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Preventing Reward Hacking with Occupancy Measure Regularization

Shivam Singhal * 1 Cassidy Laidlaw * 1 Anca Dragan 1

Abstract

Reward hacking occurs when an agent performs
very well with respect to a “proxy” reward func-
tion (which may be hand-specified or learned),
but poorly with respect to the unknown true re-
ward. Since ensuring good alignment between the
proxy and true reward is extremely difficult, one
approach to prevent reward hacking is optimizing
the proxy conservatively. Prior work has particu-
larly focused on enforcing the learned policy to
behave similarly to a “safe” policy by penalizing
the KL divergence between their action distribu-
tions (AD). However, AD regularization doesn’t
always work well since a small change in action
distribution at a single state can lead to poten-
tially calamitous outcomes, while large changes
might not be indicative of any dangerous activ-
ity. Our insight is that when reward hacking, the
agent visits drastically different states from those
reached by the safe policy, causing large devia-
tions in state occupancy measure (OM). Thus, we
propose regularizing based on the OM divergence
between policies instead of AD divergence to pre-
vent reward hacking. We theoretically establish
that OM regularization can more effectively avoid
large drops in true reward. Then, we empirically
demonstrate in a variety of realistic environments
that OM divergence is superior to AD divergence
for preventing reward hacking by regularizing to-
wards a safe policy. Furthermore, we show that
occupancy measure divergence can also regularize
learned policies away from reward hacking behav-
ior. Our code and data are available at https:
//github.com/cassidylaidlaw/orpo.

*Equal contribution 1Department of Electrical Engineer-
ing and Computer Science, University of California, Berke-
ley, CA, USA. Correspondence to: Cassidy Laidlaw <cas-
sidy laidlaw@berkeley.edu>, Shivam Singhal <shivamsing-
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1. Introduction
A major challenge for the designers of goal-oriented AI
systems is specifying a reward function that robustly cap-
tures their goals and values. Manually designing reward
functions is difficult due to the ambiguities and complex
variables underlying real-world scenarios (Ibarz et al., 2018).
An alternative is to learn reward functions from human data
(Sadigh et al., 2017; Jeon et al., 2020), but these often fail to
generalize outside the distribution of behavior seen during
training (McKinney et al., 2023; Tien et al., 2023). Thus,
a learned or hand-specified reward function is often just a
proxy for the true reward underlying the system designer’s
intent. Misalignment between the two objectives can lead to
reward hacking: a learned policy performs well according
to the proxy reward function, but not according to the true
reward function (Russell et al., 2010; Amodei et al., 2016;
Pan et al., 2022; Skalse et al., 2022). A reward hacking
policy’s behavior is often undesirable and can be especially
catastrophic when deployed in safety-critical scenarios, such
as autonomous driving (Krakovna et al., 2019; Turner et al.,
2019; Knox et al., 2022). Unfortunately, reward hacking
is a common phenomenon (Krakovna, 2018), which has
problematic implications in the real world (Lum & Isaac,
2016; Corbett-Davies et al., 2017; Obermeyer et al., 2019;
Milli et al., 2021; Pierson et al., 2021; Franchi et al., 2023;
Kleinberg et al., 2023).

One method to prevent reward hacking is to avoid fully
optimizing the proxy reward function by using constraints
or regularization. In particular, prior work has regularized
the chosen actions of a learning policy to be similar to those
of a known safe policy (Yang et al., 2021). A safe policy is
any policy that has reasonable (although potentially quite
suboptimal) performance and does not reward hack; safe
policies can be hard-coded or learned from human data. For
example, RLHF for LLMs generally optimizes the learned
reward in addition to a term that penalizes divergence from
the pre-trained language model’s output (Glaese et al., 2022;
Ouyang et al., 2022). Intuitively, this kind of regularization
pushes the learned policy away from “unusual” behaviors
for which the reward function may be misaligned.

The goal of optimizing a policy with regularization is to
achieve higher true reward than the safe policy while avoid-
ing reward hacking. To do so effectively, we must choose a
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regularization regime that is simultaneously strong enough
to prevent the learned policy from reward hacking, while
also being sufficiently lenient to ensure the learned policy
outperforms the safe policy. We argue that in many cases,
regularizing based on the action distributions (AD) of poli-
cies makes it impossible to achieve this goal. This is because
small shifts in action distribution can lead to large differ-
ences in outcomes, but large shifts in action distributions
may not cause any difference in outcome. As an example,
imagine an autonomous car driving alongside a steep cliff on
a coastal highway. Suppose we have access to a safe policy
that drives slowly and avoids falling off the cliff. However,
the car is optimizing a proxy reward function that priori-
tizes quickly reaching the destination, but not necessarily
staying on the road. If we try to regularize the car’s action
distributions to the safe policy, we will need to apply heavy
regularization, since only slightly increasing the probability
of some unsafe action (e.g., making a sharp right turn) can
lead to disaster. Since heavy regularization will prevent
even minor deviations in action distribution, it would be
near-impossible to improve upon the safe policy.

If action distribution divergences are poor regularizers for
reward hacking, what can we do instead? In our car example,
while a single catastrophic action doesn’t change the action
distribution much, it does drastically change the distribution
over states visited by the car. The learned policy will have a
high probability of reaching states where the car is off the
cliff and crashed, while the safe policy never reaches such
states. Our proposal follows naturally from this observation:
to avoid reward hacking, regularize based on divergence
from the safe policy’s occupancy measure, rather than ac-
tion distribution. A policy’s occupancy measure (OM) is
the distribution of states or state-action pairs seen by a pol-
icy when it interacts with its environment. Unlike action
distribution-based metrics, occupancy measures take into
account the states that the agent reaches. While algorithms
based on occupancy measures have been widely used for
imitation learning (Ho & Ermon, 2016), offline RL (Lee
et al., 2022), and efficient exploration (Hazan et al., 2019),
using OM divergence to prevent reward hacking remains
unexplored.

We show that OM-based regularization is superior to AD
regularization for preventing reward hacking in both theory
and practice. Theoretically, we show that there is a bound
on the difference in return of two policies under any reward
function based on the divergence between their occupancy
measures. Thus, constraining the OM divergence from a
safe policy can prevent the large drop in true reward as-
sociated with reward hacking, even when the true reward
function is unknown. In contrast, only much weaker guar-
antees can be established for AD divergence.

Empirically, we derive an algorithm called Occupancy-

Regularized Policy Optimization (ORPO) that can be eas-
ily incorporated into deep RL algorithms like Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017). ORPO
approximates the occupancy measure divergence between
policies using a discriminator network. We use ORPO to
optimize policies trained with misaligned proxy reward func-
tions in multiple reward hacking benchmark environments
(Pan et al., 2022) and compare it to AD regularization. The
results of our experiments demonstrate that training with oc-
cupancy measure regularization leads to better performance
under the unseen true reward function in all of the environ-
ments. In contrast, we find that it is difficult to tune AD
regularization in some environments to both prevent reward
hacking and allow meaningful improvement over the safe
policy. To explain why this is the case, we show that, when
compared with AD divergence, OM divergence from the
safe policy is a much more accurate predictor of whether the
learned policy is reward hacking. This validates our theoret-
ical explanation that OM divergence is more indicative of
the drop in the unknown true reward associated with reward
hacking.

When a safe policy is unavailable, an alternative method
to prevent reward hacking is to encourage a learned policy
to have behavior that is as different from a reward hacking
policy as possible. Our experiments show that optimizing
for the proxy reward plus OM divergence from a reward
hacking policy is also effective at avoiding reward hacking.

Our main contributions can be summarized as follows:

1. We show theoretically that occupancy measure regular-
ization is superior to action distribution regularization
for preventing reward hacking because constraining
OM divergence effectively prevents large drops in the
unknown true reward function.

2. We present the ORPO algorithm to implement OM
regularization and show that it outperforms AD regu-
larization in realistic environments.

3. We demonstrate that OM regularization can also be ef-
fectively used to regularize away from reward hacking.

2. Related work
While there have been separate lines of work investigating
reward hacking and exploring the use of occupancy mea-
sures for other applications, to the best of our knowledge,
we are the first to specifically study applying occupancy
measures to the problem of reward hacking.

Reward hacking: Some prior works establish theoretical
models of reward hacking as a special case of Goodhart’s
Law (Goodhart, 1984; Leike et al., 2018; Krakovna, 2019;
Skalse et al., 2022; Ngo et al., 2023). Krakovna (2018)
provide a list of many examples of reward hacking. Pan
et al. (2022) categorize types of reward misspecification and
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relate optimization power to reward hacking.

Safe reinforcement learning: Regularizing policies to be
similar to an offline policy based on their action distribution
KL divergences was first proposed by Stiennon et al. (2020)
and has since been widely employed in the context of op-
timizing LLMs using reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022;
Glaese et al., 2022). KL regularization for RLHF has been
further studied by Vieillard et al. (2021), Gao et al. (2022),
and Korbak et al. (2022). Some alternative approaches to
avoid reward hacking include quantilizers (Taylor, 2016),
“mild” optimization (Taylor et al., 2020), and impact regu-
larization (Turner et al., 2020). While constrained RL can
prevent the misbehavior of agents that optimize flawed re-
ward functions (Dalal et al., 2018; Chow et al., 2019; Zhang
et al., 2020; Roy et al., 2022), it simply shifts the difficulty
of designing a reward function to specifying a set of con-
straints and weights. Other proposals to address the reward
specification problem attempt to infer the true reward func-
tion based on the given proxy reward function, environment
context, and/or feedback from humans (Hadfield-Menell
et al., 2017; Reddy et al., 2020; Lee et al., 2021).

