Real-Time Legged Locomotion Control with Diffusion from
Offline Datasets

Ruofeng Wang

..
1

hl--

& i

A .I. II i W | % l: ..II. : -l
i, .“ij1lullll' ! h
i (e, St u

e
!

Electrical Engineering and Computer Sciences
University of California, Berkeley

18

Technical Report No. UCB/EECS-2024-121
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-121.html

May 17, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would like to express my sincere gratitude to Professor Borivoje Nikolic
and Professor Sophia Shao for their invaluable support and guidance
throughout the duration of this project. Their expertise and insights have
been fundamental to my development and the success of this work.

| am also grateful to Xiaoyu Huang and Yufeng Chi for their collaboration.
Working together on the extensive experiments and exploring the diverse
fields of robotics, machine learning, and hardware-software acceleration has
been a profoundly enriching experience.

This endeavor required us to venture into unfamiliar territories and deeply
engage with a broad range of topics. | am thankful for the team’s
commitment and perseverance as we pursued our shared objectives.

Real-Time Legged Locomotion Control with Diffusion from Offline Datasets

by

Ruofeng Wang

A thesis submitted in partial satisfaction of the
requirements for the degree of
Master of Science
in
Electrical Engineering and Computer Science

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Borivoje Nikolic, Chair
Professor Sophia Shao

Spring 2024

The thesis of Ruofeng Wang, titled Real-Time Legged Locomotion Control with Diffusion
from Offline Datasets, is approved:

Chair W Date }&O‘-(g (Q“ ?OZL{

Sopthia Sthao 0517|2024

Date

University of California, Berkeley

Sophia Shao
Sophia Shao

Sophia Shao
05/17/2024

Real-Time Legged Locomotion Control with Diffusion from Offline Datasets

Copyright 2024
by
Ruofeng Wang

Abstract
Real-Time Legged Locomotion Control with Diffusion from Offline Datasets
by
Ruofeng Wang
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Borivoje Nikolic, Chair

This work introduces DiffuseLoco, a framework for training multi-skill diffusion policies for
dynamic legged locomotion from offline datasets, which then enables real-time control of
robots in the real world. Learning multiple locomotion skills within a single policy presents
a significant challenge in legged control. To address this, offline learning from multi-modal
datasets with diffusion models can yield a policy with a rich distribution of locomotion skills.
However, due to the larger-scale model and iterative denoising process, diffusion models have
their own limitations in achieving real-time control onboard the robot. DiffuseLoco is devel-
oped to tackle these issues, utilizing several improvements such as goal-conditioning, receding
horizon control, delayed inputs, and an accelerated computing pipeline. We highlight Dif-
fuseLoco with its multi-modality in locomotion skills, zero-shot transfer to real quadrupedal
robots, and capability in real-time control on edge computing devices. Through over 200
benchmarking in real-world experiments, DiffuseLoco demonstrates better stability and ve-
locity tracking performance compared to state-of-the-art baselines. The five skills we bench-
marked include walking at three different speeds, as well as turning left and right. In the
experiments, our DiffuseLoco policy is capable of switching skills smoothly and exhibits ro-
bustness against various environments. In addition, we conduct extensive ablation studies to
support the design choices in DiffuseLoco. This work opens a new possibility of leveraging
imitation learning to create multi-skill controllers for legged locomotion from offline datasets.

Contents

Contents i
[List of Figures| ii
[List of Tables| iv
1 TIntroduction and Background| 1
[LT Tntroduction] 1
(1.2 Background and Related Work{. 2
2 Method 7
2.1 OvVerviewl. 7
2.2 Data Sources™ 7
2.3 Training 8
2.4 Deployment| 8
2.5 Diffusion Model for Real-Time Controll 9
I3 Real-Time Inference Acceleration for DiffuseLoco Policy” 13
3.1 Acceleration Frameworkl 13
[3.2 Edge Compute for DiffuseLoco Policy on Robots|. 14
4 Real-World Experiments and Ablation Studies®)| 16
4.1 Experiment Setup|. 16
4.2 Experiment: Real-world Benchmarks| 16
4.3 Experiment: Ablation Study on Design Choices| 20
4.4 Further Evaluation in Experiments 25
B Conclisi) =0l 28
b1 Conclusionl. 28
(.2 Discussionl 28
.3 Future Workl.o 29

(Bibliography| 31

List of Figures

i

M1

Snapshots of (top) a quadrupedal robot Gol trotting with our diffusion-based

real-time locomotion control policy, a Diffusel.oco policy, in the real world with

onboard computing, and (bottom) a bipedal robot Cassie controlled by our policy

walking in a high-fidelity simulation environment. We present Diffusel.oco, a

tframework that leverages diffusion models to learn multi-modal legged locomotion

control from offline datasets with a specific tocus on real-time edge computing for

real-world robots. Diftul.oco is able to perform multiple locomotion skills with a

single policy, exhibiting robustness in the real world, and is versatile for extending

to bipedal locomotion control. | oL

I
I
I
I
I
I
I
I
3

Diagram of the Denosing Diffusion Probabilistic Models(DDPM) Process|28]| . .

p.2

Overview of the three stages of DiffuseLoco. First, we generate an offline dataset

with a set of skill-specific source policies (left). Then, we train DiffuseLoco policy

with DDPM loss on trajectories within the dataset (middle). Finally, DiffuseLoco

policy 1s deployed on the robot in the real world and executes multiple skills

IrightI. |

2.3 The architecture. At time step ¢, takes in a one-step delayed history of propriocep-

tive state s, 5, 141, along with the corresponding delayed goal history g; , 1.4 1

and action history a, j, o o, and predicts a sequence of n actions a;;., as the

position targets for robot’s actuators. First, the proprioceptive state and the goal

are mapped to separate embedding spaces by MLP encoders. Next, the noisy ac-

tion tokens undergo M transformer decoder layers, within which the action tokens

query both the state embedding and goal embedding, as well as a ont-hot diftu-

sion timestep, through a causal cross-attention module. Finally, we repeat the

denoising process K times to produce the predicted action sequence, and feed the

executed actions back to model’s input. The model is trained through end-to-end

imitation learning. |

Onboard compute experiment setup. A: Mini computer with Intel Core 17-13700H

and NVIDIA GeForce RTX 4060 Mobile. B: Battery bank. C: Gol quadrupedal

robot. This setup is below the robot’s adaptive load capacity and the robot can

walk with our policy steadily. With our acceleration framework, we are able to

achieve onboard and real-time deployment of our diffusion model|

iii

13.2 Benchmark of running our DiffuseLoco policy (6.8M parameters; about 27.2MB)
| on different hardware platforms. The dashed line remarks the 30 Hz minimum
| frequency required to control the robot in real time. We utilize TensorR1T to
| optimize the computation graph and achieve approximately 7 times speedup of
| inference computation time compared to the naive Py Torch implementation. The
I
I
I
I

N/A entries are due to the lack of software compatibility on the corresponding

platform.| 15
3.3 Full stack diagram of acceleration pipeline. Our pipeline first convert Pytorch |

Model to ONNX representation, then we build the TensorR'T' runtime with specific |

4.1 Loss curves for training DiffseLoco and TF w/ RHC baseline. (a): Training
Loss. (b): Evaluation Loss. We report mean and standard deviation across three
seeds. We find that even though TF w/ RHC achieves a low reconstruction loss

| in training, the evaluation loss stays higher than DiffseLoco and increases at |

| the end. This indicates TF w/ RHC tends to overfit the offline datasets while |

| DiffuseLoco 18 not, with the same number of parameters.| 19

4.2 Comparison of failure rates and tracking errors between DL w/o0 Goal and Dif-
fuseLoco (ours) in simulation. The left y-axis is the metric for Failed Episodes.

| 'The right y-axis indicates the tracking error for linear velocity and angular velocity.| 22

4.3 Foot contact map indicating stable walking and skill switching with Diftusel.oco

| policy and velocity commands. The red circle denotes the legs that are in contact

| with the ground. The change in command velocity indicates a sudden stop com-

| mand and resuming to the original command. The robot walks with trotting skill

| during the first few steps, marked with a purple background, and then switches

I

I

I

I

I

to pacing skill, marked with a green background. Upon receiving a stop com-

mand, the robot reduces speed by grounding three feet, coincidentally placing it

in a posture such that it seamlessly continues to walk with the pacing skill upon

command resumption. [.o 24
4.4 Depiction of our DiffuseLoco policy overcoming different terrains that are out of |

distributions of the collected offline dataset (as a flat-ground is used in during

data collecting in simulation). (a): vinyl composite floor (b): grass terrain (c):

foam padded floor with a wooden board as obstacle (d): foam padded floor with

an inclined wooden board as a small variation in the terrain height.| 27

List of Tables

v

A1

Pertormance benchmarks across different baselines and our Diftuse.oco policy in

the real world. Stability (the higher the better) measures the number of trials in

which the robot stays stable and does not fall over. F), (the lower the better) mea-

sures the deviation from the desired velocity in percentage. The experiments are

conducted with different command settings (Task). Each command is repeated

non-stop for five trials, and we report the average and standard deviation of the

| metrics across five trials]o o

Performance Ablation Study across different ablations and DiftuselL.oco policy in

real-world experiments. Stability (the higher the better) measures the number

of trials in which the robot stays stable and does not fall over. F, (the lower

the better) measures the deviation from the desired velocity in percentage. The

experiments are conducted with different command settings (Left). Fach com-

mand is repeated non-stop for five trials, and we report the average and standard

[deviation of the metrics across five trials)

Acknowledgments

I would like to express my sincere gratitude to Professor Borivoje Nikolic and Professor
Sophia Shao for their invaluable support and guidance throughout the duration of this
project. Their expertise and insights have been fundamental to my development and the
success of this work.

I am also grateful to Xiaoyu Huang and Yufeng Chi for their collaboration. Working
together on the extensive experiments and exploring the diverse fields of robotics, machine
learning, and hardware-software acceleration has been a profoundly enriching experience.

This endeavor required us to venture into unfamiliar territories and deeply engage with
a broad range of topics. I am thankful for the team’s commitment and perseverance as we
pursued our shared objectives.

Chapter 1

Introduction and Background

1.1 Introduction

Data-driven methods for controller development have become increasingly prevalent through-
out the legged robotics community. Reinforcement learning (RL) has allowed real legged
robots to acquire dynamic and robust locomotion controllers [26] 36|, 48]. However, the ma-
jority of these RL systems train policies that hone in on a single strategy for solving a given
task. While the strategies acquired by these policies may be effective with respect to task
performance, they are often not able to capture the rich space of strategies that can be used
to solve a given task. For example, in the context of quadrupedal locomotion, a variety of dif-
ferent skills, such as trotting and pacing, can be used to move at a target speed |37]. Policies
trained using standard RL methods tend to fail to capture these multi-modal solutions.

