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Abstract

In response to the growing demographic of older individuals living alone and
the heightened risks of falls they face, real-time fall detection systems using
surveillance videos have emerged as crucial tools for ensuring prompt assis-
tance. This report introduces a novel real-time fall detection method that
integrates learnable edges into Spatial Temporal Graph Convolutional Net-
works (STGCN) for enhanced accuracy in classifying human actions. Lever-
aging short sub-sequences of skeleton data as inputs, the proposed model
achieves rapid training and inference while demonstrating robust general-
ization across diverse environmental conditions. The proposed method un-
derscores its e�cacy in real-world fall detection tasks. Evaluation through
a devised scheme, simulating real-time video streams, validates the model’s
e↵ectiveness, quantified through metrics such as accuracy, specificity, and
sensitivity.
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Chapter 1

Introduction

In today’s society, the demographic shift toward an older population has been driven by
advancements in healthcare and declining birth rates. Ensuring the well-being of elderly
individuals has become a pressing concern for society. Falls are one of the primary health
threats facing elderly individuals. According to the Centers for Disease Control and Pre-
vention, 1 in 4 adults ages 65 years and older report falling each year [1]. When an elderly
person falls, they must receive immediate medical attention to assess for serious injuries such
as brain damage. If left unaddressed, these falls can prove fatal. However, research from
the Pew Research Center indicates that approximately 27% of American adults aged 60 and
older live alone [2]. This isolation poses significant risks for seniors. Living alone can make
it challenging for elderly individuals to access immediate assistance in emergencies.

One existing solution to this problem is wearable senior alert devices such as smart-
watches and necklaces [3]. However, these devices require constant battery recharging and
cannot provide video feedback on the incidents. More importantly, the alert system would
completely fail if the elderly individual forgets to wear the device.

Hence, a video-based alert system using surveillance videos for fall detection and sending
out timely alerts and feedback can play a more crucial role in reducing the injury of elderly
people and its subsequent consequences due to falls. Using the video stream from a simple
surveillance camera installed at home, we can detect fall behaviors of the seniors, and notify
their family members and medical services to ensure that the individual receives prompt
medical assistance. Once installed, such surveillance cameras can provide 24/7 monitoring
of individuals without requiring frequent maintenance.

A key challenge of video-based systems is their lack of direct access to individual body
metrics. They must infer physical behaviors solely from RGB data provided by the surveil-
lance camera. Therefore, there is a pressing need for an accurate and practically applicable
fall detection algorithm.

In this report, a real-time skeleton-based fall detection method is proposed, which inte-
grates learnable edges into Spatial Temporal Graph Convolutional Networks (STGCN) [4]
[5] for improved accuracy in classifying human actions. Our method estimates human body
keypoints for each frame of the RGB video input and constructs sub-sequences of the hu-



CHAPTER 1. INTRODUCTION 6

man skeleton. By utilizing short sub-sequences of skeleton data as inputs, fast training, and
inference can be achieved. The model demonstrates robust generalization capabilities across
various settings, including di↵erent daily activities, camera angles, and lighting conditions
not present in the training data. Notably, it outperforms conventional STGCN architectures
lacking learnable edges. To accurately assess the algorithm’s performance under conditions
closely resembling real-world scenarios, an evaluation scheme is devised. This scheme runs
the algorithm on test videos emulating real-time streaming and quantifies its e↵ectiveness
through measures such as accuracy, specificity, and sensitivity. These metrics provide more
direct insight into the applicability of the proposed method compared to the schemes used in
related works. The code, skeleton data, and models of STGCN-LE are publicly available1.

1https://github.com/degaliang/auto-senior-care-system

https://github.com/degaliang/auto-senior-care-system
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Chapter 2

Related work

The pose estimation that is employed as a pre-processing step for the skeleton-based approach
is presented in this section. We examine the pose estimation method, as well as prior research
endeavors in the realm of skeleton-based fall detection.

