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ABSTRACT
Accurate modeling of the vocal tract is necessary to con-
struct articulatory representations for interpretable speech
processing and linguistics. However, vocal tract modeling
is challenging because many internal articulators are oc-
cluded from external motion capture technologies. Real-time
magnetic resonance imaging (RT-MRI) allows measuring
precise movements of internal articulators during speech, but
annotated datasets of MRI are limited in size due to time-
consuming and computationally expensive labeling methods.
We first present a deep labeling strategy for the RT-MRI
video using a vision-only segmentation approach. We then
introduce a multimodal algorithm using audio to improve
segmentation of vocal articulators. Lastly, we propose three
transfer learning techniques to noticeably improve MRI-
based articulatory-to-acoustic synthesis performance and
extend the technique to EMG and EMA-to-speech tasks: (1)
pre-trained weight initialization, (2) pre-training part of the
model, and (3) multimodal pre-training. We also release la-
bels for a 75-speaker RT-MRI dataset, increasing the amount
of labeled public RT-MRI data of the vocal tract by over a
factor of 9. The code and dataset labels can be found at demo
page.

Index Terms— articulatory synthesis, audio-visual per-
ception

1. INTRODUCTION

Vocal tract modeling is an essential technology in many ap-
plications including facial animation, naturalistic speaking
avatars, speaker modeling, and second language pronuncia-
tion learning [1, 2, 3, 4, 5, 6]. In fact, popular self-supervised
speech representations learn features correlated with articula-
tors [7]. Modeling is also necessary in healthcare applications
such as brain-computer interfaces for communication [8, 4]
and treating speech disfluencies [9, 10]. Methods of exter-
nal motion capture cannot record precise and accurate vocal
tract movements for occluded articulators. Thus, the inner
mouth is often poorly represented or neglected in multimedia
approaches to motion capture-based facial animation [11].
Popular approaches to solving the issue of inner mouth oc-
clusion include electromagnetic articulography (EMA) and
electromyography (EMG) as models for the vocal tract. How-
ever, these methods only contain a small subset of articulatory
features [12, 13].

A more comprehensive approach uses Real-Time Mag-
netic Resonance Imaging (RT-MRI) of the vocal tract [14].
This technology offers audio-aligned videos of internal and
external articulators that are not measurable by other articu-
latory representations. When tested on downstream speech-
related tasks, RT-MRI has been shown to more reliably and
completely model the vocal tract in comparison to EMA [15].
For example, MRI representations distinguish between oral
vowels (lowered velum) and nasal vowels (raised velum),
while EMA does not track the velum at all. However, current
state-of-the-art labeling methods for extracting interpretable
features from these videos are time-consuming, computation-
ally expensive, and prone to errors [16]. Therefore, only a
small amount of vocal tract RT-MRI data is labeled [17] and
existing MRI-to-speech synthesis models have low intelligi-
bility [15]. As a result, current work using real-time articula-
tory MRI falls into two broad categories: (1) those which rely
on the previously extracted articulator segmentations [15, 9],
or (2) models which directly work with RT-MRI videos but
do not contain an interpretable intermediate representation
[18, 19]. To address the scarcity of publicly-available articu-
latory segmentations for RT-MRI and improve the fidelity of
MRI-to-speech synthesis, we propose:

• A vision-based fully-convolutional neural network [20]
for speaker-independent vocal tract boundary segmen-
tation.

• A multimodal Transformer model which additionally
includes the speech waveform to set a new benchmark
for vocal tract RT-MRI segmentation.

• Labels for the 75-speaker Speech MRI Open Dataset
[21] containing over 20 hours of vocal tract RT-MRI
data for 75 speakers diverse in age, gender, and accent.

• Three transfer learning approaches that noticeably im-
prove articulatory-to-acoustic synthesis performance in
error-prune settings

• A deep speech representation that outperforms self-
supervised learning features and spectrums as an inter-
mediate for articulatory synthesis.



