On-the-Fly Memory Programming for Largely Unmodified
Cryptographic Applications

Alice Yeh

S
-
o

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-130
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-130.html

May 17, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.

On-the-Fly Memory Programming for Largely Unmodified Cryptographic Applications

by

Alice Yeh

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Master of Science
in
Electrical Engineering and Computer Science

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Raluca Ada Popa, Chair
Professor Natacha Crooks

Spring 2024

On-the-Fly Memory Programming for Largely Unmodified
Cryptographic Applications

by Alice Yeh

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

it)

Professor Raluca Ada Popa
Research Advisor

May 13, 2024

(Date)

& sk sk sk ok ok ok

. b

Professor Natacha Crooks
Second Reader

05/13/2024

(Date)

Raluca Ada Popa
May 13, 2024

Alice Yeh
05/13/2024

On-the-Fly Memory Programming for Largely Unmodified Cryptographic Applications

Copyright 2024
by
Alice Yeh

Abstract
On-the-Fly Memory Programming for Largely Unmodified Cryptographic Applications
by
Alice Yeh
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Raluca Ada Popa, Chair

Secure computation (SC) is a family of cryptographic primitives with the potential to en-
able transformative applications, such as secure sharing of patient data and fraud detection
across financial institutions. Unfortunately, SC’s high memory overhead makes it difficult
to realize such applications in practice. To address this overhead, recent work has proposed
memory programming, a technique that leverages the determinism and obliviousness of SC’s
memory access patterns to efficiently perform demand paging for SC. However, state-of-the-
art memory programming requires application and library developers to rewrite their code
into a special DSL or framework, so that the system has the necessary visibility into the
program’s memory accesses.

We propose Osprey, a system that enables memory programming without requiring signifi-
cant code changes. Osprey integrates with SC libraries with minimal code changes, and in
many cases, requires no modifications at all to applications written against those libraries.
We adapt three cryptographic frameworks to our system, all of which require code mod-
ifications that account for less than 1.1% of library code for integration. Evaluating our
system on two distinct and data-intensive SC workloads shows reductions in page faults and
context switches compared to classical OS paging. We additionally observe favorable timing
performance for one workload and opportunities for optimizations from the other.

Contents

Contents

List of Figures

List of Tables

1

2

Introduction

Background

2.1 Secure Computation Building Blocks
2.2 Advances in Secure Computation
2.3 Memory Overhead of Secure Computation

Preliminary Experiments

3.1 Limitations in Existing Memory Programming Work
3.2 Improving Over Existing Work
3.3 Validating Hint-Passing Through Simulation

Design

4.1 Generating Page Fault Traces & Informed Paging
4.2 Content-Oblivious Memory Allocation
4.3 File I/O & Networking Overrides
4.4 Interfacing with External Libraries
4.5 TImplementation

Adapting Cryptographic Frameworks

5.1 emp-toolkit
5.2 Microsoft SEAL
5.3 MP-SPDZ e
5.4 Analysis of Adoption Overheads

Evaluation
6.1 Workloads

iii

iv

p—

O U O

© 0

17
17
18
18
19

20

6.2 Benchmarks

6.3 Performance Analysis

7 Discussion

7.1 Related Work

7.2 Future Work
8 Conclusion

Bibliography

i

21

24

25
25
26

28

29

List of Figures

2.1

3.1
3.2

3.3

4.1
4.2

6.1

6.2

6.3

6.4

Banks using secure computation to detect fraud without sharing their proprietary

Creating a memory management plan to simulate hint-passing.
Normalized execution performance of a system with unbounded physical memory,
MAGE, our hint-passing simulation, and classical OS paging across 10 workloads
with a 1 GiB physical memory limit.,
Breakdown of execution performance by time spent in user space, kernel space,
and blocked. Bars from left to right represent a system with unbounded physical
memory (no pattern), MAGE (cross pattern), our hint-passing simulation (circle
pattern), and classical OS paging (diagonal line pattern) in that order.

Slab allocator in action. L Lo
Annotating a Ciphertext class.o

Major and minor page faults incurred. The bar on the left (no pattern) repre-
sents a system with unbounded memory, the middle bar (circle pattern) repre-
sents Osprey’s programmed pass, and the bar on the right (diagonal line pattern)
represents a system using classical OS paging. The y-axis is logarithmic.

Voluntary and involuntary context switches during program execution. The bar
on the left (no pattern) represents a system with unbounded memory, the middle
bar (circle pattern) represents Osprey’s programmed pass, and the bar on the
right (diagonal line pattern) represents a system using classical OS paging. . . .
Normalized execution performance for merge and rstats. The bar on the left
(blue) represents a system with unbounded memory, the middle bar (dark blue)
represents Osprey’s programmed pass, and the bar on the right (white with di-
agonal line pattern) represents a system using classical OS paging.
Breakdown of execution performance for merge and rstats by time spent in user
space, kernel space, and blocked. The bar on the left (no pattern) represents a sys-
tem with unbounded memory, the middle bar (circle pattern) represents Osprey’s
programmed pass, and the bar on the right (diagonal line pattern) represents a
system using classical OS paging. Lo

il

10

14
16

21

22

v

List of Tables

5.1 Complexity of integrating our system into external crypto libraries. The number
of lines for Microsoft SEAL is in the worst case and can be further optimized.
MP-SPDZ modifications are for the Shamir secret sharing protocol only and do
not include networking overrides, which we leave for future work. 19

Acknowledgments

I would like to thank my advisor Professor Raluca Ada Popa for her guidance throughout my
time at Berkeley and for introducing me to the world of security research. I would also like to
thank Sam Kumar for his mentorship throughout my research journey—I have truly learned
so much about the research process from him. I am also grateful for the students, faculty,
and staff in Sky Lab that have fostered an incredibly supportive research community—I am
endlessly inspired by so many of these people. Finally, I would like to thank my family for
their love and support, as I would not be where I am today without them.

Chapter 1

Introduction

With the rapid development and adoption of digital technologies, more and more data is
being created—by 2025, an estimated 463 ezabytes of data will be created daily [8]. This
data is invaluable to corporations for driving business analytics and generating intelligent
insights; however, many organizations face the challenge of having to collect and compute
on data in a privacy-preserving way, thanks in part to privacy regulations, like the GDPR
in the EU and HIPAA for healthcare in the US, as well as a reluctance to share data to
maintain a competitive edge.

Secure computation has emerged as a powerful cryptographic primitive that enables
computation over encrypted data, where given n parties with individual inputs x;, a joint
function f(z1,---,x,) can be computed over the inputs without revealing anything other
than the function output. A popular use case of SC is secure multi-party computation, which
allows parties to collaboratively compute on their shared data without any party learning the
private inputs of another. Another is homomorphic encryption, which enables mathematical
operations, such as additions and multiplications, to be performed on encrypted data.

