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Can LLMs Perform Verified Lifting of Code?

SAHIL BHATIA†, JIE QIU§, SANJIT A. SESHIA†, and ALVIN CHEUNG†, † UC Berkeley, §
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Domain-specific languages (DSLs) have become integral to various software workflows, offering domain-
specific optimizations and abstractions that improve code readability and maintainability. These languages
have found applications across diverse domains such as image processing, deep learning, and distributed
computing. However, the adoption of these languages often necessitates developers to rewrite existing
code using the specific DSLs. Manual rewriting is error-prone and infeasible, leading to the development of
numerous automated code translation tools. One notably successful approach for addressing this challenge
is verified lifting, which relies on program synthesis (search-based) to find programs in the target language
that are functionally equivalent to the source language program. While several tools based on verified lifting
have been developed for various application domains, they are often specialized for specific tasks or require
significant manual effort in terms of domain knowledge or heuristics to scale the search. In this paper,
leveraging recent advances in large language models (LLMs) for code, we propose an LLM-based approach
to building verified lifting tools. We use the LLM’s capabilities to reason about programs by leveraging
contextual information to translate a given program into its corresponding equivalent in the target language.
This contextual information includes expressing the semantics of the target language using Python as the
intermediate language. Additionally, we utilize the LLMs to generate proofs for functional equivalence. We
develop lifting-based compilers for three DSLs targeting different application domains. Our approach not
only outperforms previous symbolic-based tools but also requires significantly less effort to build.

1 INTRODUCTION
In recent years, domain-specific languages (DSLs) have increasingly become part of software
workflows. DSLs offer optimizations and abstractions that enhance code readability and improve
performance in specific domains. Examples of recent DSLs include Spark for distributed computing,
NumPy for array processing, TACO for tensor processing, and Domino for network packet pro-
cessing. With new DSLs emerging for diverse application domains and programming languages,
developers often face the task of manually rewriting existing code to incorporate these languages
into their existing workflows. This manual rewriting process, being repetitive, can be tedious and
may introduce bugs into the code. We term this code translation problem as lifting since it usually
involves translating code in a somewhat lower-level, general-purpose language to equivalent code
in a DSL.
To address this challenge, significant effort has been dedicated to developing tools aimed at

automating the task of lifting. Rule-based approaches rely on traditional pattern-matching tech-
niques [14] to construct DSL compilers. However, describing these rules can be complex, leading
to interest in search-based techniques for DSL compiler construction. These techniques seek to
leverage the advances in program synthesis (e.g., see [6, 7, 18]) over the last two decades. Contem-
porary program synthesis approaches can be broadly classified into two categories: symbolic and
neural. The use of program synthesis for lifting, termed verified lifting, involves searching for a
program in the DSL and subsequently formally verifying its semantic equivalence to the source
program. Verified lifting has been successfully applied in building compilers for DSLs like Spark,
SQL, Halide, and TACO [8]. Traditionally, symbolic techniques such as enumerative, deductive,
and constraint-based searches have been employed for implementation. More recently, neural
networks [12] have been leveraged to develop compilers that translate sequential programs into
their corresponding functional equivalents.

Despite their successes, both symbolic and neural approaches exhibit common drawbacks: (1) The
synthesizer is customized for each DSL, making them challenging to adapt for new DSLs, and
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(2) Significant effort is required to design the synthesizer, including domain-specific heuristics
for symbolic approaches and the generation of paired data for ML-based approaches, to enable
generalization and scalability for the target DSL. To address these challenges, recently the Met-
alift [3] system was proposed, enabling developers to construct verified lifting-based compilers for
their own DSLs. Metalift operates as a semi-automated tool, abstracting the search and verification
phases from developers. However, developers still need to describe the space of potential solutions
for the search engine to ensure tractability. Additionally, developers must devise heuristics to
scale the search process, with many of these heuristics relying on domain-specific knowledge for
successful application.

