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Abstract

Querying Labeled Time Series Data with Scenario Programs

by

Devan Shanker

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

In order to ensure that autonomous vehicles (AVs) are safe for on-road deployment, simulation-
based testing has become an integral complement to on-road testing. The rise in simulation
testing and validation reflects a growing need to verify that AV behavior is consistent with
desired outcomes even in edge case scenarios — which may seldom or never appear in on-road
testing data. This raises a critical question: to what extent are AV failures in simulation
consistent with data collected from real-world testing? As a result of the gap between
simulated and real sensor data (sim-to-real gap), failures in simulation can either be spuri-
ous (simulation- or simulator-specific issues) or relevant (safety-critical AV system issues).
One possible method for validating if simulated time series failures are consistent with real-
world time series sensor data could involve retrieving instances of the failure scenario from
a real-world time series dataset, in order to understand AV performance in these scenarios.
Adopting this strategy, we propose a formal definition of what constitutes a match between
a real-world labeled time series data item and a simulated scenario written from a fragment
of the Scenic probabilistic programming language for simulation generation. With this def-
inition of a match, we develop a querying algorithm that identifies the subset of a labeled
time series dataset matching a given scenario. To allow this approach to be used to verify
the safety of other cyber-physical systems (CPS), we present a definition and algorithm for
matching in no way limited to the autonomous vehicles domain. Experiments demonstrate
the precision and scalability of the algorithm for a set of challenging and uncommon time
series scenarios identified from the nuScenes autonomous driving dataset. We include a
full system implementation of the querying algorithm freely available for use across a wide
range of CPS.
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Chapter 1

Motivation

1.1 Introduction

Simulation-based testing has become a critical component of safety and performance valida-
tion of cyber-physical systems (CPS) across domains including indoor robotics [1], unmanned
aerial vehicle systems [2], and autonomous vehicles [3], [4]. Considering the example of the
autonomous vehicles domain, testing in simulation allows for the reconstruction of high-risk
scenarios in a safe, efficient, and scalable manner [5], [6]. Several national initiatives, in-
cluding the U.S. National Highway Traffic Safety Administration (NHTSA) and the United
Nations Inland Transport Committee (UNECE WP.29), have called for rigorous simulation
testing of self-driving systems prior to on-road deployment [7]–[10]. Many simulator plat-
forms can render specific types of autonomous vehicle sensor data for testing and validation
of specific autonomy components [11]–[13]. Multiple open-source simulation environments
support the full automation of the AV testing process and are actively in use for the develop-
ment of on-road autonomous vehicle systems [14]–[16]. Several techniques recently developed
are capable of searching for failure scenarios resulting in a violation of safety of specifications
[17]–[25].

With advances in simulation-based scenario testing across domains, the key question
remains — are failure scenarios detected in simulation meaningful representations of real-
world behavior? The notion of the sim-to-real gap, the distributional shift between real-world
and simulated sensor data and physics, gives rise to the phenomenon of invalid failures in
simulation that lack real-world analogs [26] [27]. In order to employ simulation testing in a
useful manner, there is a need to be able to separate meaningful failures with potential real-
world impacts from simulation- and simulator-specific invalid failures [28]. This motivates
the exploration of techniques to validate simulation scenario outcomes against sensor data
from real-world CPS operation.

Prior work has focused on training CPS system components, such as AV planning and per-
ception models, on simulated data and demonstrating robust performance on real data [29],
[30]. However, the body of work focusing on testing simulation behavior transferability (for
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models that have already been trained) is more limited in scope. Physical reconstruction of
these scenarios is a resource-intensive process constrained by the limitations of experimental
setup. Initial approaches to handle this approach either provide no guarantees on validation
outputs or are limited to the use case of static scenes. By contrast, we propose a data-driven
approach to this problem that scales to time series data.

In the context of the autonomous vehicles use case, understanding (1) if real-world sensor
data contains a specific realistic scenario of interest (i.e. unprotected left turn) for a specific
system and (2) how the system behaves within real-world instances of the scenario is criti-
cal for safe CPS deployment. The sim-to-real gap highlights the fundamental challenges of
leveraging simulations to directly predict and verify real-world system behavior [26]. How-
ever, this problem of real-world validation of simulation scenarios generalizes to many other
domains including aviation, robotics, and augmented reality CPS [31]–[33]. With the rise
of data-driven approaches to CPS, larger amounts of sensor data are collected across these
domains [34], [35]. This leads to the question — how can we create a system that supports
the (1) expression and modeling of complex, interactive multi-agent scenarios of interest and
(2) retrieval of collected real-world data matching those scenarios?

Several prior works attempt to answer this question through querying approaches op-
erating over static image or video sensor data directly. For instance, video database man-
agement systems (VDBMS) support efficient querying from multiple video sensor inputs at
once. However, the domain-specific languages (DSL) used for video querying tend to be
too restrictive to formally define more complex scenarios of interest. Meanwhile, though
multimodal vision language model (VLM) architectures have started to demonstrate basic
video understanding, many models fail to support or properly understand the nuances of 3D
video sensor data input [36]. Models aligned for visual question answering (VQA) tasks lack
the spatial and scenario-level reasoning required to query more complex scenarios at scale
[37] and cannot provide formal guarantees on outputs [38]. In addition, VLMs demonstrate
risks of hallucination and inconsistent behavior, and solutions fine-tuned to specific sensor
inputs fail to generalize to other domains or use cases [39].

To address the limitations of existing solutions, we propose a sim-to-real querying system
that allows for the retrieval of time series data points based on an input scenario program
and real-world sensor dataset. For any CPS whose environment at any instant is a scene, a
physical configuration of multiple agents or objects, we allow users to express distributions
over scenes and agent behaviors in the Scenic probablistic programming language [40]. At
a high level, the querying algorithm automatically encodes the input probabilistic program
representing a scenario as a bounded model checking (BMC) [41] problem solved with the
UCLID5 modeling and verification system [42]. If the formal hierarchical encoding of the
scenario could generate a specific labeled data trace, the encoded probabilistic program
outputs it as a match. Formal guarantees on algorithm correctness streamline the exploration
of large-scale datasets and discovery of missing and present scenarios. As sensor datasets
reach unprecedented sizes [35], the need for more precisely understanding dataset contents
continues to grow across domains [43], [44]. Since the algorithm queries from time series
labels instead of raw sensor data, it can be extended to a wide range of use cases of unique
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data types such as radar, LiDAR, and RGB data. We demonstrate one application of our
algorithm for validating simulation failure scenarios for a variety of dynamic autonomous
vehicles tasks involving different sensor types.

Contributions In this thesis, we provide:

• A novel problem formulation for querying from a labeled time series dataset using the
Scenic probabilistic programming language to construct queries for dynamic, stochas-
tic, multi-agent scenarios and validate simulated failures against real-world examples.

• A formal proof for the matching result of a time series label, formulated as a bounded
model checking problem solved by a generated UCLID5 program that provides a
guarantee that queried sensor data matches a provided distribution of scenarios.

• A scalable algorithm with intuitive syntax for querying to better understand the time
series sensor data contents that are present and missing in large-scale labeled datasets.

• A set of experiments demonstrating the effectiveness and scalability of the time series
querying algorithm using a large-scale dataset of sensor data from real-world scenarios.

One related and concurrent work to the compilation of this thesis was the co-creation of
a generative AI system for creating scenario programs from natural language descriptions
in Scenic. For more information, please refer to the publication Generating Probabilistic
Scenario Programs from Natural Language [45].

1.2 Related Work

In the autonomous vehicles domain, scenario-based testing is one of the most common forms
of evaluation in both simulation and real-world contexts. Disengagement reports from Cal-
ifornia Department of Motor Vehicles indicate that autonomous vehicles from companies
including Waymo, Cruise, Zoox, Pony.AI traveled an average distance over 10,000 miles be-
fore encountering challenging scenarios requiring human intervention [46]. This motivates
the construction of targeted driving scenarios for testing instead of waiting for higher-risk
and lower-frequency scenarios to arise in everyday contexts. In order to construct testing sce-
narios, close studies of accident reports and naturalistic driving data can assist the creation
of both simpler and more complex driving scenarios. Alternative to validating simulation
failures against real-world data can involve resource-intensive physical reconstruction, sce-
nario querying from video database management systems reliant on less flexible DSLs, more
inconsistent visual question answering models, or querying-based systems built on scenario
modeling languages for static data retrieval. Our approach aims to address the limitations of
existing approaches by presenting a scalable, multi-agent scenario-based querying approach
that supports direct simulation evaluation of formally-defined scenarios and scalable real-
world data querying.
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Track Testing and Physical Scenario Reconstruction

In a similar study [47] conducted by Fremont et al., autopilot failures in simulation were
verified in real-world testing through physical reconstruction at a designated track testing
facility. The study determined the frequency with which safe and unsafe simulation runs
corresponded to safe and unsafe physically reconstructed track runs, for a series of safety
properties and test cases synthesized with formal methods. Despite the precision and in-
terpretability of these results, manual validation is highly intensive in terms of labor, time,
and physical resources. As a result, this approach fails to scale to the levels required to
verify autonomous vehicle systems deployed on-road. In addition, the limiting assumptions
most physical reconstruction setups involve, such as the assumption that AV behavior did
not affect the flow of surround traffic, can constrain the types of scenarios that can be fully
reconstructed and evaluated within this format. Though Kim et al. [48] automate this
process for static (single-frame) scenes, our algorithm aims to extend these capabilities to
dynamic multi-agent scenarios for time series data. We propose this solution as it most
closely matches the nature of large-scale simulation testing workflows and real-world sensor
datasets.

Several other projects, including the PEGASUS [49] project for autonomous driving
comparison against human driving capabilities, have explored similar benchmarking and
evaluation tasks through physical test construction and evaluation. Alternative approaches
to leveraging direct physical reconstruction of simulation tests explore the construction of
test scenarios based on the analysis of crash data or naturalistic driving data. These sources
of human-created driving data can serve as inputs for human or automatic generation of
driving test cases grounded in real-world human driving data. However, evaluation on these
datasets in simulation can fail to provide meaningful insights into the real-world failures
that would be produced in the same scenarios. Gaining meaningful insights about real-world
behavior and performance would require somehow validating the failures against real-world
data, likely driving this approach to be combined with another related approach or direct
human evaluation. Our proposed solution not only bridges the sim-to-real gap supporting
testing programs in simulation and querying with these programs, but also provides visibility
into the contents of the real-world dataset and any scenarios that may be overrepresented
or missing.

Video Database Management System Retrieval

One more scalable alternative to physical reconstruction involves retrieval from large-scale
video analytics systems, in order to capture real-world sensor data with semantically similar
to a given test scenario. For instance, the geospatial VDBMS Apperception [50] supports the
efficient retrieval of geospatial video data based on a domain-specific language. The system
supports object querying in a multi-sensor system and is designed for the retrieval of time
series data in the form of videos. A recent extension to Apperception, Spatialyze [51] is a
VDBMS that allows users to declaratively specify and efficiently retrieve videos of interest
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Figure 1.1: (reproduced from Kittivorawong et al. [51]) An overview of the Spatialyze
VDBMS system for video data retrieval. The query is expressed in a domain specific lan-
guage. The system directly operates over geospatial video data and metadata to extract
video snippets and object trajectories.

of a range of formats. Spatialyze supports more flexible video formats and enables the
retrieval of a wide variety of sensor types and camera angles. This allows for the validation
of an autonomous vehicle system with the use of a single VDBMS containing all sensor
types. Alternative approaches to querying from multiple videos either consider all videos
independently [52]–[54] or compromise on accuracy by attempting to operate over multiple
video streams [55]. Scenario retrieval from a geospatial VDBMS is a more efficient and
scalable process, but still can require direct operations over large amounts of stored data
per scene search. In addition, the domain-specific querying language for most VDBMS
architectures do not support the full extent of usable and interpretable descriptions of formal
scenarios. Our proposed approach aims to let users express queries as more expressive formal
scenario programs, while querying from labeled traces to improve storage requirements,
overhead costs, and generalizability to other domains.

Multimodal Visual Question Answering Systems

Recent progress in space of multimodal generation and understanding has given rise to the no-
tion of more advanced VQA [56] and VLM [57] systems. Within a VQA context, sensor data
inputs can be considered and generate outputs and reasoning about the contents of different
scenes in response to user input queries. For instance, the recent NuScenes-QA benchmark
[58] represents the first autonomous driving VQA benchmark capable of supporting multi-
modal, multi-frame inputs with moving foregrounds and static backgrounds. Though VQA
and VLM models demonstrate an ability to answer knowledge-based questions about videos
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Figure 1.2: (reproduced from Qian et al. [58]) An overview of the NuScenes-QA system
for visual question answering over time series autonomous driving data. User inputs take
the form of natural language questions about the contents of a scene. Model responses
pass through a Transformer QA model. This produces more human-interpretable, but less
controllable output that can be challenging to scale to larger databases.

