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Abstract

Developing and Evaluating LLM Assistants in Introductory Computer Science

by

Laryn Qi

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Narges Norouzi, Co-chair

Professor John DeNero, Co-chair

Chatbot interfaces for LLMs enable students to get immediate, interactive help on homework
assignments, but doing so naively may not serve pedagogical goals. In this thesis, we first
report on the development and deployment of an LLM-based homework assistant for students
in a large introductory computer science course. Our assistant offers both a "Get Help"
button within a popular code editor, as well as a "Get Feedback" feature within our command
line autograder, wrapping student code in a custom prompt that supports our pedagogical
goals and avoids providing solutions directly. We explore class-wide effects of deploying
this AI assistant, showing that hints are appreciated by students, and the bot’s effects on
reducing homework completion time are concentrated among students with above-median
times, suggesting that these hints can help struggling students make more rapid progress
on assignments. Then, we present and evaluate three research questions that measure
the effectiveness of the assistant’s hints: Do the hints help students make progress?
How effectively do hints capture issues in their code? Are students able to apply the hints to
make progress? Through analysis of knowledge components, we show that students are
able to resolve problems with their code and approach a working solution more quickly with
access to hints, that the assistant’s hints are able to consistently capture the most pressing
errors in students’ code, and that hints that address a few issues at once rather than a single
bug are more likely to lead to student progress. This thesis is an extension of [40].
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Chapter 1

Introduction

The recent wide availability of ChatGPT and similar Large Language Models (LLMs) has
given students in introductory Computer Science (CS) courses a tempting alternative to
asking for help on programming assignments — and potentially waiting hours to receive
it. However, while naively-used LLMs do help students solve assigned problems, typically
by providing them with correct answers along with explanations, such use of LLMs allows
students to avoid the process of developing solutions themselves and the learning associated
with this process.

In 61A, the introductory CS course at UC Berkeley, we deploy our tool called 61A Bot.
It identifies the problem the student is working on, collects their code, and wraps these in a
custom prompt for GPT-4 [28]. We designed this prompt to steer GPT-4 towards feedback
that mirrors how we ourselves typically approach student questions: identifying whether the
student understands the question, which concepts students might need reinforcement on, and
whether they have a plan, and then helping students by providing conceptual, debugging,
or planning support as appropriate.

In this paper, we first give an overview of this tool’s development & deployment. Then, we
present a few holistic, course-wide findings. Finally, we dive deeper into student assignment
progression and quantitatively evaluate the pedagogical effects of LLM-generated hints by
posing 3 research questions (RQs):

RQ1: Do the hints help students make progress?
RQ2: How effectively do the hints capture issues in the code?
RQ3: Are students able to apply the hints to make progress?
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Chapter 2

Background & Related Work

Generative models such as ChatGPT,1 OpenAI Codex [2], DeepMind AlphaCode [19], Ama-
zon CodeWhisperer, and GitHub Copilot2 offer promising opportunities for enriching the
learning experience of students. These models have already been leveraged by educators in
different areas of Computing Education [12, 7, 13, 6, 32], where they accelerate content gen-
eration and seem to be impacting the relevant skills students gain in introductory CS courses.
Researchers have studied LLMs in areas such as generating code explanations [17, 1, 21, 9],
providing personalized immediate feedback, enhancing programming error messages [18, 36],
generating discussion forum responses [25, 20], and automatic creation of personalized pro-
gramming exercises and tutorials [34, 39, 33] to enhance the comprehensiveness of course
materials.

However, the integration of LLMs in introductory CS instruction comes with challenges.
Students could become overly reliant on automation (a concern at least as old as calcula-
tors [5]), potentially hindering their development of critical problem-solving skills — though
recent work suggests such hindrance is not inevitable for programming assistance [15]. Taken
to an extreme, the resulting absence of human interaction could have negative effects, along-
side other ethical concerns related to plagiarism and the responsible use of LLM-generated
code. To maximize the benefits of LLMs while mitigating these challenges, a thoughtful and
balanced approach to their incorporation into introductory CS courses is essential [8, 24, 22].

By deploying LLMs as intelligent programming assistants, students can receive imme-
diate, personalized support and guidance, fostering a deeper understanding of coding con-
cepts and promoting self-paced learning — just as did pre-LLM Intelligent Tutoring Systems
(see [4] for a review, and [35] for a specific example). However, the ability of LLMs to gen-
erate tailored resources, such as tutorials and code examples, not only expands the available
learning materials but also accommodates students’ varying learning styles and preferences
— though these generated materials are not always better [29]. Educators should integrate
LLMs as complementary tools, striking a balance between automation and human interac-
tion, while emphasizing the development of critical problem-solving skills and responsible

1https://chat.openai.com/
2https://copilot.github.com/

https://chat.openai.com/
https://copilot.github.com/
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coding practices, ultimately serving students better in their CS education. Researchers are
increasingly utilizing LLMs as chatbots in courses [9, 37] or online educational websites [27]
to provide immediate personalized feedback, human-AI pAIr programming paradigm [38], or
tools in supporting students’ development of programming skills [31, 11, 3]. This paper con-
tributes to the body of educational research and pedagogical innovation, demonstrating the
transformative potential of technology-driven approaches in reshaping how CS fundamentals
are taught and learned.
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Chapter 3

Method: Notes on Design & Deployment

We considered a number of ways to expose LLM capabilities to students, including varying
interaction modes (e.g., chat conversations, Q&A, one-shot requests) and support modes
(e.g., debugging, conceptual scaffolding, student assessment). Though there are many ways
LLMs seem likely to impact early programming instruction, we chose to address one of the
more challenging bottlenecks we faced in our large course at a large public institution: the
availability of tutors and other staff to help students when they get stuck on homework
(HW) problems. In addressing this specific challenge, we chose early on to focus specifically
on debugging homework assignments.

One early decision with pedagogical implications was whether to support students re-
sponding to the assistant in natural language. Three concerns, about hallucinations, about
students sharing personal information with a third party, and about what harms might come
from an unmonitored chat interaction, led us to deploy a one-click “Get Help” interaction
mode without an opportunity for follow-up. This meant that one valuable pedagogical in-
gredient — having students explain their understanding of the problem — would remain out
of reach in this deployment.

Our development process was based on the set of homework questions assigned through-
out our course, author-generated constructions of incomplete code, and a set of student
checkpoints — also incomplete code, often containing errors — collected over the prior year.
We developed our system by testing our prompts-under-development on these homework
problems using a custom-built prompt engineering system (see Figure 3.1).

Initial evaluations of GPT-4 on a small set of typical introductory CS questions used
in our course in prior years suggested that GPT-4 could provide effective support across
many avenues, including debugging — and was much more effective than GPT-3.5 and other
LLMs, which focused our tuning efforts on prompt engineering over fine-tuning and other
methods. Following a common tutoring pattern, we designed a prompt that would try to
assess student conceptual knowledge, based on the provided code, and offer syntactical,
logical, or even template-code suggestions — but not solutions. This prompt explicitly
includes a sequence of steps to consider in response to student code, modeled in part on our
own personal tutoring processes:
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! helper-bot.tld

Figure 3.1: Screenshot of our custom prompt engineering tool. On the left, a specific home-
work assignment question, with a manually-authored “Notes” containing the correct solution
and a pointer not to swap conditions; on the right, a set of prompts, checkpoints, and out-
puts. Here, a prior year student’s incorrect code is loaded under “Checkpoint prompts”, the
Help_cp prompt is activated (red outline), and the output is displayed below the prompt
text.



CHAPTER 3. METHOD: NOTES ON DESIGN & DEPLOYMENT 6

1) Is the student missing any conceptual knowledge? Would a refresher help?
2) Is the code they have already, if any, on the right track?
3) How close are they to a working solution?
4) Did they follow your previous instructions? If not, rephrase and offer

advice in a different way.
5) Do they have a plan -- if not, help them generate one.
6) If all else fails, provide a template of the code -- perhaps missing the

key recursive case and base case if condition.

Though we avoided students explicitly writing natural language “chat” messages to the bot,
we did want some degree of continuity — which we achieved by also including up to three
prior student code - bot advice exchanges if available (step 4).

In addition to the steps above, the prompt also includes instructions such as Do not give
the student the answer or any code and Limit your response to a sentence or two
at most. An earlier draft version of this prompt appears in the red outline in Figure 3.1,
with the complete deployed prompt reproduced in Appendix A.1.

3.1 Development & Prompt Engineering Challenges
From the literature, we expected that trying to engineer dialogues through an LLM would
be challenging in ways that would be hard to address [41], and indeed we found this to
be true for us as well. Early on, in testing extended dialogue interactions, we found an
increasing likelihood that GPT-4 would provide a direct solution as the conversation extended
— validating our decision to start with a single-shot request rather than dialogue.

