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Abstract

Dealing with Time: Measuring Real-Time Capabilities of Lingua Franca

by

Efsane Soyer

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Edward A. Lee, Chair

Precise timing, reproducibility, and concurrency play an important role in cyber-physical
systems. Lingua Franca, or LF, is a reactor-based coordination language that can exploit
parallelism while preserving determinism and exposes time-based semantics. These features
make LF a suitable choice for real-time systems. By conducting experiments and analyzing
the results, this study seeks to provide valuable insights into the real-time capabilities of
Lingua Franca. We introduced two case studies: timer utilization and periodic tasks. The
study on timer utilization investigated the relationship between timing behavior and task
execution time, showing that LF can achieve high utilization rates of up to 95% on a Linux
operating system while effectively keeping lags under 20 microseconds using the lag controller.
The periodic tasks study explored various scheduling scenarios, examining how task orders,
periods, and offsets affect meeting deadlines. This case highlighted the need for further efforts
in implementing deadline monotonic and earliest deadline first schedulers. By leveraging
these insights, we have developed future optimization strategies. The results of this thesis
will kickstart the empirical timing analysis of Lingua Franca and offer valuable information
for enhancing its real-time capabilities in the future.
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Chapter 1

Introduction

Cyber-physical systems (CPS) have become indispensable in today’s society, serving as the
backbone for a wide array of crucial applications. They power sensor networks that capture
and analyze data, facilitate the operation of autonomous vehicles navigating our roads, drive
industrial automation processes, etc. Precise timing, reproducibility, and concurrency play
an important role in CPS [1, 4]. The timing aspect is critical to cyber-physical systems’
operations because any delay in component response can lead to serious consequences such
as reduced system performance, safety hazards, or even complete failures with potentially
catastrophic outcomes. Reproducibility is crucial for testing, debugging, and ensuring the
reliability of the system’s behavior. Furthermore, concurrency is essential to facilitate the
simultaneous execution of multiple tasks and enhance system efficiency, particularly as their
computational demand grows.

There is a need for reliable and accurate methods and tools to ensure runtime guarantees
are met consistently. Lingua Franca (LF), a reactor-oriented coordination language serves as
a promising solution to address these challenges through its deterministic concurrency model,
explicit management of timing, and the ability to exploit parallelism [11]. The performance
of Lingua Franca [11, 7] and the correctness of its deterministic properties [15, 7] are well
studied in prior work. The purpose of this master’s thesis is to measure the real-time
capabilities of Lingua Franca, specifically its ability to provide precise timing predictability
and limitations of its schedulers.

Measuring the real-time capabilities and conducting a timing analysis of a system is
inherently challenging since the timing behavior of a system gets affected by every layer of
abstraction from synchronous digital systems to models of computation. Let us take an LF
program with one reaction that doesn’t perform any computation and gets triggered by a
timer with a 1-millisecond period. Upon measuring the delay between the actual trigger
time and the expected trigger time on a Raspberry Pi 4 Model B, it was observed that
there is an average delay of 80 microseconds, even reaching a maximum of 3.5 milliseconds.
This non-constant delay can be speculatively caused by the Linux kernel, processor power
management system, LF runtime, clock synchronization, interference with another process,
etc. The differences between these causes are subtle and hard to measure independently. For
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instance, if the processor is going into idle mode due to the lack of computation, this delay
measurement can be caused by the wake-up routine overhead of the CPU, but if there is
interference by another process or kernel, it might be due to scheduling and context switching
overheads. Therefore, running timing analysis requires understanding the timing constraints
at each level and quantifying the effects of various factors such as processor speed, kernel
delays, task scheduling, etc.

This thesis aims to investigate and measure the real-time performance of Lingua Franca
in the context of cyber-physical systems. By conducting experiments and analyzing the
results, we aim to provide valuable insights into the suitability of Lingua Franca for real-time
applications. Moreover, the thesis will explore potential optimizations and best practices for
utilizing Lingua Franca in real-time systems to enhance its performance and reliability.

The rest of the paper is structured as follows. Chapter 2 provides a general overview of
Lingua Franca and its runtime schedulers, as well as a primer on Linux schedulers. Chapter
3 talks about the earlier micro-benchmarks that build the baseline on the measurement
strategy and platform configurations and introduces the lag controller optimization. Chapter
4 discussed two case studies that evaluate the real-time capabilities of Lingua Franca in
different application scenarios. We describe the future work in chapter 5 and conclude in
chapter 6.
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Chapter 2

Background

2.1 Lingua Franca

Lingua Franca is a reactor-oriented, polyglot, coordination language designed for model-
ing, simulating, and implementing real-time and cyber-physical systems [8]. Reactors can
be described as deterministic actors with discrete-event execution semantics and explicitly
declared ports and connections [9]. LF provides a deterministic concurrency model to main-
stream programming languages that allows them to automatically utilize opportunities to
leverage parallelism. This enables developers to build concurrent systems that are efficient
and can scale well to a large number of cores or nodes in a distributed system without
worrying about uncaught race conditions. Lingua Franca aims to address the challenges
of developing and maintaining complex real-time systems by providing a clear and efficient
means of expressing timing constraints and coordinating the interactions between different
components.

Lingua Franca assigns each event a logical timestamp that does not advance during the
execution of the reaction body [11]. These timestamps create a logical timeline which is used
to order events and ensure deterministic execution. When the event with the lowest logical
time is getting processed, the Lingua Franca scheduler determines all the reactions that are
triggered by the event. In the current implementation strategy, if multiple reactions within
the same reactor are triggered by logically simultaneous events, i.e. the events that share the
same logical timestamp, they will always be invoked deterministically in the order they are
defined. Reactions can also invoke downstream reactions via port connections. Each layer on
this reaction chain is assigned a level; any reactions with the same level can be executed in
parallel safely since they do not depend on each other. The current scheduler implementation
is designed such that only when all reactions in the current level are completed, the next
level of reactions can be scheduled for execution. Reactions that can be safely executed in
parallel can be executed by the LF threads, called workers. The runtime environment keeps
a thread pool of workers and maps the ready-to-execute reactions to these workers. The
number of workers in the system can be determined by the developer.
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Lingua Franca was built on top of the synchronous languages model where reactions
are executed logically instantaneously. However, in practice, this assumption can cause
independent reactors to block the execution of one another. For instance, let’s assume two
reactors that both have 50 millisecond periods, but the second reactor has a 1 millisecond
offset. In the current runtime, the reactor with the 1-millisecond offset can only be invoked
when the first reactor finishes executing. If the execution time of the first reactor is more than
1 millisecond, it will introduce a delay on the second one. To divide scheduling domains and
introduce the idea of “local” logical time, the experimental enclaves feature of Lingua Franca
is used. Reactors that are in different enclaves can advance their logical time independently
of one another and have their own schedulers.