Large language models (LLMs) have made significant progress in various programming-related
tasks, including code generation, repair, testing, summarization, and even formal methods tasks
like aiding solver proofs for correctness and formalizing specifications from natural language. The
success of LLMs in these tasks can be attributed to several factors:
(1) Extensive Training Data: LLMs are trained on vast and diverse datasets containing code-

related information such as documentation, code repositories, and forums. This comprehensive
training data seems to enable LLMs to learn the syntax, semantics, and patterns of widely-used
programming languages (PLs).

(2) Generalization Capability: LLMs excel at reasoning about new tasks without the need for
additional training, leveraging the context provided in the prompt to adapt to various scenarios.
For instance, [4] demonstrated LLMs are few-shot reasoners.

(3) Inherent Domain Knowledge: LLMs seems to possess vast domain knowledge acquired from
diverse textual sources spanning multiple domains. Unlike humans, who may struggle with
retaining and retrieving information across diverse domains, LLMs excel at rapid information
retrieval and synthesis.

(4) Multimodal Integration: The flexible interface of LLMs allows them to seamlessly integrate
multi-modal information, a capability that symbolic solvers often struggle with due to their
reliance on predefined, formalizable input formats.

Related Work: Despite their significant promise in various tasks, generating reliable code with
formal guarantees on correctness remains a challenging task for LLMs. The general idea of using
learning-based synthesis to generate code as well as proof artifacts for formal verification is not
new; see, for example, [16]. Most work on LLMs for code generation does not explicitly integrate
LLMs with verification oracles, and prior approaches have typically focused on either generating
code or proofs independently. For instance, [5, 13] illustrate how to leverage LLMs to generate
loop invariants and several other works have focused on using LLMs to generate code from diverse
forms of specifications [9, 10, 15]. To leverage LLMs for building verified lifting compilers, two
key constraints need to be addressed: the ability to generalize to new DSLs (i.e., generate code
for languages unseen in the training data) and providing guarantees on the correctness of the
generated code (i.e., generating a proof of validity).
In this work, we propose an approach to address these challenges and leverage LLMs to build

Verified Lifting (VL)-based compilers. Our approach is inspired by the core technique of verified
lifting, which involves translating the source program to a higher-level intermediate representation
(IR). This IR describes the semantics of the operators in the DSLs, and once the synthesized code is
verified, it is translated to the concrete syntax of the DSL using rewrite rules. Instead of prompting
the models directly to generate code in the DSL, which may be new and unfamiliar, we leverage
the reasoning capabilities of LLMs to infer code from context. We instruct the model via a prompt
to generate code using the operators of the DSL, with Python serving as the IR to encode the
semantics of these operators. Python’s significant representation in the training datasets of LLMs
makes it a suitable choice for this purpose. In addition to generating the DSL program, we also
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1 public class ConditionalSum {

2 public static int sumList(List<Integer> data) {

3 int sum = 0;

4 for(int i=0; i<data.size(); i++) {

5 int var = data.get(i);

6 if(var < 100){

7 sum += var;}}

8 return sum;}}

(a) Source Code (S)

1 def map(data,f):

2 if len(data) == 0: return []

3 else:

4 return [f(data[0])] + map(data[1:],f)

5 def reduce(data,f):

6 if len(data) == 0: return 0

7 else:

8 return f(data[0],reduce(data[1:],f))

9
10 def ite(a, b, cond):

11 if cond: return a

12 else: return b

(b) Target Language (𝑇𝑙𝑎𝑛𝑔)

prompt the model to generate a proof of correctness for the program. We then translate both the
generated program and the proof to the syntax of an automated theorem prover to verify if the
program is functionally equivalent to the given source program for all program states.

In summary, this paper makes the following contributions
(1) We propose an approach to leverage LLMs for building VL-based compilers, simplifying the

compiler-building process significantly compared to prior symbolic approaches. Our method
drastically reduces the human effort required in traditional approaches for building such code
translators.

(2) We demonstrate how our approach enables LLMs to generalize and generate code for new DSLs
not present in their training dataset. Importantly, this is achieved with minimal prompting and
without additional fine-tuning of the models.

