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FIRST TOKEN PROBABILITIES ARE UNRELIABLE IN-
DICATORS FOR LLM KNOWLEDGE

Justin Shao
University of California, Berkeley

ABSTRACT

Multiple Choice Questions (MCQs) are a prevalent evaluation method used across
many popular LLM benchmarks. Typically, these evaluations rely on first-token
probabilities to deduce the model’s proposed answer. However, previous studies
have demonstrated that first-token probabilities are vulnerable to prompt pertur-
bations. In this study, we broaden our examination to explore the performance
disparity between direct free-generation and the assessment of MCQs using first-
token probabilities. Our experiments confirm the unreliability of first-token prob-
abilities, as they often do not align with generation results. Additionally, we un-
cover a surprising finding: LLMs tend to struggle with arithmetic MCQs, even
though they can reliably generate the correct answers.

1 INTRODUCTION

Figure 1: Example multiple choice question (MCQ), taken from the MMLU dataset

While large language models have demonstrated excellent performance in a variety of Natural Lan-
guage Processing tasks, LLMs’ generation capabilities are notoriously difficult to evaluate. Apart
from direct human evaluation that is expensive and difficult to scale, most popular evaluation meth-
ods either utilize automatic metrics as a proxy for human evaluation (Sai et al., 2022), or utilize a
strong LLM as a judge to approximate human evaluation (Zheng et al., 2023).

One approach to circumvent this difficulty is to present questions in a multiple-choice question
(MCQ) format, as demonstrated in Figure 1. Typically, a question is provided alongside multiple
candidate answers, which then requires the LLM to choose the most suitable answer among the
candidates. There are two major benefits to this approach: the simplicity of answer evaluation and
the low computational cost during evaluation. As such, the MCQ format is currently used as a
common form of evaluation in numerous popular benchmarks, including MMLU (Hendrycks et al.,
2020), ARC-challenge (Clark et al., 2018), and commonsenseQA (Talmor et al., 2019).

Despite the popularity of MCQ evaluations, a recent study reveals that LLM responses to MCQs are
prone to be influenced by the ordering of candidate answers, where models exhibit a selection bias
for certain answer tokens over others (Zheng et al., 2024). Furthermore, LLM outputs to MCQs are
also sensitive to prompting formats, resulting in drastic discrepancies in MCQ benchmark results
(Lyu et al., 2024).
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In this project, we further investigate the MCQ format by gauging the performance gap between
free-generation and MCQ. Furthermore, we explore the correlation between model performance and
their robustness against varying prompt formats. While it fits our intuition that MCQs are generally
simpler to answer due to their restricted answer space, our experiments show surprising results that
this assumption does not always hold. Most notably, we discovered that all tested LLMs consistently
struggle with the MCQ format for arithmetic problems, despite varying parameter sizes and model
capabilities.

2 EXPERIMENTAL SETUP

2.1 DIFFICULTY IN COMPARING MCQ AND FREE-GENERATION

To make fair comparisons between MCQ and free-generation performance, it is crucial to formulate
questions in a way that ensures LLM responses are comparable across both formats without substan-
tially changing the difficulty of the questions. There are two general approaches to creating datasets
that can be tested in both formats, each with its specific shortcomings.

Figure 2: (top) If the question references the candidate answer choices, the adapted free-generation
fails to make sense. (bottom) When using the MCQ correct answer choice as the golden answer,
there are significant chances for LLMs to generate semantically correct answers that will not be
considered correct via exact match. Both example questions are taken from MMLU.

