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Abstract

Concurrency Without Threads for Multicore Microprocessors

by

Samuel Berkun

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Edward A. Lee

Cyber-physical systems are often deployed in settings where low cost and power consumption
are required, traditionally favoring single-core processors. However, as computer processors
fall in cost and rise in capabilities, multi-core processors are becoming increasingly prevalent.
This necessitates the use of a software system, such as a real-time operating system (RTOS),
to help create and manage concurrent tasks. However, the use of an RTOS comes with sev-
eral disadvantages, including scheduler overhead and ine�cient memory usage. We develop
LTA (Library for Timing-aware Actors), and adapt Lingua Franca, a polyglot coordination
language, as alternative concurrency systems. We demonstrate that these thread-less con-
currency systems can o↵er more precise timing than an RTOS, while also consuming less
memory.



i

Contents

Contents i

1 Introduction 1
1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Evaluation Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Alternative Concurrency Models 4
2.1 Green Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Coroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Protothreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Async/Await . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Event-driven Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Actor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 LTA 11
3.1 Terminology and API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Lingua Franca 17
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Platform API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Adaption to Embedded Platforms . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Memory 23
5.1 FreeRTOS Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 LTA Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Lingua Franca Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Code Size Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Core Interference 27
6.1 RP2040 Bus Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Instruction Fetch Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



ii

6.3 Data Memory Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Timing 36
7.1 Causes of Timing Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 Precision at Low Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.5 Precision at High Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Case Study: Tunnelling Ball Device 44
8.1 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 Physical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.3 Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.4 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.5 Software Version 1: LTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.6 Software Version 2: Lingua Franca . . . . . . . . . . . . . . . . . . . . . . . 55
8.7 Software Version 3: Lingua Franca with Programmable IO . . . . . . . . . . 56
8.8 Potential Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9 Conclusion and Future Work 59

Bibliography 61



iii

Acknowledgments

I would first like to thank Shaokai Lin for bringing me into the lab and for mentoring me
through my earliest stages as a researcher. I would also like to thank my advisor Professor
Edward A. Lee for giving me the opportunity to take part in the 5th Year Masters program,
as well as his patience, advice and mentorship throughout it. I want to thank Erling Jellum
and Marten Lohstroh for their mentorship over the last several years. Finally, many thanks
to everyone in the lab group; it has been an honor to be part of this group, and everyone’s
work has been inspiring to witness.



1

Chapter 1

Introduction

Threads are a nearly ubiquitous construct in modern computer science. In general-purpose
computing, threads are a popular mechanism for parallelism and concurrency, opening the
door to a wide range of tasks that would not be possible otherwise. In the world of embedded
systems, RTOSes make threads available to embedded systems programmers, to adapt this
familiar model onto low-level systems.

However, threading-based systems su↵er from a variety of downsides. To begin with,
threading often comes with significant memory overhead, which can be a problem for highly
concurrent systems, and systems that have tight memory constraints. Thread schedulers
have non-trivial overhead, and context switching may incur more overhead than alternate
approaches. When there are more software threads than hardware threads, the execution
time of threads may become highly variable, depending on how the scheduler decides to
schedule threads. Finally, as noted by Edward Lee in his paper The Problem with Threads,
threaded computation is highly nondeterministic and opens the door to data races, deadlocks,
and other common concurrent pitfalls [7].

Several of these problems can become showstoppers in the context of hard real-time
systems. These systems depend on worst case execution time estimates to meet real-time
deadlines, and any added variance in timing could be prohibitive. At the same time, these
systems could benefit from concurrency, and the additional computing power made available
by parallelizing across multiple cores. This presents a need for alternative system that o↵ers
concurrency, but avoids the downsides of a threading-based system.

In this thesis, we present two such alternatives. The first is an actor library developed
to meet the needs of hard real-time systems. The second, Lingua Franca, is a system for
deterministic concurrency that we adapt to the RP2040. Each has unique advantages and
drawbacks, and represent di↵erent points in the design space.

1.1 Organization

The topics covered in this thesis are as follows:
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• This chapter covers preliminaries and background.

• Chapter 2 will cover several concurrency models which can be used as alternatives to
threading. This is mainly background, but may be interesting for anyone researching
software architecture or programming language design.

• Chapter 3 describes LTA (Library for Timing-aware Actors), an actor library we de-
veloped for the RP2040.

• Chapter 4 describes Lingua Franca, a polyglot coordination language developed at
Berkeley. It also described contributions we made to adapt it to the RP2040.

• Chapters 5, 6, and 7 evaluate the performance of FreeRTOS, LTA, and Lingua Franca
on the RP2040. Specifically, Chapter 5 evaluates memory usage, Chapter 6 evaluates
timing predictability of code execution, and Chapter 7 evaluates timing predictability
with regards to scheduling overhead.

• Chapter 8 describes the tunnelling ball device, a hardware demonstration of the capa-
bilities of LTA and Lingua Franca. The device requires a control loop executing every
62.5 microseconds with microsecond-level precision, demonstrating that LTA and Lin-
gua Franca can meet tight timing requirements and are appropriate for hard real-time
systems.

1.2 Evaluation Context

RP2040

The RP2040 is a dual-core ARM Cortex-M0+ microprocessor by Raspberry Pi. It was
released in 2021 with development boards available for just $4, making this a low cost
and powerful option for embedded systems. One of the unique features of the RP2040 is
its programmable IO (PIO), which is a collection of hardware state machines that can be
programmed to read inputs or trigger outputs at cycle accurate times. This can be used
to handle a wide range of tasks, including bit-banging communication protocols, driving
VGA displays, and emulating a logic analyzer. This feature makes the RP2040 applicable in
extremely precise timing applications, where software-driven actuation might not otherwise
be possible.

Given its low cost and applicability to hard real-time systems, the RP2040 was chosen as
the primary microprocessor for the evaluations in this thesis. Although most of the results
should be applicable to other microprocessors, using a single microprocessor allows us focus
our evaluation and investigate low-level micro-architectural details that may a↵ect timing
(particularly in Chapter 6).
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FreeRTOS

A major goal of this thesis is to compare non-threading approaches to RTOS-based ap-
proaches, so we choose an e�cient and widely-used RTOS to represent the class. FreeRTOS
fits this bill perfectly. It is a free, open-source RTOS widely used in embedded systems,
and has good performance according to prior research. When compared to alternatives like
Zephyr, FreeRTOS is relatively minimal, and focuses on the scheduler and related synchro-
nization primitives.

Goals and Key Results

This thesis focuses on hard real-time systems, so the evaluation metrics focus on constraints
that head real-time systems typically face. Chapter 5 evaluates memory usage, concluding
that for highly-concurrent programs with minimal state, FreeRTOS uses nearly 90 times more
memory than an equivalent LTA program, and 6 times more memory than an equivalent Lin-
gua Franca program. Chapter 6 evaluates how the microarchitecture of the RP2040 a↵ects
program timing, concluding that FreeRTOS may significantly increase the standard devia-
tion of execution times due to using heap-allocated stacks. Chapter 7 evaluates scheduling
overhead, concluding that LTA is able to o↵er higher timing precision and lower scheduling
overhead than FreeRTOS.
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Chapter 2

Alternative Concurrency Models

The main motivation for the work in this thesis is to investigate alternatives to threading
for embedded systems. Although we develop two alternatives (Chapters 3 and 4), there
is a diverse space of potential alternative concurrency systems that can be explored. This
chapter gives background on several concurrency models, both in general-purpose computing
and in the space of embedded systems.

2.1 Green Threads

In a general purpose OS, user threads are scheduled by the kernel, and are typically backed
by an associated kernel thread. These two stacks and associated kernel structures have
significant overhead, making them unsuitable for tasks like handling millions of concurrent
connections.

Green threads are one answer to this problem. Rather than being backed by kernel
structures, green threads are threads scheduled by the user process. This gives them lower
overhead, and enables creating many more of them than ordinary user threads. The major
downside of this approach is that since green threading runtimes map many green threads
onto a single operating system thread, if a green thread executes a blocking operation, it
blocks many threads at once. This problem can be mitigated by using asynchronous IO, but
this adds complexity. One example of a successful green threading runtime is the runtime
used by the Go programming language, which calls its green threads “goroutines”.

In systems without virtual memory (including many microprocessors, like the RP2040),
there is no separation between kernel space and user space, so there is no distinction between
threading and green-threading. The goals of an RTOS and a green threading runtime are
very similar: the RTOS need to schedule many RTOS threads onto a few hardware threads,
and a green threading runtime needs to schedule many green threads onto a few operating
system threads. Some techniques used in green threading systems may be useful for RTOSes,
and vice versa. For example, segmented stacks, a feature found in Go, may also be applied
to embedded systems [9].
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2.2 Coroutines

In a normal program, it is assumed that execution will run sequentially, and consume the
resources of the current thread until it is done running. For example, in Listing 2.1, there
is an implicit assumption that the processor is “busy” while reverse_file is being run.
However, in reality, the processor needs to wait for long periods of time while asynchronous
operations run. For example, the thread is typically blocked while the file is being read,
during which time the OS may decide to run another thread.

1 void reverse_file(char* filename) {

2 char contents [100];

3 read_file(contents , 100, filename);

4 reverse(contents , 100);

5 write_file(contents , 100, filename);

6 }

Listing 2.1: Example of a subroutine

1 void reverse_file(char* filename) {

2 char contents [100];

3 read_file(contents , 100, filename);

4 yield ();

5 reverse(contents , 100);

6 write_file(contents , 100, filename);

7 yield ();

8 }

Listing 2.2: Example of a coroutine

In general, a subroutine is called, works for a bit, then (optionally) returns a value. A
coroutine can be thought of as a generalization of a subroutine. Rather than simply executing
until it is finished, a coroutine may stop (yield) at any point during its execution. The caller
then needs to resume the coroutine at a later point in time, and the coroutine’s execution
continues again until the next yield point. For example, in Listing 2.2, the read_file and
write_file functions do not complete a read or write; they simply start an operation, and
the coroutine yields until the operation is finished (presumably the IO functions also do some
bookkeeping to make sure reverse_file) will be resumed at the correct time). Listing 2.2
does not correspond to any real coroutine system; it uses a hypothetical syntax created for
pedagogical purposes.

