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Abstract

The Management of Context in the Machine Learning Lifecycle

by

Rolando Garcia

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

We present novel techniques and systems for managing data context within the machine
learning (ML) lifecycle. Drawing from a vision laid out in 2018, we present Flor and its
evolutions, FlorDB and FlorDB with Build extensions, designed for comprehensive metadata
capture and version control in the ML lifecycle. A cornerstone of our approach is the use of
an interview study to understand what the ML lifecycle is, and how engineers operationalize
machine learning, focusing on MLOps and the iterative model development process. Through
the implementation of these systems and their use in real-world applications for lawyers
and journalists, we demonstrate the tangible benefits of rich data context in agile model
development. In sum, we show how the integration of Application, Build, and Change
contexts—The ABCs of Context—enables MLEs to close the loop in the ML lifecycle.
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Chapter 1

Introduction

In this dissertation1, we explore the management of context in the machine learning lifecycle.
We begin by defining “the machine learning lifecycle”, akin to a conveyor belt for ML models,
and then go on to define “context” and talk about some of the pain points that arise when
it is lost. We discuss reasons why context is so varied and easy to lose in the ML lifecycle,
and then go on to present a solution: flor, a context management system for the machine
learning lifecycle. Flor and its evolutions, FlorDB and FlorDB with Build extensions, were
developed incrementally over the years; the system is available in open source2, and is pip-
installable as flordb. In what follows, we lay out the argument for why context is so
important for managing and streamlining the machine learning lifecycle, and discuss the
technical contributions that have made its management possible.

1.1 Build, Train, Deploy: What is the Machine

Learning Lifecycle?

The machine learning lifecycle encompasses a three-phase process: (i) building out a pipeline,
(ii) training a model using that pipeline, and (iii) deploying the model into production. Vari-
ants of this lifecycle include AWS SageMaker’s monitoring step, MLFlow’s detailed break-
down of each phase, and in Chapter 2 the ML lifecycle is denoted in four steps, consisting of
(i) data preparation on a schedule, (ii) experimentation, (iii) evaluation & deployment, and
(iv) monitoring & response (Figure 2.1).

Model development, within the build phase, is iterative and empirical. During this phase,
an ML Engineer typically works with an offline snapshot of data, performing tasks such as
data cleaning, exploratory data analysis, and model training and validation. The process is
inherently iterative, as engineers continuously refine their models. A participant from the
interview study presented in Chapter 2 remarked:

1Talk available at https://youtu.be/yjIH9l-jTz0
2github.com/ucbrise/flor
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“People have principled stances or intuitions for why things should work, but the
number one thing is to achieve scary high experimentation velocity.”

In the training phase, data processing pipelines run automatically on a schedule, ingesting
fresh data periodically to train updated versions of the model. The MLE evaluates new
models against historical averages and decides whether to deploy them to incrementally
larger fractions of the population.

In the final deployment phase, on-call ML Engineers monitor data and model predictions
to ensure quality at scale. The models, deployed as part of an intelligent application or
service, are a small part of a large ecosystem. Model predictions may be piped to downstream
models to build hierarchical systems, or “pipeline jungles,” where an end-user application
queries the prediction service and receives a response. Another participant from the interview
study in Chapter 2 noted:

“We don’t have a good idea of how models will behave in production until pro-
duction.”

In the machine learning lifecycle, feedback plays a crucial role by circling back to earlier
stages, effectively “closing the loop.” This feedback is integrated with evaluation datasets
and unit tests to ensure consistent training behavior. However, our interview study, detailed
in Chapter 2, uncovered several significant challenges in this process:

• This data looks wrong! Practitioners often encounter unexpected discrepancies in
their datasets. As one interviewee (P16) noted, “This data is supposed to have 50
states, but there’s only 40. What happened to the other 10?”

• The feedback is late! Timely feedback is crucial, yet often elusive. P7 expressed
frustration with this delay: “Feedback is always delayed by at least 2 weeks [...] so
when we realize maybe something went wrong, it could have been 2 weeks ago.”

• It worked better yesterday! Maintaining consistent model performance over time is
challenging. P19 shared a common strategy for dealing with unexpected performance
drops: “If a new model’s performance drops and an older model is still performing
within a valid range, we rollback and just cut the losses.”

• I fixed it, who needs to know? The disconnect between different teams involved in
the ML process can lead to information silos. P10 highlighted this issue: “You have to
bridge the gap between what’s often a subject matter expert in one room annotating
and then handing things over the wire to a data scientist — a scene where you have
no communication.” Improving cross-functional collaboration is essential for effective
feedback integration.

• They don’t work here anymore. . . As team members change over time, valuable
knowledge about system components can be lost. P14 described a common scenario:
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“We have some filters we keep around so we don’t break something but we’re not
so sure what they do. Filters can accumulate over time into pipeline jungles.” This
accumulation of poorly understood elements can lead to increasingly complex and
opaque systems.

These challenges underscore the need for robust processes and tools to effectively manage
feedback in the machine learning lifecycle, ensuring that insights are promptly and accurately
incorporated into ongoing development efforts.

1.2 Context: The Missing Piece in the Machine

Learning Lifecycle

The ML lifecycle is characterized by numerous fast-changing components, where it is easy to
lose the thread of essential metadata — what we term context. Context is metadata broadly
conceived: it represents a comprehensive framework that captures the nature, origins, evo-
lution, and functional significance of data and digital artifacts within an organization. Our
conceptualization of context is drawn from the work of Hellerstein et al. (2017) [62], who
proposed it as an extension of traditional database metadata. They introduced the “ABCs
of Context” mnemonic, which we find particularly useful for understanding and navigating
the complex landscape of ML metadata. This framework provides a structured approach
to capturing and managing the rich tapestry of information that underpins real-world ML
applications. The ABCs of Context are as follows:

A. Application Context (What): This is core information that describes what raw
bits an application sees and interprets for its use. In its most comprehensive definition
(which we will adopt here), this involves any information that could be logged; i.e., the
value of arbitrary expressions at runtime.

B. Build Context (How): This is information about how data is created and used: e.g.,
dependency management for distribution and building across different machines and
by different people; provenance and lineage; routes, pathways, or branches in pipelines;
and flow of control and data.

C. Change Context (When): This is information about the version history of data,
code, configuration parameters, and associated information, including changes over
time to both structure and content.

An unfortunate consequence of the disaggregated nature of contemporary ML applica-
tions is the lack of a standard mechanism to assemble a collective understanding of the
origin, scope, and usage of the data they manage. What is needed is a common service layer
to support the capture, publishing and sharing of metadata information in a flexible way:
Flor aims to fill this gap in a lightweight fashion, as envisioned in Chapter 3. By rethinking
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metadata in a far more comprehensive and open sense, Flor is built from the ground up to
capture the full context of data in the machine learning lifecycle.

In a decoupled architecture of multiple applications and backend services, context serves
as a narrow gateway — a single point of reference for the basic information about data and
its usage. In our vision laid out in Chapter 3, Flor streamlines ML engineers’ workflows by
integrating fragmented metadata from scattered systems within a single, unified, lightweight
solution. This ensures MLEs work quickly and efficiently while maintaining long-term orga-
nization and ensuring essential context is always captured.

1.3 Flor: The Management of Context in the

Machine Learning Lifecycle

Flor represents a significant advancement in the field of machine learning, offering a com-
prehensive system designed to capture, manage, and utilize context throughout the entire
machine learning lifecycle. Flor draws its name from the Spanish word for “flower,” aptly
symbolizing its organic growth and evolution from its predecessor, Ground, a pioneering data
context service [62]. Just as a flower blossoms from the ground, Flor builds upon and ex-
pands the foundational concepts established by Ground, offering a more robust and versatile
approach to context management in machine learning workflows.

Managing Application Context with Hindsight Logging

To understand application context, consider the following example: a model training script
train.py that computes a loss, back-propagates gradients, updates weights, and so on.
Application context involves the core information that describes how raw data is interpreted
for use — essentially, the value and meaning of expressions at runtime. The application
context of train.py includes:

• The hyper-parameters, seeds, and other configuration settings.

• The batch of training, validation, and test data.

• The loss, activations, tensor histograms, and other model data.

• The accuracy, recall, F1-score, and other metrics.

This list could continue indefinitely. Application context is anything that could be logged.
When considering derived data from added expressions, application context becomes poten-
tially infinite. How do you manage something infinite?

The approach presented in Chapter 4 is to manage application context virtually, and allow
for its structure and content to be defined post-hoc, at query time. In a Flor Dataframe,
each logging statement executed at runtime maps to a column. A Flor Dataframe is virtually
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infinite because log statements (and hence columns) can be added or defined post-hoc, using
hindsight logging. Hindsight logging is a record-replay technique for materializing application
context on-demand. In Chapter 4, we introduce the first iteration of Flor and describe
the technical contributions that enable hindsight logging for model training, including: i)
adaptive checkpointing in the background, and ii) Low latency and auto-parallel replay from
checkpoint-resume.

Managing Change over Time with Multiversion Hindsight Logging

In Chapter 5 we consider extensions to our management of application context to allow us
to track change over time. The way we motivate the management of temporal or change
context, is through the following continuous training scenario:

Alice, an MLE at a self-driving car company, aims to improve self-driving performance in
countries with many roundabouts. She tracks standard metrics such as the F1-score and loss,
ensuring they remain within valid parameters while optimizing performance on roundabouts.
Over time, Bob informs Alice that her models have lost the ability to detect pedestrians, an
incident of “catastrophic forgetting.” Alice needs to know when this issue began and roll
back to an earlier version when the model performed well on roundabouts without losing
pedestrian detection capabilities.

Unfortunately, Alice was not tracking metrics on pedestrians. The solution presented
in Chapter 5 allows Alice to add the necessary logging statements to the latest version
of her train.py script and replay from the beginning of history. This approach involves
automatically versioning the code on every run and using software patching to propagate
logging statements back in time, calling flor replay on each modified version of train.py.
These extensions, combined with the relational model described in Section 5.4 (Figure 5.6),
enable Alice to extend hindsight logging to multiple versions and track the evolution of
application context over time.

