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Abstract

Dreamcrafter: Imagining Future Immersive Radiance Field Editors with Generative AI

by

Cyrus Vachha

Masters of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Björn Hartmann, Chair

Authoring 3D scenes is a central task for spatial computing applications. Two competing
visions for lowering existing barriers are (1) focus on immersive, direct manipulation of 3D
content; or (2) leverage recent techniques that capture real scenes (3D Radiance Fields such
as NeRFs, 3D Gaussian Splatting) and modify them at a higher level of abstraction, at the
cost of high latency. We unify the complementary strengths of these approaches and inves-
tigate how to integrate generative AI advances into real-time, immersive 3D Radiance Field
editing. We introduce Dreamcrafter, a VR-based 3D scene editing system that: (1) provides
a modular architecture to integrate generative AI systems; (2) combines di↵erent levels of
control for creating objects, including natural language and direct manipulation; and (3) in-
troduces proxy representations that support interaction during high-latency operations. We
also contribute empirical findings about how and when people prefer di↵erent controls when
working with radiance fields in a user study. Avenues for future work for developing inter-
actions and features for multi-modal 3D editors leveraging generative models and radiance
fields are also discussed.
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Chapter 1

Introduction

1.1 Overview

Recent advances in photo-realistic novel 3D representations like NeRFs and 3D Gaussian
Splatting o↵er exciting new avenues for 3D world creation and reconstruction for immersive
worlds. Neural Radiance Fields (NeRFs) [30] ushered a wave of exploration in the develop-
ment and applications of similar novel 3D representations. Concurrently, there has been a
wave of research in generative AI models, most notably text-to-image di↵usion models and
large language models. These advances have lowered the barrier to entry for artistic creation
of 3D scenes and objects while also enabling new forms of interfaces and interactions through
text-based prompting and multi-modal input.

Immersive systems like Virtual Reality and Augmented Reality present an ideal medium
for viewing and embodying these 3D radiance field representations due to o↵ering a pho-
torealistic dreamlike experience beyond traditional 3D representations. Displaying radiance
fields in VR as demonstrated in Welcome to Light Fields [33] and Immersive Light Field
Video [4] show the potential in viewing photo-realistic scenes in VR. NeRFs and 3DGS show
potential as new forms of 3D representations due to their high fidelity and are easier to cap-
ture than traditional 3D scanning or modeling methods. However these representations lack
controllability in editable capabilities which justifies further exploration into how to leverage
these representations in traditional or new creative workflows.

Despite the increased interest in these 3D representations and a significant e↵ort in
improving quality and adding capabilities in graphics and vision research, there has been a
lack of exploration in novel user interfaces and systems that leverage radiance fields in new
ways. Photo-realistic representations like radiance fields as well as generative AI systems
o↵er new interactions, and require a re-imagining of existing 3D toolsets and systems to
leverage these new capabilities these representations have to o↵er. Recent commercial and
industry interest is growing to develop ways to e↵ectively leverage generative AI tools in
creative systems and workflows. Understanding how users interact with these new mediums
through user studies could help develop better ways to create e↵ective systems and design a
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new wave of creative tools.
In this thesis, I explore components of a future 3D editor for interfacing with and gen-

erating 3D radiance field scenes. In the following chapter, we introduce Dreamcrafter [47],
an early exploration and implementation of a system that investigates ideas discussed. In
our paper, we perform user studies to evaluate how users interact with the scene editing and
creation tools presented at di↵erent levels of control as enabled by generative AI tools.

The following chapter discusses methods for editing these novel 3D representations by
mentioning related work, modalities for editing through natural language or from traditional
workflows, and stylizing scenes. The final chapter discusses potential future work and re-
search topics to explore this vision of methods for capturing, editing, and viewing/interacting
with these 3D representations and generative models fully within VR. This chapter is based
on ideas based on an early proposal of this project [45]. Despite this discussion primar-
ily focusing on VR interfaces due to additional a↵ordances from spatial interactions, these
systems and ideas are generalizable to 2D mediums and interfaces as well.
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Chapter 2

Dreamcrafter

The following chapter is a research project (Dreamcrafter: Immersive Editing of 3D Radiance
Fields Through Flexible, Generative Inputs and Outputs [47]) that is co-written with my
collaborators Yixiao Kang, Zach Dive, Ashwat Chidambaram, Anik Gupta, Eunice Jun, and
Björn Hartmann.

2.1 Abstract

Authoring 3D scenes is a central task for spatial computing applications. Two competing
visions for lowering existing barriers are (1) focus on immersive, direct manipulation of 3D
content; or (2) leverage AI techniques that capture real scenes (3D Radiance Fields such
as NeRFs, 3D Gaussian Splatting) and modify them at a higher level of abstraction, at
the cost of high latency. We unify the complementary strengths of these approaches and
investigate how to integrate generative AI advances into real-time, immersive 3D Radiance
Field editing. We introduce Dreamcrafter, a VR-based 3D scene editing system that: (1)
provides a modular architecture to integrate generative AI algorithms; (2) combines di↵erent
levels of control for creating objects, including natural language and direct manipulation; and
(3) introduces proxy representations that support interaction during high-latency operations.
We also contribute empirical findings about how and when people prefer di↵erent controls
when working with Radiance Fields in a user study.

2.2 Introduction

Spatial computing applications such as Augmented and Virtual Reality rely on 3D content
and scenes. Thus, creating appropriate tools for authoring and editing 3D content has been
a long-standing key challenge for HCI researchers.

Traditionally, mesh-and-texture-based approaches have been used to author 3D content.
Various research e↵orts to introduce better editing techniques notwithstanding (e.g., [20, 1]),
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the expertise hurdle to create and modify 3D content in this way has been high, generally
leaving such authoring to a small number of expert users.

One avenue to lower the authoring barrier has been to embrace authoring in VR (e.g.
Google Tiltbrush [5]), where direct 3D input is possible through VR controllers (or gestures)
in an immersive environment. This approach decreases the gulf of execution [19] inherent in
prior approaches to modeling 3D content using 2D input devices.

More recently, two additional developments hold the promise of reducing authoring bur-
dens. First, novel approaches for representing 3D scenes based on radiance fields (e.g.,
NeRFs [30] and 3D Gaussian Splatting [24]) allow for straightforward capture of photore-
alistic environments from real scenes using common cameras, instead of having to model
objects from scratch. Second, generative AI developments have introduced novel ways of
editing radiance field scenes at higher levels of abstraction, e.g. through text instructions (as
in Instruct-NeRF2NeRF [17]). While o↵ering the ability to edit at a semantic level rather
than a lower geometry level, such techniques also tend to be compute-intensive and not yet
amenable to run in realtime.