2. ARTICULATORY DATASETS

2.1. USC-TIMIT Dataset

The USC-TIMIT dataset contains labeled 8-speaker RT-MRI
of the vocal tract described in [17]. Subjects were instructed
to read phonetically-diverse sentences out loud at a natural
speaking rate while laying supine in an MRI scanner. A four-
channel upper airway receiver coil array was used for signal
reception, which was processed to reproduce 84 ⇥ 84 pixel
midsaggital MRI videos capturing lingual, labial, and jaw
motion, and velum, pharynx, and larynx articulations. These
videos are collected at 83.33 Hz. We start with the 170 rep-
resentative points from [17] to represent vocal tract air-tissue
boundary segmentations. Of these 170 points, we take the
subset of 95 points (190 x and y coordinates) that has been
determined to be most vital for speech tasks in Wu et al. [15].
All RT-MRI video in the USC-TIMIT dataset is accompanied
by existing articulator points extracted using the baseline al-
gorithm described further in Section 3.1. We use these point
labels as training targets for the other segmentation methods
described in Section 3. Paired with these trajectories is the
16kHz speech data (resampled from original 20kHz) corre-
sponding to the read sentence during any RT-MRI scan. Fol-
lowing previous articulatory MRI work, we further enhance
this audio using Adobe Podcast to reduce reverbation [15].
For training segmentation models, we use 7 of the 8 speakers
(roughly 66 minutes of RT-MRI video) and leave out the re-
maining speaker ”Napa” as ”unseen”. To compare with prior
works [15], we train MRI-to-speech synthesis model using
the ground truth ”Napa” speaker data with 155 data points.

2.2. Speech MRI Open Dataset

The Speech MRI Open Dataset [21] is a diverse 75-speaker
dataset that provides 20 hours of raw multi-coil RT-MRI
videos of the vocal tract during articulation, aligned with cor-
responding speech. Such a large, rich dataset can help solve
many open problems in fields related to phonetics, spoken
language, and vocal articulation. However, unlike the USC-
TIMIT dataset, the data does not include labeled MRI feature
points tracked over time.

2.3. EMA Dataset

EMA data is comprised of the midsagittal x-y coordinates
of 6 articulatory positions: lower incisor, upper lip, lower
lip, tongue tip, tongue body, tongue dorsum [22, 23]. We
use MNGU0, a single-speaker dataset containing 67 minutes
of 16 kHz speech and 200 Hz EMA [24]. Another dataset
we use is the Haskins Production Rate Comparison database
(HPRC), an 8-speaker dataset containing 7.9 hours of 44.1
kHz speech and 100 Hz EMA [25]. To maintain consistency
with prior work [23, 26], we focused only on the midsagittal
plane and discarded the provided mouth left and jaw left data
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Fig. 1: The attention U-Net model. Dotted lines represent the
paths of attention gating in contracting/expanding layers.

in HPRC. We utilize HPRC in our multi-modal pre-training
approach, detailed in Section 4.3. For all of our EMA data, we
concatenate the 6 x-y coordinates to form a 12-dimensional
vector at each time step.

2.4. Electromyography (EMG)

Surface electromyography (EMG) measures electrical poten-
tials caused by nearby muscle activity using electrodes placed
on top of the skin [27]. When placed near articulators, EMG
provides another low-dimensional manifold of articulatory
movements [27, 28, 29, 30]. In this work, we use the EMG
dataset in [29], which consists of EMG data and speech for
vocalized utterances. We use the 3.9-hour vocalized speech
subset, denoted “Parallel Vocalized Speech” in [29]. Our
train-dev-test data split contains 195 minutes, 12 minutes,
and 23 minutes of speech, respectively. Speech waveforms
have a sampling rate of 16 kHz, and EMG 1000 Hz.

3. TRAINING SEGMENTATION MODELS

3.1. Frequency-domain Gradient Descent Baseline

The existing algorithm for articulatory RT-MRI segmentation
[17] relies on hand-traced air-tissue boundaries for the first
frame of every video. It subsequently performs nonlinear op-
timization in the frequency space of subsequent frames, re-
quiring 20 minutes to converge for a single frame using gra-
dient descent. This procedure is also prone to mislabeling
and requires human supervision, making it expensive to run.
Because each frame is optimized independently, it often re-
sults in jitter, or high-frequency perturbations, for individual
articulator points across consecutive frames. As this is the
only existing algorithm for articulatory RT-MRI labeling, the
outputs of this model are used as the ”ground truth” training
targets for the following models, and the algorithm will be
referred to as the ”baseline” algorithm.

3.2. Heatmap U-Net

The U-Net [20], a residual fully-convolutional neural net-
work, has historically performed well on low resolution



medical images, especially when training data is limited.
Because labeled data was only originally available from eight
speakers, this architecture provided the best fit while also
generalizing to held out speakers. Input MRI frames were
padded to a spatial dimension of 96 by 96 and subsequently
reduced in the spatial dimension by a factor of two in each
layer of the contracting path before expanding. Of the spa-
tial features, the key articulators only occupy a subset of the
space. For this reason, we learned a spatial weighting map
on the residual connection to effectively suppress the compo-
nents of the signal which are not important using an attention
gating mechanism, and introduced normalization layers simi-
lar to the Attention U-Net [31] with the modification of using
additive attention as opposed to multiplicative. Adding at-
tention gating minimally increased model complexity. The
architecture is visualized in Figure 1.