The use cases of secure computation are plentiful. In the context of the healthcare
industry, which is tightly regulated by HIPAA, hospitals can use secure computation to col-
laboratively compute on patient data to produce more accurate diagnoses, without revealing
sensitive patient information to each other. Similarly, in the financial industry, where com-
panies may be hesitant to share proprietary business data, secure computation can enable
collaborative analytics for fraud detection.

Secure computation schemes have enabled applications of shared computation on en-
crypted data across research and industry, including to secure digital assets [10] and to collect
analytics information in a privacy-preserving way [1]. However, the high memory overhead
associated with secure computation has been a continuous obstacle to its widespread adop-
tion and application towards practical use cases in industry—a number of cryptographic
systems have noted that available memory is often quickly exhausted and that subsequent
reliance on OS paging makes computation slow and inefficient [23, 26].

Recent work have produced systems that can run memory-intensive SC computations
at speeds similar to machines with unbounded physical memory [18]. They make the key

CHAPTER 1. INTRODUCTION 2

observation that memory access patterns of SC protocols can be computed ahead of time,
due to the fact that SC protocols must have data dependent memory accesses—a property
known as obliviousness. This enables memory management plans to be produced ahead of
time that can be used to efficiently perform demand paging, in a technique known as memory
programming. Despite the performance gains that these systems achieve, they face a large
usability barrier, as they require significant domain expertise to adopt. Additionally, there
is room for performance improvements, as these systems offload work to expensive planning
phases.

To address these usability challenges, we design Osprey, a system that manages the
memory overhead of secure computation with minimal code changes for integration with
existing cryptographic frameworks and no application modifications for usage. We present a
solution that runs a lightweight speculative pass that records a trace of the program’s page
faults and a subsequent programmed execution pass that leverages the trace to learn about
upcoming page accesses for informed paging. To enhance portability, we make only user
space modifications for tracing and informed paging.

To design a lightweight speculative pass that is fast and memory efficient, we observe
that we don’t require the speculative pass to produce the correct program output, so long
as the memory access patterns are unaffected, allowing us to trade off correctness for speed
and memory efficiency. We design a content-oblivious memory allocator to allocate memory
for data that does not influence memory access patterns and map the resultant content-
oblivious memory region to a small set of physical pages. In addition, we design file I/O and
networking overrides for the speculative pass to ensure that speculation does not pollute the
file system and to enable asynchronous speculation for each party in protocols that involve
communication between parties.

To ensure usability and portability, we design Osprey to integrate with cryptographic
frameworks with minimal code changes. We implement an integration layer through tem-
plate specialization to enable developers to easily annotate objects in their libraries to be
allocated obliviously. We additionally provide code stubs for networking overrides that pre-
serve memory access patterns. We adapt three major cryptographic frameworks, namely
emp-toolkit [27], Microsoft SEAL [24], and MP-SPDZ [15], to work with our system to de-
termine the complexity of integration. We find that all three libraries required less than
1.1% of library modifications for integration and that most libraries required fewer than 100
lines of code changes, which accounts for less than 0.1% of the library.

We evaluate Osprey on two distinct, data-intensive SC workloads and compare the page
faults incurred, context switches during program execution, and timing to a system with
unbounded physical memory and one using classical OS paging. Our system shows a 52.3x
and 12.9x reduction in major page faults for the two workloads, respectively, compared to
classical OS paging, and a 6.4 reduction in voluntary context switches for both workloads.
We find that for timing, our system performs 1.67x faster than OS for one workload but
performs 1.35x slower for the other workload, which we attribute to the need for further
optimizations to our user space centered prefetching approach and informed paging.

We structure the paper as follows. We introduce the building blocks of our system in

CHAPTER 1. INTRODUCTION 3

Section 2 and motivate our design with simulation results in Section 3. We detail Osprey’s
design in Section 4 and present case studies applying our system to cryptographic frameworks
in Section 5. We discuss evaluation results in Section 6. We talk about our system in the
context of the research space and look towards future work in Section 7. Finally, we conclude
in Section 8.

Chapter 2

Background

With secure computation, given n parties each with their individual inputs z;, a joint function
f(xq1,---,x,) is computed over the inputs, and each party learns nothing more than the
output of the function. Figure 2.1 depicts a commonly cited use case of secure computation,
which involves enabling financial institutions to pool their data to detect fraud, which can
feature complex patterns that involve multiple institutions, without having any of their
competitors learn the data that they have shared.

Lo

f(x, y)

| — | S—
| S -)
x y

Figure 2.1: Banks using secure computation to detect fraud without sharing their proprietary
data.

CHAPTER 2. BACKGROUND d

2.1 Secure Computation Building Blocks
Garbled Circuits

One common way that secure computation protocols are implemented is using Yao’s garbled
circuits [28], where two parties, a garbler and an evaluator, jointly compute over a shared
function f. Using a circuit compiler, a function f can be converted to a boolean circuit
representation made up of AND and XOR gates. From here, the garbler will generate a
garbled circuit, where for each gate, an obfuscated boolean gate truth table is generated.
This garbled circuit is sent to the evaluator, who will evaluate the garbled circuit. To execute
the circuit, the evaluator will need to get the appropriate input labels that correspond to
each party’s private inputs. This can be achieved by having the two parties run an oblivious
transfer protocol, which leaks no information about the private inputs. While the round
complexity of garbling protocols is constant, the communication costs are high, as the amount
of data that needs to be sent is quite large.

Obliviousness

Since secure computation protocols cannot leak any information about the data that is being
computed on through their memory access patterns, many SC programs are oblivious—
their memory accesses are data independent. This property of obliviousness means that the
memory access patterns for multiple runs of the same program must be deterministic.

2.2 Advances in Secure Computation

The joint function f computed under a secure computation protocol cannot leak any infor-
mation about its inputs, which means that the program’s memory access pattern must be
independent of its input data. For garbled circuits, this can mean that for even simple func-
tions, these circuit representations can be very large. For example, an RSA-1024 signature
function contains more than 42 billion gates [17]. Since the first full implementations of
secure computation protocols in the mid-2000s, advances in implementation techniques have
contributed to 3-4 order of magnitude of improvement in performance [9].

Reducing Garbling Costs

One line of work focuses on tackling the high costs of garbled circuits, which comes from the
bandwidth needed to transmit garbled gates and the computation required for evaluating
garbled tables. To reduce the number of ciphertexts that need to be transmitted per gate,
Naor et al. [22] proposed garbled row reduction (GRR), which observes that we can pick wire
labels such that one of the ciphertexts is 0, enabling one less ciphertext to be transmitted
for each gate. Kolesnikov and Schneider’s free XOR technique [16] enables XOR gates to
be evaluated “for free,” without the need for garbled tables or expensive key operations, by

CHAPTER 2. BACKGROUND 6

fixing the relationship between wire labels, which allows for new wire labels to be calculated
by taking the XOR of the input labels. Zahur et al. [29] introduced a garbling technique
that only requires two ciphertexts per AND gate and supports free XOR. They observe that
an AND gate can be represented as an XOR of two half gates, which are AND gates where
one of the inputs is known to one of the parties. With garbled row reduction, only one
ciphertext needs to be transmitted for a half gate.