Context is All You Need: Closing the Loop in the Machine
Learning Lifecycle

In Chapter 6, we introduce the final extension to Flor, FlorDB with Build extensions, which
integrates support for managing build context. This allows Flor to handle the full ABCs
of context comprehensively. Build context encompasses information on the creation and
utilization of data, including: dependency management across various machines and users,
provenance and lineage of data, various routes or branches in computational pipelines, the
flow of control and data.

By default, FlorDB employs Make to manage build context. However, it is designed
to be flexible and can integrate with the preferred workflow or build management system
of a machine learning engineer (MLE), including but not limited to Airflow and MLFlow.
In Chapter 6, we showcase FlorDB’s applicability across document intelligence scenarios,
illustrating how it effectively closes the loop in the machine learning lifecycle.
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FlorDB operates through a user-friendly logging interface (flor.log) and accesses stored
data seamlessly via the flor.dataframe interface, regardless of the file or version where the
value originated. This approach channels the previously disparate and disorganized metadata
from the machine learning lifecycle through a narrow gateway, organizing it into a structured
and coherent format.

1.4 Flow with FlorDB

Context is all you need because context is so much. Application context alone is effectively
unbounded, and once you can manage build and change context alongside it, you harness
the full spectrum of data and process insights. This comprehensive grasp enables MLEs to
iterate on the ML lifecycle with velocity, adopting an agile but still strong “metadata later”
approach. FlorDB not only documents and preserves every step of the model’s development
and deployment but also provides a dynamic interface to review, rewind, and fast-forward
through the model’s lifecycle. This capability ensures that every component of the ML
system is transparent and traceable.

• Enhanced Transparency: By maintaining detailed logs of each phase of the ML life-
cycle, Flor provides an exhaustive audit trail that helps in compliance and debugging.

• Improved Collaboration: Flor’s logging mechanisms enable team members to un-
derstand changes made by others deeply, fostering better collaboration and reducing
the risks of errors or redundant work.

• Faster Iteration Cycles: With the ability to rapidly access and review past states,
MLEs can quickly iterate on models, experimenting with new ideas while confidently
managing the risk of negative changes.

FlorDB’s comprehensive management of context effectively “closes the loop” in the ML
lifecycle by ensuring that feedback from deployed models can be seamlessly integrated back
into model training and development phases. Through FlorDB, we provide not just the tools
to manage context, but an agile hindsight logging framework to understand and utilize it
post-hoc, making strides in our vision of a fully integrated, transparent, and efficient ML
lifecycle.
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Chapter 2

Operationalizing Machine Learning:
An Interview Study

Organizations rely on machine learning engineers (MLEs) to deploy models and maintain
ML pipelines in production. Due to models’ extensive reliance on fresh data, the opera-
tionalization of machine learning, or MLOps, requires MLEs to have proficiency in data
science and engineering. When considered holistically, the job seems staggering—how do
MLEs do MLOps, and what are their unaddressed challenges? To address these questions,
we conducted semi-structured ethnographic interviews with 18 MLEs working on various
applications, including chatbots, autonomous vehicles, and finance. We find that MLEs en-
gage in a workflow of (i) data preparation, (ii) experimentation, (iii) evaluation throughout
a multi-staged deployment, and (iv) continual monitoring and response. Throughout this
workflow, MLEs collaborate extensively with data scientists, product stakeholders, and one
another, supplementing routine verbal exchanges with communication tools ranging from
Slack to organization-wide ticketing and reporting systems. Later in this chapter1, we in-
troduce the 3Vs of MLOps: velocity, visibility, and versioning—three virtues of successful
ML deployments that MLEs learn to balance and grow as they mature. Finally, we discuss
design implications and opportunities for future work.

2.1 Introduction

As machine learning (ML) models are increasingly incorporated into software, a nascent sub-
field called MLOps (short for ML Operations) has emerged to organize the “set of practices
that aim to deploy and maintain ML models in production reliably and efficiently” [203,
4]. It is widely recognized that MLOps issues pose challenges to organizations. Anecdotal
reports claim that 90% of ML models don’t make it to production [202]; others claim that
85% of ML projects fail to deliver value [181]—signaling the fact that translating ML models

1Chapter published as a CSCW conference paper by Shankar & Garcia et al. [177]. Shankar & Garcia
contributed equally to this research, and are listed as co-first authors.
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Data
Preparation
(on a schedule)

Experimentation
Evaluation &
Deployment

Monitoring & Response

Figure 2.1: Core tasks in the MLOps workflow. Prior work discusses a production data
science workflow of preparation, modeling, and deployment [200]. Our work exposes (i)
the scheduled and recurring nature of data preparation (including automated ML tasks,
such as model retraining), identifies (ii) a broader experimentation step (which could
include modeling or adding new features), and provides more insight into human-centered
(iii) evaluation & deployment, and (iv) monitoring & response.

to production is difficult. At the same time, it is unclear why MLOps issues are difficult to
deal with. Our present-day understanding of MLOps is limited to a fragmented landscape of
white papers, anecdotes, and thought pieces [42, 125, 46, 52], as well as a cottage industry of
startups aiming to address MLOps issues [75]. Early work by Scully et al. (2015) attributes
MLOps challenges to technical debt, analogous to that in software engineering but exacer-
bated in ML [169]. Prior work has studied general practices of data scientists working on
ML [165, 81, 131, 213], but successful ML deployments seem to further involve a “team of
engineers who spend a significant portion of their time on the less glamorous aspects of ML
like maintaining and monitoring ML pipelines” —that is, ML engineers (MLEs) [147]. It is
well-known that MLEs typically need to have strong data science and engineering skills [6],
but it is unclear how those skills are used in their day-to-day workflows.

There is thus a pressing need to bring clarity to MLOps—specifically in identifying what
MLOps typically involves—across organizations and ML applications. While papers on
MLOps have described specific case studies, prescribed best practices, and surveyed tools to
help automate the ML lifecycle, there is a pressing need to understand the human-centered
workflow required to support and sustain the deployment of ML models in practice. A richer
understanding of common practices and challenges in MLOps can surface gaps in present-day
processes and better inform the development of next-generation ML engineering tools. To
address this need, we conducted a semi-structured interview study of ML engineers (MLEs),
each of whom has been responsible for a production ML model. With the intent of identify-
ing common themes across organizations and industries, we sourced 18 ML engineers from
different companies and applications, and asked them open-ended questions to understand
their workflow and day-to-day challenges—both on an individual and organizational level.

Prior work focusing on the earlier stages of data science has shown that it is a largely
iterative and manual process, requiring humans to perform several stages of data clean-
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ing, exploration, model building, and visualization [141, 91, 165, 66]. Before embarking on
our study, we expected that the subsequent deployment of ML models in production would
instead be more amenable to automation, with less need for human intervention and su-
pervision. Our interviews, in fact, revealed the opposite—much like the earlier stages of
data science, deploying and maintaining models in production is highly iterative, manually-
intensive, and team-oriented. Our interviewees emphasized organizational and collaborative
strategies to sustain ML pipeline performance and minimize pipeline downtime, mentioning
on-call rotations, manual rules and guardrails, and teams of practitioners inspecting data
quality alerts.

In this chapter, we provide insight into human-centered aspects of MLOps practices and
identify opportunities for future MLOps tools. We conduct a semi-structured interview
study solely focused on ML engineers, an increasingly important persona in the broader
software development ecosystem as more applications leverage ML. Our focus on MLEs,
and uncovering their workflows and challenges as part of the MLOps process, addresses a
gap in the literature. Through our interviews, we characterize an ML engineer’s typical
workflow (on top of automated processes)into four stages (Figure 2.1): (i) data preparation,
(ii) experimentation, (iii) evaluation and deployment, and (iv) monitoring and response, all
centered around team-based, collaborative practices. Key takeaways for each stage are as
follows:

Data ingestion often runs automatically, but MLEs drive data preparation
through data selection, analysis, labeling, and validation (Section 2.4) We find
that organizations typically leverage teams of data engineers to manage recurring end-to-end
executions of data pipelines, allowing MLEs to focus on ML-specific steps such as defining
features, a retraining cadence, and a labeling cadence. If a problem can be automated away,
engineers prefer to do so—e.g., retraining models on a regular cadence to protect against
changes in the distribution of features over time. Thus, they can spend energy on tasks that
require human input, such as supervising crowd workers who provide input labels or resolve
inconcistencies in these labels.

Even in production, experimentation is highly iterative and collaborative,
despite the use of model training tools and infrastructure (Section 2.4) As men-
tioned earlier, various articles claim that it is a problem for 90% of models to never make
it to production [202], but we find that this statistic is misguided. The nature of constant
experimentation is bound to create many versions of models, a small fraction of which (i.e.
“the best of the best”) will make it to production. MLEs discussed exercising judgment
when choosing next experiments to run, and expressed reservations about AutoML tools,
or “keeping GPUs warm,” given the vast search space. MLEs consult domain experts and
stakeholders in group meetings, and prefer to iterate on the data (e.g., to identify new feature
ideas) over innovating on model architectures.

Organizations employ a multi-stage model evaluation and deployment pro-
cess, so MLEs manually review and authorize deployment to subsequent stages
(Section 2.4) Textbook model evaluation “best practices” do not do justice to the rigor with
which organizations think about deployments: they generally focus on using one typically-
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static held-out dataset in an offline manner to evaluate the model on [107] and a single
ML metric choice (e.g., precision, recall) [135]. We find that many MLEs carefully de-
ploy changes to increasing fractions of the population in stages. At each stage, MLEs seek
feedback from other stakeholders (e.g., product managers and domain experts) and invest
significant resources in maintaining multiple up-to-date evaluation datasets and metrics over
time—especially to ensure that data sub-populations of interest are adequately covered.

MLEs closely monitor deployed models and stand by, ready to respond to
failures in production (Section 2.4) MLEs ensured that deployments were reliable via
strategies such as on-call rotations, data monitoring, and elaborate rule-based guardrails
to avoid incorrect outputs. MLEs discussed pain points such as alert fatigue from alerting
systems and the headache of managing pipeline jungles [169], or amalgamations of various
filters, checks, and data transformations added to ML pipelines over time.

The rest of this chapter is organized as follows: we cover background and work related
to MLOps from the CSCW, HCI, ML, software engineering, and data science communities
(Section 2.2). Next, we describe the methods used in our interview study (Section 2.3).
Then, we present our results and discuss our findings, including opportunities for new tooling
(Section 2.4 and Section 2.5). Finally, we conclude with possible areas for future work.

