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Abstract

CherryML 2.0: Almost Linear Time Estimation of Phylogenetic Models

by

Wilson Wu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Yun S. Song, Co-chair

Professor Satish Rao, Co-chair

Phylogenetic models of protein evolution are parameterized by a rate matrix Q describing
the rate at which amino acids mutate. Maximum likelihood based methods typically alter-
nately optimize phylogenetic trees over the multiple sequence alignments given a rate matrix
and the rate matrix given the trees. Classically, this process was bottlenecked by the matrix
estimation step. Recently, CherryML showed that performing matrix estimation using com-
posite likelihood estimate yielded accurate rate matrices whilst being orders of magnitudes
faster. In this paper, we present CherryML 2.0 which applies composite likelihood to the tree
estimation step, speeding up the tree estimation step by orders of magnitude with minimal
impact in accuracy. Furthermore, CherryML 2.0’s time complexity is almost linear in the
length of sequences and number of sequences per multiple sequence alignments. We show
that CherryML 2.0 achieves similar accuracy to CherryML 1.0 on real datasets, and it’s able
to reconstruct a rate matrix with less than 2% median error on simulated datasets.
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Chapter 1

Introduction

The evolution of amino acids is classically modelled with phylogenetic models parameterized
by a rate matrix Q. This rate matrix describes the rate at which each amino acid mutates
into one another. Q is usually inferred empirically from datasets – a process requiring trade
o↵s between accuracy of the estimated matrix and computational e�ciency.

Early works used counting based approaches in order to estimate this rate matrix. The
Dayho↵ model [2] first estimated phylogenetic trees over multiple MSA’s. Then using maxi-
mum parsimony, it inferred ancestral sequences. The resulting matrix can then be estimated
by simply counting the number of transitions between each pair of amino acids that occur
across each branch in the trees. The model by Jones, Taylor, and Thornton, often referred
to as the JTT model [5], similarly counted the number of transitions between each pair of
amino acids in an estimated tree. However instead of using maximum parsimony to infer an-
cestral states, it instead iteratively counts the mutations across, then prunes pairs of nearest
neighbors from the estimated tree. These methods are inherently biased as they assume only
one mutation happens at a given site for each given branch, and the estimation methods do
not take into account evolutionary time.

Maximum likelihood estimate (MLE) based approaches were later created to estimate
more accurate rate matrices. The model by Whelan and Goldman [12], which we refer to
as the WAG model, was among the first such models which used MLE to estimate rate
matrices. WAG alternately estimates the MLE phylogenetic tree from the rate matrix and
MLE rate matrix from the tree in a coordinate ascent like algorithm. This procedure is used
to estimate Q from

argmax
Q,T

P (D|T,Q) = argmax
Q,T

Y

i

P (Di|Ti, Q)

Here,D = (D1, D2, ..., Dm) aremmultiple sequence alignments (MSA) and T = (T1, T2, ..., Tm)
are estimated phylogenetic trees corresponding to the MSA’s. Computing an MLE phylo-
genetic tree is computationally expensive. However, WAG made the crucial insight that
su�ciently accurate phylogenetic trees can be used to accurately estimate the MLE rate
matrix. Thus, maximizing the likelihood function can be approximated by estimating phylo-
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genetic trees with neighbor-joining. Then, MLE branch lengths can be e�ciently estimated
for these topologies resulting in the trees in T . Given these ”good enough” phylogenetic
trees, numerical optimization algorithms can then be used to estimate.

Q̂ = argmax
Q

P (D|T,Q)

This insight allowed WAG to estimate the WAG matrix using 3,905 sequences across 182
MSA’s whereas previous MLE-based methods could only analyze no more than 30 sequences.
Then, the seminal model by Le and Gascuel [7], which we refer to as the LG model, e�ciently
incorporated site rate variation into the WAG model, allowing the LG model to e�ciently
learn rate matrices more accurate than WAG.