Circuit Optimizations

Another line of work looks to reducing the circuit size to reduce the execution costs of
MPC protocols. For more widely used circuits, manual circuit design techniques have been
used to discover opportunities to reduce circuit size. One example of this is Kolesnikov
and Schneider’s [16] design for a conditional swapper, a basic component for an oblivious
permutation, that used the free XOR technique to reduce the garbled table to two rows.
Automated tools for producing efficient circuits have also been a major research focus, with
techniques that focus on logic compaction [25] and minimization of non-free gates [11].

Systems Optimizations

Generating and storing the entire garbled circuit for a protocol requires large amounts of
memory, so working to eliminate the concurrent memory overhead of secure computation
has been a large research focus as well. Huang et al. [13] makes the insight that there is not
a need for the garbler or the evaluator to be holding the entire circuit in memory and that
generation and evaluation can be overlapped and pipelined. Gates are sent by the garbler
as they are generated and evaluated by the evaluator as they and their inputs are received,
then immediately discarded. In addition to pipelining, approaches to compress circuits by
reusing circuit components for code blocks like loops [17] have also been a topic of research.

2.3 Memory Overhead of Secure Computation

Despite major advances in secure computation techniques that have reduced the order of
growth of SC programs to plaintext factors, the constant factors of SC protocols still con-
tribute to high memory overheads that cause practical deployments to become prohibitively
slow once systems run out of memory. In garbled circuits, because wire values are necessarily
encrypted, ciphertext expansion factors can cause a large blow-up in memory usage. In the
case of circuits that use 128-bit block ciphers, each wire representing just 1 plaintext bit
is 16 bytes, which is a 128x expansion factor [18]. In the case of other secure computation
protocols like CKKS homomorphic encryption, ciphertexts can expand to orders of hundreds
of times larger than plaintexts. In fact, for a short message, encrypting a single bit can pro-
duce a ciphertext that is a few megabytes in size [7]. The high memory demands of secure
computation necessitate new approaches to help manage the memory overhead of SC.

Chapter 3

Preliminary Experiments

3.1 Limitations in Existing Memory Programming
Work

Recent work towards reducing the memory overhead of secure computation have presented
promising insights and results but suffer in terms of usability.

MAGE

One notable system is MAGE [18], which is able to run memory-intensive secure computa-
tions at speeds similar to machines with unbounded physical memory by taking advantage
of the obliviousness property of secure computation schemes. Due to this observation that
memory access patterns are not data dependent, the system is able to create memory manage-
ment plans ahead of time and incorporate optimal access patterns, like Bélady’s algorithm,
that are much more efficient than OS paging or heuristics.

Despite being able to perform at speeds that nearly match systems with unbounded mem-
ory, MAGE is not without its flaws. For one, MAGE’s planning phase can take a long time
to run since it must go through the entire program to prescribe a memory management plan
that can be used in the subsequent execution phase. In fact, in one of MAGE’s workloads,
planning takes more time than the execution phase. Though the memory management plan
produced from the planning phase can be reused with multiple runs of the execution phase,
this can still prove inefficient when there are frequent changes to the original program or if
we require only one (or few) executions of a single program, which would require a re-run
of the planning phase. Additionally, the produced memory management plan can be very
large as it tracks each instruction in the program. From a usability perspective, MAGE’s
planning phase requires a DSL program input, which presents increased developer overhead,
as developers must select a compatible DSL for the selected protocol and engine and write
DSL code in a distributed way that explicitly indicates asynchronous network operations
that are needed to transfer data between different workers. This requirement means that

CHAPTER 3. PRELIMINARY EXPERIMENTS 8

Combined Program MAGE
Interpreter
ADD X, Y,
/ COPY-SWAP m_, t \
ul ul
Unbounded Program MADV-0UT t ; Bounded Program
u
ADD x,, y, ADD X', y’.
ADD x,, Y,
COPY-SWAP m_, t,,
MADV-IN m,, 7 SWAP-OUT t,, s,
ADD x,, y, ADD X', Y,
- (/‘7 SWAP-IN s,, m, 7

Figure 3.1: Creating a memory management plan to simulate hint-passing.

MAGE may be more difficult for non-experts to use, which makes widespread adoption of
MAGE for secure computation schemes even more difficult, especially in industry. Further,
the DSLs may not optimize the resulting circuit and may expose low-level SC operations.

3PO

3PO [2] builds on MAGE’s idea of taking advantage of obliviousness for prefetching memory,
though in the context of far memory. 3PO introduces an in-kernel tracer to generate a tape
of page accesses and accelerates tracing by recording accesses in batches of microsets that
omit information about the exact sequence of accesses within the set. During execution, 3PO
synchronizes the prefetcher with the application through selecting certain key pages that will
page fault in the main execution and having the prefetcher resynchronize and bring in the
next batch of pages when these faults are triggered. We draw several ideas for tracing and
synchronizing hint-passing with the main run execution from 3PO but favor an approach
that requires only user-space modifications.

3.2 Improving Over Existing Work

The pain points that we found in MAGE are (1) the slow planning phase that generates large
memory management plans and (2) the DSL input. To address both problems, we propose
a solution that takes the original program as input and runs a lightweight speculative pass
that is fast and generates small traces, followed by an execution pass. We borrow from 3PO’s
techniques of generating a trace of page accesses in the speculative pass and subsequently
passing hints to the execution pass via the program trace about upcoming page accesses.
However, this introduces a new pain point—the need for kernel modifications to generate
the program trace and to prefetch pages, which greatly erodes usability. We solve this

CHAPTER 3. PRELIMINARY EXPERIMENTS 9

Execution Performance (1 GiB, Azgre)

W Unbounded
< [MAGE 1Gi8
10 . Madv 1GiB
X 051GiB

merge sort
n =1048576 n = 1048576

Figure 3.2: Normalized execution performance of a system with unbounded physical memory;,
MAGE, our hint-passing simulation, and classical OS paging across 10 workloads with a 1
GiB physical memory limit.

problem by recording and handling page faults in user space and passing hints the the OS
about upcoming page accesses using syscalls. The remaining major unknown was whether
using this type of user space approach to memory management would erode performance.
This required us to validate that user space interfaces to memory management still perform
comparably to the more direct paging approaches of prior systems.

3.3 Validating Hint-Passing Through Simulation

To validate that passing hints to the kernel about upcoming page accesses can still yield
significant performance gains over OS paging, we simulate the execution performance by
adapting MAGE. We treat MAGE’s planner as a black box and generate memory manage-
ment plans from running the planner with unbounded memory and with 1 GiB of bounded
memory. From these two plans, we generate a combined memory management plan that
incorporates the instructions and addresses from the unbounded plan and the swap direc-
tives found in the bounded plan. We substitute the swap directives for the corresponding
madvise syscall, which is used to give advice to the kernel about upcoming page accesses
over an address range. This combined memory management plan is then fed into MAGE’s
interpreter to retrieve timing and page fault information. Figure 3.1 shows this workflow on
a simplified program.