2.2 Related Work

Our work builds on previous studies of data and ML practitioners in industry. We begin
with the goal of characterizing the role of an ML Engineer, starting with related data science
roles in the literature and drawing distinctions that make MLEs unique. We then review
work that discusses data science and ML workflows, not specific to MLOps. Third, we
cover challenges that arise from productionizing ML. Fourth, we survey software engineering
practices in the literature that tackle such challenges. Finally, we review recent work that
explicitly attempts to define and discuss MLOps practices.

Characterizing the ML Engineer

Data science roles span various engineering and research tasks [86], and many data-related
activities are performed by people without “data” or “ML” in their job title [85], so it can be
hard to clearly define job descriptions [131]. Nonetheless, since we focus on production ML
pipelines, we discuss personas related to data science, ML, and engineering—culminating in
the description of the persona we study.

The Data Scientist: Multiple studies have identified subtypes of data scientists, some
of whom are more engineering-focused than others [213, 86]. Zhang et al. (2021) describe
the many roles data scientists can take—communicator, manager/executive, domain ex-
pert, researcher/scientist, and engineer/analyst/programmer [213]. They found considerable
overlap in skills and tasks performed between the (i) engineer/analyst/programmer and (ii)
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researcher/scientist roles: both are highly technical and collaborate extensively. Separately,
Kim et al. taxonomized data scientists as: insight providers, modeling specialists, platform
builders, polymaths, and team leaders [86]. Modeling specialists build predictive models us-
ing ML, and platform builders balance both engineering and science as they produce reusable
software across products.

The Data Engineer: While data scientists engage in activities like exploratory data anal-
ysis (EDA), data wrangling, and insight generation [81, 205], data engineers are responsible
for building robust pipelines that regularly transform and prepare data [100]. Data engineers
often have a software engineering and data systems background [86]. In contrast, data sci-
entists typically have modeling, storytelling, and mathematics backgrounds [86, 100]. Since
production ML systems involve data pipelines and ML models in larger software services,
they require a combination of data engineering, data science, and software engineering skills.

The ML Engineer (MLE): Our interview study focuses on the distinct ML Engineer
(MLE) persona. MLEs have a multifaceted skill set: they know how to transform data
as inputs to ML pipelines, train ML models, serve models, and wrap these pipelines in
software repositories [89, 80, 157]. MLEs need to regularly process data at scale (much like
data engineers [89]), employing statistics and ML techniques as do data scientists [145], and
are responsible for production artifacts as are software engineers [103]. Unlike typical data
scientists and data engineers, MLEs are responsible for deploying MLmodels and maintaining
them in production.

We classify production ML into two modes. One, which we call single-use ML, is more
client-oriented, where the focus is to generate predictions once to make a specific data-
informed business decision [91]. Typically, this involves producing reports, primarily per-
formed by data scientists [70, 85]. In the other mode, which we call repeated-use ML,
predictions are repeatedly generated, often as intermediate steps in data pipelines or as
part of ML-powered products, such as voice assistants and recommender systems [86, 6].
Continuously generating ML predictions over time requires more data and software engi-
neering expertise [85, 190]. In our study, we focus on MLEs who work on the latter mode of
production ML.

Machine Learning Workflows

Here, we cover literature on ML practitioners’ workflows. We discuss both technical and
collaborative workflows, and then we describe the workflow our study seeks to uncover.

Several studies have investigated aspects of the broader ML workflow, mostly in single-
use production ML applications. Early studies on data science workflows point to industry-
originated software development process models, such as the Agile framework [29] and the
CRoss Industry Standard Process for Data Mining (CRISP-DM) [24]. More recently, Studer
et al. (2021) introduce CRISP-ML, a new process model that augments CRISP-DM with
a final “monitoring and maintenance” phase to support ML workflows [186]. Muller et al.
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(2019) interview practitioners and focus on the data practices of data science workflows,
breaking them down into discovery, capture, design, and curation [131]. Wongsuphasawat
et al. (2019) workflow includes some ML: it consists of data acquisition, wrangling, ex-
ploration, modeling, and reporting [205]. Wang et al. (2019) takes another step back and
includes productionization; they identify three high-level phases of preparation, modeling,
and deployment [200]. Preparation includes activities ranging from wrangling [82] to feature
engineering [145]. Modeling includes selection, hyperparameter optimization, ensembling,
and validation, and deployment includes monitoring and improvement [200, 213]. Of the
three large stages, several studies have identified preparation as the most time-intensive
stage of the workflow [131, 60], where data scientists commonly iterate on rules to help
generate features [142, 66].

While the above stages of the data science workflow comprise a loop of technical tasks,
Kross and Guo (2021) identify an outer loop of data science, centered around collaborative
practices [91]. The outer loop consists of groundwork (i.e., building trust), orienting, problem
framing, magic (i.e., technical loop), and counseling. While Kross and Guo’s loop focuses on
data science work that directly interacts with clients, mostly in the form of single-use ML,
similar themes emerge when performing repeated-use ML engineering work, e.g., repeatedly
generating ML predictions in an automated fashion. In production settings, predictions
must yield value for the business [145], requiring some groundwork, orienting, and problem
framing. In their paper on tensions around collaborative, applied data science work, Passi
and Jackson (20198) discuss that it’s important to align different stakeholders on system
performance metrics: for example, one of their interviewees mentioned that accuracy is
a “problematic” metric because different users interpret it differently [141]. In another
example, Holstein et al. (2020) say that a single global metric doesn’t capture performance
for certain groups of users (e.g., accuracy for a subgroup might decrease when overall accuracy
increases) [68].

In our study, we characterize the workflow from a repeated-use ML engineering perspec-
tive, focusing on specific practices within deployment stages. Some related work defines
steps in the ML workflow, such as model training and model monitoring, through both short
papers [119] and extensive literature reviews [94]. We take a different but complementary
approach: like Muller et al (2019) who focus on data scientists [131], we conduct an inter-
view study of MLEs, using grounded theory to analyze our findings [184]. Further, our study
seeks to uncover collaborative practices and challenges, focusing on the ML engineering per-
spective, and how MLEs align all stakeholders such that ML systems continually generate
value.

Production ML Challenges

Sculley et al. (2015) were early proponents that production ML systems raise special chal-
lenges and can be hard to maintain over time, based on their experience at Google [169].
They coined the “Changing Anything Changes Everything” (CACE) principle: if one makes
a seemingly innocuous change to an ML system, such as changing the default value for a
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feature from 0 to -1, the entire system’s behavior can drastically change. CACE easily cre-
ates technical debt and is often exacerbated as errors “cascade,” or compound, throughout
an end-to-end pipeline [169, 165, 140, 146, 147]. We cover three well-studied challenges in
production ML: data quality, reproducibility, and specificity.

First, ML predictions are only as good as their input data [146, 147], requiring active
efforts from practitioners to ensure good data quality [20]. Xin et al. (2021) observe that
production ML pipelines consist of models that are automatically retrained, and we find
that this retraining procedure is a pain point for practitioners because it requires constant
monitoring of data [208]. If a model is retrained on bad data, all future predictions will be
unreliable. Data distribution shift is another known data-related challenge for production
ML systems [151, 138, 128, 204, 187], and our work builds on top of the literature by reporting
on how practitioners tackle shift issues.

Next, reproducibility in data science workflows is a well-understood challenge, with at-
tempts to partially address it [22, 74, 88, 38]. Recent work also indicates that reproducibility
is an ongoing issue in data science and ML pipelines [10, 163, 84, 92]. Kross and Guo (2019)
mention that data science educators who come from industry specifically want students to
learn how to write “robust and reproducible scientific code.” [92] In interview studies, Xin
et al. (2021) observe the importance of reproducibility in AutoML workflows [209], and
Sambasivan et al. (2021) mention that practitioners who create reproducible data assets
avoid some errors [165].

Finally, other related work has identified that production ML challenges can be specific
to the ML application at hand. For example, Sambasivan et al. (2021) discusses how, in
high-stakes domains like autonomous vehicles, data quality is extra important and explicitly
requires collaboration with domain experts. They explain how data errors compound and
have disastrous impacts, especially in resource-constrained settings. Unlike the present study,
their focus is on data quality issues as opposed to understanding typical MLE workflows and
challenges. Paleyes et al. (2022) review published reports of individual ML deployments and
mention that not all ML applications can be easily tested prior to deployment [140]. While
ad recommender systems might be easily tested online with a small fraction of users, other
applications require significant simulation testing depending on safety, security, and scale
issues [139, 95]. Common applications of ML, such as medicine [148], customer service [44],
and interview processing [18] , have their own studies. Our work expands on the literature
by identifying common challenges across various applications and reporting on how MLEs
handle them.

Software Engineering for ML

Through interviews and practitioner surveys, some papers explore, at a high level, how ML
engineering practices differ from traditional software engineering practices. Hill et al. (2016)
interview ML application developers and report challenges related to building first versions
of ML models, especially around the early stages of exploration and experimentation (e.g.,
feature engineering, model training) [64]. They describe the process of building models as
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“magic”—similarly echoed by Lee et al. (2020) when analyzing ML projects from Github—
with unique practices of debugging data in addition to code [98]. Serban et al. (2020)
conduct a survey of practitioners and list 29 software engineering practices for ML, such
as “Use Continuous Integration” and “Peer Review Training Scripts” [172]. Muiruri et al.
(2022) interview Finnish engineers and investigate technical challenges and ML-specific tools
in the ML lifecycle [129]. Amershi et al. (2019) identify challenges such as hidden feedback
loops and component entanglement through their interviews with scientists, engineers, and
managers at Microsoft [6]. They broadly discuss strategies to integrate support for ML de-
velopment into traditional software infrastructure, such as end-to-end pipeline support from
data engineers and educational conferences for employees. Our work expands on the software
engineering for ML ecosystem by considering human-centered, operational requirements for
ML deployments, e.g., over time, as MLEs are introduced to ML pipelines that are unfamil-
iar to them, or as customer or product requirements change. Unlike Amershi et al., we focus
on MLEs, who are responsible for maintaining ML pipeline performance. We also interview
practitioners across companies and applications: we provide new and specific examples of
ML engineering practices to sustain ML pipelines as software and categorize these practices
around a broader human-centered workflow.

