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ABSTRACT
Byzantine fault tolerant protocols provide powerful tools to cope

with the presence of arbitrary failures, but have historically strug-

gled to do so at scale. The creation of new, scalable BFT protocols

regularly hinges on the unearthing of novel insights, the process

of which is often error-prone. Alternatively, localized, rule-driven

rewrites have shown promise in recent work through their abil-

ity to mechanically scale existing CFT protocols like Paxos using

decoupling and partitioning techniques. These techniques are pow-

erful, but are unable to be safely applied to a BFT environment

as-is. We introduce modifications to these rewrites such that they

can be safely applied to BFT protocols, and additionally prove the

correctness of our modified rewrites on arbitrary BFT protocols.

To this end, we must formally model the capabilities of Byzantine

nodes: we propose a Borgesian simulator, a proof concept meant

to reframe Byzantine actors as random actors, capable of simulat-

ing all possible Byzantine behavior through random outputs. We

reason on the Borgesian simulator to prove that the possible out-

puts a Byzantine actor can create before and after our modified

rewrites are the same. We additionally introduce a new rewrite,

partial independent decoupling, to adapt our suite of rewrites to

design patterns common in BFT protocols such as PBFT. Our pro-

posed rewritten version of PBFT is thus capable of view changes

and checkpointing while optimizing the critical path.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; • Information systems→ Query optimization.

KEYWORDS
Distributed Systems, Byzantine Fault Tolerance, Query Optimiza-

tion, PBFT, Datalog, Partitioning, Dataflow

1 INTRODUCTION
Designing systems capable of handling arbitrary failures is chal-

lenging [23]—designing such systems that do so at scale doubly

so [5, 6, 12, 15, 17]. As such, the path to creating safe, scalable

BFT [19] protocols currently remains uncertain and error-prone.

The prevailing approach to creating new protocols relies on the

ad-hoc discovery of insights and often rebuilds protocols from

scratch, usually with the introduction of additional complexity that

becomes increasingly difficult to reason about. We argue that taking

an alternative approach—adapting existing, simpler protocols to

become scalable by breaking them down into components to scale

individually—yields just as good results with far less trouble.

Gupta et al. [16] demonstrated the potential behind this approach by

pipelining and partitioning existing BFT protocols to increase their

throughput by up to 6×. Chu et al. [11] similarly optimized Paxos

using local, rule-driven program rewrites, leveraging decoupling
(dividing program logic across sequential nodes) and partitioning
(dividing message flow across multiple nodes in parallel) techniques

to achieve a 3× throughput improvement. This approach is espe-

cially attractive due to its small footprint and protocol-agnostic

application domain—rewrites can be applied to arbitrary distributed

programs in small increments and are thus easily verified.

We would like to borrow these ideas used to scale protocols like

Paxos, but these optimizations are not safe in the face of Byzantine

actors. To support this claim, we consider PBFT [8], a seminal BFT

protocol reaching consensus on 𝑛 = 3𝑓 + 1 machines tolerating 𝑓

Byzantine failures.

On the critical path, replicas receive PRE-PREPARE messages from

the primary replica containing a command to execute, its hash

digest, and a signature from the primary over the hash digest. Repli-

cas accept such PRE-PREPARE messages if the signature over the

digest is valid and the hash digest of the command matches the

provided digest. Later, when replicas receive 2𝑓 + 1 corresponding

COMMIT messages (each containing a digest) from other replicas,

they verify that the digest of the COMMIT messages matches that

of the PRE-PREPARE; if so, replicas execute the command and send

a reply to the client containing the result.

Since the replica accumulates PRE-PREPARE and COMMIT mes-

sages monotonically over time, the original rewrites from Chu et

al. suggest that monotonic decoupling [11] can be used to scale

each replica by dividing the logic responsible for processing PRE-

PREPAREmessages from the logic responsible for processing COM-

MIT messages. We will henceforth refer to these components as

the prepreparer and committer, respectively. The remaining phases

of PBFT can be decoupled in a similar fashion, which is further

discussed in Section 7. When a prepreparer accepts a valid PRE-

PREPARE from the primary replica, it validates the signature, veri-

fies the hash digest of the included command matches that of the

signed digest, and crucially forwards the PRE-PREPARE message

to its corresponding committer to allow it to execute the client

request.

This rewrite, while having the potential to reduce the load on both

the prepreparer and committer and improving throughput, is actu-

ally unsafe in the presence of Byzantine failures. Since the existing

rewrites do not secure the new message channel created between

each prepreparer and its corresponding committer, a Byzantine

prepreparer could send tampered PRE-PREPARE messages to two

other committers containing different commands and the original

signed digest. Other committers, not checking that the incoming

PRE-PREPARE message originates from its corresponding prepre-

parer, may compare the digests within the 2𝑓 + 1 COMMIT mes-

sages with the digest of this tampered PRE-PREPARE, find that they

match, and execute different commands—violating the consensus

invariant.

The solution is simple: we introduce sender verification (Section 5.1)

by signing and verifying messages on new message channels, and

additionally introduce message verification (Section 5.2) by requir-

ing partitions to individually enforce that they are sent the correct

subset of hash-partitioned messages. These forms of verification
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are proposed as modifications to the existing rewrites to prevent

Byzantine nodes from introducing unwanted behavior. Specifically,

we want to prove that after our modified rewrites, (1) nodes unaf-

fected by rewrites cannot be sent Byzantine messages not possible

before the rewrites, and (2) all modified nodes uphold the invari-

ants required by the rewrites in the face of Byzantine faults. These

guarantees would demonstrate that Byzantine attacks on nodes un-

affected by rewrites are identical to attacks carried out pre-rewrites

and that attacks on nodes modified by the rewrites are ineffective.

To reason on what Byzantine actors can and cannot send others

in the system, we devise a model of Byzantine nodes that aims to

capture the full scope of their capabilities. The creation of this model

is driven by the observations that (1) the behavior of a Byzantine

node can be described in terms of its outputs, and (2) the set of

possible Byzantine outputs is exactly the same as the set of all

random outputs. As such, we introduce the Borgesian simulator,
used as a proof construct to allow us to formally reason about

the capabilities of a Byzantine node before and after our modified

rewrites.

Protocols designed to tolerate Byzantine faults additionally require

different design paradigms compared to those of CFT protocols.

Consider the view-change protocol of PBFT, duringwhich the accep-

tance of a valid NEW-VIEW message prompts the replica to enter

a new view. If the replica is rewritten to decouple the prepreparer

and the committer, asynchrony may cause the two components to

become out of sync on the current view, potentially threatening

liveness, as discussed in Section 6. We introduce a new rewrite,

partial independent decoupling, as a means for decoupled protocols

to asynchronously "share" values with each other while satisfying

linearizability.

Existing results demonstrate that these rewrites, while simple and

small in scale, are capable of scaling the throughput of PBFT’s

critical path by 5× [9].

Portions of the material in this report previously appeared in [9];

here, our work formalizes those same ideas in Dedalus. Additionally,

the partial independent decoupling rewrite is introduced as a follow-

up to challenges posed in [9].

2 BACKGROUND
2.1 Byzantine Fault Tolerance
Byzantine fault tolerance (BFT) involves collaboration between

nodes in the face of arbitrary Byzantine [19] failures, often ap-

plied to the problem of consensus and state machine replication

(SMR). BFT is useful for decentralized systems—seeing widespread

adoption in blockchains like Ethereum, which runs the Gasper

BFT consensus protocol [7]—or for general-purpose computing

systems—which may wish to tolerate unexpected behavior beyond

crash faults due to memory or disk corruption, application bugs,

etc. [12, 13, 24]

PBFT [8] is a fundamental BFT protocol that takes a leader-based

approach to solving BFT SMR in an asynchronous network en-

vironment, proposing a solution requiring 𝑂 (𝑛2) communication

and two round trips under a stable leader. Optimizations focused

on increasing the throughput of PBFT have led to protocols such

as HotStuff [27], which pipelines the different stages of PBFT to

achieve linear communication for consensus and view changes un-

der partial synchrony [14], and Zyzzyva [17], which introduces an

optimistic linear fast path into PBFT using speculative execution.

Safety is a key concern when solving BFT consensus, and remains

tricky to this day; in 2017, Abraham et al. exposed a safety violation

in Zyzzyva’s view change protocol [2]—ten years after its publica-

tion. New developments in the space of BFT consensus continue

to be built on novel insights requiring rigorous, time-consuming

proofs of correctness.

2.2 PBFT
PBFT (Practical Byzantine Fault Tolerance) [8] is a seminal BFT

consensus protocol that we will continually use to demonstrate

and evaluate our contributions. PBFT requires 3𝑓 + 1 replicas to

tolerate 𝑓 Byzantine faults in an asynchronous environment, us-

ing a leader-based protocol broken up into pre-prepare, prepare,
and commit phases. All replicas, including the leader, begin in the

pre-prepare phase. Upon receiving a client REQUEST message, the

leader assigns the request a sequence number and broadcasts a PRE-

PREPARE messages to all replicas, including itself. Upon receiving

a valid PRE-PREPARE message from the leader, replicas enter the

prepare phase for the corresponding request and subsequently

broadcast PREPARE messages to all other replicas, including itself.

Upon receiving a quorum of 2𝑓 + 1 valid PREPARE messages from

other replicas, replicas enter the commit phase and subsequently

broadcast COMMIT messages to all other replicas, including itself.

Upon similarly receiving a quorum of 2𝑓 + 1 valid COMMIT mes-

sages from other replicas, the request is committed; replicas execute

the request and send a REPLY message back to the client. Clients

wait for a weak quorum of 𝑓 + 1 matching REPLY messages before

accepting a response and sending another request.

Leaders are deterministically chosen based on the current view
of the system. Unresponsive leaders are rotated out and replaced

via a view-change protocol. If too much time has passed since

receiving a client request without committing it in the current view,

replicas attempt a view change into the next view by broadcasting

VIEW-CHANGE messages to all other replicas. The leader of the

next view, upon receiving 2𝑓 + 1 valid VIEW-CHANGE messages

from other replicas, consolidates them into a NEW-VIEW message,

broadcasting it to all replicas. Replicas, upon receiving a valid NEW-

VIEW message from the new leader, transition into the new view.

Checkpoints in the form of snapshots of the state machine state

are also periodically produced to aid with garbage collection. A

replica produces a checkpoint after executing a fixed interval of

client requests. Upon producing a checkpoint, replicas broadcast

CHECKPOINTmessages containing the hash digest of the snapshot,

alongside its associated sequence number. Upon receiving 2𝑓 + 1

matching valid CHECKPOINT messages, the replica’s associated

checkpoint becomes a stable checkpoint. Messages associated

with sequence numbers below the latest stable checkpoint are able

to be discarded for garbage collection.
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2.3 Rule-Driven Rewrites
Chu et al. introduced a series of simple, protocol agnostic, lo-

cal rewrites that can be systematically applied to remove bottle-

necks and scale crash fault tolerant (CFT) protocols [10, 11]. These

rewrites are driven by static analysis of the protocol’s code, and

are able to be automatically performed if certain preconditions are

met. The rewrites are proven to maintain the existing semantics

of the protocol implementation, guaranteeing a property known

as observable equivalence—which will be discussed more in detail

in Section 2.5. The rewrites aim to improve the throughput of proto-

cols by leveraging techniques known as decoupling and partitioning.
Decoupling introduces pipelining by dividing the protocol logic of a

single node 𝑙 onto two nodes 𝑙1 and 𝑙2, while partitioning introduces

parallelism by dividing the flow of data through one node 𝑙 over

multiple nodes 𝑙 = {𝑙1, 𝑙2, . . .}. Chu et al. demonstrated how, using

their presented rewrite rules, they were able to scale the throughput

of 2PC [22] by 5× and Paxos [18] by 3×.

These rewrites, if applied directly to a Byzantine fault tolerant

environment, will introduce new avenues of attack for Byzantine

actors to exploit. Decoupling rewrites, for instance, turn a single

node into a pipeline of multiple nodes—introducing new message

channels for Byzantine nodes to unexpectedly interject messages

into. Partitioning modifies existing message channels, requiring

a set of messages originally meant for a single node to be selec-

tively rerouted instead towards one of its many partitions—opening

the door for Byzantine nodes to reroute messages incorrectly or

duplicate messages across partitions. As such, protocols designed

to be Byzantine fault tolerant may find themselves vulnerable to

unexpected behavior if these rewrites are not modified accordingly.

2.4 Dedalus
The rewrites presented by Chu et al. are expressed and performed

in the Dedalus [4] programming language. Dedalus is a spatiotem-

poral programming language used to represent distributed systems

as the derivation of data between tables over time. It is developed

as a restricted subset of Datalog
¬
[1], a SQL-like declarative logic

language [21] that provides syntax for rule expression that is equiv-

alent to the relational algebra constructs for selection, join and

projection—and additionally includes support for recursion, aggre-

gation, and negation. Dedalus modifies Datalog
¬
to include the

notion of space and time, allowing it to represent how data may

be distributed across and passed asynchronously between many

different nodes in a system, as well as allowing it to model how the

state of the system evolves over time.

We first introduce the relevant Datalog
¬
terminology required to

formalize the ideas presented in this paper. Datalog
¬
programs

are composed of rules which dictate how data—henceforth called

facts, tuples, or rows—are produced for tables called relations.
Relations define tables whose columns are called attributes. A fact

of a relation 𝑟 is thus a tuple of values, one for each attribute of 𝑟 ,

representing a row in the table. A Datalog
¬
rule references a single

relation in its head (the relation for which facts will be derived)

and a series of literals in its body (representing conditions under

which facts can be derived). A literal can be a relation or a boolean

expression. The attributes of body relations can be either constants

or variables—the attributes of head relations can additionally be

aggregation functions (such as SQL’s MAX or COUNT). Positive
literals within the body of a rule are joined and negative literals

are anti-joined. Repeating the same variable in different attribute

positions enforces the equality of values in those positions; hence

when a variable is repeated across multiple body literals of the same

rule, it enforces an equi-join on the matching attributes (rather than

a cartesian product). A fact is created for the head relation if (1)

attributes that have the same variable bound to the same variable

share the same value, and (2) the result of joining all body literals

(and anti-joining negated literals) is non-empty.

Functions can be modeled in Datalog
¬
as infinite relations with

facts in the form of (in_1,in_2,...,out_1,out_2,...). An exam-

ple of an infinite relation is digest(x,d), which contains a tuple

(x,d) if and only if taking the hash digest of x yields d. Rather than
explicitly containing tuples for all possible combinations of input

values and their corresponding outputs, infinite relations can be

lazily evaluated for the finite set of output values corresponding

to a given input. Therefore, to ensure finite derivations, infinite

relations must have their input variables repeated in the attributes

of other (finite) relationsso that the set of variable bindings for the

function evaluation is finite.

Relations containing facts that are specified before the execution of

the program are known as extensional relations, or EBD relations.
Relations with derived facts, defined by the heads of rules, are called

intensional relations, or IDB relations. We say that function sym-

bols, including boolean operators, are also part of the EDB—despite

being infinite, they are defined independently of the program.

Dedalus programs are legal Datalog
¬
programs, additionally con-

strained to represent the notion of time and space. Specifically, all

IDB relations in Dedalus must contain the space and time suffix

attributes 𝑙 and 𝑡 , representing where and when a fact exists in the

system, respectively. Additionally, the location and time of all body

literals of a rule must be bound to the same 𝑙 and 𝑡 , respectively—

this is to represent the physical constraint that facts can only be

joined if they exist at the same place at the same time. Constants,

infinite relations, and other forms of EDB relations are assumed to

be unchanging and replicated across all nodes in a system, and as

such are not required to have 𝑙 and 𝑡 suffix attributes for syntax

sugar purposes.