The di↵erent approaches—rapid direct manipulation on one hand and high-level instruction-
based editing on the other hand—recall long-standing arguments in the HCI community on
the benefits of direct control vs. delegation [41]. In this paper, we investigate if it is possible
to unify the complementary strengths of real-time, immersive editing on the one hand, and
generative AI-based approaches to high-level scene editing (with high latency) on the other
hand under a common interaction framework.

We introduce Dreamcrafter, a Virtual Reality 3D content generation and editing system
assisted by generative AI. The core idea behind Dreamcrafter is to use direct manipulation for
spatial positioning and layout; and leverage generative AI for editing style and appearance of
objects. Because generative AI edits are unlikely to run in real-time, Dreamcrafter introduces
rapid proxy representations, e.g. using a 2D di↵usion model to create a stand-in image for a
longer-running 3D generative task. Dreamcrafter enables both 2D (image) and 3D output.

Dreamcrafter makes three core contributions: 1) it provides a modular architecture to
integrate di↵erent generative AI algorithms into editing interactions; 2) it combines di↵erent
levels of control for creating objects, including direct manipulation and natural language; and
3) it introduces proxy representations that support ongoing interactions during high-latency
operations on 3D content.

We investigate how users decide between di↵erent levels of control over a scene and
how they use proxy representations through a first-use study with seven participants. We
find that participants use di↵erent levels of control across tasks even though they create
more objects using AI only. Yet, participants report feeling more in control when they can
sculpt object shapes and then use generative AI to stylize those objects rather than create
objects using generative AI alone. Participants also find the proxy representations useful for
reasoning about scene composition.
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2.3 Background

We give a brief overview of Radiance Fields (NeRFs and Gaussian Splatting) and Stable
Di↵usion.

Radiance Fields. Recent years have seen a move from traditional 3D graphics using
meshes and geometries to more photorealistic rendering techniques, such as Neural Radiance
Fields (NeRFs) [30] and Gaussian Splatting [24]. Radiance fields are 3D representations of
scenes or objects, as a function of radiance given position and view direction, that can ex-
hibit photorealistic view-dependent e↵ects. NeRFs are 3D representations that optimize a
volumetric 3D scene as a radiance field using a neural network trained on a set of images.
3D Gaussian Splatting (3DGS) is visually akin to NeRFs. 3D Gaussian Splatting represents
scenes with 3D Gaussians to support faster training and rendering via di↵erentiable raster-
ization for high-quality real-time visualizations. These techniques have been shown to be
highly e↵ective at modeling details with realistic lighting, shadowing, and surfaces for real-
world captures. And, with the increase in applications requiring 3D content, these models
can be e↵ectively used to quickly capture and create assets.

Stable Di↵usion. Stable Di↵usion [40] is a deep learning model for synthesizing, or gen-
erating, images from text inputs using a di↵usion model. ControlNet [54] is a network archi-
tecture enhancement to text-to-image models, like Stable Di↵usion to condition the model
on an input image, generating stylized outputs. The conditioning could be filters such as
depth or edges that preserve those features of the original input image in the generation.

2.4 Related Work

The most related prior work falls into two areas: 1) novel 3D scene representations and tools
for using them and 2) creation systems in VR. We review each area in turn.

Generating and editing novel 3D representations using NeRFs
and 3DGS

Several recent rendering techniques build upon NeRFs [30] and 3D Gaussian Splatting
(3DGS) [24]. For example, LERF [25], or Language Embedded Radiance Fields use CLIP
embeddings [37] to allow users to query a NeRF using natural language to determine re-
gions of interest. ConceptGraphs [15] uses a similar technique with CLIP embeddings but
processes a more traditional 3D representation of point clouds rather than NeRFs. These
developments have indicated the importance of object-centric labeling and editing in the sys-
tems that are built and have guided our design of editing components of 3D scenes in VR. By
focusing on radiance fields, we hope to lower the barriers to a wide range of representations,
tasks, and applications in the future.
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While e↵ective, these 3D representations are di�cult for end users to create, manipulate,
and use. Recent e↵orts to make NeRFs more approachable have included consumer facing
systems such as Luma AI [28], and research friendly APIs such as Nerfstudio [43] and Instant-
NGP [32]. Instruct-NeRF2NeRF [17] allow users to provide as input a text prompt and an
existing NeRF and output a new NeRF stylized according to the text prompt, relying on
2D text and image conditioned di↵usion models such as InstructPix2Pix [2]. We interface
with Instruct-NeRF2NeRF to allow users to edit their 3D scenes and objects. 3D Generative
models such as DreamFusion [35] or Shap-E [23] also allow users to build a NeRF or mesh
from a text prompt.

More recently, concurrent works such as GaussianEditor [12] and SigNeRF [9] demon-
strate systems that allow users to edit existing 3DGS or NeRFs or composite/generate new
ones in a scene. However, these systems don’t provide real-time feedback and o↵er a limited
toolset for scene editing.

Creation Systems in VR

There is a long history of creation systems in VR. 3DM [6] laid the groundwork by presenting
a 3D modeling system operated via a 6-DoF mouse, o↵ering a novel way to interact with
digital objects in three-dimensional space. Building on this, ISAAC [31] introduced scene
editing within Virtual Environments, allowing for a more intuitive and immersive design
process. Coninx et al. investigated hybrid 2D and 3D editing [7]. CaveCAD [34], a system
for freeform virtual sculpting of organic shapes, enables artists and designers to conceptu-
alize and iterate on their creations in an intuitive manner that closely mirrors the physical
sculpting process. Furthermore, Google’s TiltBrush [5] allows creators to paint with virtual
light and textures, extending the canvas beyond the limits of traditional media. Similarly,
VR games like Dreams [10], Figmin XR [51], and Horizon Worlds [49] have provided valuable
insights into user interaction models, o↵ering a glimpse into how VR can facilitate complex
design tasks while maintaining user-friendly interfaces. Han et al. demonstrate the next
steps in HCI design and interaction with virtual environments by increasing accuracy and
range of physical gesture recognition, an approach that lends itself to more natural and
user-friendly interaction with the surrounding virtual environment [16].

More recently, researchers have begun to explore the incorporation of generative AI in
virtual environments. For example, the Large Language Model for Mixed Reality (LLMR)
framework [8] leverages Large Language Models (LLM) and the Unity game engine for real-
time creation and modification of interactive Mixed Reality experiences, showcasing the
potential of LLMs to facilitate intuitive and iterative design in mixed reality applications.
Style2Fab[13] also demonstrates the ability of generative models in personalized 3D model
generation. The Dynamics-Aware Interactive Gaussian Splatting System [22] also enables
the creation of animated and interactive experiences within virtual reality settings.

Our system leverages generative AI and natural language to assist in 3D scene editing
in virtual environments, but prior and concurrent works don’t aim to create creativity tools
leveraging radiance fields.
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2.5 Design Goals

Based on our review of related work, we identified a lack of research into interaction tech-
niques for working with emerging radiance field techniques and generative AI in VR. There-
fore, we formulated the following design goals:

• Focus on creating and editing radiance field objects in VR.We want to support
users in populating 3D scenes with radiance field objects. This may involve updating
objects already in the scene or creating completely new objects.