Lingua Franca deadlines are specified as a bound on the reaction invocation, not comple-
tion. In other words, if a reaction has a deadline ∆ then it must be invoked by the physical
time PT such that PT ≤ LT + ∆ where LT represents the logical time tag of the input
trigger [10].

2.2 Schedulers

Lingua Franca offers an interface for programming parallelism in a deterministic and time-
based manner. In this section, we will explore the scheduling mechanisms that can be utilized
to leverage this parallelism for real-time tasks. Reactors are scheduled over two layers of
scheduling in the C target: the runtime scheduler and the underlying operating system
scheduler, such that the runtime scheduler operates on a higher layer of abstraction than
the OS scheduler. The runtime scheduler keeps track of all scheduled future events, controls
the advancement of logical time, and invokes any triggered reactions in the order specified
by the dependency graph with a focus on maximizing parallelism [11]. The constraints
the runtime scheduler needs to follow to ensure determinism and how it interacts with the
runtime environment are outside the scope of this thesis and are detailed by Lohstroh et al.
[9, 10]. The subsection 2.2.1 will discuss two of the runtime schedulers available in Lingua
Franca and their limitations when dealing with real-time tasks. The subsection 2.2.2 and
2.2.3 will talk about Linux-based schedulers that will be used in the rest of the thesis.

2.2.1 Lingua Franca Schedulers

The Lingua Franca runtime offers three different scheduling strategies: Non-Preemptive
(NP), Global Earliest Deadline First (GEDF), and an experimental adaptive scheduler, de-
tails of which are out of scope for this thesis. Due to two layers of scheduling mechanisms,
none of these schedulers are preemptive or control how threads move across cores [10]. NP
is the default scheduler when the LF program does not include any deadlines; it can be
simplified as a last in first out (LIFO) scheduler.

The GEDF scheduler is a limited version of an EDF scheduler [3] such that when the
semantics of LF allow for concurrent execution of multiple ready reactions with the same
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level at a particular logical time tag, this scheduler will prioritize running the reaction with
the earliest deadline [5]. The GEDF scheduler can only prioritize one reaction over the other
if the following conditions are met:

• The two reactions should be within the same enclave.

• The two reactions should be triggered simultaneously, or in other words, the two reac-
tions should have the same logical time tag since the logical time cannot advance until
all reactions with that logical time tag are already executed.

• The two reactions should be on the same level. In other words, the current GEDF im-
plementation uses a distinct priority queue for each level such that level base scheduling
is prioritized over the deadline.

• The two reactions should have different deadlines, which allows the scheduler to deter-
mine the order of execution based on the urgency of the reactions.

• The two reactions should compete for the same worker thread since otherwise both can
be scheduled at the same time on different threads.

Section 4.2 highlights the use cases and limitations of the GEDF scheduler.

2.2.2 Linux Completely Fair Scheduler

The Linux Completely Fair Scheduler (CFS) is the default process scheduler in the Linux
kernel [12]. It ensures fairness and efficiency in distributing CPU resources among processes.
Ingo Molnar, the author of CFS, summarizes its design goals as: “CFS basically models an
‘ideal precise multitasking CPU’ on real hardware” [6]. An ideal precise multitasking CPU
can be characterized as one that provides equal CPU power to all processes [13]. Notably,
CFS, unlike Round Robin (RR), defines ideal fairness in terms of processor power and not
time. This means that if there is only one process running, it will take 100% of the processor
power; two processes share the processor power equally, each receiving 50%; and so on.

The basic idea behind CFS is tracking CPU time per thread and scheduling threads to
match the average rate of execution. Considering the desire to give more CPU time to some
processors than others, the Linux CFS uses a concept called “weight” to assign priorities to
processes. Each process is assigned a weight value, which determines the proportion of CPU
time it receives compared to other processes. The scheduler’s decisions are based on virtual
runtime, which refers to the amount of CPU time a process has consumed, adjusted based
on its weight. The implementation details of this are outside the scope of this paper.

2.2.3 Linux Real-Time Scheduler

The Linux Real-Time Scheduler, also known as the SCHED FIFO or SCHED RR scheduler,
is designed for real-time systems where timing behavior is crucial. It provides deterministic
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scheduling and guarantees that higher-priority tasks will always preempt lower-priority tasks.
These schedulers follow a priority-based approach, where tasks are assigned static priorities
ranging from 1 (lowest) to 99 (highest). Processes scheduled under one of the real-time
policies (SCHED FIFO or SCHED RR) have higher priority than processes scheduled under
the default CFS scheduler, even the kernel threads.

The real-time priority threads run until they explicitly yield the CPU, either by sleeping
or performing I/O operations, or are preempted by a higher priority thread. A thread that
is scheduled by SCHED RR can also be preempted by another equal-priority thread. These
characteristics can easily cause starvation for non-real-time threads, and even the kernel.
This might sound desirable from the perspective of the real-time system; however, the kernel
is also responsible for handling essential tasks and maintaining the overall stability of the
system. Therefore, Linux implements a real-time throttling mechanism to safeguard against
starvation [14]. As a default, every 1 second, real-time threads are allowed to execute for
at most 950 milliseconds. If they exceed this threshold, real-time threads are throttled and
yield the CPUs to CFS regular threads.
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Chapter 3

Micro-Benchmarks and Optimizations

In this chapter, we’ll be using an LF program with a single timer-triggered reaction with an
empty body. There is no additional stress introduced to the CPU, and efforts were made to
minimize the impact of other processes during this benchmark, such as limiting the number
of external processes, not using graphical interfaces, etc.

3.1 Measurement Strategy

Gathering timing behavior measurements with a logic analyzer is a frequently employed
method in embedded systems. This method involves connecting the logic analyzer to the
system under test and capturing timing signals through toggled GPIO pins. The Lingua
Franca runtime has a built-in tracing mechanism by adding certain trace points throughout
its codebase. These tracepoints allow developers to gather timing behavior measurements
during the execution of Lingua Franca programs, providing valuable insights into the real-
time capabilities of the program. These measurements provide insights into the logical and
physical timestamps, microsteps, the source of the trigger, the reactor that was triggered,
and a human-readable explanation of the event. One can also define their tracepoints within
the Lingua Franca runtime to capture specific timing events of interest.