Transitioning from online RL to offline learning with prior datasets could potentially
mitigate this challenge of learning to model multi-modal strategies. Offline learning enables
the agent to incorporate the data collected from various skill-specific sources, which can
individually model a unimodal solution, but collectively provides a rich multi-modal dis-
tribution of possible solutions for a given task. Supervised learning with large-scale offline
data has been highly effective in a large variety of domains, such as computer vision and
natural language processing, where scaling up both the size of models and datasets leads to
better performance and generalization [30, 57]. This has led to the development of powerful
generative models, like diffusion models, which are able to model complex multi-modal data
distributions [54} 52].

In robotics, imitation learning (IL) [13] from offline datasets has also been shown to
be an effective and scalable approach for developing more versatile policies for domains
such as robotic manipulation [5, 4] and autonomous driving [9, 16, 46]. However, these
domains typically only involve agents that have low-dimensional action spaces (e.g., end-
effector trajectory), with low re-planning frequency on inherently stable systems (e.g., robot
arms or cars). Additionally, due to the larger scale and especially the iterative denoising
process of diffusion models, it is difficult to leverage methods commonly used in these domains

1.2. BACKGROUND AND RELATED WORK 2

Diffusion model
runs on here

Figure 1.1: Snapshots of (top) a quadrupedal robot Gol trotting with our diffusion-based
real-time locomotion control policy, a DiffuseLoco policy, in the real world with onboard
computing, and (bottom) a bipedal robot Cassie controlled by our policy walking in a high-
fidelity simulation environment. We present DiffuseLoco, a framework that leverages dif-
fusion models to learn multi-modal legged locomotion control from offline datasets with a
specific focus on real-time edge computing for real-world robots. Diffuloco is able to perform
multiple locomotion skills with a single policy, exhibiting robustness in the real world, and
is versatile for extending to bipedal locomotion control.

in real-time control systems out-of-box. Running real-time control on edge computing is at
another level of difficulty.

In this work, we leverage the expressiveness of diffusion models to learn agile locomotion
skills for legged robots from diverse offline datasets and seek to address the aforementioned
challenges. We propose DiffuseLoco, a framework that leverages diffusion models to learn
dynamic legged locomotion control from multi-modal offline datasets. Once trained, our
controllers can be effectively deployed on real-world legged robots for real-time control.

1.2 Background and Related Work

Our proposed framework leverages diffusion models for legged locomotion control. In this
section, we review the most closely related works on traditional locomotion, learning-based
legged locomotion and applications of diffusion models in robotics.

1.2.1 Traditional Locomotion Control

Two of the most popular traditional locomotion control methods are model predictive control
(MPC) and proportional-integral-derivative (PID) Controller.

1.2. BACKGROUND AND RELATED WORK 3

1.2.1.1 Proportional-Integral-Derivative Controller

PID controllers are the backbone of classical control strategies in robotics. They compute
control signals by considering the proportional, integral, and derivative terms of the error
between the desired and actual state. This method offers simplicity, robustness, and effec-
tiveness in a wide range of applications, from industry control systems to complex humanoid
robots.[45] PID controllers excel in systems where high precision and stability are required,
ensuring consistent performance even in the presence of disturbances and uncertainties.

1.2.1.2 Model-Predictive Control

MPC represents a more sophisticated approach, where the control action is obtained by
solving an optimization problem that predicts the future behavior of the robot over a fi-
nite horizon.[2] This approach considers the dynamic model of the robot and can handle
multi-variable control problems with constraints on inputs and states. MPC is particu-
larly beneficial in scenarios requiring adaptive and anticipatory control actions, such as in
dynamic and unpredictable environments. It offers the advantage of explicitly considering
future events and constraints, leading to more efficient and optimized control strategies.

1.2.2 Learning-based Locomotion Control

Reinforcement learning methods for locomotion control can be categorized into online learn-
ing and offline learning.

1.2.2.1 Online Learning

Recent advances in model-free online RL have demonstrated promising results in developing
locomotion controllers for quadrupedal robots in the real world |48, 24, |19, [39]. However,
learning a multi-skill policy with online RL is still a challenge, due to the limited expressivity
of commonly used simple action distributions [5§].

As a result, when employing online RL for learning multiple skills with a single policy,
there is a tendency for policies to overfit to a single skill, failing to adequately learn and
incorporate other skills |71}, [73].

To counter this, many previous works train separate policies for each skill, and then
coordinate these policies through high-level planning [24} |14 |71]. However, this approach
introduces its own set of complications. Specifically, it needs reward tuning for each new
skill incorporated, which is not scalable. Moreover, transitioning between these individually
trained skills presents a challenge in itself [7].

An alternate way to develop a single policy for multi-skill legged control is to leverage
adversarial motion priors (AMP) [49], which have shown multiple successful applications to
real-world quadruped robots [18, 61, |66].

These methods, however, require conditioning on different commands 18] or skill repre-
sentations—either through one-hot encoding [61] or latent variables [66]—to switch between

1.2. BACKGROUND AND RELATED WORK 4

skills and mitigate the risk of mode collapse when learning multiple skills concurrently.
Without skill representation, as we will show in Sec. [£.2.2] AMP-based methods produce
undesirable sim-to-real transfer.

In this work, we aim to build a policy with a more flexible action distribution in the form
of a diffusion model, which then allows us to better model multi-modal behaviors, rather
than a conditioned distribution leveraged in previous works.

1.2.2.2 Offline Learning

There have been limited attempts on learning low-level locomotion control from offline
datasets. Most of the prior works focus on learning simple tasks within simulation, such
as Gym locomotion tasks, mainly with offline RL [34]. Among them, some leverage Q-
learning on offline datasets [43, 32, |31], while others utilize supervised learning conditioned
on rewards [64, 11, 69]. However, these tasks are oversimplified and do not adequately
consider the complexities encountered in real-world scenarios. The efficacy of offline RL in
controlling physical robots remains unproven. An alternative is the use of offline data as a
foundation for online learning [42, 60]. Among them, Smith et al. develop baseline policies
from offline datasets to bootstrap online learning. Yet, this approach still requires online
learning, which again introduces challenges in learning multi-modal policy. In comparison, in
this work, we develop an offline learned policy directly deployable in the real world without
online learning, leading to a more effective multi-skill policy and simpler training scheme.

1.2.3 Diffusion Models

Diffusion models, particularly denoising diffusion probabilistic models (DDPM) [28], repre-
sent a class of generative models in machine learning that have gained significant attention
for their ability to generate high-quality, detailed samples, such as images, audio, and text.
These models operate on the principle of gradually adding noise to data and then learning
to reverse this process, effectively 'denoising’ to recreate the original data.

The core idea behind diffusion models, inspired by the physical process of diffusion, is to
model the data generation process as a Markov chain of gradual, random steps of adding and
removing noise. In the context of DDPM, the forward process incrementally adds Gaussian
noise to the data over a sequence of steps, transforming the data distribution into a known
noise distribution. The reverse process, which is the generative phase, aims to learn the
reverse transition of this Markov chain, starting from noise and progressively denoising it to
generate data samples.

1.2.4 Diffusion Models in Robotics

Recent advances have seen an increasing number of applications of diffusion models for learn-
ing control and planning systems. Many prior works have focused on integrating diffusion as
part of the autonomy pipeline. Wang et al. leverage a diffusion model as the discriminator

1.2. BACKGROUND AND RELATED WORK d

Poxt 1|Xt
@ — @ —

~
.
~

Q(Xt|xt—1)

Figure 1.3: Diagram of the Denosing Diffusion Probabilistic Models(DDPM) Process|28]

in adversarial IL for legged control[62]. Nuti, Franzmeyer, and Henriques and Wang, Chen,
and Sun learn a reward model with diffusion to train a control policy with RL. However,
the actor networks in these works are small multi-layer perceptron (MLP) networks, which
still suffer from the problem of exploration difficulty in multimodal learning [64]. Others
leverage diffusion models in high-level planning to perform trajectory planning [27] 23], to
extend towards safe planning [68], or to generate goals for low-level inverse-kinematics-based
controller [29] |1]. Many works have been particularly instrumental in enhancing visuomotor
planning for manipulation tasks, such as [47, [51} |40]. However, the aforementioned methods
all require low-level controllers to realize high-level diffusion-based planning, and are limited
to simulation.

Among work that attempts to solve manipulation tasks by diffusion, notable efforts ex-
tend beyond simulation to real-world robots. Diffusion policy [15] works on leveraging dif-
fusion to perform a wide variety of manipulation tasks on robots with visual inputs. Li
et al. improve it by adding self-supervised learning in crossway diffusion. Some works fur-
ther integrate language as conditioning [10, 21]. Yoneda et al. leverages reverse diffusion
process for shared autonomy with human user in end-effector planning. Other proposals
include hierarchical frameworks to decompose tasks that require multiple skills |3} [67] and
Octo Model Team push it further to form a generalist policy from large dataset of various
source policies.

However, all of the abovementioned approaches focus on high-level planning on ma-
nipulation systems, featuring a low-dimensional action space (e.g., end-effector position),
low-replanning frequency (e.g., around 10 Hz), and inherently more stable dynamics.

In contrast, there are limited attempts of using diffusion models in low-level control
policies for high-frequency control. Most relevant work like [70] uses online RL to train an
actor policy represented by a diffusion model in simple simulation environments (e.g., Gym
control tasks). However, unlike simulation environments that require less robustness and
assume privileged information, real-world legged robots necessitate high-frequency feedback
control due to their instability and rapid dynamics [65]. This introduced significant difficulty
in leveraging diffusion models which are usually represented by a large model [8]. As we
will see, this work does not only realize diffusion models in the low-level control for legged

1.2. BACKGROUND AND RELATED WORK

locomotion but also demonstrates their advantages in the control tasks in the real world.

CHAPTER 2. METHOD

Chapter 2
Method

2.1 Overview

In this section, we provide an overview of DiffuseLoco, a framework designed to generate
and utilize offline datasets for training locomotion policies. DiffuseLoco is based on diffusion
models and is designed to train a low-level multi-skill locomotion policy from offline datasets
distilling diverse behaviors.

