demonstrating zero-shot commu-
nication between the encoder’s latent spaces.

• Finally, we show a practical application of our method on cross-lingual image retrieval
by making use of sentence transformers trained in various languages and a CLIP vision
encoder trained only in English.
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Chapter 2

Related Work

Recently, there has been an increasing consensus that good networks, when trained inde-
pendently, learn general representations across different architectures and tasks. On the one
hand, the works of [33, 26, 22, 6] show that these networks exhibit representation similarity
by learning similar latent spaces when trained on similar tasks and data [44, 5, 46, 11, 24,
32, 3]. Specifically, [22] introduced centered kernel alignment (CKA) as a similarity metric
for comparing the inner representations across networks. The CKA measure mitigates the
limitation of canonical correlation analysis (CCA) [42] being invariant to an invertible linear
transformation that often leads to difficulty in measuring meaningful similarities between
representations. [48] uses CKA for comparing the representations from different layers of
different language models and the effect of downstream task-finetuning on the representa-
tion similarities, while [6] utilizes CKA along with Procrustes similarity for understanding
the ability of variational autoencoders (VAEs) [21] in learning disentangled representations.
In general, these approaches study the representation similarity in unimodal models, either
vision or language. Clearly, however, the use of CKA has been limited to visualization and
analysis purposes, whereas we attempt at exploiting CKA as an optimization objective.

Recent works [34, 35] employ relative representations to match embeddings of unaligned
encoders using the cosine similarity to a set of anchors. However, these relative representa-
tions are sensitive to the selection of anchors and noise in the original embeddings. Similarly,
approaches [4, 14] analyze networks and empirically verify the “good networks learn simi-
lar representations” hypothesis by utilizing model stitching [24], which introduces trainable
stitching layers to enable swapping parts of different networks. LiMBeR [31] can be seen as
stitching the output of an image encoder to the input of a language model in the form of soft
prompts [25]. However, these approaches involve training of stitching layers for evaluating
the representation similarity between two models.

In this work, we argue that using an explicit similarity measure as done in [34, 35]
is sensitive to the selection of anchors and noise in the original embeddings. One design
choice is an implicit measure that captures the similarity of similarities, hence, inducing
more robustness to the alignment process. Furthermore, we explore how this similarity can
be leveraged for downstream cross-modal tasks in a training-free manner with the aid of
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CKA and a set of parallel anchors in the image and text latent embedding spaces.

2.1 Preliminaries

Centered Kernel Alignment (CKA) has shown its relevance in understanding and comparing
the information encoded by different layers of a neural network [22]. Formally, CKA relies
on two sets of data X ∈ Rp×N and Y ∈ Rq×N through their corresponding kernels K =
k(X⊤,X) ∈ RN×N and L = ℓ(Y⊤,Y) ∈ RN×N where k, ℓ are some kernel functions applied
on the columns of X and Y respectively (e.g., linear or RBF kernels). Therefore, the CKA
is computed in terms of K and L as:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (2.1)

where HSIC(·, ·) is the Hilbert-Schmidt Independence Criterion [18, 30] defined as:

HSIC(K,L) =
1

(N − 1)2
tr (KCLC) , (2.2)

with C = I− 1
N
11⊤ the centring matrix. We refer the reader to [22] for broader properties

and studies of the CKA metric on neural network representations.
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Chapter 3

Proposed Method

Consider a set ofN image-caption pairs, S = {(xi, ci)}Ni=1, where xi ∈ X and ci ∈ C represent
the i-th image and its corresponding caption, respectively. In this particular example, we
are performing caption-to-image retrieval, but it is applicable for the reverse as well. Let
f : X 7→ Rd1 and g : C 7→ Rd2 denote some vision and language encoders respectively.
The image-caption pairs are mapped into their corresponding sets of representations Z =
[z1, . . . ,zN ] ∈ Rd1×N and H = [h1, . . . ,hN ] ∈ Rd2×N , where zi = f(xi) and hi = g(ci).

As shown in Table 3.1, the maximum CKA score is obtained on the ground-truth ordering
of the representations CKAmax = CKA(KZ,KH), where KZ and KH are the kernels for the
image and text representations, defined respectively as KZ = k(Z⊤,Z) and KH = k(H⊤,H).
We find that the CKA is sensitive to the data ordering. Specifically, we shuffle x% of data
to obtain wrong matches while keeping the remaining 100-x% aligned, measure the CKA
on each new data set, and observe that it monotonically decreases with random shuffling.
This motivates our methodology for finding an optimal permutation of the image data that
maximizes the CKA.

Formally, let σ be some permutation of the set {1, · · · , N} and denote σ(Z) = [zσ(1), · · · ,
zσ(N)] ∈ Rd1×N the set of permuted image representations by σ. If σ is not identity, it
disrupts the original ordering of the image representations leading to a lower CKA score
as shown in Table 3.1. Therefore, our goal is to find a permutation σ∗ that maximizes the
CKA. Formally:

σ∗ = argmax
σ

CKA(Kσ(Z),KH). (3.1)

The solution to this problem seeks to realign the permuted set of images in a way that
maximizes the CKA, potentially recovering the ground-truth pairing between images and
their corresponding captions.

To solve the aforementioned optimization problem, we explore two main approaches
(visualized in Fig. 1.1): the Quadratic Assignment Problem (QAP) algorithm and Local
CKA-based retrieval and matching. The QAP algorithm provides a global matching solution,
seeking the optimal permutation across the query set considered. On the other hand, Local
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Table 3.1: CKA reduces with shuffling. Wemeasure the CKA score between DINOv2 [37]
and All-Roberta-large-v1 [28] on the 5k COCO [27] image-caption representations pairs
of the valset. The exact ordering yields the best score, whereas randomly shuffling the
representations reduces the CKA score.

Shuffling (%) 0 20 40 60 80 100

CKA Score 0.72 0.46 0.27 0.13 0.04 0.01

CKA-based retrieval and matching focuses on aligning images and captions using a localized
metric, facilitating retrieval on a more granular level. This approach is more suitable where
a single query image is given for a set of captions or vice versa.

3.1 QAP Matching

For some random permutation σ, the optimization problem in Equation 3.1 can be reformu-
lated as a quadratic optimization problem [45] which reads as:

max
P∈PN

tr
(
P⊤K̄σ(Z)PK̄H

)
, (3.2)

where PN is the set of all permutation matrices of size N and K̄ = HSIC(K,K)−
1
2KC stands

for the centered and re-scaled kernel. In principle, maximizing the above objective is a re-
laxation of a graph-matching problem. Moreover, finding a global maximum of Equation 3.2
is NP-hard due to the combinatorial nature of the problem and therefore optimizing it can
lead to sub-optimal or approximate solutions.