• Enable both direct manipulation and instruction-based editing. Users may
prefer di↵erent levels of control for various scene editing tasks. For example, users may
want to directly manipulate objects for detailed edits while preferring natural language
instructions for larger scale edits. Users should have access to both.

• O↵er modular architecture to allow integration of future generative AI ad-
vances. An important aim of Dreamcrafter is to provide users with state-of-the-art 3D
object editing and generation technologies for environment design in VR, so a modular
framework is necessary.

• Preserve real-time interaction regardless of the latency of editing opera-
tions. For real-time scene editing, users should not be hindered by the system’s
latency. In the event that a process cannot be performed online, users should have
access to previews of the edits they have made to the VR environment.

2.6 System Design and Implementation

Dreamcrafter provides an interface to edit and generate radiance field objects using gen-
erative AI-enabled tools. Dreamcrafter supports di↵erent levels of user control and gives
real-time proxy representations to preview time-consuming edits and introduces new work-
flows leveraging image di↵usion models (i.e., Stable Di↵usion).

System Details and Interface

Users can select fixed regions in space or existing objects in the scene to apply spatial
annotations. Existing or pre-captured radiance field objects can be added to the scene via
an object menu. Generations and edits can be re-done or deleted. Each type of edit and
module is designed in the framework to be interchangeable and modular allowing new types
of interactions to be added in the future, or replace existing ones. Spatial annotations are
added to objects or spaces that are assigned edits with corresponding proxy representations
based on edit instructions. Figure 2.1 shows spatial annotations applied in a scene.



CHAPTER 2. DREAMCRAFTER 8

Figure 2.1: Dreamcrafter edit interface with spatial annotations. View of edits and
spatial annotations made in scene. Spatial annotations are placed over objects or spaces that
are assigned edits. Based on the type of edit a 2D or 3D proxy edit preview representation
is also shown.

Key interactions

Dreamcrafter supports four main interactions for moving, editing, and generating new radi-
ance field objects.

Move objects

Users can move objects (generated or radiance field based) with spatial manipulations with
hand movements and VR controls. Objects can be positioned, rotated, or scaled within the
scene. Physics can be applied to help align the objects or stack generated objects. Figure 2.2
illustrates this interaction.

Edit radiance field objects via prompting

Radiance field objects can be given stylistic or basic structural edits by pointing at an object
and speaking an instruction, e.g. “Make this chair chrome and futuristic.” See Figure 2.3. A
render of the object is given to the Instruct-Pix2Pix module, which applies the instruction to
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Figure 2.2: Object transformations and direct manipulations (Left) Positioning object
in the scene (Center) Rotating object. (Right) Scaling object

show as a 2D preview of the edit. We chose to use Instruct-Pix2Pix to preview this edit since
it is a 2D equivalent of the 3D edit modules we use. Users can select from three edit variants,
which will be applied for the final 3D object edit. Users can re-prompt edit instructions to
quickly iterate and preview before running a time consuming full 3D edit.

Figure 2.3: Radiance Field Object Editing with preview (Left) Edit variants are
presented to a user. (Center) Displaying selected edit preview as a spatial annotation.
(Right) Fully processed 3D edit replaces the original
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Generate objects via prompting

Users can generate objects by pointing at the ground and speaking a prompt of the object
they want to create (Figure 2.4). This sends an API call to the 3D generative module that
includes Shap-E [23], which generates a low fidelity mesh and render, and the render is styl-
ized using depth conditioned ControlNet [54] with the initial prompt. Optionally, the object
generation and image stylization module can be themed to the scene through in-painting
and masking methods. The object stylization can help to generate objects that thematically
and stylistically fit in the environment which could match closer user’s expectations of the
generation results rather than a generic or random generation. The user can select from
three stylized 2D image variants of the object. This allows the system to reduce ambiguity
during 3D object generation and give the user further control over the o✏ine time consuming
generation. During an o✏ine process, the full fidelity 3D objects are generated and placed
in the scene.

Figure 2.4: Object Generation via Prompting (Left) Object generation variations from
speech input. (Center) Displaying selected generation preview as a spatial annotation.
(Right) Fully processed 3D generation in the scene.

Sculpt then stylize objects

Alternatively, users can generate objects by creating an arrangement of basic 3D primitives
(i.e., spheres, cubes, and cylinders) (Figure 2.5). The system takes a snapshot of a render of
this arrangement, and then stylizes it with ControlNet based on a user-given prompt. Once
the user confirms the stylized and sculpted generation, the object can be placed in the scene.
The proxy arrangement of the object is added to the scene with a render of the stylized
version. For the o✏ine process, the image preview is converted into a 3D mesh or gaussian
splat and placed in the scene.
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Figure 2.5: Object Generation via Sculpting (Left) Sculpting toolkit to create primitive
shape arrangement (Center) Displaying stylized sculpted object preview as a spatial anno-
tation. (Right) Fully processed 3D generation in the scene.

Proxy representations: Labels and Previews

Proxy representations are intended to help users see the impact of their editing operations
in real time. There are two types of proxy representations: labels and image previews.
Figure 2.3 (center) and Figure 2.4 (center) show the labels and image previews. The labels
show the prompts users have spoken aloud as commands to the generative AI modules (e.g.,
“make the sofa blue”). The image previews show 2D versions of the anticipated generation.
These image previews are generated using Instruct-Pix2Pix which is the underlying 2D
image editing system used for the 3D radiance field editing system, Instruct-NeRF2NeRF or
Instruct-GS2GS.

Both the labels and image previews are associated with radiance field objects in the scene.
This is done through a spatial annotation framework we developed. The framework logs each
object’s positions, object type, generative AI prompt, and image preview to a JSON file used
for 3D generation and replacement, which we discuss next. Optionally, instead of an image
preview, the system can run the text-to-image module to show the generated 3D object in
the scene online in close to real-time. This 3D generation may be of a lower fidelity than
the final o✏ine generated 3D model, but can help the iterative process of arranging and
re-editing objects.