The time and location attributes in head relations are also con-

strained to model the requirements of physical reality, and differ

across three kinds of rules.

Synchronous rules, also known as deductive rules, bind the time

attribute in the head to the same variable as all body literals. These

rules represent simultaneous computation within the same logical

timestep, which is only possible within one machine—as such, the

location attribute of the head relation must be similarly bound to

the same variable as all body literals.

Sequential rules, also known as inductive rules, are characterized

by the head relation’s time attribute being bound to the successor

𝑡 ′ of the time 𝑡 in the body literals (such that 𝑡 ′ = 𝑡 + 1). In an

asynchronous system, this is only possible to guarantee within

one machine; as such, the location attribute of the head relation is
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bound to the same variable as all body literals. Sequential rules are

used to persist the existence of facts across time on a machine, and

are therefore used to represent the evolving state of machines in

the system.

Asynchronous rules represent the asynchronous passing of facts

between distinct locations. As such, the location attribute in the

head (the destination of the sent fact) may be bound to a different

variable than the rest of the body, and the time attribute of the head

(the arrival time of the sent fact) is bound to a variable which is

arbitrarily delayed behind the time variable of the body literals.

Specifically, this behavior is represented by the built-in delay re-
lation, which independently and non-deterministically chooses a

time for each sent fact to arrive at its destination. A more detailed

discussion on the formalism of delay is discussed in [3]. We refer to

input channels as the relations through which facts are received

asynchronously, and output channels as the relations through
which facts are sent.

We additionally refer to a component of a Dedalus program to

be a non-empty set of rules. This terminology will be useful when

determining how protocols can be rewritten—decoupling, for in-

stance, divides Dedalus program logic into two components to be

run on separate machines. Rewrites are performed in Dedalus based

on preconditions that examine which relations are referenced by

others—specifically, a head relation references all relations in its

body.

2.5 Correctness
The rewrites introduced by Chu et al. (with the modifications pre-

sented here) must not alter the behavior of the original input pro-

tocol if they are to be correct. It is important to note that we make

no assumptions about what goals the original protocol aims to

achieve, nor do we make any assumptions about the "correctness"

of any given protocol design. We reason here about the correctness

of rewrites, not the protocols being rewritten. As such, we define

our rewrites as correct if they maintain the existing semantics of

the given protocol—we call this property observable equivalence.
Colloquially, this means that to an outside observer, the behavior of

the rewritten protocol is indistinguishable from that of the original

implementation. More specifically, a rewrite is correct if—given a

program 𝑃 , a set of inputs to the system (and their send times), and

a rewritten program 𝑃 ′—the set of outputs received from 𝑃 ′ was
possible under some run of 𝑃 . In other words, for any given set

of inputs, the set of possible outputs under 𝑃 ′ is a subset of the

possible outputs under 𝑃 .

The safety of rewrites is of key concern as well—in the face of

Byzantine failures, it is crucial that our rewrites do not increase

the capabilities of Byzantine nodes. Our discussion on the modifi-

cations made to the original rewrites proposed by Chu et al. will

aim to address the concern of increased Byzantine influence on the

rewritten protocol. We additionally introduce the notion of a fault
domain to discuss failures under rewritten protocols. Each node 𝑙

in the original protocol belongs in its own fault domain; when the

components of 𝑙 are decoupled and partitioned, the collection of

nodes 𝑙 originating from 𝑙 remain in the same fault domain. We

claim that the rewrites with our presented modifications do not

cause an increase in the number of fault domains present in the

system. Consider how, to an outside observer, the set of outputs

from all 𝑙𝑖 ∈ 𝑙 in a rewritten protocol can correspond to the set of

outputs from 𝑙 in the original protocol. Any Byzantine failure in a

machine 𝑙𝑖 from the rewritten protocol can therefore be considered

as a failure in 𝑙 from the original protocol—if 𝑙 is "partially" faulty

due to a failure in some of its components, 𝑙 ’s behavior as a whole

can be classified as Byzantine. The influence of a failure in any

machine will never expand beyond its fault domain; as such, if the

original protocol is able to tolerate up to 𝑓 Byzantine failures, the

rewritten protocol can tolerate up to 𝑓 Byzantine failures as well.

3 SYSTEM MODEL
3.1 Failure Model & Network Assumptions
Dedalus assumes an asynchronous network environment, meaning

messages can be arbitrarily delayed or reordered in transit, but

must eventually be delivered after an unbounded amount of time.

We assume that 𝑓 Byzantine failures are present in the system,

with nodes suffering Byzantine failures being able to arbitrarily

deviate from the defined protocol—this includes but is not limited

to crashing, delaying messages, equivocation, message duplication,

or sending otherwise incorrect messages. We additionally assume

Byzantine nodes are capable of collusion and can share secret keys.

Lastly, we assume the system operates under a shared-nothing

architecture; nodes can only communicate with each other through

messages.

3.2 Cryptography Primitives
BFT protocols commonly assume that adversaries cannot subvert

the security guarantees of available cryptographic primitives [8,

17, 20, 26]; for example, Byzantine actors should not be able to

produce a valid signature over a message on behalf of a correct

node without knowledge of its secret key. To properly reflect these

assumptions made bymany BFT protocols andmodel their behavior

appropriately, we introduce new Dedalus formalisms to represent

common cryptography primitives. These primitives will be used to

allow us to formalize the capabilities and limitations of Byzantine

nodes, as well as reason about correctness.

We model the behavior of signatures in Dedalus with

the infinite EDB relations signMessage(msg,sk,sig) and

verifySignature(msg,pk,sig). signMessage contains the tuple

(msg,sk,sig) if and only if signing message msg with secret key sk
yields the signature sig. Likewise, verifySignature contains the
tuple (msg,pk,sig) if and only if the signature sig over message

msg was created using a secret key corresponding to the public key

pk. We additionally define the EDB relations publicKeys(l,l',pk)
and secretKeys(l,l',sk) to denote the public and secret keys

used to sign and verify messages sent from 𝑙 to 𝑙 ′, respectively.

It is additionally common for BFT protocols to involve signing

over sets of values—for instance, NEW-VIEW messages in PBFT

require the new primary to send (and thus sign over) the set

of VIEW-CHANGE messages it has received from other repli-

cas. As such, we introduce additional formalisms in Dedalus to

allow for such signing capabilities. To this end, we introduce

the signMessage<(...),sk> aggregation function, alongside its
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counterpart verifySignature<(...),pk,sig> aggregation func-

tion. signMessage<(...),sk> outputs the signature sig resulting
from signing over all aggregated values with the secret key 𝑠𝑘 .

verifySignature<(...),pk,sig> outputs a boolean representing

if signing over the set of values (...) with the secret key corre-

sponding to the public key 𝑝𝑘 produces the signature sig.

Our introduced formalism is agnostic to the signature scheme actu-

ally used to sign messages and can be made capable of supporting

their different behaviors and properties—we specifically highlight

MACs (Message Authentication Codes) and public-key signatures

as the most common schemes in BFT protocols. Both MACs and

public-key signatures produce signatures that can be verified with

the correct key; these keys are symmetric for MACs and asymmetric

for public-key signatures. The difference between the two schemes

lies in the likeness of the secret and public keys, as well as their

availability to nodes. MACs rely on the symmetric key 𝑘 to both

sign and verify messages sent between locations 𝑙 and 𝑙 ′. This key
is known only to 𝑙 and 𝑙 ′. As such, the key 𝑘 used to create and

verify MACs for messages sent from 𝑙 to 𝑙 ′ will correspond to the

secretKeys tuple (l,l',k) at location 𝑙 and the publicKeys tuple
(l,l',k) at location 𝑙 ′. Likewise, public-key encryption relies on a

secret key and public key to create and verify messages sent from

𝑙 , respectively. The secret key differs from the public key and is

known only to 𝑙 , whereas the shared public key is known to all

𝑙 ′. As a result, using public-key signatures involves distinct secret

and public keys 𝑠𝑘 and 𝑝𝑘 to sign and verify messages sent from

𝑙 . These keys correspond to the secretKeys tuples (l,l',sk) at

location 𝑙 for all 𝑙 ′, alongside the publicKeys tuple (l,l',pk) at

each location 𝑙 ′.

4 BORGESIAN SIMULATORS
While much attention in BFT protocol design is paid to the in-

telligent and malicious collusion driving Byzantine behavior, it’s

important to note that Byzantine behavior is fundamentally defined

by its arbitrary nature. Just as Byzantine nodes can act maliciously

to take down the system, they also have the capability to correctly

adhere to agreed-upon protocols or even act completely nonsen-

sically. We argue that in order to completely account for the full

capabilities of Byzantine actors, it’s necessary to model a scope

of behavior that stretches far beyond what could be considered

"intelligent" or even "interesting."

We propose an approach to reasoning about Byzantine behavior

by framing Byzantine nodes as random actors. We argue that a

node that exhibits completely random behavior not only encapsu-

lates intelligent behavior that is interesting to reason about, but is

sufficient to capture the full scope of Byzantine actors’ capabilities.

This line of reasoning begins with the observation that the capabil-

ities of a Byzantine node are defined with how it interfaces with

the rest of the system; in other words, it is only necessary to focus

on the outputs of Byzantine nodes when reasoning about their

behavior—their internal state is mostly irrelevant to an analysis

of their capabilities. A Byzantine node intelligently acting with

malicious conviction has just as much impact on the system as a

purely random Byzantine node that just so happened to act the

same way. Furthermore, if we take the set of outputs (and their

corresponding timestamps) resulting from any given execution

of a Byzantine node, it’s possible to generate an identical output

trace—by chance—using a purely random actor. In fact, every pos-

sible output trace from a Byzantine node can be found in the set

of possible outputs from a random actor. It follows that the set of

all possible Byzantine executions is exactly the same as the set of
executions under a random actor.

We call the random model of Byzantine behavior a Borgesian sim-
ulator1, which is able to emulate Byzantine executions producing

"intelligent" outputs alongside admittedly overwhelmingly large

volumes of executions producing random garbage. As a result, it’s

important to note that we intend to construct a Borgesian simulator

as a proof technique to reason about Byzantine behavior, rather

than use it in practice as a viable implementation of a Byzantine

actor. Modeling Byzantine behavior in this way is particularly use-

ful to us because it is protocol agnostic, and can therefore fit our

needs to reason about the correctness of rewrites on arbitrary pro-

tocols. Additionally, its output-oriented design aligns nicely to our

approach to reasoning about the observable equivalence of systems.

To implement our Borgesian simulator in a way that is protocol

agnostic, we devise a Borgesian harness that can be added on

top of existing protocol implementations to represent Byzantine

behavior within the system. Chu et al. proposed an implementation

of a Borgesian harness in event-driven pseudocode [9]; we will

formalize the same ideas in Dedalus.

4.1 Running Example
In demonstrating the implementation of our Borgesian harness, we

invoke the following commitOut example, responsible for collecting

PREPARE messages in PBFT. Upon obtaining a quorum of 2𝑓 + 1

matching messages, it broadcasts COMMITmessages to all replicas:

1 # Broadcast signed COMMIT messages
2 commitOut(v,n,d,l,sig,l',t') :−

prepareCertSize(v,n,d,size,l,t),
currentView(v,l,t), FAILURES(f), size>=2∗f+1,
self(l), secretKeys(l,l',sk),
signMessage((v,n,d,l),sk,sig), nodes(l'),
delay((v,n,d,l,sig,t,l'),t')

3 # Receive and log valid PREPARE messages
4 prepareLog(v,n,d,l',sig,l,t) :−

prepareIn(v,n,d,l',sig,l,t), publicKeys(l',l,pk),
verifySignature((v,n,d,l'),pk,sig),
currentView(v,l,t)

5 # Persist logged PREPARE messages
6 prepareLog(v,n,d,l',sig,l,t') :−

prepareLog(v,n,d,l',sig,l,t), t'=t+1
7 # Count the number of logged PREPARE messages with a

matching (v,n,d)
8 prepareCertSize(v,n,d,count<l'>,l,t) :−

prepareLog(v,n,d,l',sig,l,t)

Specifically, the component executing this logic accepts PREPARE

messages as input via prepareIn. Upon validating the message

1
The inspiration for this name comes from the author Jorge Luis Borges’ short story

The Library of Babel, which envisioned a library containing a book for every possible

fixed-width permutation of characters. This library would theoretically hold books

containing the opening acts of Shakespeare’s plays, endless alternate endings to Moby
Dick, and even accurate and vivid depictions of the future—alongside heaps upon

heaps of nonsensical gibberish.
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signature, checking that the view v is up-to-date, and that the id
attribute matches that of the sender attribute l', the component

adds the message to its log—where it is persisted. The relation

prepareCertSize tracks the number of matching PREPARE mes-

sages. Upon receiving 2𝑓 + 1 matching PREPARE messages in the

current view, the component signs and broadcasts COMMIT mes-

sages with the same view, sequence number, and digest as the PRE-

PARE quorum. The address of the component is found in the self
relation, and the addresses of all nodes in the system are present in

the nodes relation. The constant 𝑓 is stored in the FAILURES EDB
relation.

This quorum-driven collect-then-broadcast approach is common in

many distributed protocols, and serves as a simple foundation for

us to apply our Borgesian harness upon.

4.2 Arbitrary Message Output
We formalize the behavior of our Borgesian simulator in Dedalus

by first defining its ability to act "completely randomly." Specifically,

at every timestep, for each available input channel on every node,

the Borgesian simulator should send random numbers of messages

populated with random values to each machine.

We can accomplish this by introducing a new kind of Dedalus

relation: for each output relation 𝑟 , define the function

rRandomArgs(l,l',t,u_1,u_2, ...).

rRandomArgs(l,l',t,u_1,u_2,...) generates a random number

of facts with random values u_1, u_2, etc. each timestep. Each fact

corresponds to the values assigned to attributes of 𝑟 in a message

being sent to 𝑙 ′ at timestep 𝑡 . As such, the data types of u_1, u_2,
etc. correspond to the data types of the attributes of 𝑟 .

We introduce a new commitOut rule to model Byzantine outputs

through this channel:

1 # Output random garbage through this output channel
if Byzantine

2 commitOut(v,n,d,id,sig,l',t') :− byzantine(l),
nodes(l'), commitOutLimit(l,l',t,lim),
commitOutRandomArgs(l,l',t,v,n,d,id,sig), i<n,
delay((v,n,d,id,sig,i,l,t,l'),t')

Note the addition of the byzantine(l) relation, which contains a

row for each node 𝑙 in the system that is Byzantine. Its inclusion

in the body of commitOut ensures that the harness is only used by

Byzantine nodes and does not affect the behavior correct nodes.

Likewise, we need to add !byzantine(l) to the body of all existing

relations to ensure all Byzantine logic goes through our harness—

Byznatine nodes should not have to execute regular logic.

1 # Correct nodes continue using existing logic
2 commitOut(v,n,d,l,sig,l',t') :− !byzantine(l),

prepareCertSize(v,n,d,size,l,t),
currentView(v,l,t), FAILURES(f), size>=2∗f+1,
self(l), secretKeys(l,l',sk),
signMessage((v,n,d,l),sk,sig), nodes(l'),
delay((v,n,d,l,sig,t,l'),t')

4.3 Protected Fields
Observant readers may notice that our current approach to model-

ing Byzantine nodes is actually too powerful—namely, by allowing

signature fields like sig in commitOut to be directly assigned com-

pletely random values, we technically leave open the possibility for

our Borgesian simulator to generate valid signatures on behalf of

other correct nodes without knowing their secret keys. This would

break the security guarantees of the cryptographic primitives in

our system, and cannot be allowed. As such, it becomes necessary

to distinguish between different kinds of message fields and place

restrictions on how certain values are generated.