Applications of occupancy measures: Many offline RL
algorithms use occupancy measure-based regularization to
ensure that the learned policy remains within the training
data distribution (Lee et al., 2022; Mandal et al., 2023; He,
2023; Cheng et al., 2022; Rashidinejad et al., 2023; Xie et al.,
2023). Various types of distributional regularization are used
in model-based RL as well since learned models may not
generalize out-of-distribution (Yang et al., 2022). GAIL (Ho
& Ermon, 2016) is an algorithm for robust imitation learning
that aims to match the imitator’s occupancy measure to that
of the demonstrator. Kang et al. (2018) combines GAIL with
a reward function to efficiently explore using human data.
Another line of work aims to find a policy with the highest-
entropy occupancy measure for the purpose of exploring the
state space (Hazan et al., 2019; Lee et al., 2020; Nedergaard
& Cook, 2023).

Our contribution: Some of these previous works leverage
occupancy measures and derive algorithms that are similar
to our proposed ORPO algorithm. However, unlike previous
work, we use OM-based regularization to prevent reward
hacking, which to our knowledge is a novel application.
We view our contribution as demonstrating that occupancy
measure regularization is superior to action distribution reg-
ularization for this purpose. We do not explore the myriad
ways that OM regularization could be incorporated into RL
to prevent reward hacking. Instead, we focus our experi-
ments on the simple and general ORPO algorithm. We leave
to future work further investigation of alternate methods for
preventing reward hacking with OM-based regularization.

3. Action Distribution vs. Occupancy Measure
Regularization

We begin by theoretically and conceptually motivating why
occupancy measure regularization should be superior to ac-
tion distribution regularization for preventing reward hack-
ing. We present our theoretical analysis in the setting of
an infinite-horizon Markov decision process (MDP). An
agent takes actions a ∈ A to transition between states
s ∈ S over a series of timesteps t = 0, 1, 2, . . .. The first
state s0 is sampled from an initial distribution µ0(s), and
when an agent takes action at in st at time t, the next state
st+1 is reached at timestep t + 1 with transition probabil-
ity p(st+1 | st, at). The agent aims to optimize a reward
function R : S ×A → [0, 1], and rewards are accumulated
over time with discount factor γ ∈ [0, 1). A policy π maps
each state s to a distribution over actions to take at that state
π(a | s). We define the (normalized) return of a policy π
under a reward function R as

J(π,R) = (1− γ)Eπ [
∑∞

t=0 γ
tR(st, at)]

where Eπ refers to the expectation under the distribution of
states and actions induced by running the policy π in the
environment. The normalizing factor 1− γ guarantees that
J(π,R) ∈ [0, 1] always.

We define the state-action occupancy measure µπ of a policy
π as the expected discounted number of times the agent will
be in a particular state and take a specific action:

µπ(s, a) = (1− γ)Eπ [
∑∞

t=0 γ
t1{st = s ∧ at = a}] .

Intuitively, the occupancy measure represents the distribu-
tion of states and actions visited by the policy over time.

The standard approach to solving an MDP is to find a policy
π that maximizes its return:

maximize J(π,R). (1)

However, as we discussed in section 1, an AI system de-
signer most likely does not have access to a reward function
that perfectly encapsulates their preferences. Instead, the
designer might optimize π using a learned or hand-specified
proxy reward function R̃ which is misaligned with the true
reward function R. Blindly maximizing the proxy reward
function could lead to reward hacking.

The drawbacks of action distribution regularization:
One approach to preventing reward hacking is to optimize
the policy’s return with respect to the proxy R̃ plus a regular-
ization term that penalizes the KL divergence of the policy’s
action distribution (AD) from a safe policy πsafe. This is
equivalent to solving the following constrained optimization
problem:

maximize J(π, R̃) s.t. (2)

(1− γ)Eπ

[∑∞
t=0 γ

tDKL(π(· | st) ∥ πsafe(· | st))
]
≤ ϵ.
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s1

R(s1, a1) = 0
R(s1, a2) = 1

s2

R(s2, ·) = 1
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π(a2 | s1)

0
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J
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,R
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Figure 1. The MDP on the left, similar to that used in the proof of
Proposition 3.1, demonstrates one drawback of using divergence
between policies’ action distributions for regularization. The agent
stays in state s1, where it receives no reward, until it takes action
a2, after which it remains in state s2 forever and receives 1 reward
per timestep. The plot on the right shows the return J(π,R) for
a policy π when γ = 0.99 as a function of the policy’s action
distribution at s1. While π and πsafe (shown on the plot as dotted
lines) are close in action distribution space, they achieve very
different returns. Meanwhile, the optimal policy π∗ is far from
πsafe in action distribution space. Propositions 3.2 and A.2 show
that occupancy measure divergences do not have these drawbacks.

Intuitively, the aim of the AD constraint in (2) is to pre-
vent the unusual behavior associated with reward hacking
policies by constraining π to take similar actions to πsafe.

While AD regularization is simple and easy to implement,
this method also has serious drawbacks. In particular, the fol-
lowing proposition shows that in some cases small changes
in action distribution from a safe policy can induce large
drops in true reward, but large changes in AD are necessary
to improve on the safe policy.
Proposition 3.1. Fix c1 > 0 and δ > 0 arbitrarily small,
and c2 ≥ 0 arbitrarily large. Then there is an MDP, true
reward function R, and safe policy πsafe where both of the
following hold:

1. There is a policy π where the action distribution KL
divergence satisfies

(1−γ)Eπ

[∑∞
t=0 γ

tDKL(π(· | st) ∥ πsafe(· | st))
]
≤ c1

but J(πsafe, R)− J(π,R) ≥ 1− δ.
2. Any optimal policy π∗ ∈ argmaxπ J(π,R) satisfies

(1−γ)Eπ∗

[∑∞
t=0 γ

tDKL(π
∗(· | st) ∥ πsafe(· | st))

]
≥ c2.

All proofs are given in Appendix A. The first part of Propo-
sition 3.1 states that in the worst case, a policy with AD
divergence from the safe policy below some arbitrarily small
threshold c1 can induce a drop in return under the true re-
ward function R that is almost as large as the entire possible
range of returns. Thus, we must set the AD divergence con-
straint very small (i.e., ϵ ≪ c1) to prevent reward hacking.
The second part of Proposition 3.1 shows that in the same
MDP, it is necessary to change the action distribution by an
arbitrarily large divergence c2 to improve on the safe policy
and reach an optimal policy. Thus, if we set ϵ ≪ c1 to pre-
vent reward hacking, it will not allow for the large changes

to the action distribution that are necessary to improve over
πsafe. See Figure 1 for a graphical illustration of the results
in Proposition 3.1.

While the MDP discussed in Proposition 3.1 represents a
particularly bad case for AD regularization, we argue that
realistic environments often have the same issues. In many
safety-critical environments, even slightly increasing the
probability of taking an unsafe action can greatly reduce true
reward, as posited in part 1 of the proposition. Furthermore,
safe policies are often non-robust out-of-distribution (OOD),
e.g., a policy learned from human data might take unusual
actions in states outside the distribution of those normally
visited. Thus, taking just a single unusual action could lead
to an OOD state in which the safe policy is no longer a
meaningful regularization target; this also means small AD
divergence can lead to large drops in reward.

The benefits of occupancy measure regularization: Due
to the drawbacks of action distribution regularization, we
propose preventing reward hacking by regularizing the di-
vergence between the occupancy measures of the learned
and safe policies:

maximize J(π, R̃) s.t. ∥µπ − µπsafe∥1 ≤ ϵ. (3)

In (3), we use the total variation (TV) between the occu-
pancy measures, defined as

∥µπ − µπsafe∥1 =
∑

(s,a)∈S×A |µπ(s, a)− µπsafe(s, a)|.

Why should using the occupancy measure divergence to
regularize perform better than using the divergence between
action distributions? Ideally, unlike action distribution di-
vergence, there should be a closer relationship between the
rewards of two policies and their occupancy measure diver-
gence. In fact, it is possible to show that the difference in
returns between two policies for any reward function can be
bounded by their occupancy measures divergence:

Proposition 3.2. For any MDP, reward function R, and
pair of policies π, πsafe, we have

|J(πsafe, R)− J(π,R)| ≤
∥∥µπ − µπsafe

∥∥
1
. (4)

Results equivalent to Proposition 3.2 have been shown by
Xu et al. (2020) among others, but this result has not been
applied before in the context of reward hacking. For com-
pleteness we give a proof with our notation in Appendix A.2.

Proposition 3.2 suggests that OM regularization can effec-
tively prevent the large drops in true reward associated with
reward hacking, even when the true reward is unknown. Sup-
pose the returns of all reward hacking policies πhacking satisfy
JR(πhacking) < JR(πsafe)− C, i.e., reward hacking policies
have true reward that is smaller than that of the safe policy
by more than C. Then, setting the OM divergence constraint
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A = {LEFT, RIGHT, UP, DOWN, STAY}

Desired policy Safe policy Reward hacking policy

True reward = 14.9
Proxy reward = 37.0

True reward = 13.0
Proxy reward = 37.3

KL = 43.0

TV = 0.8

KL = 18.2
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Figure 2. This adaption of the tomato-watering AI Safety Gridworld (Leike et al., 2017) provides an intuitive example of why OM
divergence is superior to AD divergence for regularizing to a safe policy. The robot agent can move up, down, left, right, or stay in place.
The true reward function R only rewards watering tomatoes, while the proxy reward function R̃ also highly rewards reaching the sprinkler.
AD divergence The top row shows three policies for this environment: a desired policy that achieves the highest true reward, a safe
policy that achieves lower true reward, and a reward hacking policy that exploits the sprinkler state to achieve high proxy reward but low
true reward. The AD KL divergences between the policies, shown over the arrows connecting them, suggest that the reward hacking
policy is actually closer to the safe policy than the desired policy is. Thus, if we regularize to the safe policy using action distribution KL
divergence, we would be more likely to find a policy that hacks the proxy reward, rather than one like the left policy, which we prefer.
OM divergence The bottom row shows the occupancy measures for each policy in the top row, and the arrows between the columns
show the total variation distance ∥µ− µ∥1. The desired policy on the left is closer to the safe policy than the reward hacking policy is
in OM divergence. This is because both the desired and safe policies spend most of their time actually watering tomatoes, while the
reward hacking policy mainly visits the sprinkler state. Thus, if we trained a policy regularized with occupancy measure divergence in this
environment, we could hope to find a policy like the desired one on the left and avoid a reward hacking policy like the one on the right.