Although LG made it possible to estimate MLE rate matrices, it is still computationally
bottle necked by the numerical optimization step which estimates the rate matrices from
the given phylogeny. This is because evaluating P (D|T,Q) =

Q
i P (Di|Ti, Q) requires the

marginalization of ancestral states of each tree, which is typically done using Felsenstein’s
pruning algorithm [3]. Thus, any optimization algorithm will be bottle necked by this step.
To speed this up, CherryML [11] showed that a composite likelihood can be used in lieu of
the full joint likelihood and that optimizing for the maximum composite likelihood estimate
(MCLE) rate matrix produces a rate matrix that’s just as good as the MLE rate matrix. To
do this, rather than evaluating P (D|T,Q), CherryML evaluates

P (D|T,Q) ⇡ P (D|C,Q) (1.1)

⇡
Y

i

Y

(x,y)2Ci

P (x|y, tx,y, r, Q) (1.2)

Here, the C = (C1, C2, ..., Cn
2
)’s are the set of cherries in their respective trees Ti. A

cherry is two leaves which share the same parent, tx,y is the distance between the leaves
x and y in the tree, and r is the site rates. Cherries are computed by recursively finding
then pruning cherries from the subtrees of T until there’s at most one leaf not included in a
cherry. By decomposing the full joint likelihood of each MSA into the composite likelihoods
of individual cherries, CherryML eliminates the need to estimate ancestral sequences when
estimating Q. This massively speeds up the rate matrix estimation step.

Thus, the current most e�cient method of estimating the MLE rate matrix from data
comes from first approximating MLE phylogenetic trees, then using the cherries of those
trees to approximate the joint likelihood of the data when numerically optimizing Q. The
original CherryML paper uses FastTree 2.1 to estimate trees and composite likelihood to
estimate the rate matrix. We refer to this method as CherryML 1.0. Since CherryML 1.0
significantly sped up the rate matrix estimation step, the bottleneck of it is now estimating
the MLE phylogenetic trees. Even when using FastTree [10], CherryML reported that the
tree estimation step accounts for over 90% of the end-to-end runtime.
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Thus in this paper, we leverage the composite likelihoods used by CherryML to com-
pletely forego the tree estimation step. We instead estimate the MCLE set of cherries, their
associated divergence times and site rates. These can then be directly used by CherryML
to estimate Q. Further, we show that parsimony can be used to accurately estimate the set
of cherries in lieu of composite likelihood. The resulting method is linear or almost linear
in the number of sequences, length of sequences, and number of rates used. We title this
new method CherryML 2.0 and demonstrate that it estimates rate matrices of comparable
accuracy to CherryML 1.0 whilst being multiple orders of magnitudes faster.
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Chapter 2

Results

CherryML 2.0 uses a divide and conquer algorithm to estimate the MCLE cherries based on
maximum parsimony. Maximum parsimony attempts to pair cherries in a way to minimize
the number of mutations across sites across all cherries. By directly estimating a set of cher-
ries and divergence times, our method forgoes the expensive ancestral state reconstruction
that is typically used during phylogeny estimation. We reproduce the figures from Cher-
ryML [11] to demonstrate the accuracy and speedups of MCLE cherries versus estimating
phylogenetic trees. For each figure, we run 4 iterations of the end-to-end estimation to ensure
convergence; although, we note that 2 or 3 iterations is typically enough in practice. We
observe that on all datasets, our methods achieve comparable accuracy to CherryML 1.0
whilst being hundreds of times faster. Additionally, we include randomly selected nodes on
all plots as a baseline for performance. Further, we ablate our method by injecting ground
truth site rates and divergence times. We observe that choice of cherries does not signifi-
cantly impact the quality of the estimated rate matrix; however, it does a↵ect the quality of
the estimated divergence times and site rates.

For each figure, we additionally show results for performing CherryML 2.0 whilst opti-
mizing for likely cherries, rather than parsimonious cherries. We note that this doesn’t make
a significant di↵erent on any figure aside from Figure 2.5 in which ground truth site rates
and branch lengths are injected. Thus in general, CherryML 2.0 using parsimony is prefer-
able to using likelihood due to the time complexity of pairing with likelihood. However, this
caveat does not apply in the absence of site rate variation. See Appendix 5.6 for applying
CherryML 2.0 to the WAG model.