To overcome the NP-hardness of QAP, in practice, we suppose that we have access to a
base set B = {(zb

i ,h
b
i)}Mi=1 of image-caption representations pairs and solve an equivalent ob-

jective to Equation 3.2 only partially on some unmatched query setQ = {zq
i }Ni=1×{hq

i}Ni=1 us-
ing a seeded version of the fast QAP algorithm [17]. Formally, let Z = [zb

1, · · · , zb
M , zq

1, · · · , z
q
N ]

∈ Rd1×(M+N) and H = [hb
1, · · · ,hb

M ,hq
1, · · · ,h

q
N ] ∈ Rd2×(M+N) be the matrix concatenat-

ing all base and query representations of images and captions respectively, and denote by
K̄Z, K̄H ∈ R(M+N)×(M+N) the corresponding centered and re-scaled kernels. The partial
matching for aligning the query samples is then performed by solving the following:

max
P∈PN

tr
(
(IM ⊕P)⊤K̄Z(IM ⊕P)K̄H

)
, (3.3)

where IM ⊕P ∈ R(M+N)×(M+N) stands for the block-diagonal matrix having diagonal blocks
IM and P.
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3.2 Local CKA based Retrieval and Matching

The concept of a global CKA metric is extended to derive local similarity measures suitable
for retrieval. This process begins with a base set B = {(zb

i ,h
b
i)}Mi=1 consisting of aligned

pairs of images and captions representations. The objective is to facilitate caption-image
retrieval/matching within an unaligned query set Q = {zq

i }Ni=1 × {hq
i}Ni=1.

A local CKA score, denoted as localCKA(zq,hq) for a couple (zq,hq) ∈ Q is calculated
by computing a global CKA score for the image-caption pairs in B, augmented with the
query pair (zq,hq). The local CKA is computed as follows:

localCKA(zq,hq) = CKA(K[Z,zq ],K[H,hq ]), (3.4)

where [M,v] denotes the concatenation of the matrix M and the vector v column-wise and
Z = [zb

1, · · · , zb
M ] ∈ Rd1×M and H = [hb

1, · · · ,hb
M ] ∈ Rd2×M . In essence, a correctly matched

image-caption pair in Q would exhibit a higher degree of alignment with the base set B in
terms of the CKA score, resulting in an elevated localCKA score. This metric can be used to
calculate a score between one source query and N target queries enabling effective retrieval.
Furthermore, this framework allows for the use of linear sum assignment [23] for matching
tasks.

3.3 Stretching and Clustering

The choice of base samples and the spread of the representations in each embedding space
affect the performance of the QAP and Local CKA algorithms. To spread the representations
out in each domain for matching, we introduce a stretching matrix that normalizes the
features of each dimension by the variance calculated from the query and base sets. Given
X = [x1, · · · ,xd]

⊤ ∈ Rd×N , the stretched matrix Xs is computed as Xs = SX, where the
stretching matrix S ∈ Rd×d is a diagonal matrix with inverse empirical standard deviation

of the feature dimension as entries, i.e., S = diag
(

1
std(x1)

, · · · , 1
std(xd)

)
and xi ∈ RN is the

ith row of X. This stretching operation is performed for both the image and text before
calculating the kernels for both QAP and local CKA matching algorithms. For picking
the most effective base samples, we find that the simple k-means clustering on the image
embeddings works best. An ablation on how these affect the QAP and local CKA matching
and retrieval accuracies is provided in Sec 5.1.
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Chapter 4

Experiments

We assess the performance of the proposed method using various vision and language en-
coders on a set of downstream tasks. We first detail the encoders, datasets, downstream
tasks, and the baselines used.

4.1 Vision and Language Encoders

The experimental setup covers vision encoders of different architectures, such as ViTs [16]
and ConvNeXt [29], trained in various ways: supervised, language-supervised, and self-
supervised, across different training data regimes. For the language encoder, an encoder
capable of producing a global embedding for a caption is essential. This includes encoders of
multiple architectures varying in size, languages, and training data sizes. The Huggingface’s
sentence-transformers [43] library is utilized, where each sentence transformer is first pre-
trained on the masked language modeling task using a large text corpus, followed by a
finetuning stage on a sentence pairs dataset with a contrastive loss. It’s not straightforward
to acquire a global sentence embedding from decoder-only models like GPT models [39, 7],
hence we did not study the semantic alignment of these class of models to vision encoders.

The CKA and Matching Score (MS) of the various combinations of vision and language
encoders are reported in supplementary. The findings indicate that the All-Roberta-large-v1
[28] demonstrates the best CKA/MS across all vision models, establishing it as the primary
language encoder for subsequent tasks, unless specified otherwise.

4.2 Baselines

Here, we briefly describe three baselines that we compare our methods against for caption
matching/retrieval, image classification, and cross-lingual tasks.
Linear Regression: We propose a baseline that learns a linear transformation from the
image embedding space to the text using M aligned base examples and apply the trans-
formation to the query image embeddings. Concretely, given query image embeddings
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Zq = [zq
1, · · · , z

q
N ] ∈ Rd1×N and text embeddings Hq = [hq

1, · · · ,h
q
N ] ∈ Rd2×N , and a set

of aligned base samples Zb = [zb
1, · · · , zb

N ] ∈ Rd1×M and Hb = [hb
1, · · · ,hb

N ] ∈ Rd2×M , we
first construct a linear transformation between Zb and Hb by minimizing the MSE loss as
W = argminW ∥W⊤Zb −Hb∥2F . Then we use W to transform the query image embeddings
Zq to the text domain as Ĥq = W⊤Zq. Cosine similarity on Ĥq and Hq can be used to
perform caption retrieval.
Relative Representations [34]: enable latent space communication between unaligned
encoders by representing each query point relative to an aligned base set. Concretely, let
ℓ2-normalized embeddings for image and text queries be Zq = [zq

1, · · · , z
q
N ] ∈ Rd1×N and

H = [hq
1, · · · ,h

q
N ] ∈ Rd2×N , respectively. Utilizing a set of aligned base sample ℓ2-normalized

embeddings Zb = [zb
1, · · · , zb

M ] ∈ Rd1×M and Hb = [hb
1, · · · ,hb

M ] ∈ Rd2×M , we can construct
relative image and text query representations as Zq

rel = (Zb)⊤Zq and Hq
rel = (Hb)⊤Hq.

Relative representations are a single vector of dimension M for each query specifying the
cosine similarity of a query sample with all the base samples. Now we can use the cosine
similarity on the relative representations to perform retrieval. Sec D in appendix provides a
further comparison with our method.
CLIP [40]: We also compare against CLIP which has been contrastively trained to obtain
a joint embedding space- as an upper limit on performance for both retrieval and matching
tasks. We perform retrieval using cosine similarity

For all 3 methods, caption matching can be achieved by constructing a cost matrix using
cosine similarities and using linear sum assignment to find the permutation matrix.

4.3 Downstream Tasks

Caption Matching: Given N query images and their corresponding captions, a query set is
constructed by shuffling the captions. The task involves finding the correct permutation over
captions for perfect matching. In Retrieval, the objective is, given one caption, to retrieve
the correct image from the overall set of N images. The alignment between unaligned vision
and text encoders is investigated using our methods on the COCO and NoCaps validation
sets.

The COCO dataset [27] comprises over 120,000 images with multiple captions per image.
It is used for testing unimodal representation quality via a caption-matching task, utilizing
a validation set of 5,000 image-caption pairs. The NoCaps dataset [2] is designed for testing
image captioning models on unseen objects, with 166,100 captions for 15,100 images from
OpenImages. Its validation set includes novel concepts absent from COCO.
Cross-lingual Caption Matching/Retrieval: The task mirrors prior matching and re-
trieval but uses multilingual captions, say German. Given N images and shuffled German
captions, the objective is to match each image with the correct caption. In retrieval, the
goal is to select the most fitting German caption for a given query image from the set.