Benchmarks were run on 10 workloads with varying access patterns using Microsoft Azure
against baselines of a system with unbounded physical memory and a system using classical
OS paging. We also compare our system with MAGE, which should still perform better as it
uses more proactive swap instructions. 1 GiB cgroups were used to bound physical memory
in all cases other than the unbounded physical memory case.

CHAPTER 3. PRELIMINARY EXPERIMENTS 10

-
Iry
] Time Spent in User or Kernel Space vs. Blocked (1 GiB, Azure)
- B Blocked
B User
I System
1000 S
800
2
u 600
E
=
400
200
0
merge ljoin nmvmul binfclayer
n = 1048576 n=2048 n=8192 n=16384
-
3
Time Spent in User or Kernel Space vs. Blocked (1 GiB, Azure) S
&
B Blocked
W User
W System
250
200
z
o 150
15
E

101.176
101.268

rsum rstats mvmul
n = 65536 n=16384 n =256

n
Time Spent in User or Kernel Space vi Blocked (1 GiB, Azure)
[

B Blocked
N User
6000 W System
5000
4000
)
o
£
3000

n
-
=
o
N

222416

1886.94

2000

1097.62
1167.23
1237.25
1489.46
1496.96

1000

sort n_rmatmul t rmatmul
n = 1048576 n=128 n=128

Figure 3.3: Breakdown of execution performance by time spent in user space, kernel space,
and blocked. Bars from left to right represent a system with unbounded physical memory (no
pattern), MAGE (cross pattern), our hint-passing simulation (circle pattern), and classical
OS paging (diagonal line pattern) in that order.

CHAPTER 3. PRELIMINARY EXPERIMENTS 11

Simulation Results

The results for running these workloads on a system with unbounded physical, with MAGE,
with hint-passing with madvise, and with classical OS paging are shown in Figure 3.2. We
find that the simulated system using madvise performs better than a system using classical
OS paging for all workloads, outperforming the classical system by 2 - 4.5x in 7 of the
workloads. Additionally, the system performs within 2x of MAGE for all workloads and
performs within 1.5x of MAGE for 6 of the workloads. This shows that the OS is responsive
to hint-passing and that using madvise calls for informed paging is a feasible alternative to
injecting swap directives.

Figure 3.3 shows the breakdown of execution performance based on time spent in user
space, kernel space, and blocked. Our simulated madvise system reduces the time spent
blocked on page faults of the classical OS paging system, as we incur only a minor page fault
instead of a major page fault. This is especially significant in workloads like merge, rmvmul,
and n_rmatmul. The simulated system, however, does feature a slight increase in time spent
in kernel space, compared to both MAGE and a system with unbounded physical memory,
but this is expected due to the added syscalls.

From these simulation results, we find that a user space approach to memory management
yields results that consistently outperform classical OS paging and perform comparably to
direct paging approaches, validating the efficacy of a user space centered design.

12

Chapter 4

Design

The goal of Osprey is to reduce the memory overhead of a target program by speculatively
generating page fault traces and informing the operating system about upcoming page ac-
cesses through hint-passing. On a high level, the system workflow consists of two separate
passes over a target program, with a lightweight speculative pass that generates a trace of
page accesses and a subsequent programmed pass that receives hints about upcoming page
accesses and executes the program correctly.

The key design tenet for our system is usability. We achieve this with two overarching
design considerations: using only user space modifications and ensuring minimal library
changes for integration. We describe the individual systems components in more detail in
the following sections. In particular, we detail how we can generate page fault traces and
enable informed paging using only user-space modifications. We further detail how we can
make the speculative process memory-efficient and fast through our design of a specialized
oblivious memory allocator. Finally, we make additional design considerations required for
ease of use and for integration with SC libraries.

4.1 Generating Page Fault Traces & Informed Paging

The purpose of the speculative pass is to collect a trace of page accesses that can be used
to speed up the programmed pass via hint passing to the OS about upcoming memory
accesses. We generate page fault traces without kernel modifications by using userfaultfd
to intercept page faults and add the faulting address to a trace. To ensure that the trace is
concise, we borrow 3PQO’s techniques of tracing on a page-level granularity and collecting page
faults in batches that will be prefetched together, which enables us to remove duplicate faults
within the batch and reduce the trace size. To synchronize the trace with the programmed
pass’s execution, we adapt the idea of using key pages that are guaranteed to generate a
page fault when accessed as synchronization points and prefetch pages in batches, as well as
prefault select pages to populate the page table ahead of time as an additional optimization.
For both prefetching and prefaulting, as well as marking pages that are no longer needed, we

CHAPTER 4. DESIGN 13

use madvise to inform the OS about future memory usage, with the advice values MADV_-
WILLNEED for prefetching, MADV_DONTNEED for dropping pages, and MADV_POPULATE READ and
MADV_POPULATE WRITE for pre-populating page tables.

4.2 Content-Oblivious Memory Allocation

In order for the speculative pass to be efficient, we design the speculative process to have a
small memory footprint and to run quickly. To do so, we observe that we can actually trade
off correctness for memory efficiency and speed, so long as the memory access patterns of the
speculative process remain unaffected, as we do not need to generate the correct program
outputs in the speculative pass—we only need to this in the programmed pass. Given this,
we elect to construct a specialized content-oblivious memory allocator that allocates memory
in a separate memory region that we map to a small set of physical pages but has its own
data structures stored in the regular portion of memory. Data structures that do not impact
the memory access patterns of the program, notably ciphertexts, are then allocated using
this allocator. We provide more details about the structures and implementation of the slab
allocator below.

To configure the allocator for each respective pass, we create two allocation modes, regular
and speculative, which determine whether memory is mapped normally or to the small set
of physical pages respectively. The latter mode is used in the speculative pass to reduce
memory usage while the former is used in the main run to guarantee correctness in program
output. We reserve the entire content-oblivious memory region upfront to ensure that the
address space for the content-oblivious data structures is contiguous.

Slab Allocation

To allocate memory from the content-oblivious memory region, we favor a slab allocation
design for two reasons. The first stems from our observation of a pattern of repeated alloca-
tions of identically-sized oblivious objects through our experience with popular cryptographic
frameworks. By using an allocation scheme that allocates and frees memory such that ob-
jects of the same size are stored contiguously, memory fragmentation can be greatly reduced.
Second, since the allocator’s data structures are stored in the regular portion of memory, we
need to ensure that allocations are tracked in a memory efficient manner, which is not the
case with a naive one-to-one mapping of address to object. Instead, we maintain “slabs”
that track multiple objects with the use of a bitmap, enabling us to maintain mappings of
address to slabs, which minimizes the size of regular memory data structures.