2.1 Human Pose Estimation

Human Pose Estimation entails predicting the 3D or 2D positions of human body joints and
their corresponding skeletal structure from a photograph. Typically, this skeletal structure
is represented as a graph, with joints serving as vertices connected by edges. This geomet-
ric abstraction of the human body facilitates understanding of human actions. In the fall
detection methodology proposed in this work, AlphaPose is used for pose estimation to ex-
tract skeleton data as inputs for the fall detection model [6] [7] [8]. According to the pose
estimation experiments conducted by undergraduate researchers in our group, Allen Cao

and Ishaan Ghose, the other state-of-the-art pose estimation toolbox, OpenPose [9]–[12],
is more vulnerable to lighting conditions and occlusions, and tends to produce more incor-
rect estimation. AlphaPose leverages Convolutional Neural Networks as its primary deep
learning architecture for pose estimation, alongside techniques such as Symmetric Integral
Keypoint Regression (SIKR) and Parametric Pose Non-Maximum-Suppression (P-NMS) to
enhance both speed and accuracy. Notably, AlphaPose achieves accurate pose estimation in
real-time, a critical requirement for a real-time fall detection system reliant on skeleton data
inputs. However, it may encounter challenges in scenes with specific lighting conditions or
low-resolution image data, potentially impacting downstream tasks like action recognition,
which is further discussed in Section 5.3.

2.2 Skeleton-based Fall Detection

The skeleton-based fall detection methods utilize skeleton data extracted from video streams
for classification. Several skeleton-based detection techniques have been proposed in the lit-
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erature. Yan [13] is one previous attempt at using Spatial-Temporal Graph Convolutional
Networks (STGCN) for fall detection. It uses the motion data of five inertial sensors for
building the spatial-temporal graph that STGCN operates on. The model architecture fol-
lows the one proposed in Yan [4].

In comparison, this report proposes to apply STGCN to skeleton data extracted from
RGB data. Learnable edge weights are added to the original STGCN for enhanced perfor-
mance. Chen [14] proposed to detect falls using decision conditions defined on second-order
features computed from skeleton data such as the speed of joints, the angle between the
center-line of the human body and the ground, and the width-to-height ratio of the human
bounding box. Some deep-learning-based methods like [15] use neural networks, LSTM in
this case, to classify human skeleton sequences. Both [16] [17] used the Support Vector
Machine (SVM) to predict using features extracted from the human skeleton.

While these papers all reported a high accuracy on fall detection tasks, they did not
explicitly evaluate the method using a well-defined scheme to assess the system performance
in a practical scenario. In addition, previous work tends to use slightly di↵erent metrics for
evaluating the performance of their methods, which makes it di�cult to compare the existing
skeleton-based fall detection method. In Chen [14], the author categorizes human actions as
falling actions, similar falling actions (squat), and daily actions (walking), and evaluates the
algorithm based on the classification results of these categories. While classifying each action
independently, this ignores the case that some of these actions can happen in sequence within
a short period. Given a video clip, an algorithm should be able to di↵erentiate falls from
all other actions present in the video. The proposed evaluation scheme does not account for
this. Although Chen [16] proposes to evaluate using full videos of human action, the author
does not specify the metric used to determine the classification correctness of each video.
In the work of Jeong [15], the author only reports the accuracy of the algorithm and does
not include true-positive and false-positive rates. These two or equivalent measurements are
important for assessing an alert system as an ideal algorithm should obtain high accuracy
with the least amount of false alerts.

To address these shortcomings, this paper not only introduces a new skeleton-based fall
detection method but also provides a generic evaluation scheme that can be used to assess
the performance of fall detection systems.

Additionally, the above-mentioned methods use di↵erent datasets for training and test-
ing. Since this work is based on the Le2i Fall Detection Dataset, the results are compared
with methods that utilize the same dataset [18][19][20]. They employ various approaches,
such as Dual-Channel Feature, Body Geometry, and Kinematic Theory. The comparison of
performance results with methods utilizing the same dataset underscores the e↵ectiveness
and robustness of the proposed approach.
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Chapter 3

Dataset

While many fall detection datasets have been proposed and used in previous work, this work
uses the Le2i (ImVia) Fall Detection Dataset [21]. The dataset contains 191 realistic videos
of both falls and activities of daily living captured by a single camera. The frame rate
is 25 FPS and the resolution is 320×240 pixels. The videos are recorded in four di↵erent
locations: home, co↵ee room, o�ce, and lecture room (Figure 3.1). More importantly, the
authors also provide starting and end frames of the fall events for the videos captured in
the co↵ee room and at home. We create sub-sequences of ”Fall” and ”Non-Fall” actions
according to the annotations and use the AlphaPose toolbox to estimate the human body
keypoints on each frame of the videos in COCO format, which contains 17 joints. For each
joint, AlphaPose produces 2D coordinates (X, Y ) in pixel space and a confidence score C.
The confidence score is dropped in this case. In addition, the toolbox also outputs the frame
index corresponding to each set of joints. Frames where AlphaPose does not detect joints
will not be reported.
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(a) Co↵ee Room (b) Home

