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Abstract

Efficient Distributed LLM Inference with Dynamic Partitioning

by

Isaac Ong

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ion Stoica, Chair

In light of the rapidly-increasing size of large language models (LLMs), this work addresses
the challenge of serving these LLMs efficiently given the limitations of modern GPU memory.
We observe that the inference of LLMs is unique as compared to other models due to the
wide variation in input lengths, a factor not adequately addressed by existing works. Current
inference engines typically employ a static partitioning strategy, which is sub-optimal given
the variability in input lengths and the diversity of GPU specifications. To overcome these
challenges, we propose a dynamic partitioning strategy for distributed LLM inference which
dynamically switches between different partitioning strategies at inference time, optimizing
for both GPU characteristics and input length. We systematically search for all Pareto-
optimal partitioning strategies for distributed LLM inference, focusing on their computa-
tional requirements, communication overhead, and memory demands. Based on this search,
we identify three Pareto-optimal strategies that cater to different scenarios and implement
an inference engine for dynamic partitioning. Our evaluation, conducted on NVIDIA L4 and
A100 GPUs using the Llama 2 family of models, demonstrates significant improvements over
existing approaches. We illustrate reductions in the time to the first token of up to 40% and
reductions in latency of up to 18%, underlining the effectiveness of dynamic partitioning.
Our findings pave the way for more efficient utilization of GPU resources in distributed LLM
inference, accommodating the evolving landscape of model sizes and architectures.
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Chapter 1

Introduction

Recent advances in machine learning have enabled an exponential increase in model size of
large language models (LLMs), from BERT[10] with 340 million parameters to GPT-2[27]
with 1.5 billion parameters, and GPT-3[4] with 175 billion parameters. The emergence
of these large language models have led to myriad new use cases such as chatbots like
ChatGPT[24] and coding assistants like GitHub Copilot[12].

However, the size of these large language models poses challenges for serving them as they
exceed the memory limits of modern processors. For instance, with 175 billion parameters,
the weights for GPT-3 [4] require over 300GB of GPU memory to store, while the latest
NVIDIA H100 GPUs only contain 80GB of memory, meaning that at least four of these
GPUs are required to serve GPT-3. Moreover, this only accounts for the model weights and
not the additional memory required the store the model activations and inference code. This
rapid increase in model size shows no sign of stopping [11]. Therefore, model inference must
be parallelized across multiple GPUs to be served efficiently.

Model parallelism techniques can be mainly classified into two main types: pipeline
parallelism and tensor parallelism. Tensor parallelism, which is the focus of this work,
partitions tensor operations across multiple GPUs so as to accelerate computation or reduce
the amount of memory used on each GPU. Such techniques have been well-studied in the
literature. Currently, LLM inference engines such as vLLM [18], HuggingFace’s TGI [13],
and NVIDIA’s TensorRT-LLM [23] make use of the approach proposed by Megatron-LM[30],
which describes a specific model partitioning strategy to distribute tensor computation across
GPUs.

Our key observation is that inference with LLMs is uniquely different from other machine
learning models because of the wide variation in input lengths, a difference that is not
covered by existing work. We note this is the case specifically for inference and not training
because of the wide-ranging applications for LLMs, from chatbot conversations to use cases
like retrieval-augmented generation [19], where documents containing tens of thousands of
tokens are fed into a LLM for summarization and information retrieval. To this end, there
has also been a trend of increasing context length supported by LLMs, from 1024 supported
by GPT-2 [27] to over 100,000 tokens supported by Claude [2], a trend which is likely to
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continue into the future.
We note that partitioning strategies can differ greatly in terms of FLOPs, communication

overhead and memory requirements, all of which vary based on the input length. Therefore,
input length should be considered when determining an optimal partitioning strategy. At
the same time, the performance of different partitioning strategies can also vary greatly
based on the type of GPU used, an issue which is exacerbated by the heterogeneity in
GPUs today. Currently, major companies such as NVIDIA, Google, and AMD offer GPUs
that have a broad range of specifications. For example, the memory bandwidth for NVIDIA
GPUs can range from 200GB/s with A2 Tensor Core GPUs to 2TB/s with H100 Tensor Core
GPUs. On the other hand, the L4 GPU achieves 36 TFLOPs on half-precision floating point
numbers while the H100 GPU achieves 1512 TFLOPs, a difference of over 40 times. These
wide disparities in GPU characteristics have to be considered when deciding the optimal
partitioning strategy for LLM inference.

Existing works in LLM inference do not account for this and apply a static partitioning
scheme for all input lengths and models. Therefore, in this work, we propose using a dy-
namic partitioning strategy for distributed LLM inference that switches between partitioning
strategies at inference time based on the model, GPU characteristics, and input length with
the goal of minimizing the time to first token and latency. We develop a system capable of
conducting an exhaustive search over all partitioning strategies for distributed Transformer
inference considering their performance with respect to FLOPs, communication overhead,
and memory requirements. We then identify Pareto optimal partitioning strategies for LLM
inference that perform most efficiently in different scenarios. Based on these partitioning
strategies, we develop a inference engine that is capable of dynamically switching between
these partitioning strategies at inference time.

We evaluate inference-time dynamic partitioning on both L4 and A100 NVIDIA GPUs
using the Llama 2 7B, 13B, and 70B models [33]. Our evaluation results show that as
compared to using the static partitioning strategy from Megatron-LM [30], using a dynamic
partitioning strategy achieves a reduction of up to 40% in the time to first token and a
reduction of up to 18% in overall latency.

To summarize, we make the following contributions:

• We formalize the problem of identifying alternative partitioning strategies for dis-
tributed LLM inference while ensuring the correctness of these strategies by defining
tensor states and operations on these tensors.

• We develop a system capable of conducting an exhaustive search over all feasible par-
titioning strategies for distributed LLM inference and identify the Pareto frontier of
partitioning strategies based on FLOPs, communication volume, and weights memory.