Many initial challenges were addressable through prompt changes alone: for example,
by including the instruction Don’t assume a problem needs to use recursion unless
it’s explicit, we avoided spurious suggestions that loop-based code should be rewritten
using recursion.

But one particularly frustrating challenge illustrates a number of the failures we observed
early on: an over-eagerness to “correct” student code that was, in fact, already correct. One
such homework problem asked students to fill in a template to compute a + |b|, using the
operators add and sub based on whether b < 0 (see Figure 3.2). With an early version
of our prompt, GPT-4 would consistently question the correct solution, asking students to
think about what should be done in the case b < 0.

In addressing this and other similar issues, we experimented with asking GPT-4 to first
generate a complete, correct solution, and then copy the student’s code, reasoning that
having these within the prompt response would reduce the likelihood that GPT-4 would
incorrectly label correct code as containing errors. Unfortunately, this approach introduced
substantial additional latency that made us decide against deploying it: in many cases, it
added several hundred tokens to the output — none of which could be shown to students
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in a streaming fashion — increasing time-to-response by tens of seconds, an unacceptable
trade-off given our design goal of rapid interactive feedback.

Hoping to find a prompt that would prove robust to variations in course content, we
initially avoided any problem-specific text beyond a statement of the problem itself. However,
we ultimately added a problem-specific note for those homework problems that required extra
steering. In the operator assignment above, this note contains a solution to the problem.

1

2

3

Figure 3.2: Screenshot of the VS Code user interface as students see it. Note the “Get
[redacted] Help” button in the toolbar at the upper right-hand side (1), which students click
to send their code to the helper bot. Bot replies appear in a pop-up notification (dialog
window (3) with [Thanks, helpful!] and [Not helpful...] buttons) containing the bot’s advice
on the student’s current code ((2), red outline)—in this case, a helpful suggestion that the
student shouldn’t call the functions add and sub, but merely assign them to variable f.
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3.2 Deployment
We deploy our tool in two modalities. In one modality, students click on a “Get Help”
button (see Figure 3.2) in the VS Code1 editor toolbar to activate our 61A Bot extension.
The extension collects students’ code, makes a best guess of which homework problem the
student is working on (as several problems often appear in a single file), and constructs a
request. In the second modality, students run an autograder2 in the command line which
collects the student’s code, any errors from executing test cases, and constructs a request
from these (shown in Figure 3.3). These requests reach a server run by our instructional
staff, which wraps the student data in our prompt, passes it along to GPT-4, and logs the
request and GPT-4’s response for further analysis.

Students are informed when installing the software3 that, in using our assistant, all code
they write will be sent to OpenAI via Microsoft Azure [23], and that they should not include
any content in their code files (e.g., comments) that they are not comfortable sharing.

In Fall 2023, we initially deployed our helper bot VS Code extension to an experimental
section of 400 students a few days into the start of our academic year, followed by a full-
scale deployment in week 7 for the approximately 1300 students across both course sections.
The students in the initial experimental section were not randomly selected, but rather were
drawn primarily from a pool with a stronger academic background in math and computing.
In conjunction with the wider deployment, we also enabled access through the autograder
tool students could already run from the command line to validate their code against a set
of test cases. In Spring 2024, we deployed both the VS Code extension and command line
integration immediately from the start of the term to all 872 enrolled students.

1Visual Studio Code, https://code.visualstudio.com
2OK Client, https://github.com/okpy/ok-client
361A Bot Installation Instructions, https://cs61a.org/articles/61a-bot/

https://code.visualstudio.com
https://github.com/okpy/ok-client
https://cs61a.org/articles/61a-bot/
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Figure 3.3: Screenshot of second modality of 61A Bot deployment: command line integration.
(1) indicates the existing autograder feedback students receive. (2) shows the extended
student workflow of requesting a hint from 61A Bot.
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Chapter 4

Findings

Here, we present a number of aggregate results of deploying an AI assistant in 61A.

4.1 Usage
Usage patterns suggest that students are finding the bot helpful, returning to it multiple
times as they engage in homework (see Figure 4.1). As expected, usage increases as the
assignment deadline nears, and is concentrated in the late afternoons and evenings.

Comparing usage between the two modalities, over 93% of 61A Bot queries were made
via the command line instead of VS Code. This stark contrast is expected as the "Get
Feedback" option is provided by default in the workflow of the command line autograder,
which students have always ran liberally and must download with each homework assignment.
On the other hand, the "Get Help" button in VS Code requires a manual installation and
sometimes outputs less helpful hints as these queries do not have access to autograder test
case outputs.

Engagement with the assistant seems to be dependent in part on the types of errors
student encounter and the feedback they receive. Anecdotally, syntax errors and function
misuse (when correctly identified by the bot) are commonly resolved with a single request,
while conceptual misunderstandings are unsurprisingly much trickier; a common pattern for
the latter is a student repeatedly requesting help while the bot responds with minor variations
on the same message, until finally through GPT-4’s stochasticity a response contains a
key new component that enables the student to progress (see Appendix B.2). (A few
weeks into the initial deployment in Fall 2023, we added the “prior context” functionality
described earlier; this helped substantially with response diversity, but helped students less
than expected — in part because it is not always clear why the previous bot response was
inadequate).
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Figure 4.1: Usage patterns across four weeks of homework in Sp24; x-axis ticks mark mid-
night on the days specified; y-axis ticks identify specific questions within the week’s assign-
ment, with “N/A” indicating that no specific question was identified. Requests are binned
into time blocks; bar y-height represents the number of requests in each block, scaled to the
row height. Student IDs are binned into ten different colors for visibility.



CHAPTER 4. FINDINGS 12

4.2 Successes & Failures
Overall, repeated use of our assistant by individual students, alongside anecdotal reporting
and explicit [Thanks, helpful!] feedback, suggests that students derive at least some value
from having access to the assistant.

On the “successes” side, we found GPT-4’s conceptual explanations quite strong; consider
this explanation of the recursive step and the base case in a coin-counting problem:

Consider this: for each coin, you can either include it or exclude it. If you include
it, you subtract its value from the total and recurse. If you exclude it, you move
to the next coin and recurse.

...and...

The base case of your recursion would be when the remaining change is 0, in
which case you have found a valid way to make a change, so you should return
1. If the remaining change is less than 0 or there are no more coins to use (i.e.,
the current coin is None), you should return 0 because there are no valid ways
to make change in these cases.

Even in cases where multiple errors were present in student code, a single response
enumerating them could provide a lot of value at once, in a format that allowed students to
re-read as they worked on their code — an unexpected benefit over traditional spoken 1:1
tutoring. This phenomenon is further concurred in §5.3.

On the “failures” side, the predominant error modes could be characterized as hints that
students apply incorrectly or hints that students do not apply. We typically observe
the former case when the student has an understanding of the hint that is incomplete or
otherwise inaccurate, leading to wrong applications of the instructions in the hint as seen in
Appendix B.1. As a result, in these cases, 61A Bot often has to try and keep up with new
bugs arising in each subsequent code submission due to the previous incorrect application of
a hint. In the latter scenario, students often ignore the hint outright, either making unrelated
changes or no changes at all. Sequences of submissions in this mode usually lead to the same
hint being repeated in different ways until the student makes progress (shown in Appendix
B.2).

4.3 Student Reception
In Fall 2023, we conducted a non-anonymous survey at the end of the semester where
698/1407 students (49%) students responded. Students were asked to rate how much they
used the bot once they discovered it and how helpful they found it on a scale from 1-5. A
summary of the results can be found in Table 4.1. As expected, those who reported more
usage also found it more helpful.

https://inst.eecs.berkeley.edu/~cs61a/sp23/hw/hw03/#q3-count-coins
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Count How helpful was the 61A Bot? 1

How much did you use
the 61A Bot once you
discovered it? 2 N/A 1 2 3 4 5

Grand
Total

Avg.
Rating

N/A 55 0 0 0 0 0 55
1 21 43 22 26 2 0 114 1.9
2 1 7 35 31 11 2 87 2.6
3 0 6 17 57 41 14 135 3.3
4 0 2 13 40 81 32 168 3.8
5 0 0 4 19 36 80 139 4.4

Grand Total 77 58 91 173 171 128 698 3.4
3, 4, or 5 8 34 116 158 126 442 3.8

% 1.8 7.7 26.2 35.7 28.5 100.0
1 On a scale from 1 "Not helpful" to 5 "Very helpful"
2 On a scale from 1 "Not a lot" to 5 "A lot"

Table 4.1: Fall 2023 End-of-semester 61A Bot Survey Results

In Spring 2024, we conducted a non-anonymous survey at the end of the semester where
774/872 (89%) students responded. On a scale from 1-5, we asked students to rate their own
bot usage, bot helpfulness, bot reliability, and overall satisfaction with the bot. Finally, we
asked them whether or not they recommend that the bot be available to students in future
semesters. A summary of these survey results are found in Table 4.2.
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Average Rating

Usage 3.31
Helpfulness 3.66
Reliability 3.40
Satisfaction 3.74

Would Recommend? (Yes/No) 93% Yes

"Usage", "Helpfulness", "Reliability", and "Satisfac-
tion" were each rated on a scale from 1-5 with
1 being "No usage", "Not helpful", "Not reliable",
and "No Satisfaction" and
5 being "A lot of usage", "Very helpful", "Very reli-
able", and "Very satisfied".