[59], recent works indicate these architectures demonstrate limited 3D spatial awareness and
reasoning abilities [37] without specific training, fine-tuning, or dataset augmentation. In
addition, many models are limited to single-frame inputs from a single consistent sensor
format. The inconsistency of language model outputs, risks of hallucination, and high infer-
ence costs of attention-based language models [60] all limit the precision and scalability of
VQA models for real-world scene retrieval based on specific driving scenarios. As the capa-
bilities and consistency of VQA models continue to improve, they may eventually become
more well-suited for retrieving specific scenarios from collections of real-world driving data.
However, VQA models and VLMs currently demonstrate high risks of hallucination, incon-
sistent behavior, and spatial misunderstanding that can be detrimental for failure validation
in real-world CPS contexts. By contrast, we propose an algorithm that demonstrates con-
sistent and interpretable behavior for formally specified scenarios, which generalizes to any
domain involving time series spatial sensor data without any model fine-tuning or alignment.

Scenario Modeling Languages

Probabilistic programming languages (PPLs) provide a mechanism for guiding data gener-
ation for simulations in the general direction of scenarios of interest. In the autonomous
vehicles context, the Scenic environment modeling language [40] enables the generation
and verification of targeted and meaningful driving scenarios containing autonomous vehi-
cles in a precise, realistic, and scalable manner. Several probabilistic languages including
M-SDL [61] and PROB [62] support a similar feature set more tailored towards inference
tasks than scenario generation. Meanwhile, non-PPL frameworks such as Paracosm [63]
model dynamic scenarios in the autonomous vehicles domain, often without the same extent
of behavior models and compositional features. The Scenic language supports concise but
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expressive syntax for defining spatiotemporal relationships between agents and objects [40].
As a result, it assists with the creation of more complex test scenarios in autonomous drive
edge cases including occluded view situations and poor weather conditions [64].

Figure 1.3: (reproduced from Fremont et al. [40]) Sample training, testing, and debugging
workflow leveraging the Scenic probabilistic language. For instance, this evaluation system
can be used to detect issues with an autonomous vehicles perception or planning system.

Progress in synthetic data generation [65] (generating new data matching the real-world
distribution) and domain adaptation [66] (bridging gaps between real-world and synthetic
data distributions) demonstrate the opportunity to train models with synthetic data to per-
form tasks operating on real-world data. In the context of training purposes, Generative
adversarial networks (GANs) [67] can transform synthetic data into more realistic data.
However, our proposed solution aims to reduce the gap between simulation and real-world
data in the context of testing autonomous vehicles and other cyber-physical systems. More
specifically, we propose an algorithm to efficiently verify that pre-trained autonomous mod-
els exhibit consistent behaviors in simulation and real-world test scenario contexts. The
potential use cases of the algorithm extend beyond the scope of verified autonomy to facili-
tate querying and understanding from existing real-world test sensor data. This creates an
opportunity for users to detect missing and underrepresented scenarios in existing data.

1.3 Background

In order to propose a system that uses simulation programs to query real-world time series
data, we first define the notion of a scenario description language, verification system, and
SMT theories. Though we focus on a labeled dataset in our demonstrated use case for the
autonomous driving domain, this approach can be applied to any cyber-physical system with
time series data of the general format defined in the problem statement. As demonstrated
in the autonomous vehicle example, any pre-trained neuro-symbolic labelling system can be
used to provide labels of the form required for the querying task.
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Scenic: Scenario Description Language

Scenic is a domain-specific language designed for specifying scenarios in simulation-based
testing for cyber-physical systems [40]. It provides a high-level syntax for defining complex
scenarios, including the layout of environments, positions of objects, and behaviors of agents,
allowing for complex deterministic and probabilistic reconstructions of real-world scenarios.
The expressive power of the Scenic language enables users to concisely describe intricate
scenarios that are crucial for testing and verifying the behavior of autonomous systems
under diverse conditions. A Scenic scenario defines a distribution over the scenes and
the behaviors of dynamic agents within the scene over time. This allows for the use of
more complex sampling techniques and more expressive scenario improvisation (random
generation of concrete scenarios) to precisely match user specifications.

Figure 1.4: A Scenic program describing an ego vehicle speeding up as long as it has room
ahead, which suddenly brakes for a pedestrian obstructing the road before making a right
turn. The vehicle proceeds to make a right turn once it reaches the intersection.
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Scenic Program Semantics

Fig. 1.4 demonstrates an example multi-agent Scenic program leveraging the fragment of
Scenic supported for the querying process. To simplify the modeling process for more
complex scenarios, Scenic leverages an intuitive and interpretable syntax to define more
complex relations between objects within a scene. For instance, the program in Fig. 1.4 uses
the on specifier to uniformly generate a random point within a region. Meanwhile, the user
can add a require statement to enforce a property across all executions of the scenario. The
try-interrupt block and nested behavior definitions enable program definitions with non-
deterministic outcomes depending on Scenic random sampling and external environment
variables. All executions of a Scenic program sample a scene satisfying all user constraints
defined through the entire scene, specified with require statements.

In this program, a vehicle is defined with behavior controlled by a nested try-interrupt

block in Scenic triggered by external environmental conditions for the agent. In this case,
the ego vehicle attempts to follow the lane until it reaches an intersection before turning
right. However, the lane following is interrupted by forward acceleration if the vehicle has
enough open space. This entire set of behavior outputs is interrupted by braking if the
pedestrian enters the safety distance of the vehicle at any point in time. The pedestrian is
defined anywhere in the scene, while the behavior of the ego vehicle is defined according to the
formal specification created by the Scenic program. In this case, the program demonstrates
several key features of the supported fragment of Scenic supported by the querying process.

To support efficient and scalable querying, the Scenic program encoding described above
is converted into a interrupt-driven, hierarchical extended finite state machine. Please refer
to Appendix A.2 for examples of this process.

Specifying a Fragment of Scenic for Querying Task

In order to support more complex processes involved in the querying process including hi-
erarchical state machine code generation, program analysis, semantic transformations, and
formal verification, there is a clear need to formally defined fragment of the Scenic language.

By limiting the fragment of Scenic to the constructs defined below, the formalization
of this Scenic language fragment maintains support for expressive conditional logic, sce-
nario control, and reactive behaviors, supporting an extensive range of testing scenarios
for autonomous systems. The exclusion of loops and iteration reflects a design choice to
simplify supported scenario specifications, in light of issues such as clearly and reconciling
simulation and real time. We define an Extended Backus-Naur Form (EBNF Grammar)
[68] corresponding to the fragment of Scenic for which the querying process is supported
in Appendix A.1.

Specification of Scenic Fragment We define the fragment of Scenic for which our
proposed algorithm is supported as follows:
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1. Operators: All the Boolean, Orientation, Region, OrientedPoint, Temporal, and Vec-
tor operators as defined in standard Scenic syntax.

2. Distributions: All distributions (Range, DiscreteRange, Normal, TruncatedNormal,
Uniform, Discrete) according to their standard Scenic distributional definitions. These
distributional objects constitute one source of nondeterminism in Scenic programs.

3. Compound and Simple Statements: The algorithm supports the behavior defini-
tion and try/interrupt compound statements. In terms of simple statements, global
parameter definitions, terminate when/after statements, and require statements in-
volving Boolean constraints are all supported.

4. Objects: The algorithm supports the definitions of all objects, in addition to the
properties added by both the OrientedPoint and Object classes.

5. Specifiers: The algorithm supports the specifiers for any properties built into the
Scenic language.

6. Orientation: The algorithm supports the full extent of orientation-defining syntax
built into the Scenic language.

7. Operators: The algorithm supports all operators built into the Scenic language.

8. Dynamic Statements: The supported dynamic statements can be found in the next
section, including but not limited to sequences of do statements, nested try-interrupt
blocks, and abort and terminate statements.

Dynamic Statements Fragment Reference Within the classification of dynamic state-
ments, we consider the following types of statements shown below:

(i) Assignment Statements: Allows variables to be assigned values, facilitating state
management within scenarios.

(ii) Try/Interrupt: A construct for specifying behaviors that should be interrupted under
certain conditions, useful for modeling reactive behaviors.

(iii) Do and Do/Until: Defines actions or sequences of actions that an agent should
perform, with the possibility of specifying a condition under which to stop the action.

(iv) Nested Statements: Enables complex, nested conditional logic for statements in-
cluding Try/Interrupt and If/Else statements, allowing for more detailed specifications
of agent behaviors and scenario progression.

(v) Take Actions: Specifies immediate actions to be taken, enabling quick responses or
changes in the environment or agent behavior.
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(vi) Abort: Immediately terminates the current action or behavior, useful for modeling
sudden stops or changes in behavior.

(vii) Terminate: Ends the scenario or a specific behavior, useful for cleanly concluding a
scenario or an agent’s actions.

(viii) Require: Specifies a dynamic hard Boolean requirement for the program as it executes.

Excluded from Scenic Fragment

1. For Loops and Iteration: Constructs for repeating actions or behaviors multiple
times are not included in the currently defined fragment of the Scenic language. This
exclusion means that scenarios requiring repeated actions must find alternative means
of expression, potentially limiting the ability to easily specify scenarios with repetitive
or iterative behaviors.

2. Linear Temporal Logic Require Statements: Require statements may not be in-
voked with LTL expressions, and must instead be defined using the supported Boolean
operators in Scenic as defined above.

3. Scenario Composition: Scenic supports advanced constructs for composition of
multiple scenarios, and Do statements can be invoked to call scenarios. However, the
algorithm scope will be constrained to preexisting Scenic specifiers within the context
of a single scenario program.

4. Abort and Override Statements: due to the temporal limitations of the UCLID5
encoding of the Scenic program, we do not extend support to statements that may
require epsilon transitions to generate an action trace for an agent at each timestep.

UCLID5: Formal Specification Language

The sample simulation-based algorithm in Appendix A.5 captures the complexity of ap-
proaching this task without a formal specification tool. To formalize the problem, we first
define an interrupt-driven, hierarchical finite state machine representation of a Scenic pro-
gram for any program contained within the fragment of Scenic our algorithm supports. We
define the support of a Scenic program to consist of the set of all possible behavior outputs
it can generate for a single behavior program, provided a stream of Boolean variable inputs
from real-world data. A simulation-based approach to detecting if a labeled data trace is
contained in the support of the Scenic program (set of all possible traces) requires an expo-
nentially growing [69] set of SMT constraints. This fails to properly scale to the challenge of
representing nondeterministic state transitions that Scenic supports, dramatically limiting
the fragment of Scenic that an approach of this nature would support.

As a result, we leverage the UCLID5 formal verification system [70] [71] to efficiently
perform the task of bounded model checking against the formal specification of a Scenic
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Figure 1.5: (reproduced from Polgreen et al. [70]) UCLID5 architecture diagram.

program. Our Scenic to UCLID5 translator supports the programmatic modeling and
construction of Scenic IHEFSMs and trace checking against real-world labeled data traces,
without constraining the supported language fragment. This includes any reset transitions,
terminate conditions, and nondeterministic transitions that may appear in the IHEFSM
for a specific Scenic program. In the context of scenario querying over time series data,
the translation from Scenic to UCLID5 (using an intermediate IHEFSM representation)
outlined in Appendix A.2 captures the hierarchical nature of the translation process. The
counterexample-search properties of UCLID5 bounded model checking [72] allow for trace
checking even in contexts with nondeterministic transitions and undefined Boolean predi-
cates, in addition to the enforcement of specific LTL conditions including partial matches.
One contribution of this work is an automated translation process from the specified frag-
ment of Scenic to UCLID5. Several examples of this translation process and intermediate
hierarchical statecharts representations can be found in the Appendix A.6.

Bounded Model Checking with Satisfiability Modulo Theories

The satisfiability problem (SAT) encompasses the notion of whether or not a satisfying
assignment exists to the Boolean variables for a propositional formula. Bounded model
checking (BMC) is a formal verification technique that leverages SAT solvers to check if a
property holds in a finite-state model, by encoding the model and property as propositional
formulas [41] [72]. Despite the theoretical hardness of checking traces against nondetermin-
istic finite-state systems, progress in developing powerful BMC tools including CBMC [73]
have enabled applications of BMC to industrial-scale problems.

In order to support problems involving arithmetic or trigonometric operations, satisfia-
bility modulo theories (SMT) solvers extend SAT solvers by incorporating theories such as
linear arithmetic. SMT solvers require a first-order logic [75] formula φ and a background
theory under which the formula is interpreted. The querying approach proposed in this
thesis involves a fragment of quantifier-free nonlinear real arithmetic to support geometric
and trigonometric operations, with a grammar in Appendix A.1 defining the full range of
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Figure 1.6: (reproduced from Andrade et al. [74]) Classical bounded model checking problem
formulation. In this context, checking if Scenic encoding produces output trace observed
in nuScenes label trace output given nuScenes sensor data input.

generated formulas. Although the satisfiability problem for such formulas is undecidable
across real numbers, several SMT solvers (e.g., z3 with real extensions [76], dReal [77]) can
return an approximate satisfying assignment or prove unsatisfiability [78].