(c) Lecture Room (d) O�ce

Figure 3.1: Sample images from the Le2i dataset
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Chapter 4

Method

4.1 Skeleton Sub-sequence Training

In the proposed method, the STGCN-LE model takes a sequence of human skeleton data
as the input. The input sequence is constructed by sampling Lin consecutive frames from
a surveillance video or a real-time I/O stream, as shown in Figure 4.1. During training,
each input sequence is labeled as ”Fall” or ”Non-Fall” according to the annotations in the
Le2i dataset. The Lin is picked to be 45 because no falling sequences exceed 45 frames
in the dataset. At test time, the input sequence is sampled as the current frame plus 44
consecutive frames in the past. This sub-sampling strategy ensures that the model only sees
the least number of frames required to classify a skeleton sequence, which reduces training
and inference time significantly. It e↵ectively excludes random body movements that precede
or follow the fall behavior so that the model will not be misled by these noises.

4.2 Batch-balanced Sampling

The Le2i dataset contains an equal number of ”Fall” and ”Non-Fall” videos. When we
sample skeleton sub-sequence from each video, we will get exactly 1 ”Fall” sub-sequence
and many ”Non-Fall” sub-sequences, which leads to an unbalanced class distribution. To
mitigate this, we apply batch-balanced sampling at training time. That is, we maintain a
1:1 class ratio in the batch sampler. This measure is essential for stabilizing the training
process and minimizing the risk of overfitting.

4.3 STGCN with Learnable Edges (STGCN-LE)

Spatial Temporal Graph Convolutional Networks (STGCN), introduced in Yan [4], is an
extension of the Graph Convolutional Networks (GCN) architecture. It enhances traditional
graph convolutions in the spatial dimension of GCN by incorporating temporal dimensions.
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Figure 4.1: Skeleton sub-sequence sampling for training.

The STGCN operates on a spatial-temporal graph constructed from a sequence of hierar-
chical data that can be represented as a graph (see Figure 4.2). In this work, the spatial-
temporal graph is constructed as an undirected graph G = (V,E) with N human body joints
per frame and a total of T frames. The number of frames is consistent with the sampling
window size mentioned in Section 4.1, so T = Lin = 45. In the graph, joints from the
same frame are connected by intra-body edges (blue edges in Figure 4.2), and each joint is
also connected with its counterpart in di↵erent frames by inter-frame edges (green edges in
Figure 4.2). Formally, we define nodes to be V = {vti|t = 1, ..., T, i = 1, ..., N} and edges
to be E = {ES, ET}, ES = {(vti, vtj) | i, j 2 C, 8t 2 {1, 2, . . . , T}}, ET = {(vti, v(t+1)i) |
8t 2 {1, 2, . . . , T �1}}, where C is the natural joints connections as defined in COCO-POSE
[22]. The edge connections are represented using a standard adjacency matrix A of size
N ⇥ N . Each node is represented by a C-dimensional feature vector, where C is the num-
ber of channels. Hence, we have a feature mapping f : V ! RC . C will be 2 in the first
layer, which corresponds to the 2D coordinates of each joint. In each layer in the STGCN,
one convolution operation is a standard graph convolution in the spatial dimension of the
spatial-temporal graph, followed by a convolution in the temporal dimension. For each node
in the graph, a spatial convolution that transforms the input feature fin of ith node in tth
frame to the output feature fout is defined as:

fout(vti) = w(vti)�
X

vtj2B(vti)

fin(vtj) (4.1)

where B(vti) represents the set of neighbors of vti and � is the element-wise multiplication.
The weight function w(·) returns the weight vector, which is multiplied by the feature vector
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Figure 4.2: The spatial-temporal graph of a skeleton sequence where the STGCN-LE operates
on [4]. Each blue node represents a human body joint, which is connected by edges to form
the skeleton. Each joint also has temporal connections with its counterparts in the previous
and the following frames.

element-wise. The summation can be replaced by other permutation equivariant functions
like MEAN or MAX.

