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ABSTRACT
A query optimizer searches for an e�cient query plan within the
space of its alternatives using a search algorithm. The scope of the
search space used to be de�ned as part of the search algorithm, but
the need to incorporate new optimization techniques constantly
reshapes the search space, and this brings development challenges
to correctly maintain the search algorithm while supporting the
new optimization techniques.

The extensible query optimizer architecture is proposed to ad-
dress this challenge by isolating the de�nition of search space from
the search algorithm. Within this architecture, developers imple-
ment independent rewrite rules that describe equivalence relations
among query plans, and the search space for the query optimizer
is implicitly de�ned by the transitive closure of these equivalence
relations. An extensible query optimizer explores the search space
by repeatedly applying the rewrite rules it knows. To support a
new optimization technique, developers only need to implement
the corresponding rewrite rule for the query optimizer, without
worrying about any changes to the search algorithm.

This architecture is widely adopted in the designs of modern
data pipelines because it simpli�es the process of extending a query
optimizer with new optimization techniques. However, the growth
in the complexity of rewrite rules continues to bring development
challenges in terms of implementation correctness and cost.

In this paper, we present R���S�����, a domain-speci�c lan-
guage designed for expressing rewrite rules in an extensible query
optimizer. Rules expressed in R���S����� are automatically veri�ed
for correctness, and they can be used to generate implementations
of rewrite rules to be invoked by extensible query optimizers. More-
over, R���S����� can be extended to support custom symbols in
rewrite rules, which are de�ned by users to represent query plan
components speci�c to the backend query engine.

We have implemented a prototype of R���S����� in Java, and
performed case studies with this implementation. We have veri�ed
rewrites rules in Apache Calcite and generated implementations
that can be plugged into Apache Calcite codebase to illustrate the
usability of our design.

1 INTRODUCTION
Query processing is the task of processing data in a way that
matches the speci�cations declared in query languages by users.
Query optimization is central to this process, because a query opti-
mizer can �nd an e�cient query plan within the space of semanti-
cally equivalent counterparts, and this could signi�cantly reduce
the runtime cost for query processing.

The pioneering work from the System R project [1, 10] estab-
lishes a query optimizer framework, but it is hard to scale with the
expansion of the complexity in query optimization over time. More
than a decade after the System R project, the extensible optimizer
architecture [6, 7] is proposed to address this need. An extensible

query optimizer separates the task of enumerating execution plans
from the task of �nding suitable candidates for enumeration. It
provides an abstraction for developers to specify such candidates
via rewrite rules, which describe the equivalence relations among
execution plans. To incorporate new optimization techniques, devel-
opers only need to implement the corresponding rewrite rules for
the extensible query optimizer, without worrying about modifying
the search algorithm that enumerates query plans. This architecture
has been widely adopted today for various data systems, including
relational database management systems (RDBMSs) like Apache
Calcite [3] and CockroachDB [11], as well as modern data ware-
house systems like Snow�ake [5].

Yet, the complexity of query optimization continues to scale
with the invention of new optimization techniques. Within the
extensible query optimizer, this is re�ected by the ever-increasing
number of rewrite rules. For example, Apache Calcite has more than
one hundred rewrite rules, where each rule is implemented with
more than two hundred lines of Java code on average. Meanwhile,
CockroachDB has more than two hundred rewrite rules, where each
rule is implemented with more than thirty lines of CockroachDB
DSL (a language designed by CockroachDB to describe its rewrite
rules) on average. The complexity of new rewrite rules is also
growing both syntactically and semantically.

One major concern for query optimization is the correctness
of the query optimizer and its results: the optimized query plan
must produce the same results as the original query plan under all
possible input relations. The correctness of implemented rewrite
rules is critical to the correctness of query optimization, but the
new rewrite rules are becoming more tricky to correctly implement
from the �rst attempt. Numerous failures have been spotted for
these rewrite rules in the production environment, and such failures
are later converted into test cases for these rewrite rules [13]. If
the query optimizer can only generate equivalent alternatives for
the original query plans, then we do not need to worry about such
failures.

These concerns can be addressed by automated query equiva-
lence solvers, which can provably verify equivalent queries. Naively,
we can verify the equivalence of each optimized query plan and
their corresponding unoptimized plan with these tools, and only
execute the optimized plan when this check is successfully passed.
This can eliminate any potential faulty execution. Recent progress
in this �eld improves the feasibility of this naive solution. SPES
can prove 98 out of 444 rewrites in Apache Calcite’s test cases,
while QED can prove 293 of them . It seems promising that we will
eventually have a powerful solver that can verify the equivalence
of any query plan used in practice.

Yet, as of today, it is not very practical to deploy these solvers
in production. First, the fragment of query plans that they can
support is still limited, which precludes a considerable amount of
rewrite rules. Second, they could bring overheads that scale with
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the complexity of queries, because the query engine has to wait for
the veri�cation from these solvers before execution. Modern tools
like SPES and QED reduce query equivalence veri�cation into SMT
problems, and the complexity of the generated SMT statements
grows with the complexity of the queries. This could lead to con-
siderable growth in the runtime of underlying SMT solvers such as
CVC5.

A better way to solve this problem is directly verifying rewrite
rules themselves, rather than the rewritten query plans from the
application of these rewrite rules. The �rst step toward this goal
is made by HoTTSQL, a domain-speci�c language (DSL) based
on SQL that could express the semantics of query plans [4]. It
supports a few generic components such as generic schemas, and
they could be used to express rewrite rules that are applicable to the
corresponding subset of query plans. It is integrated into the Cosette
solver so that query plans declared in this DSL can be checked for
equivalence. However, the lack of support for SQL features such
as Null and primary keys restricts the coverage of SQL features
for HoTTSQL, and it does not address the problem of correctly
implementing a rewrite rule after Cosette shows that the rewrite
rule maintains the semantics of the query plan.

In comparison, CockroachDB also has its own DSL to describe
the rewrite rules in its extensible query optimizer based on re-
lational operators, with which it can automatically generate the
implementations [15]. However, this DSL can only be used within
CockroachDB’s query optimizer due to its focus on production
needs, and we do not know how to verify the correctness of the
rewrite rules involving the CockroachDB-speci�c query plans.

In this paper, we present R���S�����, an extensible rule language
that is both veri�able and can be used for code generation. We de-
sign the core syntax of R���S����� based on the structure of query
plans, but unlike concrete query plans derived from executable SQL
statements, the query plans constructed in R���S����� can involve
uninterpreted symbols, such as uninterpreted types and uninter-
preted functions. Uninterpreted symbols can be viewed as variables
that are replaceable by any concrete value of the same type. For
example, an uninterpreted predicate function can be replaced with
any boolean expression constructed from the arguments of the
uninterpreted function and boolean operators. During veri�cation,
R���S����� checks for all possible assignments for these variables,
and the veri�cation cannot pass if it fails on any particular assign-
ment of these variables. This allows R���S����� users to succinctly
express the family of all concrete query plans that one rewrite rule
can apply and how it is applied.

A rewrite rule in R���S����� contains two R���S����� query
plans, named the match pattern and the transform pattern, respec-
tively. In order to apply a rewrite rule in R���S����� on a concrete
query plan, an appropriate instantiation of the uninterpreted sym-
bols must be found so that the match pattern can be evaluated to
the concrete query plan. If such an instantiation exists, the concrete
query plan can be transformed to the transform pattern where all
uninterpreted symbols in the transform pattern are evaluated under
the same instantiation.

R���S����� is also extensible for new query plan components,
such as engine-speci�c query plans and scalar expressions, as long
as users can reduce these new query plan components to the core
syntaxwe already de�ned in R���S�����. These custom query plans

can be used to represent the custom implementations in the query
engine. We also provide meta-variables in R���S�����, which are
placeholders in a R���S����� query plan, so that users can easily
create similar rewrite rules by specifying the valid assignments of
these meta-variables.

