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Abstract

We discuss a linear programming formulation of expander flows as applied to the sparsest
cut problem. The sparsest cut problem looks to find the cut that minimizes the expansion:
the ratio of edges to the number of vertices on the smaller side, and is NP-hard. A key idea
to getting approximate certificates for this is expander flows, which embeds an expander
of known expansion in the graph. This provides a lower bound on the number of edges in
cuts in the original graph as significant flow must pass between the sets when embedding
an expander. By proving that expander flows are approximately feasible in terms of the
original graphs expansion, one can either certify the original graph expands or find a non-
expanding cut. Originally, the embeddings required multicommodity flow methods but the
cut matching paradigm allowed the use of a few calls to a single commodity flow algorithms
to find sparse cuts.

In this thesis, we make the observation that good solutions to the expander flow linear
program exist that only use a sequence of maximum single commodity flows. We note
that the implementation remains difficult due to the lack of existence of a sufficiently good
separation oracle for the expander flow linear program when using the ellipsoid algorithm,
and briefly describe previous approaches that do this with worse bounds.

Another observation we make using this setup is that for graphs with small cuts, the
approximation can be improved to only depend on the size of the cut rather than a function
of the number of vertices.
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Chapter 1

Introduction

For a given graph G = (V,E), we define the edge expansion of a cut S ⊆ V, |S| ≤ |V |
2

as

ϕ(S) =
|E(S, S̄)|

|S|
(1.1)

where E(S, S̄) is the set of edges with one edge in S and the other in S̄. We then define the
expansion of the graph to the the minimum edge expansion over all cuts in the graph, and
denote it by ϕ. The sparsest cut problem is to find the cut with edge expansion equal to
the expansion. There are many variants of the problem centered around minimizing other
quantities of expansion, or ensuring each side of the cut is balanced, but they are generally
reducible to each other with little overhead.

The problem is NP−hard, so we consider approximation algorithms. One approach is
to use Cheeger’s inequality, which approximates the edge expansion for d-regular graphs G
using the easily calculable smallest nonzero eigenvalue of the normalized graph Laplacian of
G, here denoted as λ:

ϕ2

2
≤ λ ≤ 2ϕ (1.2)

which gives an 1/ϕ approximation which is good when ϕ is large. A different approach
introduced in [LR99] was to embed a complete graph into G using multicommodity flow. The
result by Leighton and Rao showed that for every graph, it is possible to route O(ϕ/n log n)
flow between every pair of vertices, which gives an O(log n) approximation to the edge
expansion of G.

We begin by introducing some relevant methods and ideas for the sparsest cut problem.
We proceed to describe a linear programming formulation of embedding an arbitrary expander
into the graph which has been used to approximate edge expansion. We will see this as a
frame to previous work which developed the cut matching methodology. Finally, we provide
an O(log k) approximation for sparsest cut, where k = ϕn is the number of edges in the
sparsest cut by observing that the complexity of the expander flow formulation can be
reduced in this case.
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1.1 Expander Flows

Expander flows came about as a framework for approximate certification of the expansion of
a graph. We have that verifying the expansion is at least α intuitively has no short certificate,
as it would require certifying that every cut must have more than α edge expansion. This
is known to be coNP complete [BKV+81]. However, given that a graph has α expansion,
it was shown that it is possible to certify that all cuts must have expansion of at least
Ω(α/ log n) by embedding a multicommodity flow. The idea has been established over many
papers [JS89][LR99][Sin92], and was refined to give a certificate that the expansion is at least
Ω(α/

√
log n). We give a short summary of this method as in [ARV04].

We define the edge expansion as before, however here we consider working with weighted
graphs for simplicity. In this, instead of the numerator being the number of edges crossing
between S and S̄, it is the total weight of edges. Then we consider multicommodity flows.

