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Abstract

Toward Autonomous Endoscopic Surgery: a Framework and Case Studies for Robotic
Learning in Healthcare

by

William Chung-Ho Panitch

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Ken Goldberg, Chair

The introduction of robot surgical assistants (RSAs) like Intuitive Surgical’s da Vinci system
has equipped surgeons with an additional set of powerful tools for constrained, precise, and
endoscopic manipulation. These robots enable medical professionals to perform an array of
previously impossible minimally-invasive procedures that result in better medical outcomes,
less scarring, and faster recovery. Additionally, RSAs have the potential to standardize
procedures and reduce surgeon fatigue through supervised subtask automation. Certain
oft-performed, repetitive subtasks, such as incision closure and debridement, could be au-
tonomously performed under surgeon supervision, eliminating certain time-consuming and
tedious tasks from the surgeon’s workload. To advance this line of research, we propose a uni-
fied toolkit for surgical augmented dexterity, consisting of a U-Net-based visual localization
module that is trained using autonomously collected subtask data, as well as adaptations of
the aforementioned model for 3- or 6-D localization of different common surgical objects, and
a set of learned servoing modules that enable critical fine motor control tasks in the surgical
setting, even under unreliable proprioceptive feedback. We then apply this sensing-and-
planning paradigm to two common surgical subtasks: suturing and vascular shunt insertion,
and demonstrate that it enables state-of-the-art autonomous task performance. The aug-
mented dexterity framework achieves an average of 2.93 consecutive completed suture throws
using unmodified surgical grippers and needles (important for ensuring instrument sterility),
and demonstrates a 75%–100% success rate on different vessel phantoms in the shunt in-
sertion task. These results validate the utility of the framework, and help demonstrate a
potential path towards increasing subtask autonomy for surgical settings.
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2.1 Visual Servoing and Grasping Module: At each step of the visual servoing
module, an RGB image is captured by the camera and passed into the pipeline.
Using the camera-to-robot transform and the forward kinematics of the robot,
this image is cropped to a 180 × 180 square centered about the end effector.
The crop is passed into an ensemble of convolutional neural networks which each
output a direction d ∈ {+x,−x,+y,−y} of motion. These outputs are collated
through voting to determine the direction of motion for this step. . . . . . . . . 6

3.1 Data collection and Vessel Segmentation. We collect data for training our
neural network, consisting of a) an image of the vessel phantom when exposed to
visible light, b) an image of the phantom vessel when exposed to UV light, and
c) the extracted segmentation mask. After training a network on these images,
we d) use predicted masks to segment noisy point clouds deprojected from the
RGBD images, then use RANSAC to fit a circle (in red) with its normal vector
(in blue) and both elements on a side view of the same scene of the point cloud. 9

3.2 6D Needle Pose Estimation Module. The needle pose estimation starts
with a pair of stereo left and right images. Using RAFT-Stereo, we generate a
disparity image from the stereo pair [55]. Furthermore, we segment the needle
in the left image with a U-Net to create a needle mask. From there, we apply
the needle mask to the disparity image, and create the corresponding needle
pointcloud. Using RANSAC, we find a best-fit plane to determine the normal
vector of the 3D circle representing the needle (seen in green in the Fitted 3D
Circle image). Then, we project all needle inliers from the RANSAC to the plane,
and use RANSAC again to find the best fit circle (seen in black in the 3D Circle
Fit image with the assumed fixed radius (12 mm for all experiments). Finally,
we find the two farthest points on the needle pointcloud to determine the needle
endpoints (seen as orange and yellow in the 6D Needle Pose image). . . . . . . . 10
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tion, 2D Tracing, 3D Tracing, and 3D Tracking. Left: For every stereo
pair of images, we predict thread segmentation masks, then run a 2D tracer to
compute the sequence of pixels along the thread. Top right: To initialize the
3D spline of the thread, we match points meeting both stereo image and tracer
topology constraints and triangulate their positions in 3D. We initialize the 3D
trace by fitting a 3D spline to these points. Bottom right: To update the 3D
spline with new frames, we compute correction vectors in 2D as an average of
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output a direction d ∈ {+x,−x,+y,−y} of motion. These outputs are collated
through voting to determine the direction of motion for this step. . . . . . . . . 15

4.2 Orbit Simulation Benchmark Tasks. (1) Reach: dVRK Patient Side Manipu-
lator (PSM) to reach a desired position (red sphere), (2) Reach with Obstacles:
reach a desired position (red sphere) with randomly placed obstacles in the scene
(blue sphere objects; object shape and size are customizable), (3) Suture Needle

Lift: lift a suture needle to a desired position, (4) Peg Block Lift: lift a peg
block to a desired position, (5) Pick and Place: pick and place a ring on a peg
tower, (6) Dual-arm Reach: dual-arm reach to specific desired positions shown
with red spheres, (7) Dual-arm Reach with Obstacles: dual-arm reach to spe-
cific desired positions (red spheres) with randomly placed obstacles in the scene,
(8) Pick and Transfer: pick and transfer a peg block, (9) Needle Handover:
handover and regrasp a suture needle, (10) Threaded Needle Pass Ring: han-
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4.3 Zero-shot Suture Needle Lift Policy Transfer. An example of a Reinforce-
ment Learning policy trained in Orbit using RSL-rl PPO and deployed on the
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arm moving towards the needle, (3) grasping the needle, (4) successfully lifting
the needle. The policy was fully trained in Orbit-Surgical. . . . . . . . . . . . . 18
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5.1 Surgical Suturing Task. Each suture throw consists of needle insertion, needle
extraction, thread tensioning, and needle handover with pose correction. This
process is repeated until failure or the wound is fully closed (6 successive sutures). 20

5.2 The individual processes embedded within the STITCH motion con-
troller There are 4 parts to the state machine: 1. Needle insertion: (a) The
right needle driver moves the needle to the initial insertion point at the proper
orientation; (b) The right needle driver inserts the needle into the phantom with
combined rotation and translation movements; 2. Sweeping and Needle Extrac-
tion with suture cinching: (c) The right needle driver follows the +y axis in the
robot frame down the center of the wound to “sweep” any thread off the wound;
(d) The left needle driver moves 1 centimeter behind the needle endpoint to pre-
pare for extraction; (e) The left gripper grasps the needle and pulls it through
until the length of the thread is at a desired β; 3. Needle Handover: (f) The right
needle driver moves 1 centimeter behind the needle endpoint to prepare for han-
dover; (g) The right gripper grasps the needle for handover; (h) The left gripper
releases the needle; 4. Needle Pose Correction: (i) The right needle driver moves
the needle to an optimal needle pose estimation region of the scene; (j) Based
on the current pose of the needle, it is rotated such that the normal vector of
the needle is aligned with the + y axis in robot frame; (k) The needle is rotated
about the +y axis in robot frame so it is at the optimal orientation for the next
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the surgeon-conducted shunt insertion are shown; (2) A remote surgeon (left)
teleoperates the robot (middle) through the master tool manipulator (middle-
left) to grasp and stretch the third point on the vessel rim and insert the shunt
(transparent tube); (3) No surgeon is available. The robot automatically grasps
the third point, and dilates and inserts the shunt into the vessel, utilizing the
vessel segmentation, visual servoing, and shunt insertion modules. The vessel’s
initial segmentation, the visual-servoed rim grasp, the vessel post rim grasp and
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Chapter 1

Background

Robot Surgical Assistants (RSAs) such as Intuitive’s da Vinci series are used by surgeons
to perform over 2 million procedures annually to facilitate minimally-invasive (“keyhole”)
surgery to reduce pain, blood loss, scarring, complications, and recovery time. These robot-
assisted operations are now the gold standard for procedures involving the appendix, colon,
gallbladder, prostate, and numerous other internal structures. Although these robots are
extremely sophisticated, they must currently be controlled at all times by human surgeons,
as surgery is extremely sensitive to errors. There are a vast number of rare and potentially
dangerous edge conditions in medical settings, and the consequences of even a single failure
can be fatal for patients. For this reason, it may be a very long time before fully autonomous
robots are sufficiently safe and reliable for the operating room.

However, recent advances in AI are opening the door to augmenting surgeon skills when
performing specific subtasks such as suturing, shunt insertion, debridement, and resection.
In a 2023 article, Goldberg [30] proposes the term “Augmented Dexterity” to describe sys-
tems where surgical subtasks are performed by autonomous robot systems under the close
supervision of a human surgeon, who is ready to take over at a moment’s notice. Augmented
Dexterity has the potential to elevate and standardize surgical operation, making surgery
safer, faster, and more reliable.

Furthermore, despite the critical need for precision in surgical procedures, the demands
of extensive surgeries in the highest-demand scenarios, such as battlefields or disaster zones,
can lead to surgeon fatigue and disruptions. Moreover, the growing shortage of surgeons,
projected to range between 15,800 and 30,200 by 2034 [18], has resulted in the closure of over
100 rural hospitals in the US from January 2013 to February 2020 [77], with an additional
600 at risk of closure [14]. Utilizing RSAs to assist in surgery through either teleoperation
or supervised autonomy has the potential to mitigate the effects of the surgeon shortage,
reduce medical workloads, and improve the consistency and efficacy of surgery.

In this work, we propose a set of tools for enabling surgical augmented dexterity for
common subtasks, and provide two fully implemented case studies using these tools. We
additionally perform experiments that evaluate the performance of this framework for each
of the tasks in question, and validate the components using a combination of simulated and
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real-world experiments using an Intuitive Surgical da Vinci Research Kit RSA [46].
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Chapter 2

Related Work

Surgical Automation

Research in surgical robotics has a long history [69]. Robotic Surgical Assistants (RSAs) are
surgical robots designed to help surgeons perform complex surgical procedures such as min-
imally invasive surgeries, and have been increasingly adopted among high-volume surgeons
in the past two decades [15, 10]. They improve surgeon dexterity and visualization [36], and
have potential to automate some surgical subtasks to reduce surgeon fatigue [119].

Currently, RSAs are mainly used in hospitals for teleoperation. There are many prior
works that study various aspects of improving the surgeon performance and telesurgery
experience, including methods to provide better haptic feedback [1], automate camera move-
ment [85], rate surgeon performance [8], and improve network latency [64, 32].

Recently, many studies have also explored automating surgical subtasks, including tissue
manipulation [101], hemostasis [84], debridement [47, 97], suturing and knot tying [98, 13],
pattern cutting [71, 111], peg transfer [36, 37, 79], tumor localization, and resection [29,
67, 38]. Surgical robots, such as the da Vinci Research Kit [6], Raven [34], and SRI In-
ternational’s Taurus Robotic System [108], face a unique challenge for automation as they
are driven by cables and can suffer from inaccurate motion and actuation due to backlash
hysteresis [50]. Many prior works have proposed methods for calibration [33, 80, 37]. In this
work, we consider the vascular shunt insertion task using both the human teleoperation and
the autonomous robot.

Fully automated robot systems have been approved for hair restoration and external beam
radiation [89, 49]. However, all endoscopic surgical procedures are performed 100% under
human surgeon teleoperation [91]. Some research efforts have focused on autonomously
performing specific sub-tasks such as debridement [71], vascular shunt insertion [22], and
brain tumor resection [35].
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Interactive Perception in Robotics

Goldberg and Bajcsy [31] investigate how a robot can use active perception to recognize
the shape of an object by moving a touch sensor to trace its contours. Bajcsy [4] defines
active perception as the search for models and control strategies for perception which can
vary depending on the sensor and the task goal, such as adjusting camera parameters [5] or
moving a tactile sensor in response to haptic input [31].