• We implement an LLM inference library that implements dynamic partitioning, switch-
ing between different partitioning schemes at inference time based on the GPU, model
architecture, and input length. We show that dynamic partitioning achieves superior
performance in terms of overall latency and time to first token as compared to the
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existing state-of-the-art approach to tensor parallelism, making it a promising future
direction for optimizing distributed LLM inference.
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Chapter 2

Background

This section explains the existing Transformer architecture used in LLMs today, as well as
techniques used to parallelize these models.
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2.1 Transformer Architecture

Figure 2.1: The architecture for a single Transformer layer

LLMs are based on the auto-regressive Transformer architecture [34], show in a simplified
manner in Figure 2.1. A single Transformer layer consists of a self-attention block, followed
by a two-layer multi-layer perceptron (MLP), as shown in the figure. These layers are
replicated multiple times to form the full Transformer model. Transformer models are auto-
regressive, meaning that they generate new tokens one at a time based on the input prompt
tokens and the previously-generated output tokens. Specifically, the process of inference in
Transformer models can be broken down into two phases.

Prefill phase The prefill phase takes the entire user prompt and computes the first output
token. As part of this process, the Transformer also generates the key and values vectors for
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all the prompt tokens, which are stored for future use. Therefore, for this phase, the size of
the input is the length of the entire prompt.

Generation phase The auto-regressive generation phase generates the remaining tokens
one at a time. Specifically, at each iteration, the Transformer model takes in the last gener-
ated output token and computes the next token in the sequence using all the previously-
generated key and value vectors. This process of generation continues until either the
sequence reaches a maximum length (as specified by the user or the LLM) or when an
end-of-sequence token is returned. For this phase, the size of the input is always one at each
iteration, since only the last output token generated is used.

Model Parallelism

In general, there are two main approaches to model parallelism: pipeline parallelism and ten-
sor parallelism. Both of these approaches aim to distribute the computational and memory
requirements of large models across multiple GPUs or accelerators, but they have different
trade-offs and limitations.

Pipeline parallelism In pipeline model parallelism, the layers of the model are split
between different GPUs. Each GPU performs operations for its assigned portion of the
model before the outputs of these operations are passed onto the next GPU, where a new
set of operations are performed, just like in a pipeline. This allows for efficient utilization
of GPU resources by overlapping computation and communication, as each GPU can start
processing the next batch of data as soon as it has finished its assigned operations and passed
the results to the next GPU.

Tensor parallelism Tensor parallelism is an orthogonal approach to pipeline parallelism
whereby which involves distributing the computation of individual tensors across multiple
GPUs, allowing for parallel processing of different parts of the tensor. Tensor parallelism can
be applied to various operations, such as matrix multiplications, convolutions, and element-
wise operations. By partitioning the computation, tensor parallelism can enable the training
and inference of larger models that would otherwise not fit into the memory of a single
GPU. However, this approach can lead to increased communication costs due to the need
for synchronization and data transfer between GPUs, which can become a bottleneck for
large models with high communication volumes. Therefore, careful design of communication
patterns and synchronization mechanisms are crucial for achieving strong performance with
tensor parallelism.
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2.2 Transformer Model Parallelism

Figure 2.2: The partitioning strategy used by Megatron-LM for 2 GPUs

For Transformer models specifically, Megatron-LM [30] introduced a tensor parallelism strat-
egy for both the self-attention blocks and MLP blocks, as shown in Figure 2.2.
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Self-attention Block For the self-attention block, Megatron-LM partitions the multi-
headed attention operation in a column-parallel manner such that the matrix operations
corresponding to each attention head are done locally on each GPU, allowing the attention
operation to be parallelized across GPUs. Next, the output linear layer is partitioned in a
row-parallel manner such that it takes the output of the attention operation directly. The
resulting tensor after the linear layer is the same size as the full tensor, but only contains par-
tial values for each element. Therefore, an all-reduce operation is performed to synchronize
the tensors so that the full tensor is now present on each GPU.

MLP Block For the MLP block, the first linear layer is partitioned in a column-parallel
manner while the second linear layer is partitioned in a row-parallel manner, allowing it
to take the output of the first linear layer directly without any synchronization. Finally,
the resulting tensor again only contains partial values for each element, so an all-reduce
operation is required after the MLP block to obtain the full tensor on each GPU.

By partitioning the computation across multiple GPUs, the Megatron-LM [30] partition-
ing strategy reduces the FLOPs required on each GPU at the expense of increased communi-
cation volume, which comes from the all-reduce operations performed after the self-attention
block and the MLP block.
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Chapter 3

Formulation

We formalize the problem of identifying valid partitioning strategy given a model architec-
ture by specify the set of states that tensor can belong to when distributed across GPUs and
the set of operations that can be performed on them. Note that for the purposes of the for-
mulation, we assume that the row and column dimensions of activation tensors corresponds
to the sequence dimension and hidden dimension respectively.

Tensor States We extend the tensor layout described in CoCoNet[15] such that a given
tensor A can classified into one of four states when used for distributed computation: repli-
cated, column-sliced, row-sliced or local, as shown in Figure 3.1:

• A replicated tensor is one which has the same value on all devices.

• A column-sliced tensor (denoted by ACS) or row-sliced tensor (denoted by ARS) is
partitioned equally across all devices in a column-parallel or row-parallel manner re-
spectively.

• A local tensor (denoted by AL) is one that has the same shape on all devices, but
contains a different value on each device.