(3) We show the effectiveness of our approach by constructing compilers for three DSLs spanning
various application domains. In terms of accuracy, our LLM-based compilers achieve comparable
performance to existing tools and, in some domains, outperforms the prior approaches.

2 BACKGROUND
In this section, we provide an overview and present an end-to-end example of verified lifting.

Traditional compilers have relied on pattern-matching rules for translating programs from one
language to another. These rules are typically manually defined by developers and are both tedious
to write and prone to errors. To address these challenges, verified lifting (VL) uses a search-based
approach for translation. Given a program (S) in the source language (𝑆𝑙𝑎𝑛𝑔), VL uses a search
procedure to find a program (T) in the target language (𝑇𝑙𝑎𝑛𝑔) that is functionally equivalent to the
given source program. VL has proven effective in building compilers for various application domains,
such as translating Java to Spark (distributed computing), C++ to Halide (image processing), and
Java to SQL (database), among others. The key idea behind VL involves using an intermediate
representation (IR) of the operators in the target language. This representation captures only the
functional description of the operators and ignoring the low-level implementation details. VL
comprises three key phases: (1) search, (2) verification, and (3) code generation. In the search phase,
the source program is lifted to transform it into a sequence of operators in the IR. This sequence
serves as the program summary (PS) which summarizes the source program using the operators
in the IR. Subsequently, the program summary is verified using a theorem prover to check for
semantic equivalence with source for all program inputs. If the verification succeeds, PS is then
translated into the concrete syntax of the target language using simple pattern-matching rules.
These rules are notably simpler to write since the PS is already expressed using the operators in
the target language.
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Next, we demonstrate an example of translating a sequential Java program to Spark (distributed
computing DSL) using VL. Fig. 1a displays a sequential source program (S). The given Java program
takes a list of integers as input and calculates the sum of all integers in the list that are less than 100.
In Fig. 1b, we illustrate the semantics of the map and reduce operators from the target language as
the IR. Note that these functions abstract the low-level implementation details of the operators while
capturing only the high-level semantics of the operator. Now, the objective is to find a sequence
of map and reduce such that it is functionally equivalent to (S). Traditional approaches to solving
this search problem in VL (Casper, Metalift) involve framing it as SyGuS [2] problem. A SyGuS
problem involves defining a search space that syntactically restricts the space of possible solutions
for the synthesizer, making the search problem tractable. Formally, this objective can be stated
as ∃ 𝑇 ∈ 𝑇𝑙𝑎𝑛𝑔 .∀ 𝜎. 𝑆 (𝜎) == 𝑇 (𝜎), where T is a program in the target language. For the given
problem, the synthesis phase would return:
1 reduce(map(data, lambda i : ite(i > 100, 1, 0)), lambda a, b: a + b)

The expression initially maps each element in data to either 1 or 0 based on whether the element ’i’
is greater than 100 or not. Next it reduces the list obtained from the previous step by summing
up all the elements to return the count of elements less than 100. Since S includes a loop, proving
equivalence with the generated program requires another predicate called the "loop invariant". The
synthesis, in addition to generating the program summary, also generates the loop invariant. The
final step involves translating the generated program summary to the concrete syntax of the DSL
(Spark) using simple pattern-matching rules, resulting in the following expression:
1 map(lambda i: 1 if i > 100 else 0).reduce(lambda a, b: a + b)

Solving this SyGuS problem requires substantial domain knowledge and heuristics from developers,
as naively encoding all possible solutions in the grammar renders the search intractable. For instance,
one standard technique involves incrementally increasing the depth of expressions in the search
space, as it grows exponentially with the number of operators in the DSL. Other approaches include
type-based filtering of expressions, eliminating choices based on static analysis, and multi-phase
synthesis for generating different parts of the solutions. In the next section, we provide details on
how this synthesis problem can be simplified using our LLM-based approach.