A schematic illustration of the three stages of the DiffuseLoco framework is shown in

Figure

2.2 Data Sources?

We start with collecting a diverse dataset consisting of multiple skills. We first obtain
N single-skill control policies as the source policies. In this work, the source policies are
pacing, trotting, turning left, and turning right skill-specific policies, as illustrated in Fig. [2.2]
i.e., N = 4. These policies are obtained by RL [48] and are conditioned on given goal g
(command). For example, the robot can use the pacing policy to track different speeds
(goals). We then collect data generated by each of these goal-conditioned source policies
in simulation. As illustrated in Algo. [I} during the data collection, we start an episode
where the robot is controlled by the i*" source policy 7. The state-action-goal pairs (s;,
a;, g;) are collected during the rollout of the robot’s closed-loop dynamics until it reaches
the maximum episode length 7. Specifically, the goal g; will be re-sampled within the
command range after a time-interval within the episode, and the states s; and action a; are
the proprioceptive feedback from the robot and the joint-level commands from the source
policy, respectively. We repeat such a process over all of the IV source policies and collected
an offline dataset that contains 1 million (s;, a;, g;) pairs in total.

(D I have collaborated with Xiaoyu Huang in the section. He was in charge of the data source
collection and partially the training process.

2.3. TRAINING 8

2.3 Training

In the second step of the framework, we train our Diffusel.oco policy from the generated
dataset in an end-to-end manner. Let input state and goal history length be h and output
action prediction length be n. During training, we sample a segment of state trajectory
Straj and corresponding action and goal sequences, agu,; and gu.j. We sample a diffusion
timestep k randomly from {1,..., K}, and sample a Gaussian noise ¢ to add to the action
sequence. Then, a transformer-based denoising model takes the noisy action sequence along
with states trajectory Sya.j, goal trajectory gi.j, and diffusion timestep £ as input, and
predicts the added noise as €y. The predicted noise €y is then regressed to match the true
noise €, with mean square error loss. In this way, the denoising model is learned to generate
sequences of low-level actions conditioned on robot states and goals from the dataset.

2.4 Deployment

In the last stage of the framework, we zero-shot transfer the trained DiffuseLoco policy on
the robot hardware. The policy is designed to operate at a frequency of 30 Hz. During de-
ployment, the Diffusel.oco policy takes a sequence of noisy actions sampled from a Gaussian
distribution, and denoises it conditioned on the state trajectory si,; from the robot hard-
ware and the given goal g,,;. The denoising process is repeated for K iterations to generate
a sequence of action, but only the immediate action a; is taken for the robot’s joint-level
command. After executing the actions, the DiffuseLoco policy takes a new sequence of states
from the robot and updates the action from the newly-generated action sequence. This is
designed to align with the Receding Horizon Control (RHC) framework, instead of inter-
polating the action sequence at high frequency as previously used by other diffusion-based
work [29, 35]. However, since the diffusion model has a large number of parameters, we
need to accelerate the inference fast enough to achieve this RHC manner (the inference time
should be faster than the control frequency of 30 Hz).

Using this framework, we are able to obtain and utilize DiffuseL.oco policy on the physical
robot. As presented in Sec. DiffuseLoco policy is able to control the robot to walk stably
and track varying velocity commands as a goal. More importantly, a single DiffuseL.oco policy
can perform multiple skills learned from the offline dataset and infer smooth skill transitions
which are not included in the dataset.

2.5. DIFFUSION MODEL FOR REAL-TIME CONTROL 9

Data Source Training Deployment
Policy 1 DiffuselLoco | > | Diffuseloco
Policy 2 4 () Straj Btraj Ay | | Strqj 30Hz
Sy ay 8 .
Policy 3 .35 ver gy &1 K €g
pacing
Policy 4 ‘ IZ:> Offline /
0 IC\/ trotting Dataset Sk MSE
loss Multiple Skills

Figure 2.2: Overview of the three stages of DiffuseLoco. First, we generate an offline
dataset with a set of skill-specific source policies (left). Then, we train DiffuseLoco policy
with DDPM loss on trajectories within the dataset (middle). Finally, DiffuseLoco policy is
deployed on the robot in the real world and executes multiple skills (right).

2.5 Diffusion Model for Real-Time Control

Having introduced the framework of DiffuseLoco, we now begin to develop the backbone
of this framework: a diffusion model for locomotion control, shown in Fig. [2.3] During
development, we pay a special focus on design choices for real-time control and inference
acceleration.

2.5.1 DDPM for Control

In order to model multi-modal behaviors from diverse datasets, we leverage DDPM [22] to
model different skills that can be applied to achieve a common goal. DDPM is a class of
generative models in which the generative process is modeled as a denoising procedure, often
referred to as Stochastic Langevin Dynamics. To generate the action trajectory for control,
an initial noisy action trajectory, alf +n, is sampled from Gaussian noise, and the DDPM
conditioned on state trajectory s;_j.; and previous action trajectory a; 1., undergoes K
iterations of denoising. For clarity, from now, the subscript *; .., is used to detail the
trajectory from timestep ¢t — a to t — b to replace the previously-used *,;. Such a denoising
process yields a sequence of intermediate actions characterized by progressively decreasing
noise levels: a* a*=! ... a° until the desired noise-free output, a’, is attained. This process
can be expressed as the following equation:

k-1 k k
Appyn — a(at:t+n - 769(3t7h71:t+n7 St—hit, k)

+ N(0,0°1))

where af,,,, represents the output at the k™ iteration, and eg(af_,,_;..,,Si—n+, k) represents
the predicted noise from the denoising model €y, which is parameterized by 6, with respect

(2.1)

2.5. DIFFUSION MODEL FOR REAL-TIME CONTROL 10

Algorithm 1 DiffuseLoco Algorithm
1: Initilize: N source policies 7} 7N _, Empty Offline Dataset D,,., Diffusion Model

src o hsre?

2: // OBTAIN DATA FROM ;.
3: if D,,. is empty then

4 repeat

5 Sample n uniformly from {1,..., N}

6: Sample environment dynamics

7 fort=1to T do

8 if £ mod random_goal step = 0 then
9: Sample goal g

10: end if

11: Collect data with 77 .(as|s:, g¢)

12: Add data to offline dataset Dy, < (s, as, 8)
13: end for

14: until desired

15: end if

16: // TRAIN ON OFFLINE DATASET
17: for each epoch do

18: for each (Siraj, Atraj, Btraj) I Dsye do

19: Compute the loss L(6)

20: Update model parameters 6 to minimize loss L(0)
21: end for

22: end for

to af ,_ 1., St—n—1:, and iteration k. N(0,02I) denotes the sampled noise from a DDPM

scheduler. This scheduler takes in «, v, and o as its hyperparameters, where « regulates the
rate at which noise is added at each step, v represents the denoising strength at each step,
and o defines the noise level.

During training, we opt to use the simplified training objective as proposed in [22],

| = MSE(ex, €g(as_p—1:t+n + €k: St—n:t, k)) (2.2)

where ¢, is the sampled noise at iteration k.

2.5.2 Robot’s I/O History as Input

We now develop the denoising model based on a transformer architecture, as shown in
Fig.[2.3] The input to the denoising model contains a history of previous actions a;_p_1.4—1
along with robot state s; j., i.e., robot’s I/O history as input. The state s, and action
a; 1 pair at each timestep is concatenated into one vector, the I/O vector. The robot’s
/O history helps the policy to better perform system identification and state estimations in
legged locomotion control, as evaluated in [37].

2.5. DIFFUSION MODEL FOR REAL-TIME CONTROL 11

delayed input
S. /" ——
IS Observation Goal Cond _I[_).lffuleton
1/0 sequence at t Imestep

Egt—?,égt—zégt-l gt \—' |_l
H 5 H XM

'] Goal sequence at t

- Action v
Diffusion(s, a, g, k) > €y
- - - L - - Causal Cross-attention Mask
— i@p3i@p i@y | At 8pi8uoidus| - K

Action sequence att

Figure 2.3: The architecture. At time step t, takes in a one-step delayed history of propri-
oceptive state s;_p_14_1, along with the corresponding delayed goal history g; 141 and
action history a;_j_s.4_2, and predicts a sequence of n actions a;;,, as the position targets
for robot’s actuators. First, the proprioceptive state and the goal are mapped to separate
embedding spaces by MLP encoders. Next, the noisy action tokens undergo M transformer
decoder layers, within which the action tokens query both the state embedding and goal
embedding, as well as a ont-hot diffusion timestep, through a causal cross-attention module.
Finally, we repeat the denoising process K times to produce the predicted action sequence,
and feed the executed actions back to model’s input. The model is trained through end-to-
end imitation learning.

2.5.3 Goal Conditioning

Besides the robot’s I/O history, the input to the DiffuseLoco policy has an additional for-
mulation of the given goal. Different from prior works which concatenate state and goal
into the same embedding [15, [35], in DiffuseLoco, we propose adding goal conditioning to
the DiffuseLoco policy, with a special formulation. This approach recognizes the difference
in features of the state-action pair (robot’s I/O) and goal spaces, and separates the embed-
ding of these two information. Such separation between robot’s I/O and goal is crucial for
real-time dynamic control scenarios. Using legged robots as an example, unlike static-base
manipulators, the state s;_p.; (the proprioceptive readings of the robot) and used action can
change rapidly, while the goals g; .+ (commands) of the control policy largely stays static.
Therefore, there would be different priorities when regarding the robot’s I/O and goal. For
example, in the event where the robot encounters environment changes or external pertur-
bations, it needs to focus on the robot’s I/O history to capture the changing dynamics and
prioritize the rebalancing of the body. On the other hand, the policy can focus more on

2.5. DIFFUSION MODEL FOR REAL-TIME CONTROL 12

realizing the given goal when the body stability is not a big concern.
Therefore, we separate the two spaces of the robot’s 1/O and goal information into
separate conditioning embeddings and calculate individual attention weights when doing
cross-attention with the action embedding, as illustrated in Fig. Concretely, we modify

Eqn. and introduce the goal embedding g as follows:
af;t_in = a<a-lt€:t+n - 760(af—h—1:t+m St—hits Bt—hits k)

+ N(0,0%1)). (23)

We find that this enables better command tracking performance and achieves better robust-
ness compared to the policy without such condition in the legged locomotion control. A
detailed ablation study is conducted in Sec. [4.3.3|

2.5.4 Model Architecture and Training Details

After introducing all the design choices in the Diffusel.oco policy for real-time control, we
now present the details of the architecture of diffusion model developed in this work. The
DiffuseL.oco policy leverages an encoder-decoder transformer DDPM, incorporating the afore-
mentioned goal conditioning, as illustrated in Fig. [2.3]

First, the past robot’s past /O trajectory (S;_p_1.t—1,8;—h_2.4—2) and given goal sequence
g n_1.4—1 are transformed into separate I/O embedding and goal embedding by two 2-layer
MLP encoders, respectively. Then, we sample noise €(k) for diffusion time step k& with the
DDPM scheduler and add to the ground truth action a from the offline dataset to produce
a noisy action af,, = aui1n, + €. The noisy action af,,, is then passed through an MLP
layer into action embedding. The noisy action tokens are then passed through 6 Transformer
decoder layers, each of which is composed of an 8-head cross-attention layer. Each layer
computes the attention weights for the noisy action tokens querying all the state embedding,
goal embedding, and the timestep embedding reflecting the current diffusion timestep k.
We apply causal attention masks to each of the state embeddings and goal embeddings
separately. The predicted noise €p(a;_p—2:44n,St—h—1:4—1,8t—h-1:t-1, k) is then computed by
each corresponding output token of the decoder stack. We then supervise the output to
predict the added noise with the loss function to find optimal parameters 6 of the denoising
model €.