Stable Di↵usion-Assisted Creation: Magic Camera

Users can position a virtual camera to visualize a stylized 2D render of the scene. This
feature, called the magic camera, stylizes a snapshot of the view of the scene through the
ControlNet module given a prompt. The resulting stylization gives a generally coherent and
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realistic composition of the scene based on the arrangement of objects. Using ControlNet
conditioned on canny edges allows the 2D place holders to appear as integrated objects in
the scene. This feature can be analogous to traditional 3D editing systems for rendering a
final 2D image render output (generally a higher fidelity output given a proxy/textureless
3D representation in the editor). When composition radiance field objects into a scene, the
lighting is baked per scene, and therefore for each object and room, which may be from
separate scenes, causing the lighting to di↵er. If ControlNet is run over a snapshot of the
composite of these objects in the scene, the output render appears to re-stylize the objects
and environment which matches the lighting, shadows, and slight positioning of the objects
to appear more realistic or stylized into a di↵erent scenario based on a text prompt. A
benefit of using stable di↵usion and ControlNet is that it adds additional realistic detail to
the objects. If an object is generated from text-to-3D or the NeRF/3DGS capture is not very
clear, a stable di↵usion render generally fixes these issues and makes it appear more realistic.
The magic camera can be used as another way to control 2D image generation. Additionally,
it could be possible to potentially re-stylize the 3D scene with a 3D output based on the
stylized scene preview from the magic camera, through converting the 2D image of the scene
into a 3D scene through depth in-painting methods, multi-view di↵usion like CAT3D [14],
or other systems such as RealmDreamer [42]. This could create an iterative design process
where a user could create a general layout of the objects and positions in the scene, and can
use the magic camera to stylize it, and then iteratively edit the 3D scene.

Generative AI Modules and O✏ine Processing

Using the JSON log output from the spatial annotation system, Dreamcrafter makes instruc-
tion and tool specific API calls for each generative AI module as shown in Figure 2.6. A
Python broker server receives a server message from the Unity project and forwards instruc-
tion parameters (e.g., instruction type, text prompt, image input) to the specified module.
Figure 2.7 shows an overview of the system architecture.

Object generation uses a 3D generative module Shap-E, and a 2D image stylization
module ControlNet and Stable Di↵usion. The full object 3D generations use 2D-image to
3D-model models such as GRM [52] or text-to-3D based system. The final 3D object edits are
done using Instruct-NeRF2NeRF for NeRFs, or Instruct-GS2GS [46] for Gaussian Splatting
objects. The modules are exchangeable and can be implemented to use updated AI models.
After the edited objects are added to the scene, users can repeat the process and edit the
scene again, creating an iterative design process.

Additional Implementation Details

The system was implemented in Unity and the XR Toolkit for VR integration and uses a
gaussian splatting visualizer plugin [36]. A python flask server is used to interface with the
generative modules which are run using the HuggingFace python inference API. When a
user initiates a preview edit, a C# script sends a message to the flask server to request the
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Figure 2.6: Dreamcrafter system architecture. Pipeline overview of system including
three distinct modules to edit scenes: edit radiance field objects, create new radiance field
or mesh objects, and create 2D stable di↵usion renders of scenes. Input files generated from
Unity are in green, generative model components are in yellow, and saved results are in red.

specified module to get called, which performs the generation given the input parameters
(images and or text prompt) and generates an output. Some of these modules are optimized
for speed and to return additional outputs.

2.7 Stable Di↵usion Scene Editor

Another system exploration during the project’s development was using Stable Di↵usion to
pre-visualize stylized scenes based on the construction of a scene of primitive objects, created
and arranged within the VR interface, as shown in Figure 2.8. This system uses the magic
camera as described earlier, a virtual camera that renders the scene and produces a stylized
2D render from ControlNet, but instead of applying over a radiance field scene, this system
applies it to a scene of primitive objects. Users could specify a prompt and apply ControlNet,
conditioned on depth, to view the stylized scene in a floating window which updates in close
to real-time.

We observed that ControlNet was able to understand what the arrangements of primitive
objects were given the prompt. For instance, if we had a few cubes roughly creating the out-
line of a couch and two cylinders creating the shape of a lamp, without additional contextual
information about what the objects were, beyond a global text instruction ”realistic living
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Figure 2.7: Dreamcrafter modules system overview. Modules processing pipeline: The
Unity project sends API calls to the broker server to run instructions from specific generation
modules and their outputs get sent back to the unity project. Online modules are run for
previewing generations, and o✏ine modules are run after editing is complete.

room”, the stylized render showed a high fidelity render of the living room with the couch
and lamp stylized. Figure 2.9 shows multiple prompts applied to the same arrangement of
primitives.

For a potential further addition, objects could be spatially tagged with a label text
prompt and be individually stylized, and then be composited into a stylized render of the
scene through masking and inpainting. Each stylized 2D render could be converted to 3D
and placed in a stylized 3D scene. Potentially, the final 2D render can be converted to a
3D scene using an image to 3D scene system like RealmDreamer [42]. This 3D scene could
be given to the primary Dreamcrafter system for additional editing after pre-processing and
segmentation.

2.8 Evaluation

Two research questions motivated the evaluation:
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Figure 2.8: Stable Di↵usion Scene Editor A user can arrange primitive objects in a scene
and position a virtual camera to stylize a 2D render of the arrangement as shown from a
preview on a floating window.

1. RQ1 - Levels of control. How do users want control over scene edits? Specifically,
when do they choose to generate objects via prompting or sculpting? Why?

2. RQ2 - Proxy representations. What are users’ reactions to the proxy representa-
tions? Are they su�cient for envisioning final scene edits?

Study Design and Procedure

After participants gave informed consent, the researchers walked participants through a
tutorial introducing the interactions for editing and creating objects in Dreamcrafter. The
tutorial took approximately 30 minutes. Once participants practiced and expressed feeling
comfortable performing the interactions, they were presented with the scenario of designing
a 3D environment for a winter holiday party. They were asked to complete the following
tasks:

• Dining area for six. Participants set up a dining area for six people. The 3D
environment was already populated with a couple of tables and a chair that participants



CHAPTER 2. DREAMCRAFTER 16

Figure 2.9: Stable Di↵usion Scene Editor Multiple generations given a scene of primitive
objects and text prompts

could duplicate or edit.

• Photo area for party guests. Participants decorated an area for taking pictures.
The task was to create a North Pole scene by considering snowmen, elves, or trees.

• Gingerbread house. Participants created a gingerbread house with two windows
and one door.

• Unstructured editing. At the very end, participants were given five minutes for
free-form editing where they could revisit any of the tasks above as they edited the
scene to their liking.

We designed the tasks such that they required a range of editing and creating operations,
where di↵erent modalities would likely shine. The dining area task was the most sca↵olded,
with relevant objects populating the scene already. We anticipated that this would encourage
participants to edit the existing objects using Stable Di↵usion. The photo area was more
open-ended with opportunities to edit existing objects and create new ones via prompting
or sculpting. The gingerbread house was the most specific task, likely requiring a significant
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amount of control. For all the tasks, participants were encouraged to use any interactions
as they saw fit.

Upon completing the tasks, participants completed an exit survey and interview. In total,
the study lasted approximately 90 minutes.

Participants

Participants were recruited via word-of-mouth through VR-related Slack channels, newslet-
ters, and mailing lists. Participants self-reported having relatively little experience in VR
(median=2/5). Four of the seven participants had prior experience with 3D tools (Unity
or Blender), and two participants had prior experience with creative generative AI tools.
Participants were compensated $35 for their time.