3 LLM-BASED VERIFIED LIFTING APPROACH
In this section, we describe our LLM-based approach for verified lifting. We begin by contrasting this
approachwith the traditional verified lifting approach as implemented in theMetaLift framework [3].
Then we give details of how we use LLMs to improve on certain aspects of the MetaLift approach.

3.1 Traditional vs. LLM-Based Approach for Verified Lifting
In Fig. 2, we illustrate the contrast between the traditional approach (orange) and our LLM-based
approach (blue). Conventionally, compilers based on verified lifting have relied on symbolic search
to solve the translation problem. When building a compiler using VL for a given source language
(𝑆𝑙𝑎𝑛𝑔) and target language (𝑇𝑙𝑎𝑛𝑔), the search problem in VL is characterized by three components:
(1) Specification (𝜙): This defines the property that the target program (T) should satisfy. In the

context of VL, this corresponds to T being semantically equivalent to the source program (S)
for all program states.

(2) Program Space (𝐺): This outlines the space of potential solutions, typically expressed as a
context-free grammar. In VL, solutions space consist of various combinations of operators from
𝑇𝑙𝑎𝑛𝑔. The design of G is crucial for the performance of search algorithms in VL. An overly
restrictive grammar may limit expressiveness, failing to map some source programs. Conversely,
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(a) Traditional symbolic verified lifting approach.

(b) LLM-based verified lifting approach.

Fig. 2. A comparison of the symbolic and LLM-based lifting approach.

an overly expressive grammar may become a bottleneck for the synthesizer, slowing down the
synthesis process.

(3) Search Algorithm (A): This refers to the algorithm used to solve the synthesis problem.
Traditional symbolic solvers utilize enumerative search, deductive search, and constraint-based
approaches. Recently, neural approaches have also been proposed for this task.

Formally, we can describe the search problem in VL as:

∃ 𝑃𝑆, 𝐼𝑛𝑣1, 𝐼𝑛𝑣2, ... ∈ 𝐺.∀𝜎 . 𝜙 (𝑃𝑆, 𝐼𝑛𝑣1, 𝐼𝑛𝑣2..., 𝜎) (1)

This statement states that the goal is to find a program summary and invariants from the defined
search space such that the given specification holds for all possible program states.

Traditional approaches rely onmanually tuned search strategies, requiring developers to painstak-
ingly design and fine-tune these strategies to effectively guide the search space. In contrast, our
LLM-based approach relies on a simple prompt to perform the search, leveraging the inherent
reasoning capabilities of Large Language Models (LLMs). Unlike traditional methods, which often
struggle to adapt existing tools for new DSLs, our approach accommodates novel DSLs without the
need for extensive modifications or domain-specific heuristics by leveraging Python as the IR.
Naively encoding all potential solutions in the grammar makes the search problem intractable.

For instance, a straightforward search algorithm exploring every possible solution would need
to search through at least 𝑛𝑚 expressions for a depth 𝑚 expression in a 𝑇𝑙𝑎𝑛𝑔 with 𝑛 operators.
To mitigate this exponential growth in the search space and make the search feasible, significant
human input in the form of domain expertise and developer heuristics is necessary. For example,
Casper [1], in constructing the Java to Spark compiler, adopts a standard technique of gradually
increasing the depth of expressions in the search space. Other strategies include: (1) Type-based
filtration of expressions, where operators incompatible with the source’s output type are excluded
from the grammar. (2) Eliminating choices through static analysis, as seen in C2TACO [11], which
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Fig. 3. End-to-End Lifting Example

incorporates only operators present in the source program. (3) Multi-phase synthesis, which
involves generating different parts of the solutions sequentially. For instance, the high-level sketch
may be synthesized initially, followed by the synthesis of its arguments in subsequent phases. It is
important to recognize that these heuristics are often tailored to specific characteristics of the 𝑆𝑙𝑎𝑛𝑔
and 𝑇𝑙𝑎𝑛𝑔 , making them less universally applicable. Furthermore, these heuristics often need to be
combined and adjusted based on the specific characteristics and requirements of the translation
task. Successfully applying these techniques often demands a deep understanding of the domains
involved and extensive experimentation.