Table 4.2: Spring 2024 End-of-semester 61A Bot Survey
Results

In the Spring 2024 survey, we also asked two optional questions: what did students like
the most and least about learning with the bot?

The following is a small sample of responses to both questions that capture the general
student sentiment:

What students liked the most:

"What I liked the most was that it made assistance much more accessible as a
commuter. It would cut down the hours I would have to spend in office hours
a week and gave me the confidence that I could complete the homework on my
own."

"What I loved about the bot is that it allowed me to get feedback when I didn’t
have access to a tutor. Accordingly, instead of banging my head against the wall
for hours, I was able to get feedback about what I was doing wrong and correct
the mistakes. For me personally, I would have had a lot more success in this class
if I would have had access to the bot for labs. (Labs on average took me about
2 and a half hours to complete, and sometimes longer if I didn’t have access to a
tutor)."

"The bot was definitely very helpful in helping me start the problems and at
times, debug my code and get me back on track. I felt that it introduced me
to methods to solving problems I never thought of before when programming a
solution."
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"I loved 61a bot because I was determined not to use ChatGPT. Instead 61a bot
was the perfect in between as it helped me understand why my logic was wrong
and gave me hints on how to fix it."

"Really fast feedback time. Sometimes waiting until office hours to ask something
or help debug can be frustrating, especially when it ends up being a silly error
that the bot can easily help with in a few seconds."

What students liked the least:

"Sometimes the answers were slightly vague. Of course, the bot can’t simply spit
out the answer, but sometimes it was frustrating how it would say "you’re on
the right track, but there seems to be a conceptual misunderstanding with __"
— the explanations for the blank could be a bit jargon-filled and didn’t always
directly help me resolve the misunderstanding due to imprecise language."

"Sometimes it explains questions and gives hints of what to fix, but does not help
my understanding of the question."

"It would repeat the same things over and over again."

"It keeps popping up after every question."

"I think the bot tended to get confused and give false corrects with Scheme
assignments the most."

In summary, students generally appreciated the accessibility, debugging capabilities, and
time saved from the bot. On the other hand, the hints would sometimes be too vague for the
students to make changes while other times the bot would be too specific and give away too
much. To this end, we plan to make hints more personalized in future semesters (see Next
Steps). In some cases, the bot would repeat the same hints. Despite us fiddling with prompt
changes to encourage rephrasing and diversity in responses to repeat inputs, these incidents
still occur — it’s a difficult tradeoff to balance as we don’t want to risk more hallucinations by
upping the temperature, for example. Some students dislike the disruption of the traditional
61A command line workflow (pre-61A Bot), so we plan to make the hint pop-up optional
in the autograder setting. Lastly, the bot sometimes gives outright false advice, specifically
for Scheme problems involving many parentheses. Presumably, GPT-4 has trained on far
less Scheme than Python code, so this shortcoming is expected. One remedy is to include
additional few-shot expert examples in the prompts for Scheme assignments in particular.
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4.4 Reduction in Completion Time
One way of quantitatively measuring the bot’s effect is looking at how long students spend
on homeworks. In 61A, each time the student runs the autograder, their submission gets
logged on our server1 as a checkpoint. So, we can estimate the total time spent on an
assignment by summing up the time deltas between consecutive checkpoints. To account
for students completing the homework across multiple sessions, we ignore time deltas above
a 30 minute threshold — a value chosen somewhat arbitrarily, however, we have confirmed
that the results we report here are robust in the range of threshold values from 20 to 120
minutes.

We calculate these completion time estimates for a number of Python homework problems
that are shared across multiple semesters. Although we initially did not see a statistically
significant difference in median completion times, when we plot the completion time cumu-
lative distribution functions (CDFs), we observe a clear difference in the curves for Spring
2024 when stacked against all other recent semesters (see Figure 4.2). While fixing an x-
coordinate then looking at the vertical difference in densities may suggest a marginal effect,
instead fixing a y-coordinate and looking at the horizontal difference in time spent along
the x-axis reveals the significance in time decrease between Spring 2024 and past semesters,
specifically in the 60th-80th percentile regime nearly across the board for the selected prob-
lems (up to 20 minutes in the case of count_coins). This implies that, while the fastest
60% and slowest 20% students haven’t been affected consistently by the introduction of the
bot, an above-median 20% of students are completing homework problems both significantly
and consistently faster since the introduction of the bot (see also Figure 4.3 and Appendix
C.1 for additional examples). For the specific group of struggling students in the 60th-80th
percentile range that benefit immensely, it’s feasibly the case that they have an imperfect
understanding of the material which 61A Bot is able to identify and correct for the student.
However, for students who have a stronger grasp on the material (in the 60th or lower per-
centile of completion time), it may be the case that the bot doesn’t affect their workflow
significantly or these students outright ignore the bot’s hints. Furthermore, the students
spending a very long time (in the 80+th percentile) on the homeworks may not be able to
digest and successfully apply the bot’s hints to make progress more quickly.

In search of evidence that this reduction in completion time wasn’t merely a result of
Spring 2024’s student cohort being abnormally fast at solving 61A problems, we also looked
at lab completion times. In 61A, lab assignments are similar in format and scope to home-
work assignments, with the primary difference being that our 61A Bot was only enabled
in homework assignments, not lab assignments. In Figure 4.4, we observe that the
distribution of lab completion times early on in the term (weeks 1 & 2) is nearly identical
across semesters, suggesting students come in with a similar level of ability across terms.
Subsequently, we look at early homeworks in Figure 4.5 and see that students are finishing
homeworks significantly more quickly. These assignment-level CDFs corroborate the ob-

1OK Server, https://github.com/okpy/ok

https://github.com/okpy/ok
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Figure 4.2: count_coins CDFs

Figure 4.3: product CDFs
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servation from the previous problem-level CDFs in Figures 4.2 & 4.3 that the 60th-80th
percentile of students gain the most benefit from our tool. To further validate our hypothesis
about Spring 2024 homework completion times, we performed pairwise completion time dis-
tribution comparisons across the Fall 2022, Spring 2023, Fall 2023, and Spring 2024 semesters
for homeworks 1 & 2 (shown in Appendix C.2) where Spring 2024 is the only semester with
universal 61A Bot access. We observe the following consistently:

• Fall 2022 and Fall 2023 have similar distributions.

• Spring 2023 students tend to take longer than Fall 2022 and Fall 2023 students, espe-
cially in the 60th-80th percentile.

• Spring 2024 students tend to finish faster than Fall 2022, Spring 2023, and Fall 2023
students, especially in the 60th-80th percentile.

Excluding Spring 2024, the fall-spring discrepancy is expected as the fall cohorts tend to
include a higher proportion of CS majors while spring cohorts tend to have a greater diversity
of majors. This difference serves to further highlight the anomaly of Spring 2024 completion
times. These assignment-level plots also include probability density function (PDF) curves
as an alternative view of the completion time distributions.

However, when we look later into the semesters, we actually start to see labs taking longer
in Spring 2024 compared to Spring 2023 (see Figure 4.6). This suggests that over-reliance
on the bot in the homework assignments might be a real issue leading to greater completion
times on assignments without bot access, which aligns with the student feedback (shown
previously in § 4.3) asking for 61A Bot to be incorporated in labs. Short-term fixes to this
problem include implementing throttling as similar tools at Harvard [20] do. The ideal
long-term solution to this problem would maintain unrestricted access to bot and improve
hint quality to ensure the hints are helping students learn concepts rather than being used
as a naive debugging tool (see Next Steps).
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Figure 4.4: Spring 2023 vs Spring 2024 Labs 1 & 2 Completion Time Distributions (note:
any density assigned to negative completion time is due to smoothing)

Figure 4.5: Sp. 2023 vs Sp. 2024 HWs 1 & 2 Completion Time Distributions (note: any
density assigned to negative completion time is due to smoothing)
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Figure 4.6: Spring 2023 vs Spring 2024 Lab 5 Completion Time Distributions (note: any
density assigned to negative completion time is due to smoothing)