The data management, software engineering, and CSCW communities have proposed var-
ious software tools for ML workflows. For example, some tools manage data provenance and
training context for model debugging purposes [133, 19, 62, 47]. Others help ensure repro-
ducibility while iterating on different ideas [178, 84, 66]. With regards to validating changes
in production systems, some researchers have studied CI (Continuous Integration) for ML
and proposed preliminary solutions—for example, ease.ml/ci streamlines data manage-
ment and proposes unit tests for overfitting [3], and some papers introduce tools to perform
validation and monitoring in production ML pipelines [20, 166, 83]. Our work is comple-
mentary to existing literature on this tooling; we do not explicitly ask interviewees questions
about tools, nor do we propose any tools. We focus on behavioral practices of MLEs.

MLOps Practices and Challenges

The traditional software engineering literature describes the need for DevOps, a combi-
nation of software developers and operations teams, to streamline the process of delivering
software in organizations [103, 41, 114, 111]. Similarly, the field of MLOps, or DevOps prin-
ciples applied to machine learning, has emerged from the rise of machine learning (ML)
application development in software organizations. MLOps is a nascent field, where most
existing papers give definitions and overviews of MLOps, as well as its relation to ML, soft-
ware engineering, DevOps, and data engineering [89, 189, 50, 118, 190, 80, 191, 157, 175,
173]. Some work in MLOps attempts to characterize a production ML lifecycle; however,
there is little consensus. Symeonidis et al. (2022) discuss a lifecycle of data preparation,
model selection, and model productionization [189], but other literature reviews [106, 50]
and guides on best practices drawing from authors’ experiences [119] conclude that, com-
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pared to software engineering, there is not yet a standard ML lifecycle, with consensus from
researchers and industry professionals. While standardizing an ML lifecycle across different
roles (e.g., scientists, researchers, business leaders, engineers) might be challenging, charac-
terizing a workflow specific to a certain role could be more tractable.

Several MLOps papers present case studies of productionizing ML within specific orga-
nizations and the resulting challenges. For example, adhering to data governance standards
and regulation is difficult, as model training is data-hungry by nature [14, 56]. Garg et al
(2021) discuss issues in continuous end-to-end testing (i.e., continuous integration) because
ML development involves changes to datasets and model parameters in addition to code [50].
To address such challenges, other MLOps papers have surveyed the proliferating number of
industry-originated tools in MLOps [156, 189, 162, 106]. MLOps tools can help with gen-
eral pipeline management, data management, and model management [156]. The surveys
on tools motivate understanding how MLEs use such tools, to see if there are any gaps or
opportunities for improvement.

Prior work in this area—primarily limited to literature reviews, surveys, case studies, and
vision papers—motivates research in understanding the human-centered workflows and pain
points in MLOps. Some MLOps work has interviewed people involved in the production ML
lifecycle: for example, Kreuzberger et al. (2022) conduct semi-structured interviews with
8 experts from different industries spanning different roles, such as AI architect and Senior
Data Platform Engineer, and uncover a list of MLOps principles such as CI/CD automation,
workflow orchestration, and reproducibility, as well as an organizational workflow of product
initiation, feature engineering, experimentation, and automated ML workflow pipeline [89].
While Kreuzberger et al. (2022) explicitly interview professionals from different roles to
understand shared patterns between their workflows—in fact, only two of the eight intervie-
wees have “machine learning engineer” or “deep learning engineer” in their job titles, our
work complements their findings by focusing only on self-declared ML engineers responsible
for repeated-use models in production and uncovering strategies they use to sustain model
performance. As such, we uncover and present a different workflow—one centered around
ML engineering. To the best of our knowledge, we are the first to study the human-centered
MLOps workflow from ML engineers’ perspectives.

2.3 Methods

Upon securing approval from our institution’s review board, we conducted an interview
study of 18 ML Engineers (MLEs) across various sectors. Our approach mirrored a zigzag
model common to Grounded Theory, with alternating phases of fieldwork and in-depth
coding and analysis, directing further rounds of interviews [34]. The constant comparative
method helped iterate and refine our categories and overarching theory. Consistent with
qualitative research standards, theoretical saturation is generally recognized between 12 to 30
participants, particularly in more uniform populations [58]. By our 16th interview, prevalent
themes emerged, signaling that saturation was attained. Later interviews confirmed these
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RR Id Role Org Size Application Yrs Xp Site Highlights

1 Lg1 MLE Mgr. Large Autonomous vehicles 5-10 US-West high velocity experimentation; scenario testing
1 Md1 MLE Medium Autonomous vehicles 5-10 US-West pipeline-on-a-schedule; copy-paste anomalies
1 Sm1 MLE Small Computer hardware 10-15 US-West exploratory data analysis; AB Testing; SLOs
1 Md2 MLE Medium Retail 5-10 US-East retraining cadence; adaptive test data; feedback delay
1 Lg2 MLE Mgr. Large Ads 5-10 US-West ad click count; model ownership; keeping GPUs warm
1 Lg3 MLE Large Cloud computing 10-15 US-West bucketing / binning; SLOs; hourly batched predictions
2 Sm2 MLE Small Finance 5-10 US-West F1-score ; retraining cadence; progressive validation
2 Sm3 MLE Small NLP 10-15 Intl triage queue; fallback models; false-positive rate
2 Sm4 MLE Small OCR + NLP 5-10 Intl human annotators; word2vec; airflow
3 Md3 MLE Mgr. Medium Banking 10-15 US-West human annotators; institutional knowledge; revenue
3 Lg4 MLE Large Cloud computing 10-15 US-West online inference; pipeline-on-a-schedule; fallback models
3 Sm5 MLE Small Bioinformatics 5-10 US-West model fine-tuning; someone else’s features
4 Md4 MLE Medium Cybersecurity 10-15 US-East model-per-customer; join predictions w/ ground truth
4 Md5 MLE Medium Fintech 10-15 US-West retraining cadence; dropped special characters
5 Sm6 MLE Small Marketing and analytics 5-10 US-East human annotators; label quality; adaptive test data
5 Md6 MLE Medium Website builder 5-10 US-East SLOs; poor documentation; data validation
6 Lg5 MLE Large Recommender systems 10-15 US-West pipeline-on-a-schedule; SLOs; progressive validation
6 Lg6 MLE Mgr. Large Ads 10-15 US-West fallback models; on-call rotations; scale

Table 2.1: The table provides an anonymized description of interviewees from different sizes
of companies, roles, years of experience, application areas, and their code attributions. The
interviewees hail from a diverse set of backgrounds. Small companies have fewer than 100
employees; medium-sized companies have 100-1000 employees, and large companies have
1000 or more employees. RR denotes recruitment round. Highlights refers to key codes
(i.e. from the code system) attached to that participant’s transcript.

themes.
Our goal in conducting this study was to develop better tools for ML deployment, broadly

targeting monitoring, debugging, and observability issues. Our study was an attempt at
identifying key challenges and open opportunities in the MLOps space. This study there-
fore stems from our collective desire to enrich our understanding of our target community
and offer valuable insights into best practices in ML engineering and data science. Subse-
quent sections delve into participant recruitment (Subsection 2.3), our interview structure
(Subsection 2.3), and our coding and analysis techniques (Subsection 2.3).

Participant Recruitment & Selection

We recruited individuals who were responsible for the development, regular retraining, mon-
itoring and deployment of ML models in production. A description of the 18 MLEs is shown
in Table 2.1. The MLEs interviewed varied in their educational backgrounds, years of ex-
perience, roles, team size, and work sector. Recruitment was conducted in rounds over the
course of an academic year (2021-2022). Our recruitment strategy was underpinned by a
deliberate, iterative process that built upon the insights from each round. The primary goal
was to cultivate a representative sample that captured the rich diversity of Machine Learning
Engineers (MLEs) across various dimensions.
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Initial Recruitment: Relying on Professional Networks

In the initial recruitment round (RR=1), we leaned heavily on the established professional
networks of our faculty co-authors. This approach, while convenient and efficient, resulted
in a sample that was geographically skewed towards the US-West. It also led to a greater
representation from larger organizations, as well as certain sectors like Autonomous Vehicles
and Cloud Computing. This initial cohort provided valuable insights but also highlighted
the potential biases and gaps in our sample.

Course Correction: Diversifying the Sample

Recognizing the need for a more representative and diversified sample, our strategy in subse-
quent rounds shifted. Specifically for RR=2, we made a concerted effort to engage candidates
outside our immediate professional networks and particularly targeted those at smaller com-
panies. This shift in approach was operationalized by posting recruitment advertisements
and flyers in various online communities. Prospective participants who responded to our
outreach underwent a screening process for the same inclusion criteria mentioned previ-
ously. Their professional backgrounds and affiliations were verified through platforms such
as professional websites, LinkedIn, and online portfolios. As a result, we observed a stronger
representation from domains like NLP and Finance.

Building a Representative Sample: Iterative Refinement

Each recruitment round served as a feedback loop, informing the strategy for the subsequent
round. As patterns emerged from our data analysis, we fine-tuned our recruitment focus
to fill identified gaps. This iterative process ensured that, over time, our sample grew to
be more balanced in terms of roles, experience, organization sizes, sectors, and geographical
locations. By employing this iterative recruitment strategy, we believe our study encapsulates
a comprehensive cross-section of the MLE community, offering insights that are both deep
and broad.

In each round, between three to five candidates were reached by email and invited to par-
ticipate. We relied on our professional networks and open calls posted on MLOps channels
in Discord2, Slack3, and Twitter to compile a roster of candidates. The roster was incremen-
tally updated roughly after every round of interviews, integrating information gained from
the concurrent coding and analysis of transcripts (Section 2.3). Recruitment rounds were
repeated until we reached saturation on our findings [130].

