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Abstract

Evaluating and Predicting the Performance of Large Language Models on Long-Context Tasks

by

Yike Wang

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Joseph E. Gonzalez, Chair

Under certain circumstances, we may lack the computational resources and data necessary to
conduct experiments and assess the performance of a specific model on a given long-context
task. In this work, we explore the potential factors associated with long-context performance by
studying the correlation between different unit tasks and different context lengths. We propose a
new multi-context evaluation dataset with three distinct tasks based on context accessing patterns,
featuring adjustable context length, automated evaluation, and diagnosis beyond overall accuracy.
All unit tasks present unexpected challenges for state-of-the-art large language models, and we
observe a significant decrease in performance as token length increases. We hypothesize that,
in terms of long-context prediction, the type of task provides more informative insights than
context length and assessing the long-context understanding of language models solely through the
needle-in-the-haystack approach [18] lacks informativeness.
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Chapter 1

Introduction

Large language models (LLMs) have demonstrated impressive capabilities across many NLP tasks
[7, 23]. However, they still suffers from limited context window, making them incapable of solving
NLP tasks beyond this limit. Prior research have made significant contributions on extending the
context length of LLMs, including position interpolation [9, 24, 10] and novel training methods that
allow access to longer context [11, 22].

However, there are instances where we may lack the computational resources and data necessary
to conduct experiments and assess the performance of a specific model on a given long-context task.
This leads us to question how we can predict the long-context performance of language models.
One potential subsequent query could be: Which provides more informative insights - the model’s
performance on the same task with a shorter context or its performance on different tasks with
similar context lengths?

Existing evaluation benchmarks for long-context understanding primarily rely on the perfor-
mance of LLMs on downstream tasks such as summarization and code completion [25, 6]. However,
these tasks are complex in the way that they often involve various fundamental context under-
standing skills, making them hard to be used for prediction. Therefore, we introduce a new set
of prompting-based long-context evaluation tasks grounded in context assessing patterns. We
argue that the majority of downstream long-context tasks employ basic context assessing patterns
including key retrieval, filtering by predicates, and information exclusion. Accordingly, we structure
our evaluation tasks to reflect these patterns, aiming to provide straight insights into how effectively
LLMs can engage with and interpret long contexts, with following key features:

• Adjustable Context Length: Each task within our evaluation dataset is designed to be adaptable
in length, reaching up to 1.2 billion words, achieved by changing the number of context pieces.
With that, our dataset can accommodate different context windows of different LLM.

• Automated Evaluation: Our evaluation dataset allows automated evaluation, without the involve-
ment of other language models or human annotators, thereby reducing bias and subjectivity in the
evaluation process.
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• Multi-Context: The context pieces in our evaluation dataset is drawn from multiple passages
spanning different knowledge domains, which challenges LLMs to comprehend and reason across
diverse knowledge domains. This setup aligns with real-world scenarios where long-context use
cases often involve sourcing from multiple passages.

• Diagnosis Beyond Overall Accuracy: Besides the overall accuracy, our dataset enables us to
conduct diagnostic analyses across various dimensions such as position, selectivity, and proportion.
This comprehensive approach offers deeper insights into model performance, allowing for a more
nuanced understanding of its strengths and weaknesses in different contexts.

Through experiments with five state-of-the-art open and closed large language models, we
observe a significant decrease in performance as token length increases. Furthermore, all unit tasks
present unexpected challenges for these language models, with performance falling notably short of
perfection. Further analysis reveals that retrieval quality remains steady across various key positions,
indicating that language models may be trained to alleviate the ”lost-in-the-middle” phenomenon.
Moreover, we note that as selectivity rises, filtering accuracy tends to decrease, although it remains
consistent across different exclusion proportions.

Further qualitative analysis shows that as the context length increases beyond certain thresholds
where models struggle to manage effectively, instead of precisely addressing the initial parts of
the context, the model tends to fail entirely, leading to inaccuracies even in information located
at the beginning. Synthetic experiments show that similar to natural languages, performance over
discrete numbers is significantly influenced by context length, with most models struggling on basic
aggregation tasks involving 500 or even 100 integers.