Under the hood, many coroutine systems transform coroutines into finite state machines.
For example, Listing 2.3 is a hypothetical state machine that exhibits the same behavior as
the coroutine in Listing 2.2.
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1 char* filename;

2 char contents [100];

3 int state;

4 void reverse_file () {

5 switch (state) {

6 case STATE_1:

7 read_file(contents , 100, filename);

8 state = STATE_2;

9 return;

10 case STATE_2:

11 reverse(contents , 100);

12 write_file(contents , 100, filename);

13 state = STATE_3;

14 return;

15 case STATE_3:

16 state = FINISHED;

17 return;

18 }

19 }

Listing 2.3: Coroutine turned into a state machine

There are many di↵erent flavors of coroutine, and a myriad of di↵erent syntaxes to
support them. One split is symmetric coroutines vs asymmetric coroutines. The example
in Listing 2.2 is an example of an asymmetric coroutine, where the coroutine can only yield
back to the caller. In contrast, in a symmetric coroutine, the coroutine must specify a yield
destination. Another split is stackless vs stackful coroutines. Stackless coroutines can not
call other coroutines, so coroutines may only exist at the top level. In contrast, stackful
coroutines may call other coroutines (thus creating a stack of coroutines to resume at any
yield point). Implementation-wise, a stackful coroutine’s state needs a structure similar to
a thread stack, which often takes more memory than the state of a stackless coroutine.

Coroutines are closely related to generators. Generators are essentially a simple form of
asymmetric coroutine, and often have a very similar implementation. In fact, in October
2023, the Rust programming language renamed its Generator trait to Coroutine, as it “was
e↵ectively a coroutine” [13]. Typically, the distinction between generators and coroutines
is that generators only produce values, while coroutines both produce and consume values
when yielding.
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2.3 Protothreads

The Protothreads library implements asymmetric stackless coroutines in C. It is written by
Adam Dunkels and aimed at memory constrained systems, including embedded systems [3].
Although C doesn’t natively support syntax for coroutines, the library uses a set of macros
to turn coroutine code into a sequence of switch statements. For example, Listing 2.4 shows
an example of a coroutine written using the protothreads library (adapted from an example
on the protothreads website).

1 PT_THREAD(example(struct pt *pt)) {

2 PT_BEGIN(pt);

3 while (1) {

4 if(initiate_io ()) {

5 PT_WAIT_UNTIL(pt , io_completed ());

6 read_data ();

7 }

8 }

9 PT_END(pt);

10 }

Listing 2.4: A protothreads example

1 char example(struct pt *pt) {

2 switch ((pt)->lc) {

3 case 0:

4 while (1) {

5 if (initiate_io ()) {

6 (pt)->lc = 13;

7 case 13:

8 if (! io_completed ()) {

9 return PT_WAITING;

10 }

11 read_data ();

12 }

13 }

14 }

15 (pt)->lc = 0;

16 return PT_ENDED;

17 }

Listing 2.5: Protothreads example after the macros are expanded
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After the macros are expanded, the example in Listing 2.4 turns into Listing 2.5 (some
parts omitted for clarity). Note that the fundamental construct that makes the library
work is a switch statement; the library relies on the fact that switch statements can be
interleaved with other control structures. For example, in Listing 2.5, the switch statement
is interleaved with the while and if. This may seem reminiscent of Du↵’s device, which
is not just coincidence: protothreads are based o↵ of a coroutine implementation by Simon
Tatham, who was inspired by Du↵’s device [12].

The protothreads library is extremely memory e�cient; it only uses a single integer to
represent the state of each coroutine. However, this comes with an important downside:
coroutines may not use any stack variables across yield points. This means that not only are
the coroutines stackless, they are also “data-less” as well. Stack variables can be emulated
using global variables, but this makes the coroutines non-reentrant. Tom Du↵ (who created
Du↵’s device) thought this limitation was prohibitive, commenting “I never thought it was an
adequate general-purpose coroutine implementation because it’s not easy to have multiple
simultaneous activations of a coroutine and it’s not possible using this method to have
coroutines give up control anywhere but in their top-level routine” [1].

2.4 Async/Await

Async/Await is a paradigm commonly implemented using asymmetric stackless coroutines.
If approached from a coroutine perspective, then async functions are coroutines with yield
points specified by the await keyword. If approached from a programmer’s perspective,
then async functions are similar to normal functions, except they have special magic that
lets them do IO without blocking.

1 async function reverse_file(filename) {

2 let contents = await read_file(contents , filename);

3 reverse(contents);

4 await write_file(contents , filename);

5 }

Listing 2.6: Example of an asynchronous function in Javascript

Many modern languages include syntax for the async/await, including F#, C#, Python,
Javascript, and Rust. Async/await is popular for the implementation of web servers, allowing
them to handle millions of concurrent connections with only a few threads.

The Rust programming language is unique in that it targets system level software, and has
strong support for async/await. In particular, Embassy is a Rust library aimed at embedded
applications, that supports tasks written using async/await. Embassy contains hardware
abstraction layer (HAL) implementations for several popular microcontrollers, including the
RP2040 [4].
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2.5 Event-driven Programming

In an event-driven architecture, rather than having execution units (threads / coroutines /
etc) continuously execute tasks, the system responds to incoming events as they happen.
For example, consider a hypothetical program that lights up an LED every time a button is
pressed. One could dedicate a thread to the button and the light, as in Listing 2.7. However,
the system could also be handled in an event-driven manner, as in Listing 2.8. This has the
advantage of not needing a thread stack, and being able to wait for the button press without
polling.

1 void button_task () {

2 while (1) {

3 // poll the button

4 while (! button_is pressed ()) {

5 sleep_ms (10);

6 }

7 turn_on_led ();

8 sleep_ms (1000);

9 turn_off_led ();

10 }

11 }

Listing 2.7: Example of a button system using threads

1 void button_interrupt_handler () {

2 turn_on_led ();

3 add_timer_ms (1000);

4 }

5
6 void timer_interrupt_handler () {

7 turn_off_led ();

8 }

Listing 2.8: Example of a button system using events

Event driven systems work best when the events are independent and share no state
(as in Listing 2.8). However, they get trickier to design when events need to be associ-
ated with state. For example, suppose we wanted to scale the above example to multiple
buttons and associated LEDs. With threading, this would simply be a matter of initializ-
ing a matching number of threads, and initializing each thread with the appropriate GPIO
pin numbers. With the event driven system, there needs to be some way of telling the
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timer_interrupt_handler which LED to turn o↵. In this particular example, it can be
solved with a global queue of LEDs to turn o↵, but more complex scenarios may require
more complex solutions.

2.6 Actor Models

An actor model is built around isolated units call actors. Actors run concurrently, and
interact only by sending messages to each other. Each individual actor may be viewed as
an event-driven system, where events are messages from other actors. This naturally solves
some of the state-tracking issues of event driven systems, as each actor can manage its own
state.

Because actors interact only by sending messages, actor models avoid several common
problems present in other models of concurrent computation. For example, threading models
must synchronize memory using mutexes to prevent data races. Improper use of mutexes
may lead to further problems, such as deadlock, livelock, and starvation. In contrast, actors
typically don’t share state, and coordinate via messages instead. This sidesteps most of these
common problems.

Actors are a major part of the Erlang programming language, which is famous for its
use in extremely reliable systems. Joe Armstrong (co-creator of Erlang), in his 2003 PhD
dissertation, described the main focus of Erlang as large, distributed, fault-tolerant systems
[2]. Actors lend themselves well to this domain: independent actors are a good fit for a
distributed system, and fault-tolerance can be achieved by restarting failed actors.

Actor models may be particularly viable for embedded systems. In the paper Actor-
oriented design of embedded hardware and software systems [6], the authors note that actors
lend themselves well to components with well-defined interfaces, and several models of com-
putation (synchronous/reactive, dataflow, discrete-event, etc) can be described using actors.



11

Chapter 3

LTA

In Chapter 2, we noted that actor models have unique advantages that can be used for
embedded systems. Actor frameworks exist in many languages, including C. However, most
frameworks have a focus on soft-realtime systems, and give very little regard to the timing
of messages. For example, Actix (a prominent actor framwork for Rust) focuses primarily
on web servers.

In order to test the viability of actor models for embedded systems, an actor framework is
needed that can meet the requirements of hard-realtime systems. Specifically, the framework
should be able to:

• Run functions at precise times

• E�ciently handle high-frequency events

• Have low overhead (both in computation and memory)

These requirements may not be necessary for all hard real-time systems, but are aimed at
satisfying the systems with the most demanding timing requirements. In particular, the
benchmarks in Chapter 7 and the system in Chapter 8 require all of these.

We designed LTA (Library for Timing-aware Actors) to be a lightweight library that
meets these requirements, and to provide an e�cient actor library to compare against FreeR-
TOS. It is designed for the RP2040, but can be ported to any platform that can implement
semaphores and critical sections.

3.1 Terminology and API

High-level concepts

Most actor models are built around actors and messages. LTA deviates slightly by requiring
that each message be accompanied by a time at which to send the message. This makes
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the messages closely resemble the events in an event-driven system, so they are called events
rather than messages.

Each actor needs one or more functions to “receive” events. These functions are called
actions, and have a specific signature. Each actor may only have one action running at
a time, which ensures that actions may freely modify an actor’s state without the need
for locks. Actions should not block execution by sleeping or waiting on synchronization
variables: sleeping or waiting can be accomplished by scheduling events instead.

All events are stored in a global event queue. An actor “sends” an event to another actor
(or to itself) by adding an event to the global event queue.

Unlike many actor frameworks, actors cannot be created dynamically. All actors should
be known at the start of the program, to prevent the need to dynamically allocate memory.

Terminology

• Actor: An entity with a unique ID and (optionally) some associated data.

• Action: A function that is executed when an event is invoked.

• Invoke: To start the execution of an event.

• Release time: The earliest time an event may be invoked. Ideally events should be
invoked close to their release times.

• Start time: The time that the event is actually invoked.

• Busy/Free: An actor is busy if it is currently executing or about to invoke an event.
Otherwise, the actor is free.

• Blocked: An event is blocked if its corresponding actor is busy.

API

Actions must have the following signature:

1 typedef void (* action)(uint64_t release_time_us , size_t

actor_id , void* arg);

Notably, when an action is being run, it will know the release time of the event, which
actor the event is for, and an optional argument that may carry data. The release time is
useful if the action needs to check for deadlines, or schedule something periodically.

There are only four functions in LTA. They are:

1 int event_queue_init(event_queue_t* queue , size_t max_size ,

size_t num_actors);

2
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3 void event_queue_deinit(event_queue_t* queue);

4
5 void work(event_queue_t* queue);

6
7 int schedule_event(event_queue_t* queue , uint64_t

release_time_us , size_t actor_id , action fn , void* arg);

The first function, event_queue_init, initializes the global event queue. This allocates
all the memory needed for LTA to work; none of the other functions allocate memory. The
max_size argument corresponds to the maximum number of events expected to be in the
queue at any given time. The num_actors argument corresponds to the total number of
actors in the system.

The second function, event_queue_deinit, is rarely used but may be useful for a pro-
gram that needs to gracefully shut down. It is possible to use multiple event queues (i.e. one
on each core), but this is atypical.

The third function, work, is essentially an infinite loop that waits for events, then executes
them. Since the rp2040 has two cores, a typical pattern is to do some setup, then run work

on both cores.
The fourth function, schedule_event, adds an event to the global event queue. The

parameters are:

• queue: The global event queue.