Concretely, we keep a mapping of object sizes to respective priority queue-like structures
of unfilled slabs that prioritize filling the most filled slab first to improve memory efficiency.
Further, we maintain a separate mapping of <base_addr, slab ptr> key value pairs for
looking up the address range that a slab tracks.

CHAPTER 4. DESIGN

object size

8

2} 2 | 2
70 / \
96

Base Addr: 0x2430a

1200 s @0
1400

e

8

2 2 | 2
70 / \
96

e Base Addr: 0x2430a
1200 see @S -
1400

object siz
Keys
8 :
1 P
S 7)me 22
70
9%
Base Addr: 0x2430a
1200 sitmap: (@@ .
al .00l 3
<ase- s, sl > 1400
(a) Call to allocate_object ().
object size
keys. s
T 0
8 I
3 | 7 | 32 | —» 2 2
70
9%
>
. Base Addr: 0x2430a
1200 Bitmap: o
al .00l 2
<vase- i, S, > 1400

(b) Call to free_object().

Figure 4.1: Slab allocator in action.

allocate_object(32)

Slab Lookup
<base_addr, slab_ptr>

free_object(0x2430a)

Slab Lookup
<base_addr, slab_ptr>

1

14

On calls to allocate_object (), the allocator will first check for unfilled slabs to allocate
from before going to the content-oblivious memory region for additional memory. Upon
retrieving an appropriate slab, the next available address is calculated using the tracked
base address and bitmap and returned. The free slot count key for the priority queue is
then updated to reflect the newest allocation. Figure 4.1a shows an example of a call to
allocate_object () to allocate an object of size 32.

On calls to free object(), allocated memory is not freed immediately and is instead
simply marked as available, in anticipation of a subsequent allocation of an object of the
same size. The slab that tracks the memory address corresponding to the memory being
freed is found using a map that stores <base_addr, slab ptr> key value pairs, and the
bitmap and free slot count of the slab are updated. Figure 4.1b shows an example of a call

to free_object ().

CHAPTER 4. DESIGN 15

4.3 File I/O & Networking Overrides

We observe two additional opportunities to improve the usability of the speculative pass,
which we detail below.

File I/O

The file outputs generated by the speculative pass are no longer needed after speculation,
as in the best case, they would simply be duplicates of those generated by the programmed
pass, and in other cases, they may contain garbage data since the speculative pass does not
guarantee correctness. It can be laborious and difficult, however, for a user to manually go
and delete these generated files, as programs may generate many files that can be complexly
nested within the file system. To prevent these files from polluting the file system, we create
and mount an overlay file system for the speculative process, which creates a separate overlay
file system for speculation logic. This ensures that speculative process’s file interactions do
not alter the actual file system. After program execution, the overlay file system can be
cleanly deleted, as the execution outputs of the speculative process are not used and thus
no longer needed.

Networking

There are a number of SC protocols that involve multiple parties that communicate with
each other, with one example being oblivious transfer in multi-party computation. This
requires parties to be run synchronously in a normal program execution. However, since the
content of these network interactions do not interfere with the memory access patterns of
an oblivious program nor do we need program correctness in the speculative pass, we can
enable asynchronous speculation by eliminating network I/O in the speculative pass. We
do so by providing fread and fwrite override functions, namely speculative fread and
speculative fwrite, that preserve the memory access patterns of the syscalls by touching
the actual data without performing any I/0O. This enables the speculative process to continue
to generate the correct program trace without needing to be run synchronously with other
parties involved in the protocol.

4.4 Interfacing with External Libraries

Annotating Oblivious Data Structures

To reduce the developer overhead of integrating oblivious allocation functionality into their
libraries, we implement a base class that calls the oblivious allocator and use template
specialization (C++ 20 feature) to override the underlying allocation calls for objects that
are annotated to inherit from this base class. External libraries that wish to mark data
structures to be allocated obliviously will simply annotate these objects to inherit from this

CHAPTER 4. DESIGN 16

#include "osprey/lib/annotation.hpp"”

class Ciphertext : public ContentObliviousStructureBase {

Figure 4.2: Annotating a Ciphertext class.

base class. Future constructions and deconstructions of the annotated objects will call the
oblivious allocator under the hood and return a pointer to an address in the content-oblivious
memory region. Figure 4.2 showcases how a Ciphertext class can be annotated.

Integrating Overrides

For file I/O overrides, developers do not need to make any changes to their library and the
overlay file system will be automatically set up for the speculative pass on program execution
with our system. For libraries with networking functionality, networking overrides can be
integrated by wrapping networking code with a conditional that checks whether our system
is running in speculative mode. Calls to fread and fwrite should also be replaced with
calls to speculative_fread and speculative_fwrite, which preserve the memory access
patterns of the syscalls but do not perform the network interactions.

Running a Program

A target program can be run with our system without rewriting it to a low level or DSL
program. To run a program with our system, we provide an executable and command line
flags that can be used to set program options. An example execution of a speculative pass
looks as follows:

$./osprey --speculative-only --trace-file=run.trace --lookahead=1000 ./my_prog

4.5 Implementation

We implement a prototype of Osprey in C++, which consists of &3, 000 lines of code, which
excludes comments and blank lines (measured using cloc). We build our system with
clang++ 14.0.0 with compiler flag -std=c++20 to use C++ 20 features. We compile a
shared library file for integration with external libraries.

17

Chapter 5

Adapting Cryptographic Frameworks

We integrate Osprey with three external cryptographic frameworks to determine the devel-
oper overhead associated with using our system. We selected these libraries since they are
frequently used in MPC development and research, with emp-toolkit [27] having nearly 200
stars on GitHub and 250+ citations on Google Scholar, Microsoft SEAL [24] nearly 3.5k
stars, and MP-SPDZ [15] having 800+ stars and 400+ citations. They also have funda-
mental differences in complexity and implementation that enable us to fully test out our
system, particularly the oblivious allocator and networking overrides. In integrating with
these libraries, we also survey the lines of code changed to assess the ease of integration and
usability of our system.

5.1 emp-toolkit

emp-toolkit [27] contains a set of MPC frameworks implemented as garbled circuits and
was built with the aim of allowing researchers to quickly prototype protocols to assess their
efficiency and of black-boxing cryptographic techniques.

Annotations

A Bit object underlies emp-toolkit’s Integer and Float representations, allowing us to
annotate just the Bit object to enable oblivious allocation.

Networking Overrides

We implement networking overrides for emp-toolkit since the garbler and evaluator commu-
nicate in the garbled circuits protocol. To disable networking solely in the speculative pass,
we wrap sections of emp-toolkit’s NetI0 code in a conditional that checks whether the code
is being executed by the speculative pass or the programmed pass. This includes socket con-
nection logic, where the program listens for and accepts connections on a socket and initiates

CHAPTER 5. ADAPTING CRYPTOGRAPHIC FRAMEWORKS 18

connections on a socket. We similarly add a conditional check to where the code interacts
with the network buffer and call the speculative fread and speculative fwrite in the
speculative pass to preserve the memory access patterns of fread and fwrite.