By studying the performance correlation between different tasks and different token lengths,
we find that while different language models exhibit markedly different performances on the Key
Retrieval task, their performance on the filtering task remains relatively consistent. Also, models
that perform exceptionally with short contexts typically also perform considerably well in the same
task with longer contexts. Therefore, we hypothesize that, in terms of long-context prediction, the
type of task provides more informative insights than context length; performance variations are more
evident across different tasks than across different context lengths. Building upon this observation,
we posit that assessing the long-context understanding of language models solely through the
needle-in-the-haystack approach [18], despite its adaptable context length, lacks informativeness.
Developing and evaluating additional unit tasks are imperative to obtain a more precise estimation
of language models’ performance on downstream long-context tasks.
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Chapter 2

Related Work

2.1 Expanding the Context Window of Large Language Models
Currently, the standard context limit for large language models spans from 2,000 tokens to 32,000
tokens [26, 15, 2], with only a few being able to accommodate an impressive 128,000 tokens [23,
13]. However, when dealing with lengthy texts such as books or historical records, these window
sizes are inadequate, hindering LLMs from effectively processing such data.

Researchers have thus explored various methods to overcome this limitation. One such ap-
proach is Transformer-XL [10], which enables learning dependency beyond a fixed length without
disrupting temporal coherence by a segment-level recurrence mechanism and a novel positional
encoding scheme. Another method, called YaRN [24], extends the context window of models
trained with Rotary Position Embeddings by employing Dynamic Scaling. Meanwhile, Position
Interpolation [9] is a technique that also extends the context window sizes of RoPE-based LLMs by
linearly downscaling the input position indices to match the original context window size. Moreover,
prior studies have also addressed the context limit challenge through dilated attention [11], which
exponentially expands the attentive field as the distance increases, and landmark attention [22],
which trains attention mechanisms to utilize a landmark token for selecting relevant blocks.

In this work, we open up a new research dimension on predicting the performance of long-
context LLMs and explore the correlation between performance across various long-context tasks.
We create a new evaluation dataset and investigate potential factors associated with long-context
performance.

2.2 Long-Context Benchmarks
In the prior studies, the long-context evaluation primarily relies on the performance on downstream
tasks [1, 27, 19, 20, 8]. ZeroSCROLLS [25] presents a zero-shot benchmark for long text under-
standing, including tasks such as determining the percentage of positive reviews and reordering the
chapters according to chapter summaries. LongBench [6] is a bilingual benchmark featuring tasks
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like summarization and code completion, while BAMBOO [12] includes hallucination detection,
text sorting, and code completions tasks.

The Needle-in-a-Haystack task [18], where a random fact or statement is placed in the middle
of a long context window, and the model is asked to retrieve this statement, serves as the only
evaluation of the basic in-context retrieval ability of long context LLMs. However, this task proves
too easy for current powerful LLMs; Claude-3.0 is even able to acknowledge that the ”needle” is
most likely not part of the original document, but a joke or a test [4]. Therefore, we propose more
challenging long-context evaluation tasks based on context assessing patterns in this work. Similar
to Needle-in-a-Haystack, our tasks are adaptable to varying context lengths, automatically evaluated,
and can conduct diagnostics beyond overall accuracy metrics.
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Chapter 3

Evaluation Dataset

3.1 Database
Our database, primarily sampled from RoMQA database [28], which includes Wikidata, T-REX,
and crowd-source question annotations, contains a collection of 1,000 multi-constraint queries
spanning various knowledge domains. For example, in the query ”I’m looking for academics who
worked at Harvard and MIT and went to school at Harvard,” there are three distinct constraints:
employer of Harvard, employer of MIT, and educated at Harvard. On average, each query contains
2.435 constraints. For every query, there are 100 potential candidates, along with several pieces
of context validating each constraint mentioned within the query. In the example provided, the
relevant context would include evidence on employment and education respectively. An example
context on education will be ”Bart Andrew Kosko (born February 7, 1960) is a writer and professor
of electrical engineering and law at the University of Southern California (USC).” The length of
each context piece also varies, with an average of 87 words. The context length of each task can
extend up to 1.2 billion words. The potential candidates may either fully, partially, or not at all meet
the specified constraints within each query.