As shown in Figure 4.3, the skeleton structure produced by AlphaPose follows the geomet-
ric structure of the human body. If we use this structure to construct the spatial-temporal
graph, it will construct the graph to have the same structure as the human body and assign
all edges with weight 1 [4]. However, this limits the expressive power and the learning ability
of the STGCN model. When aggregating information from a neighborhood, it is important
to recognize that each vertex may hold varying degrees of significance in detecting an ac-
tion. The lower-body movements might be more important than the movements of the neck
and head. Moreover, some latent relationships may exist between unconnected vertices in
the graph. For example, it may be important for ”wrist” and ”ankle” to share information
directly with each other. However, this is not possible as they are not connected in the
graph constructed based on the human body geometric. To address this, instead of using
a pre-determined adjacency matrix, we make it learnable. We initialize A to be the graph
structure output by AlphaPose and let the network gradually learn to adjust the importance
of each existing edge. We also allow the model to add new edges to the spatial-temporal
graph as needed. This encourages the model to discover hidden relationships between joints
that are not directly connected in the original graph. The creation of new edges also in-
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Figure 4.3: Human body skeleton produced by AlphaPose.

creases the speed of information flow. For example, in the original graph, it would take at
least 7 message passing operations for the information at ”wrist” to reach ”ankle” because
the distance between the two vertices is 7 in the graph. By adding a direct edge with an ap-
propriate weight, the information can be shared in one pass. The learnable edge connections
are achieved by adding a weight mask and a bias mask that are of the same shape as A in
each STGCN layer. The weight mask, denoted as Ml

w, is initialized to have the same value
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Figure 4.4: The illustration of a forward pass in STGCN-LE. The spatial convolution ag-
gregates the information of neighbors vertex 0, 1, and 3 for 2, using learnable edge weights.
The temporal convolution aggregates information of 3 adjacent frames, which corresponds
to KT = 3.

as A, where l the layer index. The bias mask, denoted as Ml
b, is initialized to all zeros. The

transformed adjacency matrix of lth layer Al
m is computed as:

A
l
m = A�M

l
w +M

l
b (4.2)

Thus, the spatial convolution is redefined as:

fout(vti) = w(vti)�
X

vtj2B(vti)

alm(vti, vtj) · fin(vtj) (4.3)

where alm(vti, vtj) = A
l
m[vti][vtj] is the learned edge weight between vti and vtj in lth layer.

In each STGCN-LE layer, a forward pass consists of a spatial convolution (Equation
4.3) followed by a temporal convolution. The temporal convolution is implemented as a
1D convolution in the temporal dimension with a temporal kernel of width KT . One can
choose to compress the temporal dimension by adjusting the stride. An illustration of such
operations is shown in Figure 4.4.
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Chapter 5

Evaluation

In previous work on fall detection, researchers typically use accuracy, precision, sensitivity,
and specificity of the raw prediction of the model as the major evaluation metrics [23] [24] [16]
[17]. Although these metrics provide a good insight into the performance of the classification
model, they do not e↵ectively assess the fall detection method as a whole. This is because
these metrics ignore the dependencies between di↵erent input samples of the model. For
example, suppose there is a fall-non-fall pair drawn from the same video, the classification
model predicts both of them to be ”Fall.” Using the above-mentioned metrics, these would
be considered to be one True Positive and one False Positive. However, from the perspective
of the whole video stream, the result is ambiguous as to whether we should consider this
specific video stream to be correctly classified. In a practical sense, a fall detection system
that produces many false alarms is not desirable. Hence, we need to define a new evaluation
scheme to better assess the performance of a fall detection system.

5.1 Real-time Fall Detection Simulation

This work proposes a real-time fall detection simulation test as a more suitable metric for
evaluating fall detection methods. Rather than basing evaluations solely on model pre-
dictions for input sequences, this approach utilizes actual video streams as test data. By
aggregating the classification model’s predictions across these continuous streams, we can
produce a more accurate and realistic assessment of the fall detection system’s e↵ectiveness.
Ideally, the test data should be sourced from a distinct environment compared to the training
and validation datasets. Specifically, the test videos should be captured in settings featuring
diverse camera angles and lighting conditions. In this case, the STGCN-LE is trained on
the data taken from the locations ”Co↵ee room” and ”Home” and tested on videos taken in
”Lecture room” and ”O�ce.” A test video is classified as:

• True positives (TP): if all ”Fall” sub-sequences drawn from it are detected as ”Fall”
and all ”Non-Fall” sub-sequences are detected as ”Non-Fall”.
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Figure 5.1: The comparison of models with di↵erent architecture and hyperparameters.

• False positives (FP): if the video does not contain ”Fall” and at least one sub-sequence
drawn from it is detected as ”Fall”.

• True negatives (TN): if the video does not contain ”Fall” and all sub-sequences drawn
from it are detected as ”Non-Fall”.

