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Abstract

3D Multispectral Colorimetry

by

Anjali Thakrar

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ren Ng, Chair

We introduce Multispectral Colorimetry, a novel technique for image color correction that
uses 3D reconstruction techniques, object color theory, and photos captured by multiple
cameras to generate a more accurate scene representation. Images captured by consumer
cameras typically look similar to, but don’t quite match the colors seen in the real world.
In fact, there are many objects that have distinct spectral reflectances in the physical world
but appear to have the same color when captured through a camera. This discrepancy is
due to fundamental di↵erences between the camera capture pipeline and that of the human
eye: cameras only capture a subset of the colors humans can see, and any subsequent image
processing introduces further error by approximating its output colors. In this work, we
extend and improve current camera processing mechanisms to correct the color representation
of any image, making its colors appear more similar to those found in the real world. We
use images captured of the same scene by multiple cameras with slightly di↵erent response
functions to extrapolate multispectral information within the visible spectrum and find a
more accurate color mapping. To achieve this, we extend Gaussian Splatting to reconstruct
a multispectral 3D scene using RAW captures from a set of cameras. This allows us to
flexibly capture input images, integrate spectral samples from all cameras in 3D, and then
generate multispectral images from arbitrary new views. We use the generated multispectral
images to map colors between camera captures with pixel-perfect accuracy. We then use
information about the spectra that can be functionally captured by each of the cameras and
the average human eye in order to construct a mapping between each color value in the image
and a set of candidate, “real” colors that it may represent in the world. As we introduce
more cameras into this pipeline, the set of candidate colors becomes more constrained, and
thus more precise. We produce a dataset of spectral response curves and color-corrected
images for machine learning researchers, and an underlying processing pipeline that can be
used by photographers.
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Chapter 1

Introduction

Cameras are built to capture and represent the world in a way that is as similar to the human
experience as possible. Images are considered colorimetric if they represent the spectral
appearance of the world in the same way it is captured by the eye. Human color perception
is defined by the wavelengths of light that our eyes are biologically able to accept and
process, which is its color gamut. Due to physical design constraints, each camera captures
a slightly di↵erent gamut than the human eye does, leading to di↵erent color representations.
In order to build accurate systems that improve the color representation of images, it is vital
to precisely model color di↵erences between capture devices. This section goes into detail
about how color perception is modeled in both the human eye and cameras in terms of
optical design and color theory.

1.1 Human Color Model

The human eye captures light through a set of photoreceptive cone cells that each capture
di↵erent subsets of the visible light spectrum. Most humans are trichromats, meaning that
they have three distinct classes of cones cells - long (L), medium (M), and short (S), which
accept long, medium, and short wavelengths of light, respectively. These cones capture light
in accordance with their cone fundamentals, which are spectral responses describing the cells’
peak sensitivity to certain wavelengths. These fundamentals are shown in Figure 1.1.

The combination of the light that is captured by these cells make up the color that
humans perceive in the world. When plotted in 3D space, these fundamentals construct a
volume referred to as the spectral locus. This locus shows human cone cells’ response to
monochromatic light ranging from 380nm to 700nm and defines the extent of possible colors
given the LMS response curves. When transformed into CIE 1931 color space, scaled, and
projected along the Z axis, this locus becomes the chromaticity diagram, as shown in Figure
1.2.

When viewing a scene, we compute the LMS cone activity as follows:
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Figure 1.1: Cone fundamentals for the L, M, and S cone types, provided by Stockman and
Sharpe [1] [2]. These cone fundamentals are an estimate of each cone’s sensitivity to capture
light at each wavelength of the visible spectrum. The sensitivity is defined as the probability
that a photon is absorbed by the cone cell. These sensitivity values are normalized to be in
the range [0,1].

L =

Z
FL(�)�(�)d�

M =

Z
FM(�)�(�)d�

S =

Z
FS(�)�(�)d�

where FL(�), FM(�), and FS(�) are the LMS cone fundamentals and �(�) is the spectral
power distribution (SPDs) of the scene.
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Figure 1.2: The spectral locus plotted in LMS space and CIE 1931 XYZ space. Left top:
the spectral locus plotted in LMS space. Left bottom: the spectral locus plotted in CIE
1931 XYZ space. Right: The spectral locus scaled by X + Y and projected onto the Z axis,
constructing a chromaticity diagram.