Definition 1.1. A multicommodity flow in a graph G = (V,E) is an assignment of
demands dij ≥ 0 so that flows along the paths satisfy the demands. It is feasible if we can
find a flow fp such that

∀i, j ∈ V
∑

p∈Pij
fp = dij

∀e ∈ E
∑

p∋e fp ≤ 1

It is common to view multicommodity flow as an extension of max flow, where demands
between nodes must be of ’different commodities’ while on the same edges. We can then
view a feasible multicommodity flow as an embedding of a weighted graph G′ with weights
as the demands from i to j. We can see an equivalent definition as we =

∑
e∋p fp. If

this is embedded onto G, we see that flow from i to j is represented in the edge weights
of G′. If we then have a complete graph with flow f being able to be routed between
all i, j pairs, we have in the original graph that the original graph’s edges must be able
to carry that amount of flow. Because of this, when we consider the edge expansion of
G′ = minS:|S|≤|V |/2

∑
e∈E(S,S̄)

we

|S| , we see that this gives us a lower bound on the expansion on

the original graph as
∑

e∈E(S,S̄) we =
∑

e∈E(S,S̄)

∑
e∋p fp ≤

∑
e∈E(S,S̄) 1 = |E(S, S̄)|.

Thus, finding a set of feasible flows and demands in a graph provides a lower bound on the
expansion, but this can only be done to an approximate factor. If done with the complete

graph as in [LR99], the expansion when each flow is f would give min|S|:|S|≤|V |/2
f |S||S̄|
|S| =

min|S|:|S|≤|V |/2 f |S̄| = fn
2
. Note that embedding the complete graph may overuse edges in

the multicommodity flow, since it demands every vertex be routed to each other. When the
edges are overused, this puts a limit on the flow f that we can send from each vertex to the
other, making it difficult to get an optimal approximation. An approach helping to resolve
this instead chooses to embed expander graphs instead. If we are able to find such expanders
that can be routed in the original graph, this would give us nice bounds as well.

Arguments like this show that it may not always be possible to embed a graph with high
enough flow to be a valuable lower bound. Structural theorems on such graphs show that
we can find productive lower bounds on the expansion.
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Theorem 1.2 (Leighton Rao 1999). For any graph G with edge expansion ϕ, the complete
graph associated with a multicommodity flow of value f = ϕ/n log n can be embedded into
the graph, which gives an O(log n) approximation.

Theorem 1.3 (Arora Rao Vazirani 2004). For any graph G with edge expansion ϕ, an
expander graph associated with a multicommodity flow of value f = ϕ/

√
log n can be embedded

into the graph, which gives an O(
√
log n) approximation.

1.2 Cut Matching

Cut matching was introduced in [KRV06] as a framework for finding approximations to the
sparsest cut problem. The algorithm functions as a two player game between a cut player
and a matching player. Given a graph G = (V,E), the algorithm maintains a graph on the
vertex set of G, H. The goal is to use flows to ensure that H becomes an expander that can
be embedded in G, thus certifying the expansion of G and providing a cut.

Theorem 1.4 (Khandekar Rao Vaizrani 2007). Given an undirected graph G = (V,E), there
is a randomized algorithm that outputs a cut (S, S̄) and a corresponding expander H on V
that is embedded in G with congestion at most O(log2 n/ϕ(S)).

The algorithm proceeds in rounds where in each round, the cut player provides a bisection
of the vertices, and the matching player matches vertices using a maximum flow calculation
to give a perfect matching that is then added to H. Thus we have that H is the union
of matchings across rounds, where the cut player wants to minimize the number of rounds
before H is an expander. For the cut player to do so, the cut player looks to find cuts that
are nonexpanding in H so when the matching is forced on it, the set now becomes expanding
when H is added. This is done in the original paper by taking a random vector and mixing
it along the edges of H, which should cause the separate sides of any nonexpanding set to
have a differential in average value. So by taking the median and splitting it, this finds a
weakly expanding set, and when the matching player routes a flow between the sides, this
gives a matching.

The Cut matching framework has been used to design faster approximations for sparsest
cut, as it only requires polylogarithmic many single commodity max flow computations,
compared to the heavy multicommodity flow methods that came before. We seek to generalize
cut matching and provide a linear programming approach for it.