While traditional approaches to building VL-based compilers rely on symbolic search and manual
effort, we present an alternative approach for buildi leveraging LLMs to address these challenges.
One approach to building a VL-based compiler using LLMs involves providing instructions via
prompts to translate programs from 𝑆𝑙𝑎𝑛𝑔 to 𝑇𝑙𝑎𝑛𝑔. However, using LLMs in an end-to-end manner
has limitations due to several reasons:

(1) In code translation, the primary objective is to find a program in 𝑇𝑙𝑎𝑛𝑔 that is functionally
equivalent to the program in 𝑆𝑙𝑎𝑛𝑔 . VL-based compilers require that the candidates generated
during the search phase be tested for functional correctness using a verification oracle. This
poses a challenge for LLMs because they lack an explicit link to any verifier, making model
outputs uncertain in terms of correctness.

(2) While it’s theoretically possible to develop a VL-based compiler for any new DSL and
recent tools like MetaLift [3] assist developers in this process by abstracting the search
and verification tasks. However, when prompted, LLMs struggle to generate code in low-
resource languages that they have not encountered in training data. While LLMs can be
fine-tuned with pairs from 𝑆𝑙𝑎𝑛𝑔 and 𝑇𝑙𝑎𝑛𝑔, creating such pairs for an entirely new DSL
presents a significant challenge.

In Fig. 3, we show an example of instructing the LLMs (GPT-3.5) to translate code in an end-to-end
manner. We instruct the model to translate a C++ function to TACO (tensor processing DSL), and
the model outputs a completely incorrect solution by hallucinating a TACO library. Currently, all
the LLMs we have experimented with have a knowledge cut-off date, which is the point in time up
to which the data, information, and events used to train a language model are considered. Even
though GPT-3.5 has a knowledge cut-off date of 2021 and TACO was introduced much before 2021,
the model still cannot generate the correct code. This problem will be more evident for completely
new DSLs which the model might have never seen in the training dataset.

To address these challenges, we adopt the fundamental principle of VL, which involves generating
code in an intermediate representation. In Fig. 2, we illustrate our LLM-based VL approach where
we use LLMs to generate the program summaries and invariants in an IR. These are validated for
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#Prompt Preamble
Your task is to rewrite the given `test` Java  
Function. You need to use only the set of provided 
functions and constants to achieve this. The 
rewritten program should be semantically equivalent 
to the `test` function.

#Semantics of Operators
def map(data,f):
  if len(data) == 0: return []
  else:
      return [f(data[0])] + map(data[1:],f)

def reduce(data,f):
  if len(data) == 0: return 0
  else:
    return f(data[0],reduce(data[1:],f))

#Test Function
public static int test(List<Integer> data) {
    int sum = 0;
    for(int i=0; i<data.size(); i++) {
      int var = data.get(i);
      if(var < 100){
        sum += var;}}
    return sum;}

Fig. 4. PS guessing prompt

correctness using a verification oracle. Following verification, we convert the program summaries
into the concrete syntax of 𝑇𝑙𝑎𝑛𝑔 through simple pattern-matching rules. Our approach involves
using LLMs within a few-shot learning framework, which we describe next.

3.2 Few-shot Learning Approach
LLMs have demonstrated few-shot reasoning capabilities [4]. Few-shot reasoning allows LLMs to
generalize their understanding to new tasks by leveraging a small set of similar examples. This
allows them to extend their reasoning capabilities to tasks without requiring explicit training or
fine-tuning for those specific tasks. Formally, few-shot learning, often denoted as K-shot learning,
involves presenting the model with 𝐾 instances of a task description 𝑇𝑖 and its corresponding
solution 𝑆𝑜𝑙𝑖 for 𝑖 = 1, 2, ..., 𝐾 in the prompt. Here, 𝑇 represents the task description, and 𝑆𝑜𝑙
illustrates how to perform the task. Typically, K ranges from 0 to 10, indicating the number of
examples provided to the model.