3.2 Unit Tasks
Using our database, we create a set of evaluation tasks based on different context accessing patterns.
We argue that the performance of LLMs on these unit tasks is more informative and can build up for
predicting performance on more complex long-context tasks. See details of unit tasks in Appendix
A.1.

Key Retrieval The primary long-context access pattern is key retrieval, identifying all relevant
information, or ”values”, within the extensive context according to the instructions, or ”keys”, of
the downstream tasks. In this unit task, a list of candidates with context are given, and the model
is instructed to find and return the context related to a certain candidate in the given list. One
in-context exemplar is provided under this task.
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Filter by Predicates The other major access pattern is filtering by predicates, selecting information
from the context by certain predicates as instructed. For instance, in the summarization task, the
model must select information related to the main ideas of the document instead of minor details. In
our unit task, the model is presented with a multi-constraint query and a list of potential candidates,
each accompanied by multiple context pieces on queried constraints. The model is instructed to
identify and return the names of candidates who satisfy all the constraints based on the provided
context. No exemplars are included.

Information Exclusion In certain scenarios, rather than the entire context, we may specifically
require the model to focus on a subset of context and ignore the rest. One such scenario could be
the survey responses, where we want to ignore the pilot responses from the authors of the survey.
The other real-world example is suspicious data, where it is preferable to ignore those potential
unreliable data to prevent them from contaminating the entire dataset. In the other words, this unit
task examines the LLM’s capability of helping with the data preprocessing step. In our setup, it
is implemented upon the filtering task, where the model has to exclude certain candidates while
completing the filtering task.
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Chapter 4

Experiments

4.1 Models
We evaluate the performance of five state-of-the-art open and closed language models with various
context length: Claude2 [3], Mistral-7B [17], Qwen1.5-7B [5], Gemini1 [14], and GPT4-Turbo[23].
Greedy decoding is used when generating outputs. We hope to generalize the correlation between
performance on different long-context tasks across different LLMs to help with the prediction. See
Table 4.1 for more details.

Model Model Size Context Token Limit Openness
GPT4-Turbo unknown 128k closed
Claude2 unknown 100k closed
Gemini1 unknown 32k closed
Mistral 7B 32k open
Qwen1.5 7B 32k open

Table 4.1: Model cards for LLMs we employ, all featuring context lengths surpassing 32,000 tokens.

4.2 Evaluation Methods and Metrics
All our unit tasks are capable of automated evaluation, without reliance on other language models or
human annotators. In the Key Retrieval task, we verify if the model’s response includes the correct
contextual segment and utilize a matching percentage as the evaluation criterion. In the Filter by
Predicates and Information Exclusion task, we search for the presence of all candidate names and
employ accuracy, the sum of true positives and true negatives over the total number of candidates,
as the evaluation metric. 100 examples/queries are included in each experiment.
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Figure 4.1: The experimental results of different models on the Key Retrieval task. The performance
drops as the token length increases. The same set of thirty candidates is sampled for different
models.

4.3 Results and Discussion
In this section, we present the performance of five language models across three unit tasks at
varying token lengths. Overall, there’s a noticeable decline in performance as token length extends.
Furthermore, all unit tasks pose unexpected challenges to large language models, with performance
falling considerably short of perfection.

Key Retrieval In Figure 4.1, we present the experimental results across different token length
on the Key Retrieval unit task. We can see that there is a significant performance drop across
all language models as the token length increases. resulting in several instances of performance
dropping to zero with context between 16k and 24 tokens. Even the formidable GPT-4 struggles to
maintain its performance beyond 16k tokens, achieving only around 60 percent matching.

Filter by Predicates Figure 4.2 contains the results of the Filter by Predicates unit task. Instead of
achieving the optimal accuracy with shorter contexts, the models hit their best results with 16k-24k
tokens. However, both Qwen and Claude experience a significant performance drop when the token
length exceeds 24k.