We divide all message fields into three types: unprotected fields, pro-

tected fields, and signatures over protected fields. Our Borgesian

simulator will continue to randomly generate values for unpro-

tected fields and protected fields. For signatures over protected

fields, our simulator will instead randomly generate signatures us-

ing the secret keys it has available. To simulate the sharing of secret

keys between colluding Byzantine nodes, we can join byzantine(l)
with secretKeys(l,l',sk) in our harness to allow a Byzantine

node to access the keys of any Byzantine 𝑙 .

We create the rProtectedArgs(l,l',l'',t,p_1,p_2,...) relation
to generate random values for protected fields in the same way

as is currently done for unprotected fields—but with the inclusion

of the extra l'' parameter, defining the Byzantine location from

which the Borgesian simulator will take secret keys. Specifically,

rProtectedArgs now generates a random number of facts for every

(𝑙, 𝑙 ′, 𝑙 ′′, 𝑡) quartet, denoting the attribute values of messages that

a Byzantine node 𝑙 will send to 𝑙 ′ through output channel 𝑟 using

the secret keys of 𝑙 ′′ at timestep 𝑡 .

We do not create a means for our Borgesian simulator to create

invalid signatures—we assume that correct nodes will verify the

signatures on the protected fields of incoming messages, discarding

any messages with invalid signatures.

1 # Randomly generate, sign, and send messages with
each key

2 commitOut(v,n,d,id,sig,l',t') :− byzantine(l),
nodes(l'),
commitOutProtectedRandomArgs(l,l',l'',t,v,n,d,id),
i<lim, byzantine(l''), secretKeys(l'',l',sk),
signMessage((v,n,d,id),sk,sig),
delay((v,n,d,id,sig,l,t,l'),t')

Note that in our running example, all attributes of commitOut are
protected by the signature sig.

4.4 Message Forwarding
Byzantine actors cannot spoof the signatures of other correct nodes,

but they are still capable of forwarding messages signed by correct

nodes. As a result, our Borgesian simulator should log all messages

with valid signatures received from others in order to potentially

forward them later.

For each input relation 𝑟 , define the relation rProtectedLog in the

form of rProtectedLog(p_1,p_2,...,sig,l,t). rProtectedLog
extracts protected values p_1, p_2, etc. from input messages of

𝑟 with a valid signature sig, persisting them alongside their signa-

ture.
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For our example, commitIn is the input relation receiving sent mes-

sages from commitOut:

1 # Log messages with valid signatures
2 commitInProtectedLog(v,n,d,l',sig,l,t) :−

commitIn(v,n,d,l',sig,l,t), publicKeys(l',l,pk),
verifySignature((v,n,d,l'),pk,sig)

3 # Persist logged messages
4 commitInProtectedLog(v,n,d,l',sig,l,t') :−

commitInProtectedLog(v,n,d,l',sig,l,t), t'=t+1

We introduce the function rForward((...),l,l',t), where the

existence of the tuple ((...),l,l',t) is randomly determined and

dictates that the fact (...) will be forwarded from location 𝑙 to

location 𝑙 ′ at timestep 𝑡 .

We introduce a new commitOut rule to model Byzantine message

forwarding through this channel, being sure to restrict its usage to

Byzantine nodes with byzantine(l):
1 # Randomly forward a random number of each logged

message
2 commitOut(v,n,d,id,sig,l',t') :− byzantine(l),

nodes(l'), commitOutForward((v,n,d,id,sig),l,l',t),
commitInProtectedLog(v,n,d,id,sig,l,t),
delay((v,n,d,id,sig,l,t,l'),t')

4.5 Complex Data Types
It may be necessary to generate random values for more complex

message types. Consider PBFT NEW-VIEW messages, which are

signed messages containing a set of signed VIEW-CHANGE mes-

sages, which themselves contain an array of sets containing signed

PREPREPARE and PREPAREmessages. The Borgesian harness must

be adapted accordingly to accurately generate random messages

for these complex message types, selecting a random number of

elements to include in each list or set, populating unprotected fields

with random values while randomly generating and signing—or

forwarding—values for protected fields.

5 MODIFICATIONS TO REWRITES
The rewrites proposed by Chu et al. are meant to be applied to

crash fault tolerant environments, and cannot be directly applied

to protocols meant to tolerate Byzantine faults. We present two

modifications to adapt these rewrites to the BFT environment and

formalize them in Dedalus.

5.1 Sender Verification
Decoupling rewrites, as well as the partial partitioning rewrite,

introduce new message channels between nodes: in the case of

decoupling rewrites, between the newly-decoupled nodes 𝑙1 and 𝑙2,

and in the case of partial partitioning, between the coordinator and

the partitions. These new message channels are created with the

inherent assumption that only certain nodes will send messages

through them. Without explicit enforcement of these assumptions,

Byzantine nodes can exploit the rewrite by unexpectedly interject-

ing their own messages through these input channels.

We patch this exploit by introducing sender verification to the

affected rewrites: each newly introducedmessage channel from 𝑙1 to

𝑙2 now involves 𝑙1 signing outgoing messages with their secret key,

to be verified by 𝑙2 upon receipt. Messages with signatures unable

to be verified from 𝑙1 are discarded. Formally, for each relation 𝑟 on

𝑙1 that outputs to 𝑙2, sign the outgoing message:

1 # Before
2 r(...,l',t') :− ... # existing logic
3 # After
4 r(...,sig,l',t') :− secretKeys(l,l',sk),

signMessage((...),sk,sig), ... # existing logic

Additionally, for each input relation 𝑟 on 𝑙2 receiving inputs

from 𝑙1, include a signature attribute sig and create the relation

rSenderVerified:

1 # Enforce that only messages from desired senders are
kept

2 rSenderVerified(...,l,t) :− r(...,sig,l,t),
forward(l',l), publicKeys(l',l,pk),
verifySignature((...),pk,sig)

We take the existing forward relation to derive the location of the

upstream node 𝑙 ′, taking its public key to verify the signature sig
of the received message. We complete the modification by replacing

all other references to 𝑟 in the program with rSenderVerified.

5.2 Message Verification
The rewrite for partitioning replicates the logic on one node 𝑙 across

multiple nodes 𝑙 , rerouting messages originally meant for 𝑙 instead

to a single partition 𝑙𝑖 ∈ 𝑙 . Messages are rerouted based on a known

distribution policy 𝐷 (𝑓 ), which deterministically maps facts 𝑓 to a

corresponding destination partition. While these rewrites do not

introduce any new message channels, they inherently assume that

facts arriving at each partition correctly follow this distribution

policy—an assumption that can be exploited by Byzantine nodes

by incorrectly rerouting facts to other partitions.

We prevent this exploit by introducing message verification to the

affected rewrites: each partition, upon receiving a fact 𝑓 through

one of its input channels, verifies the distribution policy 𝐷 (𝑓 ) in-
deed routes the 𝑓 to this partition—discarding the message if not.

Formally, for each input relation 𝑟 on a partition 𝑙 , create the relation

rPartitionVerified:
1 # Enforce that messages are only processed at the

correct partition
2 rPartitionVerified(...,l,t) :− r(...,l,t), D(...,l)

We model the distribution policy 𝐷 (𝑓 ) in Dedalus as an infinite

relation mapping the attributes of a fact of 𝑟 (excluding space and

time) to a location 𝑙 . We complete the modification by replacing all

other references to 𝑟 in the program with rPartitionVerified.

5.3 Correctness
To prove the correctness of these modified rewrites, we will reason

with our Borgesian simulator to demonstrate that (1) the number

of fault domains doesn’t increase after performing our rewrites

(as described in Section 2.5), and that (2) post-rewrite, all input

channels on correct nodes can correctly handle messages from

Byzantine nodes.

Without loss of generality, we prove these properties hold for a

given correct node 𝑑𝑒𝑠𝑡𝑐 receiving messages from a specific Bor-

gesian simulator 𝑠𝑖𝑚𝑏 in the original protocol and 𝑠𝑖𝑚′
𝑏
in the

rewritten protocol [9].
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We divide input channels into four categories based on how they

are affected by our rewrites:

(1) Unmodified channels, which correspond to input channels

that remain unchanged after rewrites.

(2) Redirected channels, which correspond to input channels ex-

isting on some 𝑙 before rewrites and some 𝑙 ′ corresponding
to 𝑙 after rewrites.

(3) Duplicated channels, which correspond to input channels

existing on some 𝑙 before rewrites and multiple 𝑙𝑖 ∈ 𝑙 corre-

sponding to 𝑙 after rewrites.

(4) New channels, which have no pre-rewrite counterpart and

exist to receive messages from 𝑙1 on a corresponding 𝑙2
(where 𝑙2 and 𝑙1 both correspond to an original 𝑙 before

rewrites). These channels are only created as a result of

decoupling or partial partitioning.

We prove that our desired properties hold for each of these input

channel types.

5.3.1 Unmodified channels. As the name suggests, unmodified

channels are the same before and after performing our rewrites.

As such, the input logic on these channels remains unchanged,

and 𝑑𝑒𝑠𝑡𝑐 continues to handle Byzantine messages through these

channels the same as before.

We will now show that 𝑠𝑖𝑚′
𝑏
is unable to send any additional mes-

sages through this channel compared to 𝑠𝑖𝑚𝑏 . As this channel is

unmodified, the output logic for 𝑠𝑖𝑚′
𝑏
is identical to that of 𝑠𝑖𝑚𝑏 .

However, we need to demonstrate that 𝑠𝑖𝑚′
𝑏
does not potentially

receive additional signatures from correct nodes as a result of the

rewrites—otherwise, 𝑠𝑖𝑚′
𝑏
could forward 𝑑𝑒𝑠𝑡𝑐 signatures of correct

nodes that 𝑠𝑖𝑚𝑏 could not, expanding the capabilities of Byzantine

nodes and violating correctness.

Assume for the sake of contradiction that 𝑠𝑖𝑚′
𝑏
received a "new"

signature that 𝑠𝑖𝑚𝑏 was unable to receive before the rewrites. This

signature must have be received through one of the four kinds of

input channels:

(1) Unmodified channels. The "new" signature received by 𝑠𝑖𝑚′
𝑏

must have been sent by a correct node. Since the input chan-

nel is unmodified, correct nodes send the same messages to

this channel post-rewrites as they did pre-rewrites. There-

fore, correct nodes that send a signature to an unmodified

input channel post-rewrites must have also sent the same

signature to the same channel pre-rewrites. It follows that

such a "new" signature could not have arrived through this

kind of channel.

(2) Redirected channels. The messages originally sent by correct

nodes to redirected channels at 𝑙 are simply redirected to

arrive at 𝑙 ′ after our rewrites. As such, signatures sent by
correct nodes to a redirected channel at 𝑙 ′ correspond 1:1

to signatures sent by correct nodes to the original location

𝑙 . Therefore, such a "new" signature could not have arrived

through this kind of channel.

(3) Duplicated channels. The messages originally sent by cor-

rect nodes to duplicated channels at 𝑙 are simply redirected

to arrive at one of 𝑙𝑖 ∈ 𝑙 after our rewrites. As with redi-

rected channels, signatures sent by correct nodes have a

1:1 correspondence between the channels in 𝑙 and 𝑙 ; such a

"new" signature could not have arrived through this kind

of channel.

(4) New channels. These input channels are meant to facilitate

message passing between nodes in the same fault domain,

as they are only created as a result of decoupling or partial

partitioning. As such, a correct node that sends a signature

to 𝑠𝑖𝑚′
𝑏
through this kind of channel must be in the same

fault domain as the Byzantine 𝑠𝑖𝑚′
𝑏
. Thus, the entire original

node can be considered Byzantine (Section 2.5); no correct

nodes outside the fault domain of 𝑠𝑖𝑚′
𝑏
will send signatures

to 𝑠𝑖𝑚′
𝑏
through these channels.

A "new" signature is therefore unable to arrive at 𝑠𝑖𝑚′
𝑏
through any

of its input channels—as such, 𝑠𝑖𝑚′
𝑏
cannot receive (and therefore

forward) any signatures from correct nodes previously unable to

be received 𝑠𝑖𝑚𝑏 .

5.3.2 Redirected channels. Redirected channels existing at 𝑙 before

rewrites are simply moved to exist at 𝑙 ′ after the rewrites. As such,
messages sent by 𝑠𝑖𝑚′

𝑏
to these channels at 𝑙 ′ correspond 1:1 to

messages sent by 𝑠𝑖𝑚𝑏 to these channels at 𝑙 . Therefore, the proof

follows similarly to that of unmodified channels.

5.3.3 Duplicated channels. Channels existing at 𝑙 before the

rewrites may be duplicated to exist at each of 𝑙𝑖 ∈ 𝑙 after the

rewrites, becoming duplicated channels. These channels assume

that each 𝑙𝑖 receives a disjoint set of the inputs originally received

at 𝑙 , with the message set received at 𝑙 being equivalent to that

received at 𝑙 in the original protocol. This assumption is enforced

by our message verification rewrite (Section 5.2), and as such mes-

sages sent by 𝑠𝑖𝑚′
𝑏
to these channels at 𝑙 correspond 1:1 to messages

sent by 𝑠𝑖𝑚𝑏 to these channels at 𝑙 . Therefore, the proof follows

similarly to that of unmodified channels.

5.3.4 New channels. New channels exist only after our rewrites,

and as such we must reason that a 𝑑𝑒𝑠𝑡𝑐 input channel of this

type is able to correctly handle all Byzantine messages. Say a node

𝑙 in the original protocol was decoupled into 𝑙1 and 𝑙2 after our

rewrites, introducing a new input channel at 𝑑𝑒𝑠𝑡𝑐 = 𝑙2. If the

fault domain containing 𝑑𝑒𝑠𝑡𝑐 is correct, then we know that the 𝑙1
must also be correct (Section 2.5). As such, 𝑑𝑒𝑠𝑡𝑐 will only receive

Byzantine messages through this input channel from nodes outside

its fault domain. With sender verification (Section 5.1), however,

messages arriving from such locations are discarded—therefore,

𝑑𝑒𝑠𝑡𝑐 will appropriately handle all Byzantine messages (by not

processing them at all). Note that if the fault domain containing

𝑑𝑒𝑠𝑡𝑐 is Byzantine, the behavior of 𝑑𝑒𝑠𝑡𝑐 in response to potentially

Byzantine messages from 𝑙1 is irrelevant due to us being able to

consider the original 𝑙 as Byzantine (Section 2.5).

6 PARTIAL INDEPENDENT DECOUPLING
Chu et al. decouples the PBFT consensus protocol by the stages of

its critical path: leader, proxy leader, pre-preparer, preparer, and

committer [9]. However, in PBFT, there exists multiple instances
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of "global" variables that are shared between these different com-

ponents of the protocol. Recall that once a PBFT replica accepts a

NEW-VIEW message, it enters a new view—updating its current

view to match that of the NEW-VIEW message. The current view

of the replica is used to determine who the primary is believed to

be, which messages to accept, and so on. Now imagine that each

PBFT replica is decoupled, such that the logic to process PREPARE

messages and the logic to process COMMIT messages are located

on separate machines, respectively dubbed the preparer and the

committer ; in order to maintain correctness, the components must

act as if they are in sync with each other about the current view.