The first approach is to adapt an MCQ dataset to perform free-generation. For each question, we per-
form a trivial adaptation, where candidate answers are removed from the prompt, and the generated
sequence completion will be considered the model’s proposed answer. However, the correctness of
the proposed answers for the new free-generation question is difficult to evaluate. Using the ex-
act match (EM) metric to check the generated response against the original MCQ answer makes
the difficulty of the generation question heavily dependent on the brevity of the original MCQ an-
swer. Using proxy metrics like BLEU or ROGUE will ease the correctness requirement compared
to EM, but the sensitivity to the specific wording of the correct answer choice still poses an issue.
Furthermore, the adaptation setup will create non-sensible free-generation problems if the original
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MCQ question makes references to the candidate answers, or incorporates comparatives between
candidate answers. Figure 2 demonstrates some examples of the complications.

The second approach is to adapt a free-generation dataset to perform MCQs. For each free-
generation question, we provide three additional false candidate answers to form an MCQ prompt.
In this setup, the difficulty of the new MCQ is subject to the plausibility of the newly provided
false candidate answers. If the created candidate answers are completely nonsensical, then the
MCQ question can become trivial, potentially undermining the correlation between MCQ results
and model knowledge. This possibility is demonstrated in Figure 3.

Figure 3: MCQ adaptations from a free-generation question can vary in difficulty due to different
distractor answer choices. The MCQ can be trivial when the false candidate answers are unplausible.

In our experiments, we used the second approach to adapt free-generation datasets to be compatible
with the MCQ format. To address the issue of varying MCQ difficulty, we additionally aim to
produce believable false candidate choices in the adaptation process. Our approach to this issue is
to utilize a strong LLM (that is not being tested in our experiments) to provide false but plausible
candidate answers, as shown in Figure 4. See appendix A.1 for the specific prompting format.

Figure 4: Dataset pre-processing procedure for each free-generation question, using an independent
LLM to generate false answer candidates to be used in the MCQ setup.
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2.2 MODELS

In our experiments, we focus on open-source decoder-only LLMs, evaluating 6 popular models:
gemma2/7B (Team et al., 2024), llama2-7B (Touvron et al., 2023b), llama3-8/70B1, and
Mixtral8x7B (Jiang et al., 2024). All tested models are available on Huggingface, hence we can
directly access the log probabilities of each token. In addition to the models being evaluated, we
used gpt-3.5-turbo2 to generate wrong answers for datasets as needed.

2.3 DATASETS

Arithmetic: The arithmetic dataset used by our experiments is a programmatically generated set
of integer arithmetic problems. It includes addition problems from 1-5 digits, subtraction problems
from 1-5 digits, multiplication problems from 1-3 digits, and multi-ops problems that involve 2 non-
repeating randomly selected operators applied to 3 numbers. Table 5 provides examples for each
category. The false candidate answers for each problem are generated by adding randomly sampled
non-zero offsets to the correct answer.

TriviaQA: We randomly sampled a subset of 1,000 questions from TriviaQA (Joshi et al., 2017) to
cover general QA. We selected TriviaQA over other potential datasets for two major reasons: (1) the
questions in TriviaQA are sufficiently general and cover a wide range of domains; and (2) the dataset
provides numerous “aliases” of the golden answer, each being a unique string that can be compared
against for exact matches. This enables us to robustly assess the model-generated responses. For the
MCQ setup, we prompt gpt-3.5-turbo to generate incorrect answers. The generated incorrect
answers are further checked against the golden answer and its aliases, ensuring that all generated
incorrect answers are truly incorrect. Finally, we only use questions that have golden answers with
token length ≤ 15, ensuring that no questions are too disproportionately disadvantaged for the free-
generation format due to the exact match requirement.

2.4 EVALUATION

During evaluation, each question is evaluated alongside its adapted MCQ/free-generation counter-
part.

For the MCQ format, we provide a 5-shot prompt to the model and use the model’s first-token
probabilities for the label tokens (i.e. “A/B/C/D”). This evaluation method is a standard approach
that is widely adopted for MCQs (Hendrycks et al., 2020; Liang et al., 2023). One modification
we made is that we record the probability assigned to each of the answer labels, instead of only
measuring the correctness of the label that is assigned the highest probability. In doing so, we
hope to use the assigned probabilities to gauge the model’s confidence associated with each answer
choice.