For quadrupedal robots, we select following hyperparameters: state and goal history
length h = 8, inference horizon n = 4, and diffusion inference steps K = 10.

CHAPTER 3. REAL-TIME INFERENCE ACCELERATION FOR DIFFUSELOCO POLICY

Chapter 3

Real-Time Inference Acceleration for
DiffuseLoco Policy®

Although the diffusion model targets real-time use, it cannot meet the real-time targets
without further tuning. Compared to previous works that use Transformers for locomotion
control with 2M parameters [50], our model is 3 times larger in parameter counts(6.8M
parameters) and needs to be forwarded 10 times in each inference. Thus, an additional
effort is needed to accelerate the diffusion on the edge computing device on the robot, such
as the setup shown in Fig. 3.1} In this section, we explore several methods to accelerate the
inference process of the diffusion model to enable it to run real-time onboard.

3.1 Acceleration Framework

Our DiffuseLoco policy has a parameter count of 6.8 million parameters, which exceeds most
modern mobile processors’ cache capacity. Furthermore, hardware on a typical consumer-
grade central processing unit (CPU) is not optimized for the operators used in transformer
networks. The graphics processing unit (GPU) is more suitable for computing the high-
dimension matrix and vector operations. To ensure the portability of the setup, we use an
accessible NVIDIA GeForce RTX 4060 Mobile GPU as the deployment platform. For real-
time deployment, an acceleration pipeline is built in the Diffusel.oco framework to convert
and optimize our model towards the target compute platforms. The operators of the model
are first extracted with ONNX [59]. Then, TensorRT is used to refine the execution graph
and compile the resulting execution pipeline onto the target GPU. Through domain-specific
architecture optimizations, the operations and memory access patterns are optimized to uti-
lize the full capability of the GPU. With this approach, the time for each denoising iteration
is decreased by about 7 times compared to the native implementation in PyTorch, and the
maximum inference (with 10 denoising iterations) frequency is increased from 17.0 Hz to
116.5 Hz. To showcase the effect of this acceleration approach, we conducted a benchmark
on the inference frequency of the policy running on multiple hardware platforms we have

(2) The deployment and benchmarking sections were done in collaboration with Yufeng Chi. We set
up the onboard compute system and acceleration pipeline together.

3.2. EDGE COMPUTE FOR DIFFUSELOCO POLICY ON ROBOTS 14

Figure 3.1: Onboard compute experiment setup. A: Mini computer with Intel Core i7-
13700H and NVIDIA GeForce RTX 4060 Mobile. B: Battery bank. C: Gol quadrupedal
robot. This setup is below the robot’s adaptive load capacity and the robot can walk with
our policy steadily. With our acceleration framework, we are able to achieve onboard and
real-time deployment of our diffusion model.

access to, shown in Fig. |3.2

3.2 Edge Compute for DiffuseLoco Policy on Robots

With the help of the acceleration framework, the compute platform can be deployed onboard
a Gol quadruped robot. A mini-computer equipped with Intel Core i7-13700H and NVIDIA
GeForce RTX 4060 Mobile is attached to the top of the robot, as showcased in Fig. (3.1} This
computer runs DiffuseLoco policy and is powered by a dedicated battery bank, separated
from the robot’s internal battery. This arrangement is capable of running the policy for
up to 90 minutes. The mini-computer connects to the robot via an Ethernet cable to send
action for the joint-level PD controls on the robot’s computer.

To this end, the development of the entire DiffuseLoco framework has been presented,
where we developed a policy that is able to zero-shot transfer onto real robots, track different
velocity commands, and execute multiple skills to perform stable locomotion. In the following
sections, we conduct extensive benchmark and ablation study to evaluate DiffuseLoco in both
simulation and the real world.

3.2. EDGE COMPUTE FOR DIFFUSELOCO POLICY ON ROBOTS

RTX 4090
RTX 4060 M
RTX 2080
GTX 1070

GTXTITAN X
Core i9-9900K

Ryzen 7 1700

15

116.5

101.3

I ONNX - FP32

129.0

I PyTorch - FP32

@ TensorRT - FP32

20 40 60 80 160 120
Inference Frequency (Hz)

140

Figure 3.2: Benchmark of running our DiffuseLoco policy (6.8M parameters; about 27.2MB)
on different hardware platforms. The dashed line remarks the 30 Hz minimum frequency
required to control the robot in real time. We utilize TensorRT to optimize the computation
graph and achieve approximately 7 times speedup of inference computation time compared
to the naive PyTorch implementation. The N/A entries are due to the lack of software
compatibility on the corresponding platform.

PyTorch Model

GPU Specific
Compilation

ONNX

Representation

TensorRT
Runtime

Figure 3.3: Full stack diagram of acceleration pipeline. Our pipeline first convert Pytorch
Model to ONNX representation, then we build the TensorRT runtime with specific GPU.

CHAPTER 4. REAL-WORLD EXPERIMENTS AND ABLATION STUDIES

Chapter 4

Real-World Experiments and
Ablation Studies®

In order to demonstrate our framework can learn multiple skills from various sources, we run
a comprehensive real-world benchmark.

4.1 Experiment Setup

In this section, we discuss the benchmark tests and evaluation metrics conducted in the
subsequent sections on a physical quadrupedal robot.

The test includes walking on a foam-padded floor for four meters under five goals (com-
mands) with different velocities. The goals are the following: move forward at three different
speeds: 0.3 m/s, 0.5 m/s, and 0.7 m/s, and make a left turn and a right turn at 0.3 rad/s.
These commands represent commonly-used velocities in quadruped’s locomotion and are
included in the training dataset.

For evaluating the performance, we examine the stability and velocity tracking perfor-
mance produced by the controllers. The metric for stability is assessed by calculating the
average number of trials in which the robot manages to move stably for a minimum of 5
seconds without falling over. The velocity tracking error is reported as the mean and stan-
dard deviation of the error between the commanded velocity and the robot’s actual velocity,
expressed as a percentage of the commanded velocity. Each test is repeated five times in
a continuous sequence without interruption. Additionally, we record the norm of angular
velocity in roll and pitch directions, as another perspective to measure the smoothness of
the resulting robot’s locomotion skills.

4.2 Experiment: Real-world Benchmarks

In this section, we benchmark DiffuseLoco against state-of-the-art methods that leverage
RL for multi-skill locomotion control using a single policy and variants of behavior cloning

(3) All experiments were conducted in real-world settings with Yufeng and Xiaoyu’s assistance.
Together, we set up and monitored over 200 experimental setups, ensuring accurate recordings.

4.2. EXPERIMENT: REAL-WORLD BENCHMARKS 17

Task Metric AMP AMP w/ H TF TF w/ RHC DiffuseLoco (Ours)
0.3m/s Forward Stability (%) 100 100 80 100 100

E, (%) 90.44 £1.87 90.63 £4.79 7575 £6.07 39.28 £ 2.34 33.22 + 12.48
0.5m/s Forward Stability (%) 100 100 100 100 100

E, (%) 50.44 £ 197 46.29 £ 2.55 54.35 £ 2.66 37.46 £+ 5.31 12.91 £+ 6.84
0.7m/s Forward Stability (%) 0 20 0 40 100

E, (%) fail 575 54.96 £ 0.00 fail5/5 39.36 + 5.02 24.80 + 8.91
Turn Left Stability (%) 20 100 0. 100 100

E, (%) 20.96 &£ 0.00 33.39 £ 6.96 fail 575 13.41 £ 5.02 12.79 £+ 5.64
Turn Right Stability (%) 100 100 100 80 100

E, (%) 18.61 £2.40 33.39 £6.96 25.86 &£ 1.47 8.69 £ 5.04 2.22 + 1.03

Table 4.1: Performance benchmarks across different baselines and our Diffusel.oco policy in
the real world. Stability (the higher the better) measures the number of trials in which the
robot stays stable and does not fall over. E, (the lower the better) measures the deviation
from the desired velocity in percentage. The experiments are conducted with different com-
mand settings (Task). Each command is repeated non-stop for five trials, and we report the
average and standard deviation of the metrics across five trials.

(BC) baselines on the Gol quadrupedal robot in the real world. Our experiments show that
DiffuseLoco can zero-shot transfer to hardware and exhibits better stability and control
performance (i.e., velocity tracking error) compared to all compared baselines.

4.2.1 Baselines

First, we compare our policy with state-of-the-art multi-skill RL policies without explicit skill
conditioning. We deem this a favored property for a versatile offline learning framework, as
skill labels might not be always available during deployment. In addition, our DiffuseLoco
policy is purely goal-conditioned.

e Adversarial Motion Priors (AMP) [18]: An MLP policy trained using AMP with RL
(PPO) and the style reward is obtained by the discriminator from different reference
motions. We use the open-sourced checkpoint from [18]. This resulted single RL
policy can perform four different skills (pacing, trotting, turning left and right) as ours
in simulation. Note that in the implementation of [18], the AMP-based policy does
not include a history of states as input.

e AMP with history steps (AMP w/ H): To align with DiffuseLoco, we in addition
train an MLP policy with 8 steps of state and action history using AMP and the same

4.2. EXPERIMENT: REAL-WORLD BENCHMARKS 18

setup as [18]. This baseline achieved a similar evaluation return as the AMP baseline
([18]) in simulation.

Although the model is trained on Al(previous version of Gol), we find that Gol yields
very similar performance as the two robots are mostly designed the same. For consistency,
we report performance on Gol for all policies.

Furthermore, we compare DiffuseLoco with the following BC policies. BC policies can
be generally placed into two categories: autoregressive token prediction 11}, [25] and action
sequence prediction as used in [20]. We adopt baselines for each category.

e Transformer with Autoregressive Token Prediction (TF): A Generative Pretrained
Transformer (GPT) [6] policy similar to a decision transformer [11] without reward
conditioning. This only generates one timestep action.

e Transformer with Receding Horizon Control (TF w/ RHC): A transformer policy
with the same future step action predictions. The model’s architecture is identical to
our DiffuseLoco model, but it directly predicts future action sequences and the loss
is replaced by the BC loss | = M SE(my(st, gt), ar).

All BC baselines have the same parameter count of 6.8M and are trained with the same
learning rate scheme and number of epochs as DiffuseLoco.