Similarly, interactive perception, as explored by Bohg et al. [7], utilizes robot interactions
to enhance perception. Interactive perception has been used in robotic manipulation to
extract kinematic and dynamic models from physical interactions with the environment [65]
and to improve the understanding of a scene in the presence of occlusions and perception
uncertainty [7, 19, 75]. Murali et al. [72] leverage feedback from visual and tactile sensors
to estimate the pose of partially occluded objects in cluttered environments. Danielczuk
et al. [19] propose the mechanical search problem, where a robot retrieves an occluded
target object from a cluttered bin through a series of targeted parallel jaw grasps, suction
grasps, and pushes. Novkovic et al. [75] use a robot to move a camera and interact with
the environment in order to find a hidden target cube in a pile of cubes, while Shivakumar
et al. [102] use interactive perception to reduce perception uncertainty when untangling long
cables.

In this work we utilize interactive perception-based approaches to enable surgical needle
grasping, vessel dilation, and surgical thread coordination.

Surgical Thread Detection and Tracing

Detecting surgical thread from an RGB image has been previously explored in a number
of different settings. Early approaches relying on analytic curvilinear detectors [78, 40]
work well when the thread is isolated and clearly visible, but fail in realistic scenes with
shadows and occlusions. Similarly, Joglekar et al. [43] assume that thread detections can
be obtained from color segmentation; however, this may fail due to light glare, sensor noise,
materials covering the thread (e.g., blood), and varying lighting conditions. Learning-based
approaches generalize better to different backgrounds and lighting conditions, but require
manual collection of large datasets. Lu et al. [56] train a U-Net [86] using semi-supervised
learning leveraging hand-labeled images for supervision which are time consuming to obtain.
We use a self-supervised data collection method that extracts labels autonomously using UV
light [110], allowing the system to collect 10 labeled images per minute. Lu et al. [56] propose
using a 3D graph to represent the triangulated 3D candidate thread points. The method
then computes a minimum energy path through the graph and uses it as the 3D model of the
thread. Joglekar et al. [43] propose using a minimum variation spline to represent the suture.
This results in a smooth reconstruction with less tight curvature and yields a confidence
value along the spline model which is useful to chose a grasp point along the thread. Both
methods mentioned above fully reconstruct the model on each frame, ignoring prior frames,
making them more susceptible to one-off missing or false detections. Padoy and Hager [78]
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assume the 3D spline has been initialized in advance, and focus on tracking the spline across
frames. However, this work assumes that the length of the thread is constant, which limits
its applicability to certain applications like tail shortening or knot tying. Jackson et al. [40]
propose an approach to jointly trace and reconstruct a 3D spline from stereo images as well
as a tracking method using pixel-space error minimization. However, their approach assumes
a known initial tracing point, manually defined using a space mouse. In contrast, we leverage
tracing of 2D splines to address missing or occluded parts of the thread and use an approach
which does not rely on a user-defined seed point. Furthermore, our method tracks the spline
across frames, increasing its robustness to noisy detections.

Learned Control in Surgical Automation

Visual servoing has been explored for surgical automation, with needle [12, 42] and gripper
[57] pose estimation using learned keypoint tracking models like DeepLabCut, a method that
uses transfer learning to perform keypoint annotation for pose estimation by Mathis et al.
[66]. Another line of research focuses on learning end-to-end visual servoing policies which
implicitly model the object state [52, 44]. Paradis et al. [79] and Wilcox et al. [117] have
proposed intermittent visual servoing in the context of peg transfer and needle handover,
respectively, both of which use a visual servoing policy trained with imitation learning in
lieu of classical trajectory optimization where high precision is required. We propose a novel
visual needle pose estimation approach using learned image segmentation models as well
as known visual features and system dynamics. The estimated object poses are used to
automate the surgical suturing sub-tasks of needle insertion, extraction, and handover using
analytic control methods.

Surgical Robotics Simulation

Several robot learning efforts have introduced domain specific frameworks, often catering to
specialized needs. Many prior frameworks [120, 41] using MuJoCo [113] or Bullet [16] focus
mainly on rigid object manipulation tasks. On the other hand, frameworks for deformable
bodies [2, 54] mainly employ Bullet [16] or FleX [76], which use particle-based dynamics for
soft bodies and cloth simulation. Most of these physics engines are CPU-based, relying on
CPU clusters for parallelization. However, limited tooling exists for unified frameworks to en-
able content development specific to domains in surgery. Orbit-Surgical builds on recently
released framework Orbit, which provides a modular and unified simulation interface for
robot learning. Orbit-Surgical relies on GPU-accelerated physics engines, signed-distance
field (SDF) collision checking, and stable solvers based on FEM for deformable body simu-
lation [59, 60].

Prior state-of-the-art surgical robotic simulators have limited rendering capabilities or
do not support deformable bodies, which are necessary for modelling the vessel phantom in
shunt insertion environments. dVRL [83] provides rigid body environments with the dVRK
for training RL algorithms, but does not support deformables. LapGym [93] is a suite of RL
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environments built on top of Simulation Open Framework Architecture (SOFA), but does
not have photo-realistic rendering and utilizes the CPU for physics execution, which limits
the potential speedup via parallelism. NVIDIA Isaac Orbit [68] is a recently proposed
simulation framework for robotics and robot learning powered by NVIDIA Isaac Sim. It
features fast and accurate rigid- and soft-body simulation using GPUs and offers a modular
design to create robotic environments with photo-realistic scenes.

To address the lack of fast and realistic simulation environments for surgical subtasks, we
release a simulation environment for numerous surgical tasks built on top of NVIDIA Isaac
Orbit for ease of further study for the community. The simulation environment consists of
a dVRK robot, a spring clamp holding a vessel phantom, and a shunt. It embodies realistic
joint articulations, controllers, and collision properties to enable rich interaction with the
surrounding environment. Orbit provides APIs for object definition (i.e. rigid body, FEM-
based deformable body, and well as particle based simulation). This will allow the model
to capture high dimensional state and complex physical interactions between the dVRK
grippers and deformable vessel phantoms.

Figure 2.1: Visual Servoing and Grasping Module: At each step of the visual servoing
module, an RGB image is captured by the camera and passed into the pipeline. Using the
camera-to-robot transform and the forward kinematics of the robot, this image is cropped
to a 180× 180 square centered about the end effector. The crop is passed into an ensemble
of convolutional neural networks which each output a direction d ∈ {+x,−x,+y,−y} of
motion. These outputs are collated through voting to determine the direction of motion for
this step.
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Chapter 3

Sensing and Localization

3.1 Overview

As the first step towards autonomous interaction with surgical environments, we need to
develop a robust scene understanding system to properly localize objects of interest in our
scene. In order to do so, we assume access to a depth-inclusive image representation of our
scene, either through a depth camera or a stereo camera setup. Using the 2D RGB image
representation, we train a U-Net [87], an image-based segmentation model, to detect the
needle in image space. The training data is labeled using the Labels from UV technique
proposed by [110]. The segmentation mask produced by the U-Net is used to isolate the
needle from the pointcloud generated by the 3D image representation.

Specifically, we design and mount both an ultraviolet and a visible illumination system
around the robot workspace, and use a programmable power switch to alternately illuminate
the scene in either UV or visible light. By painting elements in the scene with different colors
of UV-fluorescent paints (which are translucent under visible light), we are able to collect
labeled masks of different objects using thresholding in HSV space on the UV-illuminated
images. By pairing these images with time-syynchronized visible light images, we are able
to automatically obtain large labeled training datasets for any object in the scene. We
can further automate the data collection process by using the dVRK arms to manipulate
and move objects around the scene to capture a random or otherwise advantageous train-
ing distribution. This data collection technique can be extended to any object and robot
manipulator.

The U-Net architecture used is an asymmetric U-Net [86, 88] to generate the segmentation
masks (Fig. 3.1(c)) from RGB images (Fig. 3.1(a)) using LUV [109]. As in [109], we utilize
a network architecture with a 4-tier contracting path and a 4-tier expansive path. We use
layer depths of 128, 256, 512, and 1,024 channels for both paths and a pooling factor of 2×,
and train the model using an Adam optimizer with learning rate α = 0.001. However, we
replace the final ”up-convolution” level of the expansive path with an upsampling layer to
reduce the network runtime and parameter count and enable real-time (30 Hz) inference on
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our NVidia GeForce RTX 2080 GPU. The segmentation mask is then projected onto the
point cloud generated by the RGBD camera to select out points in 3D space.

3.2 Gripper Tracking

We use a painted needle driver to collect 1500 randomly distributed labeled data pairs in
various workspaces with both the left and right end effectors. Using this dataset, we train a
U-Net head to predict a separate mask over both needle drivers. We skeletonize these mask
predictions to obtain an estimate for the pixel-space position and orientation of each gripper,
then use least squares to estimate a gripper tip position and orientation in 3 dimensions.
Empirically, we find that camera noise in the depth direction makes predicting full 6-DOF
pose challenging, but that 3-D position estimates performed using this method are more
reliable than those using encoder input alone.

3.3 Vessel Rim Pose Estimation

The vessel rim segmentation pipeline takes as input an RGB image of the workspace and
converts it to a segmentation mask marking the location of the rim of the vessel. We use
ultraviolet fluorescent paint and a UV–Visible light system to collect 3200 UV/visible light
image pairs for training across a variety of different vessel phantom materials and sizes, as well
as under different gripper orientations and workspace layouts. A further 805 image pairs with
corresponding 3D depth data were held out as a validation set to test the performance of our
full localization pipeline. In addition, to ensure that our perception system did not become
overly reliant on the color profile of our vessel phantoms (which could differ significantly
from the conditions in an in-vivo operation), we additionally trained an otherwise-identical
version of our perception pipeline using only grayscale input information for comparison.

We extract masks localized to the vessel rim from the ultraviolet images by applying
color thresholding over UV labels. Since each set of images is specific to a particular vessel
phantom, we transform and reuse data across phantoms when possible; for example, if
a phantom with similar structure but different color had previously been seen in dataset
collection, then we would utilize color transformation and synthetic data augmentation while
preserving the masks. If a phantom used for evaluation has unique structure or more complex
textures that cannot easily be converted, we collect additional data for that vessel phantom.

The estimated segmentation mask output is then projected onto the point cloud generated
by the RGBD camera to select out the points on the vessel rim in 3D space. We then
apply random sample consensus (RANSAC) [27] to estimate the 3D orientation of the vessel
lip represented as a tuple (cp, cn, r), representing the location of the circle’s center, the
orientation of the circle normal vector, and the radius of the circle, respectively. At each
iteration of the RANSAC algorithm, we sample 3 points from the point cloud, to which we
fit a circle. The best fit circle seen so far is kept and returned at the end of the algorithm
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(a) (b) (c) ... (d)

Figure 3.1: Data collection and Vessel Segmentation. We collect data for training our
neural network, consisting of a) an image of the vessel phantom when exposed to visible
light, b) an image of the phantom vessel when exposed to UV light, and c) the extracted
segmentation mask. After training a network on these images, we d) use predicted masks to
segment noisy point clouds deprojected from the RGBD images, then use RANSAC to fit a
circle (in red) with its normal vector (in blue) and both elements on a side view of the same
scene of the point cloud.