Matrix Multiplication Based on the above tensor states, the valid matrix operations
given two tensors A and B are as follows (with multiplication denoted using @):

• ACS@BRS = ABL

• AR@BCS = ABCS

• ARS@BR = ABRS

• AR@BR = ABR
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Figure 3.1: The valid states for a given tensor A when distributed across GPUs

Non-linearities On each GPU, non-linearities such as the rectified linear activation func-
tion (or ReLU) can be only be executed on tensors that are not local since they require each
element in the tensor to be the same value as in the full tensor, leading to the following
operations on tensors:

• ReLU(AR) = [ReLU(A)]R

• ReLU(ARS) = [ReLU(A)]RS

• ReLU(ACS) = [ReLU(A)]CS

LayerNorm The LayerNorm operator can only be applied to replicated tensors or row-
sliced tensors since it is applied along the row dimension. Therefore, the operations for
LayerNorm are as follows:

• LayerNorm(AR) = [LayerNorm(A)]R
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• LayerNorm(ARS) = [LayerNorm(A)]RS

Self-Attention For the attention operator in the Transformer model, we treat it as a
single operator to simplify the search process. Moreover, the architecture of the attention
mechanism makes it particularly suited for the parallelization scheme described by Megatron-
LM [30], which is why we treat self-attention as a single operation for this problem. There
are two supported attention operations: the first takes in the concatenated query, key, value
tensors for a single attention head and returns the resulting attention tensor, while the
second takes in the full query, key, value tensors for all attention heads, and returns the full
attention tensor:

• Attention(ACS) = [Attention(A)]CS

• Attention(AR) = [Attention(A)]R

Collective Communication For tensors distributed across GPUs, collective communica-
tion operations can be used to manipulate tensors on multiple devices at the same time. The
AllGather operation gathers part of the tensor from all ranks and distributes that full tensor
to all ranks, while the ReduceScatter operation reduces the tensor such that the result is
equally scattered across all ranks. AllReduce is equivalent to an ReduceScatter followed by
an AllGather operation. Finally, we also define an AllToAll operation where each rank sends
a section of the tensor it stores such that a column-sliced tensor converted to a row-sliced
tensor, and vice versa.

• AllGather(ACS) = AR

• AllGather(ARS) = AR

• ReduceScatter(AL) = ACS

• ReduceScatter(AL) = ARS

• AllReduce(AL) = AR

• AllToAll(ARS) = ACS

• AllToAll(ACS) = ARS

Transformer Layer To facilitate the searching of partitioning strategies while ensuring
correctness, we also describe the process of inference through a single Transformer layer using
tensors and the operations described above.

Based on Figure 2.1, let A be the input tensor into a Transformer layer, QKV be the
query, key, value weights for the self-attention operation, W0 be the weight matrix for linear
layer in the self-attention block, and W1 and W2 be the weight matrices for the linear layers



CHAPTER 3. FORMULATION 12

in the MLP block. We ignore the residuals introduced by the Add operator for simplicity,
as these are element-wise operations that do not affect the search space of valid partitioning
strategies. We can then formulate the operations of a single Transformer layer like so:

Activation(LayerNorm(Attn(LayerNorm(A)QKV )W0)W1)W2

Given this, any partitioning strategy for LLM inference can be defined as a set of opera-
tions on the input and weight tensors. By matching the resulting tensor of the partitioning
strategy to the above tensor, we can verify the correctness of the partitioning strategy.
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Chapter 4

Search

In this section, we detail the process of developing a program to discover alternative parti-
tioning strategies as well as our results.

4.1 System

Based on the formulation in Section 3, we developed PartitionSearch, a system for search-
ing across all valid partitioning strategies for any Transformer model architecture given a
specific memory allocation. PartitionSearch keeps track of the tensor state and sizes
symbolically during the search process. Using this data, for each valid discovered strategy,
PartitionSearch symbolically calculates the weight FLOPs, communication volume, and
weight memory for the strategy in terms of the input length, model parameters, and number
of GPUs used.

We developed this system in about 1300 lines of Python using SymPy for symbolic
manipulation. We utilize multiprocessing to perform recursive backtracking across all tensor
states, and aggressively prune paths that do not lead to the target Transformer state, allowing
us to search across hundreds of thousands of possibilities efficiently.

4.2 Results

By substituting specific symbol values for all discovered partitioning strategies, Partition-
Search ranks and identifies the Pareto frontier across all valid partitioning strategies in
terms of the FLOPs required and communication overhead.

We consider a partitioning strategy to dominate another strategy if it better or equal in all
objectives, and strictly better in at least one objective. A partitioning strategy is considered
Pareto optimal it is not dominated by any other strategy and the set of all Pareto optimal
strategies form the Pareto frontier.

Figure 4.1 shows the results obtained by PartitionSearch for the Llama 2 7B model
[38] as an example, when the number of input tokens is 1024 and when the model is par-



CHAPTER 4. SEARCH 14

Figure 4.1: Partitioning strategies for Llama 2 7B discovered for 1024 the Llama 2 7B
model parallelized across 4 GPUs. Each blue dot represents a partitioning strategy. The
red line denotes the Pareto frontier for partitioning strategies across weight FLOPs and
communication volume.

allelized across four GPUs. The results indicate that there are many valid partitioning
strategies for distributed LLM inference apart from Megatron-LM, while the Pareto frontier
(denoted in red) is comprised of a small subset of all valid partitioning strategies.

We observe that there is a wide variation in the performance of these partitioning strate-
gies, with the values for weight FLOPs communication volume differing by up to five times.
Many of these partitioning strategies are not feasible practically because the FLOPs required
or memory requirements are too high to run any model efficiently. Therefore, while there
are a large number of valid strategies, the actual set of practical partitioning strategies is
much smaller. Using PartitionSearch, we identified three viable Pareto optimal parti-
tioning schemes for distributed LLM inference across different input lengths. Each of these
partitioning schemes exhibits different characteristics and performs differently depending on
the model, input length and types of GPUs used.

Because these strategies share similar sub-strategies across both the self-attention block
and MLP block, we first describe these sub-strategies below.
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4.3 Sub-Strategies

Megatron-style Attention This refers to the partitioning scheme used for the self-
attention block in Megatron-LM (§2.2). The communication overhead of this sub-strategy
scales with input length because there is an all-reduce operation on the resulting tensor, and
this dimensions of this tensor depend on the input length.