We trained this model on approximately 90 minutes of la-
beled midsaggital RT-MRI video from 7 speakers for a total
of 6 epochs. The model outputs a 96 by 96 grid for each
of the 95 articulatory points. Each of the target keypoints
were modeled as 2-dimensional isotropic Gaussian distribu-
tions over the 96 by 96 spatial grid with a standard deviation
of 2 pixels. For generating keypoint locations from the output
heatmaps, we took a weighted average of the k pixels with the
highest output values, where the best k was found experimen-
tally to be 25. During training, we also applied random affine
transformations to frames and the corresponding annotations
to promote generalization to unseen speakers.

Typically, the pixelwise mean squared error loss, also
known as L2 loss, is used for heatmap regression tasks, but
we also introduce using the Kullback–Leibler (KL) diver-
gence between the output and target grids in which each
output grid is restricted to a 2-dimensional probability distri-
bution using a softmax nonlinearity. To our knowledge, this
training objective has not been used for heatmap regression in
medical imaging in the past, but appears to guide the model
into producing an output that also appears Gaussian in nature
and is a natural fit for measuring the difference in the two
probability distributions.

In addition, articulator points have varying degrees of
movement (standard deviation) and importance in speech
production. To explore this, we also experimented with using
the standard deviation and importance determined by Wu et

al. [15] from the 7 training speakers in the training objec-
tive. Specifically, we multiplied the standard deviation and
importance of each point to determine its weighting in the
combined loss. This articulatory weighting emphasizes the
importance of points that show significant movement and
are important to speech production over those which show
minimal movement or have been found to be less essential.

Waveform

Video

WavLM

MRI Points

Image Encoder

Transform
er

TransformerCNN

Fig. 2: Architecture of the multimodal segmentation model.

3.3. Multimodal Audio-Visual Transformer

Using the U-Net model as a pretrained convolutional input,
we further explored joint point tracking methods. To en-
sure tracks remain smooth, we applied a temporal Gaussian
low-pass filter independently for each point of the U-Net
output. We also tried using a convolutional LSTM as in [32]
(CLSTM) and a Transformer. The CLSTM, previously used
in MRI video segmentation [18], applies a 2-layer LSTM to
the predicted U-Net outputs, trained on speech from the same
7 USC-TIMIT speakers. The Transformer similarly used the
U-Net points from each timestep, with an additional posi-
tional encoding. Additionally, we experimented with adding
optical flow, Kalman filtering, and Lucas Kanade to improve
temporal point tracking [33, 34]. Both the CRNN and the
Transformer methods did not achieve equal or better perfor-
mance than smoothed U-Net tracks on MRI videos of unseen
speakers, reinforcing the fact that articulatory MRI tracking
is fundamentally different than other traditional video-only
tracking problems.

We subsequently experimented with multimodal mod-
els for feature extraction, using representations from video
frames and speech waveforms. For video frames, we used the
output of the frozen U-Net model described in Section 3.2
and also experimented with other image representation mod-
els including ResNet [35] and ConvNeXt [36]. To represent
audio, we used the 10th layer of WavLM [37] to derive
speech representations. The two representations were then
concatenated as input to a Transformer prepended with three
residual convolutional blocks as seen in Figure 2. Addi-
tionally, we experimented with an audio-only segmentation
model (articulatory inversion) using the same WavLM and
Transformer methods. The Transformer models were trained
on the speech data from the same 7 of 8 USC-TIMIT speakers
as in Section 3.2. Using multi-task learning, the Transformer
experiments output MRI trajectories and pitch simultane-
ously, optimized using weighted L1 loss.



Fig. 3: Three transfer learning approaches for articulatory synthesis.

4. TRANSFER LEARNING

4.1. Pre-Trained Weight Initialization

Initializing model weights with those of a pre-trained model
is an effective method to improve fine-tuning performance
in limited-data settings [15], visualized in Figure 3 approach
(1). We demonstrate that this method can improve intelli-
gibility by 5% absolute WER compared to prior EMA-to-
speech models, measured with an automatic speech recog-
nizer. Moreover, this approach noticeably improves data effi-
ciency, with details in Section 6.1.

4.2. Pre-Training Part of the Model

Pre-training part of the model is another effective method
for improving performance in low-resource settings. For
example, many text-to-speech (TTS) models pre-train their
vocoder [38], and many classifiers pre-train their encoder
[39]. Popular vocoder input representations include spec-
trums, high-dimensional self-supervised features, learnt rep-
resentations, and units [38, 40, 41, 42]. This pre-training
method has also shown success with ultrasound-speech tasks
[43]. We extend these results to MRI and EMG datasets that
contain significantly less and noisier data. Additionally, we
propose a vocoder input dimensionality reduction approach
that noticeably improves MRI- and EMG-to-speech perfor-
mance.