If this weren’t the case, consider a preparer component that is in

an later view 𝑣1 than its committer counterpart in view 𝑣2. This

committer would refuse to commit requests in view 𝑣1 by discard-

ing COMMIT messages sent to it in that view (due to mismatching

views), including from its own corresponding preparer. This would

cause a correct committer to appear down or Byzantine to other

nodes, and could further prove a threat to liveness if this were to

occur across multiple replicas.

More generally, asynchrony between decoupled components means

that one component cannot immediately send outputs caused by

changes to its "shared" relations if it is unsure that a decoupled com-

ponent referencing those relations has observed the same changes.

PBFT involves a couple of instances of these "shared" relations

besides the current view, such as the value of the low watermark

or a boolean representing whether a view change currently is in

progress. The existing rewrites are insufficient to address this con-

cern, and the solution is not immediately obvious. For our prepar-

er/committer example, simply broadcasting NEW-VIEW messages

to all components is insufficient: network delays and message drop-

ping may cause different components of the original replica to

become out of sync with each other, leaving our problem unre-

solved.

We propose a new rewrite to identify and handle these kinds of

cases without violating observable equivalence: partial independent
decoupling.

6.1 Overview
Say we want to decouple a component 𝐶 into 𝐶1 and 𝐶2, such that

changes to some relations in𝐶1 must now be shared asynchronously

with 𝐶2. If a component 𝐶 behaves like a state machine [11], its

state at timestep 𝑡 is only dependent on the inputs received and

their orderings prior (regardless of their exact times of arrival).

However, to preserve linearizability, there must additionally appear

to be a single point in time during which both𝐶1 and𝐶2 processed

changes to shared relations. Without special attention, this property

can be violated—consider a flawed decoupling rewrite that has 𝐶1

immediately process a change to relations referenced by 𝐶2 as it

forwards the same change to 𝐶2. To demonstrate how this rewrite

is incorrect, say we have a 𝐶 that implements an append-only log

able to be queried for its size or full contents. 𝐶 can be divided into

𝐶1, containing logic to append entries and output the size of the log,

and 𝐶2, containing logic to output the contents of the log. Since 𝐶2

may not have received and processed new entries appended by 𝐶1

by the time 𝐶1 responds to other requests, a client could (1) send a

message to 𝐶1 appending an entry to the log, (2) query the size of

the log from𝐶1, but then (3) query the full contents of the log from

𝐶2 before the entry appended by 𝐶1 is received, seeing one less

entry than it expects and giving the appearance that its change has

been reverted. To avoid scenarios like this and otherwise preserve

linearizability, we will thus prevent𝐶1 from sending outputs until it

receives an ACK from 𝐶2 confirming it has received and processed

changes to relations it references in 𝐶1. Additionally, we will freeze
the processing of new inputs at 𝐶1 while waiting for an ACK from

𝐶2; this is likewise to prevent the sending of other outputs from 𝐶1

before it knows that 𝐶2 has received and processed the necessary

changes to relations it references in 𝐶1.

Therefore, we propose the following outline for partial independent
decoupling:

(1) 𝐶1 receives and processes inputs as they arrive, tracking

updates to relations referenced by 𝐶2 each timestep. When

updates are detected, 𝐶1 forwards these updates to 𝐶2 as a

batch.

(2) In the same timestep, 𝐶1 additionally prevents itself from

sending outputs until it receives an ACK from 𝐶2.

(3) Starting the next timestep, 𝐶1 additionally freezes. Addi-
tional inputs arriving while 𝐶1 is frozen are blocked from

being processed and persisted until 𝐶1 unfreezes.

(4) 𝐶2, upon receiving a batch from 𝐶1, processes it. 𝐶2 then

sends an ACK to𝐶1 confirming it has processed the received

batch.

(5) 𝐶1, upon receiving an ACK for a batch from 𝐶2, is able to

send the outputs it initially blocked in step 2.

(6) The next timestep,𝐶1 additionally unfreezes. Inputs blocked
from being processed in step 3 are all simultaneously pro-

cessed. This may cause 𝐶1 to block outputs again and addi-

tionally freeze in the next timestep.

Note that as this rewrite introduces new message channels between

𝐶1 and 𝐶2, it will have to be secured as described in Section 5.1 if

it’s to be safely applied to a Byzantine fault tolerant environment.

6.2 Rewrite
6.2.1 Precondition. We first adjust the definition of independent

given by Chu et al. in [11]: component 𝐶1 is now independent of
component 𝐶2 if 𝐶1 does not reference any relation found in the

head of a rule in 𝐶2. We additionally introduce the notion of input

sharing: components 𝐶1 and 𝐶2 are input sharing if they each

contain a rule referencing the same relation in their bodies.

Partial independent decoupling thus requires the precondition that

component𝐶 is a state machine that can be divided into𝐶1 and𝐶2,

where 𝐶1 is independent of 𝐶2.

Note the precondition for partial independent decoupling does not

involve the notion of input sharing. However, this definition ap-

plies to the precondition of mutually independent decoupling [11],

which we modify to now require both that (1) 𝐶1 is independent

of 𝐶2 and (2) 𝐶1 and 𝐶2 are not input sharing. Without the second

condition, facts for relations referenced by both𝐶1 and𝐶2 would to

be replicated to both components. In the absence of coordination,
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there is no guarantee that𝐶1 and𝐶2 will process these shared facts

at the same time, threatening linearizability.

Conservative checks to confirm if𝐶 is a state machine are discussed

by Chu et al. in their description of state machine decoupling [10],

and will not be discussed here in detail. However, we borrow the

terms no-change dependency and existence dependency [10]

coined by Chu et al. in their description for our own use.

6.2.2 𝐶1 Batch Creation & Forwarding. As mentioned above, the

partial independent decoupling rewrite involves forwarding facts

from 𝐶1 to 𝐶2 for each relation 𝑟 referenced in 𝐶2 whose head is in

𝐶1. In their definition of state machine decoupling [10], Chu et al.

shows how each of these relations falls into one of two categories—

either having a no-change dependency or an existence dependency

on the inputs of 𝐶2 [10].

We will first discuss the rewrites necessary for relations with a

no-change dependency on their parents. Let 𝑟𝑛𝑐 = {𝑟1, 𝑟2, ...} be
the set of relations referenced in 𝐶2 whose head is in 𝐶1 such

that 𝑟𝑛𝑐 ∈ 𝑟𝑛𝑐 has a no-change dependency on its parents (in 𝐶1).

𝐶1 tracks the delta of what is in each 𝑟𝑛𝑐 between timesteps:

1 # Track the state of r_nc during the last timestep
2 r_ncPrev(...,l,t) :− r_nc(...,l,t), t'=t+1
3 # Facts present in r_nc during the current timestep

but not the last
4 r_ncDeltaPos(...,l,t) :− r_nc(...,l,t),

!r_ncPrev(...,l,t)
5 # Facts present in r_nc during the last timestep but

not the current
6 r_ncDeltaNeg(...,l,t) :− r_ncPrev(...,l,t),

!r_nc(...,l,t)

To determine when changes to the contents of relations in 𝑟𝑛𝑐 have

occurred, we count the number of facts in all deltas of 𝑟𝑛𝑐 during

each timestep. For each 𝑟𝑛𝑐 ∈ 𝑟𝑛𝑐 , add the following to 𝐶1:

1 r_ncDeltaPosCount(count<(...)>,l,t) :−
r_ncDeltaPos(...,l,t)

2 r_ncDeltaNegCount(count<(...)>,l,t) :−
r_ncDeltaNeg(...,l,t)

Additionally, create the currentBatchSize relation, where 𝑟𝑛𝑐1,

𝑟𝑛𝑐2, etc. are all in 𝑟𝑛𝑐 :

1 # Sum the size of all deltas across all relations r_nc
2 currentBatchSize(size,l,t) :−

r_nc1DeltaPosCount(n1Pos,l,t),
r_nc1DeltaNegCount(n1Neg,l,t),
r_nc2DeltaPosCount(n2Pos,l,t),
r_nc2DeltaNegCount(n2Neg,l,t), ...,
size=n1Pos+n1Neg+n2Pos+n2Neg+...

The total batch size will be used by𝐶2, allowing it to know when it

has received all facts within a batch.

We create a batch if deltas are observed during the current timestep.

𝐶1 notifies 𝐶2 of an incoming batch by sending it its size via

batchOut:

1 # Send the batch size to C_2
2 batchOut(size,l',t') :− currentBatchSize(size,l,t),

size>0, forward(l,l'), delay((size,l,t,l'),t')

We now prepare to forward the deltas in 𝑟𝑛𝑐 to𝐶2 as part of a batch.

For each 𝑟𝑛𝑐 ∈ 𝑟𝑛𝑐 , add the following in 𝐶1:

1 r_ncDeltaPosBatchedOut(...,l',t') :−
r_ncDeltaPos(...,l,t), forward(l,l'),
delay((...,t,tPrev,l,t,l'),t')

2 r_ncDeltaNegBatchedOut(...,l',t') :−
r_ncDeltaNeg(...,l,t), forward(l,l'),
delay((...,l,t,l'),t')

𝐶2 may also reference relations in𝐶1 with an existence dependency

on their parents; facts generated in these relations must be similarly

forwarded to and processed by 𝐶2. To this end, let 𝑟𝑒 = {𝑟1, 𝑟2, ...}
be the set of relations referenced in 𝐶2 whose head is in 𝐶1 such

that 𝑟𝑒 ∈ 𝑟𝑒 has an existence dependency on its parents (in 𝐶1).

𝐶1 watches for the generation of facts in 𝑟𝑒 by counting the number

of facts present in each 𝑟𝑒 during each timestep:

1 r_eCount(count<(...)>,l,t) :− r_e(...,l,t)

These counts will contribute to the same currentBatchSize relation
used by no-change dependency relations 𝑟𝑛𝑐 ∈ 𝑟𝑛𝑐 . Modify the

currentBatchSize relation, where 𝑟𝑒1, 𝑟𝑒2, etc. are all in 𝑟𝑒 :

1 # Sum the size of all deltas across all relations
r_nc and r_e

2 currentBatchSize(size,l,t) :−
r_nc1DeltaPosCount(n1Pos,l,t),
r_nc1DeltaNegCount(n1Neg,l,t),
r_nc2DeltaPosCount(n2Pos,l,t),
r_nc2DeltaNegCount(n2Neg,l,t), ...,
r_e1Count(m1,l,t), r_e2Count(m2,l,t), ...,
size=n1Pos+n1Neg+n2Pos+n2Neg+...+m1+m2+...

No-change dependency relations and existence dependency rela-

tions share the same batch—a batch will be created in the current

timestep if any deltas are detected in 𝑟𝑛𝑐 or any facts are created in

𝑟𝑒 .

We additionally need 𝐶1 to forward facts of relations in 𝑟𝑒 to 𝐶2.

For each 𝑟𝑒 ∈ 𝑟𝑒 , add the following in 𝐶1:

1 r_eBatchedOut(...,l',t') :− r_e(...,l,t),
forward(l,l'), delay((...,l,t,l'),t')

In the same timestep 𝐶1 forwards a batch to 𝐶2, it additionally

prevents the sending of outputs until if receives an ACK from

𝐶2 for this batch. In future timesteps, 𝐶1 will additionally freeze,
delaying the processing of inputs until after it has received the ACK

from 𝐶2 for the batch. The logic behind both these mechanisms is

discussed in Section 6.2.4.

6.2.3 𝐶2 Batch Processing & Acknowledgement. 𝐶2 collects batches

from 𝐶1, using the provided size to recognize when a batch has

been fully received. First, 𝐶2 must collect and persist deltas and

facts forwarded from 𝐶1.
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For each 𝑟𝑛𝑐 ∈ 𝑟𝑛𝑐 , add the following rules to 𝐶2:

1 # Receive forwarded deltas from the
r_ncDeltaPosBatchedIn and r_ncDeltaNegBatchedIn
input channels

2 r_ncDeltaPosBatched(...,l,t) :−
r_ncDeltaPosBatchedIn(...,l,t)

3 r_ncDeltaNegBatched(...,l,t) :−
r_ncDeltaNegBatchedIn(...,l,t)

4 # Conditional persist as long as the batch hasn't
been sealed

5 r_ncDeltaPosBatched(...,l,t') :−
r_ncDeltaPosBatched(...,l,t), !batchSealed(l,t),
t'=t+1

6 r_ncDeltaNegBatched(...,l,t') :−
r_ncDeltaNegBatched(...,l,t), !batchSealed(l,t),
t'=t+1

For each 𝑟𝑒 ∈ 𝑟𝑒 , add the following rules to 𝐶2:

1 # Receive forwarded facts from the r_eBatchedIn input
channel

2 r_eBatched(...,l,t) :− r_eBatchedIn(...,l,t)
3 # Conditional persist as long as the batch hasn't

been sealed
4 r_eBatched(...,l,t') :− r_eBatched(...,l,t),

!batchSealed(l,t), t'=t+1

𝐶2 additionally learns the size of a batch upon receiving the batch’s

size from 𝐶1 via the batchIn input channel:

1 pendingBatch(size,l,t) :− batchIn(size,l,t)
2 # Conditional persist as long as the batch hasn't

been sealed
3 pendingBatch(size,l,t') :− pendingBatch(size,l,t),

!batchSealed(l,t), t'=t+1

We say a batch is sealed once it has been fully received. 𝐶2 now

counts the deltas and facts received to know when it has fully

received the batch.

For each 𝑟𝑛𝑐 ∈ 𝑟𝑛𝑐 , add the following rules to 𝐶2:

1 r_ncDeltaPosBatchedCount(count<(...)>,l,t) :−
r_ncDeltaPosBatched(...,l,t)

2 r_ncDeltaNegBatchedCount(count<(...)>,l,t) :−
r_ncDeltaNegBatched(...,l,t)

For each 𝑟𝑒 ∈ 𝑟𝑒 , add the following rule to 𝐶2:

1 r_eBatchedCount(count<(...)>,l,t) :−
r_eBatched(...,l,t)

Additionally, add:

1 # Sum the size of all deltas across all relations
r_nc and r_e

2 receivedBatchSize(size,l,t) :−
r_nc1DeltaPosBatchedCount(n1Pos,l,t),
r_nc1DeltaNegBatchedCount(n1Neg,l,t),
r_nc2DeltaPosBatchedCount(n2Pos,l,t),
r_nc2DeltaNegBatchedCount(n2Neg,l,t), ...,
r_e1BatchedCount(m1,l,t), r_e2BatchedCount(m2,l,t),
..., size=n1Pos+n1Neg+n2Pos+n2Neg+...+m1+m2+...

Upon receiving all deltas and facts from 𝐶1, the batch is sealed:

1 batchSealed(l,t) :− pendingBatch(size,l,t),
receivedBatchSize(size,l,t)

Once a batch is sealed, 𝐶2 can safely apply the deltas and add the

facts forwarded from𝐶1. To control access to these deltas and facts

by the other relations of 𝐶2, replace all references to relations 𝑟 in

𝑟𝑛𝑐 or 𝑟𝑒 with rSealed.