2.1 Simulated Data

We compare the median relative error of the estimated matrices across the estimation strate-
gies on simulated data. Data is simulated the same way as the data for Figure 1b,c for
CherryML, except we simulated the data with 4 rate categories. The Ground Truth and
FastTree methods are taken directly from CherryML. The ”Ground Truth” method directly
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Figure 2.1: CherryML 2.0 has roughly half the statistical e�ciency as CherryML 1.0 for
small datasets and a bias of around 1 to 2 percent.

injects the the ground truth trees into the CherryML rate matrix estimator and is the the-
oretically optimal tree estimator. The FastTree method uses FastTree 2.1 to estimate trees
and CherryML to estimate rate matrices, and this is what we refer to as CherryML 1.0.

CherryML 2.0 is labelled labelled ”dc parsimony” which uses the divide and conquer
algorithm for optimizing for parsimonious cherries. Additionally, we also include randomly
selected cherries as a baseline for how well any cherry estimator should perform. We observe
that selecting parsimonious cherries leads to an estimated rate matrix which has a 1 to 2
percent relative error compared to the ground truth matrix. For smaller datasets, it has
roughly half the statistical e�ciency as CherryML 1.0. However, CherryML 2.0 is hundreds
of times faster end-to-end. Additionally, CherryML 2.0 performs significantly better than our
random baseline, indicating that parsimonious cherries is a reasonable method for estimating
the MCLE cherries, divergence times, and site rates.

2.2 Real Data

Next, we reproduced Figure 1e from CherryML [11] comparing our methods with CherryML
1.0 in our Figure 2.2. We train and test these methods on the Pfam dataset used by Le and
Gascuel [7] and CherryML with a 3912/500 split of training data and test data. We perform
4 iterations of the cherry and rate matrix optimization initialized with the uniform rate
matrix. Consistent with the simulated data, our methods perform comparably to CherryML
1.0 whilst being multiple orders of magnitude faster.

Next, we applied these same methods to the QMaker dataset [8] in Figure 2.3 using the
same train/test split as CherryML 1.0. Here, we use 4 iterations for each method and observe
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Figure 2.2: Compares the quality of the rate matrix estimated under the LG model between
CherryML 1.0 and CherryML 2.0. This uses the same evaluation protocol of Figure 1e from
CherryML 1.0 [11].

similar results to the above PFam datset. We observe that maximum parsimony estimates
su�ciently accurate cherries for each dataset, and our method is not adversely a↵ected by
the presence of missing data.

2.3 Importance of Selecting Cherries

Similar to section 2.1, we compare the median relative error of the estimated matrices across
the estimation strategies on simulated data. For CherryML 2.0 and the random cherries, we
inject the ground truth divergence and site rates in Figure 2.5. We observe that when these
ground truth values are injected, the parsimony based pairer is biased and returns a matrix
with an error of 2%. Meanwhile, picking random cherries is unbiased when given ground
truth site rates and divergence times. Combined with section 2.1, we conclude that our
parsimony based pairer is biased; however it returns better rate matrices in practice since
those cherries can be used to accurately infer divergence times and site rates. Meanwhile,
despite being unbiased, random cherries are insu�cient for estimating accurate rates and
times, leading inferior performance on all other metrics.



CHAPTER 2. RESULTS 7

Figure 2.3: CherryML 2.0 reproduces rate matrices of similar quality to CherryML 1.0 across
all datasets.
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Figure 2.4: Runtimes for Figure 2.3



CHAPTER 2. RESULTS 9

Figure 2.5: CherryML 2.0 is shown to be biased due to the use of parsimony.
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Chapter 3

Methods

CherryML 1.0 uses the cherries of estimated MLE trees to estimate the MLE rate matrix.
These cherries are essentially pairs of sequences with some distance defined based on the
branch lengths of the estimated trees. Thus, our new method uses CherryML to optimize the
rate matrix optimization; however replaces the tree estimation step with two new methods:
1) pairing 2) branch length and site rate estimation. In the following sections, we first discuss
our method to estimate MCLE branch lengths and site rates. Then, we explain the pairing
algorithms used to estimate the MCLE cherries.