To verify the rewrite rule, R���S����� treats the match pattern
and the transform pattern as two abstract query plans and sends
them to QED, a solver that checks for the equivalence for all possible
interpretations of the uninterpreted symbols. The custom query
plans de�ned by users will be reduced to query plans constructed
using the core syntax, which can be understood by QED.

To generate the implementation for rewrite rules de�ned in
R���S�����, so that users can run these rewrite rules in any query
engine they like, R���S����� asks users to provide an adapter to
the target query engine, which contains the necessary information
to generate the compatible implementation. For each rewrite rule
in R���S�����, the adapter recursively traverses the match pattern
and the transform pattern, and then it composes the code chunks
together into the implementation for the rule.

In summary, we make the following contributions for R����
S�����:

• We design R���S����� based on relational operators under bag
semantics. R���S����� models a rewrite rule using a match pat-
tern and a transform pattern with uninterpreted symbols, which
succinctly represent the collection of concrete query plans where
the rewrite rule can apply. Moreover, we verify the correctness
of the rewrite rules in R���S����� using the QED solver, which
supports the reasoning of uninterpreted symbols.

• We allow R���S����� to be extended with any custom query
plan components that are to be used in the rewrite rule, and
users can specify their semantics based on the core syntax in
R���S����� so that they can be correctly comprehended by QED
in the veri�cation process.We providemeta-variables to facilitate
the process of composing rewrite rules in R���S�����.

• We design a pipeline to perform code generation for any rewrite
rule de�ned in R���S����� with modular and engine-speci�c
information provided by users.

• We verify the rewrite rules in Apache Calcite with R���S�����
and generate working implementations that are compatible with
Apache Calcite codebase with the code generation pipeline.

2 OVERVIEW
The motivation for our work comes from the di�culty of correctly
implementing a rewrite rule without being too restrictive about
when it could apply. We will illustrate this with the Join Associate
rule, which is a very fundamental rewrite rule describing the asso-
ciativity of the Join query plan, and can be found in most extensible
query optimizer implementations, such as Apache Calcite [12].

The Join Associate permutes the order of two consecutive Joins
in a query plan. The SQL pattern corresponding to the query plans
where this rewrite rule applies is illustrated in Listing 1.

01 |SELECT * FROM (

02 | SELECT * FROM Q0 INNER JOIN Q1

03 | ON P0(Q1) AND P1(Q0, Q1)

04 |) INNER JOIN Q2 ON P2(Q1, Q2) AND P3(Q0, Q1, Q2);

Listing 1: The match pattern for the Join Associate rule
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For the SQL pattern in Listing 1, Q0, Q1, Q2 are query plans used
as the inputs to the pattern, and P0, P1, P2, P3 are R���S�����Join
predicates where their arguments specify which input query plans
they depend on. In words, this pattern matches any two consecutive
Inner Joins where the innermost Join predicate is logically equiva-
lent to the conjunction of P0, P1 for some P0, P1, and the outermost
Join predicate is logically equivalent to the conjunction of P2, P3

for some P2, P3. If a query plan is matched by this pattern, the Join
Associate rule will transform it according to the SQL pattern shown
in Listing 2, where Q0, Q1, Q2 and P0, P1, P2, P3 are the same as
those in the matched query plan.

01 |SELECT * FROM Q0 INNER JOIN (

02 | SELECT * FROM Q1 INNER JOIN Q2

03 | ON P0(Q1) AND P2(Q1 , Q2)

04 |) ON P1(Q0 , Q1) AND P3(Q0 , Q1 , Q2);

Listing 2: The transform pattern for the Join Associate rule

While the rewrite in the other direction also works, for simplic-
ity we restrict our discussion to the current scenario. Notice that
the pattern requires both Joins involved to be Inner Joins. Apache
Calcite developers express concerns about whether this limitation
is too strict in their implementation for this rule [12]. Speci�cally,
they wonder if they can rewrite any two consecutive Joins similarly,
even if they are not both Inner Joins. We can solve this problem
with R���S�����, and we will show that the Join Associate rule
is indeed applicable to other types of Join, such as the case where
both Joins are Outer Joins.

This brings a few challenges that could not be addressed with
prior work such as HoTTSQL and Cosette. First, the only type
of Join supported by HoTTSQL is Cross Join, which can only be
used to model Inner Join with an additional Filter operator. Thus
HoTTSQL cannot help us determine whether the rewrite is correct
if Le� Joins, Right Joins, or Outer Joins are involved.

If it turns out that a similar rule works for other Join types,
developers can manually modify their existing implementations
for the Join Associate rule, or even add a new rewrite rule for
this case. However, both options are ine�cient since developers
have to either maintain the correctness of the original rewrite rule
during modi�cation or duplicate existing codes for a new rule.
R���S����� streamlines this process by automatically generating
the implementation based on the veri�ed rewrite rule. In addition,
since the Join Associate rule is very generic and does not depend
on any speci�c query engine, R���S����� has a general way of
performing code generation such that the implementation for this
rule can be derived for di�erent query engines, as long as we have
su�cient information about internal query optimizer. Speci�cally,
R���S����� needs its users to provide an adapter to the target query
engine, which de�nes the procedure to generate code for each type
of symbol used in the rewrite rules.

R���S����� solves the challenges mentioned above with its
framework for rewrite rule veri�cation and code generation, as
illustrated in Figure 1. To showcase how this works on the motiva-
tion example, we �rst de�ne the Join Associate rule in R���S�����.
Here we only provide the high-level overview of what needs to be
speci�ed with pseudo-code in Listing 3, and we explain it line by
line below.

01 |Q0 = Plan(R0 , [Field(x, T0)])

RuleScript User
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Figure 1: Components of the R���S����� framework. The
left branch handles the veri�cation of rewrite rules in R����
S�����, while the right branch handles the automatic gener-
ation of their implementations.

02 |Q1 = Plan(R1, [Field(y, T1)])

03 |Q2 = Plan(R2, [Field(z, T2)])

04 |F0 = P0(x, y) AND y IS NOT NULL

05 |F1 = P1(y, z) AND y IS NOT NULL

06 |before = Join(Outer , F1, Join(Outer , F0, Q0, Q1), Q2)

07 |after = Join(Outer , F0, Q0, Join(Outer , F1, Q1, Q2))

08 |rewrite = Rule(before , after)

Listing 3: The Join Associate rule in R���S�����

Line 1-3 de�ne Q0, Q1, Q2, which are generic R���S����� query
plans named R0, R1, R2 respectively. x, y, z are the attribute names
and T0, T1, T2 are the types for these attributes. Moreover, T0, T1,

T2 are uninterpreted, which means that they can represent any type,
such as the output schema of a concrete query plan. Thus although
there is only one �eld in each of Q0, Q1, Q2, they can represent any
concrete query plans. They are part of the R���S����� core syntax,
which we will describe in Sec. 3.

Line 4-5 de�ne F0, F1, which are R���S����� predicate patterns
depending on attributes x, y, z and uninterpreted predicate sym-
bols P0 and P1. The uninterpreted predicate symbols can represent
arbitrary predicate functions. Here we de�ne F0, F1 using conjunc-
tions of uninterpreted predicates and the assertion y IS NOT NULL,
which suggests that F0, F1 are arbitrary predicates that return FALSE

when y is NULL.
Line 6-7 de�ne before, after, which are the match pattern and

the transform pattern describing what query plans can be applied
with the rewrite rule and how they are transformed. They represent
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consecutive Outer Joins constructed from input query plans Q0,

Q1, Q2 and predicates F0, F1. Finally, line 8 de�nes a rewrite rule
rewrite with before, after. The rewrite rule rewrite can be further
used for veri�cation or code generation.

Notice that the Join predicates F0, F1 in Listing 3 are di�erent
from those in Listing 1 and Listing 2. We cannot simply create a new
rewrite rule by replacing the Inner Joins in Listing 1 and Listing 2
with Outer Joins because such a rewrite rule can produce invalid
rewrites that change the semantics of the query plan. For example,
consider the case in Listing 4, where R, S, T are tables containing
a single integer column, named x, y, z respectively. Moreover, R.x
contains a single value 0, while both S.y and T.z contain a single
value 1.