Additionally, for relations 𝑟𝑛𝑐 ∈ 𝑟𝑛𝑐 , add the following:

1 # Facts in the positive delta are added to r_ncSealed
after this timestep

2 r_ncSealed(...,l,t') :− r_ncDeltaPosBatched(...,l,t),
batchSealed(l,t), t=t'+1

3 # Facts in the negative delta are removed from
r_ncSealed after this timestep

4 r_ncRemoved(...,l,t) :− r_ncDeltaNegBatched(...,l,t),
batchSealed(l,t)

5 # When no batch is sealed, this persists r_ncSealed
6 r_ncSealed(...,l,t') :− r_ncSealed(...,l,t),

!r_ncRemoved(...,l,t), t=t'+1
7 # The delta is applied to rSealed during this timestep
8 rSealed(...,l,t) :− r_ncDeltaPosBatched(...,l,t),

batchSealed(l,t)
9 rSealed(...,l,t) :− r_ncSealed(...,l,t),

!r_ncRemoved(...,l,t)

r_ncSealed is created to enable rSealed to apply the necessary

deltas in the same timestep a batch is sealed at 𝐶2. Note that

r_ncSealed contains the same facts as rSealed, only with all time

attributes delayed by one timestep.

For relations 𝑟𝑒 ∈ 𝑟𝑒 , add the following:

1 # Add the fact to rSealed
2 rSealed(...,l,t) :− r_eBatched(...,l,t),

batchSealed(l,t)

𝐶2 additionally sends 𝐶1 an ACK once it has sealed a batch; it does

so via the output channel batchAckOut:

1 # Send an ACK once a batch is sealed
2 batchAckOut(l',t') :− batchProcessed(l,t),

forward(l',l), delay((l,t,l'),t')

6.2.4 Blocking Outputs & Freezing𝐶1. Wewill now rewrite each of

the output channels of 𝐶1 to delay sending outputs while waiting

for an ACK from 𝐶2. For each output rule of relation 𝑟 (specifically,

each rule of 𝑟 containing the delay relation in the body), we will

turn it from an asynchronous rule of 𝑟 to a synchronous rule of

a new relation 𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔. 𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔 has the same attributes as 𝑟 ,

with the addition of an additional attribute that will act as the new

location variable for facts in 𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔.

We create a rule 𝜑 ′ of 𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔 from an output rule 𝜑 of 𝑟 by (1)

removing the delay rule in the body of 𝜑 , (2) binding the time

attribute in the head of 𝜑 to the same variable as all body literals’

time attributes, (3) adding an additional location attribute to the

head of 𝜑 , bound to the same variable as all body literals’ location

attributes, and (4) replacing the reference to 𝑟 in the head of 𝜑 with

rPending such that:

1 # Before
2 r(...,l',t') :− delay((...),t'), ... # existing logic
3 # After
4 rPending(...,l',l,t) :− ... # existing logic

Note that 𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔 has one more attribute than 𝑟 as we do not

replace the attribute bound to 𝑙 ′ and instead add an additional

attribute for 𝑙 .
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Persist 𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔 while the node is waiting for an ACK from 𝐶2:

1 # Includes the timestep the batch is created
2 awaitingAck(l,t) :− currentBatchSize(size,l,t), size>0
3 # Conditional persist as long as the batch hasn't

been sealed
4 awaitingAck(l,t') :− awaitingAck(l,t),

!batchAckIn(l,t), t'=t+1
5 # If we have a batch with no ACK, block outputs
6 blockOutputs(l,t) :− awaitingAck(l,t),

!batchAckIn(l,t)
7 # Persist blocked outputs in rPending
8 rPending(...,l,t') :− rPending(...,l,t),

blockOutputs(l,t), t'=t+1

Note that blockOutputs and awaitingAck are subtly differ-

ent: blockOutputs evaluates to false the timestep an ACK ar-

rives, whereas awaitingAck only does so on the next timestep.

awaitingAck is created to allow blockOutputs to unblock outputs

the same timestep it receives an ACK from 𝐶2.

Finally, create a new output channel 𝑟𝑆𝑒𝑎𝑙𝑒𝑑 that outputs persisted

facts in 𝑟𝑃𝑒𝑛𝑑𝑖𝑛𝑔 once the ACK has been received:

1 rSealed(...,l',t') :− rPending(...,l',l,t),
!blockOutputs(l,t), delay((...),t')

𝐶1 additionally freezes—and delays the processing of inputs—

starting the timestep after 𝐶1 creates a new batch and pre-

vents the sending of outputs, only unfreezing the timestep

after it receives an ACK and sends the pending outputs.

For each input relation 𝑟 , we introduce the relations 𝑟𝐹𝑟𝑜𝑧𝑒𝑛 and

𝑟𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑 :

1 # The interval C_1 freezes is one timestep behind the
interval it blocks outputs

2 freeze(l,t') :− blockOutputs(l,t), t'=t+1
3 # rFrozen takes inputs from r
4 rFrozen(...,l,t) :− r(...,l,t)
5 # rReleased receives facts from rFrozen when not

frozen
6 rReleased(...,l,t) :− rFrozen(...,l,t), !freeze(l,t)
7 # Otherwise, persist facts in rFrozen
8 rFrozen(...,l,t') :− rFrozen(...,l,t), freeze(l,t),

t'=t+1

To control the access to these frozen inputs by the other relations

of 𝐶1, replace all references to input relations 𝑟 with rReleased.

6.3 Correctness
6.3.1 Linearizability. To prove the correctness of this rewrite, we

will first demonstrate that it satisfies linearizability. Specifically, this

means that if the commit time 𝑡𝑐 for an operation precedes the start

time for another operation 𝑡 ′𝑠 , we can pick respective linearization

points 𝑇 and 𝑇 ′
for these operations such that 𝑡 < 𝑡 ′. We propose

the following mapping to choose linearization points for messages

arriving at 𝐶1 or 𝐶2 in our rewritten protocol.

For messages arriving at 𝐶2, messages unrelated to batches sent

from 𝐶1 have their linearization point 𝑇 mapped to the timestep

of their arrival 𝑡 . Messages composing a batch sent from 𝐶1 have

their linearization point 𝑇 mapped to 𝑇 = 𝑡𝑠𝑒𝑎𝑙 , the timestep the

batch is fully received and processed by 𝐶2.

For messages arriving at 𝐶1, we divide how we map their lineariza-

tion points based on the possible state of 𝐶1 upon their arrival

during timestep 𝑡 :

(1) 𝐶1 is unfrozen and doesn’t block outputs: we map the lin-

earization point 𝑇 to be equal to 𝑡 .

(2) 𝐶1 is unfrozen, but blocks outputs: facts in relations refer-

enced by𝐶2 must have arrived during 𝑡 . Thus, the lineariza-

tion point𝑇 of such messages must be mapped to𝑇 = 𝑡𝑠𝑒𝑎𝑙
to coincide with 𝐶2 and preserve linearizability.

(3) 𝐶1 is frozen: this must mean that a batch was created earlier

at some 𝑡𝑖𝑛 < 𝑡 . Let 𝑡𝑎𝑐𝑘 be the timestep during which 𝐶1

receives an ACK for this batch, and 𝑡 ′
𝑖𝑛

> 𝑡𝑖𝑛 be the next

timestep facts in relations referenced by 𝐶2 arrive at 𝐶1. If

𝑡 ′
𝑖𝑛

≤ 𝑡𝑎𝑐𝑘 +1, we map the linearization point 𝑡 ′ to 𝑡 ′ = 𝑡 ′
𝑠𝑒𝑎𝑙

,

where 𝑡 ′
𝑠𝑒𝑎𝑙

is the timestep the relevant facts arriving at 𝑡 ′
𝑖𝑛

are sealed at 𝐶2. Otherwise, if 𝑡
′
𝑖𝑛

> 𝑡𝑎𝑐𝑘 + 1, we map 𝑡 ′ to
𝑇 = 𝑡𝑎𝑐𝑘 + 1.

We will begin by justifying how each chosen linearization point

𝑇 falls within any possible [𝑡𝑠 , 𝑡𝑐 ] interval of an operation in that

category.

For messages arriving at 𝐶2 unrelated to batches sent from 𝐶1, we

define 𝑡𝑠 and 𝑡𝑐 as the timesteps during which a third party sends a

request to and receives a reply from 𝐶2, respectively. 𝐶2 can only

receive a request during timestep 𝑡 after a third party sends it during

timestep 𝑡𝑠 < 𝑡 . Additionally, any third party will only consider an

operation committed once it has received a response from𝐶2 during

timestep 𝑡𝑐 , who can only respond after receiving the request. As

such, mapping 𝑇 = 𝑡 satisfies 𝑇 ∈ [𝑡𝑠 , 𝑡𝑐 ].

Lemma 6.1. Given an operation that is sent out and considered com-
mitted by a third party during timesteps 𝑡𝑠 and 𝑡𝑐 , respectively, and
whose corresponding request is received and replied to by component
𝐶 during timesteps 𝑡𝑖𝑛 and 𝑡𝑜𝑢𝑡 , respectively, 𝑡𝑠 < 𝑡𝑖𝑛 ≤ 𝑡𝑜𝑢𝑡 < 𝑡𝑐 .

For messages received at 𝐶2 composing a batch sent from 𝐶1, let

𝑡𝑖𝑛 denote the timestep 𝐶1 creates and sends the batch to 𝐶2 and

𝑡𝑎𝑐𝑘 denote the timestep 𝐶1 receives the corresponding ACK from

𝐶2 and outputs. As these messages are caused by requests first

arriving at𝐶1 from a third party, 𝑡𝑠 < 𝑡𝑖𝑛 . As a third party can only

receive a reply from 𝐶1 after it unblocks outputs during timestep

𝑡𝑎𝑐𝑘 , 𝑡𝑐 > 𝑡𝑎𝑐𝑘 .𝐶2 can only start receiving forwarded messages after

they are sent from 𝐶1, and thus can only seal the batch in timestep

𝑡𝑠𝑒𝑎𝑙 > 𝑡𝑖𝑛 . 𝐶2 will additionally not send an ACK until the batch is

sealed, meaning any ACK received by 𝐶1 must be received at 𝐶1

during timestep 𝑡𝑎𝑐𝑘 > 𝑡𝑠𝑒𝑎𝑙 . Thus, 𝑡𝑠 < 𝑡𝑖𝑛 < 𝑡𝑠𝑒𝑎𝑙 < 𝑡𝑎𝑐𝑘 < 𝑡𝑐 and

so mapping 𝑇 = 𝑡𝑠𝑒𝑎𝑙 satisfies 𝑇 ∈ [𝑡𝑠 , 𝑡𝑐 ].

Lemma 6.2. Given facts in relations referenced by 𝐶2 arrive at 𝐶1

during timestep 𝑡𝑖𝑛 , the batch of these facts formed during 𝑡𝑖𝑛 is sealed
at 𝐶2 during timestep 𝑡𝑠𝑒𝑎𝑙 > 𝑡𝑖𝑛 .

Lemma 6.3. Given 𝐶2 seals a batch during timestep 𝑡𝑠𝑒𝑎𝑙 , the ACK
sent by 𝐶2 during 𝑡𝑠𝑒𝑎𝑙 will reach 𝐶1 during timestep 𝑡𝑎𝑐𝑘 > 𝑡𝑠𝑒𝑎𝑙 .
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Corollary 6.4. Any batch created at 𝐶1 during timestep 𝑡𝑖𝑛 , sealed
at𝐶2 during timestep 𝑡𝑠𝑒𝑎𝑙 , and whose corresponding ACK is received
at 𝐶1 during timestep 𝑡𝑎𝑐𝑘 satisfies 𝑡𝑖𝑛 < 𝑡𝑠𝑒𝑎𝑙 < 𝑡𝑎𝑐𝑘 .

For messages arriving at 𝐶1 during timestep 𝑡 while 𝐶1 is unfrozen

and doesn’t block outputs, 𝑡𝑠 < 𝑡 < 𝑡𝑐 and thus mapping 𝑇 = 𝑡

satisfies 𝑇 ∈ [𝑡𝑠 , 𝑡𝑐 ] for similar reasons as Lemma 6.1.

For messages arriving at 𝐶1 during timestep 𝑡 while 𝐶1 is unfrozen

and blocks outputs, 𝑡 must represent the timestep 𝑡𝑖𝑛 of a batch’s

creation. Therefore, 𝑡𝑠 < 𝑡𝑖𝑛 and 𝑡𝑎𝑐𝑘 < 𝑡𝑐 as per Lemma 6.1. Corol-

lary 6.4 shows that 𝑡𝑖𝑛 < 𝑡𝑠𝑒𝑎𝑙 < 𝑡𝑎𝑐𝑘 and thus mapping 𝑇 = 𝑡𝑠𝑒𝑎𝑙
satisfies 𝑇 ∈ [𝑡𝑠 , 𝑡𝑐 ].

For messages arriving at 𝐶1 during timestep 𝑡 while 𝐶1 is frozen,

let 𝑡𝑖𝑛 denote the timestep 𝐶1 created the corresponding batch and

𝑡 ′
𝑖𝑛

> 𝑡𝑖𝑛 be the next timestep facts in relations referenced by 𝐶2

arrive at 𝐶1. First consider the case where 𝑡
′
𝑖𝑛

≤ 𝑡𝑎𝑐𝑘 + 1. As per

Lemma 6.1, 𝑡𝑠 < 𝑡 . Since𝐶1 is frozen during timestep 𝑡 , a batch must

have been sent from 𝐶1 during some timestep 𝑡𝑖𝑛 < 𝑡 whose ACK

has not been previously received by 𝐶1. This implies that 𝑡 ≤ 𝑡𝑎𝑐𝑘 ,

with𝐶1 next becoming unfrozen during timestep 𝑡𝑎𝑐𝑘 + 1. However,
𝑡 ′
𝑖𝑛

≤ 𝑡𝑎𝑐𝑘+1 dictates that𝐶1 will block outputs in the same timestep

it unfreezes, creating and sending out another batch during timestep

𝑡 ′ = 𝑡𝑎𝑐𝑘 + 1 that will be sealed by 𝐶2 during timestep 𝑡 ′
𝑠𝑒𝑎𝑙

> 𝑡 ′

(Corollary 6.4). The outputs for messages arriving during timestep

𝑡 will thus be sent during timestep 𝑡 ′
𝑎𝑐𝑘

> 𝑡 ′
𝑠𝑒𝑎𝑙

(Corollary 6.4), with

𝑡 ′
𝑎𝑐𝑘

< 𝑡𝑐 (Lemma 6.1). As a result, 𝑡𝑠 < 𝑡 ≤ 𝑡𝑎𝑐𝑘 < 𝑡 ′ < 𝑡 ′
𝑠𝑒𝑎𝑙

<

𝑡 ′
𝑎𝑐𝑘

< 𝑡𝑐 and thus mapping 𝑇 = 𝑡 ′
𝑠𝑒𝑎𝑙

satisfies 𝑇 ∈ [𝑡𝑠 , 𝑡𝑐 ]. Note
here that 𝑇 ≥ 𝑡 . If instead 𝑡 ′

𝑖𝑛
> 𝑡𝑎𝑐𝑘 + 1, no batch is created at 𝐶1

as it unfreezes during timestep 𝑡𝑎𝑐𝑘 + 1. This means 𝐶1 will not

block outputs, allowing𝐶1 to respond during timestep 𝑡𝑎𝑐𝑘 + 1 < 𝑡𝑐
(Lemma 6.1). As such, 𝑡𝑠 < 𝑡 < 𝑡𝑎𝑐𝑘 + 1 < 𝑡𝑐 and thus mapping

𝑇 = 𝑡𝑎𝑐𝑘 + 1 satisfies 𝑇 ∈ [𝑡𝑠 , 𝑡𝑐 ].

Lemma 6.5. Given an operation that is considered started and com-
mitted by a third party during timesteps 𝑡𝑠 and 𝑡𝑐 , respectively, the as-
signed linearization point to that operation𝑇 must satisfy𝑇 ∈ [𝑡𝑠 , 𝑡𝑐 ].