The XTD-10 dataset [1] enhances COCO2014 with 1,000 human-annotated multi-lingual
captions in ten languages for cross-lingual image retrieval and tagging, serving as a zero-shot
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Table 4.1: Caption matching and retrieval task performance comparison in cross-
domain and in-domain settings. Base samples from COCO are utilized for match-
ing/retrieval tasks on queries from NoCaps (cross-domain) and COCO (in-domain). CLIP-V
denotes the vision encoder of CLIP [40]. We use the Large version of all vision encoders.
Table A.5 shows the reverse setting.

Method Vision Model
NoCaps [2] COCO [27]

Matching accuracy Top-5 retrieval Matching accuracy Top-5 retrieval

Cosine Similarity* CLIP [40] 99.5 99.6 97.1 96.1

Linear regression
CLIP-V [40] 29.3 44.7 42.7 59.1
ConvNeXt [47] 19.0 28.5 31.3 46.1
DINOv2 [37] 38.1 50.3 45.1 65.4

Relative
CLIP-V [40] 61.3 37.6 61.6 41.3

representations [34]
ConvNeXt [47] 25.5 17.8 38.6 34.1
DINOv2 [37] 46.0 46.4 47.7 52.3

Ours: QAP
CLIP-V [40] 67.3 - 72.3 -
ConvNeXt [47] 46.7 - 66.1 -
DINOv2 [37] 57.7 - 66.0 -

Ours: Local CKA
CLIP-V [40] 65.1 60.5 71.9 69.9
ConvNeXt [47] 43.7 44.4 64.8 65.5
DINOv2 [37] 58.7 61.8 64.3 70.5

model benchmark.
ImageNet-100 Classification. The task setup is similar to the conventional classifica-

tion task with small differences to account for the methods used. Given N query images and
their corresponding classes, image representations are obtained by processing them through
a vision encoder. In parallel, textual representations are generated in a multi-step process.
Initially, several text captions are derived from the class-associated Wordnet synsets’ lem-
mas, definitions, and hypernyms. These captions are then passed through the language
encoder and averaged to get the text representations. The classification task is performed
by retrieving the closest text representations to each image representation using our local
CKA metric. We employ the ImageNet-100 dataset. This dataset is a subset of the larger
ImageNet dataset, featuring only 100 classes. It includes 130,000 training images, 50,000
validation images, and 100 classes.

4.4 Results

Importance of Good Initialization: For all tasks, we make use of a set of base samples
of size S that is kept fixed at 320 samples. The size of the query set is analogously fixed at
500 samples (see Sec 6.1 for more details). These base samples are selected after clustering
the image embeddings and choosing one closest sample to each of the S cluster centers. By
aligning the initial samples with the diverse cluster centers, we ensure sufficient coverage
of the sample space. This enhances the accuracy of the matching process, as the initial
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alignment closely mirrors the inherent structure and variability within the data. In the case
of linear regression, uniform sampling is employed to select the base samples. For relative
representations [34], the same clustering methodology is applied to select base samples,
ensuring a fair and consistent comparison between all methods.
COCO and NoCaps Caption Matching: We present the results of cross-domain and in-
domain caption matching/retrieval, as detailed in Table 4.1. We tested each baseline against
three different vision models, while employing a consistent language model—specifically,
the all-roberta-large-v1. The vision models utilized are OpenAI’s CLIP ViT-L/14, the
ConvNeXT-Base model (trained on the ImageNet-22k dataset at a resolution of 224x224),
and the ViT-L/14 model trained using the DINOv2 method. It is important to note that the
first row of the results table features vision and language models both being OpenAI’s CLIP
ViT-L/14. To effectively analyze cross-domain capabilities, our experiment design involved
the use of the COCO validation set as the source of the base set and the NoCaps validation
set for querying. Additionally, in-domain results are shown, when using COCO validation for
both base and queries. We uniformly sample the query set and average the results over three
different seeds. Although CLIP’s cosine similarity metric emerges as the most robust due
to the training paradigm inherent in CLIP models, our methods demonstrate commendable
performance without necessitating any training. The DINOv2 model, trained solely through
self-supervision, demonstrates the formation of semantic concepts independently of language
supervision. This is evident in its remarkable top-5 retrieval scores of 70.5% and 61.8% on
COCO and NoCaps datasets when coupled with an unaligned language encoder through our
Local Kernel CKA method. However, the best-performing vision encoder is CLIP’s vision
encoder which has been trained using language supervision.
ImageNet-100 Classification: In Table 4.2, we detail the performance of our methods on
the ImageNet-100 classification task. Mirroring our approach in cross-domain matching and
retrieval, we evaluated three different vision models for each method. Notably, the first row of
the table highlights the performance using CLIP’s embedding cosine similarity. The results
are averaged over three different seeds for sampling the query set. A significant observation
from this table is the comparatively narrower performance gap between the CLIP’s cosine
similarity and our methods, as well as the baseline linear regression method, in contrast to
the results observed in cross-domain caption matching/retrieval tasks.

It is interesting that ConvNeXt encoder trained on ImageNet has a classification top1
accuracy improvement of over 14% compared to CLIP and Dinov2 while on the caption
matching task DinoV2 and CLIP perform much better.
Cross-lingual Caption Retrieval: The results of cross-lingual caption matching/retrieval
are presented in Table 4.3 for the 10 languages in the XTD-dataset. OpenAI CLIP’s ViT-L
vision encoder, trained on English image-caption pairs, and a multilingual sentence trans-
former paraphrase-multilingual-mpnet-base-v2 were utilized for this task. The accuracy of
CLIP’s cosine retrieval method exhibits a significant drop when applied to languages other
than English. E.g., CLIP’s retrieval at 5 experiences a drop of 30 points when switching
from English to other Latin-alphabet languages (Spanish, French, German, and Italian). For
non-Latin alphabet languages such as Korean, Chinese, Turkish, etc., CLIP’s performance
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Table 4.2: ImageNet-100 classification performance comparison. We observe a nar-
row performance gap between the CLIP model and our methods. CLIP-V denotes the vision
encoder of CLIP.

Method Vision Model Top 1 Top 5

Cosine Similarity* CLIP 86.1 99.2

Linear Regression
CLIP-V 76.1 93.0
ConvNeXt 84.5 95.4
DINOv2 73.5 92.1

Relative
CLIP-V 8.90 30.3

representations [34]
ConvNeXt 7.20 15.7
DINOv2 49.7 75.5

Local CKA
CLIP-V 68.7 91.2
ConvNeXt 83.3 95.8
DINOv2 67.7 88.3

decreases substantially, collapsing to zero, primarily due to most words resulting in unknown
tokens. In contrast, the QAP and local CKA matching methods demonstrate consistent per-
formance across all languages, including non-Latin languages, attributing to the robustness
of a multilingual sentence transformer trained solely on text. On average, QAP surpasses
CLIP by 12% in the caption matching task and also outperforms other baselines like rela-
tive representations and linear regression methods. For retrieval at 5, the local CKA-based
method exceeds CLIP’s performance by over 17%.

It is possible to push the performance further by using language-specific sentence encoders
and we report these results for a few languages in Sec 6.9 of supplementary. This is a practical
application of our method as we can now turn a well-trained English CLIP model’s vision
encoder into a CLIP model for any low-resource language if a text-only Sentence Transformer
trained on that language is available.