4.5 Reduction in Staff Reliance
Another reduction we observe is on Ed [10], a third-party platform that is used as an online
discussion forum for students to receive asynchronous help. There is a dramatic near-50%
decrease from 2900 to 1500 in the number of questions asked throughout the semester in
Spring 2024 compared to Spring 2023 (see Appendix C.3). When we normalize by number
of enrolled students (Table 4.3) and filter specifically for homework questions (Table 4.4),
this effect persists. From Fall 2022 to Fall 2023, we observe striking consistency in the
number of questions asked per student, when comparing the periods before the bot was
widely introduced (late in the Fall 2023 semester). However, from Spring 2023 to Spring
2024 (2023 being before our 61A Bot deployment, while in 2024 access to 61A Bot was
universal), we observe a significant decrease — a feasible byproduct of introducing the 61A
Bot widely. Running a t-test between Fall 2022 and Fall 2023 yields p = 0.245 while a t-test
between Spring 2023 and Spring 2024 yields p = 0.003.
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# questions # enrolled Avg. # questions per student

Fa22 3177 1656 1.918
Sp23 2888 1169 2.470
Fa23 2759 1407 1.961

Sp24 1478 872 1.695

Table 4.3: Average number of questions asked on Ed per student in Falls 2022, 2023 &
Springs 2023, 2024

# HW
questions

# enrolled Avg. # HW questions
per student

Fa22 391 1656 0.236
Sp23 569 1169 0.487
Fa23 306 1407 0.217

Sp24 101 872 0.116

Table 4.4: Average number of homework questions asked on Ed per student in Falls 2022,
2023 & Springs 2023, 2024
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Chapter 5

Results

As a framework for evaluating the 3 RQs presented previously in §1, we ground our analysis
in knowledge components (KCs), first introduced by Koedinger et al. [16]. KCs represent
course topics that students gain mastery of by completing assignments. They provide a finer-
grained metric of student progression throughout an assignment which we use to measure
students’ abilities to grok and apply 61A Bot’s hints as well as 61A Bot’s ability to address
relevant issues in students’ understanding. Previous work [26] has shown the capacity of
state of the art (SOTA) LLMs to effectively extract KCs from student code in CS1. We
make use of this capability and extend it to also extract KCs from the hints generated by
61A Bot.

5.1 RQ1: Do the hints help students make progress?
First, for each student, we find which KCs they’re missing as they progress through a home-
work problem by looking at their code checkpoints. We pass the student’s code, a list of
human-generated KCs (see Appendix D), and some metadata (see Appendix A.2) to GPT-4
and ask it to determine which KCs the student is missing from the provided list and output
them in order of most important to least important missing KC. This approach is a variation
on previous KC extraction work which would ask the LLM to generate missing KCs from
scratch rather than classify missing KCs from a provided list. We found that GPT-4 per-
formed better if given the list of possible KCs when compared to expert labels. In a sample
of 63 such queries, 85% of the LLM-generated missing KC lists were considered reasonable
by experts (authors on this paper and also Teaching Assistants [TAs] for 61A). The two
experts agreed on 93% of a small mutually labeled dataset.

Once we have the list of missing KCs associated with each code checkpoint, we look
at time-adjacent pairs of checkpoints and compare whether the number of missing KCs
decreases, increases, or stays the same. With this categorization, we can visualize how
students’ progressions through assignments changes with the introduction of 61A Bot as
shown in Figure 5.1. Specifically, we calculate the average time spent per student and
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average number of submissions made per student. In our plots, green regions correspond to
checkpoint pairs where the number of missing KCs decreases, red regions correspond to pairs
where the number of missing KCs increases, and yellow regions correspond to pairs where
the number of missing KCs stays the same.

From Spring 2023 to Spring 2024, we observe drops across the board both in time spent
and number of submissions associated for each color region, which aligns with our completion
time findings in § 4.4. Spending less time in yellow and red regions can be attributed to
61A Bot’s hints pointing out issues in their code more quickly than the students themselves
can. The reduction in the green region is less intuitive but can be explained by Spring 2024
students making more progress per green submission compared to Spring 2023 students. In
Spring 2024, each green submission reduces the number of missing KCs by 1.42 on average
(with a sample standard deviation of 0.71) while in Spring 2023, each green submission
reduces the number of missing KCs by 1.28 on average (with a sample standard deviation
of 0.56). Running a t-test here yields p < 0.0000001.

If we look at the time spent in each color category proportionally (see Figure 5.2),
specifically in terms of the number of submissions (rather than time), we can see that the
distribution of categories is mostly consistent from Spring 2023 to Spring 2024 (with some
cases — e.g. HW3 — showing significant increases in green regions). This suggests that
students’ general progression through problems remains similar and is merely expedited by
the bot in Spring 2024 i.e. students inevitably encounter and still struggle through resolving
the same bugs and issues regardless of hints but overall move at a faster pace when the bot
is available. See Appendix C.4 for plots of additional homeworks.
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Figure 5.1: Sp23 (Left) vs Sp24 (Right) HW1 Time Spent & Number of Submissions Colored
by Student Progression. Upper plots show average time spent per student. Lower plots show
average number of submissions per student.
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Figure 5.2: Sp23 (Left) vs Sp24 (Right) HW1 Proportion of Time Spent & Number of
Submissions Colored by Student Progression. Upper plots show average time spent per
student. Lower plots show average number of submissions per student.
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5.2 RQ2: How effectively do the hints capture issues in
the code?

Next, we explore which KCs the hints address and look at the overlap between the hint KCs
and code KCs as a measure for how effectively 61A Bot hints are able to capture issues in
student code. Following a similar process as in § 5.1, we pass the hint, a list of human-
generated KCs, and some metadata (see Appendix A.3) to GPT-4 and ask it to determine
which KCs the hint addresses from the provided list and, this time, output them in any order.
In a sample of 62 similar queries, 87% of the time, the LLM correctly classified whether a KC
existed in the hint when compared with expert labels (labeled by authors on this paper who
are also TAs for 61A). The two experts agreed on 92% of a small mutually labeled dataset.

With the list of KCs addressed by each hint along with the list of missing KCs for each
student code checkpoint from § 5.1, we can measure the overlap. Specifically, we calculate
the proportion of hints that address at least 1 out of the top 3 missing KCs in the student’s
code. We use this metric of "overlap with top 3 missing KCs" because our goal with 61A Bot
is not to have its hints point out every single bug and misunderstanding the student has —
instead, we are interested in whether the bot’s hints are addressing the most pressing missing
KCs in the student code, similar to how a human tutor would walk through a problem with
a student in office hours. As seen in Figure 5.3, we notice that over 85% of hints from
homework 1 fulfill this overlap criterion for all hint KC list lengths (i.e. hint KC-richness).
This is surprising as we would expect hints that cover a larger number of KCs to have a higher
likelihood of also covering one of the top 3 missing KCs in the student’s code, but the success
proportion appears nearly uniform over all hint KC list lengths. Another implication of this
hint KC-richness independence is that the LLM is actually quite good at recognizing and
weighing the importance of various issues in student code and ensuring that the key issues
are included in its response — possibly an unintended but welcome side-effect of including
the Limit your response to a sentence or two at most instruction in the prompt.

For later homeworks, we don’t observe as strong an overlap between KCs addressed by
hint and missing KCs in the code, specifically with hints that address fewer KCs (i.e. shorter
hint KC list length). We speculate this is due to our few-shot expert examples being limited
to samples from homework 1 leading to less accurate KC classifications both in the hints
and the code checkpoints. The effect of this lower accuracy is exacerbated in the low-data
settings of hints that only address one or two KCs. See Appendix C.5 for plots of additional
homeworks.
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Figure 5.3: Sp24 HW1 Proportion of Hints that Address at least 1 of Top 3 Missing KCs in
Code Grouped By Hint KC List Length

5.3 RQ3: Are students able to apply the hints to make
progress?

Finally, to measure how well students are able to apply the hints to improve their code, we
can start by using the same calculation as done before in § 5.2. Then, we introduce the same
coloring scheme as in § 5.1 to indicate what proportion of hints that address a top 3 KC
are also successfully applied by students to make progress. As we see in Figure 5.4 (and
Appendix C.6), hints that cover a greater number of KCs are more likely to lead to direct
student progress (green zones) and less likely to lead to minimal progress submissions (yellow
zones). This suggests that steering the LLM to cover 3 or 4 issues in a single hint could
lead to student progress more often than honing in on one bug — a bug which in reality
could be a minor issue when compared to the student’s general approach to the problem, for
example. In contrast to the previous result in § 5.2, we see the number of KCs addressed by
the hint playing a key role in students’ ability to apply at least one of the suggestions in the
hint. While KC-sparse hints may be able to address core issues in student code consistently,
there’s a better chance of the student successfully applying some part of the hint to make
progress when the hint is KC-rich. See Appendix E.1 & E.2 for samples of green & yellow
submission pairs respectively.
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Figure 5.4: Sp24 HW1 Proportion of Hints that Address at least 1 of Top 3 Missing KCs in
Code Colored by Student Progression and Grouped By Hint KC List Length

Interestingly, it seems that while the proportion of green increases and yellow decreases
with more KC-rich hints, the proportion of red hints remains relatively consistent. One
explanation for this is that there is an ever-present chance that students misunderstand what
the hint wants them to do. In this scenario, which is independent of hint KC list length, it’s
likely that the student will make reverse progress. See Appendix E.3 for examples of red
submission pairs.
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Chapter 6

Next Steps

In the short term, we hope to continue reducing the error rate through additional tuning and
training. To further augment the context, we intend to offer the student options to request
different kinds of help and rate the helpfulness of the hint. Simple responses like “Please
elaborate.” or “Can you explain it another way?” could provide valuable context to steer
subsequent prompts.