ϵ = C in (3) will prevent reward hacking, since any policy
within the constraint must satisfy JR(π) ≥ JR(πsafe)− C
by Proposition 3.2. C is often large in practice since reward
hacking induces a large drop in true reward. Thus, we can
use a large constraint bound ϵ in (3) that allows improvement
over the safe policy while still preventing reward hacking.

Although it is possible to prove a similar bound to (4) using
action distribution divergence, it has a 1

1−γ prefactor (Xu
et al., 2020), meaning that a constraint on AD divergence
must be set 1 − γ times the equivalent OM constraint to
obtain an equivalent guarantee about the true reward. Thus,
in environments with high discount factors—i.e., most re-
alistic environments—the constraint must be set to a value
too small to allow meaningful improvement over πsafe.

An illustrative example: See Figure 2 for an example
of why OM regularization outperforms AD regularization.
While in this example it is particularly obvious that OM
regularization should work better, we find in Section 5 that
OM outperforms AD in more realistic environments too.

Why does AD regularization work for LLMs? Despite
the drawbacks of action distribution regularization in theory,
it has performed well in practice when used as part of RLHF
for large language models (LLMs) (Stiennon et al., 2020;
Gao et al., 2022). In Appendix A.4, we show that for cur-
rent implementations of RLHF for LLMs, action distribution
and OM-based regularization are actually equivalent. Thus,
RLHF for LLMs is essentially already using occupancy mea-
sure regularization. However, this is only true under certain

strict assumptions which are satisfied almost exclusively in
the current RLHF-for-LLMs paradigm. For more general
environments, there can be significant differences between
action distribution and OM-based regularization, as clearly
demonstrated by our experiments.

4. Occupancy-regularized policy optimization
(ORPO)

In the previous sections, we showed theoretical evidence
that regularizing RL by constraining OM divergence is su-
perior to constraining AD divergence. We now introduce
an algorithm, Occupancy-Regularized Policy Optimization
(ORPO), to feasibly approximate the occupancy measure
divergence between the learned and safe policies for the
purpose of regularizing deep RL agents.

While our theory uses the TV distance between occupancy
measures, we find that the KL divergence is more stable
to calculate in practice. Since Pinsker’s inequality and
the Bretagnolle-Huber inequality show that TV distance
is upper-bounded in terms of KL divergence, our theoretical
guarantees remain valid in the case of OM KL (Canonne,
2022). Our objective from (3) can be reformulated with the
KL divergence in place of the TV distance and a Lagrangian
relaxation in place of the hard constraint:

maximize J(π, R̃)− λDKL(µπ ∥ µπsafe). (5)

We optimize (5) using a gradient-based method. The gra-
dient of the first term is estimated using PPO, a popular
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Figure 3. The top row of plots in the figure shows the true rewards of policies trained with three types of regularization to πsafe for several
values of λ/Raverage: action distribution, state-only OM, and state-action OM. The bottom two rows of plots in the plot show the KL
divergence between the action distributions and occupancy measures of the learned and safe policies for each coefficient. For all plots and
tables, we give the median across 5 seeds with error bars indicating the standard deviation. We find that reward hacking consistently
occurs in each environment without regularization or with very small regularization coefficients λ. As λ is increased to moderate values,
the learned policy stops reward hacking and often improves upon the safe policy. At high regularization coefficients, the learned policy
approaches the safe policy.

policy gradient method (Schulman et al., 2017). However,
calculating the occupancy measure divergence for the sec-
ond term is intractable to do in closed form since it requires
the enumeration of all possible state-action pairs, an im-
possible task in deep RL. Thus, we approximate the KL
divergence between the occupancy measures of policies by
training a discriminator network, a technique that has previ-
ously been used for generative adversarial networks (GANs)
(Goodfellow et al., 2014) and GAIL (Ho & Ermon, 2016).

The discriminator network d : S ×A → R assigns a score
d(s, a) ∈ R to any state-action pair (s, a) ∈ S × A, and
it is trained on a mixture of data from both the learned
policy π and safe policy πsafe. The objective used to train d
incentivizes low scores for state-action pairs from πsafe and
high scores for state-action pairs from π:

d = argmind
∑∞

t=0

(
Eπ[ γ

t log(1 + e−d(st,at)) ]

+Eπsafe [ γ
t log(1 + ed(st,at)) ]

)
.

(6)

Huszár (2017) proves that if the loss function in (6) is min-
imized, then the expected discriminator scores for state-
action pairs drawn from the learned policy distribution will
approximately equal the KL divergence between the occu-
pancy measures of the two policies:

DKL(µπ(s, a) ∥ µπsafe(s, a)) ≈ (1−γ)Eπ

[∑∞
t=0 γ

td(st, at)
]
.

Applying the definitions of the learned policy’s returns and
the KL divergence between the polices’ occupancy mea-
sures, we can now rewrite our ORPO objective:

maximize Eπ

[∑∞
t=0 γ

t
(
R̃(st, at)− λ d(st, at)

) ]
. (7)

Note that (7) is identical to the normal RL objective with a
reward function R′(s, a) = R̃(s, a)− λd(s, a). Thus, once
the discriminator has been trained, we add the discriminator
scores to the proxy reward function and use the combined
values to update π with PPO. The training process for ORPO
consists of iterating between two phases: one in which data
from both the safe and learned policies is used to train the
discriminator to minimize (6), and one in which data from
the learned policy is used to train the PPO agent with the
augmented reward function in (7). After a policy gradient
step, the process repeats.

Regularization with state-only occupancy measure:
While we have thus far considered the state-action occu-
pancy measure of a policy µπ(s, a), it sometimes makes
more sense to regularize based on the state-only occupancy
measure µπ(s) = (1 − γ)Eπ[

∑∞
t=0 γ

t1{st = s}]. In par-
ticular the reward function R(s) in many environments is
a function of only the state. In these cases, it is simple
to establish similar guarantees to Proposition 3.2 based on
just the state occupancy measure, and therefore, the state
occupancy measure might be more effective in regularizing
the behavior of the agent. We can implement this within
ORPO by only providing the state as input to the discrimi-
nator rather than a state-action pair. Intuitively, regularizing
with state OM divergence in environments where the reward
function only depends on the state avoids over-applying
regularization when it is unnecessary. See Appendix A.5 for
more details.

Regularizing away from reward hacking policies: While
there is a natural safe policy for many environments, it may
not always be possible to define one. In such cases, we
can potentially regularize away from reward hacking behav-
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Environment
Method Tomato Traffic (×103) Glucose (×103) Pandemic

Action dist. regularization (λ∗) 6.19 ± 0.03 -1.33 ± 0.05 -73.38 ± 8.26 -12.20 ± 0.06
State occupancy regularization (λ∗) 7.07 ± 0.11 -1.47 ± 0.18 -58.39 ± 3.36 -10.24 ± 0.54
State-action occupancy regularization (λ∗) 6.80 ± 0.05 -1.25 ± 0.06 -48.88 ± 0.48 -11.73 ± 0.19

Action dist. regularization (λdrop) 4.59 ± 0.17 -55.10 ± 2.37 -459.92 ± 102.08 -23.10 ± 5.04
State occupancy regularization (λdrop) 6.89 ± 0.12 -1.34 ± 22.63 -158.74 ± 25.74 -10.60 ± 0.78
State-action occupancy regularization (λdrop) 6.84 ± 0.17 -1.25 ± 0.06 -181.65 ± 6.69 -11.88 ± 0.72

πsafe 5.86 ± 0.00 -2.28 ± 0.00 -72.64 ± 0.00 -12.26 ± 0.00
No regularization 2.35 ± 0.14 -57.38 ± 3.53 -599.02 ± 1.58 -29.57 ± 6.86
Early stopping (best case) 6.82 ± 0.17 -2.24 ± 0.13 -78.26 ± 22.90 -9.18 ± 3.86
Training with true reward 8.54 ± 0.12 -0.93 ± 0.11 -43.41 ± 0.81 -2.65 ± 0.83

Table 1. The top three rows of the table give the median true reward when using the optimal coefficient λ∗ for each type of regularization.
The middle three rows show the true reward attained when using the coefficient λdrop which decreases AD or OM divergence the most
compared to a slightly smaller coefficient. The bottom four rows show the true rewards for the baselines: the safe policy πsafe, a policy
trained on the proxy reward without regularization (exhibiting reward hacking), a policy trained with the proxy reward with early stopping
when the highest true reward is achieved, and a policy trained on the true reward. The latter two baselines are impossible in practice
because when true reward is unknown but are given as additional comparisons. The median and standard deviation across 5 random seeds
are reported.

ior. That is, suppose training without any regularization in
some environment results in a policy πhacking that exhibits
reward hacking. Then, we can train a second policy with
the following objective:

maximize J(π, R̃) + λDKL(µπ ∥ µπhacking).

Unlike in (3), we encourage the occupancy measure of our
new policy π to be as far as possible from πhacking. This
will hopefully prevent π from exhibiting the same reward
hacking behavior as πhacking. It is trivial to modify ORPO to
optimize this objective; we simply need to flip the sign of
the discriminator term in (7).

5. Experiments
We now use ORPO to compare the empirical performance
of occupancy measure and action distribution regularization
in four environments: a tomato-watering gridworld similar
to that in Figure 2; Flow, an autonomous vehicle control
environment introduced by Wu et al. (2022); SimGlucose,
a blood glucose monitoring system developed by Fox et al.
(2020), and a COVID-19 pandemic simulator created by
Kompella et al. (2020). We chose the first for illustrative
purposes, and the following three because they are reward
hacking benchmark environments from Pan et al. (2022).