The LF tracer provides a flexible and customizable way to gather timing behavior mea-
surements in Lingua Franca programs, allowing developers to gain a deeper understanding
of the real-time capabilities of their systems compared to more traditional methods like logic
analyzers. However, prior to utilizing the LF tracer as the primary measurement approach,
it is necessary to demonstrate its precision and dependability in capturing timing behavior
measurements. Figure 3.1 displays the period jitter histogram after executing an LF pro-
gram with a single timer-triggered reaction containing only minimal code (any necessary
GPIO toggling for the logic analyzer setup), described above, using SCHED FIFO as the
underlying Linux scheduler. The reason behind picking SCHED FIFO will be explained in
detail in Section 3.2. The timer is set to be triggered every 1 msec. Other than some outlier
measurements, Figures 3.1a and 3.1b demonstrate that the tracer could be an alternative to
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(a) Logic Analyzer (b) Default LF Tracer (c) Optimized LF Tracer

Figure 3.1: Logic analyzer measurements compared with LF Tracer

a logic analyzer. Upon investigating the reason behind the outlier points, we have concluded
that the cause is the necessity to flush the buffer to memory or disk when the allocated
TRACER BUFFER gets filled. Many different optimization techniques can be employed
here, but considering the user-friendliness of the generated dump, we chose to provide a con-
figuration for the subset of the tracepoints the users will see in the generated file. In Figure
3.1c, one can see that when collecting only one tracepoint entry for the start of the reaction,
such that the total number of tracepoints is less than the TRACER BUFFER, the accuracy
of the tracer is comparable to the logic analyzer. Therefore for the rest of the experiments,
we will be using the optimized LF tracer as the primary measurement approach due to its
flexibility and comparative accuracy in capturing timing behavior measurements.

3.2 Thread Policy and Core Isolation

One approach to dealing with the timing behavior in embedded systems is prioritizing the
threads involved in time-sensitive tasks. By assigning higher priority to these threads, the
operating system ensures that they are scheduled and executed promptly, minimizing any
potential timing issues or OS-induced delays. This approach can help improve the accu-
racy and predictability of timing behavior, as higher-priority threads are given preferential
treatment regarding CPU allocation and scheduling.

Figures 3.2a and 3.3a show the lag histogram of reaction start time and period jitter
graphs respectively from the execution of the aforementioned LF program with a timer
period of 1 msec on top of a “vanilla” Linux kernel, i.e. one that uses CFS as the scheduler
with default thread policy setting, on a Raspberry Pi 4 Model B. Lag is defined as the time
difference between the physical time and logical time, representing how delayed the physical
time is compared to logical time. Figure 3.2a illustrates an average lag of 76 microseconds
(usec), and 93.92% of the lags fall within the range of 58 to 89 usec. Figure 3.3a demonstrates
a considerable jitter, with values being as far as 1.5 msec away from the period in the worst
case since CFS is not optimized for real-time scheduling. However, the standard deviation
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(a) Default thread policy (b) SCHED FIFO (c) SCHED FIFO and on iso-
lated CPU

Figure 3.2: Lag histogram graphs from running the micro-benchmark for thread priority and
isolation

of period jitter is still quite low such that 95% of the periods fall within 30 microseconds of
1 millisecond period.

Figures 3.2b and 3.3b show considerable improvement compared to Figures 3.2a and 3.3a
respectively by scheduling under the real-time priority-based Linux scheduler SCHED FIFO

with priority 99. As described in section 2.2, SCHED FIFO assigns respective real-time threads
a higher priority than kernel threads up to a certain threshold. The worst-case lag drops to
538 usec from 1650 usec. Notably, a lag of 1650 causes the next trigger of the timer to be at
least 650 usec late; with SCHED FIFO, the subsequent reaction will never be delayed due
to the lag introduced by the previous reaction. Moreover, 75% of the lags fall within the
range of 58 to 65 usecs compared to only around 50% in the default thread policy setting.
With SCHED FIFO, 90% of the lags are less than 75 usec, and 95% of the lags are less
than 84 usec. The worst-case period jitter also drops from 1.5 msec to 0.2 msec. With
SCHED FIFO, 97% of the periods fall within 30 microseconds and 94% of the periods are
within 15 microseconds of 1 millisecond period.

Another optimization one can employ in the spirit of reducing OS interference is to isolate
the core that the real-time code is executing on. This way all possible other threads are moved
to other cores of the system. Figures 3.2c and 3.3c show additional improvement by also
pinning the task onto a specific core and removing other tasks from that core by setting the
isolcpus boot parameter. The worst case lag drops to 400 usec; with SCHED FIFO alone,
the number of lags exceeding 150 usecs is three times higher compared to the example with
the isolated CPU pinning optimization. Here, an intriguing point to note is that there are no
lags in Figure 3.2c that are less than 59 microseconds, whereas there are 14 instances where
the lag falls below 59 when the isolcpus feature is not activated. We speculate the reason
behind this is when the core is not shared with other threads (potentially kernel threads) and
when there is no utilization of the period, it is more likely for the core to go idle or turn on
power saving mode. Pinning the LF thread onto an isolated CPU while using SCHED FIFO
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(a) Default thread policy (b) SCHED FIFO (c) SCHED FIFO and on iso-
lated CPU

Figure 3.3: Period jitter graphs from running the micro-benchmark for thread priority and
isolation

shows a more significant improvement in period jitter with 98% of all periods falling within
10 microseconds of a 1 millisecond period, compared to running SCHED FIFO alone, as
demonstrated in Figure 3.3c.

OS interference is a significant factor that can affect the timing behavior of embedded
systems. Any real-time system developer should employ techniques to mitigate this inter-
ference as much as possible. We argue that it’s impossible to measure the timing impacts of
the other parts of the systems with such significant OS impact. Therefore, the rest of the
experiments will run using SCHED FIFO with the worker thread pinned to an isolated core,
unless otherwise specified.