Specifically, we reduce the dimensionality of the Hu-
BERT [44] self-supervised representation in order to reduce
the complexity of mapping to this intermediate feature, vi-
sualized as (2a) in Figure 3. We choose HuBERT given its
success with other synthesis tasks [45, 46], and note our di-
mensionality reduction methodology can be applied to any
representation. We experiment with three methods: (1) lin-
ear projection, (2) low-pass filtering, and (3) neural ordinary
differential equations (ODE) [47]. Intuitively, methods 2 and
3 encourage the resulting feature to be smoother across time
than the original feature. All three approaches linearly project
HuBERT from 1024 to 256 dimensions. Our second method
adds a differentiable low-pass filter along the time dimension
with an arbitarily chosen cutoff frequency of 0.4 after the
linear layer.1 For our third method, we use a neural ODE

1https://github.com/adefossez/julius

to map each 256-dimensional frame to the next one and add
a mean squared error (MSE) loss minimizing the distance
between mapped and original frames. We use a linear layer
as our ODE function. This encourages each next frame to
equal the output of iteratively applying a fixed linear trans-
formation to the current frame, reducing the complexity of
the representation space. Our three approaches are denoted
as MLP, Low-Pass, and NODE, respectively, in the result
section below.

To train each of these three representations, we linearly
project the 256-dimensional vector outputs back to 1024 di-
mensions and compute an MSE loss between this final output
and the ground truth HuBERT features (step 2a in Figure
3). Thus, the final loss function is computed by adding
this reconstruction loss with any additional losses mentioned
for each approach. We discard the 256-to-1024 projection
layer during inference and use the learnt 256-dimensional
feature as an alternative to HuBERT. Then, we train an
intermediate-to-acoustic HiFi-CAR (Section 3), visualized
as step (2b) in Figure 3. Thirdly, in step (2c), we train an
articulatory-to-intermediate Transformer (Section 3), Finally,
we prepend this model to HiFi-CAR to form our articulatory-
to-intermediate-to-acoustic model (step 2d). Steps (2a) and
(2b) do not require articulatory data, allowing us to train these
steps on a large speech corpus. Since HuBERT accepts 16
kHz speech as input, we downsample waveforms to match
this sampling rate. We find pre-training part of the model
to noticeably improve speech synthesis quality for MRI-to-
Speech and voiced EMG-to-Speech tasks, detailed in Section
6.2.

4.3. Multimodal Articulatory Pre-Training

Multi-modal pre-training involves training a model with mul-
tiple modalities jointly, with the resulting model able to per-
form better in downstream tasks compared to models trained
with fewer modalities [48, 49]. We extend this strategy to ar-
ticulatory synthesis by pre-training with more than one artic-
ulatory modality as input and fine-tuning the resulting model
with only the target articulatory modality, visualized in Figure
3 approach (3).

Specifically, we pre-train our MRI-to-speech model with
both EMA and MRI, where EMA is inferred from the ground
truth speech data using a fixed speech-to-EMA model (Wu et

https://github.com/adefossez/julius


Fig. 4: Extracted MRI-features for the utterance ”apa.”
Lighter is earlier in time. Each point is colored with the
highest-correlation EMA feature. Points with maximum cor-
relation magnitude below 0.3 are omitted for readability.

al., 2023) [23]. We linearly interpolate the estimated EMA to
match the sampling rate of the MRI data. We prepend a linear
layer to the model for each modality, where the output of these
layers are 128-dimensional inputs to the same network. We
train this multimodal model using the same hyperparameters
as the models with single-modality inputs, and fine-tune the
resulting model on the target modality dataset with the same
hyperparameters. Models utilizing multi-modal pre-training
contain “Multi” in the tables below, and detailed optimization
choices and results are in Section 6.3.

To provide more intuition on multimodal pre-training,
Figure 4 illustrates the average Pearson correlation between
inferred EMA and ground-truth MRI. We visualized correla-
tion by coloring each MRI point in the midsagittal plane with
the highest-correlation EMA point, where MRI points with
maximum correlation magnitude below 0.3 are omitted for
readability. The noticeable overlap between these modalities
spatially suggests that information learned from one modality
can be transferred to the other.

5. MRI SEGMENTATION RESULTS

We performed quantitative evaluations of both our vision-
based and multimodal vocal tract segmentation approaches.
The segmentations were then used to add articulatory labels
to RT-MRI from 75 previously-unlabeled speakers. Using
this data as a multimodal pretraining approach, the different
segmentations were further used for a downstream speech
task to measure how well speech features were captured by

Table 1: Comparison of the root mean squared error of the
U-Net models trained using L2 loss, KL-divergence loss, and
KL-divergence loss with articulatory weighting. More details
are available in Section 5.1.