Corollary 6.6. Given anymessage arriving at either𝐶1 or𝐶2 during
timestep 𝑡 , the message’s corresponding linearization point is mapped
to 𝑇 ≥ 𝑡 .

Corollary 6.6 is an observation made about our linearization map-

ping that will aid in some of our proofs.

To prove our mapping satisfies linearizability, we will assume by

contradiction that there exists two operations spanning intervals

[𝑡𝑠,1, 𝑡𝑐,1] and [𝑡𝑠,2, 𝑡𝑐,2] such that 𝑡𝑐,1 < 𝑡𝑠,2 but their corresponding

linearization points violate linearizability (𝑇2 < 𝑇1). Lemma 6.5

states that𝑇1 ∈ [𝑡𝑠,1, 𝑡𝑐,1] and𝑇2 ∈ [𝑡𝑠,2, 𝑡𝑐,2]. However, as 𝑡𝑐,1 < 𝑡𝑠,2,

this implies that 𝑇1 ≤ 𝑡𝑐,1 < 𝑡𝑠,2 ≤ 𝑇2, contradicting 𝑇2 < 𝑇1.

6.3.2 Order Consistency. We will now prove that any set of out-

puts produced as a result of executing the rewritten protocol can

be produced by some execution of the original protocol. For this

portion of the proof, we borrow notation used by Chu et al. in [10].

Since 𝐶 in our original protocol is a state machine [11], as are 𝐶1

and 𝐶2 in our rewritten protocol, we know that 𝐶1 and 𝐶2 will

collectively produce the same outputs as 𝐶 if they all process the

same inputs in the same order.

Consider the facts at 𝐶2 in relations 𝑟𝑆𝑒𝑎𝑙𝑒𝑑 during 𝑡𝑠𝑒𝑎𝑙 , the

timestep during which 𝐶2 seals a batch. These facts correspond

1:1 to facts at𝐶2 in relations 𝑟 in the original protocol, had it simul-

taneously received the same deltas and facts at 𝑡𝑠𝑒𝑎𝑙 . As a result,

there also exists a 1:1 correspondence between facts outputted by

𝐶2 in the rewritten and original protocols during such a 𝑡𝑠𝑒𝑎𝑙 . We

now argue that the facts outputted by 𝐶1 in our rewritten proto-

col correspond to an execution of the original protocol had the

same deltas and facts also simultaneously arrived at and been in-

stantaneously processed by 𝐶 at time 𝑡𝑠𝑒𝑎𝑙 , thus proving that our

execution of the rewritten protocol corresponds to an execution

of the original, single-node protocol receiving and processing the

same inputs instantaneously.

As such, we will propose a 1:1 mapping of processing times between

facts arriving at 𝐶1 in an execution of our rewritten protocol and

facts arriving at a unified𝐶 in an execution of the original protocol.

We claim that this mapping preserves total order—that is, any two

facts are processed at 𝐶1 during timesteps 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2) in our

rewritten protocol if and only if our mapping implies they were

processed at 𝐶 during timesteps 𝜋𝑇 (𝑓 ′1 ) < 𝜋𝑇 (𝑓 ′2 ) in the execution

of the original protocol. Additionally, any two facts are processed

at 𝐶1 during timesteps 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2) in our rewritten protocol

if and only if our mapping implies they were processed at𝐶 during

timesteps 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓 ′2 ) in the execution of the original protocol.
As such, the execution of the original protocol we construct from

an execution of the rewritten protocol must have 𝐶 process the

same facts in the same order and thus produce the same outputs.

Note that as𝐶2 is independent from𝐶1, we only need to prove that

this property holds for facts arriving at 𝐶1.

Our mapping is simple: for any fact processed by𝐶1 in the rewritten

protocol, we map its corresponding processing time under the

original protocol to equal the linearization point of the operation it

represents.

Coinciding Facts. We will first prove that 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓 ′2 ) if and
only if 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2) in our execution of the rewritten protocol.

We begin by proving that 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓 ′2 ) if 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2) in
our execution of the rewritten protocol: we refer to the possible

states of 𝐶1 in our rewritten protocol during any given timestep.

As facts are only processed at 𝐶1 when it is unfrozen, this means

facts are processed either (1) in the same timestep𝐶1 blocks outputs

or (2) in a timestep during which 𝐶1 doesn’t block outputs. Note

that 𝐶1 can only be in at most one of these states during any given

timestep.

In the first case, 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2) = 𝑡𝑖𝑛 . These facts must have each

arrived at 𝐶1 either during timestep 𝑡𝑖𝑛 or while 𝐶1 was frozen for

the previous batch during the interval [𝑡𝑖𝑛,𝑝𝑟𝑒𝑣 +1, 𝑡𝑎𝑐𝑘,𝑝𝑟𝑒𝑣], where
𝑡 ′
𝑖𝑛,𝑝𝑟𝑒𝑣

≤ 𝑡𝑎𝑐𝑘,𝑝𝑟𝑒𝑣 + 1. Regardless, our mapping dictates that these

facts are processed at 𝐶1 during 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓 ′2 ) = 𝑡𝑠𝑒𝑎𝑙 in the
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original protocol, where 𝑡𝑠𝑒𝑎𝑙 denotes the timestep during which

the batch corresponding to 𝑡𝑖𝑛 is sealed at 𝐶2.

Lemma 6.7. Given 𝐶1 in our rewritten protocol processes facts in
relations referenced by 𝐶2 during timestep 𝑡 = 𝑡𝑖𝑛 , all facts processed
during timestep 𝑡 will be processed by 𝐶1 in the original protocol
during timestep 𝑡𝑠𝑒𝑎𝑙 .

In the second case, facts processed during 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2) also
arrived in the same timestep. Our mapping therefore dictates that

these facts arrive (and are instantaneously processed) at 𝐶1 during

𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓 ′2 ) = 𝜋𝑇 (𝑓2) in the original protocol.

Thus, 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓 ′2 ) because 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2).

We now prove that 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓 ′2 ) only if 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2) in
our execution of the rewritten protocol. Let timestep 𝑡 ′ represent
a timestep during which facts for relations in 𝐶1 are received, in-

stantaneously processed, and immediately outputted from 𝐶 in the

original protocol. During any given 𝑡 ′, 𝐶 may or may not receive

facts in relations referenced by 𝐶2.

Let 𝑡 ′ = 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓 ′2 ). If 𝑡
′
represents such a timestep during

which no facts arrive at 𝐶 in relations referenced by 𝐶2, we claim

that 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2) in the rewritten protocol. To do this, assume

for the sake of contradiction that we have some 𝜋𝑇 (𝑓1) ≠ 𝜋𝑇 (𝑓2)
in the rewritten protocol that corresponds to 𝜋𝑇 (𝑓 ′1 ) = 𝑡 ′ and
𝜋𝑇 (𝑓 ′2 ) = 𝑡 ′ in our execution of the original protocol.

We review all possible ways for a fact arriving during timestep 𝑡 in

the rewritten protocol to have its corresponding linearization point

(and thus its processing time) 𝑇 mapped to 𝑡 ′ in the original:

(1) If 𝑡 represents a timestep during which 𝐶1 is unfrozen and

does not block outputs, 𝑇 is mapped to 𝑡 and thus 𝑡 ′ = 𝑡 .

(2) If 𝑡 represents a timestep during which 𝐶1 is unfrozen but

blocks outputs, this implies that facts in relations refer-

enced by𝐶2 have been processed during the same timestep.

Lemma 6.7 dictates that these facts will be mapped to be pro-

cessed under the original protocol during timestep 𝑡 ′ = 𝑇 ,

causing a contradiction.

(3) If 𝑡 represents a timestep during which 𝐶1 is frozen, 𝑇

is mapped to 𝑡 ′
𝑠𝑒𝑎𝑙

if 𝑡 ′
𝑖𝑛

≤ 𝑡𝑎𝑐𝑘 + 1 and 𝑡𝑎𝑐𝑘 + 1 other-

wise. For similar reasons as above, the first case poses a

contradiction—some facts arriving during timestep 𝑡 ′
𝑖𝑛

must

have been for relations referenced by 𝐶2. Thus, this case is

only possible in the event 𝑡 ′
𝑖𝑛

> 𝑡𝑎𝑐𝑘 + 1.

If we assume both that 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓 ′2 ) and 𝜋𝑇 (𝑓1) ≠ 𝜋𝑇 (𝑓2), then
it poses a contradiction to have the facts processed during timesteps

𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) both fall into the first category. This would mean

that both facts arrived (and were thus instantaneously processed)

during timesteps 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2). As such, 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓1) and
𝜋𝑇 (𝑓 ′2 ) = 𝜋𝑇 (𝑓2). However, since 𝜋𝑇 (𝑓1) ≠ 𝜋𝑇 (𝑓2), this implies

𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓1) ≠ 𝜋𝑇 (𝑓2) = 𝜋𝑇 (𝑓 ′2 ) and thus the contradiction

that 𝜋𝑇 (𝑓 ′1 ) ≠ 𝜋𝑇 (𝑓 ′2 ).

Having both facts instead fall into third category also poses a contra-

diction. If the facts processed during timesteps 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) ar-
rived at𝐶1 during the same period of freezing—that is, there is some

batch such that 𝑡𝑖𝑛 < 𝜋𝑇 (𝑓1) < 𝑡𝑎𝑐𝑘 +1 and 𝑡𝑖𝑛 < 𝜋𝑇 (𝑓2) < 𝑡𝑎𝑐𝑘 +1—
then both facts would’ve been processed by 𝐶1 in the rewritten

protocol during timestep 𝑡𝑎𝑐𝑘 + 1 (as it must be the case that

𝑡 ′
𝑖𝑛

> 𝑡𝑎𝑐𝑘 + 1), implying 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2). If the facts processed
during timesteps 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) arrived at 𝐶1 during differ-

ent periods of freezing, then without loss of generality assume

that 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2). Therefore, 𝑡𝑖𝑛,1 < 𝜋𝑇 (𝑓1) < 𝑡𝑎𝑐𝑘,1 + 1 and

𝑡𝑖𝑛,2 < 𝜋𝑇 (𝑓2) < 𝑡𝑎𝑐𝑘,2 + 1, where 𝑡𝑖𝑛,1 and 𝑡𝑎𝑐𝑘,1 correspond to

one batch and 𝑡𝑖𝑛,2 and 𝑡𝑎𝑐𝑘,2 correspond to another. Therefore, our

mapping would’ve dictated these facts be processed at 𝐶1 during

𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑎𝑐𝑘,1 + 1 and 𝜋𝑇 (𝑓 ′2 ) = 𝑡𝑎𝑐𝑘,2 + 1 in our original protocol.

As 𝐶1 processes batches serially, 𝑡𝑎𝑐𝑘,1 < 𝑡𝑖𝑛,2. This means 𝑡𝑎𝑐𝑘,1 <

𝑡𝑖𝑛,2, implying 𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑎𝑐𝑘,1 + 1 ≤ 𝑡𝑖𝑛,2 < 𝑡𝑎𝑐𝑘,2 + 1 = 𝜋𝑇 (𝑓 ′2 ) and
thus 𝜋𝑇 (𝑓 ′1 ) ≠ 𝜋𝑇 (𝑓 ′2 ).

Lemma 6.8. Given timesteps 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2) correspond to distinct
periods during which 𝐶1 is awaiting an ACK for a batch, there exists
a 𝑡𝑖𝑛,1, 𝑡𝑎𝑐𝑘,1, 𝑡𝑖𝑛,2, and 𝑡𝑎𝑐𝑘,2 such that 𝑡𝑖𝑛,1 ≤ 𝜋𝑇 (𝑓1) < 𝑡𝑎𝑐𝑘,1 + 1,
𝑡𝑖𝑛,2 ≤ 𝜋𝑇 (𝑓2) < 𝑡𝑎𝑐𝑘,2 + 1, and 𝑡𝑎𝑐𝑘,1 < 𝑡𝑖𝑛,2.

Finally, both facts distinctly falling into the first and third categories

also leads to a contradiction. Without loss of generality, assume that

the facts processed during timesteps 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) correspond
to arrival times falling into the first and third categories, respec-

tively, and that 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2). The fact processed during timestep

𝜋𝑇 (𝑓2) must have arrived during the interval [𝑡𝑖𝑛 +1, 𝑡𝑎𝑐𝑘 ]. As such,
𝐶1 in the rewritten protocol would have processed this fact during

timestep 𝜋𝑇 (𝑓2) = 𝑡𝑎𝑐𝑘 + 1; additionally, our mapping dictates that

this fact is processed under the original protocol during timestep

𝜋𝑇 (𝑓 ′2 ) = 𝑡𝑎𝑐𝑘 + 1. Meanwhile, 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓1). However, this
would imply that 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2) = 𝑡𝑎𝑐𝑘 + 1 = 𝜋𝑇 (𝑓 ′2 ),
forming a contradiction. Now assume that 𝜋𝑇 (𝑓1) > 𝜋𝑇 (𝑓2). Sim-

ilarly, 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓1), 𝜋𝑇 (𝑓2) = 𝑡𝑎𝑐𝑘 + 1, and 𝜋𝑇 (𝑓 ′2 ) = 𝑡𝑎𝑐𝑘 + 1.

However, this implies that 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓 ′2 ) = 𝑡𝑎𝑐𝑘 + 1 =

𝜋𝑇 (𝑓2), another contradiction.

Once again, let 𝑡 ′ = 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓 ′2 ). Now, assume timestep 𝑡 ′

represents a timestep during which facts arrive at 𝐶 in relations

referenced by 𝐶2. We claim that it is still the case that 𝜋𝑇 (𝑓1) =

𝜋𝑇 (𝑓2) in our execution of the rewritten protocol.

There are two ways for a fact arriving during timestep 𝑡 in the

rewritten protocol to have its processing time mapped to 𝑡 ′ in
the original: either (1) 𝑡 represents a timestep during which 𝐶1 is

unfrozen but blocking outputs, or (2) 𝑡 represents a timestep during

which 𝐶1 is frozen and 𝑡 ′
𝑖𝑛

≤ 𝑡𝑎𝑐𝑘 + 1. Note this is the complement

of the cases mentioned above in the event timestep 𝑡 ′ represents a
timestep during which no facts arrive at 𝐶 in relations referenced

by 𝐶2.

If we assume that 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓 ′2 ) and 𝜋𝑇 (𝑓1) ≠ 𝜋𝑇 (𝑓2), then it

poses a contradiction to have the facts processed during timesteps

𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) both fall into the first category. Without loss of

generality, let 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2). Recall that facts falling into the first
category are processed in the same timestep of their arrival. Since

𝜋𝑇 (𝑓1) ≠ 𝜋𝑇 (𝑓2), 𝜋𝑇 (𝑓1) = 𝑡𝑖𝑛,1 and 𝜋𝑇 (𝑓2) = 𝑡𝑖𝑛,2, where 𝑡𝑖𝑛,1
and 𝑡𝑖𝑛,2 correspond to distinct batches. Furthermore, our mapping

dictates 𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑠𝑒𝑎𝑙,1 and 𝜋𝑇 (𝑓 ′2 ) = 𝑡𝑠𝑒𝑎𝑙,2, where 𝑡𝑠𝑒𝑎𝑙,1 and
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𝑡𝑠𝑒𝑎𝑙,2 correspond to the batches defining 𝑡𝑖𝑛,1 and 𝑡𝑖𝑛,2, respectively.