5.2 Microsoft SEAL

Microsoft SEAL [24] is a homomorphic encryption library that allows additions and multipli-
cations directly on encrypted integers and real numbers, with the goal of making HE prim-
itives available to a wider audience. SEAL provides two homomorphic encryption schemes,
BFV and BGV, which allow modular arithmetic on encrypted integers, and CKKS, which
enables additions and multiplications on encrypted real or complex numbers.

Annotations

SEAL contains an internal memory manager representation that features logic via memory
manager profiles that determine which virtual memory pools to allocate memory from. These
memory pools make underlying calls to SEAL_MALLOC and SEAL _FREE macros, which allocate
seal byte pointers using malloc and free. SEAL’s ciphertext and plaintext objects both
have their memory allocated from these memory pools. To allocate SEAL’s ciphertext objects
obliviously, we create new SEAL_MALLOC_OBLIVIQUS and SEAL_FREE OBLIVIQUS macros that
call the respective oblivious malloc and free allocation functions from our library. We
then create an oblivious memory pool and profile that make underlying calls to these newly
created macros and modify the Ciphertext class to retrieve memory from the oblivious
memory pool.

Networking Overrides

Microsoft SEAL does not perform any networking. Thus, overrides for networking are not
necessary.

5.3 MP-SPDZ

Multi-Protocol SPDZ (MP-SPDZ) [15] extends an implementation of the MPC protocol
to 34 variants that cover honest/dishonest majority and semi-honest/malicious corruption
security models and both binary and arithmetic circuits.

Annotations

High-level programs can make use of 9 basic types that enable secret and cleartext values,
as well as container types like arrays and matrices. Basic types use “registers” in the virtual
machine, which are allocated on an ongoing basis and thread-specific while container types

CHAPTER 5. ADAPTING CRYPTOGRAPHIC FRAMEWORKS 19

Total files mod. | Total lines mod. | % of library lines mod.
emp-toolkit 5 76 0.058%
Microsoft SEAL 11 721 1.088%
MP-SPDZ (Shamir) 2 10 0.010%

Table 5.1: Complexity of integrating our system into external crypto libraries. The number
of lines for Microsoft SEAL is in the worst case and can be further optimized. MP-SPDZ
modifications are for the Shamir secret sharing protocol only and do not include networking
overrides, which we leave for future work.

use “memory,” which is allocated statically and shared between threads. Since MP-SPDZ
supports 34 protocol variants, each with different object types but similarly structured im-
plementation, we focus on just one protocol—the Shamir secret sharing protocol; however,
these techniques should apply similarly to the other protocols as well. For the Shamir secret
sharing protocol, the secret type is ShamirShare<T> and the cleartext is of type T, which
means that we can simply annotate the ShamirShare object that underlies the secret type
to be allocated obliviously.

Networking Overrides

We do not incorporate networking overrides for MP-SPDZ and elect to save this for future
work.

5.4 Analysis of Adoption Overheads

In both emp-toolkit and MP-SPDZ, we find that the number of lines of code that need to be
modified is fewer than 100 lines of code, which accounts for less than 0.1% of the total lines
of code in these libraries. Microsoft SEAL requires roughly 700 lines of code changes due
to its internal memory manager representation, which required additional structures to be
created for oblivious allocation. With further optimizations, this number should be able to
brought down to less than one hundred lines of code changes, though even at its worst case,
the total lines modified still accounts for less than 1.1% of the total lines of code. Table 5.1
quantifies the file and line changes for adapting each library.

For library developers, these modifications look to be feasible, especially since these
developers would be in tune with the ciphertext objects and networking logic in their own
code. Additionally, most applications that use these frameworks will not need to make any
modifications and can use them out-of-the-box as usual, meaning that integrating our system
will not increase the complexity of usage for application developers.

20

Chapter 6

Evaluation

We evaluate the performance of Osprey on two distinct SC workloads and compare to a
system with unbounded physical memory and a system using classical OS paging.

6.1 Workloads

We evaluate on two data-intensive SC workloads that are used in SC applications, as we have
access to native implementations of these two workloads in the cryptographic frameworks
that we have adapted from MAGE. We save implementing and evaluating on the remaining
workloads from Chapter 3 for future work, as they were written in MAGE’s DSL and cannot
be easily run independently of MAGE.

Merge

One SMPC application is federated data analytics, where a central party wants to learn
about some property of the data distributed across multiple clients, with the constraint that
the data cannot be centrally collected. A commonly used operation in federated analytics is
a federated equi-join, which combines relations held by distinct clients without revealing any
information about each client’s individual data. One method of implementing federated equi-
joins is sort-merge, which entails merging sorted lists—this is our first benchmark workload,
which we refer to as merge.

Real Statistics

Homomorphic encryption is an SC application that enables homomorphic operations on
encrypted data without decryption and requires only one party to encrypt and decrypt data,
which is useful in cases where there are limited number of participants. The CKKS HE
scheme [6] enables additions and multiplications on vectors of real and complex numbers
and yields approximate results, consisting of add-multiply circuits. Our second workload
involves computing the mean and variance of real numbers, which we refer to as rstats.

CHAPTER 6. EVALUATION 21

166941e+07

Page Faults Incurred (1 GiB, On Prem) 3

107

5.7644e+D6

3.94401e+04

O | 163249e+06

109038e+06

10°

of Page Faults (Log Scale)

merge
n = 1048576

Figure 6.1: Major and minor page faults incurred. The bar on the left (no pattern) repre-
sents a system with unbounded memory, the middle bar (circle pattern) represents Osprey’s
programmed pass, and the bar on the right (diagonal line pattern) represents a system using
classical OS paging. The y-axis is logarithmic.

6.2 Benchmarks

We run benchmarks on merge and rstats using on-prem machines against baselines of a
system with unbounded physical memory, which we refer to as unbounded and a system
using classical OS paging, which we refer to as OS. We create 1 GiB cgroups, which we
use to bound program memory for Osprey and for the classical OS paging baseline, and
use /usr/bin/time -v to collect metrics. We run the speculative and programmed passes
separately and disable networking overrides, as they have not yet been optimized.

Page Fault Count

We measure the impact of informed paging from user space by comparing the major and
minor page fault counts of our programmed pass with the unbounded, which we expect to
have no major page faults, and OS baselines. A major page fault reflects a fault where the
page has to be read in from disk, and a minor fault is one in which the page has been read
into memory but has not yet been mapped into the page table. Figure 6.1 shows the major
and minor page fault counts on a logarithmic scale. Our system shows a 52.3 x reduction in
major page faults compared to the OS baseline for merge and a 12.9x reduction for rstats,

CHAPTER 6. EVALUATION 22

qd432e+06

1e6 ntext Switches During Execution (1 GiB, On Prem)

= \bluntary
Il Involuntary

of Context Switches
138406e+06

61077
226317

i—

merge rst'ats
n = 1048576 n=16384

Figure 6.2: Voluntary and involuntary context switches during program execution. The
bar on the left (no pattern) represents a system with unbounded memory, the middle bar
(circle pattern) represents Osprey’s programmed pass, and the bar on the right (diagonal
line pattern) represents a system using classical OS paging.

which highlights the effectiveness of informed paging.