The light that L, M, and S cone cells capture are defined by their spectral power distri-
butions (SPDs), which represents the amount of light accepted at each wavelength in Figure
1.1. In this work, we use the cone fundamentals measured by Stockman and Sharpe [1] [2].

1.2 Camera Color Model

Cameras are built to mimic the human visual system, and thus have similar capture mech-
anisms. The camera captures light on its image sensor, similar to the human retina. This
sensor is typically constructed as a filter pattern called the bayer mosaic. This is a pattern
of photosites, which are light-sensitive elements that convert the light that lands on them
into digital intensity values. Each of the photosites has a spectral response curve that defines
that spectra it can capture. These are typically classified as approximately capturing the
red, green, and blue values in the scene, and each of their spectral response curves (SRCs)
are approximately similar to the L, M, and S response functions, respectively. Once light hits
the sensor, it is filtered through the mosaic and produces a tiled image of light intensities.
This is called the RAW image, which is then processed to generate the image rendered on
the camera screen. This process is shown in Figure 1.3.
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The light intensity at each pixel on a RAW Bayer image is described by

R =

Z
R(�)L(�)SR

d (�)d�

G =

Z
R(�)L(�)SG

d (�)d�

B =

Z
R(�)L(�)SB

d (�)d�

where R, G, and B are computed for each pixel with the corresponding red, green, and
blue filter. R(�) is the reflectance of the scene at the captured point, L(�) is the illumination
of the environment, and SR

d (�), S
G
d (�), and SB

d (�) are the set of SRCs of the capture device
d.

As shown in 1.4, the Canon 5DsR’s color gamut encompasses slightly di↵erent regions of
the spectrum than the spectral locus. Notably, certain regions of the chromaticity diagram
are left uncovered. This means that the camera is unable to capture, and thus unable to
represent certain colors that humans can see. Since the camera is unable to accurately
capture those colors, it represents them as the closest approximation it is able to capture.
This approximation collapses all values from the trichromatic human observer’s gamut into
the closest value within the camera gamut, which means many visible colors collapse to the
same color on the camera sensor and information is lost. A direct result of this information
loss is metameric error, which arises when certain colors in the real world look distinctly
di↵erent to the human eye but appear to be the same color when captured by a camera.

Camera lenses and sensor hardware are notably di↵erent from the human lens and retina
in terms of refractive qualities and spatial organization. Cameras are developed to optimize
for high signal-to-noise ratio and visual clarity, leading to design trade-o↵s that shift its
SRCs away from the LMS SRCs. As the camera SRCs shift away from the LMS SRCs, the
camera becomes less colorimetric which leads to metameric error. In this work we analyze
metameric error using the geometry of object color solids.

1.3 Object Color Solids

Object color solids are a core theoretical framework used in metameric error analysis. A
colorsolid is an N-dimensional convex body representing every possible color, chromaticity,
and hue created by a set of 3 or more SPDs. An object color solid is a type of zonotope, which
is defined as the Minkowski sum of the full color basis. This essentially combines all possible
combinations of spectral vectors. Formally, it is defined as S = �(X ), where X is the set
of the object stimuli, X = {x 2 L1 : 0  x(�)  1}, and � is the color signal map [3].
This map is a set of linearly independent spectral sensitivity functions �i(�) that describe
the space of basis functions in the color space given a range of wavelengths. The object
color solid’s maximal point is the white point and is typically normalized to ~1 = (1, 1, ..., 1).



CHAPTER 1. INTRODUCTION 5

The origin is the black point, ~0 = (0, 0, ..., 0). We refer to the achromatic segment between
these points as the luminance axis. The most simple object color solid formulation assumes
that the illumination of the viewing condition is fixed. For the purposes of this analysis, the
illumination is assumed to be D65, daylight illumination.