3.1 Estimating Branch Lengths and Site Rates

We estimate the divergence times of cherries and the site rates via coordinate ascent. We
first use parsimony to initialize a set of site rates, then we alternately optimize the divergence
times given the rates and optimize the rates given the times. For a given MSA, this process
takes O(nls+ l log l+ r+ k · (nl log b+ rl)) time where n is the number of sequences, l is the
length of sequences, s is the number of characters, r is the number of rate categories, and k

is the maximum number of iterations of coordinate ascent.

3.2 Branch Lengths

Similar to CherryML 1.0, we use zeroth order optimization to estimate the MLE divergence
time for each cherry. We use a set of b = 129 geometrically spaced points centered at 0.03
with a spacing of 1.1. Then for a given cherry (x, y) find the the quantized time point
satisfying

t̂x,y = argmax
t

P (x|y, t, r, Q)P (y|x, t, r, Q) (3.1)

= argmax
t

log
⇥
P (x|y, t, r, Q)

⇤
+ log

⇥
P (y|sx, t, r, Q)

⇤
(3.2)
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Since sites are treated as independent, these log likelihoods can be e�ciently evaluated by
precomputing the matrix exponentials across all time points and site rates, then reusing
these matrices across all MSA’s and iterations of the algorithm. Concretely, we compute the
transition matrices Q where Q[t, r, i, j] yields the probably of i mutating to j over time t

and a site rate of r. We perform this using the r8mat_expm1 function from [9].
This optimization problem can be solved in O(b) iterations by simply evaluating the

likelihood at each time point. However, we empirically observe that the likelihood function
is quasiconvex. Thus, the global maximum of this discrete function can be found in O(log b)
using a binary search like algorithm.

The runtime to pre-compute the matrix exponential is negligible, amortized across all
MSA’s, and estimating divergence times for a given cherry takes O(l log b) time where l is
the length of the sequences, and O(nl log b) for an MSA.

3.3 Initializing Site Rates

We perform the following parsimony based procedure to estimate its site rate. First for all
sites, we count the number of mutations across all pairs of sequences in the MSA. Next, we
sort the sites in increasing order of mutations. Finally, we partition the sorted sites into rate
categories where the bin sizes follow a discrete gamma distribution with shape = 3 and scale
= 1/3. Figure 3.1 shows how to compute the size of each bin given the fixed rates of the
CAT model. We take the geometric means of neighboring rates, and the bins size of each
discrete rate is the area under the gamma PDF between the previous and next means. See
Appendix section 5.3 for details.

3.4 Optimizing Site Rates

Like FastTree [10], we use the CAT model of site rate variation. Under the CAT model, we
use r discrete rate categories which are geometrically spaced between 1

r and r. Each site is
assigned to a rate category via Bayesian estimation, where the priors distributed as a gamma
distribution with shape=3 and scale=1/3. Specifically, if ri is a rate category and f(x) is
the pdf of the described gamma distribution, then f(ri) yields the prior for rate ri. Like
FastTree, we also rescale branch lengths such that the mean rate becomes 1.0.

We optimize each site rate individually by evaluating the composite likelihood of a site
across all cherries. Specifically for the rate at site i, we optimize the following function.

r̂i = argmax
ri

2

4f(ri) ·
Y

(x,y)2C

P (xi|yi, tx,y, ri, Q)P (yi|xi, tx,y, ri, Q)

3

5 (3.3)

= argmax
ri

2

4log
⇥
f(ri)

⇤
+

X

(x,y)2C

log
⇥
P (xi|yi, tx,y, ri, Q)

⇤
+ log

⇥
P (yi|xi, tx,y, ri, Q)

⇤
3

5 (3.4)
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Figure 3.1: Assuming r = 4, we use a discrete gamma distribution with 4 rates. To compute
the likelihood of each discrete rate, partition the gamma pdf into 4 bins defined by the
geometric means of the rates. The likelihood of each rate is the area under the gamma’s pdf
for its bin.