1.3 SDP for Sparsest Cut

Semidefinite programming based methods have achieved success in approximating the sparsest
cut. The linear programming approach covered in this paper takes ideas and results from
semidefinite programming methods, particularly regarding embedding vertices into euclidian
space and the structure behind it. The main idea in the SDP formulation is placing vertices
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on the sphere in euclidian space such that the average distance between edges is small, but
vertices are far apart. This intuitively should try to group closely connected vertices in
the graph together. A resulting embedding could work by letting the vectors be somewhat
equidistant on the sphere which is too smooth, so to avoid this a triangle inequality constraint
is added which forces the angle between any three points to be acute which makes the
embedding to be more ”cut-like” in a sense.

The SDP method used in [ARV04] (hereafter written as ARV) for the sparsest cut problem
looks to place each vertex in Rn, and proves a result known as the ARV Structure Theorem
on the embedding returned by the SDP. The structure theorem gives that under the SDP
constraints, it is feasible to find two large, sufficiently far apart sets. From this these sets, by
randomly projecting and taking a random radius ball around a set, this gives an O(

√
log n)

approximation. The given SDP is

min
1

4

∑
{i,j}∈E

|vi − vj|2

∀i |vi|2 = 1

∀i, j, k |vi − vj|2 + |vj − vk|2 ≥ |vi − vk|2∑
i<j

|vi − vj|2 = 1

(1.3)

For background, an SDP is similar to a linear program, except variables are constrained to
be entries in a positive semidefinite matrix.

Definition 1.5. A symmetric matrix M ∈ Rn×n is positive semidefinite (denoted M ⪰ 0)
if ∀x ∈ Rn, xTMx ≥ 0.

This is equivalent to having all eigenvalues be greater than or equal to 0. A positive
semidefinite matrix M can be decomposed by the Cholesky decomposition into V TV (we see
that ∀x, xTV TV x = ⟨V x, V x⟩ ≥ 0), and thus with M = V TV , we have that Mij = ⟨vi, vj⟩,
where vi, vj are columns i and j of V respectively. Thus, the positive semidefinite constraint
in SDPs can be seen as enforcing that we are looking for vectors inRn, and can put constraints
on their inner products. With entries of M representing inner products, we can impose all of
the constraints shown in the SDP, as we can see that |vi− vj|2 = ⟨vi, vi⟩− 2⟨vi, vj⟩+ ⟨vj, vj⟩,
which is linear in entries of M : Mii− 2Mij +Mjj. The points being on the sphere constraint
is satisfied by |vi|2 = 1, and forcing the vertices to be far comes from the

∑
i<j |vi − vj|2 = 1

constraint.

Using the SDP, we can find what is defined as an ℓ22 representation: an embedding into
euclidian space such that the points satisfy the triangle inequality, and are constant distance
apart on average. The ARV structure theorem says that given an ℓ22 representation, we can
find two large sets that are far apart from each other. This idea is important as it allows
one to conclude the structure of the embedding must induce a form of clusters, which would
be relevant for finding nice cuts.
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Theorem 1.6 (ARV Structure Theorem). For every c > 0, there are c′, b > 0 such that
every c−spread unit ℓ22 representation with n points contains ∆−separated subsets S, T of
size c′n where ∆ = b/

√
log n. Furthermore, there is a randomized polynomial-time algorithm

for finding these subsets S, T

The proof of the structure theorem is involved and beyond the scope of this thesis.

1.4 Linear Program for Expander Flows

To proceed, we formulate the problem of finding a certifying expander flow as an exponentially
sized linear program. We begin by defining the linear program, following section 7.3 from
[ARV04]. A solution can give us a lower bound on the expansion. The framing is as a
feasibility problem: for a graph G and parameter d can one route a flow that sends βd|S|
flow across every cut (S, S̄) with |S| ≤ |V |/2. For a constant β, this would give a βd lower
bound on the expansion. We treat β as the edge expansion and d as the amount of flow
from each vertex. Later we will consider modifications of this linear program and use it as
a frame to discuss the cut matching game.