In our implementation, we represent the object color solid as just its surface, the optimal
object stimuli, in order to more e�ciently compute the volume of intersection between mul-
tiple solids. The optimal object stimuli represent the colors that are the most luminous for
each chromaticity [4]. The set of optimal object stimuli can be derived from any n functions
from the linear subspace of spectral sensitivity functions, Lin(�1, ...,�n). These functions are
evaluated for all wavelengths, (�min,�max) where �min,�max 2 R. Since it is computationally
expensive to perform these operations on continuous functions, the model is discretized using
transition functions.

A transition function is the spectral response function, masked by an indicator function
at each wavelength. The degree of the transition function is described by how many times
the indicator switches from 0 to 1 or 1 to 0 in the length of the indicator string, which ranges
from (�min,�max). For example, a set of 1-transition functions can be defined as

x1(�;�1) =

(
0, if � < �1
1, if � � �1

For a trichromatic human observer, the transition wavelengths of all optimal stimuli can
be explicitly found by the equation below:

⇠1g(�;�
max
L ) + ⇠2g(�;�

max
M ) + ⇠3g(�;�

max
S ) = 0

where ⇠1, ⇠2, ⇠3 2 R, g(�;�max
L ), g(�;�max

M ), g(�;�max
S ) are the spectral sensitivities of

the LMS cone pigments, and �max
L , �max

M , and �max
S are the peak absorbance wavelengths for

each cone. The object color solid for the trichromatic observer is shown in Figure 1.5. This
formulation can be applied to any set of spectral response curves.

Object color solids can be represented in n-dimensional space given a set of n spectral
response curves. This generalization allows us to generate object color solids using multiple
cameras’ spectral response curves and compute metameric error using multispectral data. We
apply object color theory described by Logvinenko [5] and Urban [6] to find the intersection of
a set of object color solids from di↵erent capture devices in order to compute the metameric
error of a color in an image.

1.4 Multispectral Capture

A multispectral image is an image that contains more than 3 channels, and thus, more than
3 spectral response curves. Multispectral images are often captured using a multispectral
camera, but may also be generated as an aggregate of multiple images or extrapolated from
a trichromatic image using statistical analysis. In most literature, multispectral imaging
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refers to camera systems that capture light both inside and outside of the visible spectrum.
However, because the application of this framework is to make captures more colorimetric,
we limit the images to the visible spectrum. For the purposes of this thesis, a multispectral
image refers to an image with 4 or more spectral channels, captured by multiple cameras
with spectra ranging from 380nm to 780nm.
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Figure 1.3: Diagram of Bayer Pattern. Top row: Diagram of mosaiced bayer sensor pattern
and demosaiced RGB image. Bottom row: Cartoon of a RAW image with bayer tiling and
the same image after converting it into a 3-channel image and demosaicing.
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Figure 1.4: Left: 3D SRCs with LMS and a camera’s curves overlayed in XYZ space. Because
the SRCs di↵er, they cover di↵erent regions of the color gamut
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Figure 1.5: The object color solid of a trichromatic human observer, using cone fundamentals
measured by Stockman and Sharpe [1] [2].
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Chapter 2

Related Work

2.1 Existing Color Correction Methods

Baseline color correction in consumer cameras involve both linear and non-linear operations
like white balancing, gamma correction, and tone-mapping. However, these do not lead
to perfectly colorimetric color reproductions. To approach this problem, researchers have
developed methods that are both statistical and model-based.

There are many proposed statistical methods that have been applied towards color correc-
tion, such as root polynomial regression, principal component analysis, and neural networks,
to name a few. However, statistical models generate or approximate a reasonable candidate
color based on patterns in the data priors, introducing bias based on the input data. Be-
cause the method’s result is largely dependent on the training colors in the datasets, if the
dataset is biased or is not fully-inclusive of all colors in the target gamut, these methods
may produce large error rates.