Measures and Analysis

For each task, we recorded and analyzed videos for how participants manipulated objects
(i.e., editing vs. creating; prompting vs. sculpting) and why. We also thematically analyzed
their open-ended survey questions and interview responses.

Results

Overall, participants reported that Dreamcrafter helped them edit the scene as they wished
[P2, P4, P6, P7]. P5 expressed how the scene they created using Dreamcrafter was “not
what [they] thought but more interesting.”

RQ1: Levels of control

Overall, participants rated their success in achieving their desired edits highly (Dining area:
median=5/7, Picture area: median=5/7, Gingerbread house: median=4/7). For all tasks,
participants more frequently generated objects using prompting instead of sculpting. Four
out of seven participants used a mixture of prompting and sculpting across the study tasks
(Table 2.1). Three even used both prompting and sculpting within the same task. For
example, P1 created most of the gingerbread house via sculpting but then wanted to augment
it with prompt-generated windows.

When asked why they chose to create objects via prompting, participants explained that
prompting was easier to use [P2, P3, P4, P5, P7]. Prompting helped them “save time” [P1],
required less active user involvement [P2], and resulted in “more polished” results [P3]. P4,
explained, “The prompting tool did make it extremely easy to take what I am thinking and
make a relatively accurate depiction.”

Participants had mixed opinions on how well prompting served their goals when they had
specific details in mind. P1 and P6 explained that they preferred prompting over sculpting
depending on “typically how complicated I expected the object to be” [P6]. At the same time,
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Table 2.1: Evaluation: Di↵erent levels of control used.
The number of objects created using each approach are in parentheses. Participants used a com-

bination of editing existing objects, creating objects via prompting, and creating objects through

sculpting then stylizing throughout the tasks. Four out of seven participants used a combination of

prompting and sculpting throughout the study, including sometimes for the same task. While the

majority of participants created the majority of objects via prompting alone, participants reported

gravitating towards sculpting to control generation.

ID Dining Picture Gingerbread

P1 Edit (2) Prompt (1) Prompt (1), Sculpt (1)

P2 Prompt (2) Prompt (3) Prompt (1)

P3 Edit (2) Prompt (3) Prompt (3)

P4 Edit (1) Prompt (3), Sculpt (1) Sculpt (1)

P5 Prompt (4) Prompt (6) Prompt (1), Sculpt (6)

P6 Edit (2) Prompt (3) Sculpt (1)

P7 Edit (2), Prompt (1) Prompt (4) Prompt (1)

P4 reported “[the generated 2D proxy representation] sometimes fell short in some minor
details of what was described in the prompt.”

In contrast to prompting, participants reported feeling they had more control when
sculpting then stylizing objects [P1, P4, P5]. P4 explained, “if I had an idea in my head
that I know how I wanted it to look like...it kind of had a little more restriction what the AI
used to create versus the prompting”. When asked when they chose to sculpt, P1 and P5
explained that they preferred sculpting large-scale objects, such as the gingerbread house.
At the same time, most participants, including P7 who did not use sculpting, wanted to have
access to more shapes [P4, P5, P6, P7] and finer grained object manipulation [P2, P4, P6,
P7], suggesting that sculpting may ultimately be more desirable than we saw in our study.

RQ2: Proxy representations

Six out of seven participants primarily relied on the image previews to get a sense of the
scene’s overall composition [P1, P2, P3, P4, P6, P7]. Participants also reported that the
image previews helped them visualize individual objects [P4, P5, P6].

System Limitations and Strengths

A primary limitation was the scene’s physics. For six of the seven participants, rotating and
arranging objects in the scene were di�cult [P2, P3, P4, P5, P6, P7]. For example, when
editing the dining area, P2 expressed “When chairs would fall over, it was very hard to put
them back up. Also, if I wanted to rotate or move the chairs they would tend to change size,
so by the end most of the chairs were all di↵erent sizes.”

Another important limitation was inaccurate speech recognition, which became a major
burden for users relying on prompting [P1, P2, P3]. Despite this, most participants relied on
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prompting for setting up the picture area and gingerbread house, so we would expect that
improved speech recognition would lead to more reliance on prompting. Related, because
the system had a five second speech detection window, P5 expressed wanting the system to
give them more time to express all the details they had in mind.

Other technical challenges that participants reported were feedback time while waiting
for Stable Di↵usion results [P1, P5], awkward VR controller mappings [P6, P7], discomfort
in VR [P2, P6].

Despite challenges with object manipulation and speech recognition, all participants ex-
pressed wanting to use Dreamcrafter in the future for a myriad of reasons: interior design
[P1, P3, P6, P7], “my creative side” [P1], CAD in engineering [P4], and video game de-
sign [P5]. P2 preferred to use a non-VR version. For P5, P6, and P7, generating objects
via prompting was the best part of the system. This suggests that even with user experi-
ence issues, providing multiple forms of user control, proxy representations, and access to
generative AI modules were desirable for diverse spatial computing applications and users.

Figure 2.10: Spatial annotation tags are placed over the radiance field objects and generated
objects with given instructions and preview generations.
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2.9 Discussion

We investigate how to incorporate the benefits of real-time, immersive editing and the ad-
vantages of high-level scene editing using generative AI. We develop and evaluate the Dream-
crafter system, which provides a modular architecture for generative AI algorithms, o↵ers
di↵erent levels of interactive control, and leverages proxy representations to show previews
of high-latency edits to radiance field objects.

Through a first-use study, we find that users, including those without VR or scene editing
experience, find the direct manipulation (sculpting) and natural-language based (prompting)
interactions useful for editing and creating objects. Most use a mixture of both interactions.
Sculpting objects and then stylizing them with generative AI helps participants feel they
have more control over the generation process. Yet, participants create more objects using
only natural language prompts. This is not surprising given the relative speed with which
generative AI models can create object proxies (previews). Interestingly, despite the control
direct manipulation a↵ords them, participants preferred generative AI-based object creation
over sculpting when they had very specific details for what they wanted objects to look like.
These findings suggest that sculpting may be useful for giving the general shape of an object
while prompting is useful for its specifics. Both sculpting and prompting appear to serve
di↵erent purposes in users’ design processes, so supporting both forms of control is necessary
for scene editing tools to support a diversity of creative paths and styles [39].

Furthermore, participants found Dreamcrafter’s 2D proxy representations of high-latency
3D object editing and creating operations useful for editing 3D scenes. This suggests the im-
portance of realtime feedback for spatial computing tasks. This also suggests that leveraging
2D generation for 3D scenes may be a promising path forward for providing realtime feed-
back. Additionally, providing both text and image proxy representations may be especially
important for future semantic, generative AI-based scene editing systems.