For the same reasons as above, we do not include rewards in the dataset and offline RL
methods.

Typically, previous work uses DAgger style algorithms [53] to better cope with distri-
bution shift, but these methods require access to the expert policy and online learning
environment. As a more versatile framework, we limit our focus on learning from offline
datasets only.

4.2.2 DiffuseLoco versus AMP (RL)

We first compare DiffuseL.oco with RL-based multi-skill control policy AMP. Table
shows that DiffuseLoco is the only method among all of the baselines in our benchmark
that is able to reliably complete all trials without falling over. Specifically, the RL-trained
AMP and AMP w/ H baselines struggle with low and high speed commands. For 0.3 m/s
forward command, these two baselines give a velocity tracking performance of more than
90% slower than the commanded velocity. For 0.7 m/s forward command, they achieve a
stability metric of 0% and 20% respectively.

This shows the prevailing problem of mode-collapsing on Generative Adversarial Network
(GAN) style networks, such as a multi-skill AMP policy. Mode collapse is a significant
challenge in GANs, where the generator becomes overfitted to a limited range of outputs
that are often similar or identical, rather than offering a broad range of solutions. This
issue typically arises when the generator produces a set of good samples. The sample traps
the discriminator in a local optimum, which in turn makes the generator overfit to these

4.2. EXPERIMENT: REAL-WORLD BENCHMARKS 19

0.08 0.08
—— DiffuselLoco (Ours) —— DiffuseLoco (Ours)
L, 0:061 TF w/ RHC 0.06 TF w/ RHC
4 a
3 S
— 0.04 4 ~ 0.04
= ©
O > |
o L (* A
"~ 0.021 0.02 1 J\ﬁﬂ ’IV\ \/ i |
WA AW AN
0.00 : ; : 0.00 ; - !
1
Step le5 Step le5

Figure 4.1: Loss curves for training DiffseLoco and TF w/ RHC baseline. (a): Training
Loss. (b): Evaluation Loss. We report mean and standard deviation across three seeds.
We find that even though TF w/ RHC achieves a low reconstruction loss in training, the
evaluation loss stays higher than DiffseLoco and increases at the end. This indicates TF
w/ RHC tends to overfit the offline datasets while DiffuseLoco is not, with the same number
of parameters.

samples [41, 38, [17]. In the context of AMP, this means the actor network excessively
overfits to the simulation environment, losing its ability to generalize and adapt to new
environments (such as the real world). Although there are work that try to fix this problem
with GAN network, they require extensive conditionals with extra information.[12] In real-
world testing, this results in the policy hobbling and almost staying still when speed is
low, and cannot exercise a balanced locomotion skill when speed is high. Note that in the
simulation environment, both AMP and AMP w/ H are able to control the robot to track
different velocities without falling over.

Besides better sim-to-real transfer, DiffuseLoco with a diffusion model is able to effi-
ciently learn the multi-modality presented by the different skills for the same locomotion task,
and thus able to perform valid and coordinated locomotion skills without mode-collapsing, as
an example given by Fig.|4.3] This helps DiffuseLoco achieve both better stability and track
completion (velocity tracking) performance compared with AMP-based policy baselines.

4.2.3 DiffuseLoco versus Behavior Cloning

We further compare DiffuseLoco with BC-based methods. For locomotion tasks, smooth
and temporally consistent actions are a necessity for stability and robustness. Looking at
Table , we find that DiffuseLoco outperforms TF and TF w/ RHC in both stability and
robustness of the locomotion policy. Using one-step action output, we find that TF lacks
robustness and fails the 0.7 m/s forward and left turn tasks completely. This is because

4.3. EXPERIMENT: ABLATION STUDY ON DESIGN CHOICES 20

single-step action prediction lacks consistency and is likely to produce rapidly changing
actions (resulting in jittering motion) when inferring in an autoregressive manner.

With receding horizon control, TF w/ RHC overcomes most of the jittering problem
and can complete most of the tasks. However, we note that for more agile motion such as
the 0.7 m/s forward task, the stability metric drops drastically to merely 40%. This is likely
because the BC loss used in TF w/ RHC training tends to overfit the action trajectories
in the dataset, resulting in less robust policy in the out-of-distribution scenarios (such as in
the real world).

This is especially evident when looking at training curves for TF w/ RHC versus
DiffuseLoco shown in Figure , where TF w/ RHC overfits significantly to the training
dataset and the evaluation loss stays high. Note that the model architecture is kept identical
across TF w/ RHC and DiffuseLoco, so only the loss calculation is changed in this
comparison. In addition, the evaluation loss here is calculated with samples from the same
distribution as the training dataset, which means the overfitting problem becomes more
pronounced when we switch to real-world experiments, as shown earlier.

In comparison, our DiffuseLoco shows more stable and smooth motions measured by
both stability metrics and magnitudes of body’s angular velocity. On average, DiffuseLoco
achieves 10.40% less in magnitude for body’s oscillation over all trials. As a result, the
smoother locomotion skill helps DiffuseLoco to achieve on average 38.97% less tracking error
compared to TF w/ RHC. Based on this observation, we suggest that DDPM style training
is more suitable for imitating locomotion tasks compared to vanilla Behavior Cloning.

4.2.4 Summary of Results

In summary, after the benchmark with baselines, we can draw the following conclusions.
Compared with RL-based multi-skill locomotion control policies (AMP-based), our Dfis-
sueLoco shows better control performance during sim-to-real transfer as it does not suffer
from the potential mode-collapsing issue encountered by GAN-styled methods. This result
is consistent compared with AMP-based policies that uses only 1-timestep robot’s 1/O as
input (AMP) or uses a history of the robot’s I/O (AMP w/ H). Compared with BC-based
policies, our DfiffuseLoco that leverages diffusion shows less tendency to overfit the of-
fline dataset and results in better sim-to-real transfer performance in terms of stability and
tracking performance.

4.3 Experiment: Ablation Study on Design Choices

In this section, we further evaluate the design choices used to build DiffuseLoco policy in
simulation and the real world by extensive ablation studies.

4.3. EXPERIMENT: ABLATION STUDY ON DESIGN CHOICES 21

Task Metric DL w/o RHC DL w/o Rand DDIM-100/10 DDIM-10/5 DiffuseLoco (Ours)
0.3m/s Forward Stability (%) 100 100 100 100 100

E, (%) 75.00 £ 18.98 5045 £ 270 56.89 + 243 47.09 + 2.40 33.22 + 12.48
0.5m/s Forward Stability (%) 100 80 80 100 100

E, (%) 64.49 £ 1.87 41.07 £ 6.12 41.00 £ 3.18 37.92 £ 1.59 12.91 + 6.84
0.7m/s Forward Stability (%) 0 40 80 80 100

E, (%) fail 575 44.30 + 4.21 4771+ 6.63 42.58 + 2.08 24.80 + 8.91
Turn Left Stability (%) 100 100 100 100 100

E, (%) 20.96 + 18.22 10.17 + 5.86 22.22 £ 4.29 13.27 £ 2.63 12,79 £+ 5.64
Turn Right Stability (%) 100 100 100 100 100

E, (%) 18.61 £ 2.40 8.18 £ 3.94 6.47 £ 2.49 7.42 £ 2.90 2.22 £ 1.03

Table 4.2: Performance Ablation Study across different ablations and DiffuseL.oco policy in
real-world experiments. Stability (the higher the better) measures the number of trials in
which the robot stays stable and does not fall over. E, (the lower the better) measures
the deviation from the desired velocity in percentage. The experiments are conducted with
different command settings (Left). Each command is repeated non-stop for five trials, and
we report the average and standard deviation of the metrics across five trials.

4.3.1 Ablation Components

To validate our design choices, we define DiffuseLoco with the following critical components
and compare in our real-world benchmark.

e Without Receding Horizon Control (DL w/o RHC) [11]: In this baseline, we replace
receding horizon control with one-step prediction in an autoregressive manner and keep
the diffusion model.

e Without Goal-conditioning (DL w/o Goal): In this baseline, we do not add the
goal-conditioning encoder. Instead, the goal is concatenated with the robot’s I/0.

e Without Domain Randomization (DL w/o Rand): In this baseline, we investigate
how the diversity of the dataset may influence the robustness of DiffseLoco. During
the date generation of the offline dataset, we disable all domain randomization except
for the ground friction coefficient.

e DDIM Inference: DDIM uses less number of denoising steps at inference than the one
used in training, which is a commnely-used technique to accelerate diffusion models
at deployment. This is in contrast to our proposed DiffuseLoco that keeps the same
number of denoising steps with DDPM sampler. We developed two baselines based on
DDIM to investigate how training and inference steps affect performance in locomotion
control.

4.3. EXPERIMENT: ABLATION STUDY ON DESIGN CHOICES 22

10 0.7
1 DL-Goal

B Diffuseloco (Ours) -0.6

o
1

Failure Rate (%)
Tracking Error

Failed Episodes Linear Vel (m/s) Angular Vel (m/s)

Figure 4.2: Comparison of failure rates and tracking errors between DL w/o Goal and
DiffuseLoco (ours) in simulation. The left y-axis is the metric for Failed Episodes. The
right y-axis indicates the tracking error for linear velocity and angular velocity.

— 100 Training + 10 Inference (DDIM-100/10)
— 10 Training + 5 Inference (DDIM-10/5)

Compared with our DiffuseLoco, DDIM-100/10 has the same inference steps, and
DDIM-10/5 has the same training steps.

4.3.2 Single-step output versus RHC

RHC is an appropriate method to improve smoothness in diffusion-based policies. To mini-
mize compounding variables, we also introduce a variant of DiffuseLoco without RHC (DL
w/o RHC) to confirm the effects of RHC on learning legged locomotion control. As shown
in Table[4.2] we see that without RHC, diffusion-based policy also fails most of the hard tasks
and shows significant jittering behaviors that have high-frequent low-magnitude oscillation.

This result shows that single-step token-prediction models, such as the widely-used GPT
models, might not be a suitable choice in imitating learning for legged locomotion control,
whereas models designed for action sequence prediction, such as diffusion models, are a
better fit.

4.3. EXPERIMENT: ABLATION STUDY ON DESIGN CHOICES 23

4.3.3 Use of Goal-conditioning

We now assess the importance of using goal-conditioning in DiffuseL.oco. We hypothesize
that goal-conditioning primarily enhances tracking performance and stability in dynamic
system control. In order to thoroughly assess tracking performance in a higher resolution,
especially considering the noisy estimation of base velocity on real robots, we shift our focus
to simulation environments with extensive randomization of dynamics. As demonstrated
in Fig. DiffuseLoco achieves a reduction of 15.4% decrease in linear velocity tracking
error and 14.5% in that of angular velocity when compared to DL w/o Goal baseline. More
importantly, over 64 trials with the same commands, DL w/o Goal falls over four times,
or 6.25% of all trials, while DiffuseLoco does not experience any failure. This trend is also
witnessed in real-world testing, where DL w/o Goal fails one trial in 0.7 m/s forward test.