In the long term, we plan to leverage feedback to make larger-scale adjustments to the
system as a whole. From student feedback in § 4.3 and KC analysis in § 5, it’s evident
that the current helpfulness of hints is good but has room for improvement. One avenue for
achieving improvement is through human feedback. We are already collecting helpfulness
rating feedback from students after each hint is provided which could be incorporated via
reinforcement learning from human feedback (RLHF). First, we could use hints that received
positive feedback from students to curate a dataset for fine-tuning. In fact, we have already
experimented with this idea in an effort to fine-tune a model that was specifically tailored
toward helping 61A students with Scheme homework problems. While it showed promise in
its capability to dramatically improve GPT-3.5’s hints, the fine-tuned GPT-3.5 model was
still outperformed by base GPT-4. So, until fine-tuning is made available for SOTA models
(or we decide to train and host our own open-source model, which comes with its own heap
of challenges), we don’t plan on implementing it.

Another avenue for improving hint quality is by training a completion time model. Recent
work [14] has shown the potential for neural networks to classify student code as correct
or incorrect by embedding code abstract syntax trees (ASTs). We can extend this to the
regression task of estimating how long a student will take to complete an problem from
their current code state. Furthermore, we can add the hints that 61A Bot previously gave
in response to each code checkpoint as an additional input. With a (code_ast, hint) 7→
time_until_completion model, we can treat remaining completion time as our objective to
minimize and generate a fine-tuning dataset this way.

To address the issue of hints being too vague or too specific for individual students in
§ 4.3, we aim to make each hint more personalized. Using a mix of student checkpoint
data, student feedback, and KCs we can generate a student model [30] for each student
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that summarizes their learning habits and the granularity of hints they prefer to provide as
additional steering in the prompt. The primary concern here is latency, but the methodology
is promising.

To extend the work we did in § 5, we plan to perform additional time-series analysis of
student submissions to gain an extra dimension of insight into how individual students are
progressing through assignments differently with and without access to the bot. Moreover,
one clear drawback of the KC-based progression categorization we’ve developed is that the
number of missing KCs is not always an accurate measure how much progress a student is
making. For example, a code submission with a slew of "Off-by-One" and "Forget While
Loop Update" errors could realistically be much closer to a correct solution than a recursive
function that has a single "Incorrect Recursive Recombination Step" missing KC associated
with it. So, collecting more data on this approach’s validity (or shortcomings) will prove
valuable.
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Chapter 7

Conclusion

We first reported here on the development and deployment process of an LLM-based inter-
active programming support tool for introductory CS courses. We showed high-level effects
of introducing 61A Bot including reduction in student’s assignment completion times and
reduction in student reliance on staff support. Additionally, we explored knowledge com-
ponents as a proxy for student progress and found that students follow the same general
progression trajectories through problems — only faster with 61A Bot. Analyzing the hints
themselves revealed that the LLM is able to decipher important issues in student code at a
high rate and that hints that cover a number of rather than a single bug are more likely to
lead to direct student progress.

We discovered a number of successes, identified a few challenges and pitfalls, and reflected
on solutions and paths toward a more pedagogically robust LLM assistant for introductory
CS students.
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Appendix A

Prompts

A.1 61A Bot Prompt
Our final prompt is as follows. Note that the %NOTE% marker is replaced by text specific to
the homework assignment selected by the student.

1 You are a very talented 61a tutoring bot, the intro CS class at UC Berkeley;
you are helping students learn to program.

2
3 A student has asked for help. The question they are trying to solve is in

the next message, and in the following message is (all) the code the
student has so far, including some code that is for other questions --
ignore that other code. If the student asks for help repeatedly, the
conversation will continue with your subsequent reply and any updated
student code.

4
5 First: identify the student's code. Is it correct and complete? If so, tell

them "That looks like it should work -- give it a shot and feel free to
include any error message in a comment!"

6
7 If not, here's what you should analyze, based on their code:
8
9 1) Is the student missing any conceptual knowledge? Would a refresher help?

10
11 2) Is the code they have already, if any, on the right track?
12
13 3) How close are they to a working solution?
14
15 4) Did they follow your previous instructions? If not, rephrase and offer

advice in a different way.
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16
17 5) Do they have a plan -- if not, help them generate one.
18
19 6) If all else fails, provide a template of the code -- perhaps missing the

key recursive case and base case if condition.
20
21 %NOTE%
22
23 Do not give the student the answer or any code. If there's an obvious bug,

direct them to the location of the bug. If there's a conceptual
misunderstanding, offer them a conceptual refresher. Don't assume a
problem needs to use recursion unless it's explicit, and use any
functions the hint tells you to use!

24
25 Limit your response to a sentence or two at most. Be as socratic as possible

, and be super friendly.
26
27 Handing you off to the student now!
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A.2 RQ1 Prompt

1 You are a smart teacher and a classifier for an introductory computer
science course.

2 Your job is to classify student's missing knowledge component(s) based on
the code submission they gave.

3 Each input for classification will have the following parts:
4
5 <Submission>: includes the student's code for the question
6 <Doctest Percentage>: indicates the percentage of doctests the student

passed, ranging from [0.0, 1.0] OR 'Infinite Loop' if the student's code
runs for too long.

7 <Current Question>: indicates which question/function the student is
currently working on. Any code in the <Submission> for other functions
should be ignored.

8 <Skeleton>: includes the original skeleton code for the current question.
Students should not modify code provided in the skeleton and should
instead mold their solution around the provided skeleton code.

9
10
11
12 Classification:
13 Based on the student submission log and the correct answer, specify and list

out the knowledge component that the student might be missing.
14 For example, if there is an answer that is missing a necessary return

statement, that would be listed as "Forget Return"
15
16 Reasoning:
17 Also provide a reason why that classification was made.
18
19 Output:
20 As there can be multiple components, output a list of lists that contains

all the missing knowledge components. The first element contains the
list of missing knowledge components.

21 The second element contains the reason behind that list of missing knowledge
components identified.

22
23
24 Example Output: ["Arithmetic Logic", "Forget Return"], The reason why it was

listed as these two components is because...]"
25



APPENDIX A. PROMPTS 39

26
27 The possible list of missing knowledge components is {KC_LIST}. Pick the

relevant missing knowledge components from the provided list only.
28 Here are descriptions of each knowledge component:
29 {KC_DESC_STR}
30
31 If the student passed all doctests (i.e. doctest percentage is 1.0), you can

write 'Correct'. If the student's submission is completely blank (i.e.
an EXACT copy of the skeleton code), you can write 'Blank'.

32
33 Rank the list of knowledge components in the order of importance toward

arriving at a solution. In other words, the most pressing missing
knowledge component comes first.

34
35 Make sure to wrap each element with same quotation marks - ". Do not use '
36 In other words, it can be directly converted to a list of list.
37 If I index the output[0], this should give me the list of knowledge

components
38 If I index the output[1], this should give me the reason in text
39
40 The first element is a list. The second element is a string.
41 These two elements have to be wrapped with an outer list.
42 So once again, output format is:
43
44 "[knowledge-component1, knowledge-component2, ...], reason"
45 ex) ["Assignment Statement", "Forget Return"], '"The student seems to have

wrong variable assignments. In addition, ..."
46 We want to strictly follow this format, as I want to further apply list

comprehension and use the output as a list of lists. Make sure to follow
the format described.

47
48 Finally, here are a few example submissions and expert classifications that

you should use as a guide for generating your own responses:
49 {HAILSTONE_EXAMPLES_STRING}
50 {A_PLUS_ABS_B_EXAMPLES_STRING}
51
52 Now, here comes the submission you need to classify!
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A.3 RQ2 Prompt

1 You are a smart teacher and classifier for an intro computer science course
in Python.

2 In this course, students submit code and are given hints in response to
address issues in their code. Your job is to classify which knowledge
component(s) the hint targets.

3
4 Each input for classification will have the following parts:
5
6 <Hint>: the hint that was given in response to the student's code.
7 <Submission>: the student's code.
8
9 As well as some METADATA:

10 <Current Question>: which question/function the student is currently working
on. Any code in the <Submission> for other functions should be ignored.

11 <Skeleton>: the original skeleton code for the current question. Students
should not modify code provided in the skeleton and should instead mold
their solution around the provided skeleton code.