01 |-- Before Rewrite

02 |SELECT * FROM (

03 | SELECT * FROM R FULL OUTER JOIN S ON x = 0

04 |) FULL OUTER JOIN T ON z = 0;

05 |-- After Rewrite

06 |SELECT * FROM R FULL OUTER JOIN (

07 | SELECT * FROM S FULL OUTER JOIN T ON z = 0

08 |) ON x = 0;

Listing 4: An incorrect application of Join Associate rule

If we continues to use the Join predicates in Listing 1 and Listing 2
for the Outer Join case, the rewrite in Listing 4 occurs because P1

is x = 0 and P2 is z = 0, while P0 and P3 always return TRUE. The
query plan before the rewrite outputs two rows, while the query
plan after the rewrite outputs three rows, which suggests that the
rewrite changes the semantics of the query plan. To avoid such a
situation, we use more restricted Join predicates in Listing 3 so that
the restricted rewrite rule cannot be applied to the example above,
as we cannot match y is NOT NULL is not implied by x = 0 or z = 0.

To verify the restricted rewrite rule, R���S����� will translate
the match pattern and the transform pattern in the rewrite rule
rewrite into the input format for QED, including the uninterpreted
predicates P0, P1 and the uninterpreted types T0, T1, T2. The QED
solver will show that the match pattern and the transform pattern
in Listing 3 are provably equivalent for any input relations. We
describe this process in Sec. 5.

R���S����� then passes the veri�ed rewrite rule to an adapter
implementation for the target query engine provided by the user,
which recursively traverses the rewrite rule and keeps track of
relevant information in a context object. Depending on the target
query engine, the context object may contain di�erent things. For
example, if the target query engine is Apache Calcite, the context
object could contain Java code snippets, as is shown in Sec. 7. The
adapter spits out the generated implementation from the �nal con-
text object. In Sec. 6, we will explain how this can be achieved for
R���S�����, and in Sec. 7 we will also present the generated code
for the rewrite rule we de�ned in Listing 3.

3 THE CORE LANGUAGE
We now present the core syntax for R���S�����, which is the basis
for all rewrite rules expressed in R���S�����. We will provide an
overview of its syntax in Sec. 3.1, and then in Sec. 3.2 we will discuss
how to interpret the rewrite rules from R���S�����.

3.1 Syntax
We deliberately choose to design R���S����� to mimic the syntax
of a concrete query plan, because such syntax clearly describes the
query plans that will be matched and transformed into a rewrite
rule. We provide its syntax in Listing 5. To distinguish a query plan
in R���S����� from an actual query plan, we refer to the former as
a pattern.

A rewrite rule in R���S����� has three parts: a match pattern
that describes what query plan the rule should apply, a transform
pattern that describes how to transform the matched query plan,
and optional extra constraints that guarantee the correctness of
the rewrite. Such construction is captured by the <Rule> symbol
in Listing 5, where the match pattern is represented by the �rst
<Patn> and the transform pattern is represented by the second <

Patn>. The constraint in a <Rule> is any �rst-order logic statement
<FOPred> where all variables involved are quanti�ed by FORALL or
EXISTS. In this paper we may omit this �eld when the constraint
is not necessary, or equivalently when the constraint is trivially
TRUE. Constraints may help when users would like to restrict the
uninterpreted symbols in the rewrite rule. For example, R���S�����
users may want to de�ne an uninterpreted injective projection
function, and this can be achieved with a �rst-order logic statement
regarding the uninterpreted function symbol.

In R���S�����, uninterpreted symbols can be viewed as vari-
ables. During veri�cation R���S����� checks for the correctness
of the rewrite under all possible assignments of these variables,
and we know that at runtime the rewrite rule should only apply to
query plans derived from assignments of these variables. There are
three types of uninterpreted symbols in R���S�����. The �rst one
is uninterpreted <Type> symbols, which represent any value type.
The second one is uninterpreted <Op> symbols, which represent any
function mapping. The third one is the Plan patterns, which repre-
sent any concrete query plan subject to potential constraints like
uniqueness. In R���S�����, we have two assumptions for any type.
First, the type must satisfy the theory of equality and uninterpreted
function, which means we can perform equivalence checking for
values in this type and describe an uninterpreted function using
this type. Second, there exists a special value named Null inside
this type. Types with the same name are considered identical, and
this is also true for functions.

01 |<Rule> := Rule(<Patn>, <Patn>, <FOPred >)

02 |<Patn> := Plan(<Id>, [<Field>])

03 | | Empty([<Field>])

04 | | Filter(<Pred>, <Patn>)

05 | | Project ([<Call>], <Patn>)

06 | | Join(<J_ty>, <Pred>, <Patn>, <Patn>)

07 | | Union(<Patn>, <Patn>)

08 | | Aggregate(<Call>, <Call>, <Patn>)

09 | | Distinct(<Patn>)

10 |<FOPred > := FORALL [<Id>] <Pred>

11 | | EXISTS [<Id>] <Pred>

12 |<Id> := Id(<String >)

13 |<Field> := Field(<Id>, <Type>, <Stat>)

14 |<Pred> := <Call> | TRUE | FALSE | NOT <Pred>

15 | | <Pred> AND <Pred> | <Pred> OR <Pred>

16 | | <Call> IS NOT NULL | <Call> IS NULL

17 | | <Call> = <Call> | <Call> != <Call>

18 |<Call> := <Id> | <Lit> | <Op>([<Call>])

19 |<J_ty> := �Inner� | �Left� | �Right�

20 | | �Outer� | �Semi� | �Anti�
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21 |<Stat> := Stat({ nullable: <Bool>,

22 | unique: <Bool>, ...})

23 |<Op> := Op(<Id>, <Type>, <Type>)

24 |<Alias> := PatnAlias(<Id>, <Patn>)

25 | | FOPredAlias(<Id>, <FOPred >)

26 | | PredAlias(<Id>, <Pred>)

27 | | CallAlias(<Id>, <Call>)

28 | | JtyAlias(<Id>, <J_ty>)

Listing 5: Syntax for the R���S�����. A pair of curly braces
represent a dictionary of values, and a pair of square brackets
represent an ordered list of zero or more items.

3.2 Interpretation
With the syntax of R���S����� shown in Sec. 3.1, we now explain
how to interpret <Rule> as a rewrite rule in an extensible query opti-
mizer. The �rst-order logic statement <FOPred> in <Rule> speci�es the
conditions that the uninterpreted symbols have to satisfy, such as
the injectiveness of uninterpreted projection functions. The match
pattern and the transformed pattern in are R���S����� query plans
(i.e., pattern), which can be viewed as partially �lled query plans
that can be turned into concrete query plans once there is an as-
signment for all uninterpreted symbols involved. We can view the
application of a rewrite rule as an instantiation of the uninterpreted
symbols in the match pattern followed by the evaluation of the
transform pattern under the same instantiation. Thus we need to
treat match patterns and transform patterns di�erently, even if they
are both syntactically R���S����� query plans. We investigate each
variant of the pattern below to illustrate this, using the syntax for
concrete query plans to be discussed in Sec. 5.1.

3.2.1 Plan and Empty. When we view a pattern as an abstract syntax
tree, then Plan and Empty are the only choices for its leaf nodes, which
specify how to match concrete query plans based on their output
schema and where the matched query plan should be used during
the application of the rewrite rule. In both variants, we need to
describe the information about the schema, which is represented
by an ordered list of <Field> symbols.

Each <Field> has three parts, the �rst is the name of the �eld, the
second is the value type of the �eld, and the third one is a <Stat>,
which is an extensible dictionary containing useful information
about the data for this �eld. Each <Stat> contains two Booleans de-
scribing the nullability and the uniqueness of the data for the �eld it
is attached to, and it can be extended for other data constraints. The
additional constraints can be encoded as �rst-order logic assertions.
In this paper, we omit the <Stat> in a <Field> when no requirement
is speci�ed for the data within (i.e., the data is nullable, not unique,
and have no additional constraint).