For the free-response format, we provide a 5-shot prompt and sample 20 responses at T=1 for
each question. Each of the 20 sample responses is first normalized and then checked against the
normalized golden answer and aliases for exact matches. The fraction of exact matches is interpreted
as an empirical estimate of the probability of the model generating a correct answer, allowing us
to directly compare the model’s probability of answering the question correctly in both the free-
generation and MCQ setups.

2.4.1 ANSWER NORMALIZATION AND EXTRACTION

Arithmetic: we simply parse the generated text and take the first number in the sampled response
as the model’s proposed answer.

TriviaQA: We follow the normalization procedure outlined in the Llama paper (Touvron et al.,
2023a). We first parse the generated answers up to the first “.” or “\n”, then lowercase them, and
finally remove articles, punctuations, and duplicate whitespaces.

1https://llama.meta.com/llama3/
2https://platform.openai.com/docs/models/gpt-3-5-turbo
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2.4.2 EVALUATING MISALIGNMENT

In our setup, we consider a model to be well-aligned if the model’s performance difference across
formats is small. To quantify this expected alignment error, we evaluate the following:

Ealignment =
1

N

N∑
1

|xi − yi| (1)

Each coordinates (xi, yi) here represents a data point on the alignment chart, where xi represents
the average probability assigned to the correct choice in MCQ format, and yi represents the average
correctness in the free-generation format. Each data point is determined by grouping the questions
into equal-sized bins, according to their x-values.

3 INVESTIGATING PERFORMANCE GAP BETWEEN FORMATS

3.1 STRONGER MODELS ARE NOT BETTER ALIGNED

(a) Arithmetic (b) TriviaQA

Figure 5: In our analysis of the Arithmetic dataset, we find that LLMs consistently outperform
in the free-generation format, indicating a misalignment with their performance in other formats.
Conversely, on the TriviaQA dataset, LLMs generally perform better in the MCQ format, except at
the lower performance extremes. We use a diagonal line on our graphs to represent ideal alignment
between the two formats.

The alignment plots on the two datasets are shown in Figure 5. On both datasets, the alignment trends
are mostly similar across different model sizes. Graphing expected alignment error against the MCQ
performance in Figure 6, we observe no correlation in the Arithmetic dataset and a weak positive
correlation in the TriviaQA dataset. We conjecture that the relatively poor alignment on TriviaQA
for better-performing models could be attributed to the existence of difficult problems that are easier
to answer in the MCQ format. This is also supported by the observation that better-performing
models have significantly more data points clustered towards the right edge of the alignment graph.

3.2 FORMAT PREFERENCES VARY ACROSS DATASETS

As shown in the right sub-figure in Figure 7, we find that all 6 tested LLMs perform better on
average in the MCQ format compared to the free-generation format on the TriviaQA dataset. This
aligns with our general human intuition that MCQs are easier than the free-generation format since
the ability to come up with the correct answer would imply our ability to discern the correct answer.

As for the Arithmetic Dataset, we find that all 6 tested LLMs perform better in the free-generation
format instead. This is particularly surprising, considering that models across all sizes demonstrate
this preference. We will use the following sections to further explore this counterintuitive observa-
tion.

5



(a) Arithmetic (b) TriviaQA

Figure 6: We show that on the Arithmetic dataset, LLMs demonstrate no correlation between MCQ
performance and alignment error. On the TriviaQA dataset, LLMs that perform better in the MCQ
format tend to have a higher expected alignment error.

(a) Arithmetic (b) TriviaQA

Figure 7: We show that on the Arithmetic dataset, LLMs consistently perform better on average in
the free-generation format by a wide margin. On the TriviaQA dataset, LLMs perform better on
average in the MCQ format with a smaller margin.