Loss RMSE
MSE (L2) 7.33

KL-div 3.74
KL-div + Weighting 3.92

different segmentation methods. Finally, we conducted a
qualitative hypothesis test using our best method.

5.1. Vision-only U-Net

The first experiment compared L2 (mean squared error) loss
with our new pixel-wise KL-divergence loss with and with-
out articulatory weighting for the U-Net model. This was
evaluated using the root mean squared error (RMSE) of the
predicted x-y points for the 95 articulator points on an un-
seen speaker. The results in Table 1 demonstrate that the
KL-divergence loss is better suited for low-resolution point
recognition for air-tissue boundary segmentation. While ar-
ticulatory weighting predictably increases the RMSE, manual
inspection reveals that most of this error can be attributed to
slight shifts in less phonologically important articulators such
as the hard palate, with significant improvement on the more
important articulators.

5.2. Comparison with Multimodal Transformer

When analyzing our various feature extraction methods, we
first evaluate performance within the context of seen speak-
ers but unseen examples. Figure 5 highlights quantitative
results in L1 losses and Pearson Correlation Coefficients
(PCCs) when evaluating models on unseen examples from
seen speakers. We observe that multimodal models perform
consistently better than the purely video-based U-Net. In fact,
the best model in terms of both metrics includes the outputs
of the U-Net as one of the input modalities alongside WavLM
vectors. These results suggest the inclusion of speech within
segmentation provides additional speaker-specific informa-
tion related to the anatomy of the vocal tract. Since the
shape of different parts of the vocal tract can greatly vary
from speaker to speaker, this inclusion is crucial for better
in-domain modeling of speech production. With only a sin-
gle modality, the pixel value-based U-Net generalizes better
to unseen speakers than the WavLM-based speech inversion
model since contour pixel values capture speaker-specific
anatomy better than speech waveforms alone. Utilizing this
tradeoff, we use the U-Net model to label the unseen 75-
speaker Speech MRI Open Dataset and we verify in section
6.4 whether using WavLM based segmentation approach will



benefit single-speaker MRI-to-speech synthesis.

5.3. Labeling the Speech MRI Open Dataset

We used the U-Net model to label RT-MRI video for 75
speakers in the Speech MRI Open Dataset [21]. Outputs
from this model were subsequently run through a temporal
Gaussian low-pass filter, which was applied independently
for each articulator x-y point and used to provide video and
audio-aligned MRI trajectories.

In Figure 6, we highlight the generalization of the U-Net
model on unseen speakers, allowing us to expand the amount
of labeled RT-MRI video to over 20 hours across 83 total
speakers. Qualitatively, the predicted segmentations closely
follow the MRI segments, achieving high quality labeling for
unseen speakers. As part of this paper, we also present this la-
beling for use in future downstream speech tasks, increasing
the amount of publically-available labeled articulatory RT-
MRI data by over a factor of 9. The labels are available at
[Add google drive link].

5.4. Qualitative Evaluation

Despite relying on the output of the baseline segmentation
algorithm as the training targets, our segmentation methods
performed better than the baseline algorithm when evaluated
on downstream speech synthesis. We hypothsize that this is
because the baseline segmentations have high amounts of jit-
ter and inconsistencies across frames, and are sometimes even
physiologically implausible. In comparison, the estimates of
the presented multimodal approach are much more consistent
and plausible, possibly explaining why they are better suited
for building downstream methods. To validate this hypothe-
sis with a subjective evaluation, we ran a one-tailed percep-
tual test for statistical significance where participants looked
at two video animations of vocal tract movements in side-
by-side panels (one with original labels, and the other with
outputs of our segmentation method). The participants then
selected which rendering is a more accurate representation
of the associated audio. Our results reveal the participants
(n=21) prefer the outputs of our algorithm relative to the orig-
inal segmentations (p < 0.001).

For visualization of these results, we invite you to watch
our demo video.

6. ARTICULATORY SYNTHESIS RESULTS

For all HiFi-CAR experiments, we trained this model with
an autoregressive feature extractor hidden dimension of 256,
a batch size of 32, and the Adam optimizer with {0.5, 0.9}
for beta values [50]. Transformer layers have a hidden di-
mension of 1024 and a dropout of 0.2. We trained the Trans-
former using the L1 loss function, the Adam optimizer [50]

Table 2: EMA-to-speech ASR results with and without pre-
trained weight initialization on 5-minute and entire training
set, with 95% confidence intervals in parentheses.