These results underscore the importance of adding goal-conditioning with different atten-
tion weights for dynamic system control as shown in diagram It is because the robot’s
I/O and goal possess distinct features, one governed by the law of physics while the other
being an arbitrary objective, and thus could not be fused into one embedding space. An
interesting research direction would be further investigating input elements with different
features critical for control.

4.3.4 DDPM versus DDIM

As discussed earlier, popular diffusion-based frameworks often leverage DDIM to reduce
sample iterations for inference acceleration. DDIM tends to trade off worse output quality
with fewer, often 10 times less sampling iterations [56].

While this is a practical approach on most tasks that allow some variances such as
image generation and manipulation tasks, we find that this acceleration method leads to
reduced performance on control on dynamic systems, such as the quadrpeds used in this
work. As shown in Table 1.2 both DDIM-100/10 and DDIM-10/5 show worse stability
and velocity tracking error. The variant with 10 training and 5 inference steps fails one
trial in the 0.7 m/s forward task, and the variant with 100 training steps and 10 inference
steps shows more limpy behavior and fails one trial in the 0.5 m/s forward task as well. The
tracking error compared to DiffuseLoco also increases by 50.69% and 42.04%, respectively.

This is likely because the noisier control signals produced by DDIM pipeline negatively
affect controlling the floating-based dynamic systems (like legged robots) that are inherently
less stable. In these cases, we need diffusion results of better quality without compromising
for faster computing. The inference acceleration can be realized by other methods introduced
in this work. Therefore, we do not recommend leveraging DDIM as an acceleration method
for real-time locomotion control.

4.3. EXPERIMENT: ABLATION STUDY ON DESIGN CHOICES 24

Rear Left
Rear Right
Front Left
Front Right

Command

Velocity 0-7 _I
(m/s) 5.6

9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0

Gait pattern change Time (s)

Figure 4.3: Foot contact map indicating stable walking and skill switching with Diffusel.oco
policy and velocity commands. The red circle denotes the legs that are in contact with the
ground. The change in command velocity indicates a sudden stop command and resuming
to the original command. The robot walks with trotting skill during the first few steps,
marked with a purple background, and then switches to pacing skill, marked with a green
background. Upon receiving a stop command, the robot reduces speed by grounding three
feet, coincidentally placing it in a posture such that it seamlessly continues to walk with the
pacing skill upon command resumption.

4.3.5 Dataset Effects

Last, we investigate how the characteristics of the dataset might affect the robustness and
performance of DiffuseLoco in the real world. Previous works show that adding more
diversity by inserting noise helps mitigate compounding error . Similarly, we show that
increasing the variety of dynamics parameters of the environments to collect the dataset
also helps improve robustness. As shown in Table [£.2] we train DiffuseLoco on a dataset of
identical size and source policies with no dynamics randomization enabled in simulation. We
see that both the robustness and stability could decrease by 44.26% using DL w/o Rand,
indicating a large reduction in robustness. On the harder task of 0.7 m/s forward especially,
the robot fell over in 3 out of the 5 trials using DL w/o Rand. This ablation shows us a
future direction to investigate altering dataset, either adding more diversity or adding more
fault-recovering behavior to further improve Diffusel.oco robustness.

4.4. FURTHER EVALUATION IN EXPERIMENTS 25

4.3.6 Summary of Results

In the conclusion of this ablation study, we summarize several key design choices that enable
better control performance using the diffusion models. In DiffuseLoco,

(1) use RHC instead of generating single action step to have smoother behavior in legged
locomotion controls,

(2) separate the embeddings for robot’s I/O and goal to better model the different features
in these two spaces by transformer, resulting in better stability and tracking performance,

(3) use DDPM to preserve the best action sequence generation quality, while using other
methods introduced in this work to accelerate the inference, and

(4) diversify the distribution of the collected offline dataset, such as incorporating dy-
namics randomization in simulation, to improve the robustness of IL-based policy.

4.4 Further Evaluation in Experiments

After benchmarking and ablation study, we perform further experiments to test the ro-
bustness and versatility of DiffuseL.oco policy. First, we demonstrate that Diffuseloco can
efficiently learn various skills and switch among them smoothly on hardware. Later, we
showcase the robustness of DiffuseLoco by walking on simple terrains and different grounds.
Last, we extend DiffuseLoco to a bipedal robot, Cassie, and demonstrate walking policy in
high-fidelity simulation.

4.4.1 Skill Switching

To showcase the advantages of using a DDPM, we highlight the ability of DiffuseLoco to
maintain and switch skills under the same goal (commanded velocity) on a quadrupedal
robot. In this test, the robot is commanded at a forward velocity of 0.7 m/s, followed by a
sudden switch to 0 m/s, then quickly resume to the original forward velocity.

As shown in Fig. the robot starts the test with a trotting skill. Then, the sudden brake
brings disturbances to the contact sequence as the robot tries to reduce its forward velocity.
When resuming, the robot leverages the new contact sequence and switches smoothly to
pacing skill under the same command of 0.7 m/s. Importantly, the robot is able to leverage
both pacing and trotting skills to walk stably before and after the switching. This shows
that DiffuseLoco is able to learn the multi-modality existing in the dataset well and transfer
successfully to the real world.

This differentiates us from AMP-based multi-skill policy in prior works that require
different command velocity [18] or explicit skill conditioning |61, |66] for switching between

skills.

4.4. FURTHER EVALUATION IN EXPERIMENTS 26

4.4.2 Robustness Test

To evaluate the robustness of the DiffuseLoco policy, we perform four experiments on different
grounds with various friction coefficients and small variations of the ground landscape.

Besides the padded floor in previous experiments, the DiffuseLoco policy is able to walk
normally on different ground conditions: vinyl composite floor with low friction and low
restitution, and artificial turf with low friction and high restitution, as shown in Fig.
and Fig. [4.4.3] respectively. We attribute this to the fact that our proposed dataset, which is
composed of data with randomized dynamics, helps the policy to generalize and stay robust
to varying ground conditions in the real world.

DiffuseLoco can also overcome a small variation in the terrain landscape. As Fig.
and Fig. illustrate, the robot is able to step up and down a small step and ascend a
low-angle ramp. Note that these variations in the terrain landscape is out of distribution of
the offline dataset as we only simulate the robot walking on the flat ground when collecting
the dataset. We attribute such robustness of Diffusel.oco to these unseen dynamics to the
fact that DiffuseLoco, being a generative model, does not only learn specific trajectories from
the dataset but also approaches the overall distribution of feasible actions, such that it is
able to adapt to small changes in the terrain’s dynamics.

4.4.3 Extension to Bipedal Locomotion Control

To demonstrate the versatility of our policy, we also train and deploy a DiffuseL.oco pol-
icy(13.6M parameters) for the person-sized bipedal robot Cassie. A bipedal robot such as
Cassie is a much more challenging control problem due to the high dimensional and highly
nonlinear system. We collect the training dataset with single-skill walking policy trained
with RL [37] and evaluate on high-fidelity simulation constructed in Matlab Simulink en-
vironment. Note that the data collected to train the DiffuseLoco policy is from MuJoCo,
another simulator used to train the RL source policy and is less accurate in simulating rigid
contacts.

As shown in Fig. 1.1, during the sim-to-sim transfer, the robot is able to maintain balance
and follow the commanded velocity. This shows that our proposed approach is extensible to
controlling the more challenging bipedal robots.

4.4. FURTHER EVALUATION IN EXPERIMENTS 27

Figure 4.4: Depiction of our Diffusel.oco policy overcoming different terrains that are out of
distributions of the collected offline dataset (as a flat-ground is used in during data collecting
in simulation). (a): vinyl composite floor (b): grass terrain (c): foam padded floor with a
wooden board as obstacle (d): foam padded floor with an inclined wooden board as a small
variation in the terrain height.

28

Chapter 5

Conclusion and Discussion

5.1 Conclusion

This thesis presents DiffuseLoco, a novel offline imitation learning framework to learn dy-
namic legged locomotion control from multi-modal datasets and can transfer to real-world
robots in real-time. DiffuseLoco leverages diffusion models to capture the multi-modality
existing in the offline dataset, a challenge difficult to solve by commonly-used RL frame-
works. To achieve real-time control based on diffusion, we propose new components and
design choices, which enable DiffuselLoco to run on an edge-computing device onboard the
robot. Extensive ablation studies validated the advantages brought by the proposed design
choices. The proposed DiffuseL.oco policy also outperforms baselines in extensive real-world
benchmarks and demonstrates multi-modality in executing and switching skills smoothly
when conditioned only with the same input commands. Moreover, Diffusel.oco policy shows
robustness against different ground conditions and small variations of the ground landscape.
In addition, we show further extension of applying DiffuseLoco to bipedal robots walking
in high-fidelity simulation, but we note the failure to transfer the DiffuseLoco to a bipedal
robot in the real world. Further increasing the robustness of the DiffuseL.oco policy for more
challenging control scenarios is an important future direction of Diffusel.oco. We deem this
work as a new possibility for a more scalable and versatile framework for learning-based
locomotion control in general.

5.2 Discussion

In this section, we provide a brief discussion on the advantages and disadvantages of the
proposed DiffuseLoco, for a general takeaway for readers. Furthermore, we point out several
exciting future routes based on DiffuseLoco for a more general control solution for legged
locomotion or other complex nonlinear systems.

5.3. FUTURE WORK 29

5.2.1 Advantages of DiffuseLoco
5.2.1.1 More Reliable Sim-to-Real Transfer for Multi-Skill Locomotion

We show that DiffuseLoco produces more reliable sim-to-real transfer performance among
multi-skill AMP policies. While AMP policies suffer from a large sim-to-real gap resulting
from the common problem of mode-collapsing in generator-discriminator style methods, Dif-
fuseLoco avoids this problem and exhibits a stable, coherent, and effective multi-skill control.
Furthermore, we show that DiffuseLoco demonstrates smooth skill-switching and stable skill
execution under the same commands, highlighting the multi-skill performance achieved via
the diffusion-based policy utilized in DiffuseLoco.

5.2.1.2 Less Overfitting from Offline Dataset

Shown in Sec. [£.2.3] we find that compared to Behavior Cloning baselines, our DiffuseLoco
trained with DDPM loss is less likely to suffer from overfitting, leading to smoother actions
and better stability and velocity tracking performance in real-world testing. This is further
validated in Sec. where DiffuseLoco is able to walk on grounds with different frictions
and restitutions, and exhibits robustness against simple terrains not present in the dataset.