4 EXPLORING LLM PERFORMANCE DISCREPANCY ON ARITHMETIC

4.1 LLM OUTPUTS ACROSS PROMPT FORMATS ARE ONLY WEAKLY CORRELATED

Table 1: Comparison of performance across models in MCQ and free-response formats, with corre-
lation coefficients (ρ)

Model P(correct) (MCQ) P(correct) (free-response) ρ
gemma-2B 0.253 0.604 0.048
gemma-7B 0.368 0.725 0.254
llama2-7B 0.254 0.537 0.095
llama3-8B 0.358 0.788 0.237

llama3-70B 0.591 0.879 0.292
Mixtral-8x7B 0.426 0.808 0.321

Calculating the Pearson’s correlation coefficient, we observe that the model’s correctness across the
two formats is not strongly correlated. This is further made clear in Table 2, where we show the
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distribution of MCQ P(correct) when partitioned by free-generation P(correct). For all LLMs tested,
the distributions for both partitions are relatively similar. This implies that the model’s correctness
in one format can only provide weak predictive power for the correctness in the other format. This
is in contrast to what we observe in the TriviaQA dataset 3, where the MCQ P(correct) distributions
of the two partitions created by the same partition scheme remain mostly distinct.

Table 2: Arithmetic: MCQ P(correct) distribution categorized by free-generation P(correct)

(a) Gemma-2B (b) Gemma-7B (c) Llama2-7B

(d) Llama3-8B (e) Llama3-70B (f) Mixtral-8x7B

Table 3: TriviaQA: MCQ P(correct) distribution categorized by free-generation P(correct)

(a) Gemma-2B (b) Gemma-7B (c) Llama2-7B

(d) Llama3-8B (e) Llama3-70B (f) Mixtral-8x7B

4.2 INCLUSION OF POSSIBLE ANSWERS MAY HARM GENERATION PERFORMANCE

To further understand the performance gap, we modified the free-generation format to provide can-
didate answers in the form of “possible answers” to form a third prompting format, which we call
free-generation with answers options. At evaluation, we observed that for LLMs that performed
better in the other two formats, the new format produces the best overall performance by signif-
icantly boosting P(correct) for difficult arithmetic question, like 3-digit multiplication or 3 digit
multi-operational arithmetic. However, for LLMs that struggled with the MCQ format, the new
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format performs worse than plain free-generation. Notably, MCQ format consistently performs the
worst out of the three formats, across all arithmetic subcategories and for all tested models. The
specific results is shown in Table 4.

Since the only significant difference between MCQ and free-generation with answers options is
whether the answer is expected as a label token or as a numeric string, we conjecture that the perfor-
mance discrepancy is primarily caused by LLM’s inability to produce token probabilities that match
up with what would be generated in free-generation.

Table 4: Arithmetic: P(Correct) for all formats, evaluated over all arithmetic subcategories

(a) Gemma-2B (b) Gemma-7B

(c) Llama2-7B (d) Llama3-8B

(e) Llama3-70B (f) Mixtral-8x7B
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5 CONCLUSION

This work studies the robustness of popular decoder-only LLMs in the context of prompt format
variations. Through extensive experiments, we report two discoveries: (1) first-token probabilities
are generally misaligned with the probabilities of the model generating correct answers through
free-generation, and (2) LLMs especially struggle with multiple-choice questions in the arithmetic
domain. In conclusion, we recommend proceeding with caution when using MCQs to evaluate
Large Language Models, and especially recommend against using first-token probabilities as the
sole method of model evaluation.

5.1 FUTURE WORKS

On our Arithmetic dataset, we observed the surprising result that MCQ performed significantly
worse than free-generation. It is worth future investigation on whether or not this pattern generalizes
to other problem domains.
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A PROMPTS AND QUESTION FORMATTING

A.1 GENERATING FALSE ANSWER CANDIDATES

Free-Generation to MCQ

We utilized the following prompt to generate false candidate answers for each free-generation ques-
tion in TriviaQA. We observed that the returned responses occasionally include correct answers.
Thus, we instruct the model to generate four instead of three incorrect answers, increasing the
chances of the generation result containing at least 3 truly incorrect answers. Since we used gpt-
3.5-turbo via the OpenAI API to perform this task, we also make the distinction between the system
message and the user message.