Model 5 Min. WER (%) # All WER (%) #
No Pre-Train 22.6 (13.8-33.1) 9.4 (4.9-14.3)
Pre-Train 17.7 (11.1-24.5) 9.3 (4.9-14.6)

with betas {0.5, 0.9}, and a batch size of 16. During train-
ing, we randomly crop a 0.5 seconds to 2 seconds window
from each sample in the batch, with the window length fixed
within the batch. Since EMA datasets have much less noise
than other articulatory modalities [15, 29], for EMA tasks,
we do not do multimodal pre-training and find pre-training
part of the model unnecessary. For MRI and EMG tasks,
we use all three transfer learning methods, with pre-trained
weight intialization applied to the baseline and intermediate-
to-acoustic models.

6.1. Pre-Trained Weight Initialization Results

To check the usefulness of pre-trained weight initialization,
we train EMA-to-speech models with and without such ini-
tialization on MNGU0, described in Section 2.3. Our EMA-
to-speech model here is HiFi-CAR, described in Section 3,
with upsample scales [5, 4, 2, 2] to upsample the 200 Hz EMA
input to the 16000 Hz waveform. For pre-trained weights, we
use the LibriTTS [51] HiFi-GAN mel-spectrogram to speech
vocoder weights in [52, 15]. Since these scales are differ-
ent than those of the pre-trained vocoder, we only load the
weights with matching dimensions. In addition to the 12-
dimensional EMA data, we concatenate loudness and pitch to
the input, each one-dimensional, forming a 14-dimensional
vector input at each time step. Inspired by [53], We com-
pute pitch using CREPE [54, 55] and loudness by taking the
absolute maximum of an 80-frame window, both using the
EMA data sampling rate and a hop size of 80. For our train-
validation-set split, we match the 1069-60-60 utterance split
in [56]. We also train only on a 5-minute subset randomly
sampled from the train set in order to study data efficiency.
To evaluate these EMA-to-speech synthesizers, we compute
WER with the Whisper Large automatic speech recognition
(ASR) model [57], with WER results in Table 2. WER using
the entire train set is comparable betwen models, suggesting
that pre-trained weight initialization yields at least as good
performance compared to the default initializaiton. Notably,
when training on only 5 minutes of data, the model with pre-
trained weight initialization performed much better than the
other one, suggesting that this initialization method improves
data efficiency.



Fig. 5: L1 losses [↓] (left) and Pearson Correlation Coefficients (PCCs) [↑] (right) comparing MRI trajectories of unseen ex-
amples from seen speakers of a given model with the USC-TIMIT ground truth. Varying through a subset of five representative
models.

Table 3: ASR character and word error rates on MRI-to-
speech synthesis outputs, with 95% confidence intervals in
parentheses. Proposed intermediates in top 3 rows (Section
4.2).

Model CER (%) # WER (%) #
Low-Pass 28.2 (19.4-37.4) 42.4 (30.1-55.9)
MLP 36.0 (22.7-49.5) 57.2 (36.7-78.4)
NODE 43.8 (25.-66.2) 62.0 (37.8-88.2)

HuBERT 31.1 (21.9-41.8) 53.2 (36.4-72.5)
Spectrogram 42.7 (33.3-52.5) 65.7 (52.2-80.3)
Direct 66.7 (55.4-74.3) 89.5 (74.4-100.0)

Table 4: Human evaluation scores for MRI-to-speech (mean
± standard deviation, 2 [0, 1]). Proposed intermediates in top
3 rows (Section 4.2).

Model MRI Score " EMG Score "
Low-Pass 0.81 ± 0.04 0.94 ± 0.08
MLP 0.89 ± 0.10 0.64 ± 0.20
NODE 0.63 ± 0.09 0.61 ± 0.10

HuBERT 0.44 ± 0.10 0.61 ± 0.14
Spectrogram 0.00 ± 0.00 0.14 ± 0.02
Direct 0.17 ± 0.00 0.06 ± 0.05

Ground Truth Predicted

Fig. 6: Two representative examples of predicted MRI points
(right) compared to expert hand labels (left). The examples
are spoken by unseen Female (bottom) and Male (top) speak-
ers in the Speech MRI Open Dataset.

6.2. Results when Pre-Training Part of the Model

We pre-train part of the model as in Section 4.2 for single-
speaker MRI-to-speech and voiced EMG-to-speech tasks,
with datasets described in Sections 2.1 and 2.4, respectively.
Our 256-dimensional intermediate features are learnt with
VCTK, which has 110 English speakers and a total of 44
hours of 44.1 kHz speech, randomly dividing speakers into



Table 5: ASR character and word error rates on voiced EMG-
to-speech synthesis outputs, with 95% confidence intervals in
parentheses. Proposed intermediates in top 3 rows (Section
4.2).