Context Switches

We compare the number of context switches during program execution, focusing mainly on
voluntary context switches, and find that our system voluntarily context switches 6.4x less
than OS for both merge and rstats, indicating a reduced overhead from waiting for data
from disk. Figure 6.2 shows the number of context switches during program execution for
each workload.

Timing

The timing results for unbounded, the programmed pass of our system, and OS are shown
in Figure 6.3. We find that while our system performs 1.67x faster than OS for merge, it
performs 1.35x slower for rstats. Looking at the breakdown of time spent in user space,
kernel space, and blocked in Figure 6.4, both workloads see an increased amount of time

spent in user space and kernel space with the programmed pass, which can be attributed to
the user space centered prefetching approach and the madvise syscalls made for informed

CHAPTER 6. EVALUATION 23

Execution Performance (1 GiB, On Prem)

509735

N Unbounded
EEm Programmed 1 GiB
1 051GiB

4.6291p

376776

Normalized Time

merge rstats
n = 1048576 n=16384

Figure 6.3: Normalized execution performance for merge and rstats. The bar on the left
(blue) represents a system with unbounded memory, the middle bar (dark blue) represents
Osprey’s programmed pass, and the bar on the right (white with diagonal line pattern)
represents a system using classical OS paging.

09735

me Spent in User or Kernel Space vs. Blocked (1 GiB, On Prem)

3|
o
~N
w0
<

B Blocked
N User
El System

w

merge rstats
n = 1048576 n = 16384

Figure 6.4: Breakdown of execution performance for merge and rstats by time spent in user
space, kernel space, and blocked. The bar on the left (no pattern) represents a system with
unbounded memory, the middle bar (circle pattern) represents Osprey’s programmed pass,
and the bar on the right (diagonal line pattern) represents a system using classical OS paging.

CHAPTER 6. EVALUATION 24

paging. With further optimizations to our design, the time spent in user and kernel space
should be able to be brought down to be closer to those seen in the simulation results in
Chapter 3.

6.3 Performance Analysis

The page fault count and context switching results, as well as results for the merge workload,
show that our system performs favorably compared to OS and is effective in managing the
memory overhead of data-intensive secure computations. With the incorporation of the
optimizations mentioned in Section 6.2, the performance of our system should be able to
approach those seen in the simulation results of the paper. We focus on this as immediate
future work.

25

Chapter 7

Discussion

7.1 Related Work

Predictive Paging
I/O Speculation

A number of works have used speculative execution to predict an application’s future data
accesses to speed up operations. Chang and Gibson [5] propose an automatic prefetching
technique that involves speculatively executing an application while stalled waiting for disk
and analyzing future read accesses to issue hints accordingly. They introduce a speculative
thread that executes when the main thread is blocked and issues hint calls and use binary
modifications to transform applications to speculate, showing that it is possible to speculate
and provide hints about future read accesses with little observable overhead. Fraser and
Chang [12] implement a speculative process and achieve correctness and performance by
ensuring that the speculative process does not produce or change the output of the original
application and that the speculative process’s resource utilization does not hurt the perfor-
mance of normal processes. This speculative process works to issue prefetches on behalf of
its parent process and runs ahead of the parent by continuing to run without waiting for
non-resident data. Li et al. [19] design a competitive prefetching strategy based on balanc-
ing the tradeoffs between conservative prefetching, whose cost can be dominated by high
/O switch overhead, and aggressive prefetching, which may result in wasted I/O bandwidth
when prefetching unnecessary data. They also discuss adaptive prefetching strategies to deal
with situations where there is high memory contention, which is the case with secure com-
putation applications. We draw on a number of principles of prior /O speculation works in
designing Osprey’s speculative pass, with a prominent one being ensuring that speculation
occurs with minimal additional program overhead. These works also influence our plans for
future work of concurrently speculating and running the programmed pass, which we discuss
in more depth in Section 7.2.

CHAPTER 7. DISCUSSION 26

Tracing

Capturing traces is a long-standing method for debugging and performance evaluation, with
a notable use case for such traces being in trace re-execution for performance prediction.
Recording traces without imposing high overheads to the program or requiring substantial
modifications to the system are key goals for tracing applications. Jones [14] focuses on
improving from low-level mechanisms for handling system calls that would require reimple-
menting large portions of the system interface, developing a toolkit that simplifies interposing
user code between applications and system interfaces. Burton and Kelly [4] design ULTra,
a user mode trace mechanism that intercepts systems calls and records traces to a file with
minimal interference to the system. They extend ULTra to capture a workload’s paging
activity [3] and apply optimizations to reduce the size of the captured trace. 3PO [2] imple-
ments tracing for prefetching, using an in-kernel tracer to record page accesses in the page
fault handler, with a focus on collecting a concise trace efficiently. They accomplish this by
tracing at the granularity of a page and batching faults into microsets to avoid redundant
recordings of accesses, which are then prefetched together during re-execution. We similarly
focus on generating traces efficiently and concisely and pull many of 3PO’s techniques in
generating a concise trace but diverge from prior works in our user-space approach to trace
collection.

Compilers for Secure Computation

A separate line of work to make secure computation more efficient and accessible to non-
experts is general-purpose compilers for executing multi-party computation on arbitrary
functions. These compilers focus on reducing the developer burden of having to design
custom MPC protocols, instead enabling users to write high-level descriptions that can be
compiled into MPC protocols. Fairplay [21] is an early work that enables developers to write
code in a high-level Secure Function Definition Language (SFDL) and compile it down to
a boolean circuit. Later works build on the angles of efficiency and usability, like ObliVM
[20], which provides a more intuitive programming language and user-friendly oblivious pro-
gramming abstractions that compile into efficient SC representations. TinyGarble [25] is
another that generates optimized boolean circuits for secure computation with a focus on
compactness and scalability, which reduces the memory footprint of circuit operations.

7.2 Future Work

While currently, the speculative and programmed passes are run separately, the eventual
goal for Osprey is for speculation to occur concurrently with execution. The main challenges
of concurrently speculating is threefold: the speculative pass must (1) run quickly to ensure
that it is consistently ahead of the programmed pass, (2) maintain a small memory footprint,
and (3) not interfere with program correctness.

CHAPTER 7. DISCUSSION 27

A number of the existing components of Osprey have been built with this in mind. To
ensure that the speculative pass runs quickly, we adopt efficient trace collection techniques
and satisfy page faults quickly within the content-oblivious memory region. The specialized
memory allocator also enables the speculative pass to have a small memory footprint. Finally,
because both the speculative and programmed pass interact with the same file system and
interface with the network through the same ports, the implemented file I/O and networking
overrides prevent incorrect behavior during program execution.