Similar to optimizing the divergence times, optimal rate for a given site can be found in
O(log r) time via binary search. However, since r is typically quite small, we implemented
this by evaluating the composite likelihood for each rate and choosing the most likely rate.
Thus, our implementation takes O(rl) to optimize site rates; however, this can be improved
to O(l log r) via binary search if desired.

3.5 Estimating Cherries

Now we propose an exact algorithm for estimating a set of likely cherries and propose opti-
mizations in the following section.

Since each sequence can belong to at most one cherry, we can find an optimal set of cher-
ries via a reduction to the minimum-weight perfect matching problem. The minimum-weight
perfect matching problem, given a weighted graph, attempts to find a perfect matching whilst
minimizing the weight of the matching. Our reduction works as follows: create a complete
graph where nodes represent sequences and edge weights represent the negative log likelihood
that those two nodes form a cherry. Then, find the minimum-weight perfect matching and
return the edges as cherries. In the case of an odd number of sequences, add an additional
node with distance negative infinity to all other nodes. This problem can be solved in O(n4)
on a complete graph, where n is the number of nodes. E�cient implementations of this
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algorithm can be found in Blossom V [6] and NetworkX [1].
However, this approach is slow for large MSA’s and is asymptotically slower than FastTree

with respect to the number of sequences. In fact, any matching algorithm, approximate or
exact, will require require at least quadratic time in the number of sequences, as the pairwise
distances between all sequences must be computed. Additionally, computing the negative
log likelihood can take a significant amount of time, see section 3.6.

Thus, in order to create an almost linear time algorithm which achieves a substantial
speedup over CherryML 1.0, we propose the following divide and conquer algorithm for
estimating MCLE cherries. Additionally, we optimize our cherries for maximum parsimony
rather than log likelihood for additional speedups.

3.6 Estimating MCLE Cherries

To estimate the MCLE set of cherries, we optimize the following composite likelihood func-
tion.

argmax
C

P (D|C,Q) ⇡ argmax
C

Y

(x,y)2C

P ((x, y) is a cherry) (3.5)

⇡ argmax
C

Y

(x,y)2C

max
t,r

[P (x|y, t, r, Q)P (y|x, t, r, Q)] (3.6)

= argmax
C

X

(x,y)2C

max
t,r

[log(P (x|y, t, r, Q)) + log(P (y|x, t, r, Q))] (3.7)

= argmin
C

�
X

(x,y)2C

max
t,r

[log(P (x|y, t, r, Q)) + log(P (y|x, t, r, Q))] (3.8)

We approximate the probability that (x, y) is a cherry as maxt P (x|y, t, r, Q)P (y|x, t, r, Q)
since it computes the probability that two sequences can mutate to each other over some
fixed amount of time. This allows us to optimize over the same composite likelihood during
the cherry estimation phase as the matrix estimation phase. Thus, we can use the procedure
in section 3.1 to find the optimal divergence times and site rates, which can then be used to
compute the log likelihood.

One obvious issue arises with this idea. Estimating the likelihoods requires optimizing for
divergence times and site rates; however, our procedure for this requires us to first estimate
the set of cherries. Thus to avoid this issue whilst still being able to e�ciently estimate
the likelihoods, we simply use the initial site rates as defined by section 3.3 to estimate the
divergence times described in section 3.2 without performing coordinate ascent.
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3.7 Using Parsimony over Likelihood

Due to the cost of estimating MCLE cherries, we instead estimate a set of cherries based on
parsimony. Although optimizing composite likelihood (section 3.6) may be a more natural
way to optimize cherries, we found that in practice this makes no di↵erence whilst being
significantly slower. To implement this process for cherries, we simply estimate cherries which
minimize the hamming distance amongst all pairs of cherries. We exclude sites with missing
data when computing the hamming distance, and we normalize the hamming distances.
This prevents pairs with missing data from being always being significantly closer than pairs
without missing data.