Model CER (%) # WER (%) #
Low-Pass 14.2 (10.8-18.6) 23.1 (19.5-26.8)
MLP 13.2 (10.2-16.9) 22.2 (18.8-25.8)
NODE 17.6 (15.0-20.3) 29.1 (25.4-33.3)

HuBERT 15.7 (12.5-19.7) 24.6 (20.8-28.5)
Spectrogram 30.2 (26.9-33.5) 47.3 (42.4-51.8)
Direct 113.8 (100.3-129.2) 145.1 (124.5-167.7)

an 85%-5%-10% train-validation-test split [58].
Our baseline for MRI-to-speech is [15], labeled Direct in

Tables 3 and 4. Specifically, this is the HiFi-CAR model de-
scribed in Section 3 with upsample scales [8, 5, 3, 2] to map
83.3̄ Hz MRI to 20 kHz acoustics. Since our voiced EMG
task does not have a baseline to our knowledge [29], we also
use HiFi-CAR, here with upsample scales [2, 2, 2, 2] to map
1 kHz EMG to 16 kHz acoustics. This baseline is labeled
Direct in Tables 5 and 4. For partially pre-trained models,
we map inputs to intermediates (Section 4.2) using the Trans-
former in Section 3, and intermediates to waveforms using
HiFi-CARs with the same architectures as the baselines. We
linearly interpolate the 50 Hz intermediate features to match
the sampling rates of the inputs.

To evaluate these models, we use the ASR metric in Sec-
tion 6.1 and human evaluation. As shown in Tables 3 and
5, pre-training part of the model results in much better ASR
performance than the baseline for both MRI-to-speech and
voiced EMG-to-speech. Also, our low-pass-filtered represen-
tation (Low-Pass) described in Section 4.2 outperforms Hu-
BERT on both tasks. We also do human evaluation with 3 lis-
teners, each listening to 30 samples, composed of 2 utterances
per pairwise comparison between 6 models. For each pair of
utterances, if one is preferred, that model receives a score of 1
and the other model 0, and otherwise both receive 0.5. Scores
are averaged per model, so that each score is in [0, 1], with
1 being the highest possible score. Table 4 summarizes these
results for MRI-to-speech and EMG-to-speech. All of our
proposed 256-dimensional features noticeably outperform the
other methods, highlighting the suitability of these features
for synthesizing natural speech.

6.3. Multi-Modal Pre-Training Results

As motivated in Section 4.3, we apply our multi-modal pre-
training method to single-speaker MRI-to-speech synthesis.
Our MRI dataset and model architectures are the same as
those in Section 6.2, with the model being modified during
the multi-modal pre-training step as described in Section 4.3.

Table 6: ASR word error rates on multimodal and non-
multimodal MRI-to-speech synthesis outputs, with 95% con-
fidence intervals in parentheses. Low-Pass is a proposed in-
termediate (Section 4.2).

Model Multi. WER (%) # Non-multi. WER (%) #
Low-Pass 33.3 (19.0-52.0) 42.4 (30.1-55.9)
HuBERT 34.4 (19.8-52.9) 53.2 (36.4-72.5)

Table 7: Human evaluation scores for multimodal versus
non-multimodal MRI-to-speech (mean ± standard deviation,
2 [0, 1]). Low-Pass is a proposed intermediate (Section 4.2).

Model Multi. Score " Non-multi. Score "
Low-Pass 0.714 ± 0.12 0.34 ± 0.12
HuBERT 0.84 ± 0.24 0.17 ± 0.24

We pretrain our model with: (1) all of the EMA data in the
HPRC dataset described in Section 2.3, and (2) the training
set of our MRI dataset described in Section 2.1. The pre-
training and fine-tuning steps both use the Adam optimizer
with a learning rate of 10�4 [50]. To avoid redundancy, we
report results for our best proposed representation (Low-Pass)
and HuBERT. We observe similar results for all of the other
models, with details and code being available in the supple-
mentary codebase post-anonymity.

We evaluate these models with the same ASR metric as
Section 6.2. Table 6 summarizes the ASR WER and charac-
ter errror rates (CER) on the MRI test set. The models utiliz-
ing multi-modal pre-training all outperform their non-multi-
modal counterparts, suggesting that multi-modal pre-training
noticeably improves MRI-to-speech performance. We note
that our best WER, 33%, is noticeably better than the 90%
WER from the previous model [15]. We also perform a pre-
liminary human evaluation study, comparing with and with-
out multi-modal pre-training for each model. 3 listeners par-
ticipated, each listening to 10 samples, 2 for each model pair.
Listeners can select either model or neither for their natural-
ness preference. For each model, we add 1 to its score if it
was selected and 0.5 if it was involved in a neither choice.
Like Section 6.2, we average scores for each model to give a
number between 0 and 1, with 1 being the best possible score.
Table 7 summarizes these results, with means and standard
deviations taken across listeners. Matching the ASR result,
the multimodal models received higher scores, reinforcing the
benefits of multi-modal pre-training.