4.5 Matching complexity

In Table 4.4, we go over the time complexity and runtimes of QAP matching and local
CKA based retrieval in comparison to the other baselines for matching when number of
base samples and query samples are 320, 500 respectively. For all time complexities, we
assume number of base samples m to be of the order of the number of query samples n.
QAP uses the seeded version of the fast QAP algorithm from the SciPy library, which has
a worst time complexity of O(n3) [17], while local CKA retrieval requires constructing a
graph over all the query image and text pairs, O(n2), using local CKA, which is also O(n2)
resulting in O(n4). Relative involves the calculation of the relative representations for every
query image and text pair, resulting in a time complexity of O(n2), but it’s fast due to
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Table 4.3: Cross-Lingual caption matching and retrieval performance comparison.
Using QAP and local CKA-based methods we are able to do cross-lingual caption match-
ing/retrieval using CLIP’s ViT-L vision encoder and a multi-lingual sentence transformer
paraphrase-multilingual-mpnet-base-v2. While CLIP performs well on the Latin languages,
it degrades on non-Latin languages. In comparison, our QAP and Local-CKA-based methods
perform comparably in Latin languages while outperforming non-Latin languages, highlight-
ing the efficacy of our training-free transfer approach. See Table A.6 and Table A.7 in
appendix for additional results.

Language
Kernel CKA Matching Accuracy Retrieval @ 5
CLIP Ours CLIP Relative[34] Linear Ours (QAP) CLIP Ours (Local)

Latin

de 0.472 0.627 41.8 35.0 34.0 39.6 65.1 56.7
en 0.567 0.646 81.5 52.5 40.9 51.6 92.5 69.0
es 0.471 0.634 50.2 37.8 31.7 41.4 68.5 61.6
fr 0.477 0.624 49.4 37.5 30.7 40.2 68.7 57.6
it 0.472 0.638 41.0 37.2 34.9 38.5 61.3 59.7

Non-Latin

jp 0.337 0.598 13.2 28.3 23.5 30.5 30.0 49.4
ko 0.154 0.620 0.50 30.4 23.5 30.9 3.30 53.4
pl 0.261 0.642 5.40 36.6 30.2 40.2 18.8 59.5
ru 0.077 0.632 0.80 31.9 30.7 35.1 4.10 53.2
tr 0.301 0.624 4.30 35.8 29.6 38.9 15.2 59.3
zh 0.133 0.641 2.70 36.5 31.1 40.3 8.90 57.8

Avg. – – 26.4 36.3 30.9 38.8 39.6 57.9

Table 4.4: Run times for different methods

Method QAP Local CKA Relative Linear

Run times 40 seconds 5 mins 1 second 1 second
Complexity O(n3) O(n4) O(n2) O(n× d)

highly optimized algorithms for matrix multiplications in PyTorch [38]. Linear has a time
complexity of O(nd), where n is the number of samples and d is the number of dimensions.
It is to be noted that QAP runs on the CPU, and a CUDA-optimized version could bring the
runtimes further down from 40 seconds. An efficient implementation of Local Kernel CKA is
also possible, where the CKA of base samples is precalculated, and the graph is constructed
in an additive manner, which would bring down the time complexity to O(n3). For both
relative and linear matching, we make use of SciPy’s modified Jonker-Volgenant algorithm
[13] for linear sum assignment, which has the worst time complexity of O(n3).
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Figure 4.1: Kernel CKA and QAP Matching accuracy are correlated with the
training set size and quality of the training set. Here the language encoder is kept
constant to the best BERT-sentence encoder (i.e.All-Roberta-large-v1). There is a clear
correlation between CKA and QAP Matching accuracy across all architectures, training
paradigm and data regimes.
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Chapter 5

Analysis and Conclusion

This section focuses on how training paradigms, data regimes, and encoder size/architecture
influence a vision encoder’s ability to represent the world similarly to a language encoder.
This is assessed by comparing the semantic alignment of their representation spaces using
CKA as well as QAP matching accuracy. Figure 4.1 compares the kernel CKA and caption
matching accuracy of different vision encoders with a fixed text-encoder (i.e., All-Roberta-
large-v1), against the training datasets on which the vision encoder was trained for all pairs
in the COCO captions validation set. The findings are summarized below:
Scale and quality of dataset results in encoders with high semantic alignment
with the language space: It is observed that SSL methods like DINOv2 can learn se-
mantic concepts in a relative manner even without language supervision during training.
The CKA and QAP matching accuracy for DINOv2 embeddings are comparable to CLIP
models, despite lacking language supervision and having significantly less data (LVD-142’s
142M vs Open-AI-CLIP’s 400M). A general trend emerges where more training data leads to
semantically richer visual embeddings, evident when comparing CKA and QAP Accuracies
from ImageNet1K to DFN-5B datasets. Notably, training on a curated dataset proves more
effective than on an uncurated dataset of the same size, especially for smaller models. This
is illustrated by the higher CKA and QAP accuracy of ViT-Large trained on the curated
DFN-2B dataset compared to ViT-Large/Giant, and ConvNext-xxLarge trained on Laion
2B. Additionally, SSL methods show less semantic consistency when trained on ImageNet1K,
as indicated by the clear difference in QAP accuracies between DINO trained on ImageNet1K
and DINOv2 trained on LVD-142M.
Vision Encoders Trained with Language Supervision Exhibit Greater Semantic
Alignment with Language Encoders: In line with the findings of Merullo et al.[31], it is
observed in our experiments that vision encoders trained with more language supervision on
datasets of comparable size exhibit a higher degree of semantic alignment with language en-
coders compared to self-supervised methods. For example, ViT-Large trained on CLIP-400M
with language supervision demonstrates superior caption-matching capabilities compared to
DINOv2’s ViT-Large trained on LVD-142M. Similarly, we verify that class label supervision,
like that from ImageNet, leads to more semantically aligned image encoders when compared
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to self-supervision when similarly sized models are compared on ImageNet-1k. For example,
all supervised encoders trained on ImageNet-1k have higher CKA as well as QAP matching
accuracy than all the self-supervised models.

5.1 Ablations

This section rationalizes our method choices through ablation studies on clustering, stretch-
ing, and the global CKA metric. We demonstrate the impact of these components on the
performance of our methods, primarily through Table 5.1, which delineates the effectiveness
of the QAP and the local CKA metric under various configurations. It shows the performance
metrics in scenarios where each main component is either integrated or omitted. Notably, in
instances where the CKA metric is not used, we opt for normalized correlation matrices for
each graph. The empirical results presented are derived from the caption matching/retrieval
task, utilizing both base and query sets extracted from the COCO validation set of size 320
and 500 respectively.
Choice of the metric: CKA is more beneficial than using just the scaled correlation
matrix to represent the semantic relationships in an embedding space as matching accuracy
increases from 10.1% to 48.8%. The choice of a robust metric is core to aligning vision and
language latent spaces.
Impact of Stretching: It is clear that stretching facilitates better alignment of embed-
dings in our methods as stretching spreads the representations out in each modality without
sacrificing the relative positions of the different embeddings within each embedding space.
This is reflected in the increase of QAP accuracy from 48.8% to 57.3%.
Clustering vs. Uniform Sampling: The choice of the base set is important in QAP
matching and local CKA retrieval, as it measures any query pair alignment with the base
set. A diverse base set is essential to capture a broad semantic range, and clustering within
one of the embedding spaces aids in achieving this diversity. The third and fifth rows of
the table demonstrate that clustering enhances the QAP performance from 57.3% to 65.5%.
Consequently, these results highlight that all the components together significantly enhance
the efficacy of our proposed approach.