(Fig. 3.1 (d)). The system pipeline uses a RANSAC inlier radius rinlier = 1 mm and runs
until convergence or for a maximum of niter = 1, 000 iterations to minimize the stochastic
error between the 3D depth images and masking pipeline. The parameters rinlier and niter

were chosen qualitatively through hand-tuning.

3.4 Needle Tracking

Similarly to the vessel rim segmentation above, we utilize the semicircular structure of sur-
gical needles to more easily parameterize the needle’s position in space. Since we also need
to accurately estimate the positions of the two endpoints on the needle and the orientation
of the needle itself, we propose a novel 6D needle pose estimation module as seen in Fig-
ure 3.2. Based on Wilcox’s work for needle handover (HOUSTON) [117], we propose an
algorithm that determines the best-fitting 3D circle. A key distinction between our work
and HOUSTON is that HOUSTON obtained a pointcloud from stereo point matching while
this work uses RAFT-Stereo [55], a roboust stereopsis neural network. Given the 2-D image
masks from our U-Net and the pointcloud from RAFT-Stereo, our pipeline begins by using
RANSAC to estimate a 3D plane equation that fits the needle pointcloud. Then, we calculate
the normal vector from the estimated 3D plane to ascertain the orientation of the needle.
All inlier needle points are projected onto that plane. To achieve higher accuracy, we then
project all inlier points on the plane to the xy-plane where we use RANSAC to estimate
a 2D circle equation. Next, we derive the positions of the two endpoints of the needle on
the 2D circle by finding the 2 most distant needle inliers in the pointcloud. After that, we
determine the 3D circle and endpoint positions by back-projecting onto the aforementioned
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Figure 3.2: 6D Needle Pose Estimation Module. The needle pose estimation starts
with a pair of stereo left and right images. Using RAFT-Stereo, we generate a disparity
image from the stereo pair [55]. Furthermore, we segment the needle in the left image with
a U-Net to create a needle mask. From there, we apply the needle mask to the disparity
image, and create the corresponding needle pointcloud. Using RANSAC, we find a best-fit
plane to determine the normal vector of the 3D circle representing the needle (seen in green
in the Fitted 3D Circle image). Then, we project all needle inliers from the RANSAC to the
plane, and use RANSAC again to find the best fit circle (seen in black in the 3D Circle Fit
image with the assumed fixed radius (12 mm for all experiments). Finally, we find the two
farthest points on the needle pointcloud to determine the needle endpoints (seen as orange
and yellow in the 6D Needle Pose image).
3D plane estimate.

3.5 Thread Tracing

We adapt the analytic cable tracing method from Shivakumar et al. [103] and developed in
Schorp et al. [94] to trace the path segments from the 2D thread detection masks. However,
instead of generating all possible global paths, this work leverages heuristic scoring rules
similar to those proposed by Viswanath et al. [116] and Keipour, Bandari, and Schaal [48]
to generate a single global trace. In contrast to the learning-based method proposed in
[116], which detects and traces cables simultaneously, we propose an analytical method. The
method proposed in [48] is similar in the sense that it uses scoring functions that prioritize
traces which cover more of the cable and have lesser changes in angle. However, they model
the thread as a chain of cylinders whereas we fit a 2D spline onto the traced detections
to bridge gaps. The analytic thread tracer locally traces contiguous segments and greedily
stitches them together, as described in Algorithm 1.

As in prior work [40], we model the suturing thread as a 3D NURBS parametric curve.
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Algorithm 1 2D Surgical Thread Tracing Algorithm

Require: D ← pixelwise thread detection
mask← D > threshd

mask← mask− (conn components with area < thresha)
path segs← []
while sum(mask) > threshs do

start point← argmax(D)
paths← sgtm2tracer(mask, start point).
best path← argmaxp∈paths score(path)
On mask, set points along best path to 0.
Append best path to path segs.

end while
while length of path segs > 1 do

find i, j within path segs with lowest matching cost
new seg← merge of path segs[i] and path segs[j]
add new seg to path segs

end while
return path segs[0]

Instead of jointly tracing and reconstructing the thread, we use a dedicated 2D tracer to
compute the sequence of thread pixels in both images before reconstructing the 3D thread
model. The spline parameter t ∈ [0, 1] describes the normalized distance along the spline.

To start the 3D tracing method, a 2D NURBS spline defined by 32 control points is
fitted to the traces in both images using a least squares approximation. The number of
control points is chosen to allow a sufficient amount of flexibility to the spline so that it can
approximate tight curves common in suturing thread.

Next, we triangulate these 2D splines into 3D to estimate the thread state. We pro-
pose the following stereo matching approach: The left trace spline point pLi is located at
spline parameter tLi along the spline and has pixel coordinates [uL

i , v
L
i ] for width and height

respectively, starting from the top left corner. For each point along the left spline pLi , a
corresponding point on the right spline pRj(i) is found which minimizes the difference between

spline parameters tLi and tRj(i) and satisfies rectified stereo image properties. Specifically, the
right image point should have the same vertical coordinate than the left image point except
for a tolerance of up to α = 5 pixels (condition a). pRj(i) must be further left within the image

than pLi (condition b). The right spline candidates must be further along the spline than the
last matched right spline point (condition c). tLi and tRj(i) must be within a distance β = 0.05

(condition d). For a given value of i, we seek to solve

j(i) = argmin
j
|tRj − tLi |

such that a) |vLi − vRj | ≤ α, b) uR
j ≤ uL

i , c) t
R
j > tRj(i−1)∀i, d) |tRj − tLi | ≤ β.
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The matched points are then triangulated using the camera intrinsics to obtain their
3D position, and a 3D NURBS spline model is fitted to the triangulated points using least-
squares optimization. The values for α, β and a rejection threshold for bad reconstructions
were set empirically as a trade-off between reconstruction quality and number of discarded
frames.

Inspired by Jackson et al. [40], we compute 200 correction vectors to update the coor-
dinates of the 3D spline control points between frames. The number of correction vectors
was set as a trade-off between tracking accuracy and computation speed. These parameters
enable thread detection updates at 2.5 FPS, which we find to be sufficient for surgical thread
manipulation tasks. Instead of an energy-minimization approach to compute correction vec-
tors, we instead use the 2D splines fitted on the current stereo traces. The 2D correction
vectors are then obtained as a sum of two vectors, cmask and ctrace. cmask is a vector in image
space pointing towards the closest point on the prediction mask. ctrace matches the point
of the 2D spline fitted on the 2D trace at parameter t with the point at parameter t of the
projected 3D spline. The 2D correction vectors from both stereo images are triangulated to
find 3D correction vectors, and the 3D correction vector terms are averaged to obtain the
final set of correction vectors.

Using only the distance correction cmask, the 3D spline tends to collapse as the segmen-
tation mask of the thread does not constrain the 3D spline along the length of the thread.
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Figure 3.3: Overview of the thread detection pipeline: 2D Surgical Thread Detec-
tion, 2D Tracing, 3D Tracing, and 3D Tracking. Left: For every stereo pair of images,
we predict thread segmentation masks, then run a 2D tracer to compute the sequence of
pixels along the thread. Top right: To initialize the 3D spline of the thread, we match points
meeting both stereo image and tracer topology constraints and triangulate their positions
in 3D. We initialize the 3D trace by fitting a 3D spline to these points. Bottom right: To
update the 3D spline with new frames, we compute correction vectors in 2D as an average of
vectors which push the projected 3D spline onto the new detection and push each projected
3D point to its corresponding point on the 2D trace. We then triangulate the correction
vectors across both images and apply them to the 3D spline to perform an update.
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This is mitigated by the second correction vector, ctrace, which assigns a fully constrained
pixel location to each point along the projected 3D spline. Given the correction vectors,
an updated set of control points is computed using the least square control point update
described by Jackson et al. [40].
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Chapter 4

Control and Actuation in Surgical
Robots

4.1 The Challenges of Encoder-based Feedback

Control

In most robotic applications, the standard approach to closed-loop control has been encoder-
based proprioceptive feedback. In this paradigm, an analytical or learned controller tracks
joint positions and velocities using motor encoders. Modifications on this base setup have
been extensively studied in the robotics literature, resulting in a wide variety of different
controller frameworks. Many of the most popular algorithms are variations on Position-
Integral-Derivative (PID) controllers, Linear-Quadratic Regulators (LQR), or Model Predic-
tive Controllers (MPC), all of which are used in various modern robotic settings, including
robot arms, UAVs, and autonomous vehicles.

However, in endoscopic surgical robots, robot geometries are highly constrained by their
need to operate within the human body. The dVRK and Raven II surgical robots, for
example, are designed to rotate about a single stationary point to allow for surgery using
pinhole incisions, and must have minimal spatial and inertial bulk beyond this origin. These
constraints force motors to be placed physically away from the joints that they actuate,
requiring the use of cables, belts, or other force transfer mechanisms. Although this enables
us to build more capable endoscopic robots, it also introduces mechanical errors, such as
cable slip, stretch, and hysteresis.

Under human teleoperation, these challenges are relatively minor, as humans are equipped
with powerful visual estimation capabilities to compensate for imperfect feedforward control.
But robotic systems do not have this integration, and utilizing encoder feedback alone for
control of RSAs can cause poor outcomes due to the inaccuracy of indirect joint encoder
measurements. Encoder-only control of the dVRK sometimes results in errors of 1 cm or
higher, an unacceptable tolerance for surgical applications. For this reason, one of the fore-
most challenges in medical automation has been how to use visual pose estimation systems
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to build accurate feedback controllers for RSAs.
One simple approach is to adapt classical feedback controllers to use visual pose estima-

tion systems as ground-truth input, rather than encoder readings. This eliminates errors
that originate in the joint-motor mismatch that often plagues RSAs, in exchange for intro-
ducing sensor noise from the vision system. In particular, due to the imperfect nature of
current 3D sensing techniques, noise in the direction normal to the camera plane is often
amplified, requiring the use of multi-step averaging or kalman filtering to isolate signal from
noise. Similarly, this setup is highly sensitive to noise in our learned gripper detection net-
work (see Section 3.2), and therefore requires additional averaging. Empirically, we find that
applying a combination of deep calibration and visual localization improves performance
over pure proprioception, but does not provide sufficient precision for surgical operations.
This motivates our exploration of the subsequent methods.

4.2 Coarse-Fine Visual Servoing

Figure 4.1: Visual Servoing and Grasping Module: At each step of the visual servoing
module, an RGB image is captured by the camera and passed into the pipeline. Using the
camera-to-robot transform and the forward kinematics of the robot, this image is cropped
to a 180× 180 square centered about the end effector. The crop is passed into an ensemble
of convolutional neural networks which each output a direction d ∈ {+x,−x,+y,−y} of
motion. These outputs are collated through voting to determine the direction of motion for
this step.