There is also a wide set of literature that approaches the problem of color correction
using principles of color theory. This literature includes, but is not limited to methods like
the principal eigenvector method, local wiener-hopf equations, and the metamer mismatch
volume [6], [5], [7]. Many of these techniques also require images containing a MacBeth Color
Checker [8] in order to establish a known color value to match after color correction. These
correction methods require the ColorChecker which constrains the types of images that can
be color corrected. In this work, we apply the metamer mismatch volume formulation to
real-world, multispectral image inputs to achieve improved color correction.

2.2 Metamer Mismatch Volume

The metamer mismatch volume characterizes the metameric error as a subset of the 3-
dimensional LMS object color solid. To illustrate the concept of metameric error, Logvi-
nenko describes a set of distinct color signals under illumination 1 that all appear the same
under illumination 2, which means the set of reflectances in the scene are metameric under
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illumination 2 [3]. In 3D space, this means that a color signal under illumination 2 maps to a
set of color signals under illumination 1. Given a constant set of spectral response functions,
two distinct object color solids can be constructed where each represents the range of all
possible colors under a di↵erent illuminant. This subspace of colors under illumination 1 is
called the metamer mismatch volume.

This framework can be adapted to computing the metamer mismatch between di↵erent
observer spectral response functions under the same lighting conditions, since the illumi-
nation and spectral response curves are linearly independent in the spectral response for-
mulation, ci =

R
R(�)L(�)Si(�), where ci is the output color for a pixel in SRC channel i,

R(�) is the scene reflectance, L(�) is the scene illuminant, and Si(�) is the spectral response
curve for channel i [5]. Thus, there is a non-injective mapping between colors captured by
a camera, in the camera RGB color space, and colors seen in real-life, in the LMS color
space. This framework has been applied towards color correction across illuminants [9], but
to the best of our knowledge, we are the first to apply this theory to improve camera color
representation. Our method uses multispectral images to introduce further constraints to
this formulation, ultimately producing a more colorimetric color correction estimation.

2.3 Multispectral Camera Capture

This work seeks to use high quality and low barrier-to-entry multispectral capture set-ups
in order for our method to be easily accessible to both researchers and recreational users.
In this section, we discuss the most widely-available multispectral capture options: using a
multispectral camera, using a 3-channel camera with lens filters, and generating multispectral
from RGB images using statistical techniques.

Though multispectral cameras produce the most reliable and precise data, they are rel-
atively expensive. Configuring a traditional camera to be multispectral requires removing
the UV and IR cut filters inside of the camera and stacking bandpass filter lenses to capture
the desired spectrum. This can be achieved using products like the Kolari full-spectrum
filter sets. However, since most multispectral capture techniques require highly specialized
and expensive equipment, they may be inaccessible to casual photographers or researchers.
A simple multispectral capture system can be built upon a StereoPi system by using a
raspberry pi with two cameras on board, but these images are lower quality than those of
an o↵-the-shelf multispectral camera. Statistical techniques require minimal equipment but
introduce precision errors due to incorrect color extrapolation, so they are an not an ideal
choice for color correction analysis. Specifically, precision errors may be introduced by biased
datasets, the use of cameras with di↵erent spectral responses in the data, and overfitting.
The 3D reconstruction-based technique described in this thesis seeks to circumvent econom-
ical barriers and precision errors by using any available camera to construct a multispectral
image with physically-based accuracy metrics. While this thesis focuses on multispectral
capture within the visible spectrum, this technique can be extended to any set of spectra.
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Chapter 3

Volumetric Multispectral Inference

Our technique leverages modern breakthroughs in computer vision and graphics to recon-
struct multispectral, 3D representations of photographed scenes. By generating a 3D re-
construction for each camera’s captures, we achieve pixel alignment between photographs
without having the location of each camera’s captured images being exactly the same. This
set-up allows us to more easily compare spectral data. The 3D environment also allows us to
generate a large dataset of our extrapolated spectral response, since we are able to virtually
capture new images of the scene after it has been reconstructed and post-processed. In this
work, we present a novel Gaussian Splatting method that uses RAW images from multi-
ple cameras to produce a multispectral scene. We also create an operation-by-operation,
customizable image processing pipeline within Nerfstudio.