• False negatives (FN): if the video contains ”Fall” and none of the sub-sequences drawn
from it are detected as ”Fall”.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Specificity =
TN

TN + FP
(5.2)

Sensitivity =
TP

TP + FN
(5.3)

The sub-sequences of a video are drawn using a sliding window of size Lin with some stride.
We use stride 1 to evaluate our model. Ideally, this stride should match the stride used at
the production stage. Accordingly, the stride should be set to m, if the fall detection system
samples a sub-sequence from the real-time video stream every m frames when deployed.

5.2 Results

To evaluate the proposed architecture, I used 5-fold cross-validation with ”home” and ”co↵ee
room” subsets in the Le2i dataset as training data. For each fold, the model is evaluated with
the real-time fall detection simulation test proposed in Section 5.1. The ”o�ce” and ”lecture
room” subsets from the dataset are used for testing. To evaluate the e�cacy of our proposed
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Figure 5.2: Comparison between evaluation results of STGCN-LE with existing methods on
the Le2i Dataset. Dual-Channel Feature [18], Body Geometry [19], Kinematic Theory[20].

Figure 5.3: Adjacency matrices learned in the early, middle, and later layers of STGCN.
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method, we conducted experiments by disabling the learnable edges and employing non-
batch-balanced sampling. Subsequently, the performance of these configurations with our
proposed architecture was compared. The assessment was based on cross-validation results,
as depicted in Figure 5.1. All models were trained with Adam optimizer and a learning rate
of 1e-3 for 35 epochs.

According to the ablation study, the proposed architecture can generalize better to unseen
testing data. Despite exhibiting high training-time accuracy, the vanilla STGCN, lacking
learnable edges and employing non-batch-balanced sampling, only achieved a test accuracy
of 68.4%. By applying batch-balanced sampling, the test accuracy is boosted by 12% as it
e↵ectively regularizes the training so that the model does not overfit the data. On the other
hand, the learnable edges encourage the model to discover hidden relationships among joints
in the latent space and prevent it from only memorizing the pattern in the training data. In
general, the proposed method not only leads to better generalization but also reduces the
model variance. In Figure 5.3, we show the adjacency matrix A

l
m learned by di↵erent layers

in STGCN. The model demonstrates an ability to incorporate additional edges with positive
or negative weights while adhering to the pre-defined graph structure rooted in human body
geometry.

Figure 5.2 shows the performance results of three other fall detection approaches on the
Le2i Fall Detection Dataset. The STGCN-LE method proposed in this work is trained and
tested using 80% and 20% of the Le2i dataset, respectively. Since the train-test split of the
three approaches is not explicitly reported, the statistics shown in Figure 5.2 may di↵er from
the true performance results.

5.3 Weaknesses

While the proposed method shows excellent performance on both training and validation
data (test fall, test sit, validation fall), it is vulnerable to certain human actions in daily
living activities. The primary reason for this limitation is the insu�cient representation of
human actions in the Le2i dataset, particularly those that occur commonly in daily life.
Consequently, the model learns to di↵erentiate only between falls and other human actions
present in the training data. While the model demonstrates proficiency in distinguishing
certain actions, such as sitting down or lifting an object, from falls, it may misclassify
activities involving substantial body movements, such as squatting down to tie shoelaces
(Figure 5.5).

To address this problem, one can scale up training data and train the model on a multi-
class classification task instead of the binary classification employed in this paper. In theory,
this approach can compel the model not only to learn the characteristics of fall behavior but
also to discern other human actions and di↵erentiate them from falls.

In addition, as mentioned in Section 2.1, the accuracy of skeleton-based action recogni-
tion methods heavily relies on the accuracy of the upstream task of pose estimation. The
performance of pose estimation tools like AlphaPose can be influenced by various factors, in-

https://drive.google.com/file/d/1hKrydwYSBFToz88ys4P_L84fKLAg8JuM/view?usp=sharing
https://drive.google.com/file/d/1Bnlpb541e0WeY3x9VJyknLkB7vChwtKZ/view?usp=sharing
https://drive.google.com/file/d/1oXyX7f1K6D05Mj70SIW0FIpgoqwGzXIc/view?usp=sharing
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cluding lighting conditions, video resolution, and the scale of the backbone model. In Figure
5.5, we illustrate a failure case of AlphaPose on the Le2i dataset. In this instance, AlphaPose
incorrectly estimates poses for shadows on the wall. Constructing a spatial-temporal graph
based on such erroneous poses can lead to confusion in the fall detection model. Experi-
mental results showed that including such samples in the training data may detrimentally
a↵ect the model’s performance. One potential solution is to train the model using a cleaned
dataset and employ a separate algorithm to filter out these incorrect poses during inference.
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Figure 5.4: Demonstration of the proposed fall detection method. Top: detect ”Fall” in the
test video. Mid: detect ”Fall” in validation video. Bottom: detect ”Non-Fall” in the test
video. Full videos: top, mid, bottom