In this thesis, we leverage the bounded model checking properties of UCLID5 to check
if a scenario encoded as a Scenic program matches a labeled data trace. A labeled data
trace is considered a match to a Scenic scenario if it is contained in the set of possible
traces of the UCLID5 representation of the scenario. We leverage the properties of SMT
solvers to handle two key tasks in considering potential matches: (1) object correspondence
and (2) predicate abstraction. Object correspondence involves checking for the existence of
an injective mapping from the agents defined in the Scenic program to objects in the la-
beled data trace, such that the corresponding SMT formula for all mappings is satisfiable.
Predicate abstraction involves replacing the predicates in the Scenic program with Boolean
or unassigned Boolean variables at each timestep, allowing for the evaluation of nondeter-
ministic values. By encoding the Scenic program and the data trace as an SMT formula
and checking satisfiability with BMC, this ensures that user-defined variable sampling and
sources of nondeterminism still result in a matching behavior trace output if one exists.
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Chapter 2

Querying Labeled Time Series Data
with Scenario Programs

2.1 Problem Statement

Definition: Dynamic Multi-Agent Scenario

The set of Scenic fragments we allow models a scenario P which represents a tuple,
(N , T ,{S}i∈N , {A}i∈N ,Θ, I,B). N = {1, ..., N} denotes the set of N ≥ 1 agents defined
in the program. T is a function which maps each agent in N to its agent type (e.g. ve-
hicle, pedestrian). S := ST (1) × ... × ST (N) is the state space, where ST (i) denotes the
state space of the agent type of agent i ∈ N , which includes positions and orientations.
A := AT (1) × ... × AT (N) is the action1 space, where AT (i) denotes the action space of the
agent type of i ∈ N . The action space is finite and is defined as a set of the names of
pre-defined primitive behaviors. Depending on the type of the agent, this action space can
differ. If an agent type is a vehicle, the action space may include ‘follow lane’, ‘lane change’,
etc; if pedestrian, then it may include ‘cross road’ and ‘wait’. Θ denotes an internal state
space which represents local variables instantiated and updated in the behaviors of agents
as specified in P . I denotes a joint initial distribution over the state and the internal state.
B : S × Θ → Dist(Θ ×A) is a stochastic multi-agent policy as specified in P , which maps
the current state S and internal state Θ to a joint distribution of the internal state and the
action. Although the definition of a scenario resembles that of a Markov Decision Process
(MDP), note that a Scenic program P does not define a state transition function and,
therefore, is not an MDP.

1In the context of an action space, the notion of an action is consistent with the MDP definition of an
action, rather than the Scenic definition of an action.
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Definition: Labeled Time Series Sensor Trace

A time series labeled trace l, henceforth referred to as a label trace, denotes an observation of
data over a period of time, T , by an ego agent with a number of sensors collecting data. For
instance, suppose an ego car with RGB and LiDAR sensors drives through San Francisco
to collect data for a period of time. Formally, a label trace is a finite sequence of (state,
action) pairs observed by ego, i.e. ((s0, a0), ..., (sT , aT )). The observed state and action, st
and at, is defined over a time varying state space, St := ST (1) × ... × ST (N ′

t), and a time
varying action space, At := AT (1) × ... × AT (N ′

t), where the set of the number of observed
agents, N ′

t = {1, ..., Kt} vary over time t. The action space, At, represents the joint actions
taken by all observed agents at time step t. This reflects a common case in which some
of the surrounding vehicles and pedestrians are observed for a duration by sensors on ego,
but eventually are no longer observed as ego continues navigating through the environment.
Analogs to this case naturally occur in other CPS domains such as aviation and robotics.
Note that the sequence of observed states s0, s1, ..., sT are being updated by the ground truth
dynamics of the world. For some scenario that does not define a state transition dynamics
function, the sequence of states being updated by the ground truth dynamics of the world
will be used as scenario inputs.

We make the following assumptions about the label trace l and the scenario P . We
assume that (1) the state space of the label trace, S ′

t contains at least the position and the
orientation of all observed agents, and (2) the state and the action spaces of the scenario
and the label for each agent type is equivalent (e.g., all agents of type vehicle will share the
same action space in the label and the scenario, {follow lane, lane change, right turn, ...}).

Problem Formulation

Suppose we are given a time series label trace l := ((s0, a0), ..., (sT−1, aT−1)) of length T , and
a Scenic program modeling a scenario P as defined above. The label trace l contains a
sequence of observed states and actions of Nt agents for ∀t ∈ {0, ..., T − 1}, where the states
are updated according to the actions and the ground truth state transition dynamics of each
agent in the real world. The multi-agent policy B of the scenario P constrains the actions
of agents according to the given states.

Let ΠP,l define a set of feasible paths, s0a
′
1s1a

′
2...sT−1 ∈ S0× (At×St)∗for ∀t ∈ {1, ..., T −

1}, constructed using a sequence of states, s0, s1, ..., sT−1, in the label l, where the corre-
sponding actions a0, a1, ..., aT−2 are constrained by the multi-agent behavior policy B of the
scenario. To formally define a path, we assume |Nt| ≥ |N | for all T time steps, such that
there exists a correspondence, C : N → Nt, i.e. a fixed injective mapping from the N agents
in the scenario to Nt for all T time steps. Given a sequence of states from the label, the
path is feasible if there exists a sequence, θ0, θ1, ...θT−1 such that B(st, θt)(at+1) > 0 where
IΘ(θ0) > 0 and PΘ(st, θt)(θt+1) > 0 for all T time steps. To illustrate the path generation
process, given a correspondence C, we inductively generate the path in the following way. As
a base case, we compute a1 using the multi-agent policy B in the scenario, i.e. a1 ∈ B(s0, θ0),
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where θ0 is a feasible internal state in the given initial internal state distribution IΘ of the
scenario. Then, given s1 from the label, we compute a1 ∈ B(s1, θ1) where the updated inter-
nal state θ1 is computed using the internal state transition function, θ1 ∈ PΘ(s0, θ0). This
way, we inductively generate the path, πP,l. Let ΠP,l denote the set of all paths generated
by P and l for all possible correspondences.

Problem Formulation P0: Given a time series label l and a Scenic program modeling
a scenario P , the label matches the scenario if (i) IS(s0) > 0, (ii) |N | = |Nt|, and (iii) there
exists a correspondence C : N → Nt, whose mapping remains fixed for ∀t ∈ {0, ..., T − 1},
such that the label path l′ ∈ ΠP,l.

However, the above problem statement is too strict for our querying purpose, very often
not matching any label traces to the scenario. This strictness is a result of the following:

(1) The label may contain more number of objects than in the scenario, i.e. |N ′
t | ≥ |N |

for ∀t ∈ {0, ..., T − 1}. We may want to consider l as matching P even though it contains
additional objects that do not have any counterpart in P . For instance, we may want a
program a scenario for “a pedestrian crossing a road” to match whenever such a pedestrian
exists, even if there is a second pedestrian in the label.

(2) Requiring the full duration, t ∈ {0, ..., T}, of the label trace to match the scenario
may be too strict, especially as the duration increases. Thus, we introduce a new parameter
m to define the minimum consecutive time duration for the label trace to match the scenario.

Problem Formulation P1: Suppose a time series label l of length T , a scenario P ,
and a minimum time duration m are provided. Then, the label matches the scenario if there
exists j, k ∈ {0, ..., T − 1}, where k − j > m, such that IS(sj) > 0, |Nt| ≥ |N |, and there
exists a fixed injective mapping C : N → Nt for ∀t ∈ {j, ..., k}, such that there exists a path
πP,l ∈ ΠP,l which is equivalent to the label path, l′, for the consecutive time steps, j to k.

2.2 Methodology

Given a time series label and a Scenic program, our approach translates the program to an
SMT formula that is satisfied if and only if the time series label constitutes a match to the
program as previously defined for a window of m timesteps. Fig. 2.1 depicts the architecture
for the process of proposing a candidate object correspondence described in Algorithm 1.

Checking All Object Correspondences

In order to determine if each agent defined in a scenario P is represented in a labeled data
point l, we define an integer SMT formula encoding the object correspondence problem. The
SMT formula searches for an injective function mapping from the set of Scenic agents N
to the set of labeled data objects N ′, such that each agent i has a corresponding object
C(i) in the labeled data. A key assumption of this process is that |N | ≤ |Nt|, guaranteeing
an injective mapping from the scenario program to the labeled data. This assumption is
presented since many objects may enter and exit the field of view in even a small timeframe
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Figure 2.1: Algorithm 1 overview from inputs P and l to outputs (match/no match). At each
iteration, the SMT solver proposes a new candidate object correspondence. The UCLID5
IHEFSM evaluates the object correspondence for the label trace available and finds satis-
fying values if any exist to make l ∈ L for the specified threshold m. If none exists, the
correspondence is marked as a failure and the process repeats.
(1) Scenic converted into intermediate IHEFSM representation. (2) Predicate abstraction on pro-
gram ready to accept inputs from labeled data. (3) UCLID5 executable IHEFSM is generated
based on extraced conditions and intermediate representation. (4) Object correspondence is ini-
tiatlized. (5) Data is augmented with labels from computer vision labeling system. (6) Labeled
behavior traces generated and indexed by object class for object correspondence. (7) UCLID5 pro-
gram receives next object correspondence proposal and corresponding Boolean streams and labeled
traces as inputs. (8) BMC on UCLID5 program checks if trace could be generated by IHEFSM
representation of Scenic scenario.
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Algorithm 1 Determining if Scenic program P matches a time series label l

Input: Scenic program P , a time series label l, and a library of behaviors B, and a
minimum time duration m
Output: Does l match P? (True / False)

1: AST← Compile(P ) // get abstract syntax tree (AST)
2: ϕ← InitializeCorrespondenceSMTConstraints(l, AST,m) // Algorithm 2
3: while SMTSolver(ϕ) has a solution do
4: corr← SMTSolver(ϕ) // a feasible object correspondence corr
5: isMatch, ϕ′ ←MembershipQuery(l,AST, corr,m,B) // Algorithm 3
6: if isMatch is True then
7: return True
8: else
9: ϕ← ϕ ∧ ϕ′

10: return False

of ego sensor data collection. If the condition asserting an existence of a match C(i) is
violated for any of the agents i defined in the multi-agent scenario under a specific candidate
correspondence, the candidate correspondence fails and a new correspondence is tested.
This process repeats and the SMT solver iteratively proposes new candidate matches until
a candidate either matches (outputs match) or makes the system of possible assignments
from l to L unsatisfiable (outputs no match). Algorithm 2 formally defines this process for
a specific scenario P and labeled data element l.

Modular Evaluation of Candidate Correspondence

In order to evaluate a specific correspondence, the following algorithm converts from the
Scenic program P and labeled data l to check if l ∈ L for program P .

Predicate Abstraction The predicate abstraction process outlined in Algorithm 3 con-
verts all atomic Boolean variables responsible for the control of execution of the Scenic
program into an abstracted representation. This allows the values in l that may affect the
execution of the conditions and corresponding Scenic behavior definitions to be computed
as a preprocessing step before generating UCLID5 code. This dramatically reduces the
complexity, while allowing more complex SMT solvers with support for reals including z3
to be used for the task of predicate abstraction. Fig. 2.2 depicts the postprocessed Scenic
program after the predicate abstraction process. This postprocessed program is converted
into an interrupt-driven, hierarchical extended finite state machine that takes in streams of
abstracted predicates as inputs. The predicate abstraction process of pre-computing Boolean
conditional variables reduces overhead for the model checker and simplifies the introduction
of nondeterminism into the supported Scenic fragment.
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Algorithm 2 Identify SMT Correspondence

Input: a time series label l, an abstract syntax tree (AST), and minimum time duration m
Output: (1) [True/False] is there a feasible mapping between agents in scenario and label?
(2) SMT formula encoding the constraints on the mapping between the agents specified in
the AST and the agents in the label l

1: labelAgents ← dictionary // {key: agent class, value: an empty list}
2: scenarioAgents ← dictionary // {key: agent, value: an empty list}
3: ϕ← True // initialize a SMT formula
4: for each agent i in the label l do
5: if (length of agent i’s trajectory) ≥ m then
6: Add agent i to labelAgents [i’s class type]
7: for each agent j in AST do
8: behaviorSet ← find a set of j’s feasible behaviors
9: for each agent k in labelAgents [agent j’s class type] do
10: behaviorSet’ ← find a set of k’s feasible behaviors
11: if behaviorSet’ ⊆ behaviorSet then
12: Add agent k to the list, scenicAgents[j]
13: if scenicAgents[j] is empty list then
14: return False, None // No feasible counterpart agent in the label
15: for each agent i in scenarioAgents ’s keys do
16: ϕ ← ϕ ∧ (SMT formula encoding agent i can be mapped to any agents in

scenarioAgents[i])
17: ϕ ← ϕ ∧ (SMT formula encoding each scenic agent must be mapped to a unique agent

in the label)
18: return True, ϕ

Algorithm 3 Pre-Compute Transition Conditions

Input: object correspondence (corr), a time series label (l), abstract syntax tree of a Scenic
program (AST ), and scenic agent (i)
Output: A dictionary of each transition condition in agent i’s behavior to a sequence of
Boolean evaluations of the condition using l for all time steps in l

1: conditions ← dictionary // {key: condition, value: an empty list}
2: ASTi ← ParseBehavior(AST, i) // scenic agent i’s behavior AST
3: for each condition c in ASTi do
4: ψ ← SMT translation of the condition
5: for each time t in l do
6: ψ ← ψ ∧ (SMT encodings of referred state values of agents in l according to corr

at time t)
7: booleant

c ← SMTSolver(ψ) // evaluate the condition c at time t
8: Add booleant

c to the list conditions[c]
9: return conditions
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Figure 2.2: A Scenic program after the predicate abstraction step, replacing more complex
do until and interrupt conditions with standard Booleans that can be filled in by the
predicate abstraction module.