3.1 Multispectral Gaussian Splatting using RAW
images

Gaussian Splatting is a reconstruction method used convert a sparse set of photographs of a
scene from continuously-varying viewpoints into a virtual 3D environment [10]. It represents
scenes as a set of 3D gaussians of varying sizes and orientations. Gaussian splatting is most
suitable for this application because it achieves faster render times and comparable accuracy
to implicit-function-based techniques like Neural Radiance Fields (NeRF) [11], Mip-NeRF
[12], and Zip-Nerf [13], and has higher accuracy than grid-based techniques like Instant-NGP
[14].

Our model is a flexible extension of Gaussian Splatting, allowing users to capture and
reconstruct scenes with any number of spectral channels. We integrate this implementa-
tion into Nerfstudio [15] and extend the 3-dimensional gaussian splat into an n-dimensional
gaussian splat, meaning the model is trained over n input spectral channels. During train-
ing, these channels are jointly optimized with a single, common opacity value for each 3D
gaussian. We further extend Gaussian Splatting to train on RAW images, taking inspiration
from RawNeRF [16]. It is necessary to use RAW images because converting the RAW image
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into a JPEG, PNG, or any other human-viewable format is a lossy process - information is
lost due to the approximated conversion matrices, value clipping, and reduced bit depth of
the image. Thus, it is important to use the RAW image capture when editing an image in
order to preserve the greatest amount of spectral information. Similarly, it is vital to use
RAW images when analyzing and color correcting images.

To configure the Gaussian Splatting model to run RAW images, we first run COLMAP
[17] to find the camera poses of each input image and generate a 3D point cloud. Since
COLMAP uses feature matching to run a structure-from-motion algorithm, it is agnostic to
color di↵erences between the images. Thus, we use images captured by multiple cameras
in COLMAP to generate a point cloud informed by all of the data. Because COLMAP is
currently not compatible with RAW images and is una↵ected by color, we run COLMAP on
the images in PNG format. We then use the COLMAP output and RAW images, labelled by
spectrum, as input to the Gaussian Splat model to generate an N-dimensional multispectral
3D scene. This pipeline is described in Figure 3.1. To the best of our knowledge, this is
the first instance of training N-dimensional Gaussian Splats as well as using RAW images in
Gaussian Splats.

To improve the reconstruction performance, we use the loss function introduced by RawN-
erf [16], which is an approximation of an L2 loss over a tonemapped image. This loss function
is defined as L̃ (ŷ, y) =

Pn
i=1

ŷi�yi
sg(ŷi)+✏

, where  is a tone curve, ŷ is the rendered estimated

color, y is the noisy observed intensity that has a applied to it, sg() is a stop-gradient, and
✏ = 10�3. Using this loss qualitatively improved our results over the baseline L2 loss.

Once the scene is generated, our virtual set-up allows us to generate multi-spectral,
physically-accurate 3D scenes, in which we can set up a virtual camera and quickly capture
a large number of images from di↵erent cameras at the same extrinsic location as shown in
Figure 3.2. This allows us to have pixel-perfect mappings between the colors in each of our
images, which produces additional spectral data for the analysis.

3.2 Camera Processing Pipeline

When an image is taken in RAW format, there are a number of steps that are taken to
convert it into a common file format like JPEG or PNG:

1. Linearization: The image is first normalized using the black point and white point in
the image. Specifically, this is defined as color�blacklevel

whitelevel�blacklevel , where the blacklevel is the
signal the camera sensor reads when when no light is present and the whitelevel is the
highest possible value that the sensor image can read. This operation linearizes and
normalizes the pixel values to the [0.0, 1.0] range. Due to sensor error, there may be
values that exist either below 0 or above 1, which are then clipped. The linearization
operation ensures that the R, G, and B channels are all contributing equally to the
image, rather than the captured light intensity being biased towards the SRCs with
the largest area under its curve.
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Figure 3.1: 3D processing pipeline to convert RAW captures into an interactive, multispectral
scene

2. White Balancing: This operation rescales the channels in an image by making a
white pixel in the image represented as closely to white as possible. The white bal-
ancing parameter in the Adobe DNG specification, ’AsShotNeutral’ [18], is a linear
normalization factor that is computed at the time of capture. Since this is computed
at time of capture, the real illumination is unknown, and is thus approximated as an
interpolation of the Standard Illuminant A and D65 Illuminant (Daylight). This means
white balancing is an imprecise process, which leads to color reproduction error.