3.3 Lag Correction

Even when the threads are assigned higher priority or pinned to isolated cores, there is an
average lag of 68 usecs in the execution of time-sensitive tasks as demonstrated in Figure
3.2c. In order to address this issue, we have implemented an integral controller (I-controller)
within the LF runtime to dynamically adjust the parameters of the control algorithm based
on the measured lag. An I-controller is a component of a PID controller. A PID controller
is a control loop feedback mechanism widely used in industrial control systems to manage
processes and achieve desired setpoints. The way the output of a PID controller, which is
equal to the control input to the system, is calculated is shown in Equation 3.1. The I-
controller eliminates any error between the expected and measured outputs by continuously
integrating the error signal over time and using the accumulated error to adjust the control
input without using the proportional and derivative components.

output = Kpe(t) +Ki

∫
e(t)dt+Kd

de

dt
(3.1)
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This task is challenging because the system requirements diverge from those typically
encountered in traditional PID controllers. In a traditional PID system, the control output
is directly linked to the measured process value. For instance, the current temperature of
the room can be a process value for a heating control system while the fuel you apply to
the boiler can be the control output, and there is a bidirectional direct relationship between
the error value (the difference between the desired and actual temperature) and the control
output. However, in the case of controlling lag in a real-time system, there is no bidirectional
relationship between the measured lag and the control output. One can base their control
output on the measured lag, but there is no guarantee the measured lag next time will change
based on the control output due to the inherent randomness of the OS or platform-induced
lag.

The function we are interested in within the Lingua Franca runtime for the I-controller is
wait until. On a high level, the function takes in a physical time to wait until, requested time,
and calls the underlying sleep function to pause execution until that requested time is reached
if the current time is less than the requested time. In the default LF runtime, no reaction
executes before physical time passes its logical time since this behavior is useful for many
real-time applications. Therefore this function should not return earlier than this requested
time since that would cause the logical time to be behind the physical time.

A traditional i-controller uses the integral component to continuously sum the error (the
measured lag) over time and adjust the control output accordingly. This adjustment aims
to minimize the overall lag and bring the system closer to the desired state. For this specific
case, the critical question is the definition of the lag in the system. Let’s start by defining
some useful parameters:

• requested time or treq: the argument to the wait until function, the actual desired
time to wait until

• control value: the integral total used to adjust the requested time such that the lag
between the physical time and the logical time is minimal when the function returns.

• adjusted time or tadj: requested time - control value; this is the value provided
to the underlying sleep function by the wait until function

• t return or t′: is the physical time measured when the underlying sleep function
returns

At this point, one can propose two viable implementations for the lag controller: (1)
using a running average of the measured lag between t return and adjusted time, or (2)
using a running sum of the measured lag between t return and requested time. These two
strategies for the lag controller can be evaluated and compared in terms of their effectiveness
in minimizing the overall lag and bringing the system closer to the desired state. Figure 3.4
demonstrates two possible scenarios of timing behavior. In the first scenario shown in Figure
3.4a, the sleep function returns sometime after the requested time, resulting in a positive
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lag. In the second scenario, shown in Figure 3.4b, the sleep function returns sometime
before the requested time, causing the wait until function to busy wait before returning.
Although the scenario where sleep returns before the adjusted time is possible theoretically,
the underlying sleep function never returns before the requested time. Therefore, we will
not be considering that scenario.

(a) Scenario #1: sleep returns after requested time

(b) Scenario #2: sleep returns before requested time

Figure 3.4: Timing behavior scenarios with lag controller

In the scenario described in Figure 3.4a, both implementation options #1 and #2 would
increase the control value since the control value was not large enough such that the
requested time got overshot. Similarly, in the scenario described in Figure 3.4a, both imple-
mentation options #1 and #2 would decrease the control value since the requested time

was too far in the future and the sleep function returned early. This is desired to reduce the
amount of busy wait time and bring the system closer to the desired state.

We also want our control value to be “forgetting”, i.e. the older measurements have less
than or equal effect compared to recent measurements, but not more, since we do not want
the control algorithm to be driven by the oldest measurements. Let’s consider that during
execution, the situation shown in Figure 3.4a is followed by the situation shown in Figure
3.4b. The equations below illustrate the adjustments in the control value resulting from
the application of the running average algorithm.
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At timestep 0: control value = 0

At timestep 1:
control value =

0 + t′1 − tadj1
1

= t′1 − treq1 − control value = t′1 − treq1

At timestep 2:

control value =
t′1 − treq1 + t′2 − tadj2

2
=

t′1 − treq1 + t′2 − (treq2 − control value)

2

=
t′1 − treq1 + t′2 − (treq2 − t′1 + treq1)

2
=

2t′1 − 2treq1 + t′2 − treq2
2

= t′1 − treq1 +
t′2 − treq2

2

The equation above illustrates that the running average algorithm determines the new
control value by assigning greater significance to older measurements compared to newer
ones. On the other hand, the running sum algorithm calculates the control value by simply
adding up all the measured lags over time; therefore, all measurements have the same effect
on the outcome as shown in the equations below. As such, the running sum algorithm was
chosen.

At timestep 0: lag control = 0

At timestep 1: lag control = t′1 − treq1
At timestep 2: lag control = t′1 − treq1 + t′2 − treq2

Algorithm 1 shows the implementation of the i-controller in pseudocode. The control
value is initialized to 0 as a static variable at the beginning of the function. If the current
time has already passed the requested time, the function returns. Before adjusting, we
constrain the control value to a minimum of zero because running sum implementation
lags can be positive or negative. This is desirable because if there is a negative control
value, the adjusted time given to the sleep function would be later than the requested time,
introducing an inherent lag to the function. One can see the adjustment based on running
sum implementation in lines 14 and 15 of the pseudocode shown in algorithm 1.
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Algorithm 1 I-controller algorithm

1: #define K i ▷ The integral gain or the multiplication factor
2: procedure wait until(requested time)
3: static control value← 0

4: control value = MAX(control value, 0)
5: adjusted time← requested time− control value

6: if now > requested time then
7: return
8: else if now > adjusted time and now < requested time then
9: //Equal to checking: wait duration < control value

10: control value← control value−K i× (now − adjusted time)
11: //busy wait and return

12:

13: //call underlying sleep function which returns at some physical time t return