Tomato gridworld: Like in Figure 2, the tomato environ-
ment contains a sprinkler state where the agent perceives
all tomatoes as being watered and thus receives high proxy
reward but no true reward. We train a safe policy using the
true reward function, and then add a 10% chance of taking
a random action to ensure there is room to improve upon it.

Flow traffic simulator: The traffic environment simulates
a group of human-controlled and RL-controlled vehicles

on an on-ramp attempting to merge into traffic on a high-
way. The true reward prioritizes a small mean commute
time, while the proxy reward is the average velocity of all
cars. When reward hacking, the RL controlled vehicle on
the on-ramp stops indefinitely and lets cars continue for-
ward at high speeds on the highway, which maximizes the
proxy reward but increases the commute times of cars on
the on-ramp infinitely. As the safe policy for the traffic
environment we used the Intelligent Driver Model (IDM), a
standard approximation of human driving behavior (Treiber
et al., 2000). In practice, safe policies are often learned
via imitation learning, so to simulate this we generate data
from the IDM controller and train a behavioral cloning (BC)
policy using the generated data.

SimGlucose: The SimGlucose blood glucose monitoring
environment is an extension of the FDA-approved glucose
monitoring simulator proposed by Man et al. (2014) for
Type 1 Diabetes patients. The RL agent controls the insulin
administered to a simulated patient in order to maintain
healthy glucose levels. The true reward is a standard mea-
sure of health risk for the patient, but the proxy reward is
misaligned and prioritizes the monetary cost of the treat-
ment. Optimizing for a cost-based proxy has caused major
disparities in access to healthcare on the basis of race (Ober-
meyer et al., 2019). As the safe baseline policy, we train a
BC policy based on data generated by a PID controller with
parameters tuned by the original designers of the simulator
(Steil, 2013).

COVID-19 simulator: The pandemic environment sim-
ulates a population’s infection dynamics using the SEIR
model (Mwalili et al., 2020). The RL agent chooses the
level of lockdown restrictions placed on the population by
observing the results of testing. The proxy reward func-
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tion omits the political cost associated with certain deci-
sions. Our safe policy is trained via BC on a combination
of hand-specified and real-world strategies employed by
governments during the pandemic, which were also used by
Kompella et al. (2020) as baselines.

Regularizing towards a safe policy: We train RL policies
in each environment with action distribution regularization
and OM regularization to the environment’s safe policy,
varying the regularization coefficient λ across a wide range.
Since the scale of the reward functions varies between en-
vironments, we normalize λ by the typical per-timestep
reward for each environment, which we denote Raverage. In
the environments that we studied, λ/Raverage values between
10−3 and 101 seemed to work best. See Appendix D for all
experimental details.

The results of our experiments are shown in Table 1 and Fig-
ure 3. In each environment, we find that OM regularization
with the optimal coefficient (λ∗) outperforms action distribu-
tion regularization. OM regularization consistently allows
improvement over the performance of πsafe while preventing
reward hacking; meanwhile, action distribution regulariza-
tion fails to improve significantly on the safe policy in the
glucose and pandemic environments.

We were able to determine the optimal regularization coeffi-
cients λ∗ by considering the policies’ performance on the
true reward. However, in practice, comparing the results of
each type of regularization with the optimal coefficients is
unrealistic, since system designers must choose a regular-
ization regime without access to the unknown true reward
function. Observing changes in the policies’ divergences as
λ is varied can help designers choose the right coefficient. In
particular, we find that the optimal regularization coefficient
is often the coefficient at which the regularized divergence
drops the most compared to a slightly smaller coefficient.
To demonstrate this, we compare the true rewards of poli-
cies for λ values chosen based on this heuristic—which
we denote as λdrop—in the middle three rows of Table 1.
Regularizing based on OM divergence with λdrop achieves
true reward close to those obtained with λ∗, despite being
chosen without access to the true reward function.

We find that both state-only and state-action occupancy mea-
sure regularization achieve similar true reward. Generally,
state-only occupancy measures perform better in environ-
ments whose true reward functions depend primarily on the
state, reflecting the intuition of our theory in Appendix A.5.
In practice, we recommend experimenting with both OM
regularizers.

In addition to comparing OM and AD regularization, we
also test early stopping, which has been proposed by Kar-
wowski et al. (2023) as another method for preventing re-
ward hacking. While they introduce a specific criterion for

AUROC for predicting reward hacking
Environment Occ. measure KL Action dist. KL

Tomato 1.00 0.89
Traffic 1.00 0.98
Glucose 0.99 0.79
Pandemic 0.94 0.82

Table 2. We find that, compared to AD divergence, OM divergence
is a much better predictor of whether reward hacking is occurring
during training according to its area under the ROC curve (AU-
ROC). This validates that OM divergence is a more successful
regularizer because it more accurately identifies when reward hack-
ing is happening. See Figure 4 for full AUROC curves.

deciding when to stop training, we consider the best possi-
ble case: we train policies on the proxy reward function and
then evaluate the policy from the iteration with the highest
true reward. We find that OM regularization is superior to
early stopping in all environments except for the pandemic
simulator. Furthermore, this best-case approach is infeasi-
ble in practice since the true reward is unknown, so a more
realistic early stopping method would only perform more
poorly. Our results thus suggest that policy regularization
is usually more effective at preventing reward hacking than
early stopping.

Explaining the superior performance of OM regulariza-
tion: In Section 3, we hypothesized that OM regularization
is superior to action distribution regularization because there
is a stronger relationship between OM divergence and the
difference in returns of two policies under any reward func-
tion; therefore, OM divergence should better measure when
there is a large difference in true rewards between the safe
and learned policies, indicating reward hacking. We em-
pirically test this hypothesis by comparing how well both
action distribution and OM divergence predict if reward
hacking is occurring during RL training. In particular, we
divide all of our training runs into ten segments, and for
each segment record (i) whether the agent is reward hack-
ing, (ii) the action distribution divergence from πsafe, and
(iii) the OM divergence from πsafe. For (i), we define reward
hacking as achieving higher proxy reward but lower true
reward than πsafe. Then, we calculate how accurately each
type of divergence can predict whether reward hacking is
occurring across all training run segments. The results of
this experiment are shown in Table 2. We find that in all
environments, OM divergence is a better classifier of reward
hacking behavior, validating our hypothesis as to why it is a
better regularizer for preventing reward hacking.

Regularizing away from reward hacking behavior: We
experiment with regularizing away from reward hacking
policies using both action distribution and OM regulariza-
tion. We obtain a πhacking for each environment by training
on the proxy reward without regularization, and we regular-
ize away from πhacking using a range of values of λ.
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Environment
Tomato Traffic Glucose Pandemic

Regularization (×103) (×103)

AD 1.98 ± 1.49 -58.23 ± 2.95 -10.37 ± 0.20 -8.35 ± 1.94
State OM 5.32 ± 0.22 -1.10 ± 0.04 -186.14 ± 17.98 -14.28 ± 0.40
State-Act. OM 5.59 ± 0.32 -1.07 ± 0.01 -93.15 ± 29.54 -14.23 ± 5.02
No regularization (πhacking) 2.35 ± 0.14 -57.38 ± 3.53 -599.02 ± 1.58 -29.57 ± 6.86

Table 3. The true rewards achieved by regularizing away from reward hacking policies in the four environments. OM regularization
prevents reward hacking in all four environments, while AD regularization fails to improve on πhacking in the tomato and traffic environments.

The results are presented in Table 3. We find that OM KL
regularization consistently avoids reward hacking and, in
some cases, even outperforms the safe policies. On the other
hand, the AD regularized policies’ true reward is danger-
ously close to that of πhacking in some of the environments,
indicating that it is unable to consistently prevent reward
hacking.

6. Conclusion
We have presented theoretical and empirical evidence that
occupancy measure regularization can more effectively pre-
vent reward hacking than action distribution regularization
when training with a misaligned proxy reward function. Our
results are a step towards a better understanding of meth-
ods for preventing reward hacking. However, many open
problems remain, including determining the best way of in-
tegrating occupancy measure regularization into the training
process, deriving better approximators of OM divergence,
and intelligently choosing regularization coefficients. As AI
systems’ objectives become more complex and they are used
in increasingly important societal roles, reward hacking will
become both more common and more consequential. Thus,
we hope that our results contribute to the goal of ensuring
that future AI systems are safe and beneficial.

Broader Impacts
Reward hacking in the real world has already led to signifi-
cant disparities on the basis of race, gender, and other dis-
tinguishing factors in the realms of healthcare (Obermeyer
et al., 2019; Pierson et al., 2021), policing (Lum & Isaac,
2016; Corbett-Davies et al., 2017; Franchi et al., 2023), and
online platforms like recommender systems (Milli et al.,
2021; Kleinberg et al., 2023). As AI agents trained with RL
become more powerful, it is likely these systems will exhibit
reward hacking behaviors that could further exacerbate bias
and can potentially cause substantial harm, especially in
safety critical scenarios. Thus, the aim of our work is to pre-
vent reward hacking by improving regularization methods.
We do not believe that there are any noteworthy negative

consequences of developing such methods.
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Appendix

A. Proofs
A.1. Proof of Proposition 3.1

Proposition 3.1. Fix c1 > 0 and δ > 0 arbitrarily small, and c2 ≥ 0 arbitrarily large. Then there is an MDP, true reward
function R, and safe policy πsafe where both of the following hold:

1. There is a policy π where the action distribution KL divergence satisfies

(1− γ)Eπ

[∑∞
t=0 γ

tDKL(π(· | st) ∥ πsafe(· | st))
]
≤ c1

but J(πsafe, R)− J(π,R) ≥ 1− δ.
2. Any optimal policy π∗ ∈ argmaxπ J(π,R) satisfies

(1− γ)Eπ∗

[∑∞
t=0 γ

tDKL(π
∗(· | st) ∥ πsafe(· | st))

]
≥ c2.