https://drive.google.com/file/d/1hKrydwYSBFToz88ys4P_L84fKLAg8JuM/view?usp=sharing
https://drive.google.com/file/d/1oXyX7f1K6D05Mj70SIW0FIpgoqwGzXIc/view?usp=sharing
https://drive.google.com/file/d/1Bnlpb541e0WeY3x9VJyknLkB7vChwtKZ/view?usp=sharing
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Figure 5.5: Failure cases of the proposed fall detection method. Top: incorrect human pose
estimation by AlphaPose. Bottom: a failure case of STGCN-LE (full video)

https://drive.google.com/file/d/1AhqyZYStJUhr0uMOSSrzpuHBQqjCBoQh/view?usp=sharing
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Chapter 6

Conclusions

In summary, this report introduces a novel Graph Convolutional Network (GCN) architec-
ture, termed Spatial Temporal Graph Neural Networks with Learnable Edges (STGCN-LE).
The aim is to enhance the expressive capabilities of the original Spatial Temporal Graph
Neural Networks (STGCN) architecture, particularly in the context of skeleton-based fall
detection.

STGCN-LE operates on a spatial-temporal graph with human body joints as vertices and
the human skeleton as edges. Each joint is spatially connected to neighboring joints within
the same video frame, and temporally connected to its counterpart extracted from adjacent
video frames. The AlphaPose toolbox is used to extract 2D joint coordinates from videos as
the input features of each vertex. In each forward pass, graph convolutions are performed at
both spatial and temporal dimensions to pass messages between neighbors. Instead of only
using the initial adjacency matrix pre-defined by the human skeleton structure for message
passing, the model is allowed to modify the adjacency matrix at di↵erent layers by adjusting
edge weights or adding and removing edges. This is achieved by applying two learnable masks
to the initial adjacency matrix. The mask weights are adjusted through backpropagation at
training time and kept unchanged at inference time. This mechanism allows the networks
to learn a spatial-temporal graph structure that is the most suitable for the downstream
classification task. Experiments showed that learnable edges improve the expressive power
of the networks, which leads to a better fall detection performance, compared to the original
STGCN.

The e�cacy of STGCN-LE is validated through cross-validation on test datasets, em-
ploying a proposed Real-time Fall Detection Simulation scheme. This evaluation method
assesses the fall detection system in practical settings, incorporating lighting conditions and
camera angles not present in the training data. It evaluates the fall detection method not
on model classification accuracy, but on the algorithm’s performance on videos, which high-
lights the system’s e↵ectiveness in real-world scenarios. This approach is motivated by a
crucial observation regarding the evaluation of fall detection algorithms: the absence of a
standardized evaluation framework across the field. Previous works often employed slightly
di↵erent metrics and failed to report the train-test split of the datasets used. This lack of
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standardization poses challenges for making meaningful comparisons between di↵erent ap-
proaches. Consequently, future work on fall detection algorithms should align the evaluation
method with existing approaches.

Despite the method’s susceptibility to certain human actions during daily living activities,
stemming from the limited training data, the model still achieves performance comparable to
other existing fall detection approaches. For our future work, we should train the STGCN-
LE model on a multi-class human action dataset. This explicitly forces the networks to
learn the characteristics of a variety of human actions in daily living activities, which should
enhance the overall fall detection performance of the model.

Lastly, while the proposed skeleton-based fall detection method and other existing ap-
proaches exhibit good performance, ongoing advancements in pose estimation techniques
are essential to further improve the methods. Skeleton-based fall detection relies heavily on
pose estimation, where errors introduced at each stage of the pipeline can accumulate and
impact the final classification outcome. Given the scarcity of fall detection data, the model
may not be exposed to enough diverse examples during training to e↵ectively learn the un-
derlying patterns and variations in fall detection scenarios. As a result, the accumulated
errors may not be adequately averaged out, leading to potential overfitting or limited gener-
alization ability of the model. By addressing these challenges, future research endeavors can
contribute to the continued progress and refinement of fall detection algorithms.
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