5.2 Conclusion

In this work, we ask the question, ‘Do vision encoders and language encoders represent the
world similarly?’ and study this using CKA and a caption-matching task. We find that
well-trained vision encoders on sufficiently large datasets exhibit surprisingly high semantic
similarity with language encoders comparable to aligned encoders, irrespective of the training
paradigm. Inspired by this, we draw parallels between CKA and the QAP matching objective
and use seeded graph matching to align vision and language encoders by maximizing CKA.
We also devise a local CKA-based metric to enable retrieval between unaligned vision and



CHAPTER 5. ANALYSIS AND CONCLUSION 17

Table 5.1: Impact of clustering and stretching. The matching and retrieval performance
is the best when both clustering and stretching are employed. Hence, justifying this choice.

Clustering Stretching CKA
QAP Local CKA Local CKA

Matching Matching Retrieval @ 5

✗ ✗ ✗ 10.1 16.2 1.0
✗ ✗ ✓ 48.8 48.5 60.2
✗ ✓ ✓ 57.3 56.7 73.0
✓ ✗ ✓ 56.2 55.1 66.4
✓ ✓ ✓ 65.5 63.3 77.2

language encoders demonstrating a better performance than that of relative representations
on cross-domain and cross-lingual caption matching/retrieval tasks, facilitating zero-shot
latent space communication between unaligned encoders.
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Chapter 6

Appendix

6.1 Varying the Number of Samples

In Figure A.1, we show QAP and local CKA matching accuracies and retrieval scores for
different number of base samples M , keeping the number of query samples N constant at
500. It can be observed that as M increases, accuracy/retrieval scores improve, demon-
strating the importance of seed initialization for matching algorithms. Figure A.2 shows the
accuracy/retrieval scores as N the number of query samples changes keeping the number of
base samples constant at M=320. We see that QAP matching accuracy as local CKA-based
retrieval scores decrease with an increase in N , but we still get 70% matching accuracy when
M
N

= 1.

6.2 Vision and Text Encoders

CKA is measured on combinations of a wide variety of vision and text encoders to examine
the impact of: model sizes, dataset regimes, and training paradigms on vision-language
alignment. This analysis also identifies the optimal pair of unaligned vision and text encoder
for caption-matching tasks. Huggingface’s transformers library is utilized for vision models,
while the sentence transformers library is employed for text encoders. Table A.1 details the
vision models, their training data, paradigms, and model types and sizes. Similarly, Table A.2
presents information on various text encoders. The study covers three training paradigms for
vision models: supervised, self-supervised, and language-supervised, with training dataset
sizes ranging from 1 million to 400 million images. Text encoders predominantly use sentence
transformers, trained for semantic search using a contrastive sentence pairs loss, with dataset
sizes varying from 500k to 2B.

Kernel CKA of various model combinations is presented in Table A.13. The top-performing
text encoder trained exclusively on text information is identified as All-Roberta-large-v1
paired with DINOv2, achieving a CKA of 0.706. Consequently, All-Roberta-large-v1 is
selected as the text encoder for all tasks and experiments in the main paper, except for
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Figure A.1: Accuracy and Retrieval Scores of QAP Matching and Local CKA-based
retrieval as the number of base samples is varied, keeping the number of query samples fixed
at 500.
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Figure A.2: Accuracy and Retrieval Scores of QAP Matching and Local CKA-based
retrieval as the number of query samples is varied, keeping the number of base samples fixed
at 320.
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Table A.1: Image Encoders Summary. List of hugging face vision encoder names and
information regarding their train data, paradigm, dataset size, model type, and model sizes
for the comparison in Figure A.3 and Table A.13.

Model Name Training Data Training Paradigm Model Type Training Data Size Model Size

facebook\dino-vits8 ImageNet-1k DinoV1 vit-small 1.2 22
openai\clip-vit-large-patch14-336 CLIP-400M Language Supervised vit-large 400 307
facebook\dinov2-base LVD-142M DinoV2 vit-base 142 86
facebook\dinov2-small LVD-142M DinoV2 vit-small 142 22
facebook\dinov2-large LVD-142M DinoV2 vit-large 142 307
facebook\dinov2-giant LVD-142M DinoV2 vit-giant 142 1000
openai\clip-vit-base-patch16 CLIP-400M Language Supervised vit-base 400 86
facebook\dino-vitb8 ImageNet-1k DinoV1 vit-base 1.2 86
timm\convnext base.fb in1k ImageNet-1k Supervised convnext-base 1.2 89
timm\convnext tiny.fb in1k ImageNet-1k Supervised convnext-tiny 1.2 29
facebook\convnext-base-224-22k ImageNet-21k Supervised convnext-base 14.1 89
timm\convnext base.fb in22k ImageNet-21k Supervised convnext-base 14.1 89
timm\vit base patch16 224.augreg in21k ImageNet-21k Supervised vit-base 14.1 86
timm\vit small patch16 224.augreg in1k ImageNet-1k Supervised vit-small 1.2 22

cross-lingual experiments. For these, paraphrase-multilingual-mpnet-base-v2 emerges as the
most effective text encoder.

Figure A.3 illustrates the relationship between CKA and text model size across different
vision encoder types, training paradigms, and sizes. It is observed that text model size
has a limited impact on achieving high CKA with the vision model. Well-trained vision
models on large datasets consistently show high kernel CKA with text encoders, regardless
of text model size. For instance, language-supervised models (green) and DINOv2 models,
which are trained on datasets with hundreds of millions of instances (such as LVD-142’s 142
million images and CLIP-400M’s 400 million image-caption pairs), demonstrate high CKA
with language encoders of various sizes.

6.3 Layerwise CKA Analysis

Figure A.4, Table A.3, and Table A.4 show the progression of CKA and QAP matching
scores across layers for both text and vision models. We explore two configurations: one
involves comparing layers of All-Roberta-large-V1 and DINOv2 VIT-L/14, while the other
examines layers of CLIP’s vision and text hidden states. For CLIP, the layer proj points to
the final image and text embeddings that were passed through the final projection layers. In
the first configuration, CKA and QAP scores gradually improve where the image model layer
has a far greater effect on the similarity than the text model layer. On the other hand, the
second configuration reveals that the QAP matching score in CLIP manifests prominently
in the absolute last layers of both the vision/text encoders.