The linear program is as follows:

∀i ∈ V
∑
j

∑
p∈Pij

fp ≤ d (1.4)

∀e ∈ E
∑
e∈p

fp ≤ 1 (1.5)

∀S ⊆ V, |V |/6 ≤ |S| ≤ |V |/2
∑

i∈S,j∈S̄

∑
p∈Pij

fp ≥ βd|S| (1.6)

The dual program is as follows.

min
∑
e

we + d
∑
i

si − βd
∑
S

zS|S| (1.7)

∀i, j ∈ V, ∀p ∈ Pij

∑
e∈p

we + si + sj ≥
∑

S:i∈S,j∈S̄

zS (1.8)

zS, we, si ≥ 0 (1.9)

The primal is feasible if and only if the dual has no negative valued solution. The ellipsoid
algorithm in this case requires a separation oracle, which would give a violated constraint.
This can be done using Cheeger’s inequality to within a factor of β, since Cheeger’s can
provide a cut with expansion close to optimal. Note that this works best when β is constant,
which is the formulation for such expander flows.
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In the remainder of this thesis, we consider a linear programming framing for embedding
an expander, that can be seen as a general frame of the cut matching game. In the cut
matching game, the union of the matchings for each round will form a β−expander for β =
Ω(1/

√
log n). The matching player routes the flow through the underlying graph producing

the matching, guaranteeing that the matchings can be embedded in the underlying graph to
certify the expansion.

By building on the analysis, we further show that for a graph G with edge expansion α
there is a solution to the original linear program with β = Ω(1/ log n) and d = O(α) using
the ARV structure theorem. Thus the solution certifies that the graph has edge expansion
Ω(α/ log n) as βd|S| = Ω(α/ log n)|S| flow must be routed out of any set |S| and therefore
E(S, S̄) is at least this large.

This establishes that the solution can be expressed as the convex combination of solutions
to a single commodity maximum flow problem when β = O(1/

√
log n). This was not

previously written though it was folklore. We further provide observations on how the cut
matching game strategy fits into the linear programming frame, and observations on how
the expansion in linear programs is given by the structure theorem.

Finally, we consider finding O(log k) approximations where k = αn is the number of
edges in the sparsest cut.
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Chapter 2

Linear Programs for Sparsest Cut

2.1 Linear Program for Finding an Expander

To frame cut matching, we examine a simplified linear program that endeavors to construct
an expander without embedding it into a graph.

We can then view the cut matching game as a strategy within this simplified framework
to show that the cut-matching game is sufficient to build an expander for some values of
β. We proceed with expander flows linear program which implements the strategies of the
matching player using maximum flow.

In the original cut matching game, there are two players: the cut player and the matching
player. The cut player presents a bisection of the vertices that represents a nonexpanding
cut, while the matching player provides a matching on the vertices. The cut player can
choose a bisection thus to maximize the expansion of the new graph.

We present the process as strategy to solve the following generic linear program to
construct an expander graph on vertex set V .

∀i ∈ V
∑
j

xij ≤ d

∀S ⊆ V, |S| ≤ |V |/2
∑

i∈S,j∈S̄

xij ≥ βd|S|
(2.1)

The xij represents a weighted graph on the vertex set. The constraint ensures that the
weight of “edges” across any cut, (S, V −S) (which we typically abbreviate as S), is at least
βd|S|.

In viewing it from the point of view of primal dual ’algorithms’, we see a feasible primal
solution happens to be the complete graph (with self loops) with weights d/n. In this case,

the value of β is 1/2, as for any cut the weight of edges crossing is d|S||S̄|
n

= d|S||S̄|
n

≥ d|S|
2
, as

|V − S| ≥ n/2. This satisfies the inequalities for β = 1/2.
Indeed, this solution yields the best possible value of β; a random partition cuts half the

edges in a graph and everyone can’t be better than average.
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The cut-matching game is a game that generates some set of other solutions to this
linear program in a more constrained fashion. This is useful for the case where the solution
is “embedded” into another graph to certify its expansion. For example, a bounded degree
expander cannot embed the complete graph, but it is already a solution to the linear program.
A matching can be viewed as assigning xij = d for the pairs (i, j) in the matching, and so
works for the linear program.