Information Exclusion As shown in the Figure 4.3, adding an additional exclusion step affects
model performance on the filtering task to various extents. The impact is most pronounced on
contexts with median length (8k-24k). For extremely short contexts, models manage the additional
exclusion step adeptly, while for extremely long contexts, disregarding two candidates doesn’t
significantly impair performance.
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Figure 4.2: The experimental results of different models on the Filter by Predicates task. The
models achieve their best performance with 16k-24k tokens. The same set of thirty candidates is
sampled for different models.

Figure 4.3: The experimental results on the Information Exclusion task. The most significant
decline in performance occurs on contexts with median length. The same set of twenty candidates
is sampled for different models, and the same two random candidates are instructed to be ignored.
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Chapter 5

Analysis

5.1 Key Retrieval: Key Positions
We also explore the effect of varying the position of the key candidate within the context and observe
its impact on performance. As illustrated in Figure 5.1, compared to a randomly positioned key,
there is no notable alteration in retrieval quality across different key positions, even in scenarios
involving extremely long contexts with 100 candidates. We hypothesize that language models are
trained to mitigate the ”lost-in-the-middle” phenomenon [21], suggesting that they are better at
utilizing relevant information situated at the beginning or end of their input context.

5.2 Filter by Predicates: Selectivity
Another exploratory experiment we undertake involves varying selectivity, which refers to the
ratio of passing candidates to the total number of potential candidates provided in the context. We
observe how this affects performance on the filtering task. Generally, we note a decrease in accuracy
as selectivity increases from 0 percent to 30 percent (Figure 5.2). Higher selectivity presents greater
challenges to language models as they must gather and return more information. The only exception
is Gemini, whose performance reaches its peak at 20-30% selectivity.

5.3 Information Exclusion: Exclusion Proportion
We additionally explore whether adjusting the proportion of context instructed for exclusion impacts
accuracy. We vary the exclusion proportion from 0 percent to 30 percent to simulate real-world
scenarios. As shown in Figure 5.3, there is a consistent accuracy regardless of the exclusion
proportion across all language models, suggesting the potential for feeding unprocessed information
directly to language models.
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5.4 Qualitative Analysis
Another interesting finding from our qualitative analysis of model outputs is that as the context
length increases beyond certain thresholds where models struggle to manage effectively, instead
of precisely addressing the initial parts of the context, the model tends to fail entirely, leading to
inaccuracies even in information located at the beginning. Hence, it is crucial to determine the ”real”
context limit of a specific language model for a particular task before throwing the entire context.

5.5 Synthetic Tasks over Numbers
Considering that language models face challenges with basic aggregation tasks in natural languages,
how effectively can they perform such tasks—like MIN, MAX, and MODE—over numerical data?
To explore this, we conducted experiments with discrete sets of numbers, examining how their per-
formance varies with context length. We discovered that, similar to natural languages, performance
is significantly influenced by context length, with most models struggling on basic aggregation tasks
involving 500 or even 100 integers. See Appendix A.2 for details on the experimental setup and
results.
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Figure 5.1: The impact of varying key candidate positions on retrieval quality across different
context lengths using Claude2. Despite position variations, retrieval quality remains consistent,
suggesting language models may mitigate the ”lost-in-the-middle” phenomenon.
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Figure 5.2: The impact of selectivity on filtering performance. As selectivity increases, accuracy
generally declines, except Gemini.