Visual servoing is a technique commonly used to make open-loop policies more robust,
and has been used extensively in surgical automation for subtasks that require high precision,
such as needle handover [117] and peg transfer [36]. In visual servoing, 2- or 3-dimensional
scene images are used directly to calculate robot control inputs, without the use of an ex-
plicit intermediate pose estimation step. In our formulation, this is achieved by training
goal-conditioned neural networks, which take as input an image of the scene and output a
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distribution over robot actions. In particular, for the Surgical Augmented Dexterity frame-
work, we formulate visual servoing as an imitation learning (IL) problem.

As shown in Fig. 4.2, our visual servoing pipeline utilizes two policies, πright and πleft,
to take corrective actions for the right and left arms respectively. Each policy takes in
a 180 × 180 RGB image cropped around their respective grippers and outputs an action
direction d ∈ {+x,−x,+y,−y}, with directions being with respect to the robot coordinate
frame. The image cropping encourages the policy to learn about the relative positions of the
grippers and the goal pose, reducing the overfitting against specific features from other parts
of the workspace. The magnitude of the per-step motion begins at 0.8 mm, and decreases
over the course of execution. The servoing terminates after 20 steps or once the magnitude
of motion drops below 0.2 mm, whichever occurs first.

We represent the policy as a neural network ensemble consisting of 5 lightweight con-
volutional neural networks, each consisting of 3 convolutional layers and 5 fully connected
layers. Ensemble learning methods have been shown to reduce bias and improve stability in
many settings [92, 25, 24]. To train the policies, offline human demonstrations of 150 tra-
jectories consisting of 15-30 actions were collected using a keyboard teleoperation interface,
resulting in 4,303 image-action pairs. The networks were each trained using a cross-entropy
classification loss on a disjoint subset of 20% of the collected data.

During execution time, we take the majority vote among the five ensemble networks
as the direction for the robot to move. The magnitude of the first action is 0.8 mm. If
the actions chosen at two consecutive timesteps are in opposite directions, the magnitude
of subsequent actions is halved. When the action magnitude drops below a threshold of
0.2 mm, the servoing terminates. The policies do not need to explicitly learn a stopping
action, as the decaying action magnitudes from consecutively moving in opposite directions
causes convergence.

We find that using a combination of classical control for coarse actions and visual servoing
for last-mile fine-motor control provides the best tradeoff between reliability and execution
time.

4.3 Reinforcement Learning in Surgical Robotics

Fully learned control paradigms for robotics are broadly separated into two categories: IL
and Reinforcement Learning (RL). In IL frameworks such as the Visual Servoing discussed
above, a regression is performed from paired observation inputs to action outputs, usually
using human-collected demonstrations. In contrast, RL paradigms largely eschew human-
generated training data and attempt to learn action outputs that maximize some reward
function that is calculated based on the state of the system. The difference in optimization
objective between IL and RL means that well-trained RL algorithms often outperform IL
algorithms at fine-motor tasks, which are extremely prevalent in surgical applications. How-
ever, RL algorithms often require large numbers of rollouts to learn effective policies, which
can be difficult without access to a high-quality simulation environment.
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Figure 4.2: Orbit Simulation Benchmark Tasks. (1) Reach: dVRK Patient Side Ma-
nipulator (PSM) to reach a desired position (red sphere), (2) Reach with Obstacles: reach
a desired position (red sphere) with randomly placed obstacles in the scene (blue sphere
objects; object shape and size are customizable), (3) Suture Needle Lift: lift a suture
needle to a desired position, (4) Peg Block Lift: lift a peg block to a desired position,
(5) Pick and Place: pick and place a ring on a peg tower, (6) Dual-arm Reach: dual-
arm reach to specific desired positions shown with red spheres, (7) Dual-arm Reach with

Obstacles: dual-arm reach to specific desired positions (red spheres) with randomly placed
obstacles in the scene, (8) Pick and Transfer: pick and transfer a peg block, (9) Needle
Handover: handover and regrasp a suture needle, (10) Threaded Needle Pass Ring: han-
dover a threaded suture needle through a ring pole, (11) Gauze Cloth Pick: retrieve a
gauze and lift it to a desired location, (12) Shunt Insertion: insert a shunt (yellow tube)
into a blood vessel phantom (clear tube), (13) Multi-arm dVRK: needle handover task with
camera input from the dVRK Endoscopic Camera Manipulator (ECM), (14) STAR Reach:
STAR arm to reach a desired position.

Robot learning for surgical tasks has been previously attempted for a number of subtasks
with varying levels of autonomy [73, 26, 3] such as shape cutting [71, 111], suturing [98, 51],
debridement [71], dissection, and tissue retraction [73]. However, the lack of easy to use, high
quality simulation frameworks for surgical robotics has long limited learning at scale. State-
of-the-art surgical robotics simulators have suffered from issues such as limited rendering
capabilities [93], few available surgical environments [114, 107], and lack of native support
for deformable objects [118]. Additionally, the lack of GPU-accelerated physics decreases the
rollout wall-clock speed for many simulators [70]. Further, there are numerous proprietary
systems such as SimNow [39] and Mimic & Simbionix [106]. These offer virtual environments
primarily for teleoperated skill and procedural practice, while lacking programmatic access
for learning based methods, and high-speed throughput. As a result, the lack of a surgical
robotic framework that integrates precise physics, delivers high speed realistic rendering, and
accommodates various robot learning tools continues to pose an ongoing challenge for RL in
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Figure 4.3: Zero-shot Suture Needle Lift Policy Transfer. An example of a Rein-
forcement Learning policy trained in Orbit using RSL-rl PPO and deployed on the physical
dVRK. (1) Starting position of the dVRK arm and suture needle, (2) arm moving towards
the needle, (3) grasping the needle, (4) successfully lifting the needle. The policy was fully
trained in Orbit-Surgical.

surgical robotics.
To alleviate this, our earlier work developsOrbit-Surgical. Orbit-Surgical uses NVIDIA

Isaac Sim and builds on the Orbit framework to enable fast and accurate physics interac-
tions, realistic scene rendering, and access to robot learning libraries geared toward surgical
subtask learning. Orbit-Surgical supports parallelized GPU simulation [62], contact-rich
interactions (i.e. SDF-based collision meshes [74] and convex decomposition [63]), and APIs
for object definition (i.e. rigid body, FEM-based deformable body, and particle-based simu-
lation).

Orbit-Surgical supports various reinforcement learning (RL) frameworks, including rl-
games [61], RSL-rl [90], and stable-baselines-3 (SB3) [81]. For our training, we utilise the
RSL-rl implementation of Proximal Policy Optimization [95], as it is optimized for vectorized
simulation and GPU training, and build task-specific environments for shunt insertion and
needle handover.
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Chapter 5

Case Studies in Surgical Augmented
Dexterity: Suturing

We now discuss the application of our Surgical Augmented Dexterity framework to the
automation of two common surgical subtasks: Suturing and Vascular Shunt Insertion.

5.1 Background

Suturing is a surgical subtask that is common in almost all surgical disciplines and operations,
used to secure body tissues and close the edges of wounds. Surgical suturing is typically
performed to position tissue, provide support, or close wounds or incisions, but is a repetitive
task which requires high precision and can result in significant surgeon fatigue.

In prior work, automated surgical suturing has been simulated in-vivo using IR markers
and industrial robot arms (such as the KUKA LBR Med) for both the open-surgery setting
[100] and the minimally invasive surgery setting [91]. Some recent research efforts have
been directed towards automating surgical suturing in whole or in part using the dVRK
RSA. While performing the complete surgical suturing task autonomously remains an elusive
problem [99], many researchers have explored the automation of sub-tasks such as suture
placement [45], needle handover [117, 11, 115], needle extraction [105], needle pick-up [17],
and knot tying [112]. Though each of these methods individually have individually shown
high success rates (90%), running them sequentially often results in a much lower success
rate due to the independently multiplicative nature of their failure risks. To offset this, prior
attempts to automate the complete suturing task have utilized hardware simplifications;
Schwaner et al. [96] demonstrate impressive success rates with only a needle and no thread,
avoiding the risk of the robot getting tangled in the thread, while Sen et al. [99] use colored
needles and a special gripper mount to aid in needle detection and orientation.

In contrast to these works, the Augmented Dexterity framework allows us to demonstrate
a surgical suturing pipeline using unmodified surgical needles and suture thread and without
the use of any physical aides. This allows for the use of sterile surgical implements (such as
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Figure 5.1: Surgical Suturing Task. Each suture throw consists of needle insertion, needle
extraction, thread tensioning, and needle handover with pose correction. This process is
repeated until failure or the wound is fully closed (6 successive sutures).

needles and end effectors), further improving the applicability of the proposed methodology.

5.2 Problem Statement

Overview

Given a linear wound, perform as many simple uninterrupted sutures as needed to close the
wound.

Assumptions

We assume known needle shape and diameter, predetermined 3D points for needle insertion
and extraction, a calibrated stereo camera pair, and the transformation between the robot
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and camera coordinate frames. We also assume the wound is raised and orthogonal to the
camera as shown in Fig. 6.2.

Objectives and Evaluation Metrics

We consider two evaluation metrics: number of successful consecutive sutures and completion
time. We consider a suture throw to be successful if the robot is able to pass the needle
through the wound, perform suture thread cinching (tightening), and return the needle to a
neutral position outside the phantom with no tangles of the suture thread.

5.3 Methods

STITCH achieves augmented dexterity for surgical suturing using novel perception and con-
trol methods as shown in Figs. 3.2 and 5.2.

6D Needle Pose Estimation Module

The Allied Vision Prosilica GC 1290 cameras used for this paper capture a stereo pair of
images with a resolution of 1280x960 at up to 33fps. With these images, we create a depth
pointcloud of the scene using disparity images from RAFT-Stereo, a deep architecture for
rectified two-view stereo that has been empirically shown to be more robust than standard
stereopsis techniques and generalizes well to unseen real-world data [55]. Using this point-
cloud, and the procedure outlined in Section 3.4, we are able to obtain an estimate of the
pose of the needle in near-real time.

Augmented Dexterity Suturing Motion Controller

The surgical suturing task is composed of several distinct motions. The motion controller
directs the robot motions in every state, as well as the state transitions and when they ought
to be performed. Each suture is composed of the sequence of needle insertion, a thread
sweeping motion to clear excess thread from the suture site, needle extraction with suture
cinching, needle handover, needle pose correction, and failure recovery, as shown in Fig. 5.2.
The needle motion inside the tissue is designed to reduce tissue damage while remaining
withing the kinematic bounds of the gripper.

Needle Insertion

The robot inserts the needle into the tissue phantom with a circular twisting motion at the
specified insertion point such that the needle tip exits the tissue at the specified extraction
point.