5.2.1.3 Real-time Control from Edge Computing

Lastly, we highlight the key advantage of DiffuseL.oco: performing real-time feedback control
utilizing 6.8M transformer-based diffusion models from a portable edge computing device.
Through the technique of delayed observation and our acceleration pipeline, we are able to
run DiffuseLoco policy at a frequency of 116.5 Hz, allowing plenty of space for scaling to
larger models and datasets.

5.2.2 Limitations

A key limitation of this work is its lack of robustness compared to single-skill RL policies. In
previous benchmarks, our DiffuseL.oco policy is compared with multi-skill RL policies and
demonstrates better robustness. However, against skill-specific RL policies, the robustness of
our multi-skill DiffuseLoco policy is insufficient. For instance, a quadrupedal robot controlled
by the DiffuseLoco policy struggles with recovery from large external perturbations, while
task skill-specific RL policies handle effectively.

5.3 Future Work

5.3.0.1 Large-scale offline dataset for Locomotion

DiffuseLoco demonstrates the possibility of learning completely from offline datasets and
deploying zero-shot transfer to real-world robots. We have witnessed the success of scaling

5.3. FUTURE WORK 30

up data in computer vision and natural language processing, and in the future, we wonder
if it is also possible to create a large-scale locomotion dataset that is collected from various
sources, including learning-based and model-based low-level controllers, for diverse tasks
on various robots, and if it leads to the emergence of general intelligence for legged robot
locomotion.

5.3.0.2 A generalist policy for locomotion control tasks

Diffusel.oco shows a promising direction of learning multiple, diverse locomotion skills in a
single policy without the need for skill labeling through the multi-modal capacity of diffusion
models. In future work, we hope to scale up the data diversity and the model size, like never
been done before, to create a generalist policy as a foundation model for locomotion controls.

31

Bibliography

[1] Anurag Ajay et al. “Is conditional generative modeling all you need for decision-
making?” In: arXiv preprint arXiv:2211.15657 (2022).

[2] P. Arena et al. “MPC-based control strategy of a neuro-inspired quadruped robot”.
In: 2021 International Joint Conference on Neural Networks (IJCNN) (2021), pp. 1-8.
DOI: 10.1109/IJCNN52387.2021.9533394.

[3] Kevin Black et al. “Zero-shot robotic manipulation with pretrained image-editing dif-
fusion models”. In: arXiv preprint arXiv:2310.10639 (2023).

[4] Anthony Brohan et al. RT-1: Robotics Transformer for Real-World Control at Scale.
2023. arXiv: 2212.06817 [cs.R0O].

[5] Anthony Brohan et al. RT-2: Vision-Language-Action Models Transfer Web Knowledge
to Robotic Control. 2023. arXiv: 2307.15818 [cs.R0O].

[6] Tom Brown et al. “Language models are few-shot learners’. In: Advances in neural
information processing systems 33 (2020), pp. 1877-1901.

[7] Ju-Seung Byun and Andrew Perrault. “Training Transition Policies via Distribution
Matching for Complex Tasks”. In: arXiv preprint arXiv:2110.04357 (2021).

[8] Huayu Chen et al. Score Regularized Policy Optimization through Diffusion Behavior.
2023. arXiv: 2310.07297 [cs.LG].

[9] Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka. “Deep imitation learning for au-
tonomous driving in generic urban scenarios with enhanced safety”. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 2884—
2890.

[10] Lili Chen, Shikhar Bahl, and Deepak Pathak. “Playfusion: Skill acquisition via diffu-
sion from language-annotated play”. In: Conference on Robot Learning. PMLR. 2023,
pp. 2012-2029.

[11] Lili Chen et al. Decision Transformer: Reinforcement Learning via Sequence Modeling.
2021. arXiv: |2106.01345 [cs.LG].

[12] Wenshuo Chen et al. “Decomposed Human Motion Prior for Video Pose Estimation
via Adversarial Training”. In: ArXiv abs/2305.18743 (2023). DOI: 10.48550/arXiv.
2305.18743.

https://arxiv.org/abs/2211.15657
https://arxiv.org/abs/2211.15657
https://doi.org/10.1109/IJCNN52387.2021.9533394
https://arxiv.org/pdf/2310.10639.pdf
https://arxiv.org/pdf/2310.10639.pdf
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2307.15818
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/abs/2110.04357
https://arxiv.org/abs/2110.04357
https://arxiv.org/pdf/2310.07297.pdf
https://arxiv.org/abs/2310.07297
https://arxiv.org/pdf/1903.00640.pdf
https://arxiv.org/pdf/1903.00640.pdf
https://arxiv.org/abs/2312.04549
https://arxiv.org/abs/2312.04549
https://arxiv.org/abs/2106.01345
https://arxiv.org/abs/2106.01345
https://doi.org/10.48550/arXiv.2305.18743
https://doi.org/10.48550/arXiv.2305.18743

BIBLIOGRAPHY 32

[13] Yiwen Chen et al. “FIRL: Fast Imitation and Policy Reuse Learning’. In: ArXiv
abs/2203.00251 (2022). DOI: 10.48550/arXiv.2203.00251.

[14] Xuxin Cheng, Ashish Kumar, and Deepak Pathak. “Legs as Manipulator: Pushing
Quadrupedal Agility Beyond Locomotion”. In: arXiv preprint arXiv:2303.11330 (2023).

[15] Cheng Chi et al. “Diffusion policy: Visuomotor policy learning via action diffusion.”
In: arXiv preprint arXiv:2303.04137 (2023).

[16] Felipe Codevilla et al. “End-to-end driving via conditional imitation learning’. In:
2018 IEEE international conference on robotics and automation (ICRA). IEEE. 2018,
pp. 4693-4700.

[17] Ricard Durall et al. ‘Combating mode collapse in gan training: An empirical analysis
using hessian eigenvalues”. In: arXiv preprint arXiv:2012.09673 (2020).

[18] Alejandro Escontrela et al. “Adversarial motion priors make good substitutes for com-
plex reward functions’. In: 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2022, pp. 25-32.

[19] Zipeng Fu, Xuxin Cheng, and Deepak Pathak. “Deep whole-body control: learning a
unified policy for manipulation and locomotion”. In: Conference on Robot Learning.
PMLR. 2023, pp. 138-149.

[20] Zipeng Fu, Tony Z Zhao, and Chelsea Finn. “Mobile aloha: Learning bimanual mobile
manipulation with low-cost whole-body teleoperation”. In: arXiv preprint arXiw:2401.02117
(2024).

[21] Huy Ha, Pete Florence, and Shuran Song. “Scaling up and distilling down: Language-
guided robot skill acquisition”. In: Conference on Robot Learning. PMLR. 2023, pp. 3766—
3777.

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models.
2020. arXiv: 2006.11239 [cs.LG].

[23] Siyuan Huang et al. “Diffusion-based generation, optimization, and planning in 3d
scenes’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2023, pp. 16750-16761.

[24] Xiaoyu Huang et al. “Creating a dynamic quadrupedal robotic goalkeeper with re-
inforcement learning’. In: 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2023, pp. 2715-2722.

[25] Xiaoyu Huang et al. “Skill transformer: A monolithic policy for mobile manipulation”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023,
pp- 10852-10862.

[26] Jemin Hwangbo et al. “‘Learning agile and dynamic motor skills for legged robots”. In:
Science Robotics 4 (2019). DOI: 10.1126/scirobotics.aaub872.

[27] Michael Janner et al. Planning with Diffusion for Flexible Behavior Synthesis. 2022.
arXiv: 2205.09991 [cs.LG].

https://www.catalyzex.com/paper/arxiv:2203.00251
https://doi.org/10.48550/arXiv.2203.00251
https://arxiv.org/pdf/2303.11330.pdf
https://arxiv.org/pdf/2303.11330.pdf
https://arxiv.org/abs/2303.04137
https://arxiv.org/pdf/1710.02410.pdf
https://arxiv.org/pdf/2012.09673.pdf
https://arxiv.org/pdf/2012.09673.pdf
https://arxiv.org/pdf/2203.15103.pdf
https://arxiv.org/pdf/2203.15103.pdf
https://arxiv.org/pdf/2210.10044.pdf
https://arxiv.org/pdf/2210.10044.pdf
https://arxiv.org/pdf/2307.14535.pdf
https://arxiv.org/pdf/2307.14535.pdf
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239
https://arxiv.org/pdf/2301.06015.pdf
https://arxiv.org/pdf/2301.06015.pdf
https://arxiv.org/pdf/2210.04435.pdf
https://arxiv.org/pdf/2210.04435.pdf
https://arxiv.org/pdf/2308.09873.pdf
https://www.science.org/doi/10.1126/scirobotics.aau5872
https://doi.org/10.1126/scirobotics.aau5872
https://arxiv.org/pdf/2205.09991.pdf
https://arxiv.org/abs/2205.09991

BIBLIOGRAPHY 33

[28]

[29]

Ajay Jain Jonathan Ho and Pieter Abbeel. “Denoising diffusion probabilistic models.”
In: arXiv preprint arXiv:2006.11239 (2020).

Ivan Kapelyukh, Vitalis Vosylius, and Edward Johns. “DALL-E-Bot: Introducing Web-
Scale Diffusion Models to Robotics”. In: IEEE Robotics and Automation Letters 8.7
(July 2023), pp. 3956-3963. 1SSN: 2377-3774. DOI: [10.1109/1ra.2023.3272516. URL:
http://dx.doi.org/10.1109/LRA.2023.3272516.

J. Kaplan et al. “Scaling Laws for Neural Language Models”. In: ArXiv abs/2001.08361
(2020).

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. “Offline reinforcement learning with
implicit g-learning”. In: arXiv preprint arXiw:2110.06169 (2021).

Aviral Kumar et al. “Conservative Q-Learning for Offline Reinforcement Learning’.
In: ArXiv abs/2006.04779 (2020).

Michael Laskey et al. “Dart: Noise injection for robust imitation learning’. In: Con-
ference on robot learning. PMLR. 2017, pp. 143-156.

Sergey Levine et al. {Offline reinforcement learning: Tutorial, review, and perspectives
on open problems”. In: arXiv preprint arXiw:2005.01643 (2020).

Xiang Li et al. |Crossway Diffusion: Improving Diffusion-based Visuomotor Policy via
Self-supernised Learning. 2024. arXiv: 2307.01849 [cs.RO].

Zhongyu Li et al. “Reinforcement learning for robust parameterized locomotion control
of bipedal robots”. In: 2021 IEEFE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2021, pp. 2811-2817.

Zhongyu Li et al. Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal
Locomotion Control. 2024. arXiv: 2401.16889 [cs.RO].