LLMs have been trained on vast amounts of code-related data, enabling them to understand and
generate code across various programming languages and domains. LLMs can capture and utilize
contextual information effectively. They can consider the entire context provided in a prompt or
code snippet to generate syntactically and semantically meaningful code within the given context.
In the context of VL, we leverage the few-shot reasoning capability by providing the models with the
semantics of operators from the target language (𝑇𝑙𝑎𝑛𝑔). By exposing the LLMs to these semantics,
we enable them to use their reasoning capabilities over code to generate the PS and invariants in
𝑇𝑙𝑎𝑛𝑔. This helps the models to generalize their understanding to new DSLs without the need for
explicit training or fine-tuning on those specific tasks
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Fig. 5. Invariant guessing prompt

As described in Sec. 2, the fundamental principle of VL involves generating candidates in an
IR that abstracts away low-level implementation details of operators in 𝑇𝑙𝑎𝑛𝑔. The objective, as
shown in Eq. (1), is to find PS and Inv expressed using operators from 𝑇𝑙𝑎𝑛𝑔 such that 𝜙 holds.
We split the generation of PS and Inv into a two-phase process by first guessing the PS and then
inferring invariants corresponding to it. In Fig. 4, we show the prompt for generating the PS for our
running example in Fig. 1a. We generate the PS in zero-shot setting using a prompt which consists
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1 (define−fun−rec inv0 ((i Int) (data (List Int))) Bool
2 (and (and (>= i 0) (<= i (list_length arg))) (= i1 (reduce_lr (map_lm (list_take arg i2))))))

Fig. 6. SMT-LIB invariants

of task instruction (𝐼 ), the semantics of DSL operators, and the specification (𝜙). While symbolic
techniques often rely on approaches like test cases, bounded model checking, and VC (Hoare triple)
for defining specifications, the natural language interface of LLMs offers flexibility in using various
specifications and combining different forms. Given that LLMs are primarily trained on raw source
code and may not have encountered other forms of specification during training, we directly use the
source program (S) as the specification in our prompt. This simplifies the prompt and ensures our
approach is independent of 𝑆𝑙𝑎𝑛𝑔 being used for translation. Additionally, we include the semantics
of all operators in our 𝑇𝑙𝑎𝑛𝑔 as Python implementations in our prompt. Python is chosen as our
IR due to (1) its widespread use across domains, (2) its concise and expressive nature, making the
representation readable and straightforward and, (3) its significant representation in code datasets
used for training LLMs [9]. Finally, we include a simple instruction to translate the given S using
only the operators defined in the prompt. When prompted, the model generates the following
solution:
1 reduce(map(data, lambda i : ite(i > 100, 1, 0)), lambda a, b: a + b)

Furthermore, to ensure that the generated candidates follow the DSL operators defined in the
prompt, we use a parser to reject candidates which do not satisfy this constraint.
Given that S contains loops, establishing the functional equivalence of the generated PS for

all program states with S necessitates the generation of loop invariants. In VL, loop invariants
typically follow a templated structure:

𝐼𝑛𝑣 ≜ 𝑓 (𝑖) ∧ 𝑒 (𝑇𝑙𝑎𝑛𝑔) (2)

where 𝑓 (𝑖) denotes an expression over loop indexes and 𝑒 (𝑇𝑙𝑎𝑛𝑔) represents an expression re-
cursively constructed using operators from 𝑇𝑙𝑎𝑛𝑔. This structured nature simplifies the invariant
generation process compared to solving general loop invariant synthesis problems. To facilitate the
generation of loop invariants, we use 1-shot learning to familiarize the model with the concept
and structure of invariants in the VL context. In Fig. 5, we illustrate the prompt used to generate
the invariants. The prompt for invariant generation closely resembles that used for generating
program summaries, including S with an additional assertion stating the equality of the return
variable with the previously generated PS. This instruction guides the model to produce an invariant
corresponding to the generated PS. Additionally, the prompt includes the semantics of operators
in our 𝑇𝑙𝑎𝑛𝑔 and instructs the model to generate a proof supporting the assertion encoded in S.
Notably, the invariants are formulated as Boolean formulas in Python rather than SMT-LIB, as we
found that LLMs encounter difficulties in generating SMT-LIB code due to its low-resource nature
and limited representation in training datasets. When prompted, model generates the following
solution:
1 def invariant(data, i):
2 return i>=0 and i<=len(data) and sum = reduce(map(data[:i], lambda i : ite(i > 100, 1, 0)), lambda a, b: a + b)