The needle is inserted in the tissue phantom in two steps to minimize strain on the tissue.
Both steps are performed open loop as a large part of the needle is occluded by the tissue
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Figure 5.2: The individual processes embedded within the STITCH motion con-
troller There are 4 parts to the state machine: 1. Needle insertion: (a) The right needle
driver moves the needle to the initial insertion point at the proper orientation; (b) The right
needle driver inserts the needle into the phantom with combined rotation and translation
movements; 2. Sweeping and Needle Extraction with suture cinching: (c) The right needle
driver follows the +y axis in the robot frame down the center of the wound to “sweep” any
thread off the wound; (d) The left needle driver moves 1 centimeter behind the needle end-
point to prepare for extraction; (e) The left gripper grasps the needle and pulls it through
until the length of the thread is at a desired β; 3. Needle Handover: (f) The right needle
driver moves 1 centimeter behind the needle endpoint to prepare for handover; (g) The right
gripper grasps the needle for handover; (h) The left gripper releases the needle; 4. Needle
Pose Correction: (i) The right needle driver moves the needle to an optimal needle pose
estimation region of the scene; (j) Based on the current pose of the needle, it is rotated such
that the normal vector of the needle is aligned with the + y axis in robot frame; (k) The
needle is rotated about the +y axis in robot frame so it is at the optimal orientation for the
next insertion so the pipeline can be repeated again.

and the needle driver during insertion. First, the tip of the needle is pushed into the tissue
phantom corresponding to the vector between the given insertion and extraction points (Fig.
5.2(a)). This allows for the straight tip of the needle to penetrate the tissue and exit at the
needle extraction point. Second, the needle is rotated into the tissue by performing a 45◦

rotation around the estimated circle normal vector (Fig. 5.2(b)). This motion follows the
curvature of the needle as it passes through the tissue, so that it passes along the hole made
by the needle tip and does not stretch or tear the tissue.

Thread Sweeping

The thread sweeping motion is designed to prevent failure during the needle extraction
step (Fig. 5.2(c)). Failures occurring during the needle extraction process can be broadly
classified into two cases: (1) the thread passes in front of the needle, occluding it and leading



CHAPTER 5. CASE STUDIES IN SURGICAL AUGMENTED DEXTERITY:
SUTURING 23

to detection errors; (2) when both the needle and the thread are accidentally grasped together
during the re-grasping process, in spite of an accurate needle pose estimation. Pushing the
thread out of the re-grasping site through a sweeping motion before the extraction step can
prevent the failures described above.

We use the thread modelling method outlined in Section 3.5 to track the thread for the
sweeping motion. In this work, a U-Net is trained to output a segmentation mask of the
thread. Running an analytic tracer on that segmentation mask for the left and right images,
a 3D NURBS spline is fitted for the thread.

The sweeping motion involves opening the gripper wide and passing it over the wound
towards the camera so that the thread is caught and pushed ahead of the needle. With the
thread in front of the needle, entanglement risks during extraction are significantly reduced.

Needle Extraction

The purpose of the needle extraction motion is to remove the needle from the tissue phantom
and to pull the thread taut to close the wound. To successfully perform multiple sutures, it
is necessary to pull the thread to an appropriate length prior to the next insertion motion.
The needle extraction motion is performed in a closed-loop fashion using the needle pose
estimator. The frequency of needle pose estimator for feedback was measured as 0.67 Hz.
The re-grasp point and the axis around which to rotate and remove the needle are also
determined through visual estimation.

The needle extraction motion is composed of two main components. At the start of the
routine, the left needle driver is positioned at the upper left edge of the workspace, above the
tissue phantom. The point closer to the left needle driver among the two needle endpoints,
determined as described in 3.4, is defined as the re-grasp point. The left needle driver is
moved to a point offset by 1 cm horizontally from the defined re-grasp point (Fig. 5.2(d).
Then, the left needle driver is moved in the direction of the re-grasp point by 1.5 cm, and
the gripper jaws are closed.

Once the needle has been grasped by the left needle driver, it is rotated by 80◦ about
the estimated needle axis to extract the needle and to minimize tissue damage (similar to
the “rotate in”) motion in the needle insertion routine. At the end of this action, only a
small bit of the needle remains inside the tissue so that the needle can be fully extracted by
a linear motion (Fig. 5.2(e)).

Suture Cinching

To ensure each suture is properly tensioned, suture cinching (tightening) is performed after
needle extraction. The length of the thread that needs to be pulled for suture cinching in
the extraction motion can be defined as β = ldes - (i - 1)×leach depending on the number of
sutures (Fig. 5.2(e)), where ldes represents the desired thread length for the final suture, i
represents the number of sutures, and leach is the length of thread used for a single suture.
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Needle Handover

The goal of the needle handover motion is to transfer the extracted needle from the left
needle driver to the right needle driver in preparation for the next insertion. Once the pose
of the needle is estimated, we define the re-grasp point in handover as the endpoint further
from the left needle driver, similar to the process in 5.3. The right needle driver opens its
jaws and moves to a point offset by 1 cm horizontally from the defined re-grasp point (Fig.
5.2(f)). After moving by the offset in the direction of the re-grasp point, the right needle
driver closes to grasp the needle, (Fig. 5.2(g)) and the left needle driver opens to release
it (Fig. 5.2(h)). The entire sequence is done in a closed-loop fashion with visual feedback
tracking the pose of the needle. If the right needle driver moves into position to grasp the
needle and the detected orientation of the needle remains unchanged, we pull the driver back,
add a small (< 0.5cm) random horizontal offset, and reattempt the grasp, up to 5 additional
times before declaring the handover a failure.

Needle Pose Correction

Since the pose of needle right before insertion significantly affects the insertion, we use
interactive perception to improve needle tracking so it can be actuated to the ideal pose for
the subsequent insertion. We adjust the needle for the insertion using a needle pose correction
algorithm, which consists of three steps. First, the needle is moved to an optimal detection
location at the lower, back, right corner of the workspace for RAFT-Stereo reconstruction
as shown in Fig. 5.2(i). The lower back right corner was chosen empirically for consistent
needle pose estimates. An ablation study confirmed this choice, showing 90% success rate
in this corner for left gripper-held needles and 70% for right gripper-held needles, compared
to 50% success in random positions. Identifying both endpoints is crucial for insertion, so
obtaining pose estimates in the chosen corner maximized successful suture throws. In the
next step, we sample 10 measurements of the needle normal vector, and rotate the gripper
such that the normal vector of the needle is identical to the positive y axis in robot frame
(Fig. 5.2(j)). This step constrains the discrepancy in orientation to be about the positive
y-axis, which makes it more repeatable. Because the needle configuration during handover
is relatively similar for each throw, the final step is a 90 degree rotation about the y-axis as
seen in Fig. 5.2k. At this point, the STITCH pipeline is ready for the next suture throw
insertion.

Motion Failure Recovery

The STITCH algorithm includes recovery mechanisms for both extraction motion failures
and handover motion failures. For the extraction motion, the algorithm compares the posi-
tions of the needle endpoint before and after extraction. If the difference is below 2 cm, the
extraction motion is retried up to 5 times. For the handover motion, the algorithm compares
the normal vector of the needle before and after moving the right needle driver when both
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Table 5.1: Success Metric Comparison across Ablations for 15 Trials.

Mean Sutures Single-Suture Three Throw Full Wound Mean Time Error types Mean Sutures
to Failure Success Rate Success Rate Success Rate per Suture I E H T to Intervention

Sensing Only 1.40 51.6% 0.0% 0.0% 106.8 sec 9 6 0 0 –
Thread Handling 1.80 55.9% 20.0% 0.0% 117.9 sec 6 5 2 2 –

STITCH 2.93 69.4% 73.3% 0.0% 159.3 sec 8 5 0 2 –
STITCH + Human 4.47 83.3% 100.0% 20.0% 141.9 sec 16 10 0 2 2.25

needle drivers have grasped the needle. If there is a nonzero change of the normal vector,
then the handover motion is retried up to 5 times.

5.4 Physical Experiments

Experimental Setup

The experimental setup consists of a bi-manual dVRK robot, a soft tissue phantom consisting
of a single wound from a 3-Dmed directional suture pad featuring parallel linear wounds, and
a fixed RGB stereo camera pair. For our experiments, the stereo cameras are a pair of Allied
Vision Prosilica GC 1290 industrial cameras, which each output images of size 1280x960 at
33 frames per second. The Edmund Optics lenses mounted on the sensors allow for precise
adjustments to the focus and aperture based on our workspace depth and illumination. The
cameras are angled at the phantom such that the full workspace of the robot is captured
in the field of view. We define the workspace using a Cartesian (x, y, z) coordinate system.
We use violet PolysorbTM surgical suture thread from Covidien. The threads are of variable
length between 10 and 40 cm, with 2-0 USP Size (0.35-0.399 mm in diameter) and are
attached to a GS-21 half-circular surgical needle with a radius of 12 mm.

Baselines

We evaluate the full STITCH algorithm and two baselines, multi-throw suturing without
thread manipulation or needle pose correction “Sensing Only”) and multi-throw suturing
thread management without needle pose correction (“Thread Management”). The sensing-
only baseline performs the needle insertion, extraction, and handover steps, omitting the
suture cinching, thread sweeping, and needle pose correction motions. The thread manage-
ment baseline performs insertion, extraction (with thread sweeping), cinching, and handover
while omitting the needle pose correction step. We also evaluate a human-supervised setting
(“STITCH + Human”), in which the robot can request intervention up to 2 times from a
supervising surgeon. At these points, the human supervisor performs a single recovery mo-
tion to return the workspace to a safe configuration, and then immediately returns control
to the robot.
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Trial Specifications and Error Classification

Each trial produces n successive running suture throws. A suture throw is considered com-
plete when the needle has successfully been inserted and extracted through the raised edges
of the wound and the thread has been sufficiently tensioned to close the wound between the
insertion and extraction points. A trial ends when the robot either enters an unrecoverable
state (such as a dropped needle or tangled thread preventing further sutures) or successfully
closes the wound by throwing 6 consecutive sutures. For each experimental baseline, we
perform 15 trials of 1–6 throws each, and report the following metrics in Table 5.1:

• Mean sutures to failure: the average number of successfully completed suture throws
before the first unrecoverable error is encountered.

• Single-suture success rate: the percentage of successful suture throws out of the total
number of suture throw attempts.

• Three throw success rate: the percentage of trials which terminate after at least three
successful suture throws.

• Full wound success rate: the percentage of trials which terminate in wound closure.

• Mean time per suture: the average time elapsed per suture throw.

• Error Types : the number of insertion (I), extraction (E), handover (H), and thread
management (T) errors encountered.

• Mean sutures to intervention: The average number of autonomously completed suture
throws between human intervention requests.

We report trial-ending errors according to the portion of the pipeline during which the
failure occurred. We use the following schema:

• Insertion errors occur when the robot fails to insert the needle through the raised edge
of the wound, or the needle enters a non-wound region of the phantom, or the needle
exits the wound through the top or bottom of the phantom.

• Extraction errors occur when the needle remains in the wound after extraction.

• Handover errors occur when the robot drops the needle during handover or enters an
unrecoverable configuration during the handover process.

• Thread management errors occur when the robot fails to properly cinch the suture
thread to close the wound or becomes dangerously entangled in the thread.
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Figure 5.3: Histogram of the Number of Sutures to Failure by Method. The results
in the histogram shown above is for 15 trials per each of the four methods.

Experimental Results

Table 5.1 and Fig. 5.3 report experimental results. Over 15 trials, STITCH achieves an
average single-suture success rate of 69.39% and a mean sutures-to-failure of 2.93. When
allowing the robot to request human intervention, the robot achieves a single-suture success
rate of 83.33%, and a mean sutures-to-failure of 4.47.
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Chapter 6

Case Studies in Surgical Augmented
Dexterity: Vascular Shunt Insertion

Vascular shunt insertion is a surgical procedure that uses a hollow, flexible shunt tube to
drain or divert fluid in the human body from one location to another [9]. Vascular shunt
surgeries often take place in high-pressure clinical scenarios such as civilian and battlefield
settings, where vascular injuries are common and a shunt can be utilized to bridge severed
blood vessels [104, 82]. In most vascular shunt surgeries, the insertion is performed by a
two-doctor team: a surgical assistant grasps the vessel at 2 points and orients it, while the
surgeon grasps a third point on the vessel to dilate it and insert the shunt.