Proof. We assume that δ < 1, since otherwise letting π = πsafe trivially satisfies the first part of the proposition. Consider
the following MDP, similar to the one shown in Figure 1:

s1

R(s1, a1) = 0
R(s1, a2) = 1

s2

R(s2, a1) = 1− δ/2
R(s2, a2) = 1

a2a1

a1, a2

In this MDP, S = {s1, s2}, A = {a1, a2}, and the transition probabilities and reward function are defined by

p(s1 | s1, a1) = 1 p(s2 | s1, a2) = 1

p(s2 | s2, a1) = 1 p(s2 | s2, a2) = 1

R(s1, a1) = 0 R(s1, a2) = 1

R(s2, a1) = 1− δ/2 R(s2, a2) = 1.

The initial state is always s1. Thus, the agent stays in state s1 and receives no reward until after it takes action a2, at which
point it transitions to s2 and receives 1 or 1− δ/2 reward per timestep. Define for any (p, q) ∈ [0, 1]2 a policy π(p,q):

π(p,q)(a2 | s1) = p π(p,q)(a2 | s2) = q.

We will prove the proposition using

γ = 1− δ

2
(1− e−c1)

πsafe = π(p,q) where p = 2(1− γ)/δ and q = exp{−c2/γ}
π = π(0,0)

π∗ = π(1,1).

Note the following:

• π∗ is the unique optimal policy: J(π∗, R) = 1 and for any other policy π, J(π,R) < 1.

• γ ∈ [0, 1): c1 > 0 and thus 1− e−c1 > 0, and δ < 1.

• p ∈ [0, 1]: since γ > 1− δ/2, we have p < 1.
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• q ∈ [0, 1]: since c2 ≥ 0, we have q ≤ 1.

To start, we need to show that

(1− γ)Eπ

[ ∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
≤ c1. (8)

Since π always stays at s1, we can rewrite the LHS of (8) as

(1− γ)Eπ

[ ∞∑
t=0

γtDKL(π(· | st) ∥ πsafe(· | st))

]
= DKL(π(· | s1) ∥ πsafe(· | s1))

= π(a1 | s1) log
π(a1 | s1)

πsafe(a1 | s1)
+ π(a2 | s1) log

π(a2 | s1)
πsafe(a2 | s1)

= log
1

1− p

= log
1

e−c1

= c1,

which proves (8).

Next, we need to show that J(πsafe, R)− J(π,R) ≥ 1− δ. Clearly, J(π,R) = 0. We can bound J(πsafe, R) as

J(πsafe, R) = (1− γ)

∞∑
t=0

γt
[
Pπ(st = s1)p+ Pπ(st = s2)(q + (1− q)(1− δ/2))

]
≥ (1− γ)

∞∑
t=0

γt(1− δ/2)
[
Pπ(st = s1)p+ Pπ(st = s2)

]
= (1− γ)

∞∑
t=0

γt(1− δ/2)Pπ

(
∃t′ ≤ t s.t. at′ = a2

)
= (1− γ)

∞∑
t=0

γt(1− δ/2)
(
1− (1− p)t+1

)
= (1− γ)(1− δ/2)(1− p)

∞∑
t=0

γt

(
1

1− p
− (1− p)t

)
= (1− γ)(1− δ/2)(1− p)

(
1

(1− p)(1− γ)
− 1

1− γ(1− p)

)
= (1− δ/2)

p

1− γ(1− p)
.

Plugging in p = 2(1− γ)/δ gives

J(πsafe, R) ≥ (1− δ/2)
2(1− γ)/δ

1− γ(1− 2(1− γ)/δ)

=
1− δ/2

γ + δ/2
(i)
≥ (1− δ/2)(2− γ − δ/2)

≥ (1− δ/2)(1− δ/2)

≥ 1− δ,

which proves J(πsafe, R)− J(π,R) ≥ 1− δ as desired. (i) uses the fact that 1/x ≥ 2− x for x > 0.
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All that remains to be shown is that

(1− γ)Eπ∗

[ ∞∑
t=0

γtDKL(π
∗(· | st) ∥ πsafe(· | st))

]
≥ c2. (9)

We can bound the LHS of (9) based on only the KL divergence at s2:

(1− γ)Eπ∗

[ ∞∑
t=0

γtDKL(π
∗(· | st) ∥ πsafe(· | st))

]
≥ (1− γ)

∞∑
t=0

γtDKL(π
∗(· | s2) ∥ πsafe(· | s2))Pπ∗(st = s2).

Since π∗ always takes action a2, we know that Pπ∗(st = s2) = 1{t ≥ 1}. Thus, we can continue the bound as

≥ (1− γ)

∞∑
t=1

γtDKL(π
∗(· | s2) ∥ πsafe(· | s2))

= γDKL(π
∗(· | s2) ∥ πsafe(· | s2))

= γ

[
π∗(a1 | s2) log

π∗(a1 | s2)
πsafe(a1 | s2)

+ π∗(a2 | s2) log
π∗(a2 | s2)
πsafe(a2 | s2)

]
= γ log

1

q

= c2

by the definition of q. This proves (9) and completes the proof.

A.2. Proof of Proposition 3.2

We first prove another useful proposition:

Proposition A.1. The return of a policy π under a reward function R is given by

J(π,R) =
∑

(s,a)∈S×A

µπ(s, a)R(s, a).

Proof. Applying the definitions of return and occupancy measure, we have

J(π,R) = (1− γ)Eπ

[ ∞∑
t=0

γtR(st, at)

]

= (1− γ)

∞∑
t=0

γt
∑

(s,a)∈S×A

R(s, a)Pπ (st = s ∧ at = a)

= (1− γ)
∑

(s,a)∈S×A

R(s, a)

∞∑
t=0

γt Pπ (st = s ∧ at = a)

=
∑

(s,a)∈S×A

R(s, a) (1− γ)Eπ

[ ∞∑
t=0

γt 1 {st = s ∧ at = a}

]

=
∑

(s,a)∈S×A

µπ(s, a)R(s, a).

According to Proposition A.1, the return of a policy is simply a weighted sum of the reward function, where the weights are
given by the occupancy measure. We now prove Proposition 3.2.

Proposition 3.2. For any MDP, reward function R, and pair of policies π, πsafe, we have

|J(πsafe, R)− J(π,R)| ≤
∥∥µπ − µπsafe

∥∥
1
. (4)
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Proof. Applying Proposition A.1, Hölder’s inequality, and the fact that R(s, a) ∈ [0, 1], we have

|J(πsafe, R)− J(π,R)|

=

∣∣∣∣∣∣
∑

(s,a)∈S×A

(µπsafe(s, a)− µπ(s, a))R(s, a)

∣∣∣∣∣∣
≤

(
max

(s,a)∈S×A
|R(s, a)|

) ∑
(s,a)∈S×A

|µπsafe(s, a)− µπ(s, a)|


≤ ∥µπ − µπsafe∥1 .

A.3. Additional results

The following proposition demonstrates that there is always some reward function for which the bound in (4) is tight up to a
factor of two.

Proposition A.2. Fix an MDP and pair of policies π, πsafe. Then there is some reward function R such that

|J(πsafe, R)− J(π,R)| ≥ 1

2

∥∥µπ − µπsafe

∥∥
1
.

Proof. Define two reward functions

R1(s, a) = 1{µπsafe(s, a) ≥ µπ(s, a)}
R2(s, a) = 1{µπsafe(s, a) ≤ µπ(s, a)}.

Using Proposition A.1, we have

|J(πsafe, R1)− J(π,R1)|+ |J(π,R2)− J(πsafe, R2)|
≥ J(πsafe, R1)− J(π,R1) + J(π,R2)− J(πsafe, R2)

=
∑

(s,a)∈S×A

(
µπsafe(s, a)− µπ(s, a)

)(
R1(s, a)−R2(s, a)

)

=
∑

(s,a)∈S×A

(
µπsafe(s, a)− µπ(s, a)

)
1 µπsafe(s, a) > µπ(s, a)

−1 µπsafe(s, a) < µπ(s, a)

0 µπsafe(s, a) = µπ(s, a)

=
∑

(s,a)∈S×A

∣∣∣µπsafe(s, a)− µπ(s, a)
∣∣∣

= ∥µπ − µπsafe∥1.

Since both of the terms on the first line are positive, one must be at least 1
2∥µπ − µπsafe∥1, which completes the proof.

A.4. Occupancy measure regularization in LLMs

As noted in the main text, in the current paradigm of using RLHF to train LLMs, we can show that action distribution
divergence between two policies is equivalent to occupancy measure divergence. In particular, we prove the following
proposition.

Proposition A.3. Suppose that an environment satisfies the following conditions:

• It is deterministic: µ0(s0) = 1 for exactly one state s0, and for all st, at ∈ S ×A, p(st+1 | st, at) = 1 for exactly one
state st+1.
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• Exactly one sequence of actions leads to each state: if following a0, . . . , at−1 leads to s, then no other sequence of
actions (of any length) can also lead to s.

Then, for any policies π, π′, the action distribution and occupancy measure KL divergences between them are equal:

DKL(µπ ∥ µπ′) = Eπ

[ ∞∑
t=0

γtDKL(π(· | st) ∥ π′(· | st))

]
.

Proof. Given the assumptions about the environment, we can rewrite the log-occupancy measure of a state-action pair in
terms of the sum of log action probabilties over the unique sequence of actions leading to that state. Suppose a0, . . . , at−1 is
the unique action sequence leading to s and that this action sequence visits states s0, . . . , st−1, s. Then

logµπ(s, a) = log(1− γ)Eπ

[ ∞∑
t=0

γt1{st = s ∧ at = a}

]
= log(1− γ)Pπ(st = s ∧ at = a)

= log(1− γ)

t∏
i=0

π(ai | si)

= log(1− γ) +

t∑
i=0

log π(ai | si).