Interview Protocol

With each participant, we conducted semi-structured interviews over video call lasting 45
to 75 minutes each. Over the course of the interview, we asked descriptive, structural, and

2https://discord.com/invite/Mw77HPrgjF
3mlops-community.slack.com
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contrast questions abiding by ethnographic interview guidelines [179]. The questions are
listed in ??. Specifically, our questions spanned six categories: i) the type of ML tasks
they work on, ii) the approaches used for building or tuning models, iii) the transition from
development to production, iv) how they evaluate their models before deployment, v) how
they monitor their deployed models, and vi) how they respond to issues or bugs. Participants
received and signed a consent form before the interview, and agreed to participate free of
compensation. As per our agreement, we automatically transcribed the interviews using
Zoom software. In the interest of privacy and confidentiality, we did not record audio or
video of the interviews. Transcripts were redacted of personally identifiable information
before being uploaded to a secured drive in the cloud.

Transcript Coding & Analysis

We employed grounded theory to systematically analyze our interview transcripts. Grounded
theory is a robust methodology focused on iterative data collection and analysis for theory
discovery [184, 28]. One of its key features is the seamless integration of data collection
and analysis, aiming to identify emerging themes and concepts through a constant review of
transcripts. In employing grounded theory, we followed its key processes: open, axial, and
selective coding. During open coding, the initial phase of categorizing data, we deconstructed
our interview transcripts into discrete ideas or phenomena and assigned codes to these ideas
(e.g., A/B testing). Then, in axial coding, where the goal is to identify patterns and rela-
tionships between different concepts, we merged duplicate codes and drew edges between
similar codes. For example, we grouped the codes scenario testing and A/B testing under
the broader testing code. Finally, through selective coding, we distilled our codes into five
core themes that represent the essence of our transcripts. Figure 2.3 shows our hierarchy of
codes, with core themes such as Tasks, Operations, and Systems & Tools. As illustrated
in Figure 2.2, we allocated roughly equal time to each main theme, which correspondingly
informed our findings. The themes relate to our findings as follows:

1. Tasks refers to activities that are routinely performed by ML engineers. The analysis
of code segments descended from tasks, and its decomposition into constituent parts,
culminated in the creation of the MLOps workflow (Figure 2.1), and is instrumental
in the structure and presentation of Section 2.4 (Findings).

2. Biz/Org (Business-Organizational) Management refers to modes of interaction
between MLEs and their co-workers or managers, and between MLEs and customers
or other stakeholders. Relevant sub-codes form the theoretical basis for Section 2.4
(Collaboration) and Section 2.4 (Product Metrics).

3. Operations refers to repeatable work that must be performed regularly and consis-
tently for the continued operation of the business. Operations is the “Ops” in MLOps.
Relevant sub-codes form the theoretical basis for Section 2.4 (Pipeline Automation).
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(a) Color-coded Overview of Transcripts (b) Color Legend

Figure 2.2: Visual summary of coded transcripts. The x-axis of (a), the color-coded overview,
corresponds to a segment (or group) of transcript lines, and the number in each cell is the
code’s frequency for that transcript segment and for that participant. Segments are blank
after the conclusion of each interview, and different interviews had different time duration.
Each color in (a) is associated with a top-level axial code from our interview study, and
presented in the color legend (b). The color legend also shows the frequency of each code
across all interviews.

4. Bugs & Pain Points refers to failure modes encountered at any stage in the MLOps
workflows, MLE complaints generally, and author-noted anti-patterns. These are dis-
cussed in Monitoring and Response (Section 2.4).

5. Systems & Tools refers to storage and compute infrastructure, programming lan-
guages, ML training frameworks, experiment execution frameworks, and other tools or
systems that MLEs use in their MLOps work. We discuss implications for tool design
in Section 2.5. We include a table of common tools referenced by interviewees in ??.



CHAPTER 2. OPERATIONALIZING MACHINE LEARNING: AN INTERVIEW
STUDY 20

1. Tasks

a) Data collection, cleaning & labeling: human annotators, exploratory data analysis

b) Embeddings & feature engineering: normalization, bucketing / binning, word2vec

c) Data modeling & experimentation: accuracy, F1-score, precision, recall

d) Testing: scenario testing, AB testing, adaptive test-data

2. Biz/Org Management

a) Business focus: service level objectives, ad click count, revenue

b) Teams & collaboration: institutional knowledge, on-call rotations, model owner-
ship

c) Process maturity indicators: pipeline-on-a-schedule, fallback models, model-per-
customer

3. Operations

a) CI/CD: artifact versioning, multi-staged deployment, progressive validation

b) Data ingestion & integration: automated featurization, data validation

c) Model retraining: distributed training, retraining cadence, model fine-tuning

d) Prediction serving: hourly batched predictions, online inference

e) Live monitoring: false-positive rate, join predictions w/ ground truth

4. Bugs & Pain Points

a) Bugs: data leakage, dropped special characters, copy-paste anomalies

b) Pain points: big org red tape, performance regressions, label quality, scale

c) Anti-patterns: muting alerts, keeping GPUs warm, waiting it out

d) Known challenges: data drift, feedback delay, class imbalance, sensor divergence

e) Missing context: someone else’s features, poor documentation, much time has
passed

5. Systems & Tools

a) Metadata layer: Huggingface, Weights & Biases, MLFlow, TensorBoard, DVC

b) Unit layer: PyTorch, TensorFlow, Jupyter, Spark

c) Pipeline layer: Airflow, Kubeflow, Papermill, DBT, Vertex AI

d) Infrastructure layer: Slurm, S3, EC2, GCP, HDFS

Figure 2.3: Abridged code system: A distilled representation of the evolved code system
resulting from our qualitative study, capturing the primary tasks, organizational aspects,
operational methodologies, challenges, and tools utilized by Machine Learning Engineers.
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2.4 Summary of Findings

Going into the interview study, we assumed the workflow of human-centered tasks in the
production ML lifecycle was similar to the production data science workflow presented by
Wang et al. (2019), which is a loop consisting of the following:

1. Preparation, spanning data acquisition, data cleaning and labeling, and feature en-
gineering,

2. Modeling, spanning model selection, hyperparameter tuning, and model validation,
and

3. Deployment, spanning model deployment, runtime monitoring, and model improve-
ment.

From our interviews, we found that the repeated-use production ML workflow that ML
engineers engage in differs slightly from the work by Wang et al. [200]. As preliminary
research papers defining and providing reference architectures for MLOps have pointed out,
operationalizing ML brings new requirements to the table, such as the need for teams, not
just individual people, to understand, sustain, and improve ML pipelines and systems over
time [89, 189, 50]. In the pipelines that our interviewees build and supervise, most technical
components are automated—e.g., data preprocessing jobs run on a schedule, and models
are typically retrained regularly on fresh data. We found the ML engineering workflow to
revolve around the following stages (Figure 2.1):

1. Data Preparation, which includes scheduled data acquisition, cleaning, labeling, and
transformation,

2. Experimentation, which includes both data-driven and model-driven changes to in-
crease overall ML performance, and is typically measured by metrics such as accuracy
or mean-squared-error,

3. Evaluation & Deployment, which consists of a model retraining loop which peri-
odically rolls out a new model—or offline batched predictions, or another proposed
change—to growing fractions of the population, and

4. Monitoring & Response, which supports the other stages via data and code in-
strumentation (e.g., tracking available GPUs for experimentation or the fraction of
null-valued data points) and dispatches engineers and bug fixes to identified problems
in the pipeline.

For each stage, we identified human-centered practices from the Tasks, Biz/Org Man-
agement, and Bugs & Pain Points codes, and drew on Operations codes for automated
practices (refer to Section 2.3 for a description of these codes). An overview of findings for
each workflow stage can be found in Table 2.2.
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Stage Description Non-Automated Challenges

Data Preparation
Collection, wrangling, and
cleaning pipelines run on a
schedule

- Ensuring label quality at scale
(Section 2.4)
- Handling feedback or ground-truth
delays (Section 2.4)

Experimentation
Prototyping ideas to
improve end-to-end ML
pipeline performance by
iterating on datasets,
model architectures, or
both

- Managing the underlying software
or code for data-centric experiments
(Section 2.4)
- Engaging in cross-team collabora-
tion (Section 2.4)
- Manually and thoughtfully identi-
fying promising experiment configu-
rations (Section 2.4)

Evaluation
and
Deployment

Pushing experimental
changes to small, then
large fractions of users,
evaluating at every step

- Continuously updating dynamic
validation datasets for future exper-
iments (Section 2.4)
- Using product metrics for evalua-
tion (Section 2.4)

Monitoring
and
Response

Supervising live ML
pipeline performance and
minimizing pipeline
downtime

- Tracking and investigating data
quality alerts (Section 2.4)
- Managing pipeline ”jungles” of
models and hard-coded rules (Sec-
tion 2.4)
- Debugging a heavy-tailed distribu-
tion of errors (Section 2.4)

Table 2.2: Overview of challenging activities that ML engineers engage in for each stage
in their workflow. While each stage relies on automated infrastructure and pipelines, ML
engineers still have many difficult manual responsibilities.

The following subsections organize our findings around the four stages of MLOps. We
begin each subsection with a quote that stood out to us and conversation with prior work;
then, in the context of what is automated, we discuss common human-centered practices
and pain points.

Data Preparation

“It takes exponentially more data to keep getting linear increases in perfor-
mance.” –Lg1

Data preparation is the process of constructing “well-structured, complete datasets” for
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data scientists [131]. Data preparation activities consist of collection, wrangling, and cleaning
and are known to be challenging, often taking up to 80% of practitioners’ time [82, 200]. This
tedious process encourages larger organizations to have dedicated teams of data engineers
to manage data preparation [81]. Like Amershi et al. (2019), we observed that mature
ML organizations automated data preparation through dedicated teams as much as possible
(Lg1, Lg2, Lg3, Sm3, Md3, Sm6, Md6, Lg5, Lg6). As a result, the MLEs we interviewed
spent a smaller fraction of their time on data preparation, collaborating instead with data
engineering teams. We first discuss pipeline automation to provide key context for the work
of MLEs. Then, we mention two key challenges MLEs face: ensuring labeling quality at
scale and coping with feedback delays.