Figure 5.3: Experimental results of different exclusion proportion on accuracy across different
language models. Results reveal consistent accuracy irrespective of the proportion excluded,
suggesting the potential for direct input of unprocessed information.
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Chapter 6

Towards Predicting Long-context
Performance

In this section, we delve into the correlations across various tasks and different context lengths,
aiming to offer insights into predicting long-context performance. Figure 6.1 illustrates the per-
formance correlation between different unit tasks across varying token lengths, with the slopes
indicated in the titles. It is evident that while different language models exhibit markedly different
performances on the Key Retrieval task, their performance on the filtering task remains relatively
consistent. Figure 6.2 and Figure 6.3 demonstrate the performance correlation between different
token lengths under the same tasks. Models that perform exceptionally with short contexts typically
also perform considerably well in the same task with longer contexts. By comparing the slopes, we
hypothesize that, in terms of long-context prediction, the type of task provides more informative
insights than context length; performance variations are more evident across different tasks than
across different context lengths. Building upon this observation, we posit that assessing the long-
context understanding of language models solely through the needle-in-the-haystack approach [18],
despite its adaptable context length, lacks informativeness. Developing and evaluating additional
unit tasks are imperative to obtain a more precise estimation of language models’ performance on
downstream long-context tasks.
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Figure 6.1: Correlation in performance across different tasks at varying token lengths, with a straight
line fitted in each subplot. Despite significant performance discrepancies among different language
models in the Key Retrieval task, their performance in the filtering task stays relatively consistent.

Figure 6.2: Performance correlation between 0-8k tokens and 24k-32k tokens in the Key Retrieval
task, with a straight line fitted. Generally, models exhibiting better performance in the 0-8k token
range also demonstrate better performance in the 24k-32k token range.
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Figure 6.3: Performance correlation between 0-8k tokens and 24k-32k tokens in the Filter by
Predicates task, with a straight line fitted. Generally, models exhibiting better performance in the
0-8k token range also demonstrate better performance in the 24k-32k token range.
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Chapter 7

Conclusion and Future Work

In this study, we explore the potential factors associated with long-context performance by studying
the correlation between different unit tasks and different context lengths. We propose a new multi-
context evaluation dataset with three distinct tasks based on context accessing patterns, featuring
adjustable context length, automated evaluation, and diagnosis beyond overall accuracy. All unit
tasks present unexpected challenges for state-of-the-art large language models, and we observe a
significant decrease in performance as token length increases. We hypothesize that, in terms of
long-context prediction, the type of task provides more informative insights than context length
and assessing the long-context understanding of language models solely through the needle-in-the-
haystack approach [18] lacks informativeness.

While our work includes key retrieval, filtering, and exclusion unit tasks, future work could
build upon this by incorporating more unit tasks like groupby to help with the prediction. The other
thing we eagerly anticipate and find intriguing in the domain of long context understanding is the
incorporation of subjective datasets, such as arguments or comments, as most current benchmarks
draw from Wikidata and arXiv.
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Appendix A

Appendix

A.1 Prompt Text
We present all adopted prompt texts in Table A.1 to facilitate reproducibility.

A.2 Synthetic Tasks over Numbers
This setting aims to assess the capability of language models to aggregate information over discrete
sets of number and how this capability is impacted by the length of context.

Experimental Setup
In this set of experiments, we randomly generate 100 sets of integers ranging from 0 to 100 and ask
for the MAX, MIN, MODE, and FILTER (count the number of integers less than a given threshold)
in a zero-shot manner. Sets without unique mode are filtered out to ensure that there is a single,
definitive answer for each task. We use accuracy as our evaluation metric. The four tasks are
conducted given 10, 100, and 500 integers respectively to accommodate the input token limits.

We further introduce variations in the distribution of integers, driven by the hypothesis that
these changes could introduce varying levels of difficulty for different tasks. For instance, when the
majority of integers in a set cluster around the value of 20, and only a small subset is located near
80, it can become particularly challenging to identify the maximum value within that set.

This set of experiments analyzes three large language models, both closed and open, of varying
sizes. These include Llama2-7B [26] and Llama2-13B [26], each with a maximum context length
of 4096 tokens, and also Claude2 (100K) [3], using the Anthropic API.

Results and Discussion
Tables A.2, A.3, A.4, and A.5 presents the performance of LLMs across four aggregation tasks
using discrete numbers generated from seven distinct distributions. The performance is compared
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with the corresponding baseline results, where a random integer is sampled from the input set as the
output answer.