• release_time_us: The release time of the action, in microseconds since the rp2040’s
boot time.

• actor_id: Which actor this event is for. This should be in the range [0, num_actors
- 1] inclusive.

• fn: The action to invoke.

• arg: Optional argument to the action.

3.2 Algorithms

The event queue keeps two large arrays. The first is a large boolean array, representing
whether each actor is busy. The second is a large queue of events. The event array is
a linear, circular array, which allows O(1) operations in the best case (when events are
scheduled in order). The events in the event array are sorted by release time, although they
don’t necessarily run in order of release time. Figure 3.1 shows what an event queue with 5
actors and 8 events might look like at one point in time.

It might seem odd to use a linear array, which has O(N) operations in the worst case,
rather than a heap, which has sublinear operations. The reasons are twofold: First, most
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Figure 3.1: Example state of an event queue at t = 130. Actors 1 and 2 are busy, so all
events corresponding to them are blocked. The second event is ready, since its release time
has passed, and it is non-blocked. The other non-blocked events are not ready yet.

systems tend to have a small number of events outstanding at any given time. For example,
actors that perform polling loops will simply send an event to themselves once for every poll,
so the number of events is always equal to the number of active polling loops (a few dozen, at
most. Not very many systems have more polling loops than GPIO pins). Secondly, a linear
array can more gracefully handle blocked events. For example, if the release time of an event
passes but its actor is busy, the event is blocked until the actor has finished processing its
previous event. In a linear array, the blocked event may simply be left at the head of the
array and skipped over. In a heap, a separate structure would be needed to store blocked
events.

Scheduling an Event

Scheduling an event is relatively straightforward. All the program needs to do is enter a
critical section, insert the event at the end of the queue, bubble it down through the queue
if needed (to keep the queue sorted by release time), exit the critical section, and notify any
waiting threads that the queue has changed. Figure 3.2 shows the result if an event for actor
3 at time 134 is inserted into the queue shown in figure 3.1.

Work

A worker thread’s goal is simple: always execute the earliest event that isn’t blocked. The
only thing that complicates this goal is some minor bookkeeping to make sure that an actor
always only has one running event. A quick outline of the algorithm is as follows:



CHAPTER 3. LTA 15

Figure 3.2: Example state of an event queue at t = 130 after a new event (T=134, A:3) is
inserted.

1. First, the worker needs to “claim” the earliest event. It checks the queue for the earliest
unblocked event. If it finds one, it removes it from the queue, and marks the actor as
busy. Otherwise, it waits for a notification from another thread scheduling an event.

2. The worker waits until the release time of the event. Earlier events may appear during
this time, either from other threads, or from interrupts. If so, the worker will be
notified, in which case it checks the queue for the earliest unblocked event. If it finds
one earlier than the one it has claimed, it puts its claimed event back on the queue,
marks the actor as free, claims the new earliest event, and marks the new event’s actor
as busy. It can then go back to waiting.

3. Once the release time of the event occurs, the worker invokes the event (executes the
action), then marks the actor as free. The worker then goes back to step 1 (claiming
an event).

Note that event claiming is an optimization; an earlier version of the algorithm had
workers only remove events from the queue once they became ready to execute. However,
this introduces a small delay between the release time of the event and event invocation,
especially if multiple events release at the same time. Event claiming was introduced as a
way of reducing this issue and making start times more precisely align with release times.

A valid question to ask is whether the worker needs to notify the other threads when
marking an actor as free. After all, marking an actor as free unblocks events, which po-
tentially could result in another worker grabbing an earlier event. However, the notifying
worker itself is about to grab an event (either in step 1, or in step 2). If it is possible to
grab an earlier event for the newly free actor, the notifying worker itself is going to do so,
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mark the same actor as busy again, and thus undermine its own e↵ort in notifying the other
threads. Therefore, it’s simpler to just not notify at all, except when new events appear.
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Chapter 4

Lingua Franca

4.1 Motivation

Pure actor models like LTA avoid several pitfalls with threading models, but can su↵er from
concurrency problems of their own. For example, consider the program in Listing 4.1. If
actor_1_loop and actor_2_loop are both started at the same time, the sequence of states
it prints often looks like 0,1,3,3,5,5 rather than 0,1,2,3,4,5 like one might expect. This is
because depending on which schedule_event call occurs first, either of actor_0_print or
actor_0_increment could be called first. Unfortunately, the program exhibits nondeter-
ministic behavior.

Bugs related to nondeterministic behavior are significantly harder to fix compared to their
deterministic counterparts. The number of states a program can be in rises exponentially
with the number of threads, further exacerbating this issue.

Going back to Listing 4.1, we can view the 4 actions as happening at the same “logical
time”. In reality, the start times of the actions are separated by a few microseconds, but
on an infinitely fast microprocessor, all 4 could execute before the clock ticks over to the
next microsecond. The race condition occurs because although the actions all occur at the
same logical time, the order they execute depends on the physical time of their execution
(which is nondeterministic). Therefore, nondeterminism can be avoided by structuring the
program flow based on logical time rather than physical time, and deterministically ordering
messages that occur at the same logical time.

4.2 Concepts

Lingua Franca is a polygot coordination language that provides deterministic concurrency.
Rather than being a general-purpose programming language by itself, it “wraps” other pro-
gramming languages such as C, Python, and Rust. The overall structure of an LF program
uses LF syntax to define the reactors, reactions, and other timing features, and another
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1 int actor_0_state;

2
3 void actor_0_print (...) {

4 printf("%d\n", actor_0_state);

5 }

6
7 void actor_0_increment (...) {

8 actor_0_state += 1;

9 }

10
11 void actor_1_loop(uint64_t t, ...) {

12 schedule_event (&q, t, 0, actor_0_print , NULL);

13 schedule_event (&q, t + 1000000 , 1, actor_1_loop , NULL);

14 }

15
16 void actor_2_loop(uint64_t t, ...) {

17 schedule_event (&q, t, 0, actor_0_increment , NULL);

18 schedule_event (&q, t + 1000000 , 2, actor_2_loop , NULL);

19 }

Listing 4.1: Example of an actor program with a race condition. Some arguments are
ommitted for clarity.

1 reactor Printer {

2 input print: bool

3 input increment: int

4 state x: int

5
6 reaction(print) {=

7 printf("%d\n", self ->x);

8 =}

9
10 reaction(increment) {=

11 self ->x += increment ->value;

12 =}

13 }

Listing 4.2: Example of a Lingua Franca reactor, implementing the same logic as actor 0
from Listing 4.1. Lingua Franca guarentees that reactions with the same logical timestamp
run in order, so this reactor will always print before it increments.
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programming language to write the bodies of each reaction. An example is shown in Listing
4.2.

Reactions and Reactors

Lingua Franca reactors are similar to actors in other actor frameworks, and reactions are
similar to the actions described in Chapter 3. However, reactors have some slightly di↵erent
semantics from other actor models in order to provide concurrency guarantees:

• A reactor has explicit inputs and outputs. Rather than sending messages directly to
other actors, a reactor sets its outputs, which are connected to the inputs of other
reactors.

• Inputs and outputs are only set once per timestamp. If an output is set multiple times
at a given timestamp, only the last one takes e↵ect.

• Reactions within a reactor are run one at a time. If multiple reactions are run at a
given timestamp, they will always run top to bottom.

Logical and Physical Time

On an infinitely fast computer, all events scheduled for a given timestamp would happen
instantly at that timestamp. Lingua Franca uses this as its model of logical time; this is
essentially equivalent to release time (as described in 3).

The logical time of the system always increments in lockstep across the whole system.
Naturally, this means it always lags slightly behind the physical clock of the system.

Reactions can be scheduled either with timers, or with actions (actions in Lingua Franca
are similar to events from Chapter 3). Timers have a constant period, and always trigger
reactions once per period. By contrast, actions can be scheduled to trigger a reaction at any
arbitrary point in the future.

4.3 Platform API

Lingua Franca, as the name implies, aims to support a wide variety of languages and plat-
forms. Within the C language specifically, Lingua Franca aims to support OS platforms
like Windows, Linux, and MacOS, RTOS platforms like Zephyr, and bare-metal embedded
platforms like Arduino and the RP2040.

Lingua Franca has two runtimes for the C language: a single-threaded runtime and a
multi-threaded runtime. The single-threaded runtime is more e�cient for single-core plat-
forms or programs that do not require parallelism, while the multi-threaded runtime can
take advantage of multiple cores at the cost of some overhead. To make the runtimes as
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portable as possible, they are implemented on top of an internal platform API, which is then
implemented for every platform that Lingua Franca supports.

A simplified view of the platform API is presented in Listings 4.3 and 4.4. The single-
threaded runtime presents facilities to get the time, sleep, and wake up the scheduler from an
interrupt. In contrast, the multi-threaded runtime emulates a subset of the pthreads inter-
face, with lf_cond_signal and _lf_cond_timedwait taking on the roles of lf_interrupt
and _lf_interruptable_sleep_until_locked. In theory, one could port Lingua Franca to
an entirely new platform by simply implementing these functions.

1 void _lf_initialize_clock(void);

2 int _lf_clock_gettime(instant_t* t);

3 int _lf_interruptable_sleep_until_locked(environment_t* env ,

instant_t wakeup_time);

4 int lf_disable_interrupts_nested ();

5 int lf_enable_interrupts_nested ();

6 int _lf_single_threaded_notify_of_event ();

Listing 4.3: Lingua Franca platform API for the single-threaded runtime.

1 void _lf_initialize_clock(void);

2 int _lf_clock_gettime(instant_t* t);

3 int lf_available_cores ();

4 int lf_thread_create(lf_thread_t* thread , void *(* lf_thread)

(void *), void* arguments);

5 int lf_thread_join(lf_thread_t thread , void** thread_return);

6 int lf_mutex_init(lf_mutex_t* mutex);

7 int lf_mutex_lock(lf_mutex_t* mutex);

8 int lf_mutex_unlock(lf_mutex_t* mutex);

9 int lf_cond_init(lf_cond_t* cond , lf_mutex_t* mutex);

10 int lf_cond_broadcast(lf_cond_t* cond);

11 int lf_cond_signal(lf_cond_t* cond);

12 int lf_cond_wait(lf_cond_t* cond);

13 int _lf_cond_timedwait(lf_cond_t* cond , instant_t wakeup_time

);

Listing 4.4: Lingua Franca platform API for the multi-threaded runtime.
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4.4 Adaption to Embedded Platforms

When Lingua Franca was first developed, it only targeted OS platforms such as Windows,
Linux, and MacOS. This simplified early development, but also constrained the platform
API. However, as the project grew, work was put into making the project more portable,
which exposed a series of unique challenges.