Overall, in Dreamcrafter, we explore not only the feasibility but also the benefits of
providing both rapid direct manipulation and high-level instruction-based editing support in
3D scene editing. Through varying levels of control and proxy representations, Dreamcrafter
is a step towards continuing to lower the barriers to 3D scene editing, especially for emerging
graphical representations such as NeRFs and Gaussian Splats.

2.10 Limitations and Future Work

There are three limitations to this work that o↵er opportunities for future work.

Global scene editing. Dreamcrafter supports editing and creating radiance field objects
within an environment. However, users may want to edit aspects of the underlying envi-
ronment as they design their scenes. One way we have begun to explore this possibility
is through developing functionality that allows users to take a snapshot of an environment
from a fixed perspective and then stylize that snapshot, in a manner similar to how sculpted
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objects are stylized in Dreamcrafter currently. The resulting generation suggests a possible
way to stylize the scene and all objects contained within it together. Ideally, users should
be able to define the perspectives they take snapshots from and how they stylize the scene,
perhaps even controlling which objects receive the global style treatment.

Additional levels of control. To further enhance user interaction, a key area of focus
should be the development of more intuitive ways to place and interact with radiance field
objects. For instance, rather than rely solely on voice commands, what if Dreamcrafter could
provide text or gesture input for expressing generative AI prompts? Yet another alternative
could be generating sculpted objects in addition to styles so that users could rapidly iterate
on the form in addition to texture of generated objects.

It’s also worth noting that the modularity of our content generation and spatial anno-
tation system is a cornerstone of Dreamcrafter’s design. This approach not only facilitates
future enhancements and integrations of di↵erent AI technologies but also serves as a robust
framework for the development of AI-assisted interfaces in various applications.

Even more rapid proxies. While Dreamcrafter currently supports prompt labels and
image previews, what might alternative proxies or intermediate proxies between 2D and 3D
objects look like? For example, would users find 3D wireframes just as useful as the 2D
image previews? Additionally, if users were to make global scene changes to all the objects,
what would an appropriate proxy representation for those changes look like? Additionally,
recent work in image to 3D systems run in close to realtime and may be able to show 3D
proxy previews at a reasonable fidelity.

Automatic Segmentation. Dreamcrafter currently takes in input of full 3DGS and ob-
jects, however it currently is unable to edit objects that are fixed in the scene. To enable
editing and placement of objects baked in existing scenes, having automatic semantic seg-
mentation could be used to streamline the editing workflow, making it more e�cient for
users, without requiring manual segmentation.

2.11 Conclusion

The core idea behind Dreamcrafter is to use direct manipulation for spatial positioning and
layout; and leverage generative AI for editing style and appearance of objects. Because
generative AI edits are unlikely to run in real-time, Dreamcrafter introduces rapid proxy
representations, e.g. using a 2D di↵usion model to create a stand-in image for a longer-
running 3D generative task. Dreamcrafter enables both 2D (image) and 3D output. In
a first-use study, participants report feeling more in control of AI generation when they
first sculpt objects before stylizing them with generative AI. Participants also report finding
proxy representations useful for scene editing.
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Chapter 3

Radiance Field Editing

3.1 Introduction

Radiance fields like NeRFs, 3DGS require new interactions and methods not found in tra-
ditional 3D tools due to their di↵erent representations from meshes or surfaces. Current 3D
modeling toolkits like Blender and Autodesk Maya don’t support radiance fields yet. With
advances in di↵usion models and generative 2D and 3D models, recent work has explored
using natural language and other methods to edit the implicit representation of NeRFs,
and have applied some of these methods to other radiance field representations like 3DGS.
These kinds of interactions with those 3D representations allow more natural interactions
and encourage further exploration in interfaces for 3D editing.

In this chapter, I discuss methods and an interface for compositing with NeRFs, seman-
tically editing radiance fields with natural language, and generating stylized 3D objects.

3.2 Compositing Radiance Fields with Visual E↵ects

Integration of radiance fields like NeRFs in 3D editors for compositing and creating scenes
composed of NeRFs and meshes was very limited until recent developments. I created
a pipeline for integrating NeRFs into traditional compositing VFX pipelines using Nerfs-
tudio [44]. Since NeRFs are rendered with alpha compositing and volume rendering, to
composite NeRFs, they can be layered over each other, and traditional techniques of motion
control for camera tracking from filmmaking can be applied to enable NeRFs or 3DGS to be
composited and to assemble scenes.

This approach involves using Blender, a widely used open-source 3D creation software,
to align camera paths and composite NeRF or 3DGS renders with meshes and other NeRFs,
allowing for seamless integration of NeRFs into traditional VFX pipelines as shown in Fig-
ure 3.1. This allows for more controlled camera trajectories of photorealistic scenes, com-
positing meshes and other environmental e↵ects with NeRFs, and compositing multiple
NeRFs in a single scene. This approach is also generalizable and can be adapted to other
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3D tool sets and workflows. One of the initial goals was to enable a more seamless integra-
tion of NeRFs into visual e↵ects and film production. Documentation can be found here:
https://docs.nerf.studio/extensions/blender_addon.html

Figure 3.1: Nerfstudio VFX Add-on Renders and Pipeline (Left) Results from NeRF
composite renders using the Blender VFX Add-on. (Right) Pipeline for compositing renders
from Blender and Nerfstudio.

Method

A proxy NeRF (point cloud or mesh) representation is placed in the scene. Camera aligned
renders are created from transforming the Blender virtual camera path coordinate system to
be relative to the origin of the NeRF representation in the Blender scene for each frame in the
render. This technique also allows for compositing multiple NeRF objects and environments
in a single scene by rendering an accumulation render for each of the cropped NeRF objects
individually to act as an alpha mask. Additional lighting e↵ects like shadows and reflections
can be rendered from the NeRF representation and composited. This approach can be used
to composite NeRFs with real camera footage, meshes, or other radiance fields. Composited
objects like meshes can be relighted by a NeRF scene by rendering 360 HDR environment
maps, and since the scene is volumetric, these maps can be rendered along a path. This
approach is also useful for assigning a scale to a NeRF scene which helps for rendering VR180
and omnidirectional-stereo (VR360) renders. This method is generalizable to additional
toolkits beyond Blender since it is primarily transforming camera transform coordinates
from the 3D editor camera to the nerfstudio camera space. The main limitation of this
approach is that it doesn’t run in real-time, and therefore is not interactable. More recently
Unreal Engine integrations for NeRFs and 3DGS have been created which allow for real-time
interactions [28, 48].

https://docs.nerf.studio/extensions/blender_addon.html
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3.3 Edits with Natural Language

Instruct-GS2GS

Editing radiance fields based on semantic natural language instructions was proposed by
Instruct-NeRF2NeRF [17] which applies global scene edits by iteratively updating the dataset
with Instruct-Pix2Pix applied over training images and the text prompt. My co-author,
Ayaan Haque, and I extended this method to Gaussian Splatting in Instruct-GS2GS [46] to
enable these natural language edit capabilities with 3DGS scenes as shown in Figure 3.2. This
approach adopts a similar pipeline for iterative dataset update, but instead of updating an
individual training image per iteration, we perform a full dataset update and apply Instruct-
Pix2Pix to all images and then train for 2.5k iterations. This process is repeated for 2-3 full
dataset updates (training for 5k-7.5k iterations) which compounds the edits performed by
the previous dataset update.