Overall, the length of context significantly impacts the performance of LLMs on aggregation
tasks. As the length of context increase, their performance drop, while the performance on MAX
and MIN may increase given 500 integers as the majority of maximum value is 100 and minimum
value is 0 under the setting which make the tasks relatively easier.

Regarding the MAX and MIN tasks, the open-source model Llama2 demonstrates reasonably
good performance when provided with a set of 10 integers, while it experiences a noticeable
decline as the context length expands to 100 integers, and scaling up the model to the size of 13B
parameters provides only marginal improvement in performance. The close-source model Claude,
on the other hand, demonstrates remarkably strong performance, achieving an accuracy of over
0.9 when provided with a set of 500 integers across all distributions. Interestingly, MIN appears to
present a greater challenge for LLMs compared to MAX, possibly due to the higher involvement
of MAX in the pre-training data, and, overall, left-skewed distributions are easier for the MAX
task while right-skewed distributions are easier for the MIN task, which meets the intuition and our
hypothesize.

Based on the experimental results, MODE and FILTER tasks are more challenging for all LLMs.
Specifically, LLMs struggle with the MODE task when provided with 500 integers, and encounter
difficulty with the FILTER task when given 100 integers across all distributions. Their lack of
confidence is evident as they tend to respond to the MODE task by providing a list of numbers
rather than a single determined answer and a median number as an educated guess for the FILTER
task, or generate code responses even with explicit instructions not to do so.

However, the poor results observed may be attributed to transformers’ limited capacity to
understand numerical information [16] rather than their deficient ability to aggregate information,
and in the real world, these tasks can be perfectly solved by programs.
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Task PROMPT

KEY RETRIEVAL Find and return all passages related to ”bitcoin” from the following.
Twitterrific: Twitterrific is a Mac OS X and iOS client for the social network-
ing site Twitter.
Mod4Win: It was one of the first Mod players for the Windows platform.
Atom: Atom is a free and open-source text and source code editor for OS
X, Linux, and Windows with support for plug-ins written in Node.js, and
embedded Git Control, developed by GitHub.
Polyworld: Polyworld is a cross-platform (Linux, Mac OS X) program
written by Larry Yaeger to evolve Artificial Intelligence through natural
selection and evolutionary algorithms.
MongoDB: MongoDB (from humongous) is a cross-platform document-
oriented database.
Stella: It is open source, and runs on most major modern platforms including
Amiga, Windows, Mac OS X, Linux, Windows CE/Mobile, Dreamcast,
GP2X, Nintendo DS, and Wii.
BetterZip: It is developed solely for the OS X platform.
Qt Jambi: Qt Jambi is a Java binding of the cross-platform application
framework Qt.
Overlayfs: OverlayFS is a filesystem service for Linux which implements a
union mount for other file systems.
bitcoin: In February 2014, a beta version of a Windows/Linux Firefox plug-
in called FreeSpeechMe was released that allows automated resolution of
.bit addresses, by downloading the Namecoin block chain and running it in
the background.
Answer: In February 2014, a beta version of a Windows/Linux Firefox plug-
in called FreeSpeechMe was released that allows automated resolution of
.bit addresses, by downloading the Namecoin block chain and running it in
the background.

Find and return all passages related to ”{query candidate}” from the follow-
ing.
{candidates with context}
Answer:

FILTER BY PREDICATES List all passing candidates if any. (Names of candidates only)
Query: {query}
Candidates: {candidates with context}
Answer:

INFORMATION EXCLUSION List all passing candidates if any. (Names of candidates only) Ignore
{ignore candidates}.
Query: {query}
Candidates: {candidates with context}
Answer:

Table A.1: Prompts of tasks introduced in this work.
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Distribution Number of Integers Llama2-7B Llama2-13B Claude2