Single-core platforms

The earliest e↵orts were to port the single-threaded runtime to embedded platforms. The
single-threaded runtime was extremely simple at this time, with the only required functions
being _lf_initialize_clock, _lf_clock_gettime, and lf_sleep.

The two earliest platforms to be ported were the NRF52 and Arduino family of pro-
cessors1. Each presented unique challenges. In particular, the NRF52 presented a need to
schedule actions from interrupts, which led to some reorganization of the runtime and the
introduction of interrupt-related functions to the platform API. The Arduino support pre-
sented a need to optimize for extremely resource constrained chips, which is still in progress
today.

Zephyr

The next platform to join the embedded systems list was an implementation of the runtime
on top of the Zephyr RTOS. This, in theory, allows Lingua Franca to run on any platform
that Zephyr can run on. However, the addition of the Zephyr kernel adds overhead to the
runtime, so this solution is not ideal.

One of the hurdles that needed to be solved with the port to Zephyr was the handling
of atomics. The multi-threaded runtime uses atomic primitives (i.e. atomic add) to improve
scheduler performance, but atomic primitives are not available on many embedded plat-
forms. Therefore, a polyfill was created to replace atomic instructions with a mutex-based
implementation on platforms that do not support them.

Bare metal multi-core platforms

After the port to Zephyr, e↵orts were started by Abhi Gundrala to port both runtimes to
the RP2040. This represents the first platform that supports the multi-threaded runtime,
but without an OS or RTOS.

This is where our contributions to Lingua Franca begin. In order to finish the port to
the RP2040, we implemented the following:

1One of the first research projects I ever worked on was LF runtime support for the NRF52. Back then,
I barely knew how to write C, and most of the tooling was a complete mystery to me. Now I am older and
wiser and still barely know how to write C.
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• Implementations of underlying synchronization primitives: the multi-threaded runtime
relies on mutexes and condition variables. The mutexes could be directly implemented
using mutexes from the RP2040’s standard library. However, condition variables are
not present in the RP2040’s standard library, so those were implemented on top of
semaphores, relying on the fact that the RP2040 only has two cores.

• Implementation of lf_thread_create: On other multi-threaded platforms (OSes and
RTOSes), the platform supports an arbitrary number of threads, and lf_thread_create

can simply create one. However, in a bare-metal environment running on an multicore
processor, lf_thread_create needs to assign the thread function to one of the avail-
able cores. Generally, the nth invocation of lf_thread_create should assign the func-
tion to core n+1. The RP2040’s standard library contains multicore_launch_core1
for doing this, so lf_thread_create simply needs to check that it isn’t being called
twice and call multicore_launch_core1.

• Modifications to runtime thread creation: before, to create N workers, the multi-
threaded runtime would create N threads, then join them all from the main thread.
This is fine for OS platforms, as the idle main thread is relatively inexpensive. However,
for the RP2040, which only has two hardware threads, this strategy would only allow
one worker (defeating the purpose of the multi-threaded runtime). To remedy this,
we modified the runtime to also run a worker on the main thread, thus allowing two
workers on the RP2040, and generally allowing N workers for an N-core embedded
system.

• Critical sections for interrupts: in the multi-threaded runtime, the global data struc-
tures (specifically, the event queue) are protected via mutexes. However, on an embed-
ded platform with interrupts, this can deadlock if an interrupt handler tries to schedule
an action. To remedy this, access to the event queue needs to be protected with a crit-
ical section (which disables interrupts) rather than a mutex. The implementation of
this change is in progress as of the time of writing.

The end result of these changes is that the multi-threaded runtime is now equipped to
e�ciently run Lingua Franca programs in bare-metal environments. Generally, the runtime
creates N workers that get assigned directly to the N cores of the processor; these workers
can then run indefinitely with no context switches (apart from those triggered by interrupts).
This allows the Lingua Franca scheduler to take full advantage of di↵erent processors, simply
by scaling the number of workers to the number of cores.
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Chapter 5

Memory

One common concern with threading-based systems is the memory overhead. In this chapter,
we analyze that concern and compare theoretical memory usages between FreeRTOS, LTA,
and Lingua Franca.

5.1 FreeRTOS Memory Usage

The main reason why threads tend to have a high memory overhead is that you need a
separate stack for each thread. The first problem is determining how much stack a given
thread will use. It is sometimes possible to statically analyze how much stack a given function
will use, but this is a nontrivial task and adds extra complexity to an engineer’s workflow.
In particular, analyzing the stack usage of a given thread involves expanding the call tree
of its entry point function (i.e. with the dump-rtl-expand compilation flag) and adding up
the stack usage of each function (using information from the stack-usage compilation flag).

The easier thing to do is initialize each thread stack to a “safe” amount, then increase
it if irregularities are noticed. Generally, “irregularity” means a program crash (i.e. a seg-
mentation fault on a general-purpose OS), or worse. Thankfully, several RTOSes (including
Zephyr and FreeRTOS) have capabilities to detect stack overflows, although FreeRTOS notes
that this introduces context switch overhead.

What is a “safe” amount for a thread stack? On Linux, the default stack size is 8 MB.
Given that most microcontrollers have RAM measuring in the kilobytes, this may not be a
wise choice for a microcontroller program. On the RP2040, which has 264kB of total SRAM,
each core’s main thread is given 2 kB of SRAM by default (see .ld file). Anecdotally, it takes
approximately 1kB of stack memory to use printf (with USB communication to the host),
so 2kB is a reasonable default.

The maximum number of possible threads is dependant on the heap size and the size of
each thread stack. On the RP2040, the .data section, .bss section, and heap all share the
4 large SRAM banks which contain a total 256 kB of RAM. When building FreeRTOS, the
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Stack size (bytes) Maximum thread count
128 892
256 607
512 370
1024 207
2048 110
4096 57

Table 5.1: Maximum number of threads in FreeRTOS with di↵erent stack sizes

maximum size the heap can be configured to (for a minimal test program) is 245 kB1. With
this heap size configured, we can verify the maximum number of threads by running a test
program that, given a stack size S and number of threads N , creates the threads (plus one
verification thread with a stack size of 1kB), verifies that they have started correctly, and
prints a verification message. The maximum value of N for each stack size is given in Table
5.1.

If we assume that FreeRTOS has a constant memory overhead and a constant overhead
per thread, Table 5.1 allows us to deduce that FreeRTOS has a constant overhead of around
7 kB (leaving 238 kB available for threads), and an overhead of 144 bytes per thread. This
is negligible for threads with large stacks (like the 2kB default discussed earlier), but may
be prohibitive on systems with less memory than the RP2040.

5.2 LTA Memory Usage

LTA has the following memory overheads:

• 48 bytes for the event queue

• 24 bytes for each event

• 1 byte for each actor

Although actors aren’t directly comparable to threads, the memory overhead for an actor
is still demonstrably lower than a FreeRTOS thread with even a tiny stack. For example,
a minimal actor that has a maximum of 1 event at a time uses 25 bytes of memory. In
contrast, a minimal thread with a tiny stack size of only 128 bytes still uses 272 bytes of
memory, which is an order of magnitude more than the actor.

1Configuring it higher causes the linker to complain that the .bss section overflows the RAM. Interest-
ingly, the FreeRTOS heap is actually a large static array (allocated in the .bss section), which is separate
from the heap section allocated in the linker script.
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What happens if we try to create as many actors as possible? As an extreme example,
one could imagine a program with N actors that each just print a message periodically. Each
actor has no state, and only creates one event a time, so the amount of memory this program
uses is roughly 48+25N . On the RP2040, the maximum value of N for this program is 10068
(determined via testing). This is an order of magnitude more than the number of threads
that FreeRTOS could create with 128-byte stacks, and two orders of magnitude greater than
the number of threads that FreeRTOS could create with 2 kB stacks.

5.3 Lingua Franca Memory Usage

Similar to LTA, the closest analogue that Lingua Franca has to threads are reactors. Reactors
vary in complexity, so the memory usage of a reactor depends on the number of reactions,
timers, actions, inputs, outputs, and more. Like LTA, the minimum useful reactor is one
that executes a bit of code periodically. In Lingua Franca, this requires just a timer and
single reaction.

An an experiment, we can create a bank of these minimal reactors, then use malloc to
estimate the heap usage (assuming that the next block to be allocated will lie after every
currently allocated block). The results are summarized in Figure 5.1. Unsurprisingly, the
graph is almost perfectly linear. Using a best-fit line, we can extrapolate that this program
uses approximately 360 bytes per reactor, plus a constant 13.3 kB of heap memory. Note
that a minimal bare-metal program with IO uses 9.6 kB of heap memory, so Lingua Franca
only adds 3.7 kB of constant overhead.

With these minimal reactors, the largest possible number of reactors on the RP2040 is
681. This is more than six times greater than the number of 2 kB threads possible under
FreeRTOS on the same hardware. Although such a large number of reactors is unlikely for
typical programs, this demonstrates the greater degree of concurrency that Lingua Franca
programs can attain under memory constraints.

5.4 Code Size Comparison

The RP2040 has access to 2 megabytes of flash memory, so it may seem like code size is a non-
issue. However, the RP2040 uses a 16 kB cache in front of the flash memory for instruction
fetches. Keeping a smaller code size allows better cache utilization and therefore faster
average execution. This is similarly relevant for other microprocessors that have instruction
caches. For example, the ESP32 series uses a 32 kB unified cache per core [11].

To estimate code size between di↵erent frameworks (FreeRTOS, LTA, and Lingua Franca),
we create a minimal blink program that uses the framework (i.e. in LTA an actor is used
and in FreeRTOS a thread is used). The results are as follows:

• On bare metal (no framework used), the binary file is 8.7 kB
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Figure 5.1: Heap usage of a Lingua Franca program with a large bank of reactors.

• For FreeRTOS, the binary file is 23.1 kB

• For LTA, the binary file is 15.1 kB

• For Lingua Franca, the binary file is 96.1 kB

The Lingua Franca result, unlike the others, includes code for communication over USB
(since the Lingua Franca runtime prints messages on startup and shutdown). However, the
Lingua Franca runtime is rather large, even when accounting for this. Much of the added
overhead is due to the inherent complexity of Lingua Franca’s model: it must keep track of
events, reactions, and scheduling with respect to a reaction graph.

FreeRTOS also incurs significant overhead, especially when compared to the bare metal
and LTA results. However, this is tolerable, especially for larger programs. For reference,
the LTA version of the code in Chapter 8 has a 39.8 kB binary.
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Chapter 6

Core Interference

For CPU-bound workloads, ideal scaling should give double the performance when using
both cores. Unfortunately, this is not the case, even if the cores are working on completely
independent tasks. On the RP2040 in particular, interference between the cores is common
and has severe implications for performance.

Core interference e↵ects are particularly distressing because they complicate worst case
execution time (WCET) measurements. In the presence of core interference e↵ects, a func-
tion’s running time depends not only its input, but also on the activity on the other core.
Given that estimating WCET is di�cult even on a single core, these e↵ects make it even
harder.