A Plan represents any query plan satisfying two conditions. First,
there exists an instantiation of the uninterpreted types used in the
Plan so that the product of all �eld types in the pattern is equal
to the output type of the query plan. Second, the instantiation
preserves the properties speci�ed by <Stat> for each �eld in the Plan.
We de�ne two tuples of the same type to be equal if their attributes
are pairwise equal, and we de�ne a tuple to be Null if any of its
elements is Null. In this way, we can de�ne the uniqueness and
nullability of �elds with product types accordingly. In addition, Plan
is labeled by an identi�er <Id>.

For example, let ' be a physical table containing a single column
2 that contains unique and nullable integers. Then the query plan
Project((2, 2 + 1), Table(')) is a valid interpretation of Plan(R, [(c,

T, <Stat>)]) where <Stat> requires the �eld to be unique because
we can instantiate the uninterpreted type T to be Integer ⇥ Integer.

When a Plan appears in a match pattern, it describes the proce-
dure to verify whether the query plan is one of its valid interpreta-
tions by �nding an appropriate instantiation of the uninterpreted
types satisfying the properties in <Stat>, and if so we call it a match.
When a Plan appears in the transform pattern, it refers to the actual
query plan matched by the same Plan in the match pattern.

An Empty is a Plan that does not output any tuples, but we still need
to specify the type of its �elds. In reality, it will match against and
transform into empty Value query plans (i.e. query plans without
any outputs) with the corresponding schema. Unlike Plan, we do
not need to label Empty because it is always empty.

3.2.2 Union and Distinct. Except for Plan and Empty, all other vari-
ants of the pattern are recursively de�ned. Union and Distinct are
the straightforward ones among these variants, as they can be
constructed from input patterns without other kinds of arguments.

If they appear in a match pattern, they represent the procedure
to verify if the top-level query plan shares the same kind (e.g. a
Distinct pattern and a Distinct query plan) and then verify the
inputs of the query plan against their input patterns. If they appear
in a transform pattern, they represent the procedure to construct
the same kind of query plan after recursively constructing the query
plans from the input patterns.

3.2.3 Project and Aggregate. In addition to patterns in their argu-
ments, Project and Aggregate contain <Call>s which require some
extra care.

Each <Call> in the pattern can be an identi�er <Id> referring to
one of the columns in the input pattern, a literal value, or a function
call whose arguments are an ordered list of <Call>. The function call
operator <Op> is speci�ed by an identi�er, the input value type (i.e.
the product of all individual argument types), and the output type.
<Call> can also appear directly in <Rule> as part of <FOPred>, in which
case the identi�er must refer to one of the bounded variables.

A <Call> in a Project can be interpreted as any expression that
we can obtain by instantiating the uninterpreted types and then
the function operators. Instantiating an uninterpreted function
operator requires us to express the output given input arguments
using operators from concrete types (e.g. + for numerical types) for
an instantiation of uninterpreted types.

A Project contains zero ormore <Call>s in an ordered list beside its
input pattern, and it is interpreted as the collection of Project query
plans satisfying two conditions. First, the source input of the Project
plan is a valid interpretation of the input pattern. Second, there
exists a way to instantiate the uninterpreted types and operators
so that the product of <Call>s in the list (i.e. merge the expressions
into a single tuple) is equivalent to the projection function in the
Project query plan.

If a Project appears in a match pattern, it describes the procedure
to recursively verify the input of a Project query plan against the in-
put pattern and then verify if the projection function in the Project
query plan can be segmented into a list of valid interpretations
for the <Call>s. If this is successful, we obtain a collection of valid
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interpretations for the uninterpreted function operators. If a Project

appears in a transform pattern, it describes the procedure to con-
struct a Project query plan after recursively constructing its input
query plan from the input pattern and then the projection function
with the interpretations of the function operators involved.

A Aggregate contains an aggregation, which is represented by
the �rst <Call>, and a group, which is represented by the second
<Call>, in addition to the input pattern. We need to be aware that the
function signatures of aggregation function operators are di�erent,
as the input type is a bag of values. An uninterpreted aggregation
function operator can be instantiated by expressing the output
using aggregation functions from concrete types (e.g. SUM for
numerical types), while an uninterpreted group function operator
is just a normal function operator. Then we can de�ne the rule
semantics of Aggregate similar to Project.

3.2.4 Filter and Join. Similar to Project and Aggregate, Filter and
Join have additional arguments. However, <Pred> is slightly di�erent
from <Call>, as <Pred> can only be interpreted as a scalar boolean
expression obtained by instantiating the uninterpreted types and
then the function operators.

A Filter contains one <Pred> besides an input pattern. It can be
interpreted as any Filter query plan where its input query plan is a
valid interpretation of the input pattern, while the predicate expres-
sion is equivalent to a valid interpretation of the <Pred>. Notice that a
valid interpretation of <Pred> may not look similar syntactically. For
example, x+y=3 AND x-y=1 is a valid interpretation of P0(x) AND P1(y),
as we can instantiate P0(x) to x=2 and P1(y) to y=1.

In comparison to a Filter, a Join has an additional type parameter
and an additional input pattern, and we can de�ne its rule semantics
similarly.

3.2.5 <Alias>. An <Alias> can be used to de�ne custom R���S�����
symbols, which can be identi�ed by its identi�er <Id>. The <Alias>

symbol will register the corresponding identi�er as a valid variant
of the input symbol, which can be used in the same way as other
variants. When we would like to verify a rule involving an <Alias>,
we will replace it with its semantics, which is represented by the
input symbol. This is important for the extension of R���S�����,
which we will discuss in Sec. 4.

3.3 Example
The motivation example, as is shown in Listing 3, provides an
example of how to construct a rewrite rule in R���S�����. We
�rst construct the Plan patterns as the source inputs. For the Join
Associate rule, we move Join predicates around based on their
dependencies of the Join inputs. Thus we do not need to further
segregate the input schema of the input query plans, and we only
need one <Field> for each of the Plan patterns. Then we construct the
two Join predicates, and in this case, we are using custom predicates
using PredAlias, although we hide the declaration here for simplicity.
Then we build the match pattern and the transform pattern from
the Plans and custom predicates. Finally, we construct a rule from
the match pattern and the transform pattern.

4 EXTENSION
Without the <Alias> symbol in Sec. 3, rewrite rules in R���S�����
cannot support custom query plans that can be found in most
extensible query optimizer implementations. Consequently, it limits
the way we can perform code generation, which we will discuss
in Sec. 6. Moreover, it is not easy to use to describe families of
rules that share similar structures, particularly those involving Join

s. Thus in this section, we aim to address these issues by extending
R���S����� with extra features and explain how they are achieved
in our reference implementation.

We choose to implement R���S����� as a library in Java, instead
of a custom DSL with its parser and compiler for a few reasons.
As a library in Java, R���S����� can be used with an integrated
development environment, which can greatly facilitate the usage
of R���S�����. Meanwhile, this makes it relatively easy to test our
implementation against Apache Calcite, which is also implemented
in Java, and we will discuss this in Sec. 7. Moreover, object-oriented
programming allowed us to easily extend our codes via class inher-
itance and interface implementation while implementing a parser
and compiler to achieve the same e�ect requires substantial extra
work. We can achieve the same e�ect of <Alias> by de�ning the
corresponding interfaces for symbols in R���S�����. The identi�er
<Id> of the <Alias> corresponds to the class name, and the input sym-
bol corresponds to the interface method named semantics(), which is
a zero-argument method returning a symbol in R���S�����without
<Alias>. We will discuss these interfaces in Sec. 4.1, after which we
introduce additional constructs above these interfaces to facilitate
the construction of rewrite rules in Sec. 4.2.