As shown in Table A.3, the CLIP model obtains a significant jump in matching score
after the projection head, highlighting the central role of this layer in aligning text and image
modalities within a unified representation space. Here, the QAP matching accuracy does
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Table A.2: Text Encoders Summary. List of huggingface text encoder names and infor-
mation regarding their train data, paradigm, dataset size, and model sizes for the comparison
in Figure A.3 and Table A.13

Model Name Model Size Train Data Training Paradigm Training Data Size

all-mpnet-base-v1 109 multiple datasets contr. sent. 1.12B sent. pairs
gtr-t5-base 110 multiple datasets contr. sent. 2B sent. pairs
paraphrase-MiniLM-L12-v2 33 multiple datasets contr. sent. 10M sent. pairs
gtr-t5-large 335 multiple datasets contr. sent. 2B sent. pairs
all-mpnet-base-v2 109 multiple datasets contr. sent. 1.12B sent. pairs
average word embeddings komninos 66 Wiki2015 skipgram 2 billion words
average word embeddings glove.6B.300d 120 Wiki2014, GigaWord 5 glove 6 billion tokens
all-MiniLM-L12-v1 33 multiple datasets contr. sent. 1B sent. pairs
openai clip-vit-large-patch14 123 CLIP-400M contr. img-text 400M image-text pairs
all-MiniLM-L12-v2 33 multiple datasets contr. sent. 1B sent. pairs
all-MiniLM-L6-v2 22 multiple datasets contr. sent. 1B sent. pairs
sentence-t5-base 110 multiple datasets contr. sent. 2B sent. pairs
msmarco-distilbert-dot-v5 66 MSMarco contr. sent. 500k sent. pairs
paraphrase-MiniLM-L3-v2 17 multiple datasets contr. sent. 10M sent. pairs
paraphrase-albert-small-v2 11 multiple datasets contr. sent. 10M sent. pairs
all-MiniLM-L6-v1 22 multiple datasets contr. sent. 1B sent. pairs
all-distilroberta-v1 82 OpenWebTextCorpus contr. sent. 1B sent. pairs
sentence-t5-large 335 multiple datasets contr. sent. 2B sent. pairs
All-Roberta-large-v1 355 multiple datasets contr. sent. 1B sent. pairs
msmarco-bert-base-dot-v5 109 MSMarco contr. sent. 500k sent. pairs
sentence-t5-xxl 4870 multiple datasets contr. sent. 2B sent. pairs
paraphrase-TinyBERT-L6-v2 66 multiple datasets contr. sent. 10M sent. pairs
sentence-t5-xl 1240 multiple datasets contr. sent. 2B sent. pairs
gtr-t5-xxl 4870 multiple datasets contr. sent. 2B sent. pairs
paraphrase-distilroberta-base-v2 82 multiple datasets contr. sent. 10M sent. pairs
gtr-t5-xl 1240 multiple datasets contr. sent. 2B sent. pairs

not follow a linear increase over the layers for CLIP, but rather suddenly jumps from 0.29
to 0.79 from the last layer to the projection head. This likely suggests that most of the
CLIP performance comes from the projection heads ensuring a high statistical similarity.
In contrast, Table A.4 shows that DINOv2 and All-Roberta-large-v1 demonstrate a consis-
tent improvement in the matching accuracy across successive layers, suggesting an inherent
alignment process within their architectures in a hierarchical way. Here, the QAP matching
accuracy linearly increases for the DINOv2 and All-Roberta-large-v1 combination when we
fix the last layer of All-Roberta-large-v1 and vary the layers of DINOv2. Inversely, when
we fix the last layer of DINOv2 and vary the layers of the text encoder, the QAP starts
high at 0.44 and reaches 0.68 at the top layer, thus, we hypothesize that the text encoder
representations do not change as much as the image representations.
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Figure A.3: CKA vs. text model size for vision encoders of different training paradigms,
model types, and model sizes. We see that text model size is not the most important for
high semantic similarity with vision models.

6.4 Mathematical Relationship between Local

CKA-based Retrieval and Relative

Representations

In this section, we provide derivations that show that the relative representations method
[34] can be seen as a particular case of our proposed localCKA method. Denote the set
of query and base representations samples respectively as QA =

[
qA
1 , . . . , q

A
N

]
∈ RdA×N and

BA =
[
bA1 , . . . , b

A
M

]
∈ RdA×M , where A ∈ {I, C} for images and captions, the retrieval matrix

for the relative representations (RR) method is therefore given by:

RRR = Q⊤
I BIB

⊤
CQC ∈ RN×N .
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(a) (b)

Figure A.4: Layer-wise CKA heatmap illustration. The heatmaps depict the CKA
scores obtained by varying the layers from which the text and visual embeddings are taken.
On the left: CKA scores for All-Roberta-large-v1 and DINOv2 unaligned combination.
On the right: CKA scores for CLIP text and vision encoders. In both cases, we observe
that the CKA scores are low for earlier layer embeddings of the vision model and they
improve when the embeddings later layers are considered. This illustrates that both aligned
and unaligned text-vision encoders behave similarly in terms of the cross-modal similarity
w.r.t@let@tokenCKA.

From which, for instance, the i-th image query is mapped to its corresponding caption via:

argmax
j

RRR
ij = argmax

j
(qI

i )
⊤BIB

⊤
Cq

C
j . (6.1)

Whereas, our proposed localCKA method constructs the retrieval matrix ROurs having en-
tries ROurs

ij = localCKA
(
qI
i , q

C
j

)
with:

localCKA
(
qI
i , q

C
j

)
= CKA

(
K[BI ,q

I
i ]
,K[BC ,qC

j ]

)
. (6.2)

In particular, taking the particular case of the linear kernel and defining the CKA score
as the trace of the product of two kernels, i.e., CKA(K,L) = tr (KL). We first have, for
A ∈ {I, C}:

K[BA,qA
i ] = [BA, q

A
i ]

⊤[BA, q
A
i ] =

[
B⊤

ABA B⊤
Aq

A
i(

B⊤
Aq

A
i

)⊤ ∥qA
i ∥2

]
.
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Table A.3: QAP accuracy for different layers of vision and text encoder of CLIP model.

Vision

6th 11th 16th 21st 26th proj

Text

6th 0.02 0.022 0.022 0.098 0.126 0.118
11th 0.028 0.038 0.016 0.248 0.278 0.278
14th 0.026 0.03 0.036 0.238 0.282 0.296
proj 0.038 0.026 0.034 0.622 0.716 0.792

Table A.4: QAP accuracy for different layers of DINOv2 and All-Roberta-large-v1
models.

Vision

6th 11th 16th 21st 26th

Text

6th 0.008 0.020 0.150 0.314 0.448
11th 0.010 0.022 0.146 0.360 0.498
16th 0.008 0.016 0.194 0.334 0.500
21st 0.002 0.004 0.148 0.420 0.538
26th 0.008 0.016 0.198 0.450 0.672

Hence, we have:

tr
(
K[BI ,q

I
i ]
K[BC ,qC

j ]

)
= tr

(
B⊤

I BIB
⊤
CBC

)
+ 2

(
qI
i

)⊤
BIB

⊤
Cq

C
j︸ ︷︷ ︸

relative representations term

+∥qI
i ∥2∥qC

j ∥2.