6.1 Background

There are 5 key subtasks where robotic assistance may be provided during a vascular shunt
procedure:

1. The initial grasp of the blood vessel rim;

2. A secondary grasp of the blood vessel rim, with one grasping point already present;

3. A tertiary grasp of the blood vessel rim, with two grasping points already present;

4. Dilation of the blood vessel rim by pulling the third grasp point outward from the rim
center;

5. Insertion of the shunt into the dilated vessel.

In prior work, Garcia et al. [28] present a semi-automated telerobotic surgical system
where RSAs are remotely operated for phantom vascular shunt insertion operations. Re-
cently, Dharmarajan et al. [23] propose an automated vascular shunt insertion solution with
a da Vinci Research Kit (dVRK) where the RSA dilates a pre-grasped vessel and inserts the
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Figure 6.1: Model Overview: We consider three scenarios: (1) A local surgeon grasps one
point (red) of the vessel (yellow balloon) while the robot autonomously grasps and stretches
two points (blue) on the vessel with help of the vessel segmentation and visual servoing
modules. The vessel’s initial segmentation, steps of the sequential visual-servoed rim grasps,
the vessel post autonomous grasps and dilation, and the surgeon-conducted shunt insertion
are shown; (2) A remote surgeon (left) teleoperates the robot (middle) through the master
tool manipulator (middle-left) to grasp and stretch the third point on the vessel rim and
insert the shunt (transparent tube); (3) No surgeon is available. The robot automatically
grasps the third point, and dilates and inserts the shunt into the vessel, utilizing the vessel
segmentation, visual servoing, and shunt insertion modules. The vessel’s initial segmentation,
the visual-servoed rim grasp, the vessel post rim grasp and dilation, and the autonomous
shunt insertion are shown; The surgeon-grasped point (red) in (1) and the two assistant-
grasped points (red) in (2) and (3) are held by passive clamps.

shunt. This method’s success rate varied from 50-80% depending on the size and orienta-
tion of the vessel phantom. In [21], we extend the role of the RSA from only performing
shunt insertion to also executing bimanual vessel grasping and teleoperation in the form of
a trimodal framework.

The work presented here also builds on our previous conference paper [21]. In [21], the
vessel phantoms used for evaluation were yellow latex balloons with a 15mm inner diameter.
However, their distinct rim, bright yellow color, and large size are unrealistic features for a
blood vessel. Using the sensing and actuation techniques detailed above, we have improved
the previous trimodal framework by introducing refined learning components, and we system-
atically evaluate this pipeline with additional vessel phantom types, including more realistic
colors and materials. Specifically, we test the system on a smaller 9mm inner diameter red
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vessel phantom for its smaller size and blood-like color, along with an 8mm inner diameter
femoral artery phantom from LifeLike Biotissue [53] for its realistic material physics and
size. These more realistic phantoms illustrate the robustness of the framework.

In addition, to facilitate safe robot learning and testing in future works, we develop and
present a shunt insertion environment using the NVIDIA Isaac Orbit-Surgical simulation
framework. We collect a dataset of 1000 simulated trajectories using a state machine and
empirically demonstrate the utility of this dataset by playing back the trajectories on a real
dVRK.

6.2 Problem Statement

We consider three potential operational scenarios for robot-assisted vascular shunt insertion
(local surgeon, local surgical assistant, and remote surgeon) and propose a paradigm for
robotic assistance in each scenario. We provide a method for the execution of each paradigm
and evaluate it based on success rate and completion time.

Assumptions

Initially, we assume that one or two passive grippers hold a vessel phantom, which resembles
the role of a surgeon (Fig. 6.1(1)) or a surgical assistant (Fig. 6.1(2), Fig. 6.1(3)) in a surgical
setting without robots respectively. We assume access to an inclined RGBD camera with
known calibration with respect to robot arm coordinate frames. We also assume access
to a stereo camera or endoscope that allows a human teleoperator to have a view of the
workspace. In addition, if remote teleoperation is being performed, we assume that the
network connection is stable and has low latency.

We assume that the size of the shunt used in the operation is known, and if the robot is
manipulating it, the shunt is held at a known position. We assume the outer radius of the
shunt is smaller than or equal to the inner radius of the vessel phantom.

Objectives and Evaluation Metrics

We consider three modes of operation (Fig. 6.1). For each, we evaluate success and comple-
tion time.

Mode (1): Local Surgeon. The surgeon is available at the operation site, and the
bimanual surgical robot performs the role of a medical assistant, where it autonomously
grasps two points on the vessel phantom given one point grasped by a fixed gripper. A trial
is considered successful when both of the robot’s grippers are grasping the vessel phantom.

Mode (2): Remote Surgeon. The bimanual surgical robot is teleoperated by a remote
surgeon, and a human medical assistant is available locally to grasp the vessel. In particular,
we assume two points on the vessel rim are held by fixed grippers, and the teleoperated robot
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Figure 6.2: Shunt Insertion Module containing the Chamfer Tilt Shunt Insertion and the
Screw Motion. (a) Starting from a surgical assistant holding two points on the vessel (red
balloon), (b) the robot visual servos and grasps a third point on the vessel and dilates it to
enlarge the opening. (c) It employs a chamfer tilt insertion motion to insert the shunt and
(d) uses a screw motion to screw the shunt inside. (e) After the shunt is securely inserted,
the robot releases the grasps of both grippers.

grasps a third point, dilates the vessel phantom, and inserts a shunt. A trial is successful if
the shunt rim is fully enclosed within the vessel after both grippers release.

Mode (3): No Surgeon Available. This is an extended version of the case considered
by Dharmarajan et al. [23] when there is no surgeon available but a human medical assistant
is available locally to grasp the vessel, the bimanual surgical robot performs the teleoperated
shunt inserter role, where it autonomously grasps the vessel rim on a third point, dilates,
and inserts a shunt. A successful trial is defined in the same way as Mode (2).

6.3 Method

Overview

The system consists of 4 primary autonomous capabilities: a vessel phantom rim pose esti-
mator, a grasping and visual servoing module, a shunt insertion module, and a teleoperation
module. These components can be swapped out and reordered based on the required mode of
operation, enabling the system to be effectively adapted to various on-the-ground situations.

Blood Vessel Rim Pose Estimation Module

Before performing any autonomous interaction with the vessel, such as grasping or dilation,
the system must first detect and characterize the vessel state in space. We utilize a two-
step process for 3D localization: segmentation mask generation and curve fitting. Using the
visual detection framework described in Section ?? and expanded on in Section ??, we use
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a learning pipeline to obtain a 6D estimate of the position of the vessel rim in space, which
we pass to the subsequent modules as input.

Servoing and Grasping Module

The servoing and grasping module initially presented in [21] uses the sensed 3D location and
orientation of the vessel rim and attempts to actuate the robot to an intended grasping point
on its rim. An open-loop policy calibrated using the method outlined in Seita et al. [97] is
used to actuate to the intended 3D location for grasping. Once the gripper is within 2 mm
horizontally of its target, control is transferred to a visual servoing policy, which determines
the actuation. This policy is outlined broadly in Section 4.2.

Since there are two arms, each with a similar task that does not depend on the other,
grasping can be executed either sequentially or concurrently. In sequential execution, one
arm first servos and grasps the vessel rim, and then the second arm follows. In concurrent
execution, both arms can be run simultaneously to reduce the time it takes to perform
bimanual vessel grasping. In the concurrent version of servoing, the policies πright and πleft

each retrieve a corresponding cropped image from the camera, compute the desired actions,
and execute the desired actions on separate threads. Once both grippers are finished servoing,
they move downward and grasp the vessel contemporaneously. Once a successful grasp is
performed, the grippers simultaneously move outward from the center to tension the vessel
rim. We report experiments with both sequential and concurrent movements.

Shunt Insertion Module

The shunt insertion module starts at the state where the vessel phantom is grasped by two
fixed grippers. The blood vessel rim pose estimation module (Section 6.3) outputs a 3D circle
estimate of the vessel rim with RANSAC. The servoing and grasping module (Section 6.3)
takes the circle estimate as input, actuates one gripper to move above a third computed
point on the rim, runs visual servoing to line up the gripper with the rim, moves downward,
and grasps the rim as shown in Fig. 6.2(b). Dilation is then performed away from the center
of estimated circle rim.

After the dilation step, the rim of the vessel phantom is enlarged, as indicated by the
yellow arrow in Fig. 6.2(b). The gripper and any fixed points used to tension the vessel
now become obstacles that must be avoided during the insertion of the shunt, reducing the
action space. The vessel phantom also cannot be further stretched due to the possibility
of slip or tearing, further reducing available actions. To overcome the challenges associated
with these low tolerances, the insertion module makes use of the chamfer tilt–screw motion
insertion combination proposed in Dharmarajan et al. [23] to insert tightly fitting shunts.
When the shunt is being inserted, no visual servoing is used, but instead the initial 3D vessel
rim estimate from RANSAC is used. Once the chamfer tilt and screw motion are completed,
both grippers release and return to their starting poses, leaving the shunt inside of the vessel.
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Chamfer Tilt Insertion

The robot approaches the rim from above with the shunt held at an angle. The end effector
is then actuated to a point slightly above the vessel phantom rim, and then moves downward,
inserting the leading edge of the tilted shunt below the lip of the vessel. Once the shunt is
partially seated below the rim, the end effector tilts to straighten the shunt, while at the
same time, the arm dilating the vessel moves upward and inward to improve quality of the
fit, as in Fig. 6.2(c).

Figure 6.3: Shunt Insertion Simulation Environment in ORBIT. Left: The vascular
shunt insertion setup with the dVRK and two mounted arms (left) and the vessel deformation
post dilation and pre insertion (right) are shown. Right: Different stages of a vascular
shunt insertion trajectory. Scenes pre and post vessel grasps and dilations and during shunt
insertions in both the ORBIT simulator (top) and the real-world dVRK setup (bottom) are
shown with a sim to real trajectory playback. See more details in Section 6.3.

Screw Motion

In some cases, after the chamfer tilt insertion motion is completed, a portion of the shunt
remains outside the vessel rim. In this case, chamfer tilt alone is not sufficient to ensure that
the shunt remains in place after both grippers release. To increase the probability that the
entire shunt is situated within the rim of the vessel, the robot executes a screw motion, which
is a counterclockwise rotation about the shunt axis combined with a concurrent downward
translation, as shown by the yellow arrows in Fig. 6.2(d). This motion helps bring any portion
of the shunt that was previously above or outside the rim inside. After the completion of
this motion, both grippers release their grasps and retract to a home position away from the
insertion site.
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Teleoperation Module

In the teleoperation mode, a human teleoperator uses the dVRK controller with two tool
manipulators and foot pedals to control both grippers of the surgical robot. One gripper first
grasps and dilates the vessel, and then the other gripper, already holding a shunt, inserts
the shunt into the vessel.