4.1 Alias Interface
If we would like to allow the usage of custom query plans in R����
S�����, we need a way to argue for the correctness of rewrite rules
where they are involved. Thus we need a way to describe the se-
mantics of these custom patterns. A simple idea is to express the
semantics of these custom patterns using the semantics of existing
patterns in R���S�����.

In our reference implementation, we de�ne several interfaces for
this purpose. The �rst one is an expression interface, which is used
to model scalar symbols in R���S����� such as <Call> and <Pred>.
The second one is a pattern interface, which is used tomodel custom
R���S����� query plans (i.e. <Patn>). Both of these interfaces only
require one method named semantics() to be implemented, which
should return the corresponding symbols for the corresponding ob-
ject without further using custom symbols. We provide the default
implementation of semantics() for the R���S����� symbols in Sec. 3
except for <Alias>, which can be used for any class that intends to
implement these interfaces. The constructors of the R���S�����
symbol classes can take any object implementing these interfaces
as the inputs, which allows users to plug in any custom symbol.

Based on these two interfaces, we de�ne a rule interface that
requires two mandatory methods, match() and transform(), and both
of them should return an object implementing the pattern interface.
In this interface, there is an optional constraint() method that can
be used to specify the additional constraints on this rule, which
returns an object implementing the expression interface, and by
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default, it returns the TRUE literal. We also provide a default method
explain() that returns a pretty string for the rule semantics.

We will illustrate how the pattern interface works with two
examples below.

4.1.1 Calculate. In Apache Calcite, a Calculate query plan com-
bines the functionality of Filter and Project [14]. Given a source
query plan, a Calculate query plan produces projections from input
tuples that satisfy the predicate. It should be semantically equivalent
to a Project query plan above a Filter query plan for the given input
query plan, predicate, and projection. For example, the query plans
below should produce the same output in all possible scenarios.

Calculate(G + 1, G > 0, Table(G : Integer))
Project(G + 1, Filter(G > 0, Table(G : Integer)))

Although we hope that R���S����� can directly support a pat-
tern for Calculate query plans, the underlying solver (i.e. QED)
does not have built-in support for them. Thus we need to explain
its semantics to the solver when it shows up. With our reference im-
plementation, we can create a new Calculate class that implements
the pattern interface. The constructor for this class admits any
object implementing the pattern interface as its input, along with
a predicate and a projection implementing the expression inter-
face, and stores them in the �elds of this class. Then we implement
semantics() by constructing a Project above a Filter with the class
�elds and returning it when semantics() is invoked. This concludes
our implementation of the pattern interface. Finally, this new class
can �t nicely into the rest of R���S�����, and when we need to
verify a rewrite rule involving Calculate, our pipeline automatically
invokes the semantics() function to obtain its equivalent semantics
that is understood by the solver.

4.1.2 Index Join. An Index Join is a special kind of Inner Join that
is backed by certain e�cient algorithms at runtime. Semantically, it
requires that the Join predicate is a conjunction of equality checks
between a pair of �elds from both input query plans, where the
�elds from one side are primary keys. For example, the query plans
below should produce the same output in all possible scenarios,
where all �elds in the tables are primary keys.

Index-Join( [ (0,G ), (1, ~) ], Table(0,1 : String), Table(G, ~ : String) )
Join(Inner,0 = G ^ 1 = ~, Table(0,1 : String), Table(G, ~ : String) )

In addition to creating a new IndexJoin class implementing the
pattern interface, we can create a new PairwiseEqual class imple-
menting the expression interface, whose instances will be used as
the predicates for the IndexJoin objects. A PairwiseEqual object can
be instantiated by a list of pairs of �eld references, and we imple-
ment its semantics() by constructing the conjunction of pairwise
equality assertions for these �elds. Then for the IndexJoin class, its
constructor requires a PairwiseEqual object along with two input
objects implementing the pattern interface, and we implement its
semantics() by using the semantics of the corresponding Join.

Here we can ignore the requirement for primary keys for Index
Join because the rewrite from a Index Join to a Inner Join always
holds no matter whether the �elds can be treated as primary keys or
not, and it is a runtime requirement for the implemented algorithm
that the �elds from one side should be primary keys.

4.2 Meta Variables and Rule Family
So far we have addressed how to extend R���S����� with custom
symbols, but it is tedious to use if we have to manually describe a
family of rewrite rules that look similar to each other. Thus we intro-
duce the notion of meta-variables and rule families in R���S�����
for this need.

In short, meta-variables are placeholders that can appear in the
match pattern and the transform pattern whose semantics() are
temporarily unknown. We refer to the R���S����� query plans
involving meta-variables as templates. We can assign actual R����
S����� query plans to these placeholders in templates, and we can
obtain a rewrite rule after all meta-variables are assigned. A rule
family is a set of rewrite rules created by a set of assignments for
one template.

In our reference implementation, a rule family should implement
an interface with a family() method that returns a list of rewrite
rules upon invocation. Meta-variables are <Alias> which implement
the pattern interface or the expression interface, but they will lead
to panics if we invoke the corresponding semantics() method. Thus
we also need to specify the options for each of the meta-variables.
Sometimes, we may have multiple meta-variables in the rewrite
rule, and only certain combinations of their assignment may lead
to correct rewrite rules. Thus we should specify a set of such valid
assignments, with which we can replace the meta-variables in the
template and generate the corresponding rewrite rules.

We provide a RuleGenerator class in our library as a baseline im-
plementation for this concept that streamlines the process. The
constructor for this class accepts a rule involving meta-variables
and the set of valid assignments for them, and we implement the
rule family interface for RuleGenerator by mapping each valid assign-
ment to an actual rewrite rule with variable replacement.

Aside from facilitating the process of constructing similar rewrite
rules, the meta-variables also allow us to experiment with potential
rewrite rules easily via enumeration. We illustrate this by reusing
the motivating example in Sec. 2, where we demand the four Join
types are allOuter, and it turns out that this variant of Join Associate
rule is provably correct, which we will discuss in Sec. 5. We would
like to know if any other combinations of Join types could result in
valid variants of the Join Associate rule, except for the cases where
all Join types are Inner which is already known.

01 |// Q0, Q1, Q2, F0, F1 are unchanged

02 |options = Assignment ((t0, t1, t2, t3), [

03 | (Inner , Inner , Inner , Inner),

04 | (Inner , Inner , Inner , Left),

05 | ...,

06 | (Outer , Outer , Outer , Outer)])

07 |before = Join(t1, F1, Join(t0, F0, Q0, Q1), Q2)

08 |after = Join(t3, F0, Q0, Join(t2, F1, Q1, Q2))

09 |rewrite = Rule(before , after)

10 |family = RuleGenerator(rewrite , options)

Listing 6: The Join Associate rule with meta-variables

We modify the pseudo-code in Listing 3 to achieve this, as is
shown in Listing 6. Q0, Q1, Q2, F0, F1 remains unchanged, while
the Join types are meta-variables named t0, t1, t2, t3. We list all
assignments of the meta-variables we would like to enumerate in
options, and in this case, we hope each join type to independently
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vary across Inner, Left, Right, Outer. Thus there are 44 = 256 as-
signments in options, and we put options together with the rule in a
RuleGenerator, which can automatically generate all the 256 rules. It
is hard for us to manually check every single one of them, so we
verify these rules automatically with QED, which will be discussed
in Sec. 5.

Table 1: Valid assignments of t0, t1, t2, t3 in Listing 6

t0 t1 t2 t3

Inner Inner Inner Inner

Inner Inner Inner Right

Inner Left Inner Inner

Inner Left Inner Right

Inner Right Right Inner

Inner Outer Right Inner

Left Inner Inner Left

Left Inner Inner Outer

Left Left Left Left

Left Left Left Outer

Left Right Right Left

Left Outer Outer Left

Right Right Right Right

Right Outer Right Right

Outer Right Right Outer

Outer Outer Outer Outer

16 of the enumerated assignments can lead to provably correct
variants of the Join Associate rule, which are listed in Table 1. Except
for the �rst case and the last case, which we already know, the rest
of the assignments could signi�cantly expand the domain of query
plans where the Join Associate could apply. In Sec. 6 we will attempt
to generate the implementation of all these rules so that developers
do not need to manually encode the correct cases.