12 <Doctest Percentage>: the percentage of doctests the student passed, ranging
from [0.0, 1.0] OR 'Infinite Loop' if the student's code runs for too

long.
13
14 Classification:
15 List the knowledge component(s) that the hint addresses.
16 For example, if the hint tells the student they should add the line `i += 1`

at the end of their while loop, the list should include "Forget While
Loop Update" as one of the knowledge components that was addressed.
There can be multiple knowledge components addressed in the hint.

17
18 Here is the list of possible knowledge components:
19 {KC_LIST}
20 Pick the relevant knowledge components from the above provided list only.
21
22 Here are descriptions of each knowledge component:
23 {KC_DESC_STR}
24
25 Reasoning:
26 Finally, output a string that summarizes your reasoning for each of the

knowledge components you identified in the hint.
27
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28 If the hint tells the student their code is completely correct, you should
write 'Correct'. If the hint says the student hasn't started the problem
yet (i.e. the student submits an EXACT copy of the skeleton code), you

should write 'Blank'.
29
30 Output:
31 Start with a scratch space in which you think out loud through your

reasoning and decide which knowledge components are relevant.
32 The format of your output is as follows:
33 - The first element contains the list of knowledge components in any order.
34 - The second element contains the reason behind that list of knowledge

components identified.
35
36 Example Output: ["Arithmetic Logic", "Forget Return"], "The hint targets \"

Arithmetic Logic\" as it directly references the student's
misunderstanding of the modulus operator..."

37
38 If I index the output[0], this should give me the list of knowledge

components.
39 If I index the output[1], this should give me the reason as a string.
40 Make sure to wrap each element with the same quotation marks - ". Do not use

'.
41
42 The first element is a list of strings. The second element is a string.
43 These two elements must be wrapped in an outer list.
44 So once again, here is the output format 3 equivalent forms/examples:
45
46 1. list[str], str
47
48 2. "[knowledge-component1, knowledge-component2, ...], reason"
49
50 3. ["Assignment Statement", "Forget Return"], "The hint directly tells the

student to fix their variable assignments. In addition, ..."
51
52 We want to strictly follow this format, as your output will be read

programmatically. Make sure to follow the format described.
53
54 Finally, here are a few example hints and expert classifications that you

should use as a guide for generating your own responses. Note that these
example inputs do not include the METADATA that you will receive with

your input:
55
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56 {RQ2_HINT_EXAMPLES_STRING}
57
58 Now, here comes the submission you need to classify!
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Appendix B

Hint Samples

The following two samples are each a log of some student’s submission subsequence (including
the code submitted and hint given in response at each submission index) that exemplify a
failure mode described in § 4.2.

Homework problem statements can be found at https://inst.eecs.berkeley.edu/
~cs61a/sp23/hw/hw01/.

B.1 Incorrect Application of Hint

<STUDENT CODE @ 2024-01-24 14:55:20+00:00>:
```def hailstone(n):

i = 1
while n > 1:

if n % 2 == 0:
n = n // 2
print(n)

else:
n = n * 3 + 1
print(n)

i += 1
return i

return 1
<HINT>: Great job on the `a_plus_abs_b` function! However, there's a small

mistake in your `hailstone` function. The `return i` statement is inside
the while loop, which means the function will exit after the first

iteration. Try moving it outside the loop so that it returns the total
count after the loop has finished.

----------
<STUDENT CODE @ 2024-01-24 14:59:09+00:00>:

https://inst.eecs.berkeley.edu/~cs61a/sp23/hw/hw01/
https://inst.eecs.berkeley.edu/~cs61a/sp23/hw/hw01/
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````def hailstone(n):
i = 1
if n > 1:

if n % 2 == 0:
n = n // 2
print(n)

else:
n = n * 3 + 1
print(n)

i += 1
return i
if n == 1:

return 1
<HINT>: You're almost there! However, your `if n > 1:` condition is not

inside a loop, so it will only execute once. You need to put this inside
a while loop so that it continues to execute until `n` is 1. Also,

remember to print `n` at the start of each iteration, not just after it'
s been modified.

----------
<STUDENT CODE @ 2024-01-24 15:04:36+00:00>:
```def hailstone(n):

i = 1
if n > 1:

if n % 2 == 0:
print(n)
n = n // 2

else:
print(n)
n = n * 3 + 1

i += 1
return i
if n == 1:

print(n)
return 1

<HINT>: You're almost there! However, your `if n > 1:` condition is still
not inside a loop, so it will only execute once. You need to put this
inside a while loop so that it continues to execute until `n` is 1. Also
, remember to print `n` at the start of each iteration, not just after
it's been modified.
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B.2 No Application of Hint

<STUDENT CODE @ 2024-01-24 13:59:46+00:00>:
```from operator import add, sub
def a_plus_abs_b(a, b):

if b < 0:
f = sub(a, b)

else:
f = add(a, b)

return f(a, b)
```
<HINT>: You're very close! However, in the line `f = sub(a, b)` and `f = add

(a, b)`, you should assign `f` to the function `sub` or `add`, not the
result of the function. Try removing `a` and `b` from these lines.

----------
<STUDENT CODE @ 2024-01-24 15:12:26+00:00>
```from operator import add, sub
def a_plus_abs_b(a, b):

if b < 0:
f = sub(a, b)

else:
f = add(a, b)

return f(a, b)
```
<HINT>: Great job! Your `hailstone` function is now correctly structured

with a while loop and prints `n` at the start of each iteration. However
, there's a small mistake in your `a_plus_abs_b` function. You're
calling `f(a, b)` where `f` is `sub(a, b)` or `add(a, b)`. This means
you're actually calling `sub(a, b)(a, b)` or `add(a, b)(a, b)`, which is
not correct. You should assign `f` to `sub` or `add`, not `sub(a, b)`

or `add(a, b)`.
----------
<STUDENT CODE @ 2024-01-24 15:14:22+00:00>
```from operator import add, sub
def a_plus_abs_b(a, b):

if b < 0:
f = sub(a, b)

else:
f = add(a, b)
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return f(a, b)
```
<HINT> You're almost there! In your `a_plus_abs_b` function, you should

assign `f` to `sub` or `add`, not `sub(a, b)` or `add(a, b)`. So, it
should be `f = sub` when `b < 0` and `f = add` otherwise. Then, you can
call `f(a, b)` in your return statement.
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Appendix C

Additional Plots

C.1 Problem-Level CDFs

Figure C.1: a_plus_abs_b CDFs
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Figure C.2: accumulate CDFs

Figure C.3: accumulate CDFs
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Figure C.4: hailstone CDFs

Figure C.5: hailstone2 CDFs
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Figure C.6: largest_factor CDFs

Figure C.7: two_of_three CDFs
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Figure C.8: yield_paths CDFs
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C.2 Homework-Level CDFs

Figure C.9: Fall 2022 vs Spring 2023 HW 1 Completion Time Distributions (note: any density
assigned to negative completion time is due to smoothing)

Figure C.10: Fall 2022 vs Fall 2023 HW 1 Completion Time Distributions (note: any density
assigned to negative completion time is due to smoothing)

Figure C.11: Fall 2022 vs Spring 2024 HW 1 Completion Time Distributions (note: any
density assigned to negative completion time is due to smoothing)
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Figure C.12: Spring 2023 vs Fall 2023 HW 1 Completion Time Distributions (note: any
density assigned to negative completion time is due to smoothing)

Figure C.13: Fall 2023 vs Spring 2024 HW 1 Completion Time Distributions (note: any
density assigned to negative completion time is due to smoothing)

Figure C.14: Fall 2022 vs Spring 2023 HW 2 Completion Time Distributions (note: any
density assigned to negative completion time is due to smoothing)
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Figure C.15: Fall 2022 vs Fall 2023 HW 2 Completion Time Distributions (note: any density
assigned to negative completion time is due to smoothing)

Figure C.16: Fall 2022 vs Spring 2024 HW 2 Completion Time Distributions (note: any
density assigned to negative completion time is due to smoothing)

Figure C.17: Spring 2023 vs Fall 2023 HW 2 Completion Time Distributions (note: any
density assigned to negative completion time is due to smoothing)
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Figure C.18: Fall 2023 vs Spring 2024 HW 2 Completion Time Distributions (note: any
density assigned to negative completion time is due to smoothing)
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C.3 Ed Analytics

Figure C.19: Spring 2023 61A Ed Analytics.

Figure C.20: Spring 2024 61A Ed Analytics.
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Figure C.21: Fall 2022 61A Ed Analytics.