Additionally, Lemma 6.8 dictates that 𝑡𝑎𝑐𝑘,1 < 𝑡𝑖𝑛,2. However, since

𝑡𝑠𝑒𝑎𝑙,1 < 𝑡𝑎𝑐𝑘,1 < 𝑡𝑖𝑛,2 < 𝑡𝑠𝑒𝑎𝑙,2, this implies 𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑠𝑒𝑎𝑙,1 <

𝑡𝑠𝑒𝑎𝑙,2 = 𝜋𝑇 (𝑓 ′2 ) and thus the contradiction that 𝜋𝑇 (𝑓 ′1 ) ≠ 𝜋𝑇 (𝑓 ′2 ).

Having both facts instead fall into the second category also poses a

contradiction. If both facts processed during timesteps 𝜋𝑇 (𝑓1) and
𝜋𝑇 (𝑓2) arrived at 𝐶1 during the same period of freezing, then our

mapping dictates both facts would’ve been processed by 𝐶1 during

timestep 𝑡 ′
𝑠𝑒𝑎𝑙

(as it must be the case that 𝑡 ′
𝑖𝑛

≤ 𝑡𝑎𝑐𝑘 + 1), implying

𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2). If the facts processed during timesteps 𝜋𝑇 (𝑓1)
and 𝜋𝑇 (𝑓2) arrived at 𝐶1 during different periods of freezing, then

without loss of generality assume that 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2). Therefore,
the fact corresponding to 𝜋𝑇 (𝑓1) would have arrived during the

interval [𝑡𝑖𝑛,1 + 1, 𝑡𝑎𝑐𝑘,1] and likewise [𝑡𝑖𝑛,2 + 1, 𝑡𝑎𝑐𝑘,2] for the fact
corresponding to 𝜋𝑇 (𝑓2), where 𝑡𝑖𝑛,1 and 𝑡𝑎𝑐𝑘,1 correspond to one

batch and 𝑡𝑖𝑛,2 and 𝑡𝑎𝑐𝑘,2 correspond to another. Recall that it must

be the case that 𝑡 ′
𝑖𝑛,1

≤ 𝑡𝑎𝑐𝑘,1 + 1 and 𝑡 ′
𝑖𝑛,2

≤ 𝑡𝑎𝑐𝑘,2 + 1. Therefore,

our mapping would’ve dictated these facts be processed at 𝐶1 dur-

ing 𝜋𝑇 (𝑓 ′1 ) = 𝑡 ′
𝑠𝑒𝑎𝑙,1

and 𝜋𝑇 (𝑓 ′2 ) = 𝑡 ′
𝑠𝑒𝑎𝑙,2

in our original protocol,

where 𝑡 ′
𝑠𝑒𝑎𝑙,1

corresponds to the batch including facts received dur-

ing timestep 𝑡 ′
𝑖𝑛,1

(and similarly for 𝑡 ′
𝑠𝑒𝑎𝑙,2

). It cannot be the case

that 𝑡 ′
𝑠𝑒𝑎𝑙,1

= 𝑡 ′
𝑠𝑒𝑎𝑙,2

; this would require 𝑡 ′
𝑖𝑛,2

≤ 𝑡𝑎𝑐𝑘,1 + 1. This is

impossible, since by definition 𝑡𝑖𝑛,2 < 𝑡 ′
𝑖𝑛,2

and due to Lemma 6.8

𝑡𝑎𝑐𝑘,1 < 𝑡𝑖𝑛,2. As such, 𝑡
′
𝑖𝑛,1

≤ 𝑡𝑎𝑐𝑘,1+1 < 𝑡 ′
𝑖𝑛,2

and thus 𝑡 ′
𝑖𝑛,1

and 𝑡 ′
𝑖𝑛,2

must correspond to different batches. This means 𝑡 ′
𝑠𝑒𝑎𝑙,1

≠ 𝑡 ′
𝑠𝑒𝑎𝑙,2

,

implying 𝜋𝑇 (𝑓 ′1 ) = 𝑡 ′
𝑠𝑒𝑎𝑙,1

≠ 𝑡 ′
𝑠𝑒𝑎𝑙,2

= 𝜋𝑇 (𝑓 ′2 ). Therefore, we reach
the contradiction that 𝜋𝑇 (𝑓 ′1 ) ≠ 𝜋𝑇 (𝑓 ′2 ).

Finally, both facts distinctly falling into the first and second cat-

egories also leads to a contradiction. Without loss of general-

ity, assume that the facts processed during timesteps 𝜋𝑇 (𝑓1) and
𝜋𝑇 (𝑓2) have arrival times falling into the first and second cate-

gories, respectively. Now assume that 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2). The fact
processed during timestep 𝜋𝑇 (𝑓1) must have arrived (and been

instantaneously processed) during the 𝑡𝑖𝑛,1 of some batch such

that 𝜋𝑇 (𝑓1) = 𝑡𝑖𝑛,1 < 𝑡𝑎𝑐𝑘,1. As such, our mapping dictates that

𝐶1 in the rewritten protocol processes this fact during timestep

𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑠𝑒𝑎𝑙,1. If the other fact arrives at𝐶1 during a timestep be-

fore 𝑡𝑎𝑐𝑘,1, then as 𝑡
′
𝑖𝑛,1

≤ 𝑡𝑎𝑐𝑘,1+1, 𝜋𝑇 (𝑓2) = 𝑡𝑎𝑐𝑘,1+1. Our mapping

dictates that facts arriving during the interval [𝑡𝑖𝑛,1 + 1, 𝑡𝑎𝑐𝑘,1] at
𝐶1 in the rewritten protocol are processed by𝐶1 in the original pro-

tocol during timestep 𝜋𝑇 (𝑓 ′2 ) = 𝑡 ′
𝑠𝑒𝑎𝑙,1

(assuming 𝑡 ′
𝑖𝑛,1

≤ 𝑡𝑎𝑐𝑘,1 + 1).

However, as 𝑡𝑠𝑒𝑎𝑙,1 and 𝑡
′
𝑠𝑒𝑎𝑙,1

correspond to different batches, this

implies 𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑠𝑒𝑎𝑙,1 ≠ 𝑡 ′
𝑠𝑒𝑎𝑙,1

= 𝜋𝑇 (𝑓 ′2 ) and thus the contradic-

tion that 𝜋𝑇 (𝑓 ′1 ) ≠ 𝜋𝑇 (𝑓 ′2 ). If instead the other fact arrives during or
after timestep 𝑡𝑎𝑐𝑘,1+1, then as our mapping guarantees 𝜋𝑇 (𝑓 ′2 ) is at
least 𝑡𝑎𝑐𝑘,1+1 by Corollary 6.6, we have 𝜋𝑇 (𝑓1) < 𝑡𝑎𝑐𝑘,1+1 ≤ 𝜋𝑇 (𝑓 ′2 ).
This implies 𝜋𝑇 (𝑓 ′1 ) ≠ 𝜋𝑇 (𝑓 ′2 ), a contradiction. Now assume that

𝜋𝑇 (𝑓1) > 𝜋𝑇 (𝑓2). Similarly, the fact processed during timestep

𝜋𝑇 (𝑓1) must have arrived (and been simultaneously processed) dur-

ing timestep 𝑡𝑖𝑛,1 for some batch—thus, 𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑠𝑒𝑎𝑙,1. As the fact

corresponding to 𝜋𝑇 (𝑓1) also arrived at 𝐶1 during timestep 𝜋𝑇 (𝑓1),
then 𝜋𝑇 (𝑓1) > 𝜋𝑇 (𝑓2) implies that that the fact corresponding

to 𝜋𝑇 (𝑓2) must have been processed by 𝐶1 before the fact corre-

sponding to 𝜋𝑇 (𝑓1) arrived. Thus, the fact corresponding to 𝜋𝑇 (𝑓2)

arrived before the fact corresponding to 𝜋𝑇 (𝑓1). As 𝜋𝑇 (𝑓1) rep-
resents a timestep during which 𝐶1 has created a batch and the

fact corresponding to 𝜋𝑇 (𝑓2) arrived while 𝐶1 was frozen, it must

be the case that the facts corresponding to timesteps 𝜋𝑇 (𝑓1) and
𝜋𝑇 (𝑓2) must have arrived while𝐶1 was awaiting ACKs for different

batches. Thus, as 𝜋𝑇 (𝑓2) < 𝜋𝑇 (𝑓1), there must be some 𝑡𝑎𝑐𝑘,2 such

that the fact corresponding to 𝜋𝑇 (𝑓2) arrived during the interval

[𝑡𝑖𝑛,2+1, 𝑡𝑎𝑐𝑘,2], where 𝑡𝑎𝑐𝑘,2 < 𝑡𝑖𝑛,1 as per Lemma 6.8. Recall that it

must be the case that 𝑡 ′
𝑖𝑛,2

≤ 𝑡𝑎𝑐𝑘,2 +1, leaving two possibilities. It is
possible the batch following the one corresponding to 𝜋𝑇 (𝑓2) is the
batch corresponding to 𝜋𝑇 (𝑓1), meaning the facts arriving during

timestep 𝑡 ′
𝑖𝑛,2

are processed during timestep 𝑡𝑖𝑛,1. It is also possible

the batch following the one corresponding to 𝜋𝑇 (𝑓2) is unrelated
to the batch corresponding to 𝜋𝑇 (𝑓1), meaning the facts arriving

during timestep 𝑡 ′
𝑖𝑛,2

are processed during a timestep earlier than

𝑡𝑖𝑛,1. If the first case is true, this means that the fact corresponding

to 𝜋𝑇 (𝑓2) is processed during timestep 𝜋𝑇 (𝑓2) = 𝑡𝑖𝑛,1. However,

this implies the contradiction that 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2). If the second
case is true, this means that the fact corresponding to 𝜋𝑇 (𝑓2) is
mapped to be processed during timestep 𝜋𝑇 (𝑓 ′2 ) = 𝑡 ′

𝑠𝑒𝑎𝑙,2
. However,

as 𝑡 ′
𝑠𝑒𝑎𝑙,2

≠ 𝑡𝑠𝑒𝑎𝑙,1, this implies 𝜋𝑇 (𝑓 ′2 ) = 𝑡 ′
𝑠𝑒𝑎𝑙,2

≠ 𝑡𝑠𝑒𝑎𝑙,1 = 𝜋𝑇 (𝑓 ′1 )
and thus the contradiction that 𝜋𝑇 (𝑓 ′1 ) ≠ 𝜋𝑇 (𝑓 ′2 ).

Lemma 6.9. Given two facts are processed by 𝐶1 during timesteps
𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) in the rewritten protocol and processed during
timesteps 𝜋𝑇 (𝑓 ′1 ) and 𝜋𝑇 (𝑓 ′2 ) in the original protocol, 𝜋𝑇 (𝑓 ′1 ) =

𝜋𝑇 (𝑓 ′2 ) if and only if 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2).

Non-Coinciding Facts. We will now prove that 𝜋𝑇 (𝑓 ′1 ) < 𝜋𝑇 (𝑓 ′2 )
if and only if 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2) in our execution of the rewritten

protocol.

We begin by proving that 𝜋𝑇 (𝑓 ′1 ) < 𝜋𝑇 (𝑓 ′2 ) if 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2) in
our execution of the rewritten protocol. Similarly to our proof of

Lemma 6.9, we identify that𝐶1 either (1) blocks outputs or (2) does

not block outputs as it processes any given fact.

If the facts processed during timesteps 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) both fall

into the first category, then 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) correspond to the

creation of different batches. As 𝜋𝑇 (𝑓1) = 𝑡𝑖𝑛,1 for some batch and

likewise 𝜋𝑇 (𝑓2) = 𝑡𝑖𝑛,2, following similar reasoning from our proof

for Lemma 6.9 shows that 𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑠𝑒𝑎𝑙,1 and 𝜋𝑇 (𝑓 ′2 ) = 𝑡𝑠𝑒𝑎𝑙,2.

However, Lemma 6.8 shows that 𝑡𝑎𝑐𝑘,1 < 𝑡𝑖𝑛,2. Thus, Corollary 6.4

lets us show that 𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑠𝑒𝑎𝑙,1 < 𝑡𝑎𝑐𝑘,1 < 𝑡𝑖𝑛,2 < 𝑡𝑠𝑒𝑎𝑙,2 =

𝜋𝑇 (𝑓 ′2 ), implying that 𝜋𝑇 (𝑓 ′1 ) < 𝜋𝑇 (𝑓 ′2 ).

Now, if the fact corresponding to 𝜋𝑇 (𝑓2) instead falls into second

category, then the fact processed during timestep 𝜋𝑇 (𝑓2) must have

arrived during the same timestep. Thus, our mapping dictates that

𝜋𝑇 (𝑓 ′2 ) = 𝜋𝑇 (𝑓2). However, as 𝜋𝑇 (𝑓1) represents a timestep during

which a batch is created at 𝐶1 and 𝜋𝑇 (𝑓2) represents a timestep

during which 𝐶1 is unfrozen, 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2) means that 𝑡𝑎𝑐𝑘,1 <

𝜋𝑇 (𝑓2). Therefore, Corollary 6.4 allows us to show that 𝜋𝑇 (𝑓 ′1 ) =
𝑡𝑠𝑒𝑎𝑙,1 < 𝑡𝑎𝑐𝑘,1 < 𝜋𝑇 (𝑓2) = 𝜋𝑇 (𝑓 ′2 ) and thus 𝜋𝑇 (𝑓 ′1 ) < 𝜋𝑇 (𝑓 ′2 ).
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If instead both facts fall into the second category, then 𝜋𝑇 (𝑓1) and
𝜋𝑇 (𝑓2) must have arrived during the same timestep. Thus, our map-

ping dictates that 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓 ′2 ) = 𝜋𝑇 (𝑓2), implying

𝑡1′ = 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2) = 𝜋𝑇 (𝑓 ′2 ) and thus that 𝜋𝑇 (𝑓 ′1 ) < 𝜋𝑇 (𝑓 ′2 ).

If now the fact corresponding to 𝜋𝑇 (𝑓2) instead falls into the first

category, then 𝜋𝑇 (𝑓2) = 𝑡𝑖𝑛 for some batch created at 𝐶1. As

𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2), Lemma 6.7 dictates that

𝜋𝑇 (𝑓 ′2 ) = 𝑡𝑠𝑒𝑎𝑙 and thus by Corollary 6.4 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓1) <

𝜋𝑇 (𝑓2) = 𝑡𝑖𝑛 < 𝑡𝑠𝑒𝑎𝑙 = 𝜋𝑇 (𝑓 ′2 ). Therefore, 𝜋𝑇 (𝑓
′
1
) < 𝜋𝑇 (𝑓 ′2 ).

We now prove that 𝜋𝑇 (𝑓 ′1 ) < 𝜋𝑇 (𝑓 ′2 ) only if 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2)
in our execution of the rewritten protocol. Assume for the sake

of contradiction that 𝜋𝑇 (𝑓 ′1 ) < 𝜋𝑇 (𝑓 ′2 ) but 𝜋𝑇 (𝑓1) ≥ 𝜋𝑇 (𝑓2). As
𝜋𝑇 (𝑓 ′1 ) ≠ 𝜋𝑇 (𝑓 ′2 ), Lemma 6.9 prevents 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓2). Thus, we
only proceed assuming 𝜋𝑇 (𝑓1) > 𝜋𝑇 (𝑓2).

Recall that during any given timestep, 𝐶1 either (1) blocks outputs

or (2) does not block outputs as it processes any given fact.