5 VERIFICATION
To verify the rewrite rules we constructed from the R���S�����
symbols in Sec. 3.1, as well as those involving custom query plans
in Sec. 4, we need to translate them into encode them into input
formats of the QED solver. QED currently accepts any query plan
involving uninterpreted types and functions, whose syntax is listed
in Sec. 5.1, and we will also brie�y discuss how QED veri�es these
query plans in Sec. 5.2.

5.1 Syntax of Query Plans
Here we brie�y list the formalism for query plans, which are the
inputs to the QED solver. We list the common syntax and the high-
level semantics for them in Table 2.

The output of a query plan is a collection of tuples. We de�ne
the type of a tuple to be the product type of its element types.
For example, the type of (0, ”B”) is Integer ⇥ String. Following this
de�nition, the type for the product of two tuples equals the product
of their types.

Since QED is the only automated query equivalence solver for
now that has the capabilities to reason about uninterpreted symbols

Table 2: Syntax for QED Query Plans

Notation High-Level Semantics

&,&0,&1, . . . Query plans, which output tuples
E, E0, E1, . . . Individual tuples
%, %0, %1, . . . Predicates, which map a tuple to a Bool
5 , 50, 51, . . . Functions, which map a tuple to a tuple
U,U0,U1, . . . Aggregations, which map a collection of

tuples to a tuple
g Inner | Le� | Right | Outer | Semi | Anti

Table(' : () A table named ' with schema (
Value(E0, . . . , E=) A table containing values E0, . . . , E=

Filter(%,&) Filter & with %
Project(5 ,&) Map & with 5

Join(g, %,&0,&1) g-Join &0 and &1 on %
Union(&0,&1) Union &0 and &1

Aggregate(U, 5 ,&) Aggregate & with U grouped by 5
Distinct(&) Deduplicate &

and types, as well as su�cient coverage of SQL features, it is our
only option for the underlying solver to verify R���S����� rewrite
rules. Consequently, the exact semantics for the query plans we are
discussing here is bag semantics, which is the semantic chosen by
the QED solver. In bag semantics, query plans output a multi-set of
tuples. This means that we care about the multiplicity of the same
tuple in the output, and we do not care about the ordering among
the output tuples.

5.2 Semi-Ring Semantics for Query Plans
The QED solver veri�es that the pair of R���S����� query plans in
rewrite rules are equivalent for all uninterpreted types and function
operators that appear in them. Within the QED solver, the query
plans are recursively translated into semi-ring expressions. For ex-
ample, a Table(' : () is translated into a �nitely supported function
whose input is any tuple that has the same type as the table schema
( and it outputs the multiplicity of the provided tuple in the table,
while a Filter(%,&) is the product of an indicator function of the
predicate and the semi-ring expression for the input query plan.

After the QED solver translates the query plan into semi-ring
expressions, it normalizes it with a restricted set of rules into a �nite
summation of terms, which are unbounded summations of products
of indicator functions and �nitely supported functions. Given a pair
of query plans, QED compares their normalized forms term by term,
and if it tries to �nd equivalent pairs of terms using the help of SMT
solvers. QED does not reason about uninterpreted symbols itself,
and the support for uninterpreted symbols comes directly from
the underlying SMT solvers. A pair of terms are provably equal
if the underlying SMT solver cannot �nd a counter-example that
distinguishes them. If QED manages to �nd matching between the
terms from the pair of query plans, then the two query plans are
provably equal.

6 CODE GENERATION
In Sec. 3 we discuss how to use R���S����� to express and verify
rewrite rules, and in Sec. 4 we propose some additional features
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for R���S����� to make it more usable in reality. The only remain-
ing problem is how to correctly implement the rule described in
R���S�����.

The baseline solution is to ask the developers to implement them
manually from scratch, which completely relies on the developers’
carefulness and interpretation of the rewrite rule. Moreover, this
leads to redundantwork since the procedure tomatch and transform
each type of query plan does not vary much, and certain rewrite
rules are common to most query optimizer implementations. Given
that the e�orts have already been made to encode and verify the
rewrite rule in R���S�����, we hope to exploit our language to
generate functioning implementation based on our representations
provided minimal knowledge about the target query optimizer.

From the interpretation of R���S����� in Sec. 3.2, we know that
the match pattern in a rewrite rule describes the procedure to verify
if the provided query plan is a valid interpretation, while the trans-
form pattern instantiates a new query plan using the information
obtained during the veri�cation. This suggests a two-step approach
for the implementation. First, we should generate the codes that
perform veri�cation based on the match pattern and optionally
the constraints and the code should also produce a context that
captures relevant information upon successful veri�cation. Second,
we should generate the codes that instantiate a new query plan
given the context.

Moreover, to maximally reuse code from developers, we should
explore the similarity among di�erent rewrite rules. We observe
that both the veri�cation procedure and the instantiation procedure
for a rewrite rule can proceed recursively, just like the construction
of the match pattern and the transform pattern in R���S�����.
Thus, for each target query engine, we require users to provide a
template implementation for veri�cation and instantiation on all
R���S����� symbols, including the custom ones de�ned by them,
and we seek to automatically derive the implementation of all the
rules constructed from these patterns for the target engine. Such
template implementation is dependent on the implementation of
the target query engine, as a result of which it has to be provided
by the users.

We refer to such template implementation as a R���S�����
adapter. With a R���S����� adapter, R���S����� can recursively
compose the implementation for the rewrite rules based on the
structure of thematch pattern and the transform pattern in a rewrite
rule. Such design restricts the danger zone where developers can
make mistakes in the implementation of the adapter, which helps to
deduplicate the e�orts to maintain similar implementations across
rewrite rules that come from the code routine to match and trans-
form the same kinds of components in query plans.

To implement an adapter correctly, the rule of thumb is that
the generated codes should not apply the rewrite rule on query
plans that are not valid interpretations of the match pattern, and
the relevant information should be properly maintained in the
context and correctly used on the transform pattern. This requires
considerable consideration of the design for the context, which we
will illustrate with examples later in this section. However, we allow
the generated code to be stricter than the correspondingR���S�����
rewrite rule, which means that it is �ne to not apply the rewrite rule
for some interpretations of the match pattern. This could happen
a lot due to the limitations of the tools we can use to perform
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Figure 2: The code generation pipeline within a R���S�����
adapter. Red stages require user implementations, while
blue stages do not. Arrows without labels represent contexts
passed through di�erent stages.

veri�cation or the underlying algorithm, but the correctness of the
generated implementation is not violated. For example, in Sec. 4
we de�ne an IndexJoin without the use of primary keys, but when
we perform generation we can restrict the rule to the cases where
primary keys are present and used in pairwise equality checking
for the Join predicate.

A R���S����� adapter breaks down the code generation rou-
tine into two main phases and �ve auxiliary phases pipelined one
after another, as is illustrated in Figure 2. The information that
passes through the entire pipeline is the context, and in the two
main phases, we additionally take in the match pattern and the
transform pattern respectively. The pipeline starts with context ini-
tialization, which creates an empty context that propagates through
the pipeline. The pipeline ends with the extract phase, which com-
piles the information in the �nal context into an implementation
of the rewrite rule. The �nal context is populated with information
gathered during the recursive traversal of the match pattern and
the transform pattern in the two main phases.