6.4. Synthesis Comparison across MRI segmentations

To evaluate our segmentation methods on speech synthesis
tasks, we use the same Low-Pass feature and multimodal ar-
ticulatory pretraining approach to train separate models for



Table 8: Speech synthesis ASR WER finetuning on segmen-
tations from a seen speaker during segmentation model train-
ing, but unseen utterances. (S) denotes synthesis model pre-
trained using single MRI speaker. All other models are pre-
trained with 75-speaker MRI.

Model WER
U-Net + WavLM 0.313 (0.164-0.493)
U-Net 0.364 (0.209-0.551)
Ground Truth 0.347 (0.186-0.532)
U-Net + WavLM (S) 0.349 (0.203-0.528)

Table 9: Speech synthesis ASR WER finetuning on segmen-
tations from an unseen speaker during segmentation model
training. (S) denotes synthesis model pretrained using single
MRI speaker. All other models are pretrained with 75-speaker
MRI.

Model WER
U-Net + WavLM 0.333 (0.202-0.498)
U-Net 0.352 (0.172-0.568)
Ground Truth 0.497 (0.348-0.666)
U-Net + WavLM (S) 0.501 (0.280-0.728)

each segmentation model on one seen speaker and one un-
seen speaker. We also want to explore the effect of using the
labeled 75 speaker MRI data during multimodal pretraining.
For models pretrained with single speaker MRI data, we de-
note them as (S). For example, U-Net + WavLM(S) means the
model is pretrained on the Napa data labeled by the U-Net +
WavLM segmentation approach and then finetuned, follow-
ing the approach in section 4.3. All other models without (S)
are pretrained with 75 speaker MRI data labeled by the UNet.

For seen speakers of segmentation models, the multi-
modal U-Net + WavLM based synthesizer outperforms both
the ground truth baseline as well as the U-Net, suggesting
that the addition of the speech modality helps preserves more
speech-related information within the predicted MRI point
trajectories compared to a purely image-based approach.
Table 8 summarizes these results.

The results in Table 9 highlight that the U-Net + WavLM
based model has the lowest WER when testing on an unseen
USC-TIMIT speaker ”Napa”, documenting that the segmen-
tations from the multimodal model on unseen speakers still
capture representative articulatory kinematics for naturalistic
speech. We note that the word-error-rate for unseen speaker
”Napa” using ground truth label is much worse than that of
Table 6. This is because during multimodal pretraining, the
MRI data we used comes from U-Net labels for 75 speakers
with only 95 MRI points, posing difficulties for the model to
be finetuned on the 155-point ground truth MRI data.

Table 9 also suggests that when using ”U-Net + WavLM”

segmentation outputs on unseen speakers, pretraining the syn-
thesis model on 75-speaker data can achieve the level of intel-
ligibility compared to results in Table 6 while pretraining on
single speaker can’t. When using ”U-Net + WavLM” on seen
speakers as shown in Table 8, pretraining the synthesis model
on single speaker has comparable performance compared to
pretraining on 75 speakers. This demonstrates (1) potential
degradation of speech production information when apply-
ing the WavLM-based segmentation model on out-of-domain
speakers (2) synthesis knowledge from the U-Net labeled 75-
speaker Speech MRI Open Dataset can mitigate the effect
of degraded vocal tract segmentations on speech synthesis.
Therefore, we expect the new labels for the Speech-MRI-
Open-Dataset to be beneficial for future articulatory-speech-
related tasks as well.

7. CONCLUSION

In this work, we improve the accuracy of vocal-tract seg-
mentation from RT-MRI images through a vision-only U-Net
approach and used the model to label the 75-speaker Speech-
MRI-Open-Dataset, increasing the amount of public labeled
RT-MRI data of the vocal tract by over a factor of 9. We
further improve the in-domain segmentation accuracy with
a bimodal audio-vision approach combining the U-Net and
WavLM. We then propose the first intelligible MRI-speech-
synthesis system by utilizing regularized HuBERT and trans-
fer learning, with extensions to EMA and EMG-to-speech
synthesis. Using the developed speech synthesis system, we
demonstrate that through inclusion of speech information,
the segmentation output can benefit downstream MRI speech
synthesis tasks. We also illustrate that pretraining the MRI
speech synthesis model on the U-Net labeled 75-speaker MRI
dataset can improve intelligibility. We expect future works
to discover more potential usages with the dataset and im-
prove the proposed articulatory speech synthesis systems,
and we list a few below: (1) Multispeaker Speech-to-MRI
inversion systems (2) Multispeaker MRI-to-Speech synthesis
(3) MRI speech encodec (4) Streaming articulatory inversion
and synthesis systems (5) Silent-speech synthesis (6) Transfer
learning for other related tasks.
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