6.1 RP2040 Bus Fabric

The RP2040 contains two cores with no data or instruction cache. Each core accesses the
AHB-Lite Crossbar for every memory access, including instruction fetches and data accesses.
The Crossbar allows single-cycle access from either core to any of the 10 downstream ports,
so both cores may run at full speed as long as they are accessing separate memory devices.
However, if both cores try to access the same memory device, one core must stall for a cycle.
By default, this is done in a round-robin fashion, but may be configured to favor one core.

6.2 Instruction Fetch Conflicts

Bare Metal

The most common accesses to memory are instruction fetches. Most code is stored in flash
memory, which takes several cycles to fetch. However, the RP2040 uses a 16kB XIP (eXecute
In Place) cache, so most instruction fetches end up being single-cycle. When only one core
is running, this allows almost full speed execution.
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Figure 6.1: RP2040 Bus Fabric (from RP2040 Datasheet [8])

However, when both cores are running, both cores tend to make many accesses to the
XIP cache, causing the cores to stall frequently. We can demonstrate this by executing a
benchmark on Core 0, while Core 1 runs di↵erent workloads. The results of this experiment
are in Figure 6.2. Observe that the benchmark (on Core 0) runs quickly when Core 1 is
idle, and is significantly slower when Core 1 is also executing the benchmark. Surprisingly,
it performs even worse (20% slower) when Core 1 is running an infinite loop consisting of a
single unconditional branch.

The infinite loop on Core 1 causes Core 0 to perform especially poorly because the
infinite loop causes an instruction fetch on every cycle. The program uses the Arm Thumb
instruction set, which is composed mainly of 16-bit instructions, so most programs need an
instruction fetch every other cycle. Since the singular branch causes an instruction fetch
every single cycle, this causes a conflict every time Core 0 has an instruction fetch. Since
Core 0 has an instruction fetch for close to 50% of its cycles, it needs to stall for close to
25% of its cycles. This is consistent with the 20% decrease in performance that we see in
the benchmark. The di↵erence can be explained by the presence of multi-cycle instructions,
such as PUSH and POP.

FreeRTOS

If we create a single-task program in FreeRTOS, it seems to perform very poorly. In fact, if
we run the benchmark from the previous section on a FreeRTOS task, it performs even worse
than when both cores run the benchmark on bare metal. We can infer that this is because
while the benchmark is running on Core 0, Core 1 is running some non-trivial workload.
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Figure 6.2: Time taken to calculate fib(25) on Core 0 under di↵erent conditions. In the first
bar, Core 1 is idle. In the second bar, Core 1 is also calculating fib(25). In the third bar,
Core 1 is running an infinite loop.

Figure 6.3: Time taken to calculate fib(25) under di↵erent conditions. The blue bars are
as they are in Figure 6.2. The two red bars are from running the same benchmark in a
FreeRTOS task.



CHAPTER 6. CORE INTERFERENCE 30

Since there is only a single task (the benchmark), Core 0 is running the idle task, which
happens to be a busy waiting loop.

Luckily, this is a fixable problem. FreeRTOS allows applications to configure their own
idle task, so we can configure the idle task to execute the WFE instruction in a loop. The
WFE instruction puts the core into a low-power state until an event is raised. Since events
are raised infrequently, this causes the core to be idle almost all the time. With this change,
the benchmark matches the performance of the best bare-metal result, as shown in Figure
6.3.

Given that applications in FreeRTOS get significantly lower performance by default, to
be fair to FreeRTOS the rest of the benchmarks in this thesis will use this modification.

6.3 Data Memory Latency

Instruction fetches are not the only activity on the main bus; all loads and stores must use it
as well. Similar to how one core must stall if both are performing an instruction fetch from
the XIP cache, one core must also stall if both are performing a load or store on the same
SRAM bank. While not as frequent as instruction fetches, loads and stores still account for
a large portion of most programs, so this is a significant source of stalling.

It turns out that the way RTOS’s manage thread memory exacerbates this problem. In
fact, under the right conditions, the Fibonacci benchmark runs 19% slower on FreeRTOS
as a result of data memory stalling. Ordinarily, the e↵ect is not this severe, but this still
reveals a fundamental detriment to using an RTOS.

RP2040 Memory Layout

The rp2040 contains a 16kB ROM, 264kB of total SRAM, and access to external flash
memory. The SRAM is partitioned into six banks: four large 64kB banks (which we will
refer to as banks 0-3), and two small 4kB banks (which we will refer to as “scratch X” and
“scratch Y”).

The SRAM banks are mapped to the addresses shown in figure 6.4. Notably, there are
two ways to access the memory in the large SRAM banks: either individually in the upper
region, or via the word-striped memory in the lower region.

These SRAM banks are, for the most part, single cycle. However, as mentioned before,
if both cores try to access the same bank in the same cycle, one core must stall for a cycle.
The word-striped memory serves to alleviate this problem: if both cores are doing sequential
accesses, there is a much lower probability of a conflict if they access the word-striped
memory.

When running bare-metal programs the default linker script puts the core 0 stack in
Scratch X, the core 1 stack in Scratch Y, and the heap in the striped region. This guarantees
single-cycle accesses to the stack. However, this strategy only works when there are exactly
two stacks (one per core). This assumption holds for bare-metal programs, but an RTOS
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Figure 6.4: Memory map for rp2040.

must schedule many concurrent threads, each with their own stack. This means that in an
RTOS. thread stacks must be allocated from the heap. As a result, stack accesses are no
longer guaranteed to be single-cycle, leading to slightly lower performance.

Putting the heap in the striped SRAM region tends to minimize conflicts for heap ac-
cesses, and therefore minimize the performance loss from using heap-allocated stacks. How-
ever, it may not always be desirable to use striped SRAM. For example, if the application
uses a very large data bu↵er, it may be desirable to dedicate a large SRAM bank to it to
improve DMA performance. In this case, the heap (and consequently, the thread stacks)
must reside in the non-striped region, presumably occupying the other 3 large banks.

Since using the non-striped region has very di↵erent performance characteristics from
using the striped region, we test both scenarios.

Experimental Setup

To investigate the e↵ects of data memory stalling, we compare the average execution time
of each benchmark using the following methods:
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• FreeRTOS: the benchmark is run in two parallel threads. To reduce the scheduling
overhead, the system tick rate is set as low as possible (10Hz).

• LTA: the benchmark is run in two parallel actors.

• Lingua Franca: the benchmark is run in two parallel reactors.

• Bare metal: the benchmark is run directly on both cores of the RP2040.

For each method, we also test it using the striped region for the heap, and using the blocked
(non-striped) region for the heap. To eliminate as many variables as possible, the benchmarks
are written in assembly, and not inlined. This prevents GCC optimizations from a↵ecting
timing results. In addition, the code is compiled in release mode in all scenarios, to make the
scenarios as realistic as possible1. All benchmarks are run on the same hardware. During
each benchmark, the benchmarking function is run periodically 100 times, and the results
averaged.

Fibonacci Benchmark

The Fibonacci benchmark is a simple, recursive Fibonacci function. The majority of its
execution time is dominated by recursive function calls, making it a good candidate for
revealing the e↵ects of stack access conflicts.

Figure 6.5 shows the average execution times of the Fibonacci benchmark. Almost all
of the results are within 1% of each other, with the only exception being FreeRTOS using
the blocked heap. That result is 19% worse than the others, clearly showing the detrimental
e↵ects of frequent stack access conflicts.

From the data in Figure 6.5, it may appear that using the striped region for the heap
e↵ectively eliminates the timing consequences of heap-allocated stacks. While it is true that
FreeRTOS and the other frameworks have a similar average execution time when using a
striped heap, the timing results for FreeRTOS are much less consistent than the others.
Figure 6.6 shows the standard deviation of 100 trials for each scenario. As a result of
stack access conflicts, the standard deviations of FreeRTOS execution times are an order of
magnitude greater than the others.

Interestingly, the standard deviations of Lingua Franca’s results were much lower than any
of the others. In both tests, Lingua Franca’s standard deviations were under a microsecond,
which is not even visible in Figure 6.6. It is unknown why they are so low, but one plausible
explanation could be slight di↵erences in execution time starts reducing inter-core conflicts.

Matrix Multiplication Benchmark

Matrix multiplication is a computationally heavy task, especially for large matrices. Nor-
mally such matrices would be heap allocated or statically allocated, but might be stack

1As an extra precaution, the benchmarks were also repeated at di↵erent optimization levels. The results
are within margin of error of each other, so only the release mode results will be reported.
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Figure 6.5: Average execution time of Fibonacci benchmark.

Figure 6.6: Standard deviation of execution time of Fibonacci benchmark.
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Figure 6.7: Average execution time of the matrix multiplication benchmark.

allocated in niche situations. The matrix multiplication benchmark repeatedly multiplies
two small stack-allocated 10 by 10 matrices.

However, despite using a significant amount of stack memory, the matrix multiplication
benchmark actually does not spend much of its time doing stack accesses. The inner loop
consists mostly of mov, mul and add instructions (to calculate indices), so the e↵ects of loads
and stores are minimal.

Despite the benchmarking having a low number of stack accesses, the timing results are
still interesting. Figure 6.7 shows the average execution times of the matrix multiplication
benchmark. Most of the averages are within 1% of the bare metal result, with the exception
of Lingua Franca, which was around 3% slower. The cause of the slowdown is unknown, but
could be due to a lower hit rate in the XIP instruction cache. Figure 6.8 shows the standard
deviations of the execution times. Interestingly, the biggest outlier here is FreeRTOS when
using the striped heap. The execution times for this case range between 91 milliseconds and
97 milliseconds, which is a much larger range than the other cases. This variation could
be due to stack access conflicts, but given the relatively small proportion of stack accesses
in the benchmark, there may be another factor at play. Regardless, this reveals that using
FreeRTOS adds significant variability to execution timings.
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Figure 6.8: Standard deviation of execution time of the matrix multiplication benchmark.

6.4 Conclusions

This chapter analyzed three di↵erent interference a↵ects: instruction fetch conflicts, general
data access conflicts, and stack access conflicts. Both bare-metal approaches and RTOSes
su↵er from the first two, but the third only occurs on RTOSes. As a result, applications may
su↵er a performance penalty from using an RTOS, irrespective of the scheduling overhead.
In most real world programs, the detriment to average execution time may be negligible, but
there is a significant detriment to timing variability.

Although the performance results in this section are specific to the RP2040, this conclu-
sion applies to any system that has dedicated memory units available for instruction stacks.
For example, this applies to any system that has per-core data scratchpad memory.