The two main phases are the match phase and the transform
phase. During these two phases, R���S����� recursively traverses
the pattern using hooks, which are user-provided procedures that
specialize in handling certain kinds of R���S����� patterns. For
example, when a Filter is passed to the match phase, the match
phase will look for the match hook de�ned by users that can handle
Filter, and forward the match pattern to this hook. When users
de�ne such a hook that can handle Filter, they can invoke the
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match phase recursively on the input of the Filter. Thus in Figure 2
we can notice a cyclic relation between the match phase and match
hooks, and similarly between the transform phase and transform
hooks. In this way, we can reuse user-provided hooks whenever
we encounter the same kind of pattern. Moreover, the two main
phases do not need to be implemented by the user, since the logic
to dispatch patterns to corresponding hooks is independent of the
target query engine, and they are handled by R���S����� in our
reference implementation. The auxiliary phases can be used to
perform additional steps before and after the two main phases. We
will showcase how such design can help to compile R���S�����
rewrite rules to Apache Calcite implementations with an adapter
in Sec. 7.

7 CASE STUDIES
With the introduction of R���S����� in previous sections, we can
now present the case studies we perform on R���S����� in this
section.

7.1 Apache Calcite
Wehave performed experiments with the rewrite rules fromApache
Calcite. Apache Calcite implements 118 rewrite rules in their query
optimization pipeline, and we tested the expressiveness of R����
S����� by composing these rules in R���S�����. We present the
breakdown of rules in Table 3.

Table 3: Breakdown of rewrite rules in Apache Calcite

Category Total Supported

Aggregation 21 17
Calculate 6 4

Filter 17 13
Project 23 16

Join 33 20
Sort 8 0

SetOp 7 3
Other 4 0

Total 119 73

The rules are categorized by the relational operators involved in
them. For rules that contain multiple kinds of relational operators,
we choose the most relevant kinds as their categories. We manually
encode 24 of the supported rewrite rules with R���S�����, which
expands to 40 cases to be veri�ed by QED. 38 of these cases can
be successfully veri�ed within 5 seconds, while the two remaining
ones cannot be veri�ed due to the limitations of QED.

Our prototype adapter for Apache Calcite can generate working
implementations for simple rewrite rules such as the Filter Merge
rule, which transforms two consecutive Filter into one Filter with
the conjunction of their predicates. We will present an overview of
how this is achieved with the adapter design in Sec. 6 below.

In Apache Calcite, every rewrite rule extends the RelRule abstract
class. The RelRule abstract class consists of a number of methods that
each rule should implement. There are two methods that we must
implement. The �rst one is the onMatch() method, which checks if

the input query plan matches a speci�c pattern prescribed by the
rule, and if so transforms the input query plan accordingly. The
second one is the getOperand() method, which returns the skeleton
of query plans where the rule could apply. The skeleton of a query
plan encodes which variants of query plans are involved in the same
structure as the original query plan. For example, the Filter Merge
rule should apply to Filter query plans where the input query plans
are also Filter query plans, so the skeleton of query plans where this
rule could apply is Filter(Filter(Any)). For the onMatch() method, we
must generate Java codes that implement the rewrite rule, while for
the getOperand(), Apache Calcite provides utility tools with which
we can construct the skeleton using a single Java expression.

With the observations above, we need to keep track of a few
things in the context for the Apache Calcite adapter. First, we need
to create a new Java class for the rewrite rule speci�ed in R����
S�����, which includes the import statements in the beginning and
the body of the class de�nition. Then we need to generate Java code
for the onMatch() method. The body of the onMatch() method should
consist of a series of variable assignments and return statements .
Meanwhile, the Java expression for the skeleton can be constructed
recursively without temporary variables. Thus we need to keep
track of the list of statements for the onMatch() methods, where each
statement can use variables de�ned in previous statements, and we
also need to keep track of the skeleton expression that has been
constructed so far. Moreover, we need to keep track of the expres-
sion for the current query plan where we are focusing, which we
will refer to as the focus expression, as well as a mapping from
identi�ers to expressions that can keep track of how we should in-
stantiate function operators and Plan patterns when we see them in
the transform pattern. Since a context object keeps track of so many
states during code generation, we design it to be immutable so that
we do not need to worry about restoring it after we recursively
perform operations on it.

With the context class de�ned above, we can now use them in
di�erent phases of code generation. In the match phase, we aim to
maintain the recursion convention that the focus expression of the
input context is the query plan corresponding to the current pattern
we are examining. In the transform phase, we hope to maintain
the recursion convention so that the focus expression of the output
context is the new query planwe constructed for the current pattern
we are examining.

• In the preMatch() phase, we modify the empty context by set-
ting the focus expression to the input argument of the onMatch()

function.
• In the match() phase, we need to set the focus expression before
we recursively traverse the inputs to the current pattern, and
then update the skeleton in the context based on the current
pattern and the skeleton we obtained from recursive traversal.
We should add if statements in the context to verify if the rule is
applicable and if not we should return leave the original query
plan unmodi�ed. We can add entries in the identi�er mapping
that could help us generate the code for the transform mappings.

• In the postMatch() phase, wemay clean up the context and perform
additional checks using the constraints on the rewrite rule.
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• In the preTransform() phase, we initialize a RelBuilder object and
assign it to a variable in the context, and we set the focus expres-
sion to it. RelBuilder is the helper class in Apache Calcite that can
construct query plans recursively like a stack machine.

• In the transform() phase, we recursively generate the code that
constructs the query plans for the inputs to the current pattern,
and then generate the code that constructs the query plan corre-
sponding to the current pattern using the RelBuilder object, and
set it to the focus expression for the output context. We can use
the identi�er mapping in the context to retrieve anything we
need for this process.

• In the postTransform() phase, we conclude the body of onMatch()
by adding the statement to return the query plan using the focus
expression of the input context.

• In the extract() method, we derive the actual implementation
from the �nal context. We �rst add the import statements in the
beginning, then the class de�nition with the onMatch() method,
and lastly the skeleton expression that will be used for the con-
structor of the class.

In addition, we could de�ne utility functions and classes that can
be invoked by the generated code, and we can use them by adding
the appropriate import statements at the beginning of the generated
code. For example, we may need the helper function that composes
two function operators, and it is hard to directly generate such a
procedure from scratch. Instead, we can write a helper function to
achieve this and invoke it during code generation.

We provide the generated Join Associate implementation for
Apache Calcite in Listing 7. To facilitate the code generation, we
rede�ne the Join predicates F0, F1 as aliases whose semantics are
the same as before. In this way, we could customize how code gen-
eration proceeds for them. Line 4-7 are generated by the match
phase, where matchF0, matchF1 are custom functions that help to ver-
ify the Join predicates. matchF0, matchF1 return the Join predicates
unchanged if these predicates can be decomposed as speci�ed by
the semantics of the aliases. Otherwise matchF0, matchF1 return null
value, which will terminate the onMatch() function and leave the
original query plan unchanged. Line 9 is a Java expression gener-
ated during the transform phase, which creates a new query plan
according to the transform pattern as the optimized query plan. We
can reuse the Join predicates using the variables declared in the
match phase. Line 14 is the skeleton expression for the rewrite rule,
which means that the rewrite rule may be applied to two consecu-
tive Outer Joins. The rest of the code is generated by the auxiliary
phases.

01 |public class JoinAssociate extends

02 | RelRule <JoinAssociate.Config > {

03 | @Override public void onMatch(RelOptRuleCall call) {

04 | var var_3 = matchF0 ((( LogicalJoin) call.rel (1)));

05 | if (var_3 == null) { return; }

06 | var var_6 = matchF1 ((( LogicalJoin) call.rel (0)));

07 | if (var_6 == null) { return; }

08 | var var_7 = call.builder ();

09 | call.transformTo(var_7.push(call.rel(2)).push(call.

rel(3)).push(call.rel (4)).join(JoinRelType.FULL ,

var_6).join(JoinRelType.FULL , var_3).build());

10 | }

11 |

12 | public interface Config extends EmptyConfig {

13 | @Override default RelRule.OperandTransform

operandSupplier () {

14 | return s_4 -> s_4.operand(LogicalJoin.class).

predicate(j -> j.getJoinType ().equals(JoinRelType.