Conversion to UCLID5 IHEFSM For the specified fragment of Scenic, each class of
statement is automatically parsed into an interrupt-driven, hierarchical extended state ma-
chine. The IHEFSM outputs a set of atomic behaviors at each statement when provided
with abstracted predicate inputs. This intermediate IHEFSM representation is automat-
ically translated into the Statecharts language from UCLID5, with supported renderings
automatically generated from PlantUML included in Fig. A.1. From a hierarchical repre-
sentation of the intermediate statecharts, each UCLID5 module is defined in a hierarchical
manner, defining instances of child modules as required until all base cases are reached in
the Scenic to UCLID5 translation process. The final state representation of the Scenic
program in UCLID5 generates a behavior trace at each timestep, accepting condition inputs

Algorithm 4 Scenic to UCLID5 IHEFSM Conversion

Input: full Scenic program (P )
Output: symbolic IHEFSM representation of the Scenic program and UCLID5 hierarchi-
cal program encoding for each defined behavior

1: AST ← Compile(P ) // generate abstract syntax tree (AST ) for scenic program P or
output Scenic syntax error if P is malformed

2: behavior name to uclid ← dictionary // {key: behavior name, value: behavior
IHEFSM}

3: for behavior name, behavior definition in AST do
4: behavior name to uclid[behavior name]← ParseName(behavior definition)
5: return behavior name to uclid // each behavior name key maps to a value containing

the corresponding UCLID5 IHEFSM code
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from abstracted predicates. Please refer to Algorithm 6 (ParseName), Algorithm 7 (Pars-
eSequence), and Algorithm 8 (ParseStatement) in Appendix A.2 for a detailed description
of the parsing of a specific Scenic behavior into its corresponding UCLID5 IHEFSM.

Bounded Model Checking For the translated UCLID5 IHEFSM and generated streams
of predicates based on SMT solver outputs, the UCLID5 module input generator is created
based on labels for l and condition values from the predicate abstraction preprocessing step.
Algorithm 4 highlights the process of generating the UCLID5 program from the Scenic
abstract syntax tree, outlined in greater detail in Appendix A.2. The condition values serve
as an input to the UCLID5 behavior module, representing the behavior definition for an
agent as an interrupt-driven, hierarchical, extended finie state machine that is automatically
generated from Scenic code for the defined fragment. Simulating the state machine encod-
ing of the Scenic program would result in an exponential increase in overhead, failing to
efficiently scale for more complex queries. However, the bounded model checking function-
ality UCLID5 supports as a verification tool allows for the efficient verification of matching
and failing traces l against a UCLID5 encoding of P . This scalability even holds for more
complex assertions, such as the notion of partial matches of length m as defined previously.

Algorithm 5 Membership Query

Input: a time series label (l), abstract syntax tree (AST ), an object correspondence (corr),
minimum time duration (m), and a library of primitive behaviors (B)
Output:
(1) [True/False] is lout an element of the set of traces generated by IHEFSM with lin?
(2) if False, output a SMT formula encoding the object correspondence which result in a
query mismatch (otherwise, output None)

1: dependency ← AgentDependency(AST ) // a list of tuples of dependent agents
2: ϕ′ ← True
3: for each tuple in dependency do
4: for each Scenic agent i in tuple do
5: liin ← PreComputeTransitionConditions(corr, l, i, AST )//Alg. 4
6: liout ← GenerateBehaviorTrace(l, B, i)
7: ψ ← TranslateToSMT (i, AST, liin, l

i
out) // Encode AST as Interrupt-driven Hier-

archical Extended Finite State Machine (IHEFSM) in SMT via UCLID
8: if SMTSolver(ψ) is True then
9: return (True, None)
10: else
11: ϕ′ ← ϕ′ ∧ (SMT encoding the negation of the object correspondence of all agents

in tuple according to corr)
12: break // out of the inner for-loop
13: return (False, ϕ′)
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SMT Formula Updating If the candidate correspondence fails to output a match, the
SMT formula referenced in Algorithm 2 is updated to include a constraint (i ̸= C(i)) on the
object i that resulted in the object correspondence algorithm failure. Once the SMT formula
becomes unsatisfiable, no possible object correspondences exist for L that contain the trace l.
In this case, the algorithm will terminate. Until then, the algorithm will continue to output
new possible object correspondences until the process terminates with either a match or
failure.

2.3 Experiments

As we propose a solution to the time series data querying problem for the use case of
validating failures in simulation scenarios against real-world data, we observe that the query
itself is the most time and resource-intensive part of the validation process. However, unlike
the case of static sensor data retrieval, the time series case requires more advanced analysis
of ground truth captions or sensor data to assess the performance of the querying approach.
To evaluate the relevance of algorithm outputs, we consider two key questions:

(1) Given a real labeled dataset of time series data and an input Scenic program, does the
algorithm effectively retrieve relevant data matching the input program?

(2) What scaling properties does the algorithm demonstrate, in terms of scenario complexity,
agents present, and time series data length?

The first question highlights the performance of the queried solutions by Scenic experts
in comparison to human-selected ground truths, evaluated in the Efficacy Experiment. The
experiment construction aims to demonstrate that the notion of formal time series data
querying we define and the definition of a match we output is relevant and efficient in com-
parison to human querying. The second experiment explores the feasibility of this approach
for scenarios with more complex definitions, more agents present, and longer time series data
point lengths. This experimental methodology draws from the experimental setup of Kim
et al. [48] in the formal retrieval of static sensor data.

Both experiment designs use the nuScenes autonomous driving dataset augmented with
behavior labels from a vision-based behavior classification system for time series driving
sensor data. In addition, the video querying system outputs generated for all experiments
involved the previously defined procedure of automatically translating the Scenic program
for querying into a hierarchical, interrupt-driving finite state machine format as defined in
the UCLID5 example program contained in Appendix A.3.

Experiment I: Performance Experiment

Setup No algorithmic baseline exists for the task of querying time series data from a
formal scenario description, and no autonomous driving datasets provided comprehensive
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formal scenario descriptions that could be used for algorithm evaluation. As a result, we
define five scenarios of interest, ensuring a concrete example of each one appears at least
once in the nuScenes dataset. We ask 3 Scenic experts to query matching time series data
points for each of the 5 scenarios using the software. In order to acquire the most accurate
subsets, we define the test set as the intersection of each expert’s system-queried test set.
We manually evaluate the correctness of each queried result to deliver accuracy metrics for
each of the retrieved scenes and expert users.

Scenarios We define five scenarios in a range of realistic traffic situations at differing risk
levels and frequencies within the dataset. We ensure that each of the five scenarios defined
exists in the labeled dataset nuScenes in some capacity, and we provide natural language
descriptions and corresponding Scenic encodings for three examples in the section below.

(1) Jaywalking pedestrian triggered sudden braking

(2) Yielded to another vehicle while making right turn

(3) Activated braking in response to braking leading vehicle

Data In order to understand the current results of their query, we provide an indication of
number of results found as the user queries. To allow expert Scenic users to iterate on their
query, we provide RGB video thumbnails captured from the driver’s view (front camera)
of the nuScenes data collection vehicle for each retrieved data element. The experts may
make any modifications to their queries until the time allotment for querying this scene runs
out. At this point, the Scenic scenario they have used to query a scene by natural language
description constitutes their final query for the scene. The effectiveness of their query is
evaluated based on the precision and recall metrics of their final retrieved labeled traces
compared against human-annotated ground truths. We provide a fully worked example of
a simpler form of this evaluation in the results section that follows. For this experiment,
a Scenic expert is shown the driver view of a specific labeled trace l from the nuScenes
dataset, which aligns with one of the five evaluation descriptions. The Scenic expert is
instructed to construct a scenario query to write a query containing this scenario and similar
ones. All labeled traces contain sensor data collected at a rate of 2 Hz over 20 seconds, the
default specifications of the nuScenes dataset. Experts query over labeled traces for match
length m=10.

Results The results of a preliminary experiment indicate Scenic experts can effectively
leverage the algorithm to query for a scene set containing the desired labeled trace l with
scenario program P . This serves as an effective demonstration of the precision and flexibility
of the algorithm to capture the underlying distribution of a user-specified scenario. We
include one full example expert query of a desired trace l with P for Scenario 1.
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Figure 2.3: One frame of the front camera time series data from retrieved labeled trace l
matching expert query program P . Blue bounding boxes denote pedestrians and orange
bounding boxes denote vehicles. This frame captures the vehicle as it brakes in response to
the pedestrian. At this point, it continues to conduct BrakingBehavior until the pedestrian
leaves the safety distance, allowing FollowLaneBehavior to resume.

Figure 2.4: One frame of the LiDAR time series data retrieved from l matching scenario
query program P . Blue bounding boxes denote pedestrians, orange bounding boxes denote
vehicles, and the red bounding box denotes a cyclist. Each line displays the heading of the
corresponding bounding box. This frame captures the vehicle as it brakes in response to
the pedestrian to the front and right of the vehicle (from a driver perspective). It conducts
BrakingBehavior until the pedestrian leaves the safety distance.
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Retrieved Sensor Data The end-to-end querying process retrieves a successful match
for the expert constructed query program P , as indicated by the retrieved LiDAR and RGB
sensor output excerpted from the desired target time series labeled trace l in Figs. 2.3, 2.4.

Natural Language Description Scenario 1 as defined above is a multi-agent stochastic
scenario involving a pedestrian and a vehicle. If the pedestrian jaywalks in a manner that
blocks the ego vehicle, the vehicle should brake in response to this until it is safe to resume
the original path following the lane.

Expert-Specified Scenic Program The expert-written Scenic program provides a de-
scription of a vehicle suddenly braking for a jaywalking pedestrian. The pedestrian must
violate the safety distance of the vehicle, a random parameter uniformly sampled from [1, 10].
This interrupts the FollowLaneBehavior and triggers the BrakingBehavior until the inter-
rupt handler completes.

behavior EgoBehavior():

try:

do FollowLaneBehavior()

interrupt when (distance from self to ped) < Range(1,10):

do BrakingBehavior()

ego = new Car with behavior EgoBehavior()

ped = new Pedestrian

Set of Possible Correspondences The SMT solver considers the set of all possible
correspondences for the scene description. In this case, the role of the ego vehicle is fixed.

possible_correspondence: {’ego’:[’ego_0’],’ped’: [’human.pedestrian.adult_0’,

’human.pedestrian.adult_1’, ’human.pedestrian.adult_2’, ’human.pedestrian.adult_3’,

’human.pedestrian.adult_4’, ’human.pedestrian.adult_5’, ’human.pedestrian.adult_6’,

’human.pedestrian.adult_7’, ’human.pedestrian.adult_8’, ’human.pedestrian.adult_9’,

’human.pedestrian.adult_11’, ’human.pedestrian.adult_12’,

’human.pedestrian.adult_15’, ’human.pedestrian.adult_16’,

’human.pedestrian.adult_17’]}

Labeled Trace l for One Object The labeled trace below includes the input time series
data processed by the predicate abstraction and precomputation process. The xs, ys, poses,
and angles correspond to the x-position X, y-position Y , 3D quaternion H, and 2D yaw an-
gle Θ. The type and desc classes contain information about the object type and description.
The timesteps ts of the labeled trace represent up to 20 seconds of data collected at 2 Hz.
Each object in a labeled trace l has a similar time series set of data points to the data be-
low. Observe that the pedestrian is only present for a subset of the full labeled sensor trace l.
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{’xs’: [2274.997, 2275.048, 2275.062, 2275.076, 2275.089, 2275.117, 2275.131,

2275.189, 2275.18, 2275.09, 2275.001, 2274.911, 2274.822, None, None, None,

None, None, None, None, None, None, None, None, None, None, None, None, None,

None, None, None, None, None, None, None, None, None, None, None], ’ys’:

[849.647, 849.646, 849.648, 849.65, 849.652, 849.655, 849.657, 849.656, 849.657,

849.658, 849.659, 849.66, 849.661, None, None, None, None, None, None, None,

None, None, None, None, None, None, None, None, None, None, None, None, None,

None, None, None, None, None, None, None], ’ts’: [0.0, 0.5, 1.0, 1.5, 2.0, 2.5,

3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5,

11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0,

17.5, 18.0, 18.5, 19.0, 19.5], ’poses’: [[0.999981235472795, 0.0, 0.0,

-0.006126067441877257], [0.999981235472795, 0.0, 0.0, -0.006126067441877257],

[0.999981235472795, 0.0, 0.0, -0.006126067441877257], [0.999981235472795, 0.0,

0.0, -0.006126067441877257], [0.999981235472795, 0.0, 0.0, -0.006126067441877257],

[0.999981235472795, 0.0, 0.0, -0.006126067441877257], [0.999981235472795, 0.0,

0.0, -0.006126067441877257], [0.999981235472795, 0.0, 0.0, -0.006126067441877257],

[0.999981235472795, 0.0, 0.0, -0.006126067441877257], [0.999981235472795, 0.0,

0.0, -0.006126067441877257], [0.999981235472795, 0.0, 0.0, -0.006126067441877257],

[0.999981235472795, 0.0, 0.0, -0.006126067441877257], [0.999981235472795, 0.0,

0.0, -0.006126067441877257], None, None, None, None, None, None, None, None, None,

None, None, None, None, None, None, None, None, None, None, None, None, None,

None, None, None, None, None], ’angles’: [-0.7020000097690631,

-0.7020000097690631, -0.7020000097690631, -0.7020000097690631,

-0.7020000097690631, -0.7020000097690631, -0.7020000097690631,

-0.7020000097690631, -0.7020000097690631, -0.7020000097690631,

-0.7020000097690631, -0.7020000097690631, -0.7020000097690631, None, None, None,

None, None, None, None, None, None, None, None, None, None, None, None, None,

None, None, None, None, None, None, None, None, None, None, None], ’type’:

’human.pedestrian.adult’, ’desc’: ’Adult subcategory.’}

Boolean Condition Formula The predicate abstraction process operates on the above object
time series data for each object present, in order to generate valid predicate outputs for all Boolean
variables controlling the flow of execution for the Scenic program above. In this case, the program
is governed by a single condition labeled nusc cond interrupt 1 1 corresponding to the expert-
written input (distance from self to ped) < Range(1,10).