3.8 Divide and Conquer Pairing

The divide and conquer pairer is motivated by the following heuristic: sequences which
greatly di↵er are highly unlikely to be a cherry in the MLE tree whilst similar sequences are.
Thus, we can recursively partition the sequences into sets such that sequences in the same
set are likely to be cherries, whilst pairs of sequences across two sets are not. The details
of this pairer are as follows. The distance function used should be the normalized hamming
distance between sequences. This allows the algorithm to optimize for parsimonious cherries.

The worst case runtime of this algorithm is O(n2
p) where n is the number of sequences

and p is the complexity of computing the distance between two sequences. In practice,
we observe that divide and conquer significantly outperforms the ⌦(n2) matching based
algorithms described the appendix. Assuming that the sets are not consistently uneven, we
do expect it to run in O(n log(n)p) time. Note that this algorithm can be modified to work
in expected O(n log n) time. We briefly describe this method in the appendix 5.1; however,
we don’t use it for CherryML 2.0 as it o↵ers very little speed boosts whilst significantly
a↵ecting the accuracy of the method.
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Algorithm 1 Cherry Pair Finding Algorithm
1: function Get Cherries(S) . S is the set of sequences
2: x, y  Find Distant Pair(S)
3: X, Y  Partition(S, x, y)
4: Pairs x, Unpaired x Get Cherries(X)
5: Pairs y, Unpaired y  Get Cherries(Y )
6: Pairs Pairs x [ Pairs y

7: if Unpaired x 6= {} and Unpaired y 6= {} then

8: return Pairs, Unpaired x [ Unpaired y

9: end if

10: return Pairs, {}
11: end function

12: function Find Distant Pair(S)
13: x random sequence from S

14: y  farthest sequence from x

15: z  farthest sequence from y

16: return y, z

17: end function

18: function Partition(S, x, y)
19: X  ;, Y  ;
20: for s 2 S do

21: if s is closer to x than y then

22: X  X [ {s}
23: else

24: Y  Y [ {s}
25: end if

26: end for

27: return X, Y

28: end function
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Chapter 4

Discussion

We have presented CherryML 2.0, which is able to accurately reconstruct rate matrices of
phylogenetic model in almost linear time. The runtime of the cherry estimation step is
O(nl log(n) log(b)). This, combined with the O(nl log(b) + gbs

3) complexity of the matrix
estimation step yields an end-to-end complexity of O(nl log(n) log(b)+gbs

3), which is almost
linear in the length of sequences, number of sequences per MSA, and number of rate cate-
gories. We showed that this method is hundreds of times faster than CherryML 1.0 whilst
still being able to accurately reconstruct rate matrices. Further, we showed that parsimony
is a su�ciently accurate metric to estimate a good set of cherries.

4.1 Future Work

Improving Statistical E�ciency

One immediate improvement that can be performed to improve the performance of Cher-
ryML 2.0 is to include more pairs of sequences in the composite likelihood, even if they
no longer form a set of cherries in any phylogenetic tree. Although composite likelihood is
known to be unbiased, it is not guaranteed to be accurate for small MSA’s. In the case
of estimating divergence times and site rates, a larger number of pairs may be necessary
to accurately estimate them. We conclude this as using random cherries with ground truth
lengths and rates is unbiased, yet random cherries with estimated lengths and rates is biased.
We suspect that using some almost linear number of pairs would be su�cient for this pur-
pose. Additionally, we suspect that this idea can be used to increase the statistical e�ciency
of CherryML 1.0 without significantly impacting its runtime.

This process must involve weighting the resulting pairs, however, to prevent the double
counting of transitions. For example, pairs can be weighted based on their topological
distance in some phylogenetic tree. Hence, more distant pairs are weighted less than the
true cherries. Alternatively, individual sites of each pair can also be weighted based on how
common that amino acid is in that subtree. This prevents transitions between the left and
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right subtrees at a node from being double counted.