14: lag ← t return− requested time
15: control value← control value+K i× lag

16: if now < requested time then
17: //busy wait and return

Notably, line 10 also changes the control value. If the else if condition is true, such that
if wait duration < control value, it does not make sense to invoke the underlying sleep
function because this would result in a lag according to the control value. Thus, if this
condition holds, busy waiting is preferred. To understand why it is necessary to modify
the control value, think about a situation in which the control value becomes significantly
high, such as due to an outlier lag. Without any updates for the control value, it’s possible
to keep busy waiting for the rest of the program without utilizing the underlying sleep
schedule since the else-if condition will always hold. Constantly busy waiting is undesirable
for several reasons, such as inefficient use of CPU cycles that could be utilized for other
tasks, reduced energy efficiency, and the potential for the operating system to seize control
later if the program does not yield by invoking the sleep function. This can result in greater
delays in the program. To maintain the desired behavior of the program and prevent it
from continuously busy waiting, it is necessary to reduce the control value by the amount it
overshot the current physical time. The impacts of this decision will be further analyzed in
section 4.1.
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Ki Gain Percentage of lags below 10 usec

2 47.56
1.5 75.34
1 82.58
0.5 76.12

Table 3.1: The effectiveness of different i-gain values

(a) SCHED FIFO and isolated CPU (b) With lag controller

Figure 3.5: Lag histogram graphs from running the micro-benchmark for lag controller

The key part of any PID controller is to tune the gains to achieve optimal control per-
formance. Table 3.1 shows the percentage of lags that are less than 10 usec when using
different gain values for the PID controller. The expected success result is shifting as many
data points to 0 lag as possible. Although all of these gains shift the histogram towards
zero lag, table 3.1 highlights that the gain value of 1 achieves the best performance. Fig-
ure 3.5 shows the resulting histograms of running the microbenchmark with and without
the lag controller. Due to its significant impact, unless otherwise specified the rest of the
experiments will run using the I-controller with the gain value of 1.
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Chapter 4

Case Studies

In this chapter, we discuss two case studies that simulate the behavior of different real-time
systems in a simplified manner. These case studies will help us isolate the individual influence
of independent variables on the system’s timing behavior. Section 4.1 introduces the timer
utilization case study, which explores how timing behavior correlates with the execution time
of a task. Section 4.2 introduces the periodic tasks case study, which investigates the impact
of parallelism on periodic tasks with varying periods, offsets, and deadlines.

4.1 Timer Utilization

To understand the timing behavior of a system, it is essential to consider the execution
times of the tasks. In order to properly investigate execution times independently from
other factors, we will use utilization, which is defined as the percentage of time that a task
requires compared to the total available processing time, in this context. Utilization is a
key metric in assessing the timing behavior of a system, as it represents the efficiency with
which tasks are executed relative to the period. In essence, this case study tries to force
the limits of the utilization and evaluate the resulting timing behavior so that developers
can find suitable utilization rates based on their acceptable timing behavior and tolerance
towards unpredictability.

We picked 100 usec, 1 msec, and 10 msec as the period values for this case study, rep-
resenting varying time constraints. Periods of 1 msec and 10 msec are commonly used in
various CPS applications as polling time while 100 usec represents a relatively tight period
considering the average lag on Raspberry Pi 4 was 68 usecs with real-time scheduling and
isolated CPUs. We ran each of these periods with utilization values of 0, 25, 50, 70, 80,
90, and 95%. Figures 4.1a and 4.1b show the percentage of lags that are less than 10 usec
and 20 usec respectively for each period and utilization combination after running the initial
experiment with the lag controller explained in the previous chapter. The measurements
confirm the correctness of the lag controller as evidenced by the percentages of lags that are
under 20 usec compared to the baseline case without a lag controller.
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(a) The percentage of < 10 usec lags (b) The percentage of < 20 usec lags

Figure 4.1: Bar graphs for the percentages of lags below a threshold for each period and
utilization

There are four key notable points from the figures:

• The smallest lag that can be observed with a 95% utilization for a 100 usec period
is 88.52 usecs. Figure 4.2 demonstrates how the lag value scales constantly within an
example run. This behavior is different from other period values for the same utilization
because of the tighter time constraint. Even in an ideal system, the wait time between
periods is just 5 usecs; considering other overheads introduced by Lingua Franca, OS
scheduling, or kernel-induced latencies, it is not surprising to observe higher lags since
the system is constantly lagging behind.

• Figure 4.3 demonstrates that in the scenario with 95% utilization for 1 millisecond,
there is a notable spike around the timestamp of 1.25 seconds, resulting in a delay
of up to 50 milliseconds. We speculate that this lag is caused by real-time throttling
As discussed in section 2.2.3, Linux’s real-time throttling is a safety mechanism that
allows real-time threads to execute for at most 950 milliseconds in every timeframe
of 1 second. Due to high utilization, the kernel lacks sufficient runtime during the
initial part of the run; therefore, it interrupts the real-time execution, i.e. the LF
threads, to run the essential kernel tasks to prevent their starvation. Notably, we
do not see this behavior for other period values. For the 100-microsecond period, in
order to generate an equivalent number of tracepoints, each run only executes for 200
microseconds, while the 1-millisecond period runs for 2 seconds. As a result, with the
100-microsecond period, we do not reach the limit point. For the 10-millisecond period,
the 95% utilization still needs to wait for 500 microseconds in the ideal scenario, which
does not stress the kernel as much.

• The percentage of lags that are less than 10 microseconds are 27% and 53% for the 10
millisecond period with 0% and 25% utilization respectively. This is surprising because
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Figure 4.2: Lag vs. Time graph for 100 usec period 95% utilization

Figure 4.3: Lag vs. Time graph for 1 msec period 95% utilization

it’s expected to see lower lags when the CPU is less stressed. It’s important to highlight
that for both such scenarios, the percentages of lags that are less than 20 microseconds
are 92% and 95% respectively. This confirms that the lag controller is still effective,
but shifted. This shift can be attributed to the variability of the OS-induced lag based
on sleep time. Testing this assumption involved calculating the standard deviation of
the delays without the lag controller at 0% utilization for periods of 100 microseconds,
1 millisecond, and 10 milliseconds, yielding values of 2.53, 8.48, and 13.37 respectively.
This implies that as the sleeping duration increases, the variance of the lags increases,
making it harder for the lag controller to correct the control value, thus causing lags
to be shifted. The respective percentages of lags that are less than 10 microseconds,
99%, 85.35%, and 27.15%, confirm this correlation.