3. Demosaicing: The image is interpolated so it is no longer organized as a 1-channel
bayer pattern, but a 3-channel set of stacked RGB pixels. While there are many com-
plex techniques to interpolate these values by taking into account lens parameters and
sensor design, the naive demosaicing implementation is simply bilinear interpolation.
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Figure 3.2: The same image rendered of the same scene from three di↵erent cameras: Sony
a7s, Canon EOS 5Dsr, and iPhone 13 Pro. This is generated by taking a multispectral
capture in the 3D environment and separating its channels into its representative cameras’
images.

In this pipeline, we implement demosaicing as a bilinear interpolation for e�ciency
and simplicity.

4. Color Space Conversion (Camera RGB ! CIE 1931 XYZ ! sRGB): The pixel
values are transformed from the camera’s color space to sRGB, using CIE 1931 as an
intermediary color space. Every camera stores at least one color transformation matrix
in its RAW image metadata, and this matrix will transform the image from camera
color space to CIE 1931 color space. This matrix is referred to as ’ColorMatrix1’, and
optionally there is a second ’ColorMatrix2’. Both of these matrices perform the same
color conversion, but ColorMatrix1 is computed assuming the scene is under Standard
Illuminant A, and ColorMatrix2 is computed for use under D65 Illumination [18].
After the image is in CIE 1931 color space, it is transformed to sRGB color space using
transformation matrices defined by the International Electrotechnical Commission [19].
The sRGB color space is the color gamut of most common display systems, making it
an important and necessary color space to operate in for the final steps of this process.

5. Gamma Correction: This is a non-linear operation that rescales camera tonal values
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Figure 3.3: PCA visualization of a multispectral reconstruction to show what channels con-
tribute the most to each region of the scene

to make the image more perceptually uniform.

6. Tone Mapping: This operation modifies tonal values to approximate high dynamic
range (HDR) for more colorimetric and visually-striking renderings on digital displays.

A visualization of this full pipeline is shown in 3.4.
As described above, many of the camera and capture-specific information necessary to

process the image are stored in the RAW file’s metadata. Thus, it is vital to store RAW
images with its metadata in order to preserve shot-specific processing information.

It is important to note that while ColorMatrix and ColorMatrix2 in the Color Space
Conversion step are commonly used and lead to approximately correct solutions, they are
approximations computed by a small set of physical experimental results [20]. Our method
is a color correction framework that converts from linearized color values to sRGB can
replace the existing white balancing and color conversion operations to reduce additional
error introduced from approximation and improve overall image colorimetry. This new color
correction framework is described in Chapter 4.
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Figure 3.4: Visualization of the camera image processing pipeline for a given image
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Chapter 4

Applying Color Theory to Reduce
Metameric Error

This work finds the candidate color using only the information provided by a multispectral
scene capture, applying first principles to produce an accurate color correction with no bias.
Specifically, we apply Logvinenko’s formulation of the metamer mismatch volume to two sets
of di↵erent spectral response curves and extends it to real-world data [5]. We use camera
spectral response data recorded by Image Engineering in a publicly-available dataset and
images captured by Canon EOS 5DsR, Canon EOS R, and the Nikon D7100.