When performing remote teleoperation, the latency of the network must not be too high.
In a study by Lum et al. [58], where the latency increased from 150ms to 1000ms, the
teleoperator performed increasingly worse with greater mental fatigue on the task of surgical
peg transfer [20]. Based upon a successful telesurgery procedure performed by Marescaux
et al. [64], where the distance between the teleoperator and the robot was 24,000 km and
the mean network latency was 155ms. Based on these results, we set the network latency
threshold to 155 ms. If the latency is less than or equal to the threshold, the teleoperation
module will run; otherwise, the automated shunt insertion module from Mode 3 will run.

ORBIT Shunt Insertion Environment

We develop an open-access simulation environment built on top of NVIDIA Isaac Orbit
[68] as shown in Fig. 6.3 for vascular shunt insertion task, which has the same setup as in
the real environment. The simulation environment consists of a dVRK, two mounted arms
mimicking a medical assistant holding a deformable phantom, and a rigid shunt as in the
real setup. In addition, Orbit provides an interface for human teleoperation, allowing the
data collection of human experts.

The physical dimensions of the mounted arms, vessel phantom, and shunt match the
real world. We model the deformable vessel phantom with FEM and manually tune the
parameters using videos of real world shunt insertion trials. We simulate the shunt using
rigid material to closely mimic the stiff nature of the actual shunt. In addition, a rigid shunt
provides a higher simulation speed as well as more stable simulated interactions with other
objects including the vessel and the robot grippers.

We define a focus point inside the shunt, located above the center of the bottom of the
shunt. This ensures that the distance between shunt focus point and the center of vessel
phantom rim can only be minimized when the shunt is inserted into the vessel. The obser-
vation space of the environment includes the state of the dVRK in joint space (normalized
by its range along each dimension), the position of the robot end effectors, positions of the
center of shunt bottom, orientation of the shunt, positions of 8 points evenly distributed on
the rim of the vessel phantom, and the position of the center of the rim of the vessel phan-
tom. The action space of the environment includes the desired positions and orientations of
the end effectors of the dVRK. All positions are represented in cartesian coordinates with
respect to the workspace frame. The environment reward is a weighted combination of a
term proportional to the inverse distance between the shunt focus point and the center of
vessel top, and a term based on the extent to which the vessel is stretched. The episodes are
terminated upon an environment timeout of 219 steps.
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Parameter Tuning

To facilitate recreation of our simulation environment, we categorize the system and physics
parameters of the simulation. To determine their values, we first set values that ensure
simulation stability, then tune each individually to reduce the computation cost as much as
possible while preserving stability. We list the parameters that are most important to tune
for realism.

System Parameters:

1. Physics Simulation Frequency: We use 400 Hz, as this is the lowest frequency that
does not induce jitter.

2. Solver Type: This determines the type of physics solver to use. We find that both
available solvers, PGS (Projective Gauss-Seidel) and TGS (Truncated Gauss-Seidel)
offer similar levels of stability and realism in simulation. We use TGS.

Physics Parameters:
I. Rigid Body - Shunt:

1. Contact Offset and Rest Offset: These parameters control contact generation. Contact
points are generated when two objects get closer than the sum of their contact offsets.
The rest offset quantifies how close an object gets to others at rest. An “autocom-
pute” feature is provided by Nvidia IsaacSim. By default, the two offsets, re-meshing
resolution, and triangle count can all be computed automatically by the simulation
engine based on the objects’ mesh geometry. For the shunt model, we use 0.0003 m
for contact offset and 0.0002 m for the rest offset, which provide accurate and stable
interactions in simulation.

2. Friction (µs and µk): We use 0.9 for both static (µs) and dynamic (µk) multipliers on
base friction calculations, which best matched materials used.

II. Soft Body - Vessel:

1. Simulation Mesh Resolution: The simulation mesh resolution determines the resolution
of soft simulation. We find this parameter is sensitive. We use a value of 10 for
the vessel. Decreasing the parameter by a value greater than 3 can lead to a badly
simulated collision mesh, a mismatch between visual and collision mesh, or insufficient
deformation of the vessel mesh. The simulation mesh resolution needs to be carefully
tuned.

2. Solver Position Iteration Count: Similarly to (I.1), we find this parameter is not sensi-
tive above a certain threshold. Solver position iteration counts ranging from 1 to 128
provide similar simulation behavior. We use a solver position iteration count of
16 for our current implementation, as this is the minimum value that ensures stability.
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3. Contact Offset and Rest Offset: As explained in (I.2), offsets are used to compute
contact. For the vessel, the autocomputed offsets lead to unstable simulation. Similarly
to the shunt model, we instead use 0.0003 m for the contact offset and 0.0002 m for
the rest offset. Increasing the rest offset can lead to a mismatch between visual and
collision mesh.

4. Remeshing Resolution and Triangle Count: These parameters are used to compute
the collision mesh. We use the autocomputed remeshing resolution and triangle count
which gives a stable simulation.

Shunt Insertion Data Collection

To collect data of shunt insertion trajectories, we build a state machine to conduct the
shunt insertion task. At each timestep, the state of this machine is determined based on
the ground truth observations from the environment. Depending the current state, suitable
actions for the robot are determined and conveyed to environment for execution. The state
of the environment, including observations, rewards and terminals from the environment as
well as the actions are recorded into the dataset. The actions designed in the state machine
are based on absolute cartesian space positions. By utilizing the data buffer designed in
Orbit, we can read the joint state of the robot at each timestep. Therefore, we are able
to efficiently collect trajectories with either cartesian-space actions or joint-space actions,
enhancing the breadth and depth of the data collected for shunt insertion trajectories.

In total, we collect 1000 action trajectories of length 219 in Isaac Orbit simulation
environments. We collect 500 trajectories each for the phantom vessel with an inner diameter
of 15 mm, and shunt outer diameters of 14 mm and 12.5 mm, using a policy trained with the
environment and observations detailed in Section 6.3. All trajectories begin with the shunt
grasped by the dVRK in the right gripper. The starting position of the shunt is randomized
within a 4 cm sidelength axis-aligned cube, while the starting position of the tensioning
arm is randomized within an axis-aligned rectangular prism measuring 8 cm in the x and
y dimensions and 4 cm in the z direction. The clamp assembly holding the vessel phantom
always starts at a fixed position.

The collected simulation dataset can be easily integrated into any existing learning library.
This eases the community for future policy training either by supervised learning or offline
reinforcement learning through the Orbit environment interface.

6.4 Experiments

Experimental Setup

Once again, we perform experiments using the da Vinci Research Kit (dVRK) surgical robot
with two cable-driven patient-side manipulator (PSM) arms. For autonomous roles, the
robot captures RGBD images at a 1920x1200 resolution with 30 fps using an inclined Zivid
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Figure 6.4: Physical Experimental Setup. The remote teleoperation setup includes: the
two master tool manipulators (labeled “(a)”), which pass the motion commands from the
remote surgeon to the the two patient side manipulators (labeled “(b)”), and an endoscope
(labeled “(c)”), which captures binocular vision information and transmits it to the surgeon’s
console (labeled “(d)”). The goal of the teleoperation mode is to insert the shunt into the
vessel phantom, as illustrated in the bottom right. The vessel phantoms used for evaluation
are a 15mm inner diameter yellow balloon, a 9mm inner diameter red balloon, and an 8mm
inner diameter femoral artery phantom (top right). The shunts used for evaluation are 8mm
and 14mm plastic tubes.

One Plus S camera. The teleoperation interface consists of foot pedals, two master tool
manipulators (MTMs), and a stereo viewer, as shown in Fig. 6.4. There are two mounted
arms near the workspace to mimic a medical assistant holding the vessel. If the robot is
performing shunt insertion, both are used to grasp the vessel, while only one is used if the
robot is performing a bimanual grasp and dilation.

The vessel phantoms used for experiments include two yellow and red latex balloon stems,
with inner diameters of 15mm and 9mm respectively, and a femoral artery phantom with
an inner diameter of 8mm. The shunts used are two clear vinyl tubes with outer diameters
of 8 mm and 14mm as shown in Fig. 6.4.

Bimanual Vessel Grasping Metrics and Failure Modes

As described in Section 6.2, we consider a bimanual grasping trial successful if both of the
robot grippers are grasping the vessel phantom. For this mode, we classify the failures into
one of the following:
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Vessel Phantom Servoing Execution Model Success Rate
Avg trial time Failure Modes

(s) (O) (T)

Yellow Balloon (15mm ID)
N

Sequential 95% 13.2± 0.39 0 1
Concurrent 65% 7.7± 0.37 7 0

Y
Sequential 70% 17.4± 0.73 6 0
Concurrent 100% 10.4± 0.42 0 0

Red Balloon (9mm ID)
N

Sequential 15% 12.4± 0.24 17 0
Concurrent 75% 7.3± 0.27 5 0

Y
Sequential 65% 15.4± 1.07 7 0
Concurrent 75% 9.7± 0.84 5 0

Table 6.1: Mode 1: Bimanual Vessel Grasping Results: Success rate and mean trial
time for bimanual grasping with and without servoing, along with executing both arms’
motions sequentially and concurrently. We track two failure modes: (O) One arm grasping
failure and (T) Two arm grasping failure.

One-arm grasping failure (O)

Either the left or right arm attempts to grasp the vessel phantom, but misses. When the
gripper is closed, there is no part of the vessel phantom inside it.

Two-arm grasping failure (T)

Both the left and right arms attempt to grasp the vessel phantom and miss.

Bimanual Vessel Grasping Results

We perform 20 trials of bimanual vessel grasping using the balloon phantom vessels, in
which the dVRK autonomously grasps two points on the vessel rim, both sequentially and
concurrently, as well as with and without servoing. In trials with visual servoing, an open-
loop policy is utilized to actuate the gripper to the vicinity of the designated target location.
This is then followed by the closed-loop visual servoing policy, which actuates the gripper
to the precise target location. In trials without visual servoing, that same open-loop policy
directly actuates the gripper to the target location. For all trials, a downward motion is
subsequently executed to grasp the vessel’s rim. For each set of 20 trials, the center of the
vessel is placed at 4 different points for 5 trials each. The 4 points form a square with a side
length of 2.54 cm. Results from these trials are reported in Table 6.1.

Yellow Balloon Vessel Phantom

For sequential bimanual grasping, we observe that the success rate declines from 95% to 70%
after incorporating servoing modules, with 1 two-arm grasping failure (T) and 6 one-arm
grasping failures (O) respectively. For concurrent bimanual grasping, we observe that the
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success rate increases from 65% to 100% after incorporating servoing modules, and there
are 7 one-arm grasping failures (O) and 0 failures respectively. We observe that on average,
the duration of the concurrent execution of bimanual vessel grasping is less by 5.5 s in the
no-servoing case, and 7.0 s in the servoing case.

For sequential execution, all of the one-arm failures (O) occurred on the second arm
after the first arm had grasped the vessel. The initial single-arm grasp of the vessel results
in the egocentric cropped image containing a tilted vessel rim with the gripper, which is
out of distribution from the human demonstrations for servoing policy training and leads to
incorrect servoing actions. This did not occur in the concurrent execution case where both
arms servo simultaneously because the arms only move to grasp the vessel after they both
finish servoing. These help explain why the addition of servoing module improves concurrent
bimanual vessel grasping but hinders performance on its sequential counterpart.

