Cun_l bcpDma q_I b Qn_peq Asr J g c_pNonepk k ge

U gijqk J g

Gicarpm j Q edg ccpy e I b Ank nsrcpQaggl acq SI gcpagwndA jgind $\mathrm{g}^{*} @ \mathrm{a}_{\mathrm{i}} \mathrm{cjcw}$

Rcaf I mbj Pcnmp LmSA@CCAQ\#. 02 +7
frrn8-u u u 0,ccaq` cpं cjcwcbs-Ns` q-Rcaf Pnrq-0. 02-CCAQH0. 02 \# / 7,frk j
K_w/ 5*0. 02

Copyright © 2024, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Acknowledgement

I would like to thank Professor Satish Rao for his guidance and mentorship. Under him I have been exposed to many different algorithmic paradigms and ways of thinking. He has been indispensable in developing my abilities as a researcher and writing my thesis.

I would like to thank my family for supporting me through my time at Berkeley and before. The skills and values I learned at home were just as important as the knowledge I learned in school.

Expander Flows and Sparsest Cut Linear Programming

by William Lin

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

(Date)
$* * * * * * *$
A.J. Sin lair

Professor Alistair Sinclair
Second Reader
(Date)

Expander Flows and Sparsest Cut Linear Programming

by

William Lin

A thesis submitted in partial satisfaction of the requirements for the degree of Masters
in
Computer Science
in the
Graduate Division
of the
University of California, Berkeley

Committee in charge:
Professor Satish Rao, Chair
Professor Alistair Sinclair

Expander Flows and Sparsest Cut Linear Programming

Copyright 2024
by
William Lin

Abstract

We discuss a linear programming formulation of expander flows as applied to the sparsest cut problem. The sparsest cut problem looks to find the cut that minimizes the expansion: the ratio of edges to the number of vertices on the smaller side, and is NP-hard. A key idea to getting approximate certificates for this is expander flows, which embeds an expander of known expansion in the graph. This provides a lower bound on the number of edges in cuts in the original graph as significant flow must pass between the sets when embedding an expander. By proving that expander flows are approximately feasible in terms of the original graphs expansion, one can either certify the original graph expands or find a nonexpanding cut. Originally, the embeddings required multicommodity flow methods but the cut matching paradigm allowed the use of a few calls to a single commodity flow algorithms to find sparse cuts.

In this thesis, we make the observation that good solutions to the expander flow linear program exist that only use a sequence of maximum single commodity flows. We note that the implementation remains difficult due to the lack of existence of a sufficiently good separation oracle for the expander flow linear program when using the ellipsoid algorithm, and briefly describe previous approaches that do this with worse bounds.

Another observation we make using this setup is that for graphs with small cuts, the approximation can be improved to only depend on the size of the cut rather than a function of the number of vertices.

Acknowledgments

I would like to thank Professor Satish Rao for his guidance and mentorship. Under him I have been exposed to many different algorithmic paradigms and ways of thinking. He has been indispensable in developing my abilities as a researcher and writing my thesis

I would like to thank my family for supporting me through my time at Berkeley and before. The skills and values I learned at home were just as important as the knowledge I learned in school.

Contents

Contents ii
1 Introduction 1
1.1 Expander Flows 2
1.2 Cut Matching 3
1.3 SDP for Sparsest Cut 3
1.4 Linear Program for Expander Flows 5
2 Linear Programs for Sparsest Cut 7
2.1 Linear Program for Finding an Expander 7
2.2 Cut/Matching to Embeddings 11
2.3 Few Matchings, Worse β in KRV. 12
2.4 Constant β from the Proof of the Structure Theorem. 13
2.5 Improved bounds for very sparse cuts. 13
2.6 Conclusion 15
Bibliography 16

CHAPTER 1. INTRODUCTION

Abstract

For any graph with edge expansion , the complete graph associated with a multicommodity ow of value can be embedded into the graph, which gives an approximation.

Given an undirected graph , there
is a randomized algorithm that outputs a cut that is embedded in with congestion at most

CHAPTER 1. INTRODUCTION

For every , there are ' such that every spread unit p representation with n points contains separated subsets of size ' where P —. Furthermore, there is a randomized polynomial-time algorithm for nding these subsets

CHAPTER 1. INTRODUCTION
p
j j
j j
j j
p

82
 ij
 j
 $8 \quad \mathrm{j} j \mathrm{j} \quad \mathrm{j} \quad \mathrm{ij} \quad \mathrm{j} \mathrm{j}$

ij
j j
j j
$\frac{\mathrm{d}|\mathrm{S} \| \mathrm{S}|}{\mathrm{n}} \quad \frac{\mathrm{d}|\mathrm{S} \| \mathrm{S}|}{\mathrm{n}} \quad \frac{\mathrm{d}|\mathrm{S}|}{}$

CHAPTER 2. LINEAR PROGRAMS FOR SPARSEST CUT

For a set of vectors, $\quad n$, with $k_{i} k$ and $\quad k_{i} \quad j k$. If satis es the triangle inequality, i.e., 82
and

there are sets , with j j j j , where

$$
i \in A ; j \in B
$$

$$
p=
$$

p

2

$k_{i} \quad j k$
$2 \quad \mathrm{k}_{\mathrm{i}} \mathrm{k}$

CHAPTER 2. LINEAR PROGRAMS FOR SPARSEST CUT

For an -expander, the linear program is feasible for

$$
\frac{\alpha}{\sqrt{n}}
$$

i

CHAPTER 2. LINEAR PROGRAMS FOR SPARSEST CUT

p

\qquad
\qquad
p
p
ϵ

C
t 9
is split by
any

CHAPTER 2. LINEAR PROGRAMS FOR SPARSEST CUT

$$
\begin{gathered}
s \\
j \text { j j j }
\end{gathered}
$$

There is a linear time algorithm to nd a set of clusters f kg where each cluster has at most vertices and at most clusters are split by at for any cut with fewer than edges in the cut.

Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, J une 11-13, 2007

CoRR

Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, J une 13-16, 2004

Inf. Process. Lett.

Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, M ay 21-23, 2006

Comput.

Proceedings of the 38th
A nnual ACM Symposium on Theory of Computing, Seattle, WA, USA, M ay 2123, 2006
J. ACM