4.1 Metamer Mismatch Volume

The metamer mismatch volume is a color error metric that quantifies all possible colors that
may be metamerisms when comparing two spectral capture devices. Using Logvinenko’s
general formulation [5], we construct an object color solid in N-dimensional space where
each dimension represents a di↵erent spectral response curve from the set of cameras and
LMS cone fundamentals. In this formulation, if we are finding the metamer mismatch for
a color captures by a camera with three spectral response curves, we would represent the
volume as a 6-dimensional object color solid where three of the dimensions are from the
camera and three of the dimensions are the L, M, and S axes. However, as the number of
captured spectral response curves increases, the computational complexity of generating and
processing this volume also increases as a result of the curse of dimensionality. To e�ciently
compute the mismatch volume in any higher dimensional space, the N-dimensional solid is
constructed as N 3-dimensional solids in L, M, S space, where each camera spectral response
is computed as a new color solid. This mechanism produces (N-3) 3D color solids in LMS
space. The volume of intersection of these solids is the metamer mismatch, which is the set
of all probable LMS values for the input color value. For example, to find the mismatch
volume of the color (0.2, 0.3, 0.1) captured by a Canon 5DsR, there would be 3 object color
solids plotted in LMS space - one representing the R = 0.2 value, one representing the G =
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0.2 value, and one representing the B = 0.1 value. The region of intersection of these three
volumes is the metamer mismatch space, as shown in Figure 4.1

Figure 4.1: Visualization of metamer mismatch between the LMS and single-camera space

The full metamer mismatch region is an equally-probable colorimetric solution given
the input information. We select the center of mass of the mismatch volume as the initial
solution, as proposed by Finlayson [21]. We can measure the colorimetric improvement by
capturing an image with a known reflectance, like a Macbeth color checker, and compare the
captured color and the corrected color from the mismatch volume to the target LMS color.
When we represent this in CIELAB, we can use Euclidean distance compute the perceptual
di↵erence between these terms to quantify the improvement of our method.
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When evaluating the colors from the full image, we map each pixel in an image to a
metamer mismatch in the LMS space, generating a set of mismatch volumes that represent
the possible space of “correct” values in an image. This set of mismatch volumes for pixel
values of (0.01, 0.01, 0.01) and (0.2, 0.2, 0.2) for a given input image is shown in Figure 4.2.

Figure 4.2: Demonstration of how pixels of an image are mapped to a metamer mismatch.
Each pixel color will generate a new metamer mismatch region that exists within the LMS
object color solid

4.2 Luther Condition

The Luther condition is a theoretical measure of the linearity of color reproduction systems,
and is often used when evaluating if a camera is colorimetric. The Vora Value is a metric used
to quantify the Luther Condition and quantifies how colorimetric a set of spectral response
curves are [22]. The Vora-Value ranges from [0, 1], where 0 is the least colorimetric and 1 is
the most colorimetric. Given a set of camera spectral response curves Q and the trichromatic
human SRCsX, the Vora-Value is can be defined as v(Q,X) = 1

3trace(P{Q}P{X}), where P
is a least-squares matrix projector, P{Q} = Q(QTQ)�1QT [23]. This work uses Vora Values
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to validate the behavior of the metamer mismatch volume as spectral response curves input
changes.
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Chapter 5

Discussion

5.1 Analysis of Results

To validate the application of Logvinenko’s theory to real images captures by di↵erent cam-
eras, we use properties of the metamer mismatch volume, the value of the corrected color,
and the computed vora values.

We call the source spectra the camera spectral response, and the target spectra the
trichromatic human spectral response. When the source and target spectra are di↵erent, the
metamer mismatch is a non-zero volume, which means one value in source space maps to
a set of values in target space. However, when the source and target spectra are the same,
we expect there to be a perfect 1:1 mapping between colors in both spaces. This means the
metamer mismatch volume is a point. We demonstrate this behavior in Figure 5.1.

When regarding mismatch volumes found along the luminance axis, we also expect the
mismatch volumes to be the largest in volume when located near the center of the target
object color solid, and to decrease in size as the mismatches approach the poles of the axis.
Since there are no metamerisms on the object color solid boundary, it is expected that the
subspace of possible metamerisms decreases as the color approaches this region, and thus
the metamer mismatch volumes, will decrease.