Using this, we can rewrite the occupancy measure KL divergence as

DKL(µπ ∥ µπ′) =
∑

(s,a)∈S×A

µπ(s, a) log

(
µπ(s, a)

µπ′(s, a)

)

= (1− γ)

∞∑
t=0

γt
∑

a0,...,at∈At+1

Pπ(a0 ∧ · · · ∧ at)

t∑
i=0

(
log π(ai | si)− log π′(ai | si)

)

= (1− γ)

∞∑
t=0

γt
∑

a0,...,at∈At+1

 t∏
j=0

π(ai | si)

 t∑
i=0

(
log π(ai | si)− log π′(ai | si)

)
, (10)

where si is the state reached by taking a0, . . . , ai−1.

We will now show inductively that

∑
a0,...,at∈At+1

 t∏
j=0

π(ai | si)

 t∑
i=0

(
log π(ai | si)− log π′(ai | si)

)
=

t∑
i=0

∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si)).

(11)
Consider first if t = 0. Then

∑
a0∈A

π(a0 | s0)
(
log π(a0 | s0)− log π′(a0 | s0)

)
= DKL(π(· | s0) ∥ π′(· | s0))
= Pπ(s0)DKL(π(· | s0) ∥ π′(· | s0)).
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Now suppose (11) holds for t− 1. Then for t we have

∑
a0,...,at∈At+1

 t∏
j=0

π(ai | si)

 t∑
i=0

(
log π(ai | si)− log π′(ai | si)

)

=
∑

a0,...,at−1∈At

t−1∏
j=0

π(ai | si)

 ∑
at∈A

π(at | st)

[
log π(at | st)− log π′(at | st) +

t−1∑
i=0

(
log π(ai | si)− log π′(ai | si)

)]

=
∑

a0,...,at−1∈At

t−1∏
j=0

π(ai | si)

[
DKL(π(· | st) ∥ π′(· | st)) +

∑
at∈A

π(at | st)
t−1∑
i=0

(
log π(ai | si)− log π′(ai | si)

)]

=
∑

a0,...,at−1∈At

t−1∏
j=0

π(ai | si)

[
DKL(π(· | st) ∥ π′(· | st)) +

t−1∑
i=0

(
log π(ai | si)− log π′(ai | si)

)]

=
∑
st∈S

Pπ(st)DKL(π(· | st) ∥ π′(· | st)) +
∑

a0,...,at−1∈At

t−1∏
j=0

π(ai | si)

 t−1∑
i=0

(
log π(ai | si)− log π′(ai | si)

)
(i)
=

∑
st∈S

Pπ(st)DKL(π(· | st) ∥ π′(· | st)) +
t−1∑
i=0

∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si))

=

t∑
i=0

∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si)),

where (i) is from the inductive hypothesis.

Now, plugging (11) into (10) gives

DKL(µπ ∥ µπ′)

= (1− γ)

∞∑
t=0

γt
t∑

i=0

∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si))

= (1− γ)

∞∑
i=0

∞∑
t=i

γt
∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si))

= (1− γ)

∞∑
i=0

∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si))
∞∑
t=i

γt

= (1− γ)Eπ

[ ∞∑
i=0

DKL(π(· | si) ∥ π′(· | si))
∞∑
t=i

γt

]

= (1− γ)Eπ

[
γi

1− γ

∞∑
i=0

DKL(π(· | si) ∥ π′(· | si))

]

= Eπ

[
γi

∞∑
i=0

DKL(π(· | si) ∥ π′(· | si))

]
,

which is the desired result.

Proposition A.3 applies to two common MDP formulations of generating LLM responses. In the first formulation, each
entire LLM response is considered a single action and then the MDP terminates. In this case, the conditions of Proposition
A.3 are clearly satisfied. In the second formulation, each word generated is considered a single action, and the state consists
of all previously generated words. Clearly this also satisfies the conditions of the proposition. Thus, in either case, AD and
OM KL regulization are equivalent when training LLMs via RL.
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However, the conditions of Proposition A.3 are unlikely to be met by many other MDPs. Many MDPs are stochastic,
violating the first assumption. Even among deterministic MDPs, it is very uncommon that only a single action sequence can
lead to each state. None of the environments we experiment with in the main text, and no common RL benchmarks outside
of certain text generation or discrete optimization tasks, satisfy this property.

A.5. State-only occupancy measures

In this section, we prove results for state-only occupancy measures

µπ(s) = (1− γ)Eπ[

∞∑
t=0

γt1{st = s}]

which are similar to our results for state-action occupancy measures. In particular, suppose that the reward function only
depends on the state, i.e., R(s, a) = R(s). Then we can state the following propositions.

Proposition A.4. The return of a policy π under a state-based reward function R is given by

J(π,R) =
∑
s∈S

µπ(s)R(s).

Proof. We have

J(π,R) = (1− γ)Eπ

[ ∞∑
t=0

γtR(st)

]

= (1− γ)

∞∑
t=0

γt
∑
s∈S

R(s)Pπ (st = s)

= (1− γ)
∑
s∈S

R(s)

∞∑
t=0

γt Pπ (st = s)

=
∑
s∈S

R(s) (1− γ)Eπ

[ ∞∑
t=0

γt 1 {st = s}

]
=

∑
s∈S

µπ(s)R(s).

Proposition A.5. For any MDP, state-based reward function R, and pair of policies π, πsafe, we have

|J(πsafe, R)− J(π,R)| ≤ ∥µs
π − µs

π∥1,

where ∥µs
π − µs

π∥1 =
∑

s∈S |µπ(s)− µπsafe(s)|.

Proof. The proof proceeds via an analogous application of Hölder’s inequality as in the proof of Proposition 3.2.

B. Additional Results
B.1. AUROC Curves for reward hacking detection

Occupancy measure KL is better at classifying when reward hacking is occurring than action distribution KL. We can see
this as the AUROC for the OM-based detectors is closer to one than the AD-based detectors. Curves are shown in Figure 4,
and the tabulated AUROC in Table 2.
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Figure 4. AUROC curves for OM and AD-based reward hacking predictors

B.2. Detailed Results

Regularizing towards a safe policy Here, we provide the median true reward achieved across 5 seeds for each of the
coefficients tested in each of the environments for the three regularization methods (AD, state-action OM, and state OM).
As described in the main text, the coefficients that were run were determined by multiplying a range of scale-independent
coefficients by the average per-timestep rewards in each environments that we calculated after running evaluation runs. The
results for the tomato, traffic, glucose, and pandemic environments are in Tables 4, 5, 6, and 7 respectively.

Coefficient AD KL State-Action OM KL State OM KL

0.4 6.16 ± 0.03 6.84 ± 0.17 6.89 ± 0.12
0.08 6.26 ± 0.04 7.32 ± 0.25 7.62 ± 0.05
0.16 6.21 ± 0.05 7.12 ± 0.10 7.20 ± 0.11
0.8 6.19 ± 0.03 6.86 ± 0.17 7.07 ± 0.11
1.6 6.14 ± 0.03 6.61 ± 0.28 6.90 ± 0.12
4.0 6.13 ± 0.03 6.79 ± 0.11 6.80 ± 0.14
8.0 6.13 ± 0.01 6.80 ± 0.05 6.81 ± 0.25
16.0 6.13 ± 0.00 6.83 ± 0.22 6.94 ± 0.09
0.016 6.33 ± 0.11 0.84 ± 0.19 0.82 ± 0.20
0.04 6.26 ± 0.04 1.81 ± 0.28 1.17 ± 2.61
0.008 6.10 ± 0.13 1.25 ± 0.28 1.30 ± 0.17
0.004 4.59 ± 0.17 2.01 ± 0.20 2.23 ± 0.05
0.0016 2.98 ± 0.30 1.11 ± 0.80 2.31 ± 0.06
0.0008 2.52 ± 0.16 2.31 ± 0.07 2.32 ± 0.77

Table 4. Tomato Results
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Coefficient AD KL State-Action OM KL State OM KL

0.00025 -1334.87 ± 46.05 -1514.19 ± 86.37 -1471.37 ± 182.34
5e-05 -49992.47 ± 3616.60 -53387.70 ± 21264.93 -59958.59 ± 1479.34
0.0001 -45722.70 ± 8065.79 -1252.16 ± 62.46 -1343.77 ± 22630.61
0.0005 -1517.03 ± 36.56 -1993.42 ± 311.02 -1755.62 ± 195.70
0.001 -1733.61 ± 59.09 -2304.83 ± 1021.99 -1763.23 ± 236.91
0.0025 -1982.69 ± 60.14 -1940.36 ± 268.60 -1755.88 ± 458.19
0.005 -2145.45 ± 46.40 -2075.82 ± 544.53 -1895.66 ± 744.30
0.01 -2110.00 ± 42.60 -2144.57 ± 499.23 -2115.40 ± 893.93
1e-05 -54839.89 ± 2817.67 -58848.18 ± 2444.56 -57623.83 ± 2803.94
2.5e-05 -55095.29 ± 2365.65 -56859.38 ± 4898.74 -59319.06 ± 1223.88
5e-06 -57242.98 ± 2345.02 -61238.06 ± 1794.17 -59034.62 ± 4842.77
2.5e-06 -59583.55 ± 4325.42 -59594.74 ± 2107.35 -54590.79 ± 2826.26
1e-06 -56204.81 ± 3596.68 -61175.89 ± 2565.85 -61586.81 ± 2435.51
5e-07 -59723.52 ± 2031.10 -56360.16 ± 2290.04 -58656.01 ± 2599.17

Table 5. Traffic Results

Coefficient AD KL State-Action OM KL State OM KL

0.015 -84091.61 ± 6066.60 -48884.78 ± 481.14 -82918.52 ± 5019.81
0.003 -270021.63 ± 35551.66 -101191.91 ± 4503.72 -332322.58 ± 36637.25
0.006 -154530.03 ± 4918.73 -61888.10 ± 4690.05 -158741.15 ± 25737.30
0.03 -98280.34 ± 7488.11 -49597.88 ± 1072.53 -58391.57 ± 3357.52
0.06 -88645.25 ± 11470.58 -78266.23 ± 9095.24 -58968.09 ± 6395.74
0.15 -82117.03 ± 10407.25 -106643.71 ± 17533.81 -75930.59 ± 4071.71
0.3 -73379.85 ± 8256.09 -127284.20 ± 22133.23 -98103.54 ± 14432.68
0.6 -88556.96 ± 4995.05 -118496.45 ± 9588.01 -112541.50 ± 14891.49
0.0006 -590000.85 ± 6702.13 -364253.30 ± 5221.89 -593110.06 ± 4845.44
0.0015 -459923.51 ± 102083.68 -181647.21 ± 6693.00 -511113.29 ± 18895.36
0.0003 -593615.68 ± 5323.58 -497935.91 ± 10001.19 -592025.72 ± 26247.74
0.00015 -592338.62 ± 45872.51 -577059.36 ± 10017.97 -607941.22 ± 9888.13
6e-05 -600567.81 ± 11115.49 -594716.62 ± 2981.95 -589003.48 ± 233319.14
3e-05 -598445.43 ± 35483.72 -583805.34 ± 54751.09 -604122.09 ± 9554.66

Table 6. Glucose Results
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Figure 5. This plot is similar to the one shown in Figure 3, except instead of regularizing towards safe policies, we are regularizing towards
reward hacking policies.