• Although it is acceptable to see a decrease in the percentage of lags below a certain
threshold as the utilization increases, the reduction in percentage is quite substantial
over a 100-microsecond period, even with relatively low levels of utilization, such as
50%. Figures 4.4a and 4.4b show non-converging oscillation in the lag vs time graphs
for utilization values of 50% and 80%, with a period of 100 microseconds over 80
milliseconds. This behavior indicates a misbehavior in the system as it fails to reach a
stable state.
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(a) 100 usec period 50% utilization

(b) 100 usec period 80% utilization

Figure 4.4: Lag vs Time graphs showing oscillating behavior

This oscillation is caused by the control value adjustment in the else if condition of the
lag controller, as shown in line 10 of algorithm 1. Since the control value is zero, when
the wait until function is initially called, the function calls the underlying sleep function.
Upon waking up, the system measures the lag and updates the control value. In most cases,
this value hovers around an average lag of 68 microseconds. When the function is called
for a second time, it requests a wait duration of 20 microseconds in the ideal scenario for
a period of 100 microseconds and an 80% utilization rate. As this duration is not long
enough according to the current control value, it triggers the execution of the else-if case
in the lag controller algorithm. Consequently, the control value is reduced to match the
requested wait duration. This adjustment leads to calling the underlying sleep function with
an incorrect control value during the next iteration, resulting in the increased lag. Therefore,
this scenario results in a continuous adjustment of the control value and causes oscillation
in the lag measurements. Due to the high utilization, which leads to wait duration being
less than the average control value, the desired behavior is for it to consistently fall into the
else-if scenario without adjusting the control value.

In order to prevent this oscillating behavior, it is important to highlight the two orthog-
onal goals of the system. The lag controller aims to minimize the amount of busy waiting in
the system, especially the busy waiting caused by outlier lag measurements while ensuring
that the system busy waits if the wait duration is less than the control value. In the new
version of the lag controller, we will isolate these two goals from each other by not incorpo-
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rating the outlier lags into the control value calculation, to begin with, therefore ensuring
that the value used in the else-if case is safe to use without any adjustments to the control
value. The question here is to identify what is classified as an outlier lag since this value is
highly correlated with system and platform-level assumptions.

Algorithm 2 Updated I-controller algorithm

1: #define K i ▷ The integral gain or the multiplication factor
2: #define min period ▷ The minimum timer period value for the application
3: procedure wait until(requested time)
4: static control value← 0

5: control value = MAX(control value, 0)
6: adjusted time← requested time− control value

7: if now > requested time then
8: return
9: else if now > adjusted time and now < requested time then
10: //Equal to checking: wait duration < control value

11: control value← control value−K i× (now − adjusted time) ▷ Deleted code

12: //busy wait and return

13:

14: //call underlying sleep function which returns at some physical time t return

15: lag ← t return− requested time
16: if lag < min period then
17: control value← control value+K i× lag
18:

19: if now < requested time then
20: //busy wait and return

Let us assume a system with a 1 millisecond timer period; this means the lowest frequency
that this system will invoke the wait until function is every 1 millisecond, assuming 0%
utilization and overhead. If a measured lag value is larger than 1 millisecond, the control
value will go over 1 millisecond, causing any future call to the wait until function to busy
wait regardless of the wait duration. Therefore any lag measurement exceeding 1 millisecond,
the minimum period value for the system, can be identified as an outlier lag and should not
incorporated into the control value. This solution alone addresses the oscillation problem
highlighted above for timer period values that are larger than the underlying average lag of
the system. A future optimization here could be defining this threshold based on the system
and platform characteristics statically or dynamically. However, in this paper, considering
the tradeoff between implementation complexity and the respective gain, we decided to go
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(a) The percentage of < 10 usec lags (b) The percentage of < 20 usec lags

Figure 4.5: Bar graphs of the percentages of lags below a threshold for each period and
utilization with the updated lag controller

with the simpler solution. We posit that for a time-critical application to consider a lag
controller, it must operate on a platform with an average delay smaller than the minimum
period required by the application. Algorithm 2 shows the pseudocode for the updated I-
controller algorithm. The additions compared to algorithm 1 are highlighted with yellow,
and the deletions are highlighted with red.

Figures 4.5a and 4.5b show the percentage of lags that are less than 10 usec and 20 usec
respectively for each period and utilization combination after running the experiment with
the updated lag controller. Figure 4.5a shows that there is no significant percentage decrease
in lags of less than 10 microseconds as the utilization increases when the period value is 100
microseconds. Although, notably, with 95% utilization of the 100-microsecond period, the
percentage of lags that are less than 20 microseconds is still 0 due to consistent scaling
delay that causes the logical time to never catch up with physical time. The aforementioned
key points described for the original lag controller, aside from oscillations, also hold for the
updated lag controller. It’s also worth highlighting that the following period-utilization pairs
can lead to nondeterministic real-time throttling:

• 1 msec period - 80% utilization

• 1 msec period - 90% utilization

• 10 msec period - 95% utilization
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4.2 Periodic Tasks

Periodic tasks are one of the common design patterns in real-time systems. This case study
on periodic tasks explores the impact of parallelism on tasks with varying periods, offsets,
and deadlines. By analyzing these various scenarios and their schedulability with different
scheduling policies, we also aim to explore how different layers of scheduling mechanisms, in
either layer, change the timing behavior of the system.

As described in section 2.1, LF deadlines are defined based on the start of the reaction
and not when it gets completed. However, an application might be interested in setting a
deadline for the end of a reaction. We can have a workaround by defining a downstream
reaction that is triggered by the completion of the task and has its own deadline, as shown
in Figure 4.6. The deadlines in LF are inherited; therefore, the upstream reaction can still
be aware of the downstream reaction’s deadline when making a scheduling decision. This
way, the reaction start deadline of the downstream reaction can serve as the reaction end
deadline for the original reaction. The deadlines referred to in this section are defined based
on the end of the reaction using this workaround unless otherwise specified.

Figure 4.6: Implementing deadlines with downstream reactions

In the first scenario, whose diagram is demonstrated by Figure 4.7a, we consider two
periodic tasks with periods of 50 msec. The first task has a deadline of 50 msec, representing
the inherent deadline based on the period; the second task has a deadline of 25 msec,
representing a relatively tight time constraint. The first task has an execution time of
15 msec, and the second task has an execution time of 23 msec. The only way to schedule
these tasks without violating any deadlines is to execute the second task to completion before
starting to execute the second task. Figure 4.7b demonstrates the ideal scheduling of these
tasks to avoid deadline violations.