(set-logic QF_NRAT)

(declare-fun self_position_x () Real)

(declare-fun self_position_y () Real)

(declare-fun self_angle () Real)

(declare-fun ped_position_x () Real)

(declare-fun ped_position_y () Real)

(declare-fun ped_angle () Real)

(declare-fun range0 () Real)
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(assert (and (<= 1 range0) (<= range0 10)))

(assert (< (+ (* (- self_position_x ped_position_x) (- self_position_x ped_position_x)) (* (- self_position_y ped_position_y) (- self_position_y ped_position_y))) (* range0 range0)))

(assert (= self_position_x 2271.70))

(assert (= self_position_y 877.18))

(assert (= self_angle 2.95))

(assert (= ped_position_x 2274.82))

(assert (= ped_position_y 849.66))

(assert (= ped_angle (- 0.70)))

(check-sat)

(get-model)

(exit)

Bounded Model Checking The output below constitutes one example sequence of predi-
cates input to the UCLID5 IHEFSM program included in Appendix A.3, for which the output
matches the desired nusc trace for at minimum m=10 timesteps. Based on this output, the ego and
pedestrian create a matching correspondence to the program provided. As a result, l is considered
a match to P for the satisfying assignment of objects returned by the SMT solver.

PREDICATE ABSTRACTION: {’nusc_cond_interrupt_1_1’: [True, True, True,

True, True, True, True, True, True, True, True, False, False,

None, None, None, None, None, None, None, None, None, None, None, None,

None, None, None, None, None, None, None, None, None, None, None, None,

None, None, None], ’nusc_trace’: [’(init)’, ’(init)’, ’BRAKE’, ’BRAKE’,

’BRAKE’, ’BRAKE’, ’BRAKE’, ’BRAKE’, ’BRAKE’, ’BRAKE’, ’FOLLOW_LANE’,

’FOLLOW_LANE’, ’FOLLOW_LANE’, ’ACCELERATE’, ’ACCELERATE’, ’ACCELERATE’,

’ACCELERATE’, ’ACCELERATE’, ’FOLLOW_LANE’, ’FOLLOW_LANE’, ’FOLLOW_LANE’,

’FOLLOW_LANE’, ’FOLLOW_LANE’, ’FOLLOW_LANE’, ’FOLLOW_LANE’, ’FOLLOW_LANE’,

’FOLLOW_LANE’, ’FOLLOW_LANE’, ’FOLLOW_LANE’, ’FOLLOW_LANE’, ’FOLLOW_LANE’,

’FOLLOW_LANE’, ’FOLLOW_LANE’, ’FOLLOW_LANE’, ’FOLLOW_LANE’, ’FOLLOW_LANE’,

’FOLLOW_LANE’, ’FOLLOW_LANE’, ’(end)’, ’(end)’]}

Experiment II: Efficiency Experiment

Setup We define three scalability measures for evaluation in the efficiency experiment: sce-
nario complexity, agent quantity, and time series data length. For each of the evaluation mea-
sures, we define a set of query programs to test the scalability of the algorithm. In terms of
scenario complexity, we define four behavior definitions do until (N), do (N), try-(N)terrupt,
and (N)ested-try-interrupt of the following forms. The full programs for each set of statement
and time series data scalability evaluations can be found in Appendix A.4.

For each of the behavior definitions provided below, we define two independent variables consis-
tent across the four evaluated benchmark scenarios. The timestep parameter denotes the number
of timesteps in each labeled trace. The parameter N corresponds to a notion of complexity defined
for each scenario format presented below. In order to provide consistent and reproducible timing
outputs, we generate k=10 randomized Boolean input traces and feasible randomized output traces
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and assert a minimum match of length m for each query. This prevents queries from terminating
in less than worst-case runtime and allows for the construction of runtime distributions for each
statement type, complexity parameter N, and number of timesteps T. We also set a hard maximum
evaluation time emax=60 seconds for any evaluation component to improve evaluation efficiency on
single-chip systems.

Scenario Format: do until (N) The do until (N) behavior definition tests the scalability
of the simple do-until statement representation in UCLID5 and its ability to handle large sequences
of statements driven by labeled data and user inputs.

behavior do_Ntil():

do until ..

.. repeat N times ..

Scenario Format: do (N) The do (N) behavior definition tests the scalability of the simple
do block statement in UCLID5 and its ability to handle large sequences of statements driven by
nondeterminism. To improve querying system usability, the do statement allows for any satisfying
(uninterpreted) Boolean to fill the place of the until block in a traditional do until statement.

behavior do_N():

do ..

.. repeat N times ..

Scenario Format: try-(N)terrupt The try-(N)terrupt behavior definition tests the scal-
ability of the try-interrupt block representation in UCLID5 to handling a large amount of nonde-
terminstic transitions or transitions driven by labeled data and user inputs.

behavior try_Nterrupt():

try:

..

interrupt when ..

..

.. repeat N times ..

Scenario Format: (N)ested-try-interrupt The (N)ested-try-interrupt behavior defi-
nition tests the scalability of the nesting of multiple try-interrupt block representations in UCLID5
to support both nondeterminstic transitions and transitions driven by labeled data and user inputs
at scale.

behavior Nested_try_interrupt():

try:

try:

.. repeat N times ..

interrupt:

..
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For both behavior definition formats, we plot the average runtimes for each of these as a
function of N, with a maximum timeout. In order to ensure queries do not terminate early, affecting
the runtime of the scaling tests we construct randomized Boolean input traces and output traces
sampled from the set of all possible traces of the do until (N), do (N), try-(N)terrupt, and
(N)ested-try-interrupt scenario programs. In this manner, we attempt to approximate the
worst-case runtime for the querying system in each of these scaling tests for program complexity.
We extend this approach to testing number of agents and number of timesteps, independently
plotting the runtime as a function of number of agents involved in the querying process, and as a
function of the temporal length of labeled data points. In order to evaluate the scaling properties
of the querying process with respect to the number of agents, we capture the average number of
scenario and real-world agents, before combining data from multiple independent data points to
generate larger scenes. We scale the number of agents defined in our test scenario according to the
same proportionality, plotting the results against the number of objects contained within a labeled
data point and number of agents defined in a scenario.

We observe that the evaluation framework presented benefits from the usage of a worst-case
implementation of the UCLID5 matching process. This provides more reasonable and predictable
comparisons across values of N and T for different statements and reduces the risks of early stopping
due to unreasonably generated random Boolean traces. In order to guarantee the entire trace is
processed, we propose the notion of a maximum contiguous match threshold. Within this definition
of a match, for some user-specified threshold m, the length of a match must be larger than m. We
leverage this definition of a match in all evaluations below.

Results Overview We observe the following general trends when comparing the different
Scenic statements within our supported fragment. Based on our scalability evaluations, sequences
of do until and sequences of do statements appear to run in approximately constant time regard-
less of sequence length. Though this is expected for do until statements, the ability of UCLID5
to match this performance for do statements is quite impressive. This is because UCLID5 must
consider the additional challenges of exploring all possible until condition Boolean assignments
across all timesteps. These results demonstrate the scalability of UCLID5-based match evaluation
to handling basic user-specified nondeterminism.

Results per Statement We observe the following more specific trends when comparing the
different Scenic statements within our supported fragment. We mark any evaluations that exceed
the maximum evaluation runtime emax=60 seconds with – for readability.
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Figure 2.5: Scaling properties for each Scenic statement as function of N. We observe that
the do until (N) and do (N) demonstrate constant runtimes regardless of sequence length.
Meanwhile, the try-(N)terrupt and (N)ested-try-interrupt statements demonstrate gently
exponential scaling properties. The non-zero runtime for N=0 complexity captures the fixed
overhead costs associated with creating input and termination handling modules in even the
simplest scenario case. For this experiment, we set k=10, T=10, and emax=60.

Based on the evaluations, scaling to much longer labeled trace lengths appears to impact over-
head the most. However, we observe that many commercial AV motion forecasting datasets tend
to leverage shorter scenes of 10-20 seconds, e.g. Waymax (9 seconds) [14], Argoverse 2 (11 seconds)
[79], [80], nuScenes (20 seconds) [81]. In cases with significantly longer traces, we propose several
properties of the algorithm that allow for further scalability improvements.

2.4 Discussion

The analysis of the Experiment II results substantiate our claims about the scalability of the
system to user-specified nondeterminism, the full defined Scenic fragment, and trace lengths for
reasonable data sources. In terms of user-specified nondeterminism, the constant scaling properties
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Table 2.1: Scalability Test Results for (N) DoUntil Statements (in sec)

DoUntil (N) 10 Timesteps 20 Timesteps 30 Timesteps 40 Timesteps

1 1.96± 0.07 2.31± 0.05 2.69± 0.09 3.35± 0.09
2 2.04± 0.06 2.40± 0.08 3.02± 0.04 3.60± 0.12
3 2.19± 0.06 2.62± 0.10 3.25± 0.02 3.92± 0.06
4 2.28± 0.05 2.76± 0.10 3.45± 0.07 4.27± 0.07

Table 2.2: Scalability Test Results for (N) Do Statements (in sec)

Do (N) 10 Timesteps 20 Timesteps 30 Timesteps 40 Timesteps

1 2.15± 0.05 2.74± 0.10 3.56± 0.06 4.92± 0.10
2 2.10± 0.06 2.61± 0.10 3.56± 0.13 5.25± 0.18
3 2.16± 0.05 2.75± 0.09 3.87± 0.12 5.73± 0.18
4 2.23± 0.06 2.94± 0.10 4.10± 0.17 4.27± 0.07

Table 2.3: Scalability Test Results for (N)ested Try-Interrupt (in sec)

Depth (N) 10 Timesteps 20 Timesteps 30 Timesteps 40 Timesteps

1 2.91± 0.06 8.39± 0.36 26.72± 0.81 –
2 6.33± 0.25 35.07± 2.50 – –
3 11.56± 0.16 – – –
4 21.95± 0.36 – – –

Table 2.4: Scalability Test Results for Try-(N)terrupt (in sec)

Handlers (N) 10 Timesteps 20 Timesteps 30 Timesteps 40 Timesteps

1 3.31± 0.22 9.80± 0.63 27.67± 1.99 –
2 5.23± 0.58 29.24± 1.27 – –
3 10.29± 0.30 – – –
4 15.31± 1.78 – – –
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for increasing lengths of do and do until statements demonstrates an ability to handle user-
specified nondeterminism without incurring significant overhead. This is because the querying
system translates the do statement into do until * for some uninterpreted Boolean denoted * that
can take any value at each timestep. If the user selects this option, a sequence of do statements
will explore all possible sequences that result in a potential match to the labeled trace, instead
of specifying values of Boolean variables determining the control flow of the scenario at each time
step.

Meanwhile, the evaluations demonstrate support for the entire fragment of Scenic. The support
of longer sequences do and do until statements with constant overhead extends efficient system
support to a sizable amount of behavior definitions. In terms of nested try-interrupt and multiple
interrupt handler cases, we observe naturally occurring bounds on the number of useful interrupt
conditions in a naturalistic driving behavior representation. More concretely, several large-scale
autonomous driving challenge datasets involving scenario programs [82] leverage 1-2 interrupt han-
dlers and 0-1 nested interrupts at most. Let c denote a small constant relative to k, m, and T. For
N=c interrupt handlers or levels of nesting and common ranges of T we previously identified, from
a simple linear regression over our evaluations we observe maximum runtime can be approximated
as a linear function of T. This implies that our nested try-interrupt and multiple interrupt

handler statements can be processed in an approximately linear manner with respect to the input
trace length T. More precisely, suppose eT denotes the worst-case runtime of processing a trace of
length T. Based on a simple geometric series modeling of trace length T against evaluation time
eT , the runtime for checking each trace as one more timestep is added appears to scale according
to the rate eT+1 ≈ 1.09 ∗ eT .