Therefore, in this particular case, there is equivalence between our method and the relative
representations method, since ROurs

ij = RRR
ij + c where c is a constant scalar if the representa-

tions are normalized. As such, the relative representations method falls within our proposed
localCKA method if one considers the linear kernel and takes the trace instead of the HSIC
metric. Therefore, our proposed method is more general since it relies on general kernel
functions and the HSIC metric, which might explain its performance.
Impact of noise addition: Table A.5 shows the performance comparison between relative
representations [34] and our global CKA-based QAP approach for the image-caption match-
ing task with 320 base samples and 500 query samples on COCO validation set. For this
experiment, 10 trials were conducted with different seeds and clustering of base samples was
employed. Gaussian noise with std-dev (σ) being a multiple of the embeddings std-dev is
added to both image and textual embeddings. The performance of original embeddings is
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Table A.5: Impact of adding noise to the embeddings. Performance comparison, in
terms of matching accuracy, between relative representations [34] and our global CKA-based
QAP approach is shown for the image-caption matching task with 320 base samples and 500
query samples on COCO validation set. Gaussian noise with std-dev (σ) being a multiple
of the embeddings std-dev is added to both image and textual embeddings. Noise level of
0 (σ = 0) denotes the performance for the original embeddings. The relative performance
drop for a noise level from its reference (σ = 0) is shown in parenthesis. In comparison to
relative representations, our QAP approach performance drops at a slower rate as σ increases,
illustrating better noise robustness for our approach.

Method
Noise Level (σ)

0.0 0.1 0.2 0.3 0.4 0.5

Relative representations [34] 47.3 45.3 (↓4.4) 44.2 (↓6.5) 41.3 (↓12.7) 39.0 (↓17.6) 35.6 (↓24.8)
Ours (QAP) 53.9 53.7 (↓0.3) 51.8 (↓3.9) 48.7 (↓9.5) 46.9 (↓13.0) 43.3 (↓19.6)

also shown for reference (noise level of 0, i.e@let@token, σ = 0). The relative performance
drop for a noise level from its reference (σ = 0) is shown in parenthesis. Compared to rela-
tive representations, our QAP approach performance drops at a slower rate as σ increases.
E.g@let@token, for σ = 0.2, relative representations matching accuracy drops 6.5% from it
maximum of 47.3, while ours is more robust and drops only 3.9% from its maximum of 53.9
when σ = 0. These results show that our QAP approach is more robust to noise addition,
in comparison to relative representations.

6.5 Other text encoders

Evaluating on COCO with M=320 and N=500, Table A.6 shows that DINOv2-large achieves
high QAP accuracy and retrieval performance when combined with different text encoders.
This underscores the potential of pairing well-trained sentence and vision encoders for achiev-
ing high semantic similarity between image and text embeddings

Table A.6: Comparison of CKA, QAP acc. and local CKA retrieval for different text encoders
with DINOv2-large image encoder.

Text Encoder Kernel CKA QAP Acc. Ret @ 5
all-roberta-large-v1 0.690 64.93 77.27
paraphrase-distilroberta-base-v2 0.689 65.07 76.33
paraphrase-mpnet-base-v2 0.695 68.20 81.07
sentence-t5-large 0.660 57.87 69.13
sentence-t5-xxl 0.677 63.40 73.00
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6.6 Simple projection

We trained a 2-layer MLP on frozen DINOv2-large encoder till convergence using CLIP
loss and MSE loss. For fair comparison with our setting, we use 320 training and 500 query
image-text samples. Results in Table A.7 are averaged over 3 seeds. Notably, QAP matching
and local-CKA retrieval excel over projection learning, which demands hyperparameter tun-
ing. In contrast, QAP and local-CKA provide a novel, training-free mechanism to evaluate
encoder representational similarity, demonstrating effective latent space communication.

6.7 Effect of unimodal tasks on alignment

Table A.8 shows using ViT, DETR, DPT, and SegFormer vision encoders for local-CKA
and QAP matching on COCO captions (M=320, N=500). ViT is trained on ImageNet-1k
(classification), DETR on COCO 2017 (detection), DPT on 1.4M depth images (depth esti-
mation), and SegFormer is fine-tuned on ADE20k (semantic segmentation). Results indicate
that classification models exhibit higher semantic similarity to all-roberta-large text encoder
in QAP accuracy and local-CKA scores than pixel-level tasks such as object detection, seg-
mentation, and depth estimation.

Table A.7: QAP acc. and Top-5 retrieval
scores on COCO.

Method QAP acc Ret @ 5
Proj. + MSE 59.8 73.0
Proj. + CLIP 55.4 68.1
QAP 65.9 -
Local CKA 64.3 76.0

Table A.8: Unimodal tasks’ effect on image-
text alignment.

Vision model QAP acc Ret @ 5
ViT 35.3 56.1
DETR 26.5 39.8
DPT 22.7 34.1
Segformer 16.8 33.4

6.8 Additional Retrieval Results

While the performance on the image retrieval task was reported in Table 2 of the main
manuscript, here in Table A.9, we show the NoCaps and Coco caption retrieval results in
the reverse setting. In this configuration, the retrieving objective shifts to finding the correct
caption from a pool ofN captions when given a single image. The matching objective remains
consistent, but, instead of shuffling the captions, the images themselves are shuffled. While
the matching accuracies express minimal changes in this setting, the retrieval accuracies
display notable discrepancies.

A plausible explanation for the reduced retrieval scores associated with the relative rep-
resentation method is the heightened semantic variability inherent in the image domain com-
pared to the caption domain. A considerable number of images share very similar captions,
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Table A.9: Reverse Caption Retrieval Results for COCO and NoCaps. In this
setting, the retrieval objective is, given one image, to retrieve the correct caption from the
overall set of N captions. The matching objective remains quite similar but instead of
shuffling the captions, this time, the images are shuffled.

Method Vision Model
NoCaps [2] COCO [27]

Matching accuracy Top-5 retrieval Matching accuracy Top-5 retrieval

Cosine Similarity* CLIP [40] 99.5 99.6 97.1 98.5

Linear regression
CLIP-V [40] 63.6 70.1 72.6 83.9
ConvNeXt [47] 22.8 38.9 43.8 65.7
DINOv2 [37] 46.8 59.9 56.2 75.9

Relative
CLIP-V [40] 61.3 3.0 61.6 2.9

representations [34]
ConvNeXt [47] 25.5 2.7 38.6 12.9
DINOv2 [37] 45.9 38.1 47.7 43.7

Ours: QAP
CLIP-V [40] 67.3 - 72.8 -
ConvNeXt [47] 45.9 - 65.1 -
DINOv2 [37] 58.5 - 65.9 -

Ours: Local CKA
CLIP-V [40] 65.1 65.9 71.9 80.5
ConvNeXt [47] 44.8 33.0 63.8 74.3
DINOv2 [37] 55.7 64.2 64.3 76.0

leading to a compressed semantic space for the captions. Consequently, caption embeddings
become more closer to one another, making the retrieval a lot harder.

6.9 Additional Cross-Lingual Matching Results

For completeness, we report the results in Table A.10 for the reverse setting of the cross-
lingual image caption matching/retrieval task mentioned in the main paper. Given N cap-
tions in say, German, and N shuffled images the objective is to match each German caption
with the correct image. In retrieval, the goal is to select the most fitting image from the
retrieval set given a German caption. We notice that the matching accuracies remain the
same as the direction doesn’t affect the matching. However, in the case of reverse retrieval,
we notice that CLIP’s retrieval@5 drops by over 4.5% on average when compared to our
local CKA based retrieval of 2.1%.