When these tasks are executed within the same enclave with the GEDF scheduler, the
expected behavior is GEDF prioritizing the reactions based on the inherited deadlines, there-
fore executing the second task before the first one. However, in the current LF runtime, the
level-based scheduling, described in section 2.1, is prioritized over deadlines. As a result, the
scheduler executes all reactions in the first level, i.e. the Periodic reactors, before moving
to the second level, i.e. the DeadlineViolationSignal reactors. This causes a deadline
violation in the downstream reaction even when the upstream reaction completes on time
because a lower priority reaction blocks the higher priority task due to its lower level. This
indicates the current GEDF scheduler cannot prioritize inherited deadlines with concurrent
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(a) The LF diagram representation (b) The ideal scheduling

Figure 4.7: Periodic Tasks Scenario #1

reactions. This limitation triggered a discussion for a future change to extend the use cases
of the GEDF scheduler by prioritizing deadlines over levels; the implementation of such a
change is left as future work. Notably, if the deadlines were defined within the Periodic re-
actor directly, i.e. the DeadlineViolationSignal reactor did not exist, the GEDF scheduler
would have prioritized the second task; therefore it would have been executed to comple-
tion before the first task, and both tasks would have met their respective start-of-reaction
deadlines.

In the current LF runtime, in order to employ the end-of-reaction deadline strategy and
make use of inherent deadlines in reaction chains, these scenarios need to be run in separate
enclaves. In our experimentation, we executed these two reactions with only one worker
thread per enclave and on only one core in total, so that we can limit the underlying resources
and force interference. We first run the experiment with the GEDF scheduler, which is the
default LF scheduler when the program has deadlines. Depending on the order in which
the enclaves are defined in the main reactor, the reaction that starts executing changes, but
in most cases, both of the reactions start executing before one of them completes. This
behavior can be attributed to the “fairness” policy of CFS, the default OS-layer scheduling
mechanism on Linux. Due to context switches, between reactions, and potentially with
other kernel and user threads, CFS fails to meet most (if not all) deadlines. Additionally, it
introduces non-determinism across runs on two key points: (1) The number of deadlines it
violates across runs which is due to the number of context switches, length of interruptions
by non-LF threads, etc., and (2) the point of context switches between reactions, i.e. at
which point after the first reaction start executing, the program would context switch to the
second thread. Based on this scenario, we can conclude CFS is not suitable for LF programs
with tight deadlines.

A proposition for further examination would be to modify the underlying scheduler to
SCHED FIFO. Given that the GEDF scheduler only assigns priorities to tasks with earlier
deadlines within the same enclave, this is not applicable in our case, causing the GEDF
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scheduler to behave no differently than the NP scheduler. Therefore, even if we set the LF
scheduler to be GEDF, the task that is defined earlier in the main reactor executes until
completion before the other task gets triggered due to the FIFO nature of the scheduler.
If this ordering is done correctly, such that the higher priority reaction is defined before
the other, both tasks meet all of their deadlines. Notably, SCHED FIFO provides two key
features in this scenario: (1) it fulfills the requirement of the execution of the higher priority
task until completion before the lower priority, therefore giving the developer the control to
prioritize by task declaration, and (2) it provides a priority to both tasks over the kernel
threads and other user processes, and reduces the outside interference. However, notably, it
is not responsible for providing any prioritization between LF threads.

(a) The ideal scheduling

(b) Represented run with SCHED FIFO

Figure 4.8: Periodic Tasks Scenario #2

In the second scenario, we consider two periodic tasks with differing periods, 50 msec
and 25 msec respectively. Each task uses its period values as its deadlines. The tasks have
execution times of 15 and 13 msecs respectively. Figure 4.8a shows the ideal schedule for
these tasks that avoids deadline violations. Similar to scenario 1, the example is run on one
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worker thread per enclave and pinned to one core. Figure 4.8b demonstrates a representation
of a run of this scenario with SCHED FIFO, highlighting that the third trigger of the second
task violates its deadline. It is important to note that this diagram does not include any
context switch time or kernel interruptions. For example, the second invocation of task 2
might not immediately start; however, we know that it meets its deadline, so the exact time
it starts is not relevant to us at this time. Scenario 2 demonstrates that SCHED FIFO is
only effective when we want to decrease the interference from kernel threads, but the task
order does not provide effective prioritization between the LF threads.

Let us consider why scenario 1 was schedulable with SCHED FIFO while the second
scenario is not. In scenario 1, SCHED FIFO was able to schedule the tasks in the correct
order if they were defined in the correct order since it simply executed them in the order
they were defined until completion. This order was preserved across multiple periods since
when the higher priority task completes its execution, it looks at its event queue for the
next trigger in the future, and calls the wait until function until that physical time. In
a way, it schedules itself for the future, putting itself in the queue of the SCHED FIFO
before the lower priority task can. Therefore, each trigger respected the same task order,
i.e. the priority. However, in scenario 2, the higher priority task has a lower period than the
lower priority task. Therefore, when the first trigger of the second task finishes executing, it
schedules the thread for the second trigger, i.e. puts itself immediately after the first trigger
of the first task. Similarly, when the first task finishes executing, before yielding, it puts
itself immediately after the second trigger of the second task. When the second trigger of the
second task finishes executing, it schedules for the next trigger, which would be at a logical
timestamp of 50 milliseconds. However, since the first task has already scheduled itself for
its second trigger at the same logical time, and according to SCHED FIFO, the priorities of
these tasks are equal, at a logical time of 50 milliseconds, the first task is executed before
the second one, causing a deadline violation.

This violation is fixable by introducing deadline monotonic priorities that are reflected in
the underlying scheduler. Deadline monotonic (DM) scheduling is a static real-time schedul-
ing algorithm that assigns priorities to tasks based on their deadlines [2]. The tasks with the
shortest deadlines are given the highest priority, ensuring that tasks with shorter periods are
always executed before tasks with longer periods.

Notably, if we get rid of the downstream reaction and directly define the deadline within
the Periodic reactor, the GEDF scheduler would be able to meet the start-of-the-reaction
deadlines in scenario 2 since the given execution times do not require preemption. However,
if the first task had a longer execution time, like 25 msec, combined with the context switch
and kernel interrupt times, we will see some deadline violations for the second task such
that some subset of triggers for the second task could not get triggered within its respective
period. This problem could be resolved by any preemptive scheduler based on deadlines,
including the DM scheduler.