Random
10 0.78 0.96 1.00

100 0.47 0.55 0.97
500 0.59 0.62 0.98

Unimodal
10 0.84 0.97 0.91

100 0.41 0.80 0.97
500 0.43 0.55 0.91

Left-Skewed Unimodal
10 0.89 0.96 0.94

100 0.55 0.67 0.43
500 0.54 0.55 0.97

Right-Skewed Unimodal
10 0.82 0.96 0.93

100 0.32 0.71 0.99
500 0.20 0.35 0.81

Bimodal
10 0.80 0.99 0.98

100 0.30 0.64 1.00
500 0.57 0.72 0.97

Left-Skewed Bimodal
10 0.83 0.92 0.87

100 0.74 0.75 0.98
500 0.82 0.70 0.95

Right-Skewed Bimodal
10 0.81 0.98 0.99

100 0.08 0.78 1.00
500 0.41 0.66 0.93

Table A.2: Results for the MAX task. FAIL denotes performance below the baseline results and
bold indicates best.
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Distribution Number of Integers Llama2-7B Llama2-13B Claude2

Random
10 0.36 0.68 0.83

100 0.08 0.20 0.96
500 0.05 0.10 0.96

Unimodal
10 0.44 0.84 0.85

100 0.03 0.25 0.97
500 FAIL 0.08 0.95

Left-Skewed Unimodal
10 0.66 0.97 0.84

100 0.08 0.29 0.88
500 FAIL 0.03 0.90

Right-Skewed Unimodal
10 0.45 0.83 0.81

100 0.17 0.22 0.98
500 0.15 0.04 0.93

Bimodal
10 0.51 0.87 0.78

100 0.16 0.42 0.99
500 0.10 0.04 0.97

Left-Skewed Bimodal
10 0.33 0.69 0.90

100 FAIL 0.10 0.54
500 FAIL 0.04 0.58

Right-Skewed Bimodal
10 0.56 0.87 0.78

100 0.12 0.27 0.96
500 0.30 0.05 0.99

Table A.3: Results for the MIN task. FAIL denotes performance below the baseline results and bold
indicates best.
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Distribution Number of Integers Llama2-7B Llama2-13B Claude2

Random
10 0.76 0.92 1.00

100 0.14 0.17 0.23
500 0.08 0.10 0.04

Unimodal
10 0.88 0.86 1.00

100 0.29 0.30 0.25
500 0.14 0.08 0.05

Left-Skewed Unimodal
10 0.85 0.93 1.00

100 0.29 0.26 0.03
500 0.07 0.15 0.07

Right-Skewed Unimodal
10 0.74 0.87 1.00

100 0.18 0.22 0.34
500 0.20 0.04 0.19

Bimodal
10 0.60 0.91 1.00

100 0.19 0.21 0.34
500 0.07 0.02 0.14

Left-Skewed Bimodal
10 0.89 0.91 1.00

100 0.32 0.33 0.28
500 0.02 0.08 0.17

Right-Skewed Bimodal
10 0.81 0.94 1.00

100 0.26 0.27 0.49
500 0.25 0.03 0.15

Table A.4: Results for the MODE task. FAIL denotes performance below the baseline results and
bold indicates best.
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Distribution Number of Integers Llama2-7B Llama2-13B Claude2

Random
10 0.18 0.21 0.22

100 FAIL 0.04 0.01
500 FAIL FAIL FAIL

Unimodal
10 0.11 FAIL 0.34

100 0.03 0.01 FAIL
500 FAIL FAIL FAIL

Left-Skewed Unimodal
10 0.01 FAIL 0.02

100 FAIL FAIL FAIL
500 0.04 FAIL FAIL

Right-Skewed Unimodal
10 0.14 0.03 0.35

100 FAIL FAIL FAIL
500 FAIL FAIL FAIL

Bimodal
10 0.27 0.02 0.27

100 FAIL FAIL FAIL
500 FAIL FAIL FAIL

Left-Skewed Bimodal
10 FAIL FAIL 0.11

100 0.08 FAIL FAIL
500 FAIL FAIL FAIL

Right-Skewed Bimodal
10 0.21 0.10 0.29

100 FAIL FAIL FAIL
500 FAIL FAIL FAIL

Table A.5: Results for the FILTER task. FAIL denotes performance below the baseline results and
bold indicates best.