As expected, as we increase the number of di↵erent spectral response curves included in
our computation, the vora value decreases. Since the volume of the metamer mismatch is
also a measure of being colorimetric, we expect the mismatch volume to decrease in size.
This property is shown in Figure 5.2, which shows Vora Value improvement when additional
SRCs are included. In the top row, the computed Vora Value of 0.92 from the Canon EOS
5DsR increases by 0.27 with the addition of the R, G, and B channels from the Canon EOS R
camera. The bottom row shows that the Vora Value continues to increase as unique spectral
response curves are included in the input. This demonstrates that there is colorimetric
improvement as more SRCs are used.

Finally, we can measure the distance between the captured color in the original images,
the proposed corrected color, and the real color using Euclidean distance in CIELAB space.
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The original color is the color generated from the original camera capture. The proposed
corrected color is computed as the center of mass of the mismatch volume. We measure dis-
tance in CIELAB because it is a perceptually-uniform color space. Computing the distance
between points in CIE 1931 XYZ space is will lead to non-linear perceptual distances, and
thus is not an accurate measure of distance for a perceptual metric of an image such as its
color quality. We establish a set of real colors in the scene by capturing a ColorChecker in
our dataset, where each tile on the checker has a known reflectance function [8]. This allows
us to directly measure the color improvement.

Figure 5.1: Two test cases to confirm the implementation works as expected. Left: source
SRC and target SRC are both LMS, and for a given color, the mismatch volume is a point.
This means it is a perfect 1:1 mapping between the solids, which is expected. Right: Metamer
mismatch volume is larger towards the center and smaller towards the black and white points.

5.2 Future work

This color correction and analysis framework opens research directions in a variety of spaces,
including photography, machine learning, and imaging. Most directly, it can be used as an
editing tool by photographers and videographers to make their shots more colorimetric prior
to doing any additional editing. This color correction method is complementary to tradi-
tional image processing pipelines and can be easily integrated into photographer workflows.
The data captured and corrected can also be used to generate high quality, color-corrected
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Figure 5.2: A set of charts demonstrating how the Vora Value increases as new spectral
response curves are added to the Q matrix. The initial set of SRCs are from the Canon EOS
5DsR camera, and have a baseline Vora Value of 0.921. In the top row, each channel of the
Canon EOS R camera is added to the set of SRCs. The bottom row adds the SRCs of a
third camera, the Nikon D7100.

datasets for machine learning applications. Correcting the color values has been shown to im-
prove model performance [24]. The RAWGaussian Splatting technique itself can be extended
to generate high quality hyperspectral datasets from any set of camera responses and filters.
Capturing hyperspectral images requires expensive equipment which have multi-minute cap-
ture times, which largely constraints the nature of the objects that can be captured. From
a multispectral dataset ranging many bands, it may be possible to generate a set of plausi-
ble hyperspectral images, which would be a valuable contribution to the biology, robotics,
and imaging communities. The metamer mismatch technique can also be modified to be
illumination agnostic [9], which would allow for a more generalized color-correction method
that does not assume a scene illuminant. This technique is generalizable and can be applied
to any number of spectral response curves. As such, this framework will unlock analysis
techniques for tetrachromatic human vision that has never been explored before.
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Chapter 6

Conclusion

In this work, we have introduced a method for image color correction using photos from
multiple cameras, Gaussian Splatting, and metamer mismatch theory. We present a novel
method to generate multispectral images using Gaussian Splatting and Nerfstudio. We
introduce Multispectral-Splat, an N-dimensional gaussian splat reconstructed from a set of
continuously-varying images captured by two or more cameras. This formulation sets up a
pixel-perfect mapping between captures, by which we can create a multispectral image as
a post-processing step. We further extend the Multispectral-Spat to run on RAW images,
which preserves more spectral information and provides greater flexibility in post-capture
color processing.

Using this tool, we adapt Logvinkenko’s metamer mismatch theory to compare individual
pixels’ color values across the multispectral channels and estimate a more colorimetric color
than the original pixel. We validate the application of this approach to real data captured
by 3 cameras with slightly di↵erent color gamuts. We capture scenes containing a Macbeth
ColorChecker in order to validate our color correction results. Our method enables new
multispectral and hyperspectral data creation techniques and opens up possibilities for color-
correction processes with unprecedented precision.
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