Figure 4.9 represents the ideal scheduling for scenario 3, which is the same as scenario 1
except the higher priority task gets triggered with a 1 millisecond offset. Due to this offset,
the order in which tasks are defined cannot establish inherent priorities for SCHED FIFO.
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Figure 4.9: Periodic Tasks Scenario #3

This leads to lower-priority tasks being triggered before higher-priority ones, resulting in
deadline violations. If the offset value between the tasks drops below 200 microseconds, then
the first trigger of the tasks can be triggered in the correct order such that the higher priority
tasks get executed first, due to the internal delay of creating the other enclave environment
in the Lingua Franca runtime environment. However, this doesn’t extend to subsequent trig-
gers. Similar to scenario 2, this scheduling problem can be resolved by a deadline monotonic
scheduler, since when the second task with a shorter deadline gets triggered, it would get
assigned a higher priority and preempt the lower priority task as intended. A scenario that
merges scenarios 2 and 3 such that the higher priority task has a shorter period and has an
offset, also can be scheduled by the deadline monotonic scheduler as long as the execution
times are schedulable, i.e. the total execution time of the reactions can fit to the periods.
Notably, scenario 3 is not schedulable with the GEDF scheduler even if we get rid of the
downstream reaction, since the GEDF scheduler is limited to prioritizing reactions that have
the same logical tag.

So far the higher priority thread has not changed dynamically during the execution of
the program in any of the scenarios we have discussed. Figure 4.10a introduces the ideal
schedule for such a scenario. In scenario 4, task 1 has a period of 25 milliseconds, a deadline
of 23 milliseconds, and an execution time of 3 milliseconds while task 2 has a period of 50
milliseconds, a deadline of 45 milliseconds, and an execution time of 40 milliseconds. The
first task has an offset of 1 millisecond. Figure 4.10b represents how these tasks would be
scheduled with a deadline monotonic scheduler. Since the deadline monotonic scheduler
assigns priorities statically based on the duration of the deadline, task 1 would always have
a higher priority. However, due to dynamic execution times, the ideal schedule should keep
executing task 2 until completion before switching to the second trigger of task 1. This ideal
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behavior can be scheduled by the Earliest Deadline First (EDF) scheduler. EDF scheduling
is another real-time scheduling algorithm that dynamically assigns priorities to tasks based
on their remaining time until their deadline. This means that as tasks get closer to their
deadlines, they are given higher priority. Since it’s dynamic, when task 2 is closer to its
deadline, it will be given higher priority than task 1 and will be executed until completion
before switching to the second trigger of task 1.

(a) EDF scheduling

(b) Deadline Monotonic Scheduling

Figure 4.10: Periodic Tasks Scenario #4

The main difference between Deadline Monotonic and EDF schedulers lies in how they
prioritize tasks. While DM scheduling prioritizes tasks based on their deadlines, EDF
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scheduling prioritizes tasks based on their remaining time until their deadline. This dif-
ference can have implications for how tasks are scheduled and can impact the meeting of
deadlines in real-time systems.

While DM scheduling is effective in ensuring that tasks with shorter deadlines are exe-
cuted first, it may not be as flexible in adapting to changing task priorities during execution.
EDF scheduling, with its dynamic prioritization based on remaining time until the deadline,
can adapt to varying task execution times and prioritize tasks accordingly. DM scheduling’s
deterministic prioritization based on deadlines may be suitable for systems with fixed task
priorities and predictable deadlines. In contrast, EDF scheduling’s dynamic prioritization
based on remaining time until the deadline may be more suitable for systems with varying
task execution times and changing task priorities during execution. On the other hand, this
dynamic scheduling approach makes EDF more costly and complex compared to DM. It
usually requires additional resources and introduces greater intricacy into the system archi-
tecture. Overall, DM and EDF schedulers come with their tradeoffs, and it would be helpful
to see both of them implemented within the Lingua Franca schedulers for developers to pick
based on the needs of their applications.
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Chapter 5

Future Work

Extending LF Schedulers: The periodic tasks case study revealed the need for re-
evaluation of the LF schedulers and highlighted the limitations of the current GEDF sched-
uler. The efforts on implementing a DM and EDF scheduler could be extended to work with
the underlying Linux real-time schedulers. Another goal could be improving these schedulers
for non-Linux systems such as RTOS or bare-metal platforms. The future work will involve
evaluating these schedulers under various time constraints, including soft and hard real-time
as well as mixed-criticality systems.

Execution over different platforms: The hardware platform is directly linked to the
timing behavior of the system. As a result, we propose carrying out this evaluation on the
following platforms: (1) nRf 52 with Zephyr RTOS, (2) RP2040, and (3) the latest version
of PRET machines, FlexPRET [16].

Incorporating more case studies: Future work could involve focusing on other vari-
ables that contribute to the timing behavior of Lingua Franca. We suggest the following
case studies for further evaluation:

• Extending periodic tasks case study to work with federates or experimental feature
hardware threads.

• Introducing startup reactions to periodic tasks case study with randomized execution
times.

• Introducing concurrency to the timer utilization case study.

• Adding a control loop case study to simulate a timer-triggered sensor to an actuator
model. This case study could include variations in polling and processing times, in-
cluding dynamically changing processing times based on sensor input. This case study
could also be extended to include deadlines for scheduling policies as well as concur-
rency with other tasks. Further work could focus on different execution distributions
of the processor reactor, implementing either pipelining with multiple reactors or a
scatter-gather.
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Chapter 6

Conclusion

In this thesis, the focus was on investigating and analyzing the real-time capabilities of
Lingua Franca, a deterministic reactor-based coordination language where time is a first-
class citizen. We have shown the efficiency and usability of the LF tracer and introduced the
design and implementation of a lag controller that reduces the vast majority of lags below
20 microseconds. We introduced two case studies: timer utilization and periodic tasks. The
timer utilization study explored how timing behavior correlates with the execution time of a
task and demonstrated that LF can reach high utilizations like 95% over a Linux operating
system while keeping the majority of the lags under 20 microseconds using the lag controller.
The periodic tasks study delved into different scheduling scenarios, considering the impact
of task order, priority, and deadlines on meeting real-time constraints. This case study
highlighted the impact of the current implementation practices and the need for additional
efforts to implement deadline monotonic and earliest deadline first schedulers.
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