Models of Site Rate Variation

Given our results with the CAT model, we suspect that composite likelihood may also be
used to e�ciently estimate site rates under other models. For example, the discrete gamma
model used by [4] is typically considered more accurate than the CAT model; however, it
is significantly slower to compute. We have some preliminary results along this line, which
shows that using the CAT model with di↵erent priors can result in better estimated rate
matrices. See appendix section 5.4 for details.

Improving Space Complexity

Additionally, we can reduce the space complexity of the program by modifying the way we
precompute the transition matrices. Rather than computing Q[t, r, i, j], we instead compute
Q[x, i, j] where x is the divergence time. In order to get the probability of a mutation time
from i to j over time t and site rate r, simply binary search the nearest discrete time point
for t · r and use the probability Q[t · r, i, j]. This approach may also speed up the program
when r is large as Q[t, r, i, j] may be too big to fit in memory.
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Chapter 5

Appendix

5.1 Guaranteed Almost Linear Time Divide and

Conquer

We can make the divide and conquer algorithm guaranteedO(nl log n log b) with the following
modification to the divide and conquer algorithm. Rather than partitioning all sequences
based on whether they are more likely to form a cherry with x or y, first compute the
di↵erence in likelihood for each sequence with x and for each sequence with y. Then use the
quickselect algorithm to find the median of this list of di↵erences. Partition the sequences
based on if the di↵erence is greater than or less than the median. This scheme guarantees
50/50 splits, thus guaranteeing an O(nl log n log b) time complexity. This idea can also be
modified to guarantee any arbitrary splits where the smaller split is some fraction of n. In
practice, we observed that this algorithm degrades the accuracy of the resulting rate matrix
without substantially improving the time complexity; thus, we did not include this method
in the main paper.

5.2 Quadratic Time Matching Based Algorithm for

Finding Cherries

A greedy algorithm can be used to approximately match the most likely cherries. The greedy
pairing scheme greedily pairs the most likely unpaired pair of sequences until all sequences
are paired except for at most one. To implement this pairer, simply compute all pairwise
distances among the sequences. Push all pairs of sequences into a heap, ordered by their
distance. Then repeatedly pair and remove all unpaired pairs from the heap until the heap
is empty or all sequences are paired.

For a given MSA, this algorithm runs in O(n2(l log b + log n)) time and O(n2
l) space.

In practice, this method runs substantially better than FastTree on many MSA’s since this
method has little to no overhead compared to FastTree.
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5.3 Initial Site Rate Details

Algorithm 2 Estimate Site Rate

1: function EstimateSiteRate(MSA)
2: mutations CountMutations(MSA) . Count mutations at each site
3: sorted sites SortSites(mutations) . Sort sites by increasing mutations
4: rates, weights ComputeRatesAndWeights . Compute rate categories and

weights
5: partitions PartitionSites(sorted sites, weights) . Partition sites into rate

categories
6: return partitions

7: end function

8: function CountMutations(MSA)
9: mutations empty list
10: for i 1 to length(MSA) do . For each site
11: count empty dictionary
12: total  0
13: for seq in MSA do . Count amino acids at site i

14: aa seq[i]
15: if aa is not missing then

16: count[aa] count[aa] + 1
17: total  total + 1
18: end if

19: end for

20: site mutations 0
21: for aa, cnt in count do

22: site mutations site mutations+ cnt⇥ (total � cnt)
23: end for

24: mutations.Append(site mutations)
25: end for

26: return mutations

27: end function

28: function SortSites(mutations)
29: sorted sites Sort(mutations) . Sort sites by increasing mutations
30: return sorted sites

31: end function

32: function ComputeRatesAndWeights
33: rates list of r geometrically spaced points between 1

r and r

34: midpoints list of geometric means between neighboring rates
35: weights empty list
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36: shape 3, scale 1/3 . Parameters for gamma distribution
37: for i 0 to length(rates) do
38: if i = 0 then

39: w  GammaPDF(0, shape, scale) . Area between 0 and midpoints[0]
40: else if i = length(rates) then
41: w  1�GammaCDF(midpoints[i� 1], shape, scale) . Area after

midpoints[i� 1]
42: else

43: w  GammaCDF(midpoints[i], shape, scale)�GammaCDF(midpoints[i�
1], shape, scale)