Projection-replicated Attention Instead of performing an all-reduce operation after
the linear layer, an all-gather operation is performed on the attention matrix after the self
attention operation to obtain the replicated tensor, while the weight tensor for the output
projection layer W0 is fully replicated. Therefore, an all-reduce is no longer required to
obtain the full tensor.

As compared to Megatron-style attention, projection replicated attention has a smaller
communication overhead because it only requires an all-gather operation instead of an all-
reduce operation. However, this comes at the expense of greater FLOPs and memory usage
since the attention matrix and weight matrix are multiplied as fully-replicated tensors instead
of sliced tensors.

Megatron-style MLP This refers to the partitioning scheme used for the MLP block in
Megatron-LM (§2.2). Similar to with Megatron-style attention, the communication overhead
of this sub-strategy scales with input length.

Weight-gathered MLP In weight-gathered MLP, the weights for both linear layers (W1

and W2) are fully replicated for each Transformer pass. However, instead of the loading the
full weights for all Transformer layers on initialization, which would not be feasible in the
real-world given the prohibitive memory requirements, an all-gather is executed to gather
the weights for each Transformer layer before they are required. These gathered weights are
then discarded after the operations, avoiding having to store the weights for all Transformer
layers at once. Moreover, because the weight matrices are replicated, the input tensor to the
MLP block is partitioned in a row-parallel manner to accelerate computation.

As compared to Megatron-style MLP, the communication overhead of weight-gathered
MLP is independent of the input length because the collective communication operations are
only performed on the weight matrices of the linear layers, which are fixed size for a given
model. This communication overhead depends solely on the size of the model. We note that
this overhead is significant, even for smaller models. For example, for an OPT-13B model [38]
with 40 layers and a hidden dimension of 5120, using FP16 precision, the communication
volume for a single weight-gathered MLP block is over 400 MB, which translates to over
16GB for MLP blocks across the entire model.



CHAPTER 4. SEARCH 16

Megatron
Projection-
Replicated

Weight-
Gathered

Weight FLOPs 24d2n/g 2d2n+22d2n/g 24d2n/g
Communication Vol-
ume (B)

8dn 6dn 4dn+16d2

Weight Memory (B) 18d2/g 16d2/g+2d2 18d2/g

Table 4.1: Characteristics of each strategy calculated by PartitionSearch. d denotes the
hidden size of the model, n denotes the input length, and g denotes the number of GPUs
used.

4.4 Overall Strategies

Using the above sub-strategies as building blocks, we now detail the Pareto optimal partition-
ing strategies for a single Transformer layer identified by PartitionSearch: Megatron,
ProjectionReplicated, and WeightGathered. Table 4.1 illustrates their performance
in terms of weight FLOPs, communication volume, and weight memory.

Megatron This is the same partitioning strategy used by Megatron-LM (§2.2). Out of the
three partitioning strategies, it requires the least weight FLOPs, tied with WeightGath-
ered, making it most efficient when compute, and not communication, is the bottleneck.
This depends on both the specifications of the GPU and the input length, but in general,
this is the case for smaller sequence lengths since the amount of communication required for
synchronization is smaller.

ProjectionReplicated This strategy is a combination of projection-replicated attention
and Megatron-style MLP. Since the communication overhead for projection-replicated at-
tention is lower as compared to Megatron-style attention, this strategy is more efficient than
the Megatron when communication is the bottleneck. This is the case when the input
length is sufficiently large in the prefill phase of LLM inference (§2.1) since the entire set of
input prompt tokens have to be processed at once, and the synchronization overhead is sig-
nificant. GPU characteristics, namely the inter-GPU communication bandwidth, also affect
the degree to which communication becomes a bottleneck. On GPUs with lower intercon-
nect bandwidth such as the L4 GPU, communication becomes a bottleneck at shorter input
lengths.

WeightGathered This strategy is a combination of Megatron-style attention and weight-
gathered MLP. Because weight-gathered MLP expects its input to be partitioned in a
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column-parallel manner, the all-reduce operation after the original Megatron-style atten-
tion is replaced with a reduce-scatter operation instead. Since the communication overhead
for weight-gathered MLP does not scale with input length, there is a threshold whereby
the input length is sufficiently long such that the communication overhead of Projection-
Replicated exceeds that of this strategy. Therefore, in such a scenario, this strategy is the
most efficient out of all three strategies.
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Chapter 5

System Design

This section details the design of our LLM inference engine based on dynamic partitioning.

5.1 Weight Layout

Importantly, the weights for the LLM are loaded in a fashion that allows the inference
engine to switch between different strategies at inference time efficiently. By doing so, we
avoid having to move the weights around in GPU memory at inference time, which would
incur additional GPU memory and significantly increase latency.

Self-Attention Block The weights for the query, key, and value matrices across all Trans-
former layers are partitioned in a column-parallel manner just as in Megatron-LM 2.2 since
the self-attention mechanism is unchanged for all strategies. However, the weights for the
output projection linear layer in the self-attention block are fully replicated on all GPUs.
Even though Megatron-style 2.2 attention only requires these weights to be partitioned in a
column-parallel manner, fully replicating these weights allow us to switch between Megatron-
style attention and projection-replicated attention at inference time with minimal overhead.
Therefore, we trade-off increased memory usage for reduced switching cost at inference time.

MLP Block Since the weights are partitioned similarly for both Megatron-style MLP
and weight-gathered MLP, we reuse the same weight layout as in Megatron-LM (§2.2): the
weights for the first linear layer are partitioned in a column-parallel manner, while the weights
for the second linear layer are partitioned in a row-parallel manner.