Red Balloon Vessel Phantom

With the red balloon vessel phantom, the sequential execution model without servoing
achieves a success rate of 15% with 17 single arm grasping failures (O). The large suc-
cess rate drop off from the same yellow balloon phantom case occurred due to slight errors
in the first grasp causing a larger overall change to the shape of the vessel phantom, since
the red balloon’s inner diameter is 6mm smaller than the yellow balloon. When executing
concurrently without servoing, the success rate of both grippers grasping the vessel phantom
climbs to 75%, as the vessel phantom undergoes little shape change before both vessels are
grasping the rim.

Bimanual grasping with servoing and a concurrent execution model achieved a 75% suc-
cess rate, albeit with five one arm grasping failures. Notably, all five of those failures occurred
in one of the four evaluation positions where the left gripper occluded the right gripper such
that having cropped images around the right gripper made the policy execute actions as if it
were in the left gripper’s position (the right gripper consistently went too far to the right).
Incorporating the visual servoing module in sequential executions increased the success rate
by 50% contrasting the previous yellow balloon’s case where servoing negatively impacts
performance. This highlights the benefits of utilizing servoing in sequential executions un-
der tight tolerances and non-circular rim shapes, despite its noisier and less robust servoing
action outputs from out of distribution inputs. We believe performance can be improved in
the future by augmenting our grasping dataset with demonstrations on single-arm grasped
rims.

We observe that on average, the duration of the concurrent execution of bimanual vessel
grasping is less by 5.1 s in the no servoing case, and 5.7 s in the servoing case.

Shunt Insertion Metrics and Failure Modes

We consider a shunt insertion trial, both for teleoperation as well as autonomous insertion,
a success if one arm is able to dilate the vessel and the other arm is able to insert a shunt,
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Vessel Phantom Mode Shunt Diameter Success Rate
Avg trial time Failure Modes

(s) (D) (S)

Yellow Balloon (15mm ID)

2
8mm 100% 13.6± 0.58 0 0
14mm 100% 20.3± 7.7 0 0

3
8mm 95% 14.5± 0.58 0 1
14mm 80% 14.4± 0.54 0 4

Trajectory Replay
8mm 100% 25.5 0 0
14mm 95% 22.0 0 1

Red Balloon (9mm ID) 3 8mm 95% 14.6± 0.18 0 1
Femoral Artery (8mm ID) 3 8mm 75% 14.7± 0.29 1 4

Table 6.2: Modes 2 (Teleoperation) and 3 (Surgeon is not available): Shunt In-
sertion Results: Success rate and mean trial time for shunt insertion with varying shunt
outer diameters and insertion modes including replay of simulated trajectories. We track
two failure modes: (D) dilation failure and (S) shunt insertion failure.

such that the rim of the shunt is fully enclosed when both grippers release. The elapsed time
of each trial as well as the success or failure of that trial is noted. Failures can fall into two
categories:

Dilation failure (D)

The robot, commanded with instructions from a teleoperator or through the autonomous
pipeline, either attempts to grasp the vessel phantom and fails, or successfully grasps it but
fails to dilate the vessel phantom rim outward.

Shunt insertion failure (S)

After both grippers release the vessel phantom and the shunt, if even a small portion of the
shunt’s rim is outside of the vessel phantom, it is considered a failure.

Teleoperation Results

For 20 trials of inserting the 8mm and 14mm outer diameter shunts into the yellow vessel
phantom, one co-author (W. Panitch) served as the human teleoperator after 15 hours of
experience. We report the results in Table 6.2. We observe that the human teleoperator
has a 100% success rate for inserting both the 8mm and 14mm outer diameter shunts. The
average trial time increased from 13.6 s to 20.3 s when the shunt outer diameter increased
from 8mm to 14mm.
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Autonomous Shunt Insertion Results

We perform 20 trials of autonomous shunt insertion when a surgeon is not available with
both the 8mm and 14mm outer diameter shunts into the yellow vessel phantom, and report
the results in Table 6.2.

We observe that the autonomous shunt insertion pipeline achieves a success rate of 95%
with the 8mm outer diameter shunt and 80% with the 14mm outer diameter shunt. There
were no dilation failures, but there were 1 and 4 shunt insertion failures respectively. The
average time of each trial is 14.5 s and 14.4 s respectively. The decrease in the success rate of
the larger 14mm shunt can be attributed to the much tighter tolerance required for insertion
when compared to the smaller 8mm shunt.

The effect of the screw motion on the success rate of shunt insertion into the yellow vessel
phantom is documented in [23]. When adding the screw motion to the result of the pipeline,
the success rate of inserting the 14mm shunt improved from 5% to 80%.

Red Balloon Vessel Phantom

We also perform 20 trials of autonomous shunt insertion into the red vessel phantom with
only the 8mm shunt, since the red vessel phantom has an inner diameter of 9mm. We
observe the success rate as 95% with the average trial time as 14.6 seconds.

Femoral Artery Vessel Phantom

Using the femoral artery vessel phantom, we perform autonomous shunt insertion with the
8mm shunt. The success rate of the method is 75% with one dilation failure and four shunt
insertion failures. The average trial time is 14.7 seconds.

The femoral artery phantom’s rim is not as well defined as the balloon based phantoms,
leading to a larger difficulty in rim perception. Specifically, the smaller rim has a lower
pixel count in the blood vessel rim pose estimation module, leading to less points fed into
the RANSAC algorithm. Noisier point clouds or slightly inaccurate segmentation masks can
have a larger effect since not as many points may be on the rim. In the majority of cases,
the masked depth points were sufficient for RANSAC to generate a reasonable estimation of
the vessel phantom’s rim. In the case where there was a dilation failure, the gripper missed
the vessel rim, and in the shunt insertion failures, the shunt moved downward when it was
completely outside of the vessel phantom. This suggests that with the small 8mm inner
diameter vessel phantom, accurate circle estimation can be an issue, leading to incorrect
visual servoing action outputs and missed grasps and insertions.

To observe the effect of the shunt insertion method on a realistic vessel analogue, after
performing all 20 trials, the femoral artery was visually inspected for damage. There were
no tears in the vessel phantom. There were visible marks at the locations that were held
by the two fixed grippers, but no such mark was present at the locations the dVRK gripper
held. This suggests that the shape and clamping force of the fixed grippers contributed to
the observed damage.
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Simulated Trajectory Playback Results

To evaluate the utility of the simulated trajectories in the dataset, we randomly sample
40 trajectories out of 1000 and replay them on the real dVRK, with one example rollout
shown on the right of Fig. 6.3. The vessel phantom used in all 40 trials was a yellow balloon
with inner diameter of 15mm. For half the trials, the real shunt size was 8mm with a
corresponding simulated shunt size of 12.5mm, and for the other half, both the real and
simulated shunt sizes were 14mm. In each trial, we track the execution time in addition to
the dilation (D) and shunt insertion (S) failure modes in Table 6.2.

Replaying the trajectories with the 8mm shunt resulted in a 100% success rate with
an average trial time of 25.5 seconds. Performing trajectory replay with the 14mm shunt
resulted in a 95% success rate, as the tighter tolerance led to one insertion failure. The mean
trial time was 22.0 seconds. Notably, both cases had longer execution times compared to the
other modes, as when following the trajectory, the robot ends with a zero velocity at each
waypoint as the data contains positions but not velocities.
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Chapter 7

Conclusion

In this paper, we present a unified framework for surgical automation using vision-based
segmentation and control techniques and show how it can be adapted to two different surgical
subtasks. Our results show that the proposed method achieves a high success rate across
multiple tasks and settings varying in size, color, and material. These results suggest that
autonomy-assisted surgery is a promising option for patients in situations where face-to-face
surgical care is inaccessible or expensive. Furthermore, we discuss the development of a set
of simulation environments designed in Orbit to address the need for a surgical robotic
simulator that accounts for deformable objects, and show that our environments enable
realistic sim-to-real transfer of trained policies. With more development, the simulation
has the potential to enable the use of modern Reinforcement Learning techniques to train
autonomous surgical policies.

7.1 Limitations

Although our experiments demonstrate significant improvement over prior state-of-the-art
methods in surgical task automation, there is still an incredible amount of work to be done
before such systems will be of any use in clinical settings.

For example, we identify a number of common issues across both the suturing and vascular
shunt insertion case studies:

Among the most common failure cases for both tasks involves high unexplained variance
in the point clouds that are used for localization. Despite the two methods using different
depth sensing techniques (one uses a projective depth camera, the other uses stereo vision),
both pointclouds see poor resolution and high noise in the direction orthogonal to the camera
sensor.

This is a particular challenge when correcting the needle orientation for the subsequent
insertion in the suturing task. RAFT-Stereo struggles in high-disparity areas, so we move the
needle to lower, back, right corner of the workspace as seen in Fig. 5.2(i). At this position,
the perception algorithm can reliably detect the normal vector of the needle, allowing for the
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first rotation correction step to align the normal vector with the positive y axis of the robot
frame as seen in Fig. 5.2(j). However, the needle endpoint detection at this position still has
a higher variance than desired. This means that we cannot perform the final rotation step
based on needle endpoint feedback alone. In the future, we will investigate alternate stereo
methods better tuned for small, reflective objects. With a more reliable stereopsis method
and improved needle endpoint tracking, we hope to mitigate the insertion failure case by
using the needle endpoint estimates to servo the needle to the optimal insertion orientation.

Similarly, using a fixed Zivid RGBD camera positioned above the workspace introduces
issues in vascular shunt insertions involving small vessels with thin rims. In such cases, the
low pixel count associated with thin rims leads to fewer data points available to accurately
capture the rim geometry, leading the system to be less tolerant to the depth noise. This
decrease in perception quality appears to consistently lead to a lower shunt insertion success
rate, as evidenced by the case of the femoral artery phantom. Using more expressive 3D
representations, such as multi-view reconstruction or NeRFs, might allow future researchers
to reduce or eliminate the noise stemming from our imperfect 3-D representations.

Another particularly prevalent challenge is the lack of force feedback in the dVRK system.
A common failure case in the suturing pipeline, for example, involves thread tensioning issues.
Even with the thread-sweeping move, two potential thread failures are still present:

a. The sweeping move sometimes misses the thread and the extraction move will grab the
thread with the endpoint causing system failure.

b. The later sutures run out of thread and fail because not enough thread was pulled
during the initial suture throw extraction.

Thread tensioning and wound closure are inherently tactile tasks, involving a rich array
of contact forces, and are therefore challenging to perform with visual information alone.
Vessel tensioning, too, is performed with visual feedback only, which makes it difficult to
directly consider the stress applied to the vessel during tensioning and could lead to tears
in the vascular tissue. Some prior works have explored adding haptic feedback to human
teleoperation or using motor voltages are a proxy for resistive force, but exploration of these
techniques is reserved for future work.

Finally, this work largely assumes quasi-static scenes to allow for easier sensing and
planning. However, to perform any in-vivo experiments, challenges like tissue deformation,
visual changes due to blood and other bodily fluids, the actions of other surgeons or surgical
assistants, and viewing angle variations must be addressed. We hope that future work will
utilize the insights presented here to continue to build towards less expensive, more reliable
surgical tools.
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