In systems where stack memory is not treated di↵erently from heap memory, this con-
clusion does not apply. However, the use of small dedicated SRAMs for program stacks
has evidently improved performance on the RP2040, so this technique may be used more
commonly in future microprocessors.
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Chapter 7

Timing

When building timing critical systems, there are two main concerns: how precisely we can
control the time at which code will run, and how much code we can run without missing
deadlines. Obviously, the execution throughput is crucial, as higher throughput opens the
door to more complex algorithms or running algorithms more frequently. The timing preci-
sion has an equally important role to the overall responsiveness of the system. For example,
imagine a flight controller on a quad-rotor drone. The flight controller might have a cen-
tral control algorithm, which uses accelerometer data to adjust motor current to keep the
drone upright. If the control algorithm runs at irregular times, this will negatively a↵ect the
worst-case time until the control algorithm responds to a perturbation. On the flip side, if
the control algorithm is run at extremely regular times, then a discrete-time algorithm can
be used instead of a continuous-time algorithm, potentially simplifying the computation.

Given the importance of both timing precision and throughput, this chapter analyzes
and contrasts the timing performance of FreeRTOS, LTA, and Lingua Franca.

7.1 Causes of Timing Variation

In an ideal world, the execution time of any algorithm would depend solely on its input
and be perfectly predictable. Unfortunately, in all but the simplest processors, micro-
architectural innovations improve performance, but also add variation to timings. Mod-
ern high-performance proccessors are full of these innovations: branch prediction, memory
caches, frequency scaling, and out-of-order execution are just a few.

Thankfully, the RP2040 and similar microcontrollers have almost none of these innova-
tions. However, many have at least a few sources of timing variation, such as caches and
arbitration to common data buses (in Chapter 6, we demonstrated that arbitration to SRAM
banks was a particularly impactful source of timing imprecision on the RP2040). However,
the innovations in high-performance processors may eventually trickle down into microcon-
trollers, meaning that execution timings may become even less predictable than they are
today.
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Figure 7.1: Periodic, interleaved tasks.

Figure 7.2: Periodic, interleaved tasks.

7.2 Experimental Setup

Regardless of which concurrency framework a program uses (an RTOS, LTA, Lingua Franca,
or something else entirely), all frameworks add some execution time overhead to the pro-
gram. In FreeRTOS, this mainly comes from the scheduler during system ticks; in LTA and
Lingua Franca, this mainly comes from the manipulation of data structures when action-
s/reactions are scheduled or released. This slightly reduces execution throughput, and may
a↵ect precision as well. To characterize these e↵ects, we design a simple system to measure
both execution time and precision.

The system

Consider a system with several periodic, interleaved tasks. At low processor utilization, the
system may be scheduled onto the RP2040’s two cores as in Figure 7.1. As the tasks require
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Figure 7.3: Periodic, interleaved tasks, as observed with a logic analyzer.

Figure 7.4: Periodic, interleaved tasks, as observed with a logic analyzer.
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more computation, the processor utilization may increase, until the system looks like Figure
7.2. In order to observe the timings of these tasks, we can drive GPIO pins at the beginning
and end of each task, and observe them using a logic analyzer. Figures 7.3 and 7.4 are
screenshots of this.

To keep the system as simple as possible, a constant frequency of 10kHz is used for all
tasks throughout the experiment, and only two tasks are used (one per core). FreeRTOS can
only schedule tasks to multiples of the system tick rate, so this requires setting the system
tick rate to 20kHz, and driving both tasks once every two ticks. Since each framework only
needs to handle scheduling one task at a time, this should present a best case for the timing
overhead of all three frameworks.

The workload the tasks will execute is an function called sumsq, which computes 02 +
12+22+32+42+52. This takes roughly 0.4 microseconds on the RP2040, so we can control
the execution time of the task by simply executing this function a set number of times. For
example, the first experiment is designed with 100 microsecond tasks, which is equivalent to
250 loop iterations.

This system can be modelled idiomatically in all 3 frameworks: FreeRTOS uses two
looping threads that call xTaskDelayUntil to wait for the start of the next task, LTA uses
two actors with actions that re-schedule themselves, and Lingua Franca uses two timers
driving two reactions. However, Lingua Franca has a limitation that slightly interferes with
this assessment: since logical time must advance globally and the two reactions have o↵set
times, there is no way to create staggered reactions that run in parallel1. Therefore, to
assess Lingua Franca at high utilization, we only run one task, and leave the other core idle.
Unfortunately, this means that the results for Lingua Franca are not directly comparable to
the other two frameworks, but they are still give insight into Lingua Franca’s performance.

The measurements

There are a few metrics which will be relevant for all experiments:

• Loop Iterations: The number of times each task computes sumsq.

• Task execution time: The amount of time spent inside each task.

• Total execution time: The time between the start time of a task and the start time
of the next task. Ideally, this should be 100 microseconds.

• Start time deviation: The standard deviation of the total execution times. If each
task is started exactly on time, each total execution time will always be exactly 100
microseconds, so the start time deviation will be 0. If there is some imprecision in the
start times of the tasks, the start time deviation will be positive.

1Actually, Lingua Franca recently introduced scheduling enclaves, which can have decoupled logical times.
However, at the time of writing, scheduling enclaves have not been tested on the RP2040.
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Figure 7.5: Task execution times and total execution times with 250 loop iterations.

Figure 7.6: Task execution times for FreeRTOS and LTA.

7.3 Overhead

In order to measure the overhead of each framework, we set the loop iterations to 250,
guaranteeing that the system will not be able to keep up with running the tasks at 10kHz.
In this situation, the system will not sleep between each task, so the di↵erence between the
total execution time and the task execution time should give the overhead. Figure 7.5 shows
the results of this experiment.

In Figure 7.5, LTA has an average task execution time of 103.9 microseconds and an
average total execution time of 112.5 microseconds, giving it an overhead of 8.6 microseconds.
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Overhead (microseconds)
FreeRTOS 24.7

LTA 8.6
Lingua Franca 32.0

Table 7.1: Timing overheads of each framework (lower is better).

Similarly, Lingua Franca has an average task execution time of 90.0 and an average total
execution time of 122.0, giving it an overhead of 32.0. Lingua Franca’s lower task execution
times can be explained by the fact that it’s only running one task, which improves e�ciency
for reasons explained in Chapter 6. By the same calculation, FreeRTOS seems to have an
overhead of 10.3, but this ignores FreeRTOS’s higher than expected task execution time.

FreeRTOS does most of its scheduling work during system ticks, which trigger the sched-
uler via an interrupt. In this system, the system tick rate is 20kHz, so a system tick usually
occurs in the middle of each task. This means that on average, the task execution time is
increased by the length of the system tick handler. By comparing the task execution times
between LTA and FreeRTOS, we can deduce that the system tick handler takes around 10
microseconds. We can verify this by comparing task execution times for a range of loop it-
erations. Figure 7.6 shows that regardless of utilization level, the task execution times tend
to di↵er by around 10 microseconds, which is consistent with it being due to system tick
overhead. Therefore, to calculate FreeRTOS’s overhead, we’ll subtract FreeRTOS’s average
total execution time (128.6) and LTA’s task execution time (103.9), to obtain an overhead
of 24.7 microseconds.

The overheads of these three frameworks are summarised in Table 7.1.

7.4 Precision at Low Utilization

In order to determine the best case for the precision of each framework, we set the loop
iterations very low (10 iterations), then measure the start time deviations. Since each task
will spend very little time computing and most of its time sleeping, this essentially tests how
precisely each framework can wake from sleep.

The results of this experiment are summarized in Figure 7.7. FreeRTOS and LTA have
almost 0 start time deviation, while Lingua Franca has a relatively high start time deviation
of 4.3 microseconds. This might be a result of Lingua Franca’s relatively high overhead. In
this experiment, the Lingua Franca runtime needs to service the global event queue every
50 microseconds. If this takes 30 microseconds each time, then Lingua Franca su↵ers from
60% utilization on Core 0 from overhead alone.
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Figure 7.7: Start time deviations at 10 loop iterations.

Figure 7.8: Start time deviations with high loop iterations.

7.5 Precision at High Utilization

In order to stress test each framework, we set the loop iterations high (160-210 iterations),
then measure the start time deviations. The loop iterations are high enough that in some
data points, the system is barely able to keep up, and in other data points, the system is
not able to keep up a 10kHz task frequency.

The start time deviations are shown in Figure 7.8. The results can be interpreted as
follows:

• FreeRTOS: at 160 loop iterations, the system has almost 0 start time deviation. How-
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ever, this slowly rises until 190 iterations, where the system stops being able to keep
up. At 190 iterations and above, the start time deviation rises sharply and stays high.

• LTA: the system has almost 0 start time deviation until 200 iterations, where it starts
to rise. The system is able to keep a 10KHz task frequency until 220 iterations (outside
the range of Figure 7.8). Interestingly, at 220 iterations and beyond, the start time
deviation falls to 0 again as the system stops sleeping.

• Lingua Franca: The system has a high start time deviation, but this drops until 190
iterations, where the system stops being able to keep up. Interestingly, at 190 iterations
and beyond, the start time deviation falls to 0 as the system stops sleeping.

The interesting behavior of LTA and Lingua Franca can be explained by the fact that
they both use the same underlying sleeping mechanism: waiting on a semaphore. It appears
that although semaphore timeouts are precise for long sleep intervals, they become very
imprecise for short sleep intervals. Therefore, both systems can potentially be improved by
using a di↵erent sleeping mechanism, such as the RP2040’s hardware alarms.
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Chapter 8

Case Study: Tunnelling Ball Device

So far, the focus has been on performance. However, a large part to the success of threading
has been because it provides a simple and understandable model for processing concurrent
tasks. Many projects choose to use an RTOS despite performance drawbacks because of
this. Therefore, for an alternate model to be successful, it needs to provide a usable and
ergonomic way to manage concurrency.

To demonstrate that LTA and Lingua Franca can meet this goal, we build a control
system using 3 strategies to build the software: LTA, Lingua Franca, and Lingua Franca
with programmable IO. Since each version of the software has the same requirements and
expected behavior, this serves as a useful comparison to see what a non-trivial system looks
like from a programming perspective.

The system in question will be a tunnelling ball device, similar to the one built by Je↵rey
C. Jenson in his thesis Elements of Model-Based Design [5]. The device drops a steel ball
bearing towards a target below a rapidly spinning disk. The disk has two small holes in
it, through which the bearing may pass, but the timing of the ball and the disk must be
precisely aligned in order for the ball to not collide with the disk. Done successfully, the
system gives the impression that the ball has magically teleported through a solid disk.

A video of the device can be found at https://www.youtube.com/shorts/ppC6_Cjvkjw.

8.1 Hardware Design

The main components of this system are:

• A wooden disk with two small holes bored in it.

• A stepper motor, spinning the disk. This stepper motor is driven by an A4988 stepper
motor driver.

• A 35cm acrylic tube for dropping the ball bearing through.
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• An electromagnet at the top of the tube, for releasing the ball. The electromagnet is
driven by a MOSFET module.