The loop invariant states that the loop index 𝑖 remains within the bounds of the data array (0 ≤ 𝑖 ≤
𝑙𝑒𝑛(𝑑𝑎𝑡𝑎)). Additionally, the invariant expresses 𝑠𝑢𝑚 as the MapReduce expression over the first 𝑖
elements of the data array which helps prove that the invariant holds in each iteration of the loop.
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Both the program summaries (PS) and invariants are expressed in Python. We use simple pattern-
matching rewrite rules to translate the expressions to the syntax compatible with the verification
oracle used to check for functional equivalence. Once verified, the PS is similarly translated to the
concrete syntax of 𝑇𝑙𝑎𝑛𝑔 using straightforward rewrite rules, leveraging the syntactic nature of
Python. The translation process is simplified due to Python’s highly structured syntax. In Fig. 6,
we present the invariant expressed in the SMT-LIB format, where subexpressions are represented
in a fully parenthesized, prefix style, contrasting with the in-order style notation of Python.

4 EXPERIMENTS
To evaluate the effectiveness of using LLMs for constructing VL-based compilers, we evaluate our
approach across three distinct DSLs, each targeting diverse application domains:

(1) Distributed Computing: We convert sequential Java programs into MapReduce implemen-
tations within Apache Spark [20]. Spark, an open-source distributed computing framework,
provides an interface for programming multiple clusters which for data parallelism which
helps in large-scale data processing.

(2) Network Packet Processing: We map sequential network processing algorithms in C to
the operators of programmable switch devices [17]. This translation enables the exploration
of novel algorithms, such as congestion control and load balancing, on programmable switch
devices.

(3) Tensor Processing: We convert sequential C++ programs into the operators of TACO [8]
(tensor processing compiler), capable of generating highly optimized GPU code for perform-
ing tensor computations.

Model: In all experiments, we use GPT-4 via their APIs to generate candidates. The default
temperature setting is applied for the model, and we generate ten completions for each experiment.
For PS and invariant generation across all domains, we use the same prompt (excluding the DSL
description) as depicted in Fig. 4 and Fig. 5, respectively.

4.1 Distributed Computing
MapReduce, a programming model for parallel processing of large datasets across distributed
clusters, simplifies parallel computation by abstracting away distributed system complexities. It
comprises two phases: (1) Map: Input data is partitioned into smaller chunks, each processed by a
mapper function to generate key-value pairs. (2) Reduce: Intermediate key-value pairs are shuffled,
sorted based on keys, and then processed by reducer functions to aggregate associated values.

LLM implementation. We compare the performance of our LLM-based implementation against
MetaLift [3]1. MetaLift uses a symbolic solver (Rosette [19]) to perform the search. We evaluate on
the same 45 benchmarks as MetaLift. All the benchmarks have loops and require loop invariants to
prove the functional equivalence of the source and the generated program. MetaLift solves 40 out
of 45 with a timeout of 1 hour. Our LLM-based implementation is able to solve 44 i.e. generate the
correct translation as well as the required invariants to prove the correctness. LLM approach solves
4 additional benchmarks on which MetaLift times out. In addition to solving more benchmarks, the
amount of effort required to build the LLM compiler is significantly less than MetaLift as it does
not require the developers to provide any search-space description for PS and invariants. LLMs
perform really well on benchmarks which take >1min to solve as each call to the model takes 1
min (this is dependent on the size of the prompt).