5.2 Switching Thresholds

The inference engine switches between the three strategies at inference time using input
length thresholds based on calculations detailed below.
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From Megatron to ProjectionReplicated Megatron is the most efficient for shorter
sequence lengths when inference is compute bound because it requires the least FLOPs out
of the three strategies. ProjectionReplicated becomes more efficient when the input
length increases to a point where communication, and not compute, becomes the bottleneck
instead. Formally, denote the inter-GPU communication bandwidth and FLOPs of the GPUs
used as x GB/s and y FLOPs respectively. Given a partitioning strategy with communication
volume C GB and F FLOPs, the time taken for communication is x/C while the time taken
for computation is y/F .

Therefore, when the time taken for communication exceeds the time taken for compu-
tation, the inference engine switches from Megatron to ProjectionReplicated as the
partitioning strategy.

From ProjectionReplicated to WeightGathered We calculate the threshold for the
input length whereby the communication volume of ProjectionReplicated exceeds that
of WeightGathered, making WeightGathered more efficient. Let n denote the input
length and d denote the hidden dimension of the model. Based on the values in Table 4.1,
for an OPT model [38], the communication volume of ProjectionReplicated exceeds
that of WeightGathered when n > 8d. Therefore, when the input length is longer
than this threshold, the inference engine switches from using ProjectionReplicated to
WeightGathered when serving an OPT model. This value differs for other LLM model
architectures. For instance, for the Llama 2 model architecture [33], the threshold is n > 3m
instead, where m is the model’s intermediate dimension.

We note that this threshold is an overestimate as it is a theoretical value that does
not account for the fact that with WeightGathered, weight-gathered MLP can overlap
computation and communication on the GPU more easily, since the inference engine can
queue all-gather operations for the weight tensors before they are required. Accounting for
this would lead to a lower input length threshold for switching.
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Chapter 6

Implementation

We developed a prototype GPU-based LLM inference library for dynamic partitioning in
about 2000 lines of code in Python. The inference library is based on a minimal version of
vLLM [18] that includes specific features for speeding up inference such as PagedAttention
and iteration-level scheduling. For the model executor, we implemented support for Llama
2 [33] using PyTorch [26]. For the collective communication of tensors across GPUs, we use
NCCL [21]. We verified the correctness of the inference library by comparing the outputs of
the Llama 2 models on a variety of prompts to that of the Transformers library [14].
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Chapter 7

Evaluations

In this section, we evaluate the performance of dynamic partitioning under a variety of
workloads.

7.1 Experimental Setup

Model and cluster configuration We evaluate dynamic partitioning on the Llama 2
family of LLMs with 7B, 13B, and 70B parameters [33]. The Llama 2 LLMs are the most
popular open-source models based on an online LLM leaderboard [25], and the range of model
sizes evaluated cover a variety of use cases. We evaluate the 7B and 13B Llama 2 models on
four L4 NVIDIA GPUs and evaluate the 70B Llama 2 model on four A100-80GB NVIDIA
GPUs consistent with industry norms, all provisioned on Google Cloud Platform. Similarly,
following convention, we perform inference on half-precision weights to save GPU memory
and speed up inference. The L4 NVIDIA GPU is a lower-end GPU with a constrained
inter-GPU communication bandwidth of 64 GB/s using PCIe Gen4 and achieves up to 242
TFLOPs of performance on half-precision floating point numbers. On the other hand, the
A100-80GB NVIDIA GPU is a higher-end GPU that uses NVIDIA’s proprietary interconnect
NVLink, allowing it to achieve an inter-GPU communication bandwidth of up to 600 GB/s,
while also reaching 624 TFLOPs on half-precision floating point numbers.

Metrics We use time to first token and latency as our main metrics of success. Time
to first token refers to how quickly users see the first token after submitting the prompt,
and a shorter time to first token translates to better responsiveness, which is critical for
interactive use cases. This is affected by how long it takes for the model to process the entire
prompt, generate the first output token, and return it to the user. Next, latency refers to
the time required to generate the entire output response, and corresponds to the speed of
LLM inference perceived by the user. Low latency is essential for a smooth user experience,
especially in applications that involve real-time interaction with the user such as chatbots or
search. Considering the inference phases (§2.1), time to first token measures the time taken
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only for the prefill phase, while latency measures the time taken for both the prefill phase
and auto-regressive generation phase.

Baselines For each of the model and cluster configurations, we evaluate the time to first
token and latency using each partitioning strategies individually, as well as using dynamic
partitioning where we switch between the three strategies dynamically. For both of these
metrics, we evaluate the models on increasing prompt lengths from 1 to 64678. Because of
the constrained GPU memory available on L4 GPUs, we only evaluate up to a prompt length
of 32384 for the 13B model. As the main baseline for comparison, we consider Megatron,
the strategy used by Megatron-LM [30], which is the state-of-the-art approach to model
parallelism used in modern LLM inference engines such as vLLM [18] and TGI [13].
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7.2 Results

Figure 7.1: Time to first token for Llama 2 models. 95% confidence interval computed over
10 total iterations.

Time to first token Figure 7.1 shows the time to first token for varying prompt lengths on
Llama 2 [33] using both dynamic partitioning and each strategy individually. We observe that
for the 7B and 13B models, there is no single partitioning strategy that achieves the shortest
time to first token for all input lengths, highlighting the importance of a dynamic strategy
that is able to switch between these individual strategies. For the 7B model evaluated on L4
NVIDIA GPUs, Megatron achieves the shortest time to first token for a prompt length of 1,
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ProjectionReplicated achieves the shortest time to first token for intermediate prompt
lengths up to 16192, while WeightGathered achieves the shortest time to first token for
longer prompt lengths up to 64678. For the 13B model, Megatron achieves the shortest
time to first token for prompts containing 1 token, followed by ProjectionReplicated
for prompts up to 32384 tokens. Finally, for the Llama 2 70B model evaluated on A100
NVIDIA GPUs, Megatron achieves the shortest time to first token for all prompt lengths.