Coefficient AD KL State-Action OM KL State OM KL

0.03 -12.28 ± 0.13 -11.73 ± 0.19 -11.03 ± 6.14
0.006 -12.26 ± 10.57 -29.42 ± 22.70 -58.08 ± 42.02
0.012 -12.30 ± 8.29 -11.88 ± 0.72 -10.60 ± 0.78
0.06 -12.20 ± 0.06 -12.23 ± 12.75 -10.71 ± 0.16
0.12 -12.33 ± 0.03 -12.09 ± 0.34 -10.24 ± 0.54
0.3 -12.35 ± 0.04 -12.11 ± 0.22 -11.02 ± 0.51
0.6 -12.40 ± 0.04 -12.11 ± 0.25 -10.61 ± 0.32
1.2 -12.33 ± 0.03 -12.02 ± 0.25 -10.50 ± 0.23
0.0012 -25.17 ± 9.16 -31.77 ± 5.38 -31.28 ± 7.01
0.003 -23.51 ± 6.18 -23.90 ± 11.46 -35.76 ± 9.42
0.0006 -21.85 ± 17.02 -22.40 ± 8.81 -34.56 ± 10.71
0.0003 -23.10 ± 5.04 -27.56 ± 6.71 -35.29 ± 9.23
0.00012 -30.39 ± 19.82 -19.67 ± 5.75 -41.96 ± 11.36
6e-05 -21.23 ± 8.71 -30.96 ± 20.05 -33.59 ± 8.84

Table 7. Pandemic Results

Regularizing away from a reward hacking policy Here, we provide the median true reward achieved across 5 seeds for
each of the coefficients tested in each of the environments (tomato, traffic, and glucose) when using the three regularization
methods (AD, state-action OM, and state OM) to regularize away from reward hacking policies. As described in the main
text, the coefficients that were run were determined by multiplying a range of scale-independent coefficients by the average
per-timestep rewards in each environments that we calculated after running evaluation runs and negating them. The results
for the tomato, traffic, glucose and pandemic environments are in Tables 8, 9, 10, and 11 respectively. A plot of the best
coefficients along with the divergence values is shown in Figure 5.
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Coefficient AD KL State-Action OM KL State OM KL

-0.4 0.00 ± 1.59 3.98 ± 2.06 4.02 ± 0.74
-0.16 0.00 ± 1.59 4.37 ± 0.74 4.52 ± 0.63
-0.08 0.00 ± 1.59 4.98 ± 0.57 4.36 ± 0.71
-0.04 0.00 ± 0.80 4.64 ± 0.47 5.35 ± 0.61
-0.0016 1.94 ± 2.28 1.31 ± 0.92 0.56 ± 0.89
-0.0008 5.84 ± 2.88 2.18 ± 0.88 2.26 ± 0.93
-0.016 0.00 ± 0.80 5.25 ± 0.52 4.99 ± 0.37
-0.004 0.00 ± 0.80 5.54 ± 0.52 5.23 ± 0.51
-16.0 1.98 ± 1.49 3.98 ± 1.44 2.00 ± 0.01
-0.008 0.00 ± 0.80 5.59 ± 0.32 5.32 ± 0.22
-0.8 0.00 ± 0.80 3.98 ± 1.92 3.98 ± 2.22
-8.0 0.00 ± 1.59 3.98 ± 2.36 3.98 ± 2.00
-4.0 0.00 ± 1.59 3.98 ± 0.00 3.98 ± 2.27
-1.6 1.98 ± 1.49 3.98 ± 1.59 5.86 ± 0.94

Table 8. Tomato Results

Coefficient AD KL State-Action OM KL State OM KL

-0.00025 -111977.53 ± 17214.26 -3540.67 ± 21315.65 -1217.29 ± 25063.82
-0.0001 -79400.16 ± 8060.00 -1063.95 ± 23432.71 -56205.18 ± 24004.46
-5e-05 -69687.41 ± 9217.50 -24407.41 ± 21935.85 -58568.36 ± 2934.04
-2.5e-05 -65045.02 ± 4714.27 -61487.52 ± 4376.05 -58749.20 ± 8501.17
-1e-06 -58401.46 ± 5709.63 -56992.75 ± 8139.89 -58166.89 ± 8260.66
-5e-07 -58461.39 ± 4383.00 -64768.07 ± 8999.20 -59487.15 ± 7486.11
-1e-05 -58061.92 ± 12651.36 -59513.49 ± 3834.08 -55291.82 ± 7638.28
-2.5e-06 -56013.23 ± 7444.14 -63617.64 ± 6862.90 -57949.39 ± 5170.07
-0.01 -28921.78 ± 97414.16 -204987.75 ± 86439.75 -5167.42 ± 54467.61
-5e-06 -58232.20 ± 2954.65 -59555.21 ± 2851.43 -58309.62 ± 6294.95
-0.0005 -1360.39 ± 30769.19 -1072.47 ± 26376.43 -1100.54 ± 43.69
-0.005 -29328.95 ± 97511.81 -1080.62 ± 11.04 -202327.06 ± 12232.67
-0.0025 -9611.75 ± 88855.63 -1066.31 ± 14.41 -206875.58 ± 21588.90
-0.001 -1265.30 ± 112637.24 -1085.87 ± 9.22 -1146.10 ± 83045.62

Table 9. Traffic Results
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Coefficient AD KL State-Action OM KL State OM KL

-0.015 -10431.09 ± 83660.78 -144386.41 ± 174033.93 -195231.31 ± 20347.91
-0.006 -10455.46 ± 84102.84 -204268.44 ± 164070.55 -219111.33 ± 72876.95
-0.003 -10567.31 ± 83248.45 -235054.15 ± 80412.50 -333025.09 ± 66709.74
-0.0015 -10409.22 ± 82987.79 -326774.83 ± 154161.23 -549874.74 ± 135826.64
-6e-05 -84013.55 ± 105714.03 -490927.45 ± 48825.69 -581792.14 ± 54097.78
-3e-05 -167448.46 ± 67923.39 -578315.55 ± 181073.52 -582141.72 ± 18980.46
-0.0006 -10588.67 ± 102136.84 -574612.89 ± 180942.26 -588377.02 ± 129099.43
-0.00015 -146171.68 ± 64183.33 -63295.08 ± 112176.90 -598283.71 ± 129875.42
-0.6 -10339.89 ± 83918.50 -29134.35 ± 136847.01 -186144.49 ± 17975.91
-0.0003 -216420.47 ± 89003.44 -114448.81 ± 229381.16 -575210.64 ± 23361.36
-0.03 -10360.95 ± 84058.53 -93145.02 ± 29539.90 -196008.38 ± 131953.77
-0.3 -10564.38 ± 83308.06 -23144.75 ± 108330.87 -177928.14 ± 30129.81
-0.15 -10366.68 ± 203.84 -28563.54 ± 146819.94 -177062.41 ± 36374.03
-0.06 -10409.75 ± 82863.95 -53480.07 ± 65091.05 -198117.45 ± 110658.28

Table 10. Glucose Results

Coefficient AD KL State-Action OM KL State OM KL

-0.03 -12.92 ± 4.23 -5.47 ± 7.84 -16.46 ± 1.93
-0.012 -12.92 ± 3.99 -20.27 ± 7.43 -15.60 ± 5.19
-0.006 -12.92 ± 3.53 -14.46 ± 1.95 -15.15 ± 1.64
-0.003 -12.92 ± 4.14 -14.93 ± 2.41 -14.30 ± 1.87
-0.00012 -32.88 ± 10.34 -25.61 ± 10.26 -32.31 ± 7.20
-6e-05 -29.86 ± 11.63 -20.02 ± 11.50 -30.95 ± 17.15
-0.0012 -8.42 ± 3.86 -8.45 ± 2.80 -14.53 ± 19.33
-0.0003 -12.86 ± 9.37 -57.43 ± 19.42 -27.83 ± 7.03
-1.2 -12.92 ± 4.72 -5.25 ± 12.84 -14.98 ± 13.08
-0.0006 -8.35 ± 1.94 -24.58 ± 13.98 -45.36 ± 16.31
-0.06 -12.92 ± 3.43 -14.23 ± 5.02 -15.10 ± 1.01
-0.6 -12.92 ± 3.93 -9.13 ± 23.48 -14.28 ± 0.40
-0.3 -8.06 ± 4.47 -13.63 ± 5.47 -19.43 ± 68.02
-0.12 -12.92 ± 3.60 -14.29 ± 9.61 -14.47 ± 1.19

Table 11. Pandemic Results

C. Environment details
C.1. Tomato environment

In Figure 6, we have the setup of the tomato environment board we used for training.
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Figure 6. Here, the gray squares represent walls, and the white squares represent open spaces where the agent can travel.

The sprinkler state is down a narrow hallway, and on the other end a tomato is down another narrow hallway. We wanted
to try out a scenario where the reward hacking would be relatively difficult for the agent to find to see whether or not our
method works for more complex gridworld scenarios.