Pipelines automatically run on a schedule

Unlike data science, where data preparation is often ad-hoc and interactive [81, 131], we
found that data preparation in production ML is batched and more narrowly restricted,
involving an organization-wide set of steps running at a predefined cadence. In interviews,
we found that preparation pipelines were defined by Directed Acyclic Graphs, or DAGs,
which ran on a schedule (e.g., daily). Each DAG node corresponded to a particular task,
such as ingesting data from a source or cleaning a newly ingested partition of data. Each
DAG edge corresponded to a dataflow dependency between tasks. While data engineers
were primarily responsible for the end-to-end execution of data preparation DAGs, MLEs
interfaced with these DAGs by loading select outputs (e.g., clean data) or by extending the
DAG with additional tasks, e.g. to compute new features (Md1, Lg2, Lg3, Sm4, Md6, Lg6).

In many cases, automated tasks relating to ML models, such as model inference (e.g.,
generating predictions with a trained model) and retraining, were executed in the same DAG
as data preparation tasks (Lg1, Md1, Sm2, Md4, Md5, Sm6, Md6, Lg5). ML engineers in-
cluded retraining as a node in the data preparation DAG for simplicity: as new data becomes
available, a corresponding model is automatically retrained. Md4 mentioned automatically
retraining the model every day so model performance would not suffer for longer than a day:

Why did we start training daily? As far as I’m aware, we wanted to start simple—
we could just have a single batch job that processes new data and we wouldn’t
need to worry about separate retraining schedules. You don’t really need to
worry about if your model has gone stale if you’re retraining it every day.

Retraining cadences ranged from hourly (Lg5) to every few months (Md6) and were
different for different models within the same organization (Lg1, Md4). None of the partic-
ipants interviewed reported any scientific procedure for determining the pipeline execution
cadence. For example, Md5 said that “the [model retraining] cadence was just like, finger to
the wind.” Cadences seemed to be set in a way that streamlined operations for the organi-
zation in the easiest way. Lg5 mentioned that “retraining took about 3 to 4 hours, so [they]
matched the cadence with it such that as soon as [they] finished any one model, they kicked
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off the next training [job].” Engineers reported an inability to retrain unless they had fresh
and labeled data, motivating their organizations to set up dedicated teams of annotators, or
hiring crowd workers, to operationalize labeling of live data (Lg1, Sm3, Sm4, Md3, Sm6).

MLEs ensure label quality at scale

Although it is widely recognized that model performance improves with more labels [161]—
and there are tools built especially for data labeling [153, 215]—our interviewees cautioned
that the quality of labels can degrade as they try to label more and more data. Md3 said:

No matter how many labels you generate, you need to know what you’re actually
labeling and you need to have a very clear human definition of what they mean.

In many cases, ground truth must be created, i.e., the labels are what a practitioner
“thinks up” [131]. When operationalizing this practice, MLEs faced problems. For one, Sm3
spoke about how expensive it was to outsource labeling. Moreover, labeling conflicts can
erode trust in data quality, and slow ML progress [141, 165]: When scaling up labeling—
through labeling service providers or analysts within the organization—MLEs frequently
found disagreements between different labelers, which would negatively impact quality if
unresolved (Sm3, Md3, Sm6). At their organization, Sm3 mentioned that there was a human-
in-the-loop labeling pipeline that both outsourced large-scale labeling and maintained an
internal team of experts to verify the labels and resolve errors manually. Sm6 described a
label validation pipeline for outsourced labels that itself used ML models for estimating label
quality.

Feedback delays can disrupt pipeline cadences

In many applications, today’s predictions are tomorrow’s training data, but many partic-
ipants said that ground-truth labels for live predictions often arrived after a delay, which
could vary unpredictably (e.g., human-in-the-loop or networking delays) and thus caused
problems for knowing real-time performance or retraining regularly (Md1, Sm2, Sm3, Md5,
Md6, Lg5). This is in contrast to academic ML, where ground-truth labels are readily
available for ML practitioners to train models [140]. Participants noted that the impact on
models was hard to assess when the ground truth involved live data—for example, Sm2 felt
strongly about the negative impact of feedback delays on their ML pipelines:

I have no idea how well [models] actually perform on live data. Feedback is
always delayed by at least 2 weeks. Sometimes we might not have feedback...so
when we realize maybe something went wrong, it could [have been] 2 weeks ago.

Feedback delays contribute to “data cascades,” or compounding errors in ML systems
over time [165]. Sm3 mentioned a 2-3 year effort to develop a human-in-the-loop pipeline to
manually label live data as frequently as possible to side-step feedback delays: “you want to
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come up with the rate at which data is changing, and then assign people to manage this rate
roughly”. Sm6 said that their organization hired freelancers to label “20 or so” data points
by hand daily. Labeling was then considered a task in the broader preparation pipeline that
ran on a schedule (Section 2.4).

Experimentation

“You want to see some degree of experimental thoroughness. People will have
principled stances or intuitions for why things should work. But the most im-
portant thing to do is achieve scary high experimentation velocity...Number one
[Key Performance Indicator] is rate of experimentation.” –Lg1

While most prior work studying the data science and MLOps workflows includes modeling
as an explicit step in the workflow [200, 213, 205, 186], we found that iterating on model ideas
and architectures is only part of a broader “experimentation” step. This is because in many
production ML pipelines, MLEs can focus on tuning or improving existing models through
data-centric development, and modeling in a data science sense is only necessary when the
company wishes to expand its service offerings or grow its ML capabilities. In fact, many
of our interviewees did not build the initial model in the pipeline that their organization
assigned them to work on, so their goal wasn’t necessarily to train more models. As an
example, Md6 said, “some of our models have been around for, like, 6 or 7 years.” Garg
et al. (2021) also call this workflow step “experimentation” instead of “modeling” in their
MLOps lifecycle overview, and we expand on this finding in this chapter by relating it to
collaboration and data-driven exploration, as well as MLE reservations toward experiment
automation or AutoML [50].

MLEs find it better to innovate on the data than the model

Holstein et al. (2020) mention that it is challenging for practitioners to determine where to
focus experimentation efforts—they could try “switching to a different model, augmenting
the training data in some way, collecting more or different kinds of data, post-processing
outputs, changing the objective function, or something else” [68]. Our interviewees recom-
mended focusing on experiments that provided additional context to the model, typically
via new features, to get the biggest gains (Lg2, Lg3, Md3, Lg4, Md4, Sm6, Md6, Lg5, Lg6).
Lg5 said:

I’m focusing my energy these days on signals and feature engineering because
even if you keep your code static and the model static, it would definitely help
you with getting better model performance.

In a concurring view, Md3 adds:
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I’m gonna start with a [fixed] model because it means faster iterations. And
often—like most of the time empirically—it’s going to be something in our data
that we can use to push the boundary [. . . ] obviously, it’s not a dogmatic “we
will never touch the model” but it shouldn’t be our first move.

Interestingly, older work claims that iterating on the model is often more fruitful than
iterating on the data [145], but this could be because ML modeling libraries weren’t as
mature as they are now. Recent work has also identified the importance of data-centric
experimentation in production ML deployments [165, 140, 131, 153]. Md6 mentioned that
most ML projects at their organization centered around adding new features. Md4 mentioned
that one of their current projects was to move feature engineering pipelines from Scala to
SparkSQL (a language more familiar to ML engineers and data scientists), so experiment
ideas could be coded and validated faster.

When asked how they managed the underlying software or code for data-centric exper-
iments, interviewees emphasized the importance of keeping their code changes as small as
possible for multiple reasons, including faster code review, easier validation, and fewer merge
conflicts (Md1, Lg2, Lg3, Sm4, Md3, Lg5, Lg6). This is in line with good software engi-
neering practices [6]. Additionally, changes in large organizations were primarily made in
configuration (config) files instead of main application code (Lg1, Md1, Lg2, Sm4, Lg4, Lg6):
instead of editing parameters directly in a Python model training script, MLEs preferred to
edit a config file of parameters (e.g., JSON or YAML), and would feed the config file to
the model training script. When larger changes were necessary, especially changes touching
the language layer (e.g. changing PyTorch or TensorFlow architectures), MLEs would fork
the code base and made their edits in-place (Md2, Lg3). Although forking repositories can
be a high-velocity shortcut, absent streamlined merge procedures, this can lead to a diver-
gence in versions and accumulation of technical debt. Lg3 highlighted the tension between
experiment velocity and strict software engineering discipline:

I used to see a lot of people complaining that model developers don’t follow
software engineering. At this point, I’m feeling more convinced that it’s not
because they’re lazy. It’s because [software engineering is] contradictory to the
agility of analysis and exploration.

Feature engineering is social and collaborative

Prior work has stressed the importance of collaboration in data science projects, often lament-
ing that technical tasks happen in silos [91, 165, 200, 140]. Our interviewees similarly be-
lieved cross-team collaboration was critical for successful experiments. Project ideas, such
as new features, came from or were validated early by domain experts: data scientists and
analysts who had already performed a lot of exploratory data analysis. Md4 and Md6 in-
dependently recounted successful project ideas that came from asynchronous conversations
on Slack: Md6 said, “I look for features from data scientists, [who have ideas of] things
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that are correlated with what I’m trying to predict.” We found that organizations explicitly
prioritized cross-team collaboration as part of their ML culture. Md3 said:

We really think it’s important to bridge that gap between what’s often, you know,
a [subject matter expert] in one room annotating and then handing things over
the wire to a data scientist—a scene where you have no communication. So we
make sure there’s both data science and subject matter expertise representation
[in our meetings].

To foster a more collaborative culture, Sm6 discussed the concept of “building goodwill”
with other teams through tedious tasks that weren’t always explicitly a part of company
plans: “Sometimes we’ll fix something [here and] there to like build some goodwill, so that
we can call on them in the future...I do this stuff [to build relationships], not because I’m
really passionate about doing it.”

MLEs like having manual control over experiment selection

One challenge that results from fast exploration is having to manage many experiment
versions [200, 89]. MLEs are happy to delegate experiment tracking and execution work
to ML experiment execution frameworks, such as Weights & Biases4, but prefer to choose
subsequent experiments themselves. To be able to make informed choices of subsequent
experiments to run, MLEs must maintain awareness of what they have tried and what they
haven’t (Lg2 calls it the “exploration frontier”). As a result, there are limits to how much
automation MLEs are willing to rely on for experimentation, a finding consistent with results
from prior work [209]. Lg2 mentioned the phrase “keeping GPUs warm” to characterize a
perceived anti-pattern that wastes resources without a plan:

One thing that I’ve noticed is, especially when you have as many resources as
[large companies] do, that there’s a compulsive need to leverage all the resources
that you have. And just, you know, get all the experiments out there. Come up
with a bunch of ideas; run a bunch of stuff. I actually think that’s bad. You can
be overly concerned with keeping your GPUs warm, [so much] so that you don’t
actually think deeply about what the highest value experiment is.