The dual linear program is:

min
∑
i

si − βd
∑
S

zS|S|

∀i, j ∈ V si + sj −
∑

i∈S,j∈S̄

zS ≥ 0
(2.2)

A feasible dual with negative value implies the primal is infeasible. The cut-matching
game maintains a non-optimal feasible dual, infeasible primal pair of solutions. For the cut
matching game, the goal is for the primal to eventually become an expander, in which case
it would become feasible.

With respect to the linear program, other strategies are possible. For example, for the
primal one could modify one of the xij instead of requiring that they form a matching. For
the dual linear programs, the cut player’s strategy is basically general.

For this section, we analyse strategy that produces an expander on large sets.1 That is,
the primal is modified as follows.

∀i ∈ V
∑
j

xij ≤ d

.∀S ⊆ V, |V |/6 ≤ |S| ≤ |V |/2
∑

i∈S,j∈S̄

xij ≥ βd|S|
(2.3)

Note that the d is just a scaling, but later it will be useful. For now, we assume that
d = 1.

We will show that for some β = Θ(1/
√
log n), there exists a matching that gives a proof

that any feasible dual has positive value. Duality then suggests that a set of matchings
(appropriately weighted) will give a solution to the primal for this value of β.

Note that in general a proof would have an arbitrary structure in terms of the variables
xij, but we look at the cut matching structure for now.

We restate the structure theorem from again [ARV04] in fundamental terms.

1A reasonably easy argument shows that deleting small non-expanding sets in such a graph will yield an
expander with slightly lower value of β. This is argued in [ARV04]
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Theorem 1.7 (ARV Structure Theorem). For a set of vectors, v1, . . . , vn, with ∥vi∥ ≤ 1
and d(i, j) = ∥vi − vj∥2. If d(i, j) satisfies the triangle inequality, i.e.,

∀i, j, k ∈ [n], d(i, k) + d(k, j) ≤ d(i, j),

and

1

n2

∑
i,j

d(i, j) = Ω(1),

there are sets A,B, with |A|, |B| = Ω(n), where

min
i∈A,j∈B

d(i, j) = Ω(
1√
log n

).

This is the same as the original statement of the structure theorem: we define the ℓ22
representation as the condition that the points are embedded such that the squared distances
obey the triangle inequality and are on average the points are far apart. We thus have there
are two large sets that are somewhat far apart (at least Ω(1/

√
log n) apart.)

We proceed by using a dual solution to produce an embedding of the vertices so that we
can apply the structure theorem. We want the embedding to give us a vector vi for each
i ∈ V and that is an ℓ22 representation.

Given a dual solution to 1.4, we embed the vertices into space such that distances are
given by the cut metric. We use the variables zS for S ⊆ V , and scale the dual solution
to have

∑
S zS = 1. The vector vi has a coordinate for each S where vi =

√
zS if i ∈ S

and vi = −√
zS otherwise. We see that by scaling it, the norm for each vector becomes∑

S(±
√
zS)

2 =
∑

S zS = 1, giving us that it is unit norm.

We make the observations that

1. For two vectors vi and vj, that d(i, j) = ∥vi − vj∥2 =
∑

i∈S,j∈S̄ zS.

2. The distance d(i, j) forms a metric: Each coordinate has two possible values and
thus any three points share a value which implies that the triangle inequality holds
for every coordinate. Since ∥vi − vj∥2 is a sum over the coordinates which obey the
triangle inequality the overall distance obeys the triangle inequality

3. For all i ∈ V , ∥vi∥ = 1.

4. And ∑
i,j

∥vi − vj∥2 =
∑
S

∑
i∈S,j∈S̄

zS =
∑
S

|S||V − S|zS = Ω(n2)
∑
S

zS,

where the last inequality is due our assumption that zS > 0 only on sets of size ≥ |V |/6.
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This gives us that the points obey the conditions of theorem 1.7 and there are sets
A,B of size Ω(n) where all pairs are Ω(1/

√
log n) apart under the distance metric d(i, j) =∑

i∈S,j∈S̄ zs.