Figure C.22: Fall 2023 61A Ed Analytics.
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C.4 RQ1 Plots

Figure C.23: Sp23 (Left) vs Sp24 (Right) HW2 Time Spent & Number of Submissions
Colored by Student Progression. Upper plots show average time spent per student. Lower
plots show average number of submissions per student.
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Figure C.24: Sp23 (Left) vs Sp24 (Right) HW2 Proportion of Time Spent & Number of
Submissions Colored by Student Progression. Upper plots show average time spent per
student. Lower plots show average number of submissions per student.
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Figure C.25: Sp23 (Left) vs Sp24 (Right) HW3 Time Spent & Number of Submissions
Colored by Student Progression. Upper plots show average time spent per student. Lower
plots show average number of submissions per student.
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Figure C.26: Sp23 (Left) vs Sp24 (Right) HW3 Proportion of Time Spent & Number of
Submissions Colored by Student Progression. Upper plots show average time spent per
student. Lower plots show average number of submissions per student.
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C.5 RQ2 Plots

Figure C.27: Sp24 HW2 Proportion of Hints that Address at least 1 of Top 3 Missing KCs
in Code Grouped By Hint KC List Length

Figure C.28: Sp24 HW3 Proportion of Hints that Address at least 1 of Top 3 Missing KCs
in Code Grouped By Hint KC List Length
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C.6 RQ3 Plots

Figure C.29: Sp24 HW2 Proportion of Hints that Address at least 1 of Top 3 Missing KCs
in Code Colored by Student Progression and Grouped By Hint KC List Length

Figure C.30: Sp24 HW3 Proportion of Hints that Address at least 1 of Top 3 Missing KCs
in Code Colored by Student Progression and Grouped By Hint KC List Length
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Appendix D

Knowledge Component Lists

D.1 HW1 Knowledge Components
Homework problem statements can be found at https://inst.eecs.berkeley.edu/~cs61a/
sp23/hw/hw01/.

Function Objects versus Function Calls: The student does not understand the
difference between function objects and function calls. Function objects
are data while function calls are expressions.

Call Expressions: The student fails to call a function properly. Call
expression syntax in Python is `operator(operand1, operand2...)`.

While Loop Condition: The student has a logical error in their while loop
condition.

Return Early in Loop: The student has a return statement in their while loop
that causes it to end early.

Forget Return: The student forgets to return a value at the end of the
function.

Return versus Print: The student misunderstands the difference between
return and print. Return values become the value of a call expression
while prints are used to display values in the terminal.

Boolean Operator Logic: The student doesn\textquotesingle t understand the
evaluation rules of Python boolean operators including `==`, `!=`, `or`,
`and`, `not`.

https://inst.eecs.berkeley.edu/~cs61a/sp23/hw/hw01/
https://inst.eecs.berkeley.edu/~cs61a/sp23/hw/hw01/
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Forget While Loop Update: The student forgets to update their looping
variable in their while loop, leading to an infinite loop.

Infinite Loop: The student\textquotesingle s code loops forever.

Problem Solving/Approach: The student\textquotesingle s fundamental approach
to the problem is flawed and needs to rethink the structure of their

program.

Statements versus Expressions: The student misunderstands the difference
between statements and expressions. Statements are used to update the
environment, enter control structure flow, etc. while expressions
evaluate to values.

Understanding the Problem: The student misunderstands what the problem is
asking them to do.

Indentation: The student has incorrect indentation, leading to a `
SyntaxError`.

If Conditional Expression: The student has an incorrect conditional
expression in their if/elif predicate.

Missing Variable(s): The student is missing a variable needed to store key
information.

Missing Syntax: The student is missing key syntax symbols, leading to a `
SyntaxError`.

Lists: The student uses lists, which are out-of-scope for the course.

Indexing Iterables: The student uses iterables, which are out-of-scope for
the course.

Sorting Lists: The student uses sorting iterables, which are out-of-scope
for the course.

Ternary Operator: The student uses ternary if expressions, which are out-of-
scope for the course.

Recursion: The student uses recursion, which is out-of-scope for the course.
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For Loop: The student uses a for-loop, which is out-of-scope for the course.

Blank: The student\textquotesingle s submission is blank or exactly the same
as the skeleton code.

Extra Prints: The student has extraneous print statements in their code.

Missing Prints: The student is missing essential print statements in their
code necessary for passing all the doctests.

Wrong Data Type: The student is using the wrong data type in their code (e.g
. using floats when ints are expected).

Off-by-One: The student\textquotesingle s code doesn\textquotesingle t
account for the right number of iterations. Specifically, they have
miscounted the number of iterations their while loop runs by 1.

Assignment Statement: The student forgets to use or misuses assignment
statements to create or update variables.

Arithmetic Logic: The student has flawed arithmetic logic leading to
numerical errors.

Correct: The student\textquotesingle s submission is correct and passes all
the provided doctests.
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D.2 HW2 Knowledge Components
Homework problem statements can be found at https://inst.eecs.berkeley.edu/~cs61a/
sp23/hw/hw02/.

List is same as Appendix D.1 except appended with the following KCs:

Returning Function Object versus Function Call: The student does not
understand the difference between returning a function object (often the
case in higher-order functions) and returning the result of a function

call.

Functions as Data: The student does not understand what it means for a
function to be the value of a variable. In other words, they do not
understand first-class functions. In computer science, a programming
language is said to have first-class functions if it treats functions as
first-class citizens. This means the language supports passing

functions as arguments to other functions, returning them as the values
from other functions, and assigning them to variables or storing them in
data structures.

Value Accumulation in Loop: The student fails to update a variable in their
while loop via assignment statement properly leading to failure to
accumulate a final total value.

Lambda Functions: The student misuses or misunderstands lambda functions.

https://inst.eecs.berkeley.edu/~cs61a/sp23/hw/hw02/
https://inst.eecs.berkeley.edu/~cs61a/sp23/hw/hw02/
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D.3 HW3 Knowledge Components
Homework problem statements can be found at https://inst.eecs.berkeley.edu/~cs61a/
sp23/hw/hw03/.

List is same as Appendix D.2 except appended with the following KCs:

Incorrect Base Case: The student either has an incorrect base case
conditional or returns the wrong expression in the base case clause.

Missing Base Case: The student forgets an essential base case to consider.

Incorrect Recursive Call Location: The student attempts to make a
recursive call in the wrong place in their code.

Incorrect Recursive Call: The student passes the wrong argument(s) into
their recursive call(s). In formal mathematical terms, they have the
wrong inductive hypothesis.

Incorrect Recursive Recombination Step: The student does not the result of
their recursive call correctly. In formal mathematical terms, they have
the wrong inductive step.

Using Iteration instead of Recursion: The student tries to use iteration
where recursion is expected and natural.

Incorrect Digit Manipulation: The student uses `%` (modulo) and/or `//` (
floor-division) incorrectly in an attempt to parse the last and rest of
the digits respectively.

Incorrect Helper Function Parameters: The student either calls their helper
function incorrectly, calls their helper function with the wrong
arguments, and/or chooses the wrong/wrong number of parameters for their
helper function when defining it.

Missing Helper Function: The student is missing a helper function that is
essential and natural to solving the problem recursively.

Incorrect Number of Recursive Calls: The student makes too few or too many
recursive calls in their tree recursive function.

https://inst.eecs.berkeley.edu/~cs61a/sp23/hw/hw03/
https://inst.eecs.berkeley.edu/~cs61a/sp23/hw/hw03/
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Appendix E

Student Progression Samples

The following samples are logs of student submission before-after pairs (along with the hint
provided in between) categorized into one of the three categories described in § 5.1.

Homework problem statements can be found at https://inst.eecs.berkeley.edu/
~cs61a/sp23/hw/hw01/.

E.1 Decreased Number of Missing KCs Sample (Green)

-----GREEN SAMPLE 1-----
<CODE-BEFORE @ 2024-01-21 10:34:02+00:00>:
```def hailstone(n):

count = 1
while n != 1:

count += 1
if n % 2 == 0:

n = n // 2
else:

n = (n * 3) + 1
print(count)

```
<CODE-BEFORE KCS>: Missing Prints, Return versus Print
<HINT>: Great job on implementing the `hailstone` function! However,

remember that the function should also print out the hailstone sequence
starting at `n`. You can achieve this by adding a print statement inside
your while loop to print the current value of `n` before it is updated.

<HINT KCS>: Missing Prints
<CODE-AFTER @ 2024-01-21 10:45:20+00:00>:
```def hailstone(n):

count = 1

https://inst.eecs.berkeley.edu/~cs61a/sp23/hw/hw01/
https://inst.eecs.berkeley.edu/~cs61a/sp23/hw/hw01/
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while n != 1:
print(n)
count += 1
if n % 2 == 0:

n = n // 2
else:

n = (n * 3) + 1
print(n)

```
<CODE-AFTER KCS>: Forget Return

-----GREEN SAMPLE 2-----
<CODE-BEFORE @ 2024-01-25 11:43:55+00:00>:
```def hailstone(n):

count = 0
while n != 1:

print(n)
if n % 2 == 0:

n = n // 2
else:

n = n * 3 + 1
count += 1
print (n)

return(count)
```
<CODE-BEFORE KCS>: Off-by-One, Extra Prints, Missing Prints
<HINT>: Great job! Your hailstone function looks correct now. However, you'

re printing the value of `n` twice in each iteration of the loop. You
might want to remove the second print statement inside the loop.