Say 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) both represent timesteps during which 𝐶1

blocks outputs. As 𝜋𝑇 (𝑓1) > 𝜋𝑇 (𝑓2), each timestep represents the

creation of a different batch at 𝐶1. By Lemma 6.8, this means there

exists some 𝑡𝑖𝑛,2, 𝑡𝑎𝑐𝑘,2, 𝑡𝑖𝑛,1, and 𝑡𝑎𝑐𝑘,1 such that 𝑡𝑖𝑛,2 ≤ 𝜋𝑇 (𝑓2) <
𝑡𝑎𝑐𝑘,2 + 1, 𝑡𝑖𝑛,1 ≤ 𝜋𝑇 (𝑓1) < 𝑡𝑎𝑐𝑘,1 + 1, and 𝑡𝑎𝑐𝑘,2 < 𝑡𝑖𝑛,1. Note that

in this particular case, the roles of 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) are flipped in

the context of Lemma 6.8. Since Lemma 6.7 dictates that 𝜋𝑇 (𝑓 ′2 ) =
𝑡𝑠𝑒𝑎𝑙,2 and 𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑠𝑒𝑎𝑙,1, this and Corollary 6.4 implies that

𝜋𝑇 (𝑓 ′2 ) = 𝑡𝑠𝑒𝑎𝑙,2 < 𝑡𝑎𝑐𝑘,2 < 𝑡𝑖𝑛,1 < 𝑡𝑠𝑒𝑎𝑙,1 = 𝜋𝑇 (𝑓 ′1 ) and thus the

contradiction that 𝜋𝑇 (𝑓 ′1 ) > 𝜋𝑇 (𝑓 ′2 ).

If now 𝜋𝑇 (𝑓2) represents a timestep during which𝐶1 does not block

outputs, we claim that this poses a contradiction. Since 𝜋𝑇 (𝑓1)
represents a timestep during which 𝐶1 creates a batch, Lemma 6.7

dictates that 𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑠𝑒𝑎𝑙 , where 𝑡𝑠𝑒𝑎𝑙 corresponds to the same

batch created during timestep 𝜋𝑇 (𝑓1) = 𝑡𝑖𝑛 . As 𝜋𝑇 (𝑓2) represents
a timestep during which 𝐶1 is not awaiting an ACK for any batch,

we know the fact processed during 𝜋𝑇 (𝑓2) additionally arrived

during the same timestep. As such, 𝜋𝑇 (𝑓 ′2 ) = 𝜋𝑇 (𝑓2) and thus

𝜋𝑇 (𝑓 ′1 ) = 𝑡𝑠𝑒𝑎𝑙 > 𝑡𝑖𝑛 = 𝜋𝑇 (𝑓1) > 𝜋𝑇 (𝑓2) = 𝜋𝑇 (𝑓 ′2 ). This implies the

contradiction that 𝜋𝑇 (𝑓 ′1 ) > 𝜋𝑇 (𝑓 ′2 ).

Say 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) both represent timesteps during which 𝐶1

does not block outputs. This means 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) must have

arrived during the same timestep. Thus, our mapping dictates that

𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓 ′2 ) = 𝜋𝑇 (𝑓2), implying 𝑡1′ = 𝜋𝑇 (𝑓1) >

𝜋𝑇 (𝑓2) = 𝜋𝑇 (𝑓 ′2 ) and thus the contradiction that 𝜋𝑇 (𝑓 ′1 ) > 𝜋𝑇 (𝑓 ′2 ).

If rather 𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) represent timesteps during which

𝐶1 does not block outputs and blocks outputs, respectively, we

claim that this also poses a contradiction. As 𝜋𝑇 (𝑓2) represents
the timestep during which a batch is created, 𝜋𝑇 (𝑓1) represents a
timestep during which 𝐶1 does not block outputs, and 𝜋𝑇 (𝑓1) >

𝜋𝑇 (𝑓2), there must exist some 𝑡𝑎𝑐𝑘 such that 𝜋𝑇 (𝑓2) = 𝑡𝑖𝑛 < 𝑡𝑎𝑐𝑘 <

𝜋𝑇 (𝑓1) (Corollary 6.4). Additionally, 𝜋𝑇 (𝑓 ′1 ) = 𝜋𝑇 (𝑓1) following sim-

ilar reasoning as above and Lemma 6.7 dictates that 𝜋𝑇 (𝑓 ′2 ) = 𝑡𝑠𝑒𝑎𝑙 .

This implies that 𝜋𝑇 (𝑓 ′2 ) = 𝑡𝑠𝑒𝑎𝑙 < 𝑡𝑎𝑐𝑘 < 𝜋𝑇 (𝑓1) = 𝜋𝑇 (𝑓 ′1 ) and
thus the contradiction that 𝜋𝑇 (𝑓 ′1 ) > 𝜋𝑇 (𝑓 ′2 ).

REQUEST Sequencing PRE-PREPARE PREPARE COMMIT REPLY

𝑟1

𝑟2

𝑟3

𝑟4

leader proxy leader prepreparer preparer committer

Figure 1: The critical path of ScalablePBFT, with the message
path through 𝑟2 bolded. 𝑟1 is the primary.

Lemma 6.10. Given two facts are processed by 𝐶1 during timesteps
𝜋𝑇 (𝑓1) and 𝜋𝑇 (𝑓2) in the rewritten protocol and processed during
timesteps 𝜋𝑇 (𝑓 ′1 ) and 𝜋𝑇 (𝑓 ′2 ) in the original protocol, 𝜋𝑇 (𝑓 ′1 ) <

𝜋𝑇 (𝑓 ′2 ) if and only if 𝜋𝑇 (𝑓1) < 𝜋𝑇 (𝑓2).

Thus, because 𝐶 is a state machine and our rewrite maintains the

total order of inputs, 𝐶 under the rewritten protocol must output

the same outputs as𝐶 under our proposed execution of the original

protocol.

7 EVALUATION
Chu et al. evaluates the effectiveness of rewrites in [9] by applying

them by hand to the critical path of PBFT [8]. In these evaluations,

Chu et al. compares a rewritten version of PBFT’s critical path, de-

coupled and partitioned across multiple nodes, with an unmodified

implementation of PBFT’s critical path run on a single node.

Their experiment setup follows that of Chu et al. [11] and be found

at https://github.com/rithvikp/autocomp [10]. The Dedalus [4]

implementations of PBFT’s critical path and its rewritten version

are compiled to Hydroflow [25] (a Rust dataflow runtime for dis-

tributed systems) and deployed on Google Cloud. Each node runs

on 2-standard-4 machines with 4vCPUs, 16 GB RAM, and 10 Gbps

network bandwidth. State machines, clients, and replicas are all

run on separate machines. Throughput and latency metrics are

measured over one minute runs, following 30 seconds of warmup.

Performance is measured by continually increasing a set of active

clients—each of which sends 16 byte, unbatched commands in a

closed loop—until throughput saturates.

https://github.com/rithvikp/autocomp
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Henceforth, we will refer to the standard implementation of PBFT’s

critical path as BasePBFT and the rewritten implementation as

ScalablePBFT.

Chu et al. runs evaluations on deployments tolerating 𝑓 = 1 failures

andmeasures performance on the critical path, assuming no failures

in the system.

The performance of ScalablePBFT configured to replicate applica-

ble components across 1, 3, and 5 partitions was measured by Chu

et al. as part of the evaluations. The deployment of ScalablePBFT

partitioned 3 ways achieves a maximum throughput of 55,000 com-

mands/s [9], 5× that of BasePBFT [9]. Latency did not noticeably

increase as a result of the rewrites, and partitioning by a factor

larger than 5 did not significantly improve throughput in the ex-

periments [9].

7.1 Construction
The deployment of BasePBFT runs on 𝑛 = 3𝑓 + 1 nodes as de-

scribed in Section 2.2. Replicas, upon committing a request, send

client requests to their corresponding state machine nodes for ex-

ecution; state machines respond directly to the client. Chu et al.

creates an optimized version of the protocol by manually applying

the mutually independent decoupling, functional decoupling, mono-
tonic decoupling, and partitioning with co-hashing rewrites [9] to

the critical path of BasePBFT. Under these rewrites, each replica

is decoupled into leader, proxy leader, prepreparer, preparer, and
committer components. Each component, excluding the leader, is

hash partitioned on the sequence number of the request.

Clients send REQUEST messages to the leader component cor-

responding to the replica they believe to be the current leader.

The leader component sequences the request and forwards it to

their corresponding proxy leader, which broadcasts PRE-PREPARE

messages (alongside the corresponding REQUEST message) to all

prepreparer components in the system. Prepreparers, upon accept-

ing a valid PRE-PREPARE message, broadcast PREPARE messages

to all preparers in the system. Prepreparers additionally forward

the associated REQUEST message to their corresponding commit-

ter to allow it to execute the client request once it is committed.

Preparers accept PREPARE messages from prepreparers and broad-

cast COMMIT messages to committers upon receiving a quorum of

2𝑓 + 1 matching PREPARE messages. Committers accept COMMIT

messages from preparers, sending the client request alongside its

sequence number to their corresponding state machine after receiv-

ing a quorum of 2𝑓 + 1 matching COMMIT messages. The state

machine then sends a REPLY message to the client, who accepts

the result upon receiving a weak quorum of 𝑓 + 1 matching REPLY

messages. A visual representation of this process is illustrated in

Figure 1.

We additionally apply the partial independent decoupling rewrite

to support additional functionality off the critical path, propos-

ing an extended version of ScalablePBFT capable of view changes

and stable checkpoint garbage collection. The Dedalus implemen-

tation of PBFT before and after our rewrites can be found at

https://github.com/git-doge/dedalus-implementations.

To create our rewritten version of PBFT, we first designate a com-

ponent of the protocol to be the state manager. The state manager

maintains the replica’s current view, low watermark, and a list

of views that it is currently attempting a view change into. The

state manager is additionally responsible for creating and reaching

consensus on checkpoints, collecting VIEW-CHANGE messages,

as well as collecting and creating NEW-VIEW messages. The state

manager is decoupled from the rest of the protocol using partial
independent decoupling; changes to the current view, low water-

mark, and the list of current view change attempts prompt the state

manager to freeze and are forwarded to the rest of the protocol as de-

scribed in the rewrite. Stable checkpoint proofs and PRE-PREPARE

messages from NEW-VIEWmessages also similarly require a freeze

and are forwarded to the rest of the protocol as described.

We then divide the other component of the protocol in two: the

critical path and a component we will call the view-change col-
lector. The view-change collector is responsible for signing over

the collection of PREPARE and CHECKPOINT messages required

to create a VIEW-CHANGE message. The view-change collector

additionally broadcasts the signed VIEW-CHANGE messages to

all state managers in the system upon attempting a view change.

We use state machine decoupling [10] to decouple the view-change

collector from the critical path; the view-change collector thus only

accepts inputs in batches sent from the critical path component.

The critical path component contains the logic to handle REQUEST,

PRE-PREPARE, PREPARE, and COMMIT messages—it additionally

contains logic to send the view-change collector the appropriate

PREPARE and CHECKPOINT messages when a view change is

triggered. Similarly to Chu et al., we decouple the different stages

of the critical path from each other into the leader, prepreparer,
preparer, and committer components [9]. Each component han-

dles the logic for its corresponding messages, and the prepreparer

additionally forwards client requests from the committer [9]. How-

ever, we now decouple these components from each other using

partial independent decoupling; changes to the current view, low

watermark, and the list of ongoing view change attempts are thus

propagated through all components by a cascading series of freezes.

The preparer component is designated as the one to send its cor-

responding view-change collector the appropriate PREPARE and

CHECKPOINT messages upon learning a view change has been

triggered—as such, it receives the stable checkpoint proofs for-

warded from the state manager. The leader component similarly

receives the PRE-PREPAREmessages (originating fromNEW-VIEW

messages) forwarded by the state manager. Note that messages sent

on the critical path do not require freezing any components.

As with Chu et al., we additionally decouple the proxy leader com-

ponent from the rest of the leader component [9]. The proxy leader

is responsible for broadcasting PRE-PREPARE messages sent to it

by the leader; the leader now only sequences incoming REQUEST

messages. The proxy leader is decoupled using functional decou-

pling [11]. We also decouple the state machine from the committer,

responsible for executing requests in order, replying to clients,

and overwriting state with snapshots when applicable. The state

machine is decoupled from the committer via monotonic decou-

pling [11].

https://github.com/git-doge/dedalus-implementations
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We can now use partial partitioning to partition the prepreparer,

preparer, and committer–these components are hash-partitioned

on the sequence number of the request, and changes to values

shared with the state manager are thus replicated across all par-

titions as described in [10]. We additionally use partitioning with

co-hashing [11] to partition the proxy leader.

When a view change is triggered, the state manager updates the

list of ongoing view change attempts to include the new attempt.

This list is relevant to the components on the critical path, as a

non-empty list signifies that replica should no longer accept con-

sensus messages. Additionally, the addition of a new view change

attempt prompts the preparer to send the relevant PREPARE and

CHECKPOINT messages to the view-change collector. There are

several possible ways a view change can be triggered:

(1) Request Timeout: in PBFT, a replica attempts a view change

into the next view if it has a client request that has taken

too long to commit in the current view. Specifically, the

committer starts a timer upon receiving a client request

and stops it upon receiving 2𝑓 + 1 corresponding COMMIT

messages for the request, attempting a view change if it

expires before then. In our rewritten ScalablePBFT, the

timer is started by the committer, who contacts the state

manager if it expires. Note that we implement this timer

such that it notifies itself asynchronously upon expiring—

this prevents the state manager from being dependent on

the critical path, but may have ramifications on the liveness

of the system.

(2) View Change Timeout: in PBFT, a replica can also attempt

another view change if an ongoing view change attempt

has taken too long to complete. Specifically, a replica starts

a timer upon receiving 2𝑓 +1 VIEW-CHANGEmessages for

a given view. If the timer expires before a corresponding

NEW-VIEW message arrives, the replica attempts a view

change into the next higher view. In ScalablePBFT, this logic

is handled by the state manager, which updates the list of

ongoing view change attempts upon the timer’s expiration.

(3) View Change Quorum: in PBFT, a replica additionally at-

tempts a view change if it ever receives 𝑓 + 1 VIEW-

CHANGE messages for higher views. In ScalablePBFT, this

logic is also handled by the state manager.

There additionally may be cases in which replicas may need to

request client request or state machine snapshot from its peers:

(1) Client Requests: in PBFT, a replica requests a client request

from its peers if it has 2𝑓 +1 COMMITmessages for a digest,

but not the client request corresponding to the digest; it

does this by contacting the replicas participating in the

COMMIT quorum. In our rewritten ScalablePBFT, this logic

is handled by the commmitter.

(2) Snapshots: in PBFT, a replica requests a snapshot from its

peers if it has a stable checkpoint but not the snapshot

corresponding to its digest; it does this by contacting the

replicas participating in the checkpoint’s proof of stability.

In our rewritten ScalablePBFT, this logic is handled by the

state manager.

8 CONCLUSION
This work demonstrates how the capabilities of generalized, local

protocol optimizations shown to scale throughput in CFT environ-

ments [11] can similarly be applied to BFT systems, with only minor

modifications. We additionally introduce a new partial independent

decoupling rewrite to adapt to common design paradigms found in

many BFT protocols, further expanding the scope and flexibility of

our suite of rewrite rules.

This work builds on the contributions of Chu et al. [11], which moti-

vates automatic rewrites as a means to effectively scale distributed

protocols without the need to create clever insights or partake in

ad-hoc reasoning of correctness. Our work here demonstrates how

these principles pose interesting challenges to safety in the face of

Byzantine actors, and hints at a future where optimized compilers

for distributed protocols can exist just as they do for single-node

programs. It additionally follows that other modifications to our

rewrites may be possible to further expand the domain of fault

models under which they can be performed.
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