28

Chapter 8

Conclusion

This paper proposes Osprey, a design for a memory managed secure computation system with
a focus on usability. Our system employs a lightweight speculative pass that generates page
fault traces and hint-passing in the programmed pass to inform the OS of upcoming page
faults. We detail the construction of a content-oblivious memory allocator to enable efficient
speculation and file and networking overrides to enhance usability. Through integration case
studies on three external cryptographic frameworks, we showcase the minimal code changes
necessary to integrate Osprey. From evaluating our system on two distinct, data-intensive SC
workloads, we show reductions in page faults and context switches compared to a baseline
using classical OS paging, as well as favorable timing performance for one workload and
opportunities for optimizations from the other.

29

Bibliography

[1] Rachad Alao, Miranda Bogen, Jingang Miao, Ilya Mironov, and Jonathan Tannen.
“How Meta is working to assess fairness in relation to race in the US across its products
and systems”. In: Meta Technical Report (2021).

[2] Christopher Branner-Augmon, Narek Galstyan, Sam Kumar, Emmanuel Amaro, Amy
Ousterhout, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. “3PO: Programmed
Far-Memory Prefetching for Oblivious Applications”. In: arXww preprint arXiv:2207.07688
(2022).

[3] Ariel N Burton and Paul HJ Kelly. “Performance prediction of paging workloads using
lightweight tracing”. In: Future Generation Computer Systems 22.7 (2006), pp. 784—
793.

[4] Ariel N Burton and Paul HJ Kelly. “Tracing and reexecuting operating system calls
for reproducible performance experiments”. In: Computers € FElectrical Engineering
26.3-4 (2000), pp. 261-278.

[5] Fay Chang and Garth Gibson. “Automatic 1/O hint generation through speculative
execution”. In: (1999).

[6] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. “Homomorphic encryp-
tion for arithmetic of approximate numbers”. In: Advances in Cryptology-ASIACRYPT
2017: 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 25.
Springer. 2017, pp. 409-437.

[7] Jihoon Cho, Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Joohee Lee, Jooyoung
Lee, Dukjae Moon, and Hyojin Yoon. “Transciphering framework for approximate
homomorphic encryption”. In: International Conference on the Theory and Application
of Cryptology and Information Security. Springer. 2021, pp. 640-669.

[8] Jeff Desjardins. “How much data is generated each day”. In: World Economic Forum.
Vol. 17. 2019.

[9] David Evans, Vladimir Kolesnikov, and Mike Rosulek. “A pragmatic introduction to
secure multi-party computation”. In: Foundations and Trends(®) in Privacy and Secu-
rity 2.2-3 (2018), pp. 70-246.

[10] Fireblocks. Fireblocks’ Multi-layer Philosophy for Securing Digital Assets. 2020.

BIBLIOGRAPHY 30

[11]

[12]

[17]

[18]

[19]

[20]

[21]

22]

Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian Schallhart, and Hel-
mut Veith. “CBMC-GC: an ANSI C compiler for secure two-party computations”. In:
International Conference on Compiler Construction. Springer. 2014, pp. 244-249.

Keir Fraser and Fay Chang. “Operating System /O Speculation: How Two Invocations
Are Faster Than One.” In: USENIX Annual Technical Conference, General Track.
2003, pp. 325-338.

Yan Huang, David Evans, Jonathan Katz, and Lior Malka. “Faster secure T'wo-Party
computation using garbled circuits”. In: 20th USENIX Security Symposium (USENIX
Security 11). 2011.

Michael B Jones. “Interposition agents: Transparently interposing user code at the
system interface”. In: Proceedings of the fourteenth ACM symposium on Operating
systems principles. 1993, pp. 80-93.

Marcel Keller. “MP-SPDZ: A versatile framework for multi-party computation”. In:
Proceedings of the 2020 ACM SIGSAC conference on computer and communications
security. 2020, pp. 1575-1590.

Vladimir Kolesnikov and Thomas Schneider. “Improved garbled circuit: Free XOR
gates and applications”. In: Automata, Languages and Programming: 35th Interna-
tional Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part
IT 35. Springer. 2008, pp. 486—-498.

Ben Kreuter, Abhi Shelat, Benjamin Mood, and Kevin Butler. “PCF: A Portable Cir-
cuit Format for Scalable Two-Party Secure Computation”. In: 22nd USENIX Security
Symposium (USENIX Security 13). 2013, pp. 321-336.

Sam Kumar, David E Culler, and Raluca Ada Popa. “MAGE: Nearly Zero-Cost Virtual
Memory for Secure Computation”. In: 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21). 2021, pp. 367-385.

Chuanpeng Li, Kai Shen, and Athanasios E Papathanasiou. “Competitive prefetching
for concurrent sequential 1/0”. In: Proceedings of the 2nd ACM SIGOPS/EuroSys
FEuropean Conference on Computer Systems 2007. 2007, pp. 189-202.

Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. “Oblivm:
A programming framework for secure computation”. In: 2015 IEEE Symposium on
Security and Privacy. IEEE. 2015, pp. 359-376.

Dahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella, et al. “Fairplay-Secure Two-
Party Computation System.” In: USENIX security symposium. Vol. 4. San Diego, CA,
USA. 2004, p. 9.

Moni Naor, Benny Pinkas, and Reuban Sumner. “Privacy preserving auctions and
mechanism design”. In: Proceedings of the 1st ACM Conference on FElectronic Com-
merce. 1999, pp. 129-139.

BIBLIOGRAPHY 31

[23]

[24]

[25]

Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada Popa, and
Joseph M Hellerstein. “Senate: a Maliciously-Secure MPC platform for collabora-
tive analytics”. In: 30th USENIX Security Symposium (USENIX Security 21). 2021,
pp. 2129-2146.

Microsoft SEAL (release 4.1). https://github . com/Microsoft/SEAL. Microsoft
Research, Redmond, WA. Jan. 2023.

Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider, and
Farinaz Koushanfar. “Tinygarble: Highly compressed and scalable sequential garbled
circuits”. In: 2015 IEEE Symposium on Security and Privacy. IEEE. 2015, pp. 411-
428.

Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei Lapets,
and Azer Bestavros. “Conclave: secure multi-party computation on big data”. In: Pro-
ceedings of the Fourteenth EuroSys Conference 2019. 2019, pp. 1-18.

Xiao Wang, Alex J Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty
computation toolkit. 2016.

Andrew Chi-Chih Yao. “How to generate and exchange secrets”. In: 27th annual sym-
posium on foundations of computer science (Sfes 1986). IEEE. 1986, pp. 162-167.

Samee Zahur, Mike Rosulek, and David Evans. “T'wo halves make a whole: Reduc-
ing data transfer in garbled circuits using half gates”. In: Advances in Cryptology-
EUROCRYPT 2015: 34th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part IT 34. Springer. 2015, pp. 220-250.