<HINT KCS>: Extra Prints
<CODE-AFTER @ 2024-01-25 11:44:56+00:00>:
```def hailstone(n):

count = 0
while n != 1:

print(n)
if n % 2 == 0:

n = n // 2
else:

n = n * 3 + 1
count += 1

return(count)
```
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<CODE-AFTER KCS>: Off-by-One, Missing Prints

-----GREEN SAMPLE 3-----
<CODE-BEFORE @ 2024-01-26 07:45:34+00:00>:
```def hailstone(n):

result = 0
print (n)
while n != 1:

if n % 2 == 0:
n = n // 2
print (n)
result += 1

else:
n = n * 3 + 1
print (n)
result += 1

return result()
```
<CODE-BEFORE KCS>: Function Objects versus Function Calls, Off-by-One
<HINT>: Great job! You're almost there. However, you're trying to return `

result()` but `result` is not a function, it's a variable. You should
return `result` instead of `result()`.

<HINT KCS>: Function Objects versus Function Calls
<CODE-AFTER @ 2024-01-26 07:46:10+00:00>:
```def hailstone(n):

result = 0
print (n)
while n != 1:

if n % 2 == 0:
n = n // 2
print (n)
result += 1

else:
n = n * 3 + 1
print (n)
result += 1

return result
```
<CODE-AFTER KCS>: Off-by-One

-----GREEN SAMPLE 4-----
<CODE-BEFORE @ 2024-01-21 06:53:50+00:00>
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```def largest_factor(n):
i = n - 1
while n % factor != 0:

i = i - 1
factor = n

return factor
```
<CODE-BEFORE KCS>: While Loop Condition, Assignment Statement, Arithmetic

Logic
<HINT>: You're on the right track with the `largest_factor` function, but

there seems to be a small mistake. You're using the variable `factor`
before it's defined. Also, you're assigning `n` to `factor` inside the
loop, which doesn't seem to be correct. You might want to start `factor`
at `n - 1` and decrement it in the loop until you find a number that

evenly divides `n`.
<HINT KCS>: Missing Variable(s), Assignment Statement
<CODE-AFTER @ 2024-01-21 06:55:34+00:00>
```def largest_factor(n):

i = n - 1
factor = n
while n % factor != 0:

i = i - 1
factor = n / i

return factor
```
<CODE-AFTER KCS>: Arithmetic Logic, Wrong Data Type
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E.2 Same Number of Missing KCs Sample (Yellow)

-----YELLOW SAMPLE 1-----
<CODE-BEFORE @ 2024-01-25 11:17:19+00:00>:
```def hailstone(n):

count = 0
while n > 1:

if n % 2 == 0:
n = (n / 2)
count = count + 1

else:
n = (3 * n) + 1
count = count + 1

return count
```
<CODE-BEFORE KCS>: Off-by-One, Missing Prints, Wrong Data Type
<HINT>: Great job updating the value of `n` in your loop! However, you're

missing one key part of the problem: you need to print out the hailstone
sequence. This means you should print the value of `n` in each

iteration of the loop, before you update it. Try adding a print
statement at the beginning of your loop to print `n`.

<HINT KCS>: Missing Prints
<CODE-AFTER @ 2024-01-25 11:18:30+00:00>:
```def hailstone(n):

count = 0
while n > 1:

if n % 2 == 0:
print (n = (n / 2))
count = count + 1

else:
print (n = (3 * n) + 1)
count = count + 1

return count
```
<CODE-AFTER KCS>: Missing Syntax, Missing Prints, Wrong Data Type

-----YELLOW SAMPLE 2-----
<CODE-BEFORE @ 2024-01-24 09:35:30+00:00>:
```def largest_factor(n):

lf = 1
while (lf<=n):
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if (n % lf ==0):
n = lf
lf=lf + 1

return lf
```
<CODE-BEFORE KCS>: Problem Solving/Approach, While Loop Condition,

Assignment Statement
<HINT>: Your current approach for the `largest_factor` function is not quite

correct. You're on the right track with using a while loop and the
modulus operator to check for factors, but you're changing the value of
`n` inside the loop, which you shouldn't do. Instead, you should start `
lf` from `n-1` and decrement it in each iteration until you find a
number that evenly divides `n`. Can you try to modify your code with
this approach?

<HINT KCS>: Problem Solving/Approach, Forget While Loop Update
<CODE-AFTER @ 2024-01-24 09:42:54+00:00>:
```def largest_factor(n):

lf = 1
while (lf<=n):

if (n % lf == 0):
x = lf
lf=lf + 1

return x
```
<CODE-AFTER KCS>: Infinite Loop, Forget While Loop Update, Arithmetic Logic

-----YELLOW SAMPLE 3-----
<CODE-BEFORE @ 2024-01-22 07:44:15+00:00>:
```def largest_factor(n):

factor = n-1
while n % factor != 0:

factor = factor-1
```
<CODE-BEFORE KCS>: Forget Return
<HINT>: Great job! Your `largest_factor` function now correctly continues to

check smaller numbers until it finds a factor of `n`. However, it seems
like you forgot to return the factor once you find it. Remember to

return the factor after the while loop.
<HINT KCS>: Forget Return
<CODE-AFTER @ 2024-01-22 07:46:47+00:00>:
```def largest_factor(n):
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factor = n-1
while n % factor != 0:

factor = factor-1
return factor

```
<CODE-AFTER KCS>: Return Early in Loop
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E.3 Increased Number of Missing KCs Sample (Red)

-----RED SAMPLE 1-----
<CODE-BEFORE @ 2024-01-25 12:55:58+00:00>:
```def hailstone(n):

counter = 1
while n != 1:

counter += 1
if n % 2 == 0:

n = n//2
print(n)

elif n % 2 == 1:
n = n *3 + 1
print(n)

return counter
```
<CODE-BEFORE KCS>: Missing Prints, Off-by-One
<HINT>: Great job! Your `largest_factor` function looks correct now. Also,

your `hailstone` function seems to be on the right track. However,
remember to print the initial value of `n` before entering the loop. Can
you add that to your code?

<HINT KCS>: Missing Prints
<CODE-AFTER @ 2024-01-25 12:56:32+00:00>:
```def hailstone(n):

counter = 1
while n != 1:

counter += 1
print(n)
if n % 2 == 0:

n = n//2
print(n)

elif n % 2 == 1:
n = n *3 + 1
print(n)

return counter
```
<CODE-AFTER KCS>: Extra Prints, Off-by-One, Missing Prints

-----RED SAMPLE 2-----
<CODE-BEFORE @ 2024-01-25 06:15:51+00:00>:
```from operator import add, sub
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def a_plus_abs_b(a, b):
if b < 0:

f = sub(a,b)
else:

f = add(a,b)
return f(a, b)

```
<CODE-BEFORE KCS>: Function Objects versus Function Calls
<HINT>: You're very close! However, `f` should be assigned to the function `

sub` or `add`, not the result of a function call. Try this: if `b < 0`,
assign `f` to `sub`, otherwise assign `f` to `add`. Then, `f(a, b)` will
be called in the return statement.

<HINT KCS>: Function Objects versus Function Calls
<CODE-AFTER @ 2024-01-25 06:20:44+00:00>:
```from operator import add, sub
def a_plus_abs_b(a, b):

if b < 0:
f = sub(f)

else:
f = add(f)

return f(a,b)
```
<CODE-AFTER KCS>: Function Objects versus Function Calls, If Conditional

Expression

-----RED SAMPLE 3-----
<CODE-BEFORE @ 2024-01-22 08:21:50+00:00>:
```from operator import add, sub
def two_of_three(i, j, k):

return add( min(i,j,k) * min(i,j,k), min(j,k) * min(j,k))
```
<CODE-BEFORE KCS>: Problem Solving/Approach, Arithmetic Logic
<HINT>: Your `two_of_three` function is still not correct. The problem is

that you're not always getting the two smallest numbers. For example, if
`i` is 1, `j` is 2, and `k` is 3, your current function would return

`1*1 + 2*2 = 5`, which is correct. But if `i` is 3, `j` is 1, and `k` is
2, your function would return `1*1 + 1*1 = 2`, which is not correct.

You need to find a way to exclude the largest number from the
calculation.

<HINT KCS>: Understanding the Problem, Arithmetic Logic
<CODE-AFTER @ 2024-01-22 08:29:36+00:00>:
```from operator import add, sub
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def two_of_three(i, j, k):
return add( min(i,j,k)**2, min(i,j,k) > min(i,j,k)**2)

```
<CODE-AFTER KCS>: Problem Solving/Approach, Arithmetic Logic, Missing

Variable(s)
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