A100 GPUs have a significantly higher inter-GPU communication bandwidth as com-
pared to L4 GPUs. As such, inference is bottlenecked by compute rather than communi-
cation for all evaluated prompt lengths, which explains why Megatron always achieves
the shortest time to first token for the 70B model, unlike with the other two model sizes.
With the 7B and 13B models evaluated on L4 GPUs, communication appears to become
the bottleneck when the input length is greater than 1024, leading to ProjectionRepli-
cated achieving a shorter time to first token than Megatron from this point on. Based
on the calculation that the threshold for which WeightGathered becomes more efficient
than ProjectionReplicated when n > 3m (§5.2), this threshold is approximately 33024
for the 7B model (m = 11008). Consistent with these calculations, WeightGathered
achieves a shorter time to first token than ProjectionReplicated for the 7B model when
the input length is at least 32384. This value is lower than the calculated theoretical thresh-
old due to overlapping of computation and communication in WeightGathered in our
library implementation as discussed (§5.2).

For all three models, dynamic partitioning achieves the shortest or close to the shortest
time to first token for all prompt lengths, illustrating the effectiveness of this approach as
compared to using a static partitioning strategy with minimal switching overhead. Specifi-
cally, as compared to Megatron, using a dynamic partitioning strategy achieves significant
reductions in the time to first token of 10% to 40% for the 7B model, and 6% to 12% for
the 13B model. For Llama 2 70B evaluated on A100 GPUs, because Megatron is always
the optimal strategy, there is no significant improvement or regression from using dynamic
partitioning.
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Figure 7.2: Latency for Llama 2 model generation on short and long outputs (log scale).
95% confidence interval computed over 10 total iterations.

Latency Figure 7.2 shows the latency on varying prompt lengths for both shorter output
sequences of 16 tokens and longer output sequences of 64 tokens. We observe that because of
the the high communication overhead of WeightGathered on short input lengths (§4.3),
using it as a static partitioning strategy for inference leads to significantly higher latency of
up to 50 times, a trend that holds across all models and input lengths. Using Weight-
Gathered for the auto-regressive LLM generation phase (§2.1) is extremely inefficient
communication-wise since the input length is always one. The highlights the importance
of having a dynamic partitioning scheme that is able to use a strategy such as Weight-
Gathered purely for the prefill phase (§2.1), and to use more efficient strategies such as
Megatron or ProjectionReplicated for the auto-regressive generation phase. Similar
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to with the time to first token, we observe that for the Llama 2 7B and 13B models, there
is no single partitioning strategy that achieves the lowest latency across all input lengths.
With a shorter output length of 16, Megatron achieves the lowest latency for both the 7B
and 13B models when the prompt length is 1, while ProjectionReplicated achieves the
lowest latency for all longer prompt lengths. While Megatron is indeed a more efficient
strategy than ProjectionReplicated for the generation phase since this phase is compute
bound, the lower latency achieved by ProjectionReplicated for greater prompt lengths
can be attributed to the time saved from the more efficient prefill phase (due to the lower
communication overhead) outweighing the less efficient generation phase. When the output
length is increased to 64, we observe that the threshold whereby ProjectionReplicated
achieves a lower latency than Megatron increases to a prompt length of between 4096 and
8192. This is because with a longer output length, the overhead from using the more ineffi-
cient ProjectionReplicated for the generation phase becomes more significant, requiring
a longer prompt length to offset this with the prefill phase. For the 70B model, Megatron
again achieves the lowest latency for all input and output lengths due to the significantly
higher inter-GPU communication bandwidth of the A100 GPU.

For all three models, we again observe that dynamic partitioning achieves the lowest or
close to the lowest latency for all prompt lengths, highlighting the effectiveness of this strat-
egy. As compared to Megatron, using dynamic partitioning leads to a reduction in latency
of up to 18% for the 7B model and up to 6% for the 13B model on both short and long
output lengths, demonstrating a notable improvement over the static Megatron-based ap-
proach used in existing inference engines. By taking into the account the input length, model
size, and GPU characteristics, dynamic partitioning is able to switch between Megatron,
ProjectionReplicated, and WeightGathered to optimize for latency, ensuring that
performance remains high for a wide range of prompt lengths. We note when dynamic par-
titioning is used, because the LLM generation phase always contains one token, Megatron
is always used for this. Therefore, the main benefit from using dynamic partitioning comes
from being able to switch between the three strategies during the prefill phase (§2.1).
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Chapter 8

Discussion

Our findings demonstrate the nuanced relationship between model size, GPU capabilities,
and partitioning strategies. The effectiveness of the different partitioning strategies Mega-
tron, ProjectionReplicated, and WeightGathered, varies notably across different
model sizes and GPUs. The superior interconnect bandwidth of A100 GPUs enables Mega-
tron to consistently outperform other strategies for the 70B model whereas with the 7B
and 13B models on L4 GPUs, there is no single partitioning strategy that dominates across
all input lengths. Instead, there is a clear transition point whereby communication becomes
the bottleneck instead of computation, necessitating a shift in partitioning strategy from
Megatron to ProjectionReplicated.

The strong observed performance of dynamic partitioning in all these scenarios under-
scores its ability to optimize the speed of LLM inference across a range of model and hardware
configurations. Importantly, when compared to Megatron, the current state-of-the-art ap-
proach for model parallelism in LLMs, we demonstrate that dynamic partitioning achieves
significant improvements in both the time to first token and overall latency for the 7B
and 13B models without any performance degradation for the 70B model. This illustrates
dynamic partitioning to be a versatile and effective approach to model parallelism for dis-
tributed LLM inference. This versatility is especially crucial for real-world LLM applications
today, where input lengths and computational demands can vary widely.
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Chapter 9