In executing experiment ideas, we noticed a tradeoff between a guided search and random
search. Random searches were more suited to parallelization—e.g., hyperparameter searches
or ideas that didn’t depend on each other. Although computing infrastructure could support
many different experiments in parallel, the cognitive load of managing such experiments was
too cumbersome for participants (Lg2, Sm4, Lg5, Lg6). Rather, participants noted more
success when pipelining learnings from one experiment into the next, like a guided search to
find the best idea (Lg2, Sm4, Lg5). Lg5 described their ideological shift from random search
to guided search:

4https://wandb.ai/
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Previously, I tried to do a lot of parallelization. If I focus on one idea, a week at
a time, then it boosts my productivity a lot more.

By following a guided search, engineers are, essentially, significantly pruning a large subset
of experiment ideas without executing them. While it may seem like there are unlimited
computational resources, the search space is much larger, and developer time and energy is
limited. At the end of the day, experiments are human-validated and deployed. Mature ML
engineers know their personal tradeoff between parallelizing disjoint experiment ideas and
pipelining ideas that build on top of each other, ultimately yielding successful deployments.

Evaluation and Deployment

“We don’t have a good idea of how the model is going to behave in production
until production.” –Lg3

After the experimentation phase, when MLEs have identified a change they want to make
to the ML pipeline (e.g., adding a new feature), they need to evaluate it and deploy it to
production. Prior work that prescribes frameworks for MLOps typically separates evaluation
and deployment into two different stages [189, 186, 94], but we combine them into one step
because they are tightly intertwined, with deployments spanning long periods of time and
evaluations happening multiple times during deployment.

Prior work describes evaluation as an “offline,” automated process that happens at train-
ing time: a small portion of the training dataset is held out, and the model should achieve
high accuracy on this held-out set [140, 205]. Recent related work in MLOps claims that
evaluation and deployment are highly amenable to automation [50, 119]. As such, we also
originally hypothesized that evaluation and deployment could be automated—once validated,
an engineer could simply create a new task in their DAG to retrain the model on a cadence
(Section 2.4).

As expected, engineers did automatically validate and codify their changes into DAGs to
retrain models on a schedule. However, they also manually supervised the deployment over
a long period of time, evaluating throughout the time frame. Amershi et al. (2019) state
that software teams “flight” changes or updates to ML models, often by testing them on a
few cases prior to live deployment [6]. Our work provides further context into the evaluation
and deployment process for production ML pipelines: we found that several organizations,
particularly those with many customers, employed a multi-stage deployment process for new
models or model changes, progressively evaluating at each stage (Sm1, Lg2, Lg3, Sm2, Sm3,
Lg4, Md5, Md6, Lg5, Lg6). As such, we combine evaluation and deployment into one step,
rather than separating the process into evaluation followed by deployment as other papers
do [189, 186]. Lg3 described the multi-staged deployment process as follows:

We have designated test clusters, [stage 1] clusters, [stage 2] clusters, then the
global deployment [to all users]. The idea here is you deploy increasingly along
these clusters, so that you catch problems before they’ve met customers.



CHAPTER 2. OPERATIONALIZING MACHINE LEARNING: AN INTERVIEW
STUDY 29

Each organization had different names for its stages (e.g., test, dev, canary, staging,
shadow, A/B) and different numbers of stages in the deployment process (usually between
one and four). The stages helped invalidate models that might perform poorly in full pro-
duction, especially for brand-new or business-critical cases. Occasionally, organizations had
an offline “sandbox” stage preceding deployment to any fraction of customers—for example,
Md5 described a sandbox where they could stress-test their chatbot product:

You can pretend to be a customer and say all sorts of offensive things, and see if
the model will say cuss words back at you, or other sorts of things like that.

Although the model retraining process was automated, we find that MLEs personally
reviewed validation metrics and manually supervised the promotion from one stage to the
next. They had oversight over every evaluation stage, taking great care to manage complexity
and change over time: specifically, changes in data, product and business requirements, users,
and teams within organizations. We discuss two human-centered practices: maintaining
dynamic datasets and evaluating performance in the context of the product or broader
organizational value.

MLEs continuously update dynamic validation datasets

Many engineers reported processes to analyze live failure modes and update the validation
datasets to prevent similar failures from happening again (Lg1, Md1, Lg2, Lg3, Sm3, Md3,
Md5, Sm6, Md6, Lg5). Lg1 described this process as a departure from what they had learned
in school:

You have this classic issue where most researchers are evaluat[ing] against fixed
data sets [. . . but] most industry methods change their datasets.

We found that these dynamic validation sets served two purposes: (1) the obvious goal
of making sure the validation set stays current with live data as much as possible, given new
knowledge about the problem and general shifts in the data distribution, and (2) the more
specific goal of addressing localized shifts within sub-populations, such as low accuracy for
minority groups. The challenge with (2) is that many sub-populations are often overlooked,
or they are discovered post-deployment [68]. In response, Md3 discussed how they system-
atically bucketed their data points based on the model’s error metrics and created validation
sets for each under-performing bucket:

Some [of the metrics in my tool] are standard, like a confusion matrix, but it’s not
really effective because it doesn’t drill things down [into specific subpopulations
that users care about]. Slices are user-defined, but sometimes it’s a little bit more
automated. [During offline evaluation, we] find the error bucket that [we] want
to drill down, and then [we] either improve the model in very systematic ways or
improve [our] data in very systematic ways.
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Rather than follow a proactive approach of constructing different failure modes in an of-
fline validation phase like Md3 did, Sm3 offered a reactive strategy of spawning a new dataset
for each observed live failure: “Every [failed prediction] gets into the same queue, and 3 of
us sit down once a week and go through the queue...then our [analysts] collect more [similar]
data.” This dataset update (or delta) was then merged into the validation dataset, and
used for model validation in subsequent rounds. While processes to dynamically update the
validation datasets ranged from human-in-the-loop to periodic synthetic data construction
(Lg3), we found that higher-stakes applications of ML (e.g., autonomous vehicles), created
dedicated teams to manage the dynamic evaluation process. Often, this involved creating
synthetic data representative of live failures (Lg1, Lg3, Md4). For example, Lg1 said:

What you need to be able to do in a mature MLOps pipeline is go very quickly
from user recorded bug, to not only are you going to fix it, but you also have to
be able to drive improvements to the stack by changing your data based on those
bugs.

Notwithstanding, participants found it challenging to collect the various kinds of failure
modes and monitoring metrics for each mode. Lg6 added, “you have to look at so many
different metrics. Even very experienced folks question this process like a dozen times.”

MLEs use product metrics for validation

While prior work discusses how prediction accuracy doesn’t always correlate with real-world
outcomes [200, 140], it’s unclear how to articulate clear and measurable ML goals. Patel et al.
(2008) discuss how practitioners trained in statistical techniques “felt that they must often
manage concerns outside the focus of traditional evaluation metrics” [145]. Srivastava et al.
(2020) note that an increase in accuracy might not improve overall system “compatibility.”
In our study, we found that successful ML deployments tied their performance to product
metrics. First, we found that prior to initial deployment, mature ML teams defined a product
metric in consultation with other stakeholders, such as business analysts, product managers,
or customers (Lg2, Sm2, Md5, Sm6, Md3, Md6, Lg5, Lg6). Examples of product metrics
include click-through rate and user churn rate. Md3 felt that a key reason many ML projects
fail is that they don’t measure metrics that will yield the organization value:

Tying [model performance] to the business’s KPIs (key performance indicators)
is really important. But it’s a process—you need to figure out what [the KPIs]
are, and frankly I think that’s how people should be doing AI. It [shouldn’t be]
like: hey, let’s do these experiments and get cool numbers and show off these nice
precision-recall curves to our bosses and call it a day. It should be like: hey, let’s
actually show the same business metrics that everyone else is held accountable
to to our bosses at the end of the day.
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Since product-specific metrics are, by definition, different for different ML models, it was
important for engineers to treat the choice of metrics as an explicit step in their workflow and
align with other stakeholders to make sure the right metrics were chosen. After agreeing on a
product metric, engineers only promoted experiment ideas to later deployment stages if there
was an improvement in that metric. Md6 said that every model change in production was
validated by the product team: “if we can get a statistically significant greater percentage
[of] people to subscribe to [the product], then [we can fully deploy].” Kim et al. (2016)
also highlight the importance of including other stakeholders (or people in “decision-making
seats”) in the evaluation process [86]. At each stage of deployment, some organizations placed
additional emphasis on important customers during evaluation (Lg3, Sm4). Lg3 mentioned
that there were “hard-coded” rules for “mission-critical” customers:

There’s an [ML] system to allocate resources for [our product]. We have hard-
coded rules for mission critical customers. Like at the start of COVID, there
were hospital [customers] that we had to save [resources] for.

Finally, participants who came from research or academia noted that tying evaluation
to the product metrics was a different experience. Lg3 commented on their “mindset shift”
after leaving academia:

I think about where the business will benefit from what we’re building. We’re
not just shipping fake wins, like we’re really in the value business. You’ve got to
see value from AI in your organization in order to feel like it was worth it to you,
and I guess that’s a mindset that we really ought to have [as a community].

Monitoring and Response

“This data is supposed to have 50 states, there’s only 40, what happened to the
other 10?” –Md6

We found that organizations centered their monitoring and response practices around
engineers, much like in the DevOps agile framework, which organizes software development
around teams [29]. Prior work has stated that monitoring is critical to MLOps [189, 89,
119, 186], and, broadly, that Agile practices can be useful in supervising production ML [6].
We provide further insight by discussing two specific examples of Agile practices that our
interviewees commonly adapted to the ML context. First, Lg3, Lg4, Md4, Sm6, Lg5, and
Lg6 described on-call processes for supervising production ML models. For each model, at
any point in time, some ML engineer would be on call, or primarily responsible for it. Any
bug or incident observed (e.g., user complaint, pipeline failure) would receive a ticket, created
by the on-call engineer. On-call rotations typically lasted one or two weeks. At the end of
a shift, an engineer would create an incident report—possibly one for each bug—detailing
major issues that occurred and how they were fixed. Additionally, Lg3, Sm2, Sm4, and Md5
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discussed having Service-Level Objectives (SLOs), or commitments to minimum standards of
performance, for pipelines in their organizations. For example, a pipeline to classify images
could have an SLO of 95% accuracy. A benefit of using the SLO framework for ML pipelines
is a clear indication of whether a pipeline is performing well or not—if the SLO is not met,
the pipeline is broken, by definition.