1Casper [1] is not functional and Mold [14] is not open-sourced
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Tool Artificial BLAS DSP DSPStone makespeare mathfu simpl_array UTDSP darknet
C2TACO 100% 100% 100% 100% 100% 90% 100% 80% 92%

LLM-TACO 100% 100% 100% 60% 100% 100% 100% 100% 100%
Table 1. Accuracy on various benchmarks for tensor processing domain.

4.2 Network Packet Processing
Network packet processing hardware, such as routers and switches, lacks flexibility post-development,
preventing experimentationwith new data-plane algorithms. Recently, a verified lifting approach [17]
was introduced to simplify this process. This compiler offers the developers with two constructs:
(1) a packet transaction language (subset of C language) to express the semantics of these data-plane
algorithms (2) a compiler that translates the packet processing algorithms to the instruction set of
programmable switch devices. Atoms are introduced as an instruction set of the hardware to repre-
sent the atomic operations supported by the hardware. Compiler translates the packet transaction
algorithm to a sequence of atoms resulting in a different programmable switch configuration.
LLM implementation. We implement the Domino compiler using LLMs by defining the se-

mantics of the atoms in the prompt. We compare the performance of our implementation against
MetaLift’s implementation of the same. Note that all benchmarks in Domino are imperative C
programs without any loop constructs and no loop invariants are required for these benchmarks.
However, the generated PS are verified using a SMT solver. MetaLift is able to solve all the 10
benchmarks. Our LLM-based implementation is also able to map all the 10. Similar to the Spark
case study, we do not require developers to specify the search-space for PS. Our LLM-based imple-
mentation shows similar performance to the existing compiler but can be built using much less
effort.

4.3 Tensor Processing
Tensors form the key construct in machine learning and tensor compilers play an important role in
optimizing these operations. TACO [8] is one such compiler whic’h can automatically generate
highly optimized code tailored to CPUs and GPUs. TACO’s language represents the operations in a
concise Einsum like notation. Recently, C2TACO [11] was proposed to automate the translation of
C++ code to taco’s representation to leverage the optimizations provided by the TACO compiler
for legacy code.
LLM implementation. We implement the C2TACO compiler using LLMs by including the

description of the TACO’s notation in the prompt. We compare the performance of our implemen-
tation against the C2TACO. C2TACO evaluates kernels from several domains such as deep learning,
linear algebra, array processing, signal processing and a few artificially generated ones. In Tab. 1,
we show the accuracy of C2TACO and LLM-based implementation for all the domains. C2TACO
achieves a mean accuracy of 95% while our LLM-based implementation also achieves the same
accuracy across a total of 69 benchmarks. C2TACO uses an enumerative solver to perform the
search and uses several heuristics including static code analysis, template enumeration to scale the
search. On the other hand, our LLM-based approach just relies on a simple prompt and achieves the
same performance. Also, our approach solves 2 additional benchmarks on which C2TACO times
out after 90 minutes.
Discussion. Our experiments demonstrate the potential of using LLMs as reliable code trans-

lation tools. While verified lifting has been employed for years to develop compilers for various
domains using symbolic search strategies, scaling symbolic search often requires the development
of numerous search strategies with domain-specific heuristics. Our observations suggest that
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LLMs can significantly reduce the effort required for this task. Due to their exposure to diverse
training data, LLMs seems to possess numerous domain heuristics and can effectively reason
about programs statically. This becomes particularly beneficial in benchmarks where the target
program’s depth is large, and symbolic engines must enumerate all candidates up to that depth.
Moreover, our experiments reveal that LLMs perform well when presented with code written in
high-level languages. As a result, we opted to utilize Python as the IR for expressing the semantics
of the target language. Python’s rich expressiveness and familiarity in the LLMs’ training data
make it a suitable choice. In addition, we found it advantageous to obtain proofs in Python and
subsequently develop rule-based parsers to convert them into the concrete syntax of the solvers.
This approach significantly reduces the complexity of prompt engineering required to instruct the
model to generate solutions in low-level languages.
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