• A 12 volt DC power supply. A large 100 µF capacitor is connected across the inputs of
the power supply to protect the circuit from voltage spikes. This power supply provides
power to the stepper motor and the electromagnet.

• Two photogates, located 5mm and 60mm from the bottom of the tube. Each photo-
gate consists of an infrared LED and a phototransistor, spaced 14mm apart. These
photogates track the timing of the ball so that the motor may speed up or slow down
as needed.

• A large button, used to start the system.

• Three status LEDs. Two green LEDs are connected in parallel with the photogate’s
infrared LEDs. Because the infrared LEDs have a forward voltage drop of 1.2V, and
the green LEDs have a forward voltage drop of 2V, these should stay o↵ when the
system is working correctly. If the infrared LEDs burn out or become disconnected,
the green LEDs turn on to indicate a problem. The third LED is a red LED that
indicates when the system has power.

Figure 8.1 shows how the electrical components are wired together. Figure 8.2 shows pho-
tographs of the device. The mechanical construction of the device is generally of “prototype”
quality, as evidenced by several key details:

• The body of the device is mainly plywood scraps that have been hot-glued together.

• The tube is a�xed to the device using several zip-ties.

• The breadboard is a structural element.

• The stepper motor is clamped to the body of the device. An attempt was made to
hot-glue this instead, but the glue was not strong enough.

• The “landing zone” is made of cardboard. This may actually be optimal, as the
material needs to be soft enough to absorb some of the energy of the ball bearing.

8.2 Physical Constraints

The system looks most impressive at high speeds, so the primary goal is to have the ball
fall through the hole when the motor is spinning as fast as possible. In initial testing, the
particular stepper motor used for this project can handle up to 10 rotations per second in
1/16th stepping mode, with no load. However, with a disk attached, the maximum speed
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Figure 8.1: Wiring diagram for tunnelling ball device.
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Figure 8.2: Photographs of tunnelling ball device.

the motor can reach is only 5 rotations per second. This sets our “maximum target speed”,
which the rest of the system is designed around.

With the speed set, the next goal is to minimize the size of the hole needed (ideally, the
size of the hole should approximate the size of the ball to a casual observer). Based on some
calculations (which will be outlined in section 8.3) and a drop height of roughly 1/3rd of a
meter, this led to a minimum hole width of 16mm or 17mm, depending on how optimistic
we feel about mechanical tolerances. The hole width was therefore set to 18mm.

8.3 Timing Requirements

Ball Arrival Timing

From the perspective of a stationary observer, the system looks like Figure 8.3. Both the ball
and the disk are in motion: the ball has some vertical velocity, and the hole moves laterally
at the same time.

We can simplify our view of the system by imagining ourselves as an ant sitting on the
edge of the disk. From the ant’s perspective, the hole in the disk stays still, and the ball has
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Figure 8.3: Stationary view of ball and disk

Figure 8.4: Ball and disk, from a moving perspective on the edge of the disk

both vertical and horizontal velocity. The system now looks like Figure 8.4. Figure 8.4 also
shows the exact path that the ball sweeps out from the perspective of the disk. Ideally, the
path should pass through the center of the hole, and leave some “wiggle room” on each side.
That “wiggle room” tells us how much lateral error the ball can have without colliding with
the disk.

In order to solve for the amount of wiggle room, we need to solve for the following:

• Vertical velocity: The ball falls a distance of 0.36 meters through the acrylic tube,
so with a gravitational constant of 9.8 and no air resistance, the time taken should
be

p
2(0.36)/9.8 ⇡ 0.271 seconds. With a gravitational constant of 9.8, this yields a

vertical velocity of (0.271)(9.8) ⇡ 2.66 m/s at the end of the tube. However, actual
measurements of the time taken (using the photogates) yield a time of 0.294 seconds,
which is around 8% slower. This is likely because of air resistance in the tube, as the
ball must displace most of the air in the tube as it falls. Rather than try to model the
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Figure 8.5: Ball and disk, with measurements. Solving for � gives the amount of lateral error
the ball can have without colliding with the disk.

fluid dynamics of the tube, we simply estimate that the ending velocity is around 8%
slower, yielding an estimate of 2.45 m/s.

• Horizontal velocity: The center of the hole is exactly 40mm from the center of the
disk. At the maximum target speed of 5 rotations per second, this leads to a horizontal
velocity of (2⇡)(0.040)(5) ⇡ 1.26 m/s.

• Angle: The angle ✓ in Figures 8.4 and 8.4 is simply the arctangent of the ratio of
velocities. tan�1(2.45/1.26) ⇡ 1.097 radians.

With ✓ solved for, we can now use Figure 8.5 to solve for �, the amount of “wiggle room”.
We have the following values:

• ✓, the velocity angle, is 1.097 radians.

• t, the thickness of the disk, is 3.5mm.

• d, the diameter of the ball, is 11mm.

• w, the width of the hole, is 18mm.

So we can solve
t

tan ✓
+ � +

d

sin ✓
+ � = w

Giving us � = 1.92mm. This must account for both mechanical tolerances and timing
tolerances. There are two main sources of mechanical imprecision:

• The inner diameter of the drop tube is 12mm, which is 1mm larger than the diameter
of the ball. Therefore, 0.5mm needs to be budgeted for worst-case error in the ball
position.
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• The initial position of the drop tube and the hole are aligned by eye. This is rather
inaccurate, so 1mm needs to be budgeted for “eyeball” tolerances.

This leaves us with 0.42mm for timing tolerances1. With a horizontal velocity of 1.26m/s,
means the time that the disk arrives can be up to 0.00042/1.26 ⇡ 0.000335 seconds late, or
around 335 microseconds late. This magic value of 335 microseconds will be referred to as
the “ball arrival precision”.

Photogate Timing

The main job of the photogates is to set the predicted arrival time of the ball. This corrects
any imprecision in the drop time from the electromagnet, and imprecision caused by air
resistance. Since the precision of photogate detection directly translates to the timing preci-
sion of the hole, it is necessary that the photogates operate within the ball arrival precision
of 335 microseconds.

There are two possible strategies: interrupts, or polling. Since the photogates detecting a
ball happens very infrequently, interrupts may seem like the more natural choice. However, a
single ball detection may trigger 4-10 interrupts (all within a few microseconds of each other),
due to noise on the wire. Therefore, if interrupts are used, they need to be debounced.

The simpler option is polling. Since debouncing only needs to happen in the microsecond
range, if polling is used with a period of over 50 microseconds, it is very unlikely that the
signal will need debouncing. Furthermore, polling has the advantage that can be set as a
lower-priority task than the stepper motor, providing a guarantee that interrupt polling will
never cause the stepper motor to miss its timing. In contrast, if interrupts are used, an
interrupt may occur in the middle of a “step” task, causing it to miss its target timing. This
issue could be resolved by using di↵erent levels of interrupts, but that adds more complexity
to the system.

When polling with a period under 200 microseconds, the system can tolerate an impre-
cision of at most 135 microseconds in order to guarantee that a ball is always detected to
within 335 microseconds of it passing through the photogate.

Stepper Motor Timing

The stepper motor used for this project has 200 steps per rotation, and the highest tar-
get speed is 5 rotations per second. However, the motor can not reach this speed using
full steps; instead, the stepper motor is microstepped using 1/16th steps. This means the
microprocessor must drive

(16 microsteps/step)(200 steps/rotation)(5 rotations/sec) = 16000 microsteps/sec

1A proper physicist would point out that technically, 2 errors of 0.5mm and 1mm combine to create an
error of

p
0.52 + 12 ⇡ 1.12mm, leaving us with

p
1.922 � 1.122 = 1.56mm to work with for timing error.

Hopefully nobody reading this is a proper physicist.
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Step size Absolute Error Total Error
1/16th 0.049 0.0032
1/8th 0.098 0.013
1/4th 0.19 0.052
1/2 0.37 0.21
1 0.57 0.57

Table 8.1: Step force error for di↵erent stepping modes

or a period of 62.5 microseconds between each microstep. It is unknown exactly how much
precision is needed. However, we can estimate the precision needed by noting that the goal
of microstepping a stepper motor is to allow the force applied to approximate a sin wave.
For example, 1/16 stepping approximates a sin wave with the function

s(t) = sin

✓
b16t/⇡ + 1/2c

16/⇡

◆

We can estimate the absolute error between this equation and the sin wave:

✏a =

Z ⇡/2

0

|s(t)� sin(t)|dt ⇡ 0.049

Of course, small variations tend to cancel out when the motor is spinning quickly. Another
metric of importance2 is how much total error there is over a quarter-period:

✏t = |
Z ⇡/2

0

s(t)� sin(t)dt| ⇡ 0.0032

If we repeat the same calculation for lower stepping modes, we get the results in table 8.1.
One useful goal to have is to keep the steps precise enough that imprecise 1/16th stepping

is better than perfect 1/8th stepping. How should we formalize this? We can imagine that
in the worse case, all errors are in the same direction. Therefore, the equation of a curve
where every step is � steps late is

s(t) = sin

✓
b16t/⇡ + 1/2� �c

16/⇡

◆

It turns out that absolute error is a very forgiving metric. All steps can be almost half a
step late (� = 0.48), and we still get an absolute error less than that of 1/8th stepping.
Keeping the total error low is a much more stringent requirement, since when every step is

2You might be wondering where these equations came from. I made them up. They do lead to reasonable
results, so I think this is justified.
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late, the errors don’t cancel out. The largest � value that keeps the total error under 0.01288
(the total error for 1/8th stepping) is � = 0.049. The smallest delta value that keeps the
total error under 0.01288 is -0.082, which is less stringent. Therefore, setting a requirement
that |�| < 0.049 allows us to guarentee that the total error will be better than what 1/8th
stepping can achieve.

So with a period of 62.5 microseconds and a delta of at most 4.9%, we require that the
step pin is always driven within 3.06 microseconds of it’s target time.

Button and Electromagnet Timing

A short time after a user pushes the button, the electromagnet releases the ball bearing.
Ideally, this should appear instantaneous to a casual observer. A widely quoted figure for
this is 100ms[10]. On average, the ball will drop after a quarter turn of the disk (since the
electromagnet waits for a hole to line up before dropping), which takes 50ms at 5 rotations
per second. This leaves 50ms of leeway for the detection time of the button. We could set
the polling rate of the button to 50ms, but any time down to 1ms does not put much stress
on the system.

The electromagnet has a similarly loose constraint. The electromagnet is responsible for
timing the ball drop to line up with a hole; however, imprecision in the timing of the drop
can be corrected by the first photogate. The ball passes through the first photogate 27.1ms
before it passes through the disk. If we want to keep the motor speed within 5% of its target
speed, this means that the system can tolerate the ball arriving at the first photogate up to
1.35ms early or 1.35ms late. There is some variance in timing due to air resistance, but from
testing, that variance tends to be at most 200 microseconds. This means the electromagnet
actuation can be up to 1ms early or late and still not cause the system to fail.