System :
You a r e a h e l p f u l a s s i s t a n t f o r q u i z c r e a t i o n . You w i l l
be p r o v i d e d a t r i v i a q u e s t i o n − answer p a i r , and your j o b
i s t o c r e a t e f o u r p l a u s i b l e b u t i n c o r r e c t answer s . Each
i n c o r r e c t answer s h o u l d be some th ing t h a t might be m i s t a k e n
f o r t h e c o r r e c t answer , b u t i s a c t u a l l y wrong .

User :
Q u e s t i o n : Who was t h e on ly p r e s i d e n t t o r e s i g n from o f f i c e ?
C o r r e c t Answer : R i c h a r d Nixon

P l e a s e p r o v i d e f o u r i n c o r r e c t answers , do n o t e l a b o r a t e on why
each answer i s wrong .

A.2 ARITHMETIC/TRIVIAQA QUESTION FORMATTING

MCQs: MCQs are done in 5-shot. For brevity, a 1-shot example is shown.

Q u e s t i o n : What i s t h e v a l u e o f 75 + 22?
A. 130
B . 97
C . 10
D. 144
Answer : B

Q u e s t i o n : What i s t h e v a l u e o f 227 + 243?
Answer :
A. 920
B . 470
C . 810
D. 313
Answer :

Free-Generation: Free-generations are done in 5-shot. For brevity, a 1-shot example is shown.

Q u e s t i o n : What i s t h e v a l u e o f 75 + 22?
Answer : 97

Q u e s t i o n : What i s t h e v a l u e o f 227 + 243?
Answer :

Free-Generation with answers options: Free-generations with possible answers are done in 5-shot.
For brevity, a 1-shot example is shown.

Q u e s t i o n : What i s t h e v a l u e o f 75 + 22?
Here a r e some p o s s i b l e answer s :
130
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97
10
144
Answer : 97

Q u e s t i o n : What i s t h e v a l u e o f 227 + 243?
Here a r e some p o s s i b l e answer s :
920
470
810
313
Answer :

B ARITHMETIC DATASET COMPOSITION

CATEGORY EXAMPLE NUMERIC ANSWER MCQ CHOICES
add1 2 + 3 5 [ -4, 8, 14, 5 ]
add2 76 + 41 117 [ 138, 117, 82, 100 ]
add3 164 + 465 629 [ 755, 629, 289, 934 ]
add4 4483 + 4870 9353 [ 9353, 2531, 12866, 15203 ]
add5 18571 + 84868 103439 [ 133308, 149580, 103439, 3811 ]
sub1 3 - 1 2 [ 2, 3, -3, 0 ]
sub2 13 - 50 -37 [ -17, -85, -37, 22 ]
sub3 970 - 786 184 [ 1568, 184, -378, 1438 ]
sub4 2828 - 2477 351 [ 4018, 351, -316, 873 ]
sub5 48732 - 62785 -14053 [ -32533, -14053, -111478, -89193 ]
mul1 5 * 2 10 [ 5, 4, 10, -4 ]
mul2 77 * 81 6,237 [ 9847, 6237, 3349, 8514 ]
mul3 887 * 895 793865 [ 1413272, 18832, 656063, 793865 ]

multiops1 8 * 8 - 4 60 [ 2, 60, 104, 107 ]
multiops2 22 + 35 - 84 -27 [ -41, -8, -27, -58 ]
multiops3 727 + 590 * 722 426707 [ 83934, 426707, 379914, 254149 ]

Table 5: Arithmetic dataset categories. One random example from each category is shown.
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