Related Works

Parallelism for LLM inference Prior works in the space have proposed multiple ap-
proaches for training and serving large models more efficiently via specific partitioning strate-
gies. FasterTransformer [20] establishes a suite built using C++, CUDA, and cuBLAS for
benchmarking single-GPU and multi-GPU inference for different types of Transformer mod-
els across many model sizes. It exploits both tensor parallelism and pipeline parallelism,
along with other optimizations such as quantization. EffectiveTransformer [5] is an infer-
ence library built on top of FasterTransformer that reduces memory usage while increasing
execution speed by dynamically adjusting the padding on intermediate tensors. Similarly,
TensorRT LLM [22] is an open-source library built on top of FasterTransformer that opti-
mizes the inference performance of LLMs on NVIDIA’s GPUs. It wraps NVIDIA’s TensorRT
deep learning compiler that uses the optimized kernels from FasterTransformer, performs pre-
processing and post-processing, as well as other optimizations such such as FlashAttention
[8] and the 8-bit floating point data type. DeepSpeed Inference [1] aims to further accelerate
inference by leveraging ZeRO offload to utilize CPU and NVMe memory on top of GPU
memory for models which do not fit in GPU memory. GSPMD [36] is a compiler-based
system for model computation whereby users can provide hints for how to partition tensors
across devices, based on which the system will automatically distribute tensor computation.
This work shares many partitioning strategies introduced by these prior works, but the act
of dynamically switching between strategies at inference time is novel.

Improving inference efficiency Several works have also focused on improving the infer-
ence efficiency of Transformer models by proposing improvements to the model architecture
and inference engine. These include improving the efficiency of the self-attention block [7,
28, 17], quantization techniques to reduce the memory required by LLMs [9, 37, 39], as
well as model distillation [29, 31], where smaller specialized models are trained using larger
models. FlashAttention [8] introduces an IO-aware exact attention algorithm that reduces
the number of memory IO operations between GPU HBM and SRAM, reducing the mem-
ory bottleneck and enabling faster inference for Transformer models. PagedAttention [18]
significantly reduces memory fragmentation and duplication in the key-value-cache for Trans-
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former inference, reducing memory usage for inference. Dynamic partitioning is orthogonal
to these techniques, and can be used in conjunction with them to further speed up inference.
We utilize a number of these techniques such as FlashAttention and PagedAttention in our
library implementation.

Optimizing model parallelism automatically Finally, a line of work also focuses on
being able to automatically determine the optimal approach to model parallelism for large
models. Tofu [35] uses a dynamic programming approach to identify the optimal partitioning
strategy for neural network models across multiple GPUs. Similarly, TensorOpt [6] uses a
dynamic programming algorithm to identify new model parallelism strategies that trade-off
between different objectives such as memory and cost of computation. Piper [32] is an effi-
cient optimization algorithm using dynamic programming to partition models across multiple
GPUs when leveraging data parallelism, tensor model parallelism, pipeline model parallelism,
and other memory optimizations. FlexFlow [16] focuses on a more comprehensive search of
parallelization strategies along the Sample, Operation, Attribute, and Parameter dimensions
(SOAP), using guided randomized search of this space to identify the fastest parallelization
strategy. Varuna [3] focuses on commodity networking clusters, and determines the optimal
pipeline parallelism and data parallelism strategy for training large models across these de-
vices, significantly reducing cost and improving training time. Finally, Alpa [40] generalizes
the search for optimal parallelism strategies using both integer linear programming and dy-
namic programming, supporting a comprehensive search of different strategies for distributed
model training. While these works target training for general machine learning models, dy-
namic partitioning focuses specifically on inference for LLMs, and our key observation about
the wide-ranging input lengths for these workloads allows for new optimizations.
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Chapter 10

Conclusion

This paper introduced dynamic partitioning, a new approach towards model parallelism for
distributed LLM inference where we dynamically switch between partitioning strategies at
inference time depending on the model, GPU specifications, and input length. We developed
a system to perform a systematic search of all viable partitioning strategies and identified
three Pareto optimal strategies for parallelizing Transformer inference across GPUs. Based
on these strategies, we developed an LLM inference library that implements dynamic parti-
tioning, demonstrating significant improvements in the time to first token and latency across
the Llama 2 models [33] as compared to the de-facto approach introduced by Megatron-LM
[30]. In particular, we find that dynamic partitioning is most effective on smaller LLMs and
GPUs with lower interconnect bandwidth and compute.

10.1 Future Work

There are several directions for future work. Our current analysis of different partitioning
strategies (§4.4) calculates a theoretical value for the weight FLOPs and communication
volume. This does not account for how certain strategies can take greater advantage of
overlapping communication and computation on the GPU, which might affect the choice of
Pareto optimal strategies. Therefore, we plan to investigate how to formalize the ability
of specific partitioning strategies to overlap computation and communication more easily.
This would allow us to conduct a more extensive search of partitioning strategies using
PartitionSearch, which might in turn lead to a larger set of optimal strategies for dynamic
partitioning.

Additionally, the extent of our search space in PartitionSearch is limited by the set
of the operations that we define, meaning that we might miss potentially better partitioning
strategies due to our design. For example, we make the decision to treat self-attention
as a single operation for simplicity - however, this may prevent us from discovering new
partitioning strategies for self-attention that are perform better than existing strategies.
Adding new collective communication operations may also expand the space of partitioning
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strategies. Therefore, we hope to further expand the search space with the goal of discovering
new Pareto-optimal strategies.

Next, while this work focuses on NVIDIA GPUs as a reflection of their widespread use,
it leaves open the question of how dynamic partitioning would perform on other hardware
architectures. Hence, we hope to extend our inference library to work with other accelerators
such as AMD GPUs and Google Cloud TPUs, as well as investigate how dynamic partitioning
performs on these accelerators.