Figure 3.2: Instruct-GS2GS Semantic Edits Semantic edits from text instructions over
3DGS scenes for global stylistic changes. (Figure from Instruct-GS2GS[46])

The results show similar edit capabilities as Instruct-NeRF2NeRF which enable some
targeted edits to certain regions, but occasionally has limitations by performing unwanted
edits and blurry results due to inconsistent views especially when editing over large scenes
of multiple objects.

Language Assisted Environment Editing

To improve controllability and constraints over the individual regions in the scene and prevent
unwanted edits, editing regions could be specified through semantic masking or user bounding
box selections. Since Instruct-GS2GS applies global text instructions, there is ambiguity in
which object the edit could be referring to, such as a prompt with “make this chair red”.
I propose assigning specified edit regions each with an individual text prompt, which could
be further customized to be object specific using an LLM. If a general instruction is given
for a scene, “make the room look like a futuristic spaceship”, Instruct-GS2GS is unable
to perform significant view-consistent edits to all objects within the scene since Instruct-
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Pix2Pix is applied on every image giving di↵erent results due to a broad prompt, and more
detailed prompts helps stronger generations. Figure 3.3 shows this pipeline of assigning and
editing regions of the 3D scene from an input scene and instruction.

Figure 3.3: LLM Assisted Environment Editing Pipeline Pipeline to edit scenes using
an LLM to specify edit instructions and a VLM to identify editable regions.

This new approach could first identify relevant major objects in a scene, possibly through
a VLM, segment those objects, and use an LLM to generate individualized object specific
and descriptive edit instructions for each furniture object (for a chair “make it metallic,
futuristic, style with metallic flat legs” instead of the global text prompt). Each object
could be edited with this instruction and replace the original object in the scene.



26

Chapter 4

Future Work for 3D Editing Systems

This chapter will discuss potential future work and features in an immersive 3D editor
building o↵ of Dreamcrafter. To facilitate intuitive 3D editor features that allow the user
to choose their own level of specificity of editing instructions (supporting high to low level
editing interactions which may require additional minimal input and additional e↵ort from
the user), radiance fields would need to be pre-processed and semantically analyzed. This
would enable intuitive speech commands for object placement and generation, but also give
the option for users to have more levels of control as well. Users should be able to create
or capture the environment, enter into the scene in VR, and fill and edit the reconstruction
with additional generations.

4.1 Editor Components

Environment Aware Actions from Language Instructions

Specific instructions from natural language can be used to edit the environment at a higher
abstraction level than traditional 3D modeling toolkits. This system could leverage the
understanding of the environment to identify the user’s intent regarding the object or space
the instruction applies to and the desired action, such as placement or generation. For
instance, if a user points or looks at a certain region of the room and says “place a door over
there”, the system should be able to generate a 3D representation of the door in the same
stylistic attributes of the environment and in the correct location on the wall, not intersecting
with other geometry. The system should support the ability to make implicit references in
the scene such as “change the color of that wall to green”. Recent work, What’s the Game
then [21], proposes using LLMs with semantic scene graphs to reference and instruct objects
in scenes through speech and gestures.
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Positioning Generated Objects from Language Instructions

Determining the optimal location of the generation based on a vague text instruction and
possibly region of the user’s view could be approached in a few ways, including using vision
language models. OCTO+ [53] describes a method for placing objects by using a vision
model like GPT-4V which is given the users’ view and the text prompt and told to find
the region where the object should be added by identifying objects in the scene and using
an LLM to place it in a logical position relative to relevant objects. Semantic Placement
[38] proposes a method to identify an image mask for the relevant regions given an input
image and text prompt. This approach also uses an LLM and VLM to analyze the image
and generate a heatmap for the semantic placement masks. For instructions that reference
objects in the scene such as “place a lamp next to that chair” or “move the laptop to the left
side of the desk”, similar methods can be applied as well. GALA3D [56] proposes a method to
generate compositional scenes of multiple objects based on a text prompt by using LLMs to
generate layouts and optimize composited gaussians, as well as to perform natural language
instructions for object placement and movement. 3D scene based understanding as shown
in 3D-LLM [18] would be useful in scene generation and help facilitate natural language
instructions that refer to objects in the scene. While these methods show e↵ective results,
further work should explore larger scale scenes and more precise object positioning for 3D
data, since most systems mentioned here use 2D vision models.

Generate Coherent Stylized 3D Generations

The generation should have similar materials, color, or artistic style matching the visual style
of other furniture rather than a generic or random generation that would result naively calling
a text-to-3D system. Having a multi-modal input of text with an image of the environment
to inpaint a 2D representation into, or getting keywords of the environment from a vision
language model could help guide the generation to be in the correct style. Input modalities
beyond text would be required for better generations. A VLM could also be used to assign
the appropriate scale of the generated object relative to the other objects in the scene. When
objects are stylized and placed in the scene, their lighting may not be accurate and match
with the environment, therefore it may be possible to train dataset of layer/relighting images
over the object where each image is possibly run through ControlNet, IC-Light [55], or an
AI upscaler system which implicitly relights the composited object into the scene by adding
shadows and reflections. A similar method could be used to add additional artificial detail in
these scenes by using a ControlNet di↵usion based upscaler over training images and adding
additional images to the dataset from rendered views close to surfaces, running these through
the upscalers, and retraining over the existing scene using a method like iterative dataset
update.
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VR Interactions for Manipulation

Using an immersive editor enables additional interactions for environmental editing com-
pared to desktop editors, such as using hand and eye tracking for object placement and
moving. When editing radiance field objects, editing could be achieved with direct spatial
manipulation which is more appropriate for a 3D spatial setting. Using a minimal amount
of menus and other tools could be optional if the natural language instructions for object
placement, editing, and manipulation are intuitive enough. Simple gestures could be used to
toggle across varying levels of specificity for edits (scene to individual object). User motion
controls or gestures could be used for implicit references to movement and transformation
for objects. It may be possible to use an LLM to parse user speech input into a set of
instructions that the system can understand for these tasks. Possibly vague or previously
unseen or undefined controls could be interpreted by vision and language models as new
forms of input. However, certain users with artistic experience and other tasks may require
more fine-grain control, such as sculpting, as found in traditional 3D tools, and therefore
this system should support those tools as well and adapt to the user’s preferences.