Kanglin Liu et al. “Spectral regularization for combating mode collapse in gans’.
In: Proceedings of the IEEE/CVF international conference on computer vision. 2019,
pp. 6382-6390.

Gabriel B Margolis et al. “Rapid locomotion via reinforcement learning’. In: arXiv
preprint arXiv:2205.02824 (2022).

Utkarsh A. Mishra et al. Generative Skill Chaining: Long-Horizon Skill Planning with
Diffusion Models. 2023. arXiv: 2401.03360 [cs.R0O].

Vaishnavh Nagarajan and J Zico Kolter. “‘Gradient descent GAN optimization is locally
stable”. In: Advances in neural information processing systems 30 (2017).

Ashvin Nair et al. “Overcoming exploration in reinforcement learning with demonstra-
tions”. In: 2018 IEEFE international conference on robotics and automation (ICRA).
[EEE. 2018, pp. 6292-6299.

Mitsuhiko Nakamoto et al. “Cal-QL: Calibrated Offline RL Pre-Training for Efficient
Online Fine-Tuning”. In: arXiv preprint arXiv:2308.05479 (2023).

https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2210.02438
https://arxiv.org/abs/2210.02438
https://doi.org/10.1109/lra.2023.3272516
http://dx.doi.org/10.1109/LRA.2023.3272516
https://arxiv.org/abs/2001.08361
https://arxiv.org/pdf/2110.06169.pdf
https://arxiv.org/pdf/2110.06169.pdf
https://arxiv.org/abs/2006.04779
https://arxiv.org/pdf/1703.09327.pdf
https://arxiv.org/pdf/2005.01643.pdf
https://arxiv.org/pdf/2005.01643.pdf
https://arxiv.org/abs/2307.01849
https://arxiv.org/abs/2307.01849
https://arxiv.org/abs/2307.01849
https://arxiv.org/abs/2103.14295
https://arxiv.org/abs/2103.14295
https://arxiv.org/pdf/2401.16889.pdf
https://arxiv.org/pdf/2401.16889.pdf
https://arxiv.org/abs/2401.16889
https://arxiv.org/pdf/1908.10999.pdf
https://arxiv.org/abs/2205.02824
https://arxiv.org/abs/2401.03360
https://arxiv.org/abs/2401.03360
https://arxiv.org/abs/2401.03360
https://arxiv.org/pdf/1706.04156.pdf
https://arxiv.org/pdf/1706.04156.pdf
https://arxiv.org/pdf/1709.10089.pdf
https://arxiv.org/pdf/1709.10089.pdf
https://arxiv.org/abs/2303.05479
https://arxiv.org/abs/2303.05479

BIBLIOGRAPHY 34

[44]

[45]

Felipe Nuti, Tim Franzmeyer, and Joao F Henriques. “Extracting Reward Functions
from Diffusion Models”. In: arXiv preprint arXiv:2306.01804 (2023).

L. Pacheco and N. Luo. “Testing PID and MPC Performance for Mobile Robot Local
Path-Following”. In: International Journal of Advanced Robotic Systems 12 (2015).
DOI: 10.5772/61312.

Yunpeng Pan et al. “Agile autonomous driving using end-to-end deep imitation learn-
ing”. In: arXiv preprint arXiv:1709.07174 (2017).

Tim Pearce et al. Imitating Human Behaviour with Diffusion Models. 2023. arXiv:
2301.10677 [cs.AI].

X. B. Peng et al. “Learning Agile Robotic Locomotion Skills by Imitating Animals”.
In: ArXiv abs/2004.00784 (2020). DOI: |10.15607/rss.2020.xvi.064.

Xue Bin Peng et al. “Amp: Adversarial motion priors for stylized physics-based char-
acter control”. In: ACM Transactions on Graphics (ToG) 40.4 (2021), pp. 1-20.

[lija Radosavovic et al. “Learning Humanoid Locomotion with Transformers”. In: arXiv
preprint arXiv:2303.03381 (2023).

Moritz Reuss et al. |Goal-Conditioned Imitation Learning using Score-based Diffusion
Policies. 2023. arXiv: [2304.02532 [cs.LG].

Robin Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models.
2022. arXiv: 2112.10752 [cs.CV]l

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning. 2011. arXiv: 1011.
0686 [cs.LG].

Dohoon Ryu and Jong Chul Ye. |Pyramidal Denoising Diffusion Probabilistic Models.
2022. arXiv: 2208.01864 [cs.CV].

Laura Smith et al. “Learning and adapting agile locomotion skills by transferring
experience’”. In: arXiv preprint arXiv:2304.09834 (2023).

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models.
2022. arXiv: 2010.02502 [cs.LG].

Chen Sun et al. “Revisiting Unreasonable Effectiveness of Data in Deep Learning Era’.
In: 2017 IEEFE International Conference on Computer Vision (ICCV) (2017), pp. 843—
852. DOI: |10.1109/ICCV.2017.97.

Chen Tessler, Guy Tennenholtz, and Shie Mannor. “Distributional policy optimization:
An alternative approach for continuous control”. In: Advances in Neural Information
Processing Systems 32 (2019).

Open Neural Network Exchange. https://onnx.ai/. Accessed: 2024-01-29. 2024.

Francecso Vezzi et al. {T'wo-Stage Learning of Highly Dynamic Motions with Rigid
and Articulated Soft Quadrupeds’. In: arXiv preprint arXiv:2509.09682 (2023).

https://arxiv.org/pdf/2306.01804.pdf
https://arxiv.org/pdf/2306.01804.pdf
https://doi.org/10.5772/61312
https://arxiv.org/pdf/1709.07174.pdf
https://arxiv.org/pdf/1709.07174.pdf
https://arxiv.org/pdf/2301.10677.pdf
https://arxiv.org/abs/2301.10677
https://arxiv.org/abs/2004.00784
https://doi.org/10.15607/rss.2020.xvi.064
https://arxiv.org/pdf/2104.02180.pdf
https://arxiv.org/pdf/2104.02180.pdf
https://arxiv.org/abs/2304.02532
https://arxiv.org/abs/2304.02532
https://arxiv.org/abs/2304.02532
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1011.0686
https://arxiv.org/abs/1011.0686
https://arxiv.org/pdf/2208.01864.pdf
https://arxiv.org/abs/2208.01864
https://arxiv.org/pdf/2304.09834.pdf
https://arxiv.org/pdf/2304.09834.pdf
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2010.02502
https://ieeexplore.ieee.org/document/8237359
https://doi.org/10.1109/ICCV.2017.97
https://arxiv.org/pdf/1905.09855.pdf
https://arxiv.org/pdf/1905.09855.pdf
https://onnx.ai/
https://arxiv.org/pdf/2309.09682.pdf
https://arxiv.org/pdf/2309.09682.pdf

BIBLIOGRAPHY 35

[61]

[62]
[63]

[64]

Eric Vollenweider et al. “Advanced skills through multiple adversarial motion priors
in reinforcement learning”. In: 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2023, pp. 5120-5126.

Bingzheng Wang et al. DiffAIL: Diffusion Adversarial Imitation Learning. 2023. arXiv:
2312.06348 [cs.LG].

Hsiang-Chun Wang, Shang-Fu Chen, and Shao-Hua Sun. “Diffusion Model-Augmented
Behavioral Cloning”. In: arXiv preprint arXiv:2302.13335 (2023).

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. |Diffusion Policies as an
FExpressive Policy Class for Offtine Reinforcement Learning. 2023. arXiv: 2208.06193
[cs.LG].

Eric R Westervelt et al. Feedback control of dynamic bipedal robot locomotion. CRC
press, 2018.

Jinze Wu, Yufei Xue, and Chenkun Qi. “Learning multiple gaits within latent space
for quadruped robots”. In: arXiv preprint arXiv:2308.03014 (2023).

Zhou Xian et al. “Chaineddiffuser: Unifying trajectory diffusion and keypose prediction
for robotic manipulation”. In: Conference on Robot Learning. PMLR. 2023, pp. 2323~
2339.

Wei Xiao et al. “SafeDiffuser: Safe Planning with Diffusion Probabilistic Models”. In:
arXiv preprint arXiw:2306.00148 (2023).

Haoran Xu et al. “A policy-guided imitation approach for offline reinforcement learn-
ing”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 4085
4098.

Long Yang et al. Policy Representation via Diffusion Probability Model for Reinforce-
ment Learning. 2023. arXiv: 2305.13122 [cs.LG].

Ruihan Yang et al. “Multi-task reinforcement learning with soft modularization”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 4767-4777.

Takuma Yoneda et al. “To the Noise and Back: Diffusion for Shared Autonomy”. In:
arXiv preprint arXiw:2502.12244 (2023).

Tianhe Yu et al. “Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning”. In: Conference on robot learning. PMLR. 2020, pp. 1094-1100.

https://arxiv.org/pdf/2203.14912.pdf
https://arxiv.org/pdf/2203.14912.pdf
https://arxiv.org/abs/2312.06348
https://arxiv.org/abs/2312.06348
https://arxiv.org/pdf/2302.13335.pdf
https://arxiv.org/pdf/2302.13335.pdf
https://arxiv.org/pdf/2208.06193.pdf
https://arxiv.org/pdf/2208.06193.pdf
https://arxiv.org/abs/2208.06193
https://arxiv.org/abs/2208.06193
https://arxiv.org/abs/2308.03014
https://arxiv.org/abs/2308.03014
https://openreview.net/forum?id=W0zgY2mBTA8
https://openreview.net/forum?id=W0zgY2mBTA8
https://arxiv.org/pdf/2306.00148.pdf
https://arxiv.org/pdf/2210.08323.pdf
https://arxiv.org/pdf/2210.08323.pdf
https://arxiv.org/pdf/2305.13122.pdf
https://arxiv.org/pdf/2305.13122.pdf
https://arxiv.org/abs/2305.13122
https://arxiv.org/pdf/2003.13661.pdf
https://arxiv.org/pdf/2302.12244.pdf
https://arxiv.org/pdf/1910.10897.pdf
https://arxiv.org/pdf/1910.10897.pdf

	Contents
	List of Figures
	List of Tables
	Introduction and Background
	Introduction
	Background and Related Work

	Method
	Overview
	Data Sources①
	Training
	Deployment
	Diffusion Model for Real-Time Control

	Real-Time Inference Acceleration for DiffuseLoco Policy②
	Acceleration Framework
	Edge Compute for DiffuseLoco Policy on Robots

	Real-World Experiments and Ablation Studies③
	Experiment Setup
	Experiment: Real-world Benchmarks
	Experiment: Ablation Study on Design Choices
	Further Evaluation in Experiments

	Conclusion and Discussion
	Conclusion
	Discussion
	Future Work

	Bibliography