In cases with significantly longer traces as a result of higher polling rates, by the earlier discus-
sion we propose that the labeled trace behavior classification can continue to operate on a lower
sampling rate in Hz. More importantly, many objects in autonomous vehicles traces only remain
in range of the data collection vehicle for relatively short amounts of time in comparison to the full
scene length. Depending on the sensor data domain and the underlying distribution of individual
trace lengths, additional costs associated with longer traces can potentially be amortized to provide
stronger efficiency guarantees. As a result, we propose the entire Scenic fragment can be efficiently
processed even when modeling an exponentially growing collection of traces or nondeterminstic out-
comes over the state space.

We observe that the evaluations presented require the usage of a worst-case implementation
to provide more reasonable and predictable comparisons across values of N and T for different
statements. In order to guarantee the entire trace is processed, we propose the notion of a maximum
contiguous match threshold. Within this definition of a match, for some user-specified threshold
m, the length of a match must be larger than m. It is worth noting that the accuracy and querying
guarantees of the algorithm depend on the accuracy of the labels and behavior classification system.

In the current state, two key limitations of the algorithm include the limitations of the current
Scenic fragment and the scalability of the current UCLID5-based implementation. The fragment
of Scenic for which the algorithm is currently supported excludes certain conditional and iterative
structures, due to the complexity of efficiently representing these structures within a hierarchical
UCLID5 state machine. Writing for and while loops that precisely match labeled traces proved to
be an extremely difficult task for Scenic experts without any information about the sensor data.
We discuss several opportunities to augment the system to assist users with the process of writing
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queries within the Future Work (Section 3.2). With regards to system scalability, the current
system generates a new UCLID5 program each time a trace l is checked against a program model
P . The runtime charts included in Figure 2.5 demonstrate the challenges of scaling this system to
terabytes without access to distributed computation, as each of the runtime curves converges to a
clear nonzero runtime emin ≈ 2.0 sec. In the Future Work, we will propose several optimizations
to improve the efficiency of the match searching and UCLID5 encoding processes. These proposals
aim to improve the system usability and ensure the worst-case runtimes are seldom reached for
individual correspondences.
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Chapter 3

Future Work and Conclusion

3.1 Human Subject Study Proposal

Setup In the same manner as Experiment I, we define 5 scenarios of interest but instead ask 3
human participants to query matching time series data points for each of the 5 by hand. In order to
acquire the most accurate subsets, we define the test set as the intersection of each human subject’s
hand-queried test set. To minimize errors due to time constraints, the participant is then given
an opportunity to confirm or overturn each response in an unlabeled set of responses. This set of
responses corresponds to the set for which their classification differed from that of the querying
algorithm. At this point, we compare these subsets to the subsets returned by the algorithm.

Scenarios We define five scenarios in a range of realistic traffic situations at differing risk levels
and frequencies within the dataset. We ensure that each of the five scenarios defined exists in
the labeled dataset nuScenes in some capacity, and we provide natural language descriptions and
corresponding Scenic encodings for three of the five scenarios listed below.

(1) Jaywalking pedestrian triggered sudden braking

(2) Yielded to another vehicle while making right turn

(3) Activated braking in response to braking leading vehicle

Data In order to allow human subjects to query time series data points, we provide a selection of
RGB videos captured from the driver’s view (front camera) of the vehicle, based on the correspond-
ing camera angles accessible from the nuScenes dataset. The map information and traffic flow
information provided from the nuScenes dataset allow the Scenic scenarios to use information
involving map information and traffic flow directions. Object classes including vehicles, pedestri-
ans, and static objects are captured by the data collecting vehicle, referred to as the ’ego’ vehicle
in the labeled data and querying scenario program. After filtering certain classes of scenes that
are less relevant to the scenario queries (i.e. parking lot navigation), we provide the users with
a randomly selected subset of videos. We believe this dataset is of reasonable size for humans to
manually query from the dataset.
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3.2 Future Work

Future work may involve creating a more general interface for the algorithm to directly integrate
with larger-scale datasets like the Google Open-X Embodiment dataset [35]. For specific domains
such as autonomous vehicles, a base set of interesting driving scenarios implemented in Scenic could
be used to provide measures of test coverage and missing scenarios in a real-world AV sensor dataset
[82]. To make the system easier to set up and use across different domains, it may be interesting
to explore extensions of this work that could apply to unlabeled time series data or collections of
multiple datasets. For instance, implementing unsupervised or self-supervised labeling approaches
would allow the system to immediately operate and deliver meaningful results in domains with more
constrained access to data labeling and open-source data classification systems. The generalizability
of the algorithm and the Scenic language presents exciting opportunities to explore applications
of this work in new domains.

In terms of system usability, one promising avenue involves integrating scenario generation
systems that generate Scenic code from natural language [45]. This presents the opportunity to
perform end-to-end time series retrieval of real-world sensor data based on natural language de-
scriptions of inputs, abstracting away the Scenic development process for less formal use cases.
Natural language sim-to-real querying would present a promising avenue for individuals from less
technical backgrounds to more robustly validate autonomous systems and sensor data they collect,
while improving transparency into the contents of large-scale datasets and transferability of simu-
lation testing results to information about real-world performance. Several quick implementation
changes, including configuring UCLID5 programs to accept multiple traces as inputs, may provide
significant runtime boosts over the existing system to bypass the initial startup costs associated
with initializing UCLID5 modules. In addition, the object correspondence problem can be divided
into multiple independent subproblems based on independent object classes or behavior definitions.
For scenario programs with larger numbers of agents, this reduce the number of candidate corre-
spondences to check by several orders of magnitude. As the evaluations included in Experiment
II focus on worst-case runtimes enforced over synthetic predicate streams, the runtimes are not
representative of average bounded model checking evaluations of a match between P and l. A
more precise measure of scalability would involve large-scale evaluations on full real-world sensor
datasets with distributed systems.

A far more critical line of future work involves assisting users with the process of constructing
and modifying queries to retrieve larger distributions of results. As a result of the strict distributions
Scenic programs define, even slight changes to random variables or conditional values can impact
the retrieved results of the querying process. Implementing solver or learning-based tools to suggest
program and program parameter adjustments to improve querying results will improve the usability
of the algorithm across a wide range of domains. In addition, more precise UCLID5 assertions
defining the boundary between a match and a failure may improve. For instance, reweighting the
contribution of certain labels towards the definition of a match based on the frequency may assist
with the discovery of rarer scenarios (i.e. lane change scenarios) that may not appear as frequently
in the dataset of labeled traces.
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3.3 Conclusion

In this work, we proposed an algorithm using a scenario program encoded in Scenic to query over
a labeled time series dataset. This algorithm can be used to close the gap between simulation and
real-world testing by identifying real-world data points in a time series dataset corresponding to a
dynamic, multi-agent evaluation scenario for a cyber-physical system. More broadly, the algorithm
formalizes an efficient process of exploring and understanding the contents of a real-world dataset.
This algorithm supports dynamic scenarios capable of querying for the nondeterminism the Scenic
language allows users to express. In addition, the generalizability of the approach allows it to be
adapted to a variety of domains, including autonomous vehicles and indoor robotics. With the
scalability, transparency, and robustness of this algorithm, we hope to see an accelerated pace of
development and understanding of more comprehensive datasets and learning-based tasks within
cyber-physical systems.



37

Bibliography
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Appendix A

Additional Materials

A.1 Scenic Fragment Extended BNF Grammar

Formalizing Scenic Fragment as Grammar

Formalizing the fragment of the Scenic language for which labeled trace querying is supported is
integral to ensuring syntax is properly parsed into the interrupt-driven hierarchical finite state ma-
chine (IHEFSM) definition. Context-free grammars [83] such as the Backus-Naur Form (BNF) [84]
or Parsing Expression Grammar (PEG) [85] provide a structured and systematic way to describe
the syntax of programming languages, including Scenic. By defining a grammar for a fragment of
Scenic considered for time series data retrieval, it becomes possible to parse and analyze Scenic
code programmatically. This streamlines programmatic tasks including code generation, analy-
sis, and transformation. This formalization enables tools and systems to interact with Scenic
code more reliably and efficiently, laying the groundwork for automated processing and enhanced
language features.

Context-Free Grammars in Programming Language Formalization

Backus-Naur Form (BNF) and its variants, such as Extended Backus-Naur Form (EBNF) [68], are
foundational in the formalization of programming languages. BNF, introduced in the 1960s, offers
a concise notation for defining the syntax of programming languages [84]. This allows for ease of
understanding, implementing, and communicating language specifications. EBNF enhances BNF
Grammar by introducing additional syntax constructs (including optional elements, repetition,
flattened lists, and grouping) that simplify grammar definitions and make them more readable and
usable. Compared to BNF, EBNF includes reduced ambiguity and a more compact representation
of complex syntactic patterns. These features make EBNF preferable to BNF for this specific use
case. Since the full Scenic language and the Python release it was built on both partially employ
EBNF-based CFGs, the EBNF seems to be a reasonable and readable starting point for parsing
IHEFSM from a context-free grammar of the Scenic fragment.1

1The Python3 grammar is defined in a combination of EBNF and PEG, while Scenic is defined in PEG.
We define a EBNF Grammar to represent our fragment of Scenic for this algorithm.
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Design Considerations of Scenic EBNF Grammar

The design of the EBNF grammar for a fragment of the Scenic language is driven by a need to cap-
ture the complex constructs needed to define hierarchical IHEFSMs. Key considerations included
the flexibility to define interesting behaviors, the ability to express conditional logic, and the mech-
anisms for describing state transitions and actions. The grammar supports various statements, such
as do, take, try-interrupt, conditional, abort, and terminate statements, each catering to different
aspects of HSM definition. Do statements allow for the specification of sustained behaviors, take
statements describe immediate actions, and try-interrupt statements enable preemptive behavior
switching based on Boolean conditions. The inclusion of abort and terminate statements support
more complex and realistic control flow mechanisms.

Parsing EBNF Grammar into IHEFSM

The algorithm to parse the EBNF grammar of the Scenic language fragment is designed to sys-
tematically interpret Scenic code and construct a corresponding hierarchical FSM. It operates in
three stages: (1) lexical analysis tokenizes the input code, (2) syntactic analysis parses these tokens
based on the EBNF grammar to build an abstract syntax tree (AST), (3) semantic analysis traverses
the AST in a sequential recursive fashion to construct the IHEFSM. The recursive nature of the
algorithm facilitates the automatic generation of IHEFSMs for all programs expressible within the
predefined fragment of Scenic, streamlining the process of constructing a bounded model checking
problem for UCLID5.

EBNF Grammar for Scenic Fragment

finite-state-machine ::= { behavior-definition | statement-sequence };

behavior-definition ::= "behavior" identifier "{" statement-sequence "}";

statement-sequence ::= statement { "next" statement } ;

statement ::= do-statement

| take-statement

| try-interrupt-statement

| conditional-statement

| terminate-statement

| choose-statement

| shuffle-statement

| assignment-statement;

do-statement ::= "do" identifier ["until" condition] ["do" action];

take-statement ::= "take" action;

try-interrupt-statement ::= "try:" statement-sequence { "interrupt
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when" condition statement-sequence };

conditional-statement ::= "if" condition ":" statement-sequence

{ "elif" condition ":" statement-sequence }

[ "else:" statement-sequence ];

abort-statement ::= "abort";

terminate-statement ::= "terminate";

choose-statement ::= "choose" identifiers

shuffle-statement ::= "shuffle" identifiers

assignment-statement ::= identifier {"," identifier} "=" value {"," value};

condition ::= boolean-expression;

boolean-expression ::= identifier

| boolean-literal

| boolean-expression logical-operator boolean-expression

| "not" boolean-expression;

logical-operator ::= "and" | "or";

boolean-literal ::= "True" | "False";

action ::= atomic-behavior | identifier | action-sequence;

atomic-behavior ::= "FollowLaneBehavior"

| "TurnLeftBehavior"

| "TurnRightBehavior"

| "BrakingBehavior"

| "AccelerateForwardBehavior"

| "LaneChangeBehavior";

action-sequence ::= action { "," action };

# lower-level constructs below

identifier ::= letter | "_" { letter | digit | "_" };

identifiers ::= identifier {"," identifier}
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value ::= identifier | number | string | boolean-literal;

number ::= digit { digit };

string ::= "\"" { letter | digit | "_" | " " } "\"";

letter ::= "a" ... "z" | "A" ... "Z";

digit ::= "0" ... "9";

A.2 Scenic to UCLID5 Translation

The following algorithms assist with the generation of interrupt-driven, hierarchical extended finite
state machine models of Scenic programs in UCLID5 code.