C.2. Traffic environment

In Figure 7, we have a simplified rendering of the traffic flow environment merge scenario.

Figure 7. Here, the green cars are controlled by the human driver model IDM controller, and the blue cars are controlled by RL.

Within this particular frame, reward hacking is taking place. As we can see the blue RL vehicle has stopped completely on
the on-ramp, resulting in cars to collect behind it. This way, the proxy reward, which is the average velocity of all vehicles
in the simulation, is optimized as the cars on the straightway are able to continue speeding along the road without having to
wait for merging cars. However, little to no true reward of the average commute time is achieved as the cars on the on-ramp
aren’t able to continue their commute.

D. Experiment details
Here, we give some extra details about the architectures and hyperparameters we used for training the ORPO agents. We
build ORPO using RLLib (Liang et al., 2018) and PyTorch (Paszke et al., 2019). For all RL experiments we train with 5
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random seeds and report the median reward.

Network architectures The policy model for both the traffic and tomato environments was a simple fully connected
network (FC-net) with a width of 512 and depth of 4. The policy model for the glucose environment is a basic LSTM
network with 3 layers, each with widths of 64. We made this choice since the observation of the environment contains
continuous historical information about the patient’s blood glucose levels and previously administered insulin. The model
sizes were chosen as we found that models with these capacities empowered the agents significantly enough for them to
reward hack consistently.

The discriminator model for the tomato and traffic environments was a simple FC-net with a width of 256 and depth of 4.
For the glucose environment, we defined multiple configurations for the discriminator due to the continuous nature of its
observation space. First, we have an option to allow for the entire history of the patient that is captured in the observation by
default to be fed into the discriminator network, in which case the discriminator will be an LSTM network similar to the
policy network in order to properly handle the time series data. By default, the last four hours of the patient’s state split
into five minute intervals will be fed into the discriminator, but there is also an option to decrease the amount of history
being used. If no history is used for the input to the discriminator network, we default to using the same FC-net used for the
tomato and traffic environments. We additionally have the option of using the entire observation provided in the glucose
environment (the CGM readings of the patient and the amount of insulin delivered) or just the CGM readings.

ORPO training: tips and tricks Naively, we can train the discriminator using the entire action and observation given by
the environment and still attain impressive performance in comparison to action distribution KL regularization, but upon
further experimentation, we found that different settings of the discriminator can help achieve better results with respect
to the unknown true reward. In particular, with the continuous glucose environment, we found that not passing into the
discriminator the patient’s entire history that is encoded in the observation provided by the environment helped performance.
Intuitively, this could make sense since MDPs do not rely on history, and occupancy measures only take into account the last
time step.

We also found that only feeding in the observation into the discriminator (so that effectively only the state occupancy
measure is being calculated) seemed to further boost the agent’s performance on the hidden true reward as it is primarily
affected by the state of the patient. Additionally, we found that selectively passing in different elements of the observation,
such as just the CGM readings in the case of the glucose environment, also helped prevent reward hacking better than
naively feeding in everything to the discriminator since these values are most important for the reward function.

We found that we can get more stable policies if we train the discriminator on the latest training data batches to avoid a large
distribution shift when calculating occupancy measure divergences. In general, setting the KL target parameter to be smaller
can also make the training runs more stable because the policies will not change too rapidly over time.

Policy initialization Initializing using an imitation learning policy has been shown to effectively speed up the learning
process (Laidlaw et al., 2023; Uchendu et al., 2023) and is used in practice for RLHF (Stiennon et al., 2020), so we initialize
our policies using the specified πsafe for the more realistic traffic, glucose, and pandemic environments.

Note about using KL divergence over TV divergence for ORPO When presenting our theoretical results, we choose the
TV distance as it has nice theoretical properties that result in the tight bound we find. It is also preferable for our proofs since
its magnitude is bounded. However, as stated at the start of 4, we rely on the KL divergence within our algorithm ORPO
since it is more stable to calculate in practice. Furthermore, because Pinsker’s inequality bounds the TV distance in terms of
the KL divergence, the nice theoretical properties we find for the TV distance between the occupancy measures of policies
also hold for the KL divergence. Huszár (2017) used KL divergence because of its relevance to the Variational Inference
literature. Specifically, KL is always differentiable, which can be useful when training structures such as GANs, whereas
TV isn’t always differentiable everywhere. In addition, KL divergence’s asymmetry is actually seen as a desirable quality
since it allows for the variable overestimation and underestimation of probability in different parts of the distributions.

Hyperparameters Some hyperparameters for the traffic environment were tuned by Pan et al. (2022). We chose the
hyperparameters listed below in order to ensure that without any regularization, reward hacking will occur. This way, we can
actually see if the various regularization methods actually succeed at preventing reward hacking when they are used. More
details about our safe policy generation and other parameters required for training can be found within our code repository.
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Hyperparameter Tomato Traffic Glucose Pandemic

Training iterations 500 250 500 260
Batch size 3000 40000 100000 3860
SGD minibatch size 128 16384 1024 64
SGD epochs per iteration 8 5 4 5
Optimizer Adam Adam Adam Adam
Learning rate 1e-3 5e-5 1e-4 0.0003
Gradient clipping 0.1 None 10 10
Discount rate (γ) 0.99 0.99 0.99 0.99
GAE coefficient (λ) 0.98 0.97 0.98 0.95
Entropy coefficient (start) 0.01 0.01 0.01 0.1
Entropy coefficient (end) 0.01 0.01 0.01 0.01
Entropy schedule horizon 0 0 0 500000
KL target 0.001 0.02 1e-3 0.01
Value function loss clipping 10 10,000 100 20
Value function loss coefficient 0.1 0.5 0.0001 0.5
Share value function layers F T T T

Table 12. PPO/ORPO hyperparameters.

Hyperparameter Tomato Traffic Glucose Pandemic

Discriminator reward clipping 1000 10 1e10 0.1
Regularization coefficient (λ) Varied Varied Varied Varied
Epochs for discriminator training 1 1 1 2

Table 13. ORPO-specific hyperparameters.

The coefficient λ that is used for determining how much regularization to apply was varied throughout the experiments and
noted in our result. While our empirical results have been generated using the KL divergence, we have implemented support
for the total variation (TV) and Wasserstein distances within our code. After thorough experimentation, we determined that
these other divergence metrics are relatively unstable in comparison to the KL-divergence.

E. Elaborated Related Work
E.1. Offline RL:

Offline RL doesn’t necessarily consider any reward function, and even with knowledge of the environment’s transition
dynamics or infinite amounts of data, offline RL algorithms can still perform horribly without any ground truth reward
signal, resulting in catastrophic outcomes (He, 2023). Several previous offline RL theoretical results have only provided
performance guarantees in the case of when the dataset actually reflects the true reward function (Cheng et al., 2022). The
limitations that are addressed by offline RL methods are also separate from the problem of reward hacking that ORPO
addresses. In particular, in the offline RL setting, we will practically have limited amounts of data available, whereas in our
setting, we are challenged by a misspecified or “hackable” reward that can motivate unsafe behavior from the agent.

Offline RL algorithms typically optimize over the empirical transition or reward function found within the provided dataset,
which is subject to estimation errors due to the limited amount of data practically available. So far, the approach to account
for this estimation error has been to act pessimistically, applying different kinds of reward penalties based on the error
(Rashidinejad et al., 2023); however, this pessimism can result in suboptimal policies that do not explore enough (Xie et al.,
2023). Occupancy measures have been used previously in the offline RL literature; however, ORPO is unique in its emphasis
on preventing reward hacking. For instance, algaeDICE, OptiDICE, and other methods from the DICE family have a dual
objective of estimating the ratio between the occupancy measures of both the expected optimal policy and the policy under
which the dataset was collected and optimizing the learned policy so that the ratio previously calculated is minimized (Lee
et al., 2022). These methods do not actually calculate occupancy measures of a particular policy; instead, they use a duality
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trick to approximate the corrections that will be needed to turn the offline dataset distribution into the expected optimal
policy’s distribution. On the other hand, we actually calculate the occupancy measures using a discriminator and incorporate
them into our algorithm as a crucial value for regularizing the learned policy to a provided safe policy, rather than trying to
approximate some desired policy and adjusting the safe policy’s distribution to match that.

A recent study has shown that offline RL possesses an inherent ”survival instinct” due to its pessimistic approach towards
optimization and its limited access to data that renders it robust to some kinds of reward misspecifcations (Li et al., 2023).
However, there are several assumptions at play here, particularly regarding the type and quality of the dataset and the
underlying reward function. We rely on no such assumptions, other than the fact that the safe policy is reasonably attainable
and doesn’t include reward hacking activity. Thus, while offline RL does account for training and test time data distribution
mismatches by remaining close to the distribution of the provided rollouts, which can sometimes prove to be robust towards
misspecified reward functions, it is ultimately solving a different issue and is severely limited in its ability to prevent reward
hacking.

E.2. Entropy Maximization

Occupancy measures have also been used previously for a related subset of methods that focus on maximum entropy
exploration. These methods optimize for a lower bound of the policy-induced steady-state distribution’s entropy that can
then be used to define intrinsic rewards (Hazan et al., 2019; Nedergaard & Cook, 2023). Our method is fundamentally
different as we are trying to regularize the behavior of the agent so that it is not only safe but also an improvement with
respect to the provided safe policy, not artificially construct rewards for under-specified environments. Other similar works,
such as state marginal matching, assume that the system designer has some knowledge about the target distribution to which
the learned policy’s state distribution must be aligned (Lee et al., 2020), whereas our algorithm requires no extra input
other than a reasonably specifiable policy that doesn’t exhibit reward hacking behaviors. While these methods provide an
effective way to reconcile with the exploration-exploitation trade-off, they fail to guarantee the safety of the agent as it is
still reasonable to expect that even with this principled approach towards exploration, the agent can find ways to hack the
specified goal, since there is nothing preventing the discovery of these dangerous states.
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