For any partial matching, M , with Ω(n) pairs, (i, j) where i ∈ A, and j ∈ B, we can thus
sum over corresponding constraints in the dual linear program 2.2.∑

(i,j)∈M

si + sj −
∑

i∈S,j∈S̄

zS ≥ 0.

Applying the fact that d(i, j) = Ω(1/
√
log n), |P | = Ω(n), and any vertex only appears

in one term, we obtain the following inequality:∑
i

si − Ω(
1√
log n

) ≥ 0.

This is the objective function of the dual when
∑

S zS = 1, and for some β = Θ(1/
√
log n).

Thus, we have proven the following lemma:

Lemma 1.8. There is a feasible solution to the expander linear program for some β =
O( 1√

logn
) which is a convex combination of arbitrary matchings between sets of size Ω(n).

A remaining question is how many matchings does one need to form this solution.
Khandekar et. al. [KRV06] established that for β = Θ(1/ log2 n), one could use O(log2 n)

matchings. Orecchia et. al. [OSVV08] improved β to be Θ(1/ log n). Arora and Kale [AK07]
used a semidefinite programming approach to match this result.

One barrier in all these approaches is that finding a violating constraint (or a small cut)
in the graph defined by a solution in the xij variables is difficult. One can use eigenvalue
methods to approximately find a violating a constraint to within a factor β, which holds well
for the linear program for the general graph.

Indeed, the approaches in [KRV06, OSVV08, AK07] all directly bound the eigenvalue
rather than the minimum cut size. In a sense, they work with the following convex program:

∀i ∈ V
∑
j

xij ≤ d

λ(Lx) ≥ β2

(2.4)

In this program λ(Lx) is the smallest non-zero eigenvalue of the Laplacian of the graph
with edge weights xij.

Through the Cheeger inequalitie (1.2), this implies that every cut has expansion β2, but
one can only find a cut with expansion at most β. Thus, the method gives an approximate
separation oracle with approximation factor β.
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2.2 Cut/Matching to Embeddings

We return to the original linear program for embedding an expander flow and modify the
previous analysis can be applied when adding in flow paths. The analysis follows the same
frame as before. We restate the primal here:

∀i ∈ V
∑
j

∑
p∈Pij

fp ≤ d (2.5)

∀e ∈ E
∑
e∈p

fp ≤ 1 (2.6)

∀S ⊆ V, |V |/6 ≤ |S| ≤ |V |/2
∑

i∈S,j∈S̄

∑
p∈Pij

fp ≥ βd|S| (2.7)

Comparing to the generic cut matching program, we have flow path variables which, when
added together for all paths between vertices i and j correspond to the xij variables. This
is useful for considering the expander flow embedding, since we add the constraint that no
edges is overused by flow paths and thus obtain a routable embedding of the graph defined
by xij in our graph G.

The dual now adds variables we that correspond to the capacity constraints on edges.
We combine the analysis on generic cut matching which builds an expander and apply it to
these linear programs which embed that expander an underlying graph.

Here, we take d = α and β = Θ(1/
√
log n) where G is an α-expander, and thus its cuts

should be able to support a βα|S| flow across any cut.
Here as in lemma 1.8, the zS variables from the dual solution can be used to create the

embedding as before and produce large sets A and B where every d(i, j) = Ω(1/
√
log n). In

this case, we compute a single maximum flow from A to B where at most d units of flow
are from each source in A and at most d units of flow are routed to each source in B. This
is possible since G is an α-expander by assumption.2 We thus obtain a setting of flow path
variables fp that allow us to sum the constraints in the dual.

We associate each path from i to j with variables fp for p ∈ Pij, where Pij is the set of
paths from i to j. We can now sum over the flow paths for the correspond dual constraints.∑

p

fp(
∑
e∈p

we + si + sj −
∑

i∈S,j∈S̄

zS)) ≥ 0 (2.8)

To analyze the result, we consider the effect of summing each part of the constraint using
the paths. Since each i ∈ A sends at most d flow using the setting of fp variables, each∑

p fpsi = dsi for i ∈ A. Similarly we have
∑

p fpsi = dsi for i ∈ B due to each vertex in

B receiving d flow. Also, recall that for any equation above we have
∑

i∈S,j∈S̄ zS ≥ 1√
logn

.