This work currently targets dense LLMs, but it would be interesting to see how dynamic
partitioning can be applied to other related model architectures. For example, mixture
of expert models decompose LLMs into smaller sub-models that focus on specific aspects
of the input data, enabling more efficient inference and resource utilization. Conducting
a systematic search of partitioning strategies for new model architectures might lead to
further opportunities for optimizing inference via new Pareto-optimal strategies for dynamic
partitioning.
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Appendix A

Raw Data

A.1 Time to First Token

Input Length Dynamic Megatron ProjectionReplicated WeightGathered
1 39.8125 39.4615 41.868 1491.6495

1024 210.797 236.253 210.2415 1612.1665
4096 834.992 949.788 838.32 2031.913
8096 1680.804 1912.5425 1681.312 2669.958
16192 3452.317 3910.1625 3457.254 3993.292
32384 7489.2195 8381.168 7485.6335 7080.7215
64768 15533.145 19795.499 18170.0725 15503.617

Table A.1: Mean time to first token (ms) for Llama 2 7B generation using 4 L4 GPUs on
varying input lengths. Results are computed over 10 total iterations.

Input Length Dynamic Megatron ProjectionReplicated WeightGathered
1 50.017 49.96 51.6165 2915.8775

1024 336.1615 371.455 335.1855 3094.4945
4096 1387.8365 1540.623 1388.0525 3827.5665
8096 2801.636 3129.5115 2799.9325 4851.285
16192 5734.265 6356.4685 5731.1065 7064.468
32384 12439.6755 13975.2355 12890.9215 12380.7165

Table A.2: Mean time to first token (ms) for Llama 2 13B generation using 4 L4 GPUs on
varying input lengths. Results are computed over 10 total iterations.
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Input Length Dynamic Megatron ProjectionReplicated WeightGathered
1 103.395 104.6745 107.9335 623.489

1024 228.499 228.499 258.539 714.442
4096 790.8735 790.8735 905.532 1110.536
8096 1567.402 1567.402 1798.3365 1948.2325
16192 3289.319 3289.319 3764.8925 3743.2965
32384 7286.418 7286.418 8202.5445 7824.277
64768 17882.6555 17882.6555 19821.264 18844.9195

Table A.3: Mean time to first token (ms) for Llama 2 70B generation using 4 A100 GPUs
on varying input lengths. Results are computed over 10 total iterations.

A.2 Latency

Input Length Dynamic Megatron ProjectionReplicated WeightGathered
1 601.018 605.1045 637.7185 23915.922

1024 787.017 808.8685 817.848 24057.652
4096 1410.1405 1525.2325 1435.382 24384.5525
8096 2253.943 2487.0835 2286.748 25226.935
16192 4023.1075 4485.6245 4052.88 26483.4375
32384 8052.1335 8941.0005 8099.2305 29736.8855
64768 16229.7495 20525.0665 18986.3305 38411.0555

Table A.4: Mean latency (ms) for Llama 2 7B generation using 4 L4 GPUs on varying input
lengths with output length 16. Results are computed over 10 total iterations.

Input Length Dynamic Megatron ProjectionReplicated WeightGathered
1 752.487 748.815 784.293 46731.9205

1024 1049.593 1090.699 1082.3695 46665.2615
4096 2092.0305 2253.1955 2132.351 47769.972
8096 3516.1085 3840.5545 3551.033 48713.033
16192 6448.107 7079.9645 6499.876 51310.8015
32384 13273.346 14865.2685 13876.233 56668.946

Table A.5: Mean latency (ms) for Llama 2 13B generation with 4 L4 GPUs on varying
prompt lengths with output length 16. Results are computed over 10 total iterations.
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Input Length Dynamic Megatron ProjectionReplicated WeightGathered
1 1537.3495 1548.138 1584.501 9930.974

1024 1690.1795 1690.1795 1771.6765 10051.501
4096 2242.8395 2242.8395 2415.515 10486.6895
8096 3031.56 3031.56 3310.555 11348.0745
16192 4744.893 4744.893 5261.584 13157.1655
32384 8723.573 8723.573 9701.099 17269.2285
64768 19304.882 19304.882 21278.1705 28264.1985

Table A.6: Mean latency (ms) for Llama 2 70B with 4 A100 GPUs on varying input lengths
with output length 16. Results are computed over 10 total iterations.

Input Length Dynamic Megatron ProjectionReplicated WeightGathered
1 2397.1395 2378.9705 2506.775 95577.469

1024 2614.25 2649.693 2722.746 95615.469
4096 3232.572 3354.0675 3373.04 95738.8595
8096 4079.557 4323.9655 4214.7865 96850.989
16192 5846.15 6316.9285 5967.3465 98457.1095
32384 9882.714 10765.9815 10035.116 102219.6265
64768 18727.5475 23000.609 21598.289 112136.7735

Table A.7: Mean latency (ms) for Llama 2 7B generation with 4 L4 GPUs on varying input
lengths and output length 64. Results are computed over 10 total iterations.

Input Length Dynamic Megatron ProjectionReplicated WeightGathered
1 3017.577 2982.553 3117.518 186537.522

1024 3302.9155 3354.8175 3465.633 186361.053
4096 4364.9895 4529.4995 4508.622 187721.6065
8096 5807.213 6100.304 5946.9375 189355.1315
16192 8749.101 9379.7135 8917.9215 192468.647
32384 16067.8065 17612.402 16895.4365 198486.297

Table A.8: Mean latency (ms) for Llama 2 13B generation with 4 L4 GPUs on varying input
lengths and output length 64. Results are computed over 10 total iterations.
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Input Length Dynamic Megatron ProjectionReplicated WeightGathered
1 6092.361 6143.1665 6410.4785 40099.8135

1024 6373.007 6373.007 6603.2165 39965.5685
4096 6903.916 6903.916 7255.7595 40460.074
8096 7689.4505 7689.4505 8193.087 41279.3945
16192 9408.911 9408.911 10098.6335 43431.0275
32384 13349.288 13349.288 14505.7775 47423.058
64768 23947.8545 23947.8545 26079.156 58811.546

Table A.9: Mean latency (ms) for Llama 2 70B generation with 4 A100 GPUs on varying
input lengths and output length 64. Results are computed over 10 total iterations.