4.2 AR/VR HMD Assisted NeRF Capture

Capturing 3D scenes for traditional photogrammetry, NeRFs, and 3D Gaussian Splatting is
generally done by taking a series of images of a scene with a camera of known intrinsics and
structure from motion algorithms can determine the extrinsics or camera poses of the images
in the scene. The camera images and poses (translation, rotation, scale) are used to train
the NeRF. Currently, capturing a NeRF requires stabilized slow camera movement/orbiting
around an object at a high resolution from multiple viewpoints and angles to capture the
lighting all around an object/environment. Capturing radiance field environments can some-
times be challenging if casually captured due to limitations in SfM methods like COLMAP
and the necessity to capture surfaces at most angles for a good reconstruction. Generally,
these may be improved with a capture strategy like orbiting around an object at di↵erent
elevations for scanning an object, or circling around the borders of a room to capture a larger
scene. Until sparse and casually captured images can provide reasonable reconstruction of a
scene, capturing NeRFs and 3DGS are challenging especially to new users.

I propose an alternative method to capturing 3D scenes, using cameras from VR/AR
HMDs, which could capture the scene from the user’s perspective as they walk through a
scene. Recent work using Project Aria glasses demonstrates using a camera embedded in
a pair of glasses to capture a scene and generate a NeRF dataset[11]. However, in these
approaches, there is a lack of visual feedback component to guide the user where to look
at or identify un-captured regions. Smartphone based methods such as LabelAR [27] help
capture di↵erent regions of an object for computer vision datasets, and Luma AI uses ARKit
to guide a user over a specified object region to assist a user to capture an object and di↵erent
angles.
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I propose a concept to use an AR/passthrough VR HMD system which could capture
the scene with on-device cameras including RGB, wide angle cameras used for tracking,
or optionally other sensors like depth cameras or LiDAR sensors to create a 3D capture.
Since the VR headset is continuously running SLAM, those camera poses can be used as
the training dataset camera poses to create the final NeRF dataset. Hardware components
required are present in state of the art mixed reality headsets such as Apple Vision Pro
and Meta Quest 3. Cameras on the headset could be equipped for high frame rate and
wide angles which would be optimal for clean dataset collection. Ideally a 360 camera could
be mounted to capture more of the scene. If there are regions of the scene too hard to
capture (like from the bottom angles), a di↵usion model can add unseen detail and views
there using an object completion system, such as demonstrated in Reconfusion [50], or a
video di↵usion model could help complete gaps in unseen regions. In addition to taking in
frames from the camera input, pre-processing could be applied to identify relevant images
in the video sequence (which could be long) of the scene capture to ensure the dataset
isn’t unnecessarily long and covers all regions in the room/scene given the depth scan of
the scene and prevent repetitive/unusable frames. When capturing a dataset in a large
scene it is common for certain objects to be observed multiple times, causing the dataset to
contain redundant frames. Possibly, it could render/sample frames after the scene has been
trained to find the optimal dataset with the fewest number of frames. Ideally, a dataset
assistance/cleanup system like this should be able to allow a user to briefly look around
and walk in an environment, and given this limited data, reconstruct the scene properly.
If cleaner datasets are collected through these methods, they could be eventually used as
training data for a 3D foundation model.

In this system, as depicted in Figure 4.1, a user could enter a space and specify their
capture volume/region of interest through an AR visualization, which could be of a room
scale environment or around an object. Next, the system could create a trajectory for capture
and guide the user where to look and navigate to capture all parts of the environment. To
quantify the quality of the scan in progress, the system could keep note of what angles a
surface was observed as, or run a LiDAR reconstruction of the scene and identify which parts
are more sparse. Recent systems have demonstrated using real-time 3DGS reconstruction
[29] by streaming camera poses and images to train in real-time.

4.3 Radiance Field Pre-Processing

Radiance field scenes as input can be pre-processed and have individual interactable/editable
objects segmented before being given as input into the system using editing tools, or given
semantic prompts such as in LERF. Such a system could use GPT-4V to analyze relevant
editable objects in the scene and pre-segment those objects in the scene to make them as
editable objects in the system. Generally radiance field scenes are captured with many
existing objects in the environment, which may occlude each other (a capture of a room
may have furniture items against the wall or have many objects on a table). A pre-process
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Figure 4.1: VR/AR HMD Assisted 3D Capture An interface for guiding a user to
capture a NeRF dataset using head-mounted cameras and headset poses from a VR/AR
headset

system, should identify and segment the possible objects in the scene that are interactable
such as furniture or small items, and could ignore parts like the room or vents which are
fixed to the environment. Next, with the individually segmented objects, they should be
“completed” or “repaired” to make it complete for the missing regions of the object that
were occluded. For instance, if there is a table with a lot of objects on it, the system should
first segment out the other objects, and then inpaint all the regions where those objects
were, and eventually to output a clear, clean table ready to be repositioned or edited in the
system. In the instance that a user is only editing an object and in more detail, the semantic
grouping could have a lower level of abstraction among the individual components of a single
object, which could be identified with GARField [26], allowing edits towards specific parts
like the arm rests of a chair or wheels on a car. In an ideal scenario this would run in real
time as the user is editing in the system since any number of objects could be selected and
the level of abstraction of component selection could vary.
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4.4 Lower-Fidelity Representations as Input to
Generate High Fidelity Scenes

In addition to incorporating captured radiance fields into this system, other methods of
generating scenes could be used to add or stylize existing 3D scenes. Scenes and objects
could be designed at a higher abstraction level through primitive objects, as discussed in
the Dreamcrafter stable di↵usion scene editor. These lower fidelity representations are much
easier to design and iterate, and can o↵er a variety of di↵erent higher fidelity generations
from the given arrangement of primitives using methods from stable di↵usion and ControlNet
generalized to 3D objects and scenes. These lower fidelity proxy representations, optionally
paired with semantic information like text prompts, could help add controllability in 3D
scene generations. Once converted to a radiance field, it can be edited in methods discussed
earlier. Arrangements of proxy representations could also be sourced from other mediums
such as images or videos of arrangements of physical objects or gestures/motion from users.
In the case of virtual production and pre-visualization, methods discussed above could be
used to create a system that enables users to create low fidelity approximations of scenes,
movement of objects, and camera movement as input modalities to generate a stylized high
fidelity output from a video di↵usion model. As described in Sora’s technical report [3], video
di↵usion models may have the potential to generate large scale 3D scenes. These could be
also edited through methods discussed above or used to complete or extend 3D scenes. These
methods should leverage all capabilities of the editing and generation systems.

4.5 Conclusion

Recent advances in radiance fields and generative AI systems have enabled new forms of
interactions and systems for creative tasks. When imagining the functionality of future of
3D editors, we can leverage novel 3D representations like NeRFs and 3DGS for high fidelity
reconstructions and 3D content paired with generative models, including LLMs and di↵usion
models, to design adaptable novel, intuitive, and multi-modal interactions.
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