2One need not assume G is an alpha expander as if the flow is not feasible, a sparser cut will be found.
So one can view this as a way to find cuts of sparsity α or produce a solution to the LP.
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And because
∑

fp
fp = Ω(dn), this gives us

∑
p fp

∑
i∈S,j∈S̄ zS)) = Ω( dn√

logn
). Finally, due to

the fps forming a feasible flow, we can conclude that
∑

p fpwe ≤ we, since the edges in the
graph only have unit capacity.

Thus, from equation 2.8 we can conclude that∑
e

we + d
∑
i

si −
cdn√
log n

≥ 0

for some constant c. Considering the dual from the original linear program 1.7, we see
this has the form of the objective function, so with β ≥ c/

√
log n ensures that the objective

is positive for any feasible dual solution. Thus, the primal is feasible demonstrating the
following lemma.

Lemma 1.9. For an α-expander, the linear program is feasible for d = α and some β =
O( 1

logn
).

We note that if the procedure fails to prove infeasibility, the maximum flow that was
computed in the argument above would produce a cut with expansion at less than α. Thus,
this lemma could be phrased as given an dual solution with negative value that the algorithm
produces a cut of expansion at most α.

Finally, observing that the linear program with β = Ω( 1√
logn

) provides an dβ = Ω( α√
logn

)
lower bound on the expansion of G, allows us to view this an an approximation algorithm.

2.3 Few Matchings, Worse β in KRV.

We can now examine the algorithm from [KRV06] with the view that there is a good solution
to the linear program using just matchings. The algorithm of [KRV06] produces an expander
by maintaining and repeatedly adding matchings which are computed using a maximum flow
computation, which can be seen as forming a convex combination of matchings in the linear
program.

They maintain a vector which starts as random vector, v, where
∑

i vi = 0, use the vector
to compute a cut, and then a matching is computed. Then one average the endpoints to
produce a new vector, and the vector’s norm gets smaller. The vector norm getting smaller
intuitively corresponds to a random walk mixing well.

To formally quantify this, they consider the potential function consisting of the sum over
each vertex v of the norm of the distribution of the random walk starting at vertex v. In
each step, the potential decreases in expectation by a factor of 1− 1

logn
and thus in Θ(log2 n)

time essentially reaches the uniform distribution for all vertices.
Thus, the set of matchings must cross every cut, S, Ω(|S|) times to send enough distribution

into S, and the resulting degree is d = O(log2 n).
In a sense, this cut-matching game works by using an embedding that is not an ℓ22 metric

and does not obey the structure theorem established in ARV. This is part of the reason the
approximation factor is worse.
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As observed above, the expander flow linear program does have good solutions in the
cut-matching framework. However, this structure has not yet been exploited to obtain an
O(

√
log n) approximation factor.

2.4 Constant β from the Proof of the Structure

Theorem.

The theorem 1.7 states that for an appropriate point set there are two large sets that
O(1/

√
log n) apart. This translates as argued above into the statement that there is a

feasible solution to the program with β = Θ(1/
√
log n).

In [ARV04], the main formulation allows for β = O(1) while having d = O(α/
√
log n),

giving a
√
log n approximation, however their proof involves computing a computationally

heavy multicommodity flow. This is done to produce Ω(n) pairs of points that are each
Ω(1) apart as pairs, but not as two large sets. Thus, the pairs of points must be routed as
separate commodities.

Sherman [She09] implemented the proof itself using a sequence of O(nϵ) maximum flows
to find Ω(n1−ϵ) pairs of points that a far. His construction is quite complicated but attains
an O(

√
log n/ϵ) approximation.

2.5 Improved bounds for very sparse cuts.

In this section, we give a method to give approximations that depend on the size of a sparse
balanced cut rather than in terms of the number of vertices in the graph. This works well
when the size of the cut is significantly less than the number of vertices, and has been
recently had advances in [ALLS24]. We note that [FM06] also considered clustering for
approximating the sparsest cut problem.