FULL)).inputs(s_2 -> s_2.operand(LogicalJoin.class).

predicate(j -> j.getJoinType ().equals(JoinRelType.

FULL)).inputs(s_0 -> s_0.operand(RelNode.class).

anyInputs (), s_1 -> s_1.operand(RelNode.class).

anyInputs ()), s_3 -> s_3.operand(RelNode.class).

anyInputs ());

15 | }

16 | }

17 |}

Listing 7: Generated Join Associate implementation for
Apache Calcite. We hide irrelevant Java codes here for
simplicity.

7.2 Syntax Guided Synthesis (SyGuS)
Based on our rule semantics, applying a rewrite rule is equivalent
to verifying if the provided query plan is a valid interpretation of
the match pattern and then instantiating the transform pattern
accordingly. In the actual implementation, this is achieved by re-
cursively verifying the query plan against the variants of the match
pattern and instantiating the uninterpreted function operators so
that expressions in the match pattern are semantically equivalent to
those in the given query plan. The recursive veri�cation routine is
already handled by the code generation pipeline, so the remaining
task is �nding the correct instantiation for the expression patterns.

SyGuS seems to be the right toolkit for such a task from our
perspective. SyGuS addresses the problem of synthesizing a pro-
gram that satis�es the speci�cation given the allowed grammar for
the program. For example, if we ask the solver to �nd an unary
integer function 5 (G) such that 5 (G) = 5 (�G) using the default
integer arithmetic operators, the solver may return 5 (G) = G2 as
the solution.

Such functionality could be very helpful for our pipeline. Take
the Join Predicate Push Down rule as an example. This rule aims to
push the predicate in an Inner Join down to both of its inputs as
much as possible. We de�ne this rule using R���S����� in Listing 8

01 |Rule(

02 | Join(Inner , P0(x, y) AND P1(x) AND P2(y),

03 | Plan(Q0, [(x, T0)]), Plan(Q1, [(y, T1)]))

04 | Join(Inner , P0(x, y),

05 | Filter(P1(x), Plan(Q0, [(x, T0)])),

06 | Filter(P2(y), Plan(Q1, [(y, T1)])))

Listing 8: The Join Predicate Push Down rule

This rule can apply to any Inner Join query plan since we can
always set P0 to be the predicate in the query plan while letting P1

and P2 to always return TRUE. Although this instantiation is always
valid, it is the least interesting one from the perspective of the query
optimizer. The goal of this rule is to reduce the size of inputs to
the Join operator, but the instantiation above fails to achieve this
goal. In reality, the query optimizer will seek to �nd nontrivial P1
and P2 for this rule using custom code routines, such as analyzing
the dependencies of the Join predicate, but this is only a best-e�ort
solution.

We know what could be the optimal solution to this problem. Let
% (G,~) be the original predicate, we hope the following conditions
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to hold.

8G,~ .% (G,~) = %0 (G,~) ^ %1 (G) ^ %2 (~)
8G .%1 (G) =) 9~.% (G,~)
8~.%2 (~) =) 9G .% (G,~)

The �rst statement suggests that the instantiated predicates
should be semantically equivalent to the original one, while the
remaining two statements suggest that P1 and P2 should evaluate
to TRUE only if they have to. This gives us the best predicates we
can use for this rewrite rule because they maximally �lter away
the inputs to the Join while maintaining the original semantics of
the query plan. In such a scenario, we have the speci�cation for
the program we would like to synthesize on, so a SyGuS solver is
supposed to complete the challenge.

However, this approach turns out to be not very practical. We
implement a prototype for this using the CVC5 solver, which is a
powerful SMT solver with SyGuS capabilities. We create a Inner
Join plan on two tables with single integer columns and set the
Join predicate to be x < y AND x + y = 6. Although we can manually
tell that one optimal instantiation is %0 (G,~) = G + ~ = 6, %1 (G) =
G < 3 and %2 (~) = ~ > 3, the CVC5 solver will timeout on the
speci�cation above using the default con�guration. If we only tell
the �rst statement to CVC5, it will synthesize near-optimal solutions
to the predicates, but even this takes longer than a few seconds,
which will not be feasible if we need to perform such tasks more
than once for the same user query.

7.3 Limitation
Our project is limited in a few aspects, which will be discussed in
this subsection.

List semantics. Our work is based on QED, which interprets the
results of query plans as bags of tuples. This prohibits us from
encoding rewrite rules where list semantics are involved, such
as those designed for Order By and Limit. This can be addressed
with an automated query equivalence solver which supports list
semantics, but we cannot �nd a working solution for this. The
components of the projects will stay mostly the same except for a
few new operators related to list semantics in our core DSL if we
eventually �nd and choose to use a satisfactory solver to replace
QED.

Restricted enumeration domain. Currently, it is hard for us to
enumerate for symbols other than Join types with meta-variables
in R���S�����. For example, we do not have an automated way
to come up with the Join predicates for the Join Associate rule
in Listing 3. However, this is an independent �eld of study, and
future works can build on top of R���S����� by �nding an e�cient
way to search within the domain of rewrite rules expressible in
R���S�����.

Complexity for code generation. Even if we design the code gen-
eration pipeline in a modular fashion, it requires considerable en-
gineering e�orts to implement an adapter for the query optimizer,
and it also requires extra care to maintain the context object dur-
ing the process, especially when the generation target is at a lower
level such as program code. We cannot address the problem without

making further assumptions on how the query optimizer is imple-
mented, but from our observation, this varies a lot case by case. We
believe that the solution to the problem is a uni�ed query optimizer
framework that abstracts away the details of the query engine, and
it could be easily shared in codes across di�erent projects. With
such a framework, our project can be designed as one of its plugins
that handles the veri�cation and execution of individual rewrite
rules, and we hope to see such a framework in the future.

8 RELATEDWORK
Extensible query optimizer. The idea of extensible query opti-

mization has come a long way since the last century. The Starburst
database is among the �rst RDBMS that bases their query rewrite
facilities on a collection of rewrite rules [9], and such design is
generalized and standardized by the Volcano Optimization genera-
tor [7] and later the Cascade framework [6]. The extensible query
optimizer architecture has been improved since then for better
extensibility, and it is widely used in modern query processing
pipelines, which is the case for Snow�ake [5], Apache Calcite [3],
and CockroachDB [11]. But still, the growing complexity of rewrit-
ing rules today continues to bring development challenges in terms
of correctness and development cost. The goal of our work is to
address these challenges systematically.

Query equivalence. The problem of verifying the equivalence of
queries has attracted serious research interests. The earliest inves-
tigation of the problem focuses on its theoretical aspects, and it is
proven that the problem in general is undecidable [16]. Later work
restricts the problem domain so that the problem can be decided,
such as conjunctive queries over bag semantics [8]. The more re-
cent progress on this problem focuses on extending the decidable
domain to cover more SQL features, which is made possible by the
advancement in automated theorem solvers like CVC5 [2]. Query
equivalence veri�cation is reduced to problems in other domains,
such as symbolic reasoning in SPES [17] and algebraic reasoning
in QED, and query equivalence is considered resolved assuming
the existence of powerful solvers that can handle the reduced prob-
lems. QED is currently the state-of-the-art query equivalence solver,
which supports the features needed for our work, and it is chosen
to be our source of truth for rewrite rule veri�cation.

9 CONCLUSION
In this paper, we present R���S�����, an extensible rule language
designed to express rewrite rules in any extensible query optimizer.
We describe its core syntax, which is designed to resemble the
structure of relational query plans, as well as how to extend the
core language to incorporate custom patterns with corresponding
semantics and how to use meta-variables to generate rewrite rules
in batches. We brie�y present how rewrite rules in R���S����� are
proven by the QED solver. Based on the syntax and semantics of
R���S�����, we illustrate how to generate implementations for the
rules described in this language provided we have the adapter for
the target query engine. We perform case studies for R���S�����
in Apache Calcite to test our design in real-world settings.
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