44: end if

45: weights.Append(w)
46: end for

47: return rates, weights

48: end function

49: function PartitionSites(sorted sites, weights)
50: partitions empty list
51: start 0
52: for i 0 to length(weights) do
53: end start+ bweights[i]⇥ length(sorted sites)c
54: partitions.Append(sorted sites[start : end])
55: start end

56: end for

57: return partitions

58: end function

5.4 Di↵erent Models of Site Rate Variation

Rather than using the pdf of a gamma distribution with shape=3 and scale=1/3 as our
priors, we instead create a discrete gamma distribution with r discrete rates. We then use
the likelihoods given by the discrete gamma distribution as our priors. These are identical
to the priors used in the site rate initialization step described in Sections 3.3 and 5.3. We
see that this method is slightly more statistically e�cient and slightly less biased than our
existing CherryML 2.0 whilst having the same runtime.

5.5 Extended Figures

We recreate the main figures of the paper here with the greedy and blossom based cherry
estimators included. Additionally, we demonstrate the accuracy of estimating cherries based
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Figure 5.1: Reproduces Figure 2.1 and includes a new cherry estimator in black. This
estimator uses discrete gamma priors rather than gamma priors to estimate site rates.

on the likelihoods of the cherries as described in section 3.6. See Figures 5.2, 5.4, 5.5, and
5.6.

We observe that the greedy and blossom pairer are comparable in accuracy our method,
albeit with a slight impact to the performance and poorer scalability for large MSA’s. Simi-
larly, we observe that pairing with log likelihood results in comparable accuracy to parsimony
whilst being a few times slower. Additionally, although likelihood based pairing returns less
biased cherries, in practice they don’t result in more accurate rate matrices.

5.6 CherryML 2.0 Under WAG

In the absence of site rate variation (i.e. the WAG model), it is preferable to estimate
cherries using the likelihood of cherries rather than parsimony (figures 5.9, 5.8). We suspect
the cause for this di↵erence is that site rate variation significantly increases the degrees of
freedom of the model, hence making the pairing step less important. In the absence of
site rate variation, estimating cherries with likelihood results in significantly better cherries,
which improves the estimated rate matrix. This is especially important in the presence
of missing data, as likelihood based pairing can perform significantly better. This can be
observed in their relative performance on the insect dataset, which is known for having high
amounts of missing data (Figure 5.7).
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Figure 5.2: Reproduces Figure 2.3 with the other combinations of pairing with divide and
conquer, greedy, and blossom optimizing for parsimony and likelihood.

5.7 Quality of Estimated Site Rates

We additionally made heat maps comparing the site rates derived by CherryML 2.0 against
the ground truth site rates on simulated data in Figure 5.10. For these plots, data was
simulated with 4 rate categories and CherryML 2.0 also used 4 rate categories. We see that
a vast majority of the rates lie on or near the line y = x showing that our method also
accurately estimates site rates.
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Figure 5.3: Runtimes for all methods benchmarked in Figure 5.2.
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Figure 5.4: Reproduces Figure 2.2 with the other combinations of pairing with divide and
conquer, greedy, and blossom optimizing for parsimony and likelihood.
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Figure 5.5: Reproduces Figure 2.1 with the other combinations of pairing with divide and
conquer, greedy, and blossom optimizing for parsimony and likelihood.

Figure 5.6: Reproduces Figure 2.5 with the other combinations of pairing with divide and
conquer, greedy, and blossom optimizing for parsimony and likelihood.
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Figure 5.7: Reproduces Figure 2.3 under the WAG model. This is done by using only 1 rate
category.



CHAPTER 5. APPENDIX 27

Figure 5.8: Reproduces Figure 2.1 under the WAG model. This is done by using only 1 rate
category.

Figure 5.9: Reproduces 2.2 under the WAGmodel. This is done by using only 1 rate category.
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Figure 5.10: Compares the estimated site rates of CherryML 2.0 with parsimony against
ground truth rates and CherryML 2.0 with likelihood against ground truth rates.
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