The idea is that for a graph with k edges in a sparse balanced cut, B ⊆ V , we can (easily)
cluster the graph into t = O(k) roughly equal sized clusters such that at most k clusters are
split between S and V − S. We have that a sparse cut is b−balanced if min(|B|, |B̄|) ≥ bn.
More precisely, given a clustering (partition) of V , C = {C1, . . . , Ct} and a cut B, we say a
cluster Ci is split by B if it contains vertices from both B and B̄. We say the C is c-balanced
with respect to B if the total number of vertices in split clusters is at most cn.

We can modify the linear program from 1.4, to route flows between clusters instead of
vertices. In the following, let Pij be the set of paths from any vertex in cluster i to cluster
j. We index clusters using an index set I = [t].



CHAPTER 2. LINEAR PROGRAMS FOR SPARSEST CUT 14

B B′

Figure 2.1: The cut B splits the clusters. The cut B′ does not split any clusters. The balance
of B′ is different from B by the total size of the split clusters. The new linear program only
optimizes over cuts like B′ which does not split any clusters and for every small cut B there
is a B′ which is as nearly as balanced as B.

∀i ∈ I
∑
j

∑
p∈Pij

fp ≤ d|Ci|

∀e ∈ E
∑
e∈p

fp ≤ 1

∀I ⊆ [t], S = ∪i∈ICi, |V |/6 ≤ |S| ≤ |V |/2,
∑

i∈I,j∈Ī

∑
p∈Pij

fp ≥ βd|S|

(2.9)

The first constraint says the flow out of a cluster to each other cluster must be less than
d|Ci|, the second maintains the flow path constraint on the edges, and the final one ensures
the expansion. Note that S is a set of vertices from the clusters, and we maintain the size
constraint on S.

Note that if the clustering is c-balanced with respect to B which is b-balanced and
has k edges between B and V − B, then there is some set I ⊆ [t] with S = ∪i∈ICi and
|S∩B| ≥ (b−c)n. If we make c small then, S would be close to B. Thus, the linear program
is only feasible for βd(b− c)n ≤ k, as compared to the original linear program which is only
feasible when βdbn ≤ k.

We have that the linear program ”collapses” the clusters in terms of the demands, but
does not collapse the graph in that the flow paths are still paths in G and are still required to
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not overuse any edge in G as indicated in the second inequality above. Vertices are no longer
routed to vertices in the same cluster, and can route to any vertex in the other clusters.

We also have that in the dual program that each variable zS corresponds to a partition
of the clusters rather than an arbitrary partition of the vertices of C. Thus, mapping a dual
solution from variables zS to an embedding of the vertices as before would assign the same
vector to every vertex in a cluster. We can see the embedding only contains t points and is
an ℓ22 embedding as it is a cut metric. The ARV structure theorem then ensures that there
are two large subsets |A|, |B|, of the points that are Ω(1/

√
log t) far in the embedding.

For completeness, the clustering method in the next section provides t = O(k) clusters
such that the total number of vertices in split clusters is at most c ≤ .04

Lemma 1.10. There is a linear time algorithm to find a set of clusters {C1, . . . , C100k} where
each cluster has at most 2n/100k vertices and at most 2k clusters are split by at B for any
cut B with fewer than k edges in the cut.

Proof: The algorithm to form clusters is for a parameter p = n/100k. Recall that in
a depth first search traversal of the graph consists of 2(n − 1) edges where each of n − 1
edges is traversed in either direction. The traversal is then divided into segments of length
p. Note there are 2n/t segments. Each segment is connected and thus at most 2k segments
contains an edge in the cut B. Any set of vertices in any other segment is not split by B.
For each vertex arbitrarily assign it to a cluster corresponding to one of the segments that it
is contained in. The clusters have size at most t, and there are at most 2n/p = 50k clusters
at most 2k of which are split. Thus at most 4% of the vertices are in split clusters.

2.6 Conclusion

We hope this thesis introduces readers to the fundamental ideas in expander flows and how
linear programs are used for them. We hope this also provides another understanding for
cut matching in terms of linear programming.
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