Algorithm 6 ParseName (Scenic to UCLID5 Helper)

Input: abstract syntax tree of behavior definition (behavior)
Output: symbolic IHEFSM representation and UCLID5 hierarchical program encoding for
the behavior definition body input

1: seq← GetBehaviorDefinitionBody(behavior) // body is list of AST statements
2: program← NewUclidProgram()
3: child modules, program← ParseSequence(seq, program) // parent tracks active child
4: program← NewUclidModule(behavior name, child modules, program) // add module
5: return program // IHEFSM code for all modules of UCLID5 program

Algorithm 7 ParseSequence (Scenic to UCLID5 Helper)

Input: sequence of Scenic AST statements (sequence), UCLID5 code (program)
Output: symbolic IHEFSM representation of the Scenic program and UCLID5 hierarchi-
cal program encoding the representation

1: child modules← [ ] // add module for each statement in sequence
2: for stmt in sequence do
3: module, program← ParseStatement(stmt, program)
4: child modules.append(module)
5: program← NewUclidModule(stmt, child modules, program)
6: return child modules, program // each statement in sequence has corresponding module

Algorithm 6 (ParseName) creates the top-level UCLID5 module representing the state that
contains all trace-generating logic until the program terminates. Algorithm 7 (ParseSequence)
and Algorithm 8 (ParseStatement) recursively call each other to parse out sequences of Scenic
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Algorithm 8 ParseStatement (Scenic to UCLID5 Helper)

Input: Single Scenic AST statement (statement), UCLID5 code (program)
Output: Symbolic IHEFSM representation of the Scenic program and UCLID5 hierar-
chical program encoding the representation

1: if IsAtomic(statement) then
2: return ∅, NewUclidModule(statement,∅, program)
3: module, program← ParseSequence(statement.body, program) // body is list of ASTs
4: program← NewUclidModule(statement, module, program)
5: // NewUclidModule handles logic for DoUntil, TryInterrupt, Try, Interrupt, etc.
6: return [child module], program // statement has container module

statements until reaching any base cases (do and do until statements with behavior outputs
contained in the set of possible output trace labels).
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A.3 Experiment I Example Query

Scenic Query Program

behavior EgoBehavior():

try:

do FollowLaneBehavior()

interrupt when (distance from self to ped) < Range(1,10):

do BrakeBehavior()

ego = new Car with behavior EgoBehavior()

ped = new Pedestrian

Predicate Abstraction of Scenic Program

The predicate abstraction process automatically extracts the set of Boolean variable predicates
directing the flow of execution for the Scenic program. For each extracted predicate such as
nusc cond interrupt 1 1, it generates a stream of Boolean outputs for each timestep based on
the real-world labeled trace data.

behavior EgoBehavior():

try:

do FollowLaneBehavior()

interrupt when (nusc_cond_interrupt_1_1):

do BrakeBehavior()

ego = new Car with behavior EgoBehavior()

ped = new Pedestrian
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Generated Statecharts Representation of Scenic Program

Figure A.1 is an automatically generated IHEFSM representation of the Scenic program in state-
charts [86]. Note that this is a byproduct of the translation process constructed for interpretability,
but the translation from Scenic to UCLID5 is direct. The rendering is created with a PlantUML
[87] wrapper created through the Sismic [88] statecharts library.

Figure A.1: The Statecharts representation of the Scenic program contains hierar-
chical states EgoBehavior, TryInterrupt, Try, Interrupt, Do, FollowLaneBehavior,
BrakeBehavior corresponding to hierarchical structure of the Scenic program. Note that
within this representation, actions at each timestep are output by transitions at the deepest
states of the interrupt-driven hierarchical state machine.
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Generated UCLID5 Hierarchical Encoding of Scenic Program

module FollowLane_3_0 {

type atomic_t = input_generator.atomic_t;

type data_t = input_generator.data_t;

type status_t = input_generator.status_t;

type reset_t = input_generator.reset_t;

input nusc_cond_interrupt_1_1 : data_t;

input nusc_cond_do_2_0 : data_t;

input nusc_cond_do_2_1 : data_t;

sharedvar hfsm_trace : atomic_t;

sharedvar reset_target : reset_t;

output status_followlane_3_0 : status_t;

procedure reset_3_0()

modifies status_followlane_3_0;

{

status_followlane_3_0 = start;

}

init {

status_followlane_3_0 = start;

}

next {

hfsm_trace’ = FollowLaneBehavior;

status_followlane_3_0’ = progress;

}

}

module Brake_3_1 {

type atomic_t = input_generator.atomic_t;

type data_t = input_generator.data_t;

type status_t = input_generator.status_t;

type reset_t = input_generator.reset_t;

input nusc_cond_interrupt_1_1 : data_t;

input nusc_cond_do_2_0 : data_t;

input nusc_cond_do_2_1 : data_t;

sharedvar hfsm_trace : atomic_t;

sharedvar reset_target : reset_t;

output status_brake_3_1 : status_t;
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procedure reset_3_1()

modifies status_brake_3_1;

{

status_brake_3_1 = start;

}

init {

status_brake_3_1 = start;

}

next {

hfsm_trace’ = BrakeBehavior;

status_brake_3_1’ = progress;

}

}

module Do_2_0 {

type atomic_t = input_generator.atomic_t;

type data_t = input_generator.data_t;

type status_t = input_generator.status_t;

type reset_t = input_generator.reset_t;

input nusc_cond_interrupt_1_1 : data_t;

input nusc_cond_do_2_0 : data_t;

input nusc_cond_do_2_1 : data_t;

sharedvar hfsm_trace : atomic_t;

sharedvar reset_target : reset_t;

var status_followlane_3_0 : status_t;

output status_do_2_0 : status_t;

instance followlane_3_0: FollowLane_3_0(

hfsm_trace : (hfsm_trace),

reset_target : (reset_target),

nusc_cond_interrupt_1_1 : (nusc_cond_interrupt_1_1),

nusc_cond_do_2_0 : (nusc_cond_do_2_0),

nusc_cond_do_2_1 : (nusc_cond_do_2_1),

status_followlane_3_0 : (status_followlane_3_0)

);

procedure reset_2_0()

modifies status_do_2_0, followlane_3_0;

{

status_do_2_0 = start;

call followlane_3_0.reset_3_0();
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}

init {

status_do_2_0 = start;

}

next {

case

(status_do_2_0 != end) : {

next(followlane_3_0);

if (nusc_cond_do_2_0) {

status_do_2_0’ = end;

} else {

status_do_2_0’ = progress;

}

}

esac

}

}

module Do_2_1 {

type atomic_t = input_generator.atomic_t;

type data_t = input_generator.data_t;

type status_t = input_generator.status_t;

type reset_t = input_generator.reset_t;

input nusc_cond_interrupt_1_1 : data_t;

input nusc_cond_do_2_0 : data_t;

input nusc_cond_do_2_1 : data_t;

sharedvar hfsm_trace : atomic_t;

sharedvar reset_target : reset_t;

var status_brake_3_1 : status_t;

output status_do_2_1 : status_t;

instance brake_3_1: Brake_3_1(

hfsm_trace : (hfsm_trace),

reset_target : (reset_target),

nusc_cond_interrupt_1_1 : (nusc_cond_interrupt_1_1),

nusc_cond_do_2_0 : (nusc_cond_do_2_0),

nusc_cond_do_2_1 : (nusc_cond_do_2_1),

status_brake_3_1 : (status_brake_3_1)

);
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procedure reset_2_1()

modifies status_do_2_1, brake_3_1;

{

status_do_2_1 = start;

call brake_3_1.reset_3_1();

}

init {

status_do_2_1 = start;

}

next {

case

(status_do_2_1 != end) : {

next(brake_3_1);

if (nusc_cond_do_2_1) {

status_do_2_1’ = end;

} else {

status_do_2_1’ = progress;

}

}

esac

}

}

module Try_1_0 {

type atomic_t = input_generator.atomic_t;

type data_t = input_generator.data_t;

type status_t = input_generator.status_t;

type reset_t = input_generator.reset_t;

input nusc_cond_interrupt_1_1 : data_t;

input nusc_cond_do_2_0 : data_t;

input nusc_cond_do_2_1 : data_t;

sharedvar hfsm_trace : atomic_t;

sharedvar reset_target : reset_t;

var status_do_2_0 : status_t;

output status_try_1_0 : status_t;

instance do_2_0: Do_2_0(

hfsm_trace : (hfsm_trace),

reset_target : (reset_target),

nusc_cond_interrupt_1_1 : (nusc_cond_interrupt_1_1),
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nusc_cond_do_2_0 : (nusc_cond_do_2_0),

nusc_cond_do_2_1 : (nusc_cond_do_2_1),

status_do_2_0 : (status_do_2_0)

);

procedure reset_1_0()

modifies status_try_1_0, do_2_0;

{

status_try_1_0 = start;

call do_2_0.reset_2_0();

}

init {

status_try_1_0 = start;

}

next {

case

(status_try_1_0 != end) : {

next(do_2_0);

if (status_do_2_0’ == end) {

status_try_1_0’ = end;

} else {

status_try_1_0’ = progress;

}

}

esac

}

}

module Interrupt_1_1 {

type atomic_t = input_generator.atomic_t;

type data_t = input_generator.data_t;

type status_t = input_generator.status_t;

type reset_t = input_generator.reset_t;

input nusc_cond_interrupt_1_1 : data_t;

input nusc_cond_do_2_0 : data_t;

input nusc_cond_do_2_1 : data_t;

sharedvar hfsm_trace : atomic_t;

sharedvar reset_target : reset_t;

var status_do_2_1 : status_t;

output status_interrupt_1_1 : status_t;
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instance do_2_1: Do_2_1(

hfsm_trace : (hfsm_trace),

reset_target : (reset_target),

nusc_cond_interrupt_1_1 : (nusc_cond_interrupt_1_1),

nusc_cond_do_2_0 : (nusc_cond_do_2_0),

nusc_cond_do_2_1 : (nusc_cond_do_2_1),

status_do_2_1 : (status_do_2_1)

);

procedure reset_1_1()

modifies status_interrupt_1_1, do_2_1;

{

status_interrupt_1_1 = start;

call do_2_1.reset_2_1();

}

init {

status_interrupt_1_1 = start;

}

next {

case

(status_interrupt_1_1 != end) : {

next(do_2_1);

if (status_do_2_1’ == end) {

status_interrupt_1_1’ = end;

} else {

status_interrupt_1_1’ = progress;

}

}

esac

}

}

module TryInterrupt_0_0 {

type atomic_t = input_generator.atomic_t;

type data_t = input_generator.data_t;

type status_t = input_generator.status_t;

type reset_t = input_generator.reset_t;

type state_t = enum {TRY_1_0, INT_1_1};

input nusc_cond_interrupt_1_1 : data_t;

input nusc_cond_do_2_0 : data_t;
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input nusc_cond_do_2_1 : data_t;

sharedvar hfsm_trace : atomic_t;

sharedvar reset_target : reset_t;

var status_try_1_0 : status_t;

var status_interrupt_1_1 : status_t;

output status_tryinterrupt_0_0 : status_t;

var state_0_0 : state_t;

instance try_1_0: Try_1_0(

hfsm_trace : (hfsm_trace),

reset_target : (reset_target),

nusc_cond_interrupt_1_1 : (nusc_cond_interrupt_1_1),

nusc_cond_do_2_0 : (nusc_cond_do_2_0),

nusc_cond_do_2_1 : (nusc_cond_do_2_1),

status_try_1_0 : (status_try_1_0)

);

instance interrupt_1_1: Interrupt_1_1(

hfsm_trace : (hfsm_trace),

reset_target : (reset_target),

nusc_cond_interrupt_1_1 : (nusc_cond_interrupt_1_1),

nusc_cond_do_2_0 : (nusc_cond_do_2_0),

nusc_cond_do_2_1 : (nusc_cond_do_2_1),

status_interrupt_1_1 : (status_interrupt_1_1)

);

procedure reset_0_0()

modifies status_tryinterrupt_0_0, try_1_0, interrupt_1_1;

{

status_tryinterrupt_0_0 = start;

call try_1_0.reset_1_0();

call interrupt_1_1.reset_1_1();

}

init {

status_tryinterrupt_0_0 = start;

state_0_0 = TRY_1_0;

}

next {

case

(status_tryinterrupt_0_0 != end) : {

case

(state_0_0 == INT_1_1) : {



APPENDIX A. ADDITIONAL MATERIALS 58

next(interrupt_1_1);

case

(status_interrupt_1_1’ != end) : {

state_0_0’ = INT_1_1;

}

default : {

state_0_0’ = TRY_1_0;

}

esac

status_tryinterrupt_0_0’ = progress;

}

(state_0_0 == TRY_1_0) : {

next(try_1_0);

if (status_try_1_0’ == end) {

status_tryinterrupt_0_0’ = end;

} else {

status_tryinterrupt_0_0’ = progress;

case

(nusc_cond_interrupt_1_1) : {

state_0_0’ = INT_1_1;

}

default : {

state_0_0’ = TRY_1_0;

}

esac

}

}

esac

case

(reset_target == no_reset) : {

case

(state_0_0 == INT_1_1 && state_0_0’ == TRY_1_0) : {

reset_target’ = reset_interrupt_1_1;

}

esac

}

(reset_target == reset_interrupt_1_1) : {

call interrupt_1_1.reset_1_1();

reset_target’ = no_reset;

}

esac

}

esac
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}

}

module EgoBehavior {

type atomic_t = input_generator.atomic_t;

type data_t = input_generator.data_t;

type status_t = input_generator.status_t;

type reset_t = input_generator.reset_t;

input nusc_cond_interrupt_1_1 : data_t;

input nusc_cond_do_2_0 : data_t;

input nusc_cond_do_2_1 : data_t;

sharedvar hfsm_trace : atomic_t;

sharedvar reset_target : reset_t;

var status_tryinterrupt_0_0 : status_t;

instance tryinterrupt_0_0: TryInterrupt_0_0(

hfsm_trace : (hfsm_trace),

reset_target : (reset_target),

nusc_cond_interrupt_1_1 : (nusc_cond_interrupt_1_1),

nusc_cond_do_2_0 : (nusc_cond_do_2_0),

nusc_cond_do_2_1 : (nusc_cond_do_2_1),

status_tryinterrupt_0_0 : (status_tryinterrupt_0_0)

);

instance terminate: Terminate(

hfsm_trace : (hfsm_trace)

);

init {

reset_target = no_reset;

}

next {

case

(status_tryinterrupt_0_0 != end) : {

next(tryinterrupt_0_0);

}

default : {

next(terminate);

}

esac

}

}
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A.4 Experiment II Evaluation Programs

Experimental Overview

The following programs were used in the scalability analysis. Each of the four program formats
can be scaled to any number of statements (N), but we limit our experiments to the 1-4 range due
to computational constraints.