In Table A.11 we report the results for when we use language-specific BERT Sentence
encoders for the cross-lingual caption matching/ retrieval task for 5 languages. For all these
cases, the vision encoder is kept fixed as OpenAI’s CLIP-VIT-L-14 trained on English image,
caption pairs. We notice that the semantic alignment with the vision encoder in terms of
CKA as well as matching/retrieval performance drops with language-specific encoders when
compared to using a multi-lingual model like multilingual-mpnet-base-v2. We believe this
could be due to the multi-lingual model being trained on a lot more data in comparison to
the language-specific ones thus resulting in more meaningful embedding spaces.
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Table A.10: Cross-Lingual image matching and retrieval performance comparison.
Here we use multilingual captions to retrieve images from the COCO validation
set. Using QAP and local CKA-based methods we are able to do cross-lingual image match-
ing/retrieval using CLIP’s ViT-L vision encoder and a multi-lingual sentence transformer
paraphrase-multilingual-mpnet-base-v2. While CLIP performs well on the Latin languages,
it degrades on non-Latin languages. In comparison, our QAP and Local-CKA-based methods
perform comparably in Latin languages while outperforming non-Latin languages, highlight-
ing the efficacy of our training-free transfer approach.

Language
Kernel CKA Matching Accuracy Retrieval @ 5
CLIP Ours CLIP Relative[34] Linear Ours (QAP) CLIP Ours (Local)

Latin

de 0.472 0.627 43.5 35.0 19.3 39.7 54.9 57.2
en 0.567 0.646 80.9 52.5 25.6 51.3 90.4 66.7
es 0.471 0.634 50.4 37.8 19.7 40.9 63.9 57.9
fr 0.477 0.624 50.8 37.5 18.8 40.3 65.9 56.9
it 0.472 0.638 41.9 37.2 19.7 38.7 52.9 57.0

Non-Latin

jp 0.337 0.598 12.9 28.3 15.2 30.2 17.8 48.6
ko 0.154 0.620 0.9 30.4 15.3 31.3 2.2 48.4
pl 0.261 0.642 8.1 36.6 21.0 40.0 15.7 55.9
ru 0.077 0.632 1.7 31.8 16.3 34.8 3.5 53.9
tr 0.301 0.624 7.8 35.8 18.7 38.9 14.6 53.1
zh 0.133 0.641 2.4 36.5 19.2 39.9 4.8 53.7

Avg. – – 27.4 36.3 18.9 38.7 35.1 55.4

Table A.11: Language-specific encoders for cross-lingual caption match-
ing/retrieval for 5 languages. Language-specific encoders have less semantic similarity
with the vision encoder in terms of CKA as well as poorer matching/accuracy performances
when compared to multi-lingual models like multilingual-mpnet-base-v2 which is reported
in Table 4.

Language Language model CKA Linear Relative QAP Retrieval@5

es hiiamsid\sentence similarity spanish es 0.568 15.9 25.1 28.6 50.0
fr dangvantuan\sentence-camembert-large 0.569 22.5 31.5 35.0 53.1
it nickprock\sentence-bert-base-italian-uncased 0.543 16.0 22.0 26.4 47.8
jp colorfulscoop\sbert-base-ja 0.457 9.2 12.1 14.5 33.7
tr emrecan\bert-base-turkish-cased-mean-nli-stsb-tr 0.564 23.1 34.7 38.3 54.3

6.10 Qualitative results

In Table A.12, we present instances of retrieval mispredictions where the original image fails
to rank within the top five closest images to the given caption, as determined by local Kernel
CKA method. Building upon the experimental methodology outlined in the main paper, we
selected 320 base samples and conducted local Kernel CKA retrieval using an additional 500
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query samples. We used All-Roberta-large-v1 for text embeddings and DINOv2 ViT-L/14
for image embeddings. The results distinctly illustrate that despite the failure to retrieve
the exact original image, the alternative images identified in the top five still exhibit a
considerable degree of semantic similarity to the provided caption. This underscores the
robustness of the local Kernel CKA retrieval approach, revealing its capability to identify
images that, while not the precise match, maintain semantic coherence with the specified
caption.
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Original Image Caption Top-3 Retrieved Images

Two desktop
computers sit-
ting on top of a
desk.

A mother and
baby elephant
walking in green
grass in front of
a bond.

a man is riding a
surfboard at the
beach

The Big Ben
clock tower tow-
ering over the
city of London.

A computer
mouse is beside
a notebook com-
puter.

Table A.12: Local Kernel CKA Retrieval Mispredictions. In accordance with the ex-
perimental protocol detailed in the main paper, we selected 320 base samples and conducted
local Kernel CKA retrieval using an additional 500 query samples. Presented above are five
example prediction retrievals for instances where the original image failed to secure a posi-
tion within the top-5 retrievals. We observe that although the original image was not in the
retrieved top-5, the retrieved images (top-3 shown here) closely resemble the corresponding
caption, thereby highlighting the efficacy of our approach.



CHAPTER 6. APPENDIX 36

Table A.13: CKA for combinations of different vision and text encoders. V, V tr,
V tr size, V mod size stand for Vision model name, Vision train set, Vision train set size,
and Vision model size respectively. T mod size stands for text model size. OpenAI’s CLIP
text encoder shows highest CKA with facebook dinoV2base closely followed by All-Roberta-
large-v1. We make use of All-Roberta-large-v1 as the language encoder for all donwstream
tasks and analysis in main text because All-Roberta-large-v1 has been trained using only
text data and can be considered a purely textual encoder.

V T CKA V tr V tr p V tr size V mod size T mod size

facebook dinov2-base openai clip-vit-large-patch14 0.719 LVD-142M DinoV2 142 86 123
facebook dinov2-base All-Roberta-large-v1 0.706 LVD-142M DinoV2 142 86 355
timm vit base patch16 224.augreg in21k openai clip-vit-large-patch14 0.698 ImageNet-21k Supervised 14.1 86 123
facebook dinov2-large sentence-t5-xxl 0.684 LVD-142M DinoV2 142 307 4870
openai clip-vit-large-patch14-336 All-Roberta-large-v1 0.677 CLIP-400M Lang. Supervised 400 307 355
facebook dinov2-large sentence-t5-large 0.668 LVD-142M DinoV2 142 307 335
facebook dinov2-small sentence-t5-xl 0.661 LVD-142M DinoV2 142 22 1240
facebook dinov2-small all-mpnet-base-v2 0.655 LVD-142M DinoV2 142 22 109
facebook dinov2-small all-MiniLM-L6-v1 0.644 LVD-142M DinoV2 142 22 22
facebook convnext-base-224-22k gtr-t5-xxl 0.626 ImageNet-21k Supervised 14.1 89 4870
timm vit small patch16 224.augreg in1k gtr-t5-xl 0.602 ImageNet-1k Supervised 1.2 22 1240
timm convnext base.fb in22k all-MiniLM-L6-v2 0.590 ImageNet-21k Supervised 14.1 89 22
timm convnext tiny.fb in1k gtr-t5-xl 0.540 ImageNet-1k Supervised 1.2 29 1240
timm convnext base.fb in1k msmarco-bert-base-dot-v5 0.512 ImageNet-1k Supervised 1.2 89 109
facebook dino-vitb8 msmarco-distilbert-dot-v5 0.445 ImageNet-1k DinoV1 1.2 86 66
facebook dino-vits8 all-mpnet-base-v2 0.423 ImageNet-1k DinoV1 1.2 22 109
facebook dino-vits8 paraphrase-TinyBERT-L6-v2 0.398 ImageNet-1k DinoV1 1.2 22 66
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