8.4 Software Design

A simple way to organize the software for this system is to create software components
corresponding to the hardware components. If done this way, the software subsystems are:

• The stepper motor subsystem is responsible for driving the stepper motor at a target
speed. At the fastest speed, this system will actuate every 62.5 microseconds.

• The photogate subsystem is responsible for polling the phototransistors to detect when
the ball is at that location in the tube. This system can be polled at any rate with a
period under 200 microseconds.

• The button subsystem is responsible for polling the button to detect when the system
should be started. This is very similar to the photogate subsystem.
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• The electromagnet subsystem is responsible for turning the electromagnet on when
the system is started, and o↵ when it is time to drop the ball. This actuates very
infrequently.

• The main subsystem is responsible for coordinating the other subsystems. For exam-
ple, it should keep track of the overall state of the system (idle/started/dropping), and
calculate the new target speed for the stepper motor when inputs from the phototran-
sistors change.

Of course, there is a lot of room for re-organization here, depending on the needs of the
system. For example, the photogate subsystem may be split into two subsystems, one for
each photogate. In the other direction, the electromagnet subsystem may be swallowed into
the main subsystem, since it has very simple functionality and tends to change only when
the system state changes.

Each version of the software should take into account relative priorities or deadlines. The
stepper motor subsystem is the most stringent, and must actuate within a few microseconds
of its target time. Every other subsystem has timing requirements on the order of 100s of
microseconds.

8.5 Software Version 1: LTA

Design Overview

The LTA version of the software uses 4 actors: a “motor” actor, a “main” actor (encom-
passing a state machine and the electromagnet), a “button” actor, and a “sensors” actor
(controlling the photogates). Figure 8.6 shows these actors and the messages between them.

One possible control scheme for these actors could be be to give each of them their
own control loop. For example, the motor could have an action that gets invoked every 62
microseconds, the button could have an action that gets invoked every 500 microseconds,
and the sensors could have an action that gets invoked every 200 microseconds. This would
lead to a very symmetrical design.

However, there is a crucial detail that makes this scheme undesirable: the motor subsys-
tem needs to be invoked very precisely. If the system were designed with separate control
loops, it would be possible for the button and sensor subsystems to have their actions in-
voked directly before the motor’s action. In the worst case, this could cause the motor to
miss its desired timing, and start skipping steps. This would greatly disrupt the system.

Instead, we can note that the other systems have much looser timing requirements, and
therefore can be tied to the motor’s control loop. This means that if the motor is being
driven with a period of 62 microseconds, the button and sensors will be polled with the same
period. This ensures that every action happens after the motor is driven, so unlucky timings
have no chance of causing the motor to be driven late.
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Figure 8.6: Diagram of LTA actors and messages between them.

Motor Actor

The motor actor is responsible for driving the motor, and for adjusting the speed of the
motor based on it’s target speed or target time. Specifically, the motor_loop action toggle’s
the motor driver pin once, calculates a new speed for the motor, then schedules main_loop
to be called immediately and motor_loop to be called after one period (62 microseconds at
fastest, or up to 3000 microseconds at slowest). When it schedules main_loop, it also passes
the current motor position as an argument.

Main Actor

The main actor is responsible for maintaining a finite state machine, and turning the elec-
tromagnet on or o↵. The state machine has the following states:

• Idle: The disk is spinning slowly, and the system is waiting for a button press to
advance to the next state.

• Armed: the electromagnet is on and the disk is spinning quickly. At this point the ball
bearing should be placed on the electromagnet, then the button should be pushed to
advance to the next state.

• Aiming: the electromagnet is on, holding the ball bearing, and the disk is spinning
quickly. The system is waiting for the disk to be in the correct position to drop the
ball.
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• Dropping: the electromagnet is o↵, and the ball is falling through the tube. The motor
is adjusting its speed to make sure that a hole in the disk lines up with the tube at the
same time that the ball bearing arrives at the bottom.

Each time main_loop is called, it checks the current state, advancing as needed (for
example, if the motor position is correct, the state advances from aiming to dropping). It
then schedules check_button or check_sensors (depending on the sate) to run immediately.

Button Actor

The button actor is responsible for checking when the button has been pressed, and de-
bouncing the input. When check_button is called, the actor checks if the button state has
changed, and if the time since the last change is more than 1 second (enforcing an assumption
that the button will not be pressed twice in 1 second). If so, it schedules button_pressed
to be called immediately, which the main actor uses to update its state machine.

Sensors Actor

The sensors actor is responsible for checking the photogates, and for updating the motor’s
target time during the ball bearing’s fall. Whenever check_sensors is called, the actor
checks if the ball bearing has passed through one of the photogates: if so, it creates a
new estimate of the time that the ball will reach the bottom of the tube, and schedules
motor_set_target_time to notify the motor of this new estimate.

Performance

With the LTA version of the software, the system is able to reliably perform drops at full
speed (5 rotations per second). The use of actors allows clean separation of functionality
into modular units, and the low time overhead of LTA means that there was plenty of time
to spare between action invocations. With a larger motor, it is likely that this version of the
software would be able to handle higher speeds.

8.6 Software Version 2: Lingua Franca

Design Overview

Given the similarities between LTA’s actors and Lingua Franca’s reactors, it should be no
surprise that the actors in the LTA version translate almost directly into Lingua Franca
reactors. Figure 8.7 is a reactor diagram generated by Lingua Franca; it shows almost
exactly the same structure as Figure 8.6.

There are a few minor di↵erences: Main has been renamed to Central, and the output
from the sensors goes through Central to Motor instead of directly to Motor.
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Figure 8.7: Lingua Franca reactor diagram.

Performance

Unfortunately, Lingua Franca has a high overhead per reaction. It is high enough that the
system is not able to run at full speed; it can only drive the motor with a period of 200
microseconds, which is around a third of the desired top speed.

However, this is fixable. The motor subsystem is the only system with a desired period of
62 microseconds; every other subsystem can tolerate a period of 200 microseconds or more.
Therefore, if an external solution is used to drive the stepper motor, Lingua Franca can be
used to drive the rest of the system. This solution is outlined in the following section.

8.7 Software Version 3: Lingua Franca with
Programmable IO

Design Overview

The RP2040 contains a Programmable IO system, which are essentially tiny state machines
that can be used to precisely drive GPIO pins. Each state machine can take inputs from a
queue, which is very useful for our use case. We can divide the task of driving the stepper
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motor as follows:

• The state machine pulls integers o↵ the queue, which represent the time to wait until
toggling the stepper motor pin. It will toggle on and then o↵ for each integer on the
queue.

• The CPU calculates the desired period, and pushes it onto the queue. This can be
done infrequently as long as the queue is alway updated before it becomes empty. The
easiest way to handle this is to simply run the motor reaction at 1/4th the frequency
that the stepper motor needs to be driven at, and push 2 items at a time onto the
queue (each item representing 2 toggles).

With the scheme, the motor’s reaction only needs to be invoked every 240 microseconds
at the fastest.

Performance

Using Lingua Franca and programmable IO, the system is able to run at full speed. It is
slightly less reliable that the system with the LTA version of the software, which is due to
its lower polling rate for the sensors: the LTA version polls them every 62 microseconds and
this version only polls them every 240 microseconds. However, the system is still reliable
enough to be considered a success.

8.8 Potential Improvements

It’s worth noting that in its current form, this system is limited more by mechanical impre-
cision more than timing imprecision. For example, in section 8.3, more “budget” is given to
mechanical tolerances than timing tolerances. This necessary because the initial position of
the disk and drop tube are aligned by eye, which is a relatively imprecise process.

With some very small (1-5mm) holes are cut into edges of the disk, and an additional
photogate a�xed to the structure, the system could calibrate it’s radial position much more
accurately (ideally to within 1 microstep, which equates to 79 micrometers of lateral move-
ment). Then, the only radial inaccuracy would come from mechanical tolerances between
the photogate and the drop tube. This could be minimized by laser cutting a structure to
hold both parts, or using some other process with tight mechanical tolerances.

In section 8.3, a significant portion of the “budget” is taken up by the thickness of the
disk. The disk is also relatively heavy, and the stepper motor is able to spin much faster
with the disk. A thinner disk would solve both problems, and potentially allow the disk to
spin at 5 rotations/second with a lower stepping mode (such as 1/8th or 1/4th). However,
when a thinner wooden disk was used, it cracked after a failed drop. The thicker disk was
able to stay intact after frequent failed drops when the system was being tested. This issue
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could be resolved by using a di↵erent material, such as aluminum, but fabricating aluminum
parts is more di�cult than wood.

Finally, a more powerful stepper motor may be able to reach higher speeds than the one
used in this device. However, higher speeds decrease the e↵ective width of the holes in the
disk. Therefore, a higher-speed system will require either a taller drop tube, or larger holes
in the disk in order to work successfully. A taller drop tube increases the kinetic energy of
the ball bearing, and may break things during failed attempts. On the other hand, larger
holes may look less impressive to a casual observer.
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Chapter 9

Conclusion and Future Work

LTA

LTA’s biggest strengths are being lightweight and e�cient; this allows it to outmatch the
performance of FreeRTOS in almost every benchmark in this thesis. Furthermore, it retains
the ergonomics needed to program a large system, as demonstrated in Chapter 8. There is
also a lot of room to improve its performance; in particular, LTA may benefit from directly
using the RP2040’s hardware timers rather than the timer pool shared by semaphores.

Given that LTA and Lingua Franca have several common underlying concepts, work on
LTA may motivate future performance improvements for Lingua Franca. In particular, the
circular algorithm for the event queue might be applicable towards Lingua Franca’s internal
event queue.

Lingua Franca

Lingua Franca is a promising framework; it is already viable for many systems, and although
it was not a top performer in this thesis’s benchmarks, this is justified by its more complex
model and much tighter concurrency guarantees. The performance su↵ers on the RP2040
partly because Lingua Franca is optimized for 64-bit systems, and several aspects of its
runtime are suboptimal for microcontrollers (i.e. 64-bit time, and heavy use of atomics).
More work is underway to make Lingua Franca more e�cient, and there is a lot of room
to improve Lingua Franca’s runtime for microcontrollers. One particularly exciting area of
research is static scheduling, which has the potential to dramatically improve performance
on all platforms.

General Conclusions

We have demonstrated that bare-metal concurrency frameworks are viable for embedded
systems, and have to potential to outmatch the performance of threading-based approaches.
This thesis explored two actor-based approaches, but there is a wide design space of con-



CHAPTER 9. CONCLUSION AND FUTURE WORK 60

currency models, some of which may be even more e�cient than LTA. If so, we hope to see
those options explored in future research.
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