Nested Try

Nested Try 1

behavior TestParseBehavior():

try:

do FollowLaneBehavior() until cond

interrupt when cond:

do BrakingBehavior() until cond

ego = new Car with behavior TestParseBehavior()

Nested Try 2

behavior TestParseBehavior():

try:

try:

do FollowLaneBehavior() until cond

interrupt when cond:

do TurnRightBehavior() until cond

interrupt when cond:

do BrakingBehavior() until cond

ego = new Car with behavior TestParseBehavior()

Nested Try 3

behavior TestParseBehavior():

try:

try:

try:

do FollowLaneBehavior() until cond

interrupt when cond:

do TurnLeftBehavior() until cond

interrupt when cond:

do TurnRightBehavior() until cond

interrupt when cond:
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do BrakingBehavior() until cond

ego = new Car with behavior TestParseBehavior()

Nested Try 4

behavior TestParseBehavior():

try:

try:

try:

try:

do FollowLaneBehavior() until cond

interrupt when cond:

do AccelerateForwardBehavior() until cond

interrupt when cond:

do TurnLeftBehavior() until cond

interrupt when cond:

do TurnRightBehavior() until cond

interrupt when cond:

do BrakingBehavior() until cond

ego = new Car with behavior TestParseBehavior()

Try N

Try N 1

behavior TestParseBehavior():

try:

do FollowLaneBehavior() until cond

interrupt when cond:

do BrakingBehavior() until cond

ego = new Car with behavior TestParseBehavior()

Try N 2

behavior TestParseBehavior():

try:

do FollowLaneBehavior() until cond

interrupt when cond:

do TurnRightBehavior() until cond

interrupt when cond:

do BrakingBehavior() until cond
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ego = new Car with behavior TestParseBehavior()

Try N 3

behavior TestParseBehavior():

try:

do FollowLaneBehavior() until cond

interrupt when cond:

do TurnLeftBehavior() until cond

interrupt when cond:

do TurnRightBehavior() until cond

interrupt when cond:

do BrakingBehavior() until cond

ego = new Car with behavior TestParseBehavior()

Try N 4

behavior TestParseBehavior():

try:

do FollowLaneBehavior() until cond

interrupt when cond:

do AccelerateForwardBehavior() until cond

interrupt when cond:

do TurnLeftBehavior() until cond

interrupt when cond:

do TurnRightBehavior() until cond

interrupt when cond:

do BrakingBehavior() until cond

ego = new Car with behavior TestParseBehavior()

N DoUntil

N DoUntil 1

behavior TestParseBehavior():

do FollowLaneBehavior() until cond

ego = new Car with behavior TestParseBehavior()
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N DoUntil 2

behavior TestParseBehavior():

do FollowLaneBehavior() until cond

do BrakingBehavior() until cond

ego = new Car with behavior TestParseBehavior()

N DoUntil 3

behavior TestParseBehavior():

do FollowLaneBehavior() until cond

do TurnRightBehavior() until cond

do BrakingBehavior() until cond

ego = new Car with behavior TestParseBehavior()

N DoUntil 4

behavior TestParseBehavior():

do FollowLaneBehavior() until cond

do TurnLeftBehavior() until cond

do TurnRightBehavior() until cond

do BrakingBehavior() until cond

ego = new Car with behavior TestParseBehavior()

N Do

N Do 1

behavior TestParseBehavior():

do FollowLaneBehavior()

ego = new Car with behavior TestParseBehavior()

N Do 2

behavior TestParseBehavior():

do FollowLaneBehavior()

do BrakingBehavior()

ego = new Car with behavior TestParseBehavior()
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N Do 3

behavior TestParseBehavior():

do FollowLaneBehavior()

do TurnRightBehavior()

do BrakingBehavior()

ego = new Car with behavior TestParseBehavior()

N Do 4

behavior TestParseBehavior():

do FollowLaneBehavior()

do TurnLeftBehavior()

do TurnRightBehavior()

do BrakingBehavior()

ego = new Car with behavior TestParseBehavior()

A.5 Impracticality of Simulation-Based Approaches

The following algorithm formulation attempts to query from the state representation without lever-
aging a formal verification system. It fails to scale and is practically tedious to implement, as it
can require an exponential number of predicates to be added to an SMT solver and must store
an SMT solver per state in object IHEFSM, per object in l. Though simulation-based approaches
handle simpler cases much more efficiently, many break down once user-specified nondeterminism
enters the supported fragment of Scenic.

After exploring several algorithmic approaches of this nature, we propose that the bounded
model checking formulation of the querying problem more reasonably scales to handle cases of
nondeterminism in more complex scenarios. Statechart simulation and direct evaluation approaches
may be required to generate incredible amounts of possible traces in order to determine if a program
P could possibly generate a trace l.
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Algorithm 9 Determining if Scenic program P matches a time series label l

Input : A Scenic program P , a library of pre-defined behaviors B, a time series label l
Output: Does l match P? (True/False)

1: l∗ ← AugmentLabel(l, B) // add behavior trace to the label
2: AST← Compile(P ) // get abstract syntax tree (AST)
3: IHFSM← ExtractFSM(AST,B) // get Interrupt-driven Hierarchical FSM
4: ϕ← InitializeSMTFormula(s) // To search for a feasible object corresp.
5: while SMTSolver(ϕ) has a solution do
6: c← SMTSolver(ϕ) // a feasible object correspondence c
7: matchFailed← false
8: dstates ← {key: agent, value: a set of feasible current states in IHFSM}
9: dconstraints ← {key: state, value: dictionary {key: random variable, value: ∅}}
10: for each timestep t in the label l do
11: for each agent a in the Scenic program P do
12: CS ← dstates[a] // current states of a in the IHFSM
13: ba,t ← a set of behaviors taken by a at timestep t in label l according to c
14: TCa,t ← a set of transition conditions which output ba,t from CS
15: feasibleNextStates← ∅
16: nextDict← ∅
17: for each transition condition tc from TCa,t do
18: ψtc ← SMT encoding of tc with assignments of a’s feature values in l at t
19: rv ← a set of all random variables invoked in tc
20: ψ ← ψtc ∧ (SMT formula in dconstraints[s][r]. ∀s ∈ CS,∀r ∈ rv)
21: if SMTSolver(ψ) is true then
22: currentState, nextState← current and next states of tc
23: Add nextState to feasibleNextStates
24: updatedConstraint← (dconstraints[currentState][r] ∧ ψtc)
25: if nextState ̸∈ nextDict.keys then
26: ∀r ∈ rv. nextDict[nextState][r]← ψtc ∧ dconstraints[currentState][r]
27: else
28: ∀r ∈ rv. nextDict[nextState][r] ← nextDict[nextState][r] ∨ (ψtc ∧

dconstraints[currentState][r])
29: if feasibleNextStates ̸= ∅ then
30: dstates[a]← feasibleNextStates
31: Delete dconstraints.keys ∈ dstates[a]
32: Add nextDict to dconstraints[a]
33: else
34: ϕ← ϕ ∧ ((partial) correspondence for the agents invalidated so far in c)
35: matchFailed← true
36: break out of all for loops
37: if not matchFailed then
38: return True
39: return False
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A.6 Hierarchical Representation of Scenic Programs

Translation Overview

Through the following simple Scenic to statecharts translations, we aim to practially demonstrate
the manner in which the hierarchical state machine (IHEFSM) representation of a Scenic program
is hierarchically constructed. All statecharts visualizations continue to be automatically translated.

Do Statement

Scenic Code

behavior EgoBehavior():

do FollowLaneBehavior()

ego = new Car with behavior EgoBehavior()

Statechart Representation

Note that the do AtomicBehavior statement has a a parent do state and a child AtomicBehavior

state. This allows the same representation of do statements to be used for atomic behaviors and

Figure A.2: Statechart representation for a do statement.
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user-defined behaviors, which may insert a hierarchical state with deeper substates in the place of
a single state.

Do Until Statement

Scenic Code

behavior EgoBehavior():

do FollowLaneBehavior() until (distance from self to ped) < Range(1,10)

ego = new Car with behavior EgoBehavior()

ped = new Pedestrian

Statechart Representation

Figure A.3: Statechart representation for a do until statement. Observe that only the
transition conditions have changed between the do until and do representations. This
allows for ease of introduction of undeclared Boolean variables into UCLID5 programs to
allow for the exploration of nondeterministic or undefined termination conditions.
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Sequential Do Statements

Scenic Code

behavior EgoBehavior():

do FollowLaneBehavior() until (distance from self to ped) < Range(1,10)

do BrakingBehavior()

ego = new Car with behavior EgoBehavior()

ped = new Pedestrian

Statechart Representation

Figure A.4: Statechart representation for a sequence of do until and do statements. The
modular structure of each statement allows them to be composed together, regardless of the
statement type. This aims to mirror the Scenic program execution of one line of code at a
time.
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Many Do Statements

Scenic Code

behavior EgoBehavior():

do AccelerateForwardBehavior() until (self can see ped)

do FollowLaneBehavior() until (distance from self to ped) < Range(1,10)

do Brake() until ped not in self.lane

do LaneChangeBehavior()

ego = new Car with behavior EgoBehavior()

ped = new Pedestrian

Statechart Representation

Figure A.5: The modular translation process can scale to any number of statements in
sequence.
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Mixing Try and Do Statements

Scenic Code

behavior EgoBehavior():

do AccelerateForwardBehavior() until (self can see ped)

try:

do FollowLaneBehavior()

interrupt when (distance from self to ped) < Range(1,10):

do Brake() until ped not in self.lane

do LaneChangeBehavior()

ego = new Car with behavior EgoBehavior()

ped = new Pedestrian

Statechart Representation

Figure A.6: The try statement takes the same format as previously stated in Appendix A.3.
We connect several do and try states in sequence according to the Scenic program above.
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Nested Sequential Statements

Scenic Code

behavior EgoBehavior():

try:

do AccelerateForwardBehavior() until (self can see ped)

do FollowLaneBehavior()

interrupt when (distance from self to ped) < Range(1,10):

do Brake() until ped not in self.lane

do LaneChangeBehavior()

ego = new Car with behavior EgoBehavior()

ped = new Pedestrian

Statechart Representation

Figure A.7: The try statement now contains a sequence of a do until and do statement
in sequence. We now have demonstrated the approaches of handling sequences of Scenic
statements and nested sequences of statements.
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Nested Try Statements

Scenic Code

behavior EgoBehavior():

try:

try:

do AccelerateForwardBehavior() until (self can see ped)

interrupt when (distance from self to ped) < Range(1,10):

do FollowLaneBehavior()

interrupt when ped in self.lane:

do BrakingBehavior()

ego = new Car with behavior EgoBehavior()

ped = new Pedestrian

Statechart Representation

Figure A.8: This nested try block demonstrates the capacity of this representation to au-
tomatically construct an interrupt-driven hierarchical finite state machine for the specified
fragment of Scenic. The translation process supports unlimited levels of nesting and un-
limited numbers of sequential statements without any additional user input. All displayed
statecharts representations are generated alongside working UCLID5 modules for BMC.

This marks the conclusion of my thesis: Querying Labeled Time Series Data with
Scenario Programs. To everyone and everywhere that is Berkeley to me, I hope to
see you soon. You will always have a special place in my heart.