Our interviewees stressed the importance of logging data across all stages of the ML
pipeline (e.g., feature engineering, model training) to use for future debugging. Monitoring
ML pipelines and responding to bugs involved tracking live metrics (via queries or dash-
boards), slicing and dicing sub-populations to investigate prediction quality, patching the
model with non-ML heuristics for known failure modes, and finding in-the-wild failures that
could be added to future dynamic validation datasets. While MLEs tried to automate mon-
itoring and response as much as possible, we found that solutions were lacking and required
significant human-in-the-loop intervention. Next, we discuss data quality alerts, pipeline
jungles, and diagnostics.

On-call MLEs track data quality alerts and investigate a fraction of them

In data science, data quality is of utmost importance [141, 81]. Prior work has stressed
the importance of monitoring data in production ML pipelines [169, 165, 86], and the data
management literature has proposed numerous data quality metrics [20, 146, 166]. But
what metrics do practitioners actually use, what data do practitioners monitor, and how do
they manually engage with these metrics? We found that engineers continuously monitored
features for and predictions from production models (Lg1, Md1, Lg3, Sm3, Md4, Sm6, Md6,
Lg5, Lg6) Md1 discussed hard constraints for feature columns (e.g., bounds on values), Lg3
talked about monitoring completeness (i.e., fraction of non-null values) for features, Sm6
mentioned embedding their pipelines with ”common sense checks,” implemented as hard
constraints on columns, and Sm3 described schema checks—making sure each data item
adheres to an expected set of columns and their types. These checks were automated and
executed as part of the larger pipeline (Section 2.4).

While off-the-shelf data validation was definitely useful for the participants, many of
them expressed pain points with existing techniques and solutions. Lg3 discussed that it
was hard to figure out how to trigger alerts based on data quality:

Monitoring is both metrics and then a predicate over those metrics that triggers
alerts. That second piece doesn’t exist—not because the infrastructure is hard,
but because no one knows how to set those predicate values...for a lot of this stuff
now, there’s engineering headcount to support a team doing this stuff. This is
people’s jobs now; this constant, periodic evaluation of models.

We also found that employee turnover makes data validation unsustainable (Sm2, Md4,
Sm6, Md6, Lg5). If one engineer manually defined checks and bounds for each feature and
then left the team, another engineer would have trouble interpreting the predefined data
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validation criteria. To circumvent this problem, some participants discussed using black-box
data monitoring services but lamented that their statistics weren’t interpretable or actionable
(Sm2, Md4).

Another commonly discussed pain point was false-positive alerts, or alerts triggered even
when the ML performance is adequate. Engineers often monitored and placed data quality
alerts on each feature and prediction (Lg2, Lg3, Sm3, Md3, Md4, Sm6, Md6, Lg5, Lg6). If
the number of metrics tracked grew too large, false-positive alerts could become a problem.
An excess of false-positive alerts led to fatigue and silencing of alerts, which could miss
actual performance drops. Sm3 said “people [were] getting bombed with these alerts.” Lg5
shared a similar sentiment, that there was “nothing critical in most of the alerts.” The only
time there was something critical was “way back when [they] had to actually wake up in
the middle of the night to solve it...the only time [in years].” When we asked what they did
about the noncritical alerts and how they acted on the alerts, Lg5 said:

You typically ignore most alerts...I guess on record I’d say 90% of them aren’t
immediate. You just have to acknowledge them [internally], like just be aware
that there is something happening.

Seasoned MLEs thus preferred to view and filter alerts themselves, than to silence or
lower the alert reporting rate. In a sense, even false-positives can provide information about
system health, if the MLE knows how to read the alerts and is accustomed to the system’s
reporting patterns. When alert fatigue materialized, it was typically when engineers were
on-call, or responsible for ML pipelines during a 7 or 14-day shift. Lg6 recounted how on-call
rotations were dreaded amongst their team, particularly for new team members, due to the
high rate of false-positive alerts. They said:

On-call ML engineers freak out in the first 2 rotations. They don’t know where
to look. So we have them act as a shadow, until they know the patterns.

Lg6 also discussed an initiative at their company to reduce the alert fatigue, ironically
with another model, which would consider how many times an engineer historically acted on
an alert of a given type before determining whether to surface a new alert of that type.

Over time, ML pipelines may turn into “jungles” of rules and models

Sculley et al. (2015) introduce the phrase “pipeline jungles” (i.e., different versions of data
transformations and models glued together), which was later adopted by participants in our
study [169]. While prior work demonstrates their existence and maintenance challenges, we
provide insight into why and how these pipelines become jungles in the first place. Our
interviewees noted that reacting to an ML-related bug in production usually took a long
time, motivating them to find strategies to quickly restore performance (Lg1, Sm2, Sm3,
Sm4, Md4, Md5, Md6, Lg6). These strategies primarily involved adding non-ML rules and
filters to the pipeline. When Sm3 observed, for an entity recognition task, that the model
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was misdetecting the Egyptian president due to the many ways of writing his name, they
thought it would be better to patch the predictions for the individual case than to fix or
retrain the model:

Suppose we deploy [a new model] in the place of the existing model. We’d have
to go through all the training data and then relabel it and [expletive], that’s so
much work.

One way engineers reacted to ML bugs was by adding filters for models. For the Egypt
example, Sm3 added a simple string similarity rule to identify the president’s name. Md4
and Md5 each discussed how their models were augmented with a final, rule-based layer
to keep live predictions more stable. For example, Md4 mentioned working on an anomaly
detection model and adding a heuristics layer on top to filter the set of anomalies that surface
based on domain knowledge. Md5 discussed one of their language models for a customer
support chatbot:

The model might not have enough confidence in the suggested reply, so we don’t
return [the recommendation]. Also, language models can say all sorts of things
you don’t necessarily want it to—another reason that we don’t show some sug-
gestions. For example, if somebody asks when the business is open, the model
might try to quote a time when it thinks the business is open. [It might say] “9
am,” but the model doesn’t know that. So if we detect time, then we filter that
[reply]. We have a lot of filters.

Constructing such filters was an iterative process—Md5 mentioned constantly stress-
testing the model in a sandbox, as well as observing suggested replies in early stages of
deployment, to come up with filter ideas. Creating filters was a more effective strategy than
trying to retrain the model to say the right thing; the goal was to keep some version of a
model working in production with little downtime. As a result, filters would accumulate
in the pipeline over time, effectively creating a pipeline jungle. Even when models were
improved, Lg5 noted that it was too risky to remove the filters, since the filters were already
in production, and a removal might lead to cascading or unforeseen failures.

Several engineers also maintained fallback models for reverting to: either older or simpler
versions (Lg2, Lg3, Md6, Lg5, Lg6). Lg5 mentioned that it was important to always keep
some model up and running, even if they “switched to a less economic model and had to
just cut the losses.” Similarly, when doing data science work, both Passi and Jackson (2018)
and Wang et al. (2019) echo the importance of having some solution to meet clients’ needs,
even if it is not the best solution [141, 200]. Another simple solution engineers discussed was
serving a separate model for each customer (Lg1, Lg3, Sm2, Sm4, Md3, Md4). We found
that engineers preferred a per-customer model because it minimized downtime: if the service
wasn’t working for a particular customer, it could still work for other customers. Patel et al.
(2018) also noted that per-customer models could yield higher overall performance [145].
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Bugs in production ML follow a heavy-tailed distribution

ML debugging is different from debugging during standard software engineering, where one
can write test cases to cover the space of potential bugs [140, 6]. Lg3, Sm2, Sm3, Sm4, Lg4,
Md4, Md5, Sm6, Lg5, and Lg6 mentioned having a central queue of production ML bugs
that every engineer added tickets to and processed tickets from. Often this queue was larger
than what engineers could process in a timely manner, so they assigned tags to tickets to
prioritize what to debug.

Interviewees discussed ad-hoc approaches to debugging production ML issues, which
could require them to spend a lot of time diagnosing any given bug (Lg3, Lg2, Sm3, Sm4,
Lg5). One common issue was data leakage—i.e., assuming during training that there is
access to data that does not exist at serving time—an error typically discovered after the
model was deployed and several incorrect live predictions were made (Lg1, Md1, Md5, Lg5).
Interviewees felt that anticipating all possible forms of data leakage during experimentation
was tedious; thus, sometimes leakage was retroactively checked during code review in an
evaluation stage (Lg1. There were other types of bugs that were discussed by multiple
participants, such as accidentally flipping labels in classification models (Lg1, Sm1, Lg3,
Md3) and forgetting to set random seeds in distributed training when initializing workers
in parallel (Lg1, Lg4, Sm5). However, the vast majority of bugs described to us in the
interviews were seemingly bespoke and not shared among participants. For example, Sm3
forgot to drop special characters (e.g., apostrophes) for their language models. Lg3 found
that the imputation value for missing features was once corrupted. Lg5 mentioned that a
feature of unstructured data type (e.g., JSON) had half of the keys’ values missing for a
“long time.”

When asked how they detect these one-off bugs, interviewees mentioned that their bugs
showed similar symptoms of failure. One symptom was a large discrepancy between offline
validation accuracy and production accuracy immediately after deployment (Lg1, Lg3, Md4,
Lg5). However, if there were no ground-truth labels available immediately after deployment
(as discussed in Section 2.4), interviewees had to resort to other strategies. For example,
some inspected the results of data quality checks (Section 2.4). Lg1 discussed their struggle
to debug without “ground-truth:”:

Um, yeah, it’s really hard. Basically there’s no surefire strategy. The closest that
I’ve seen is for people to integrate a very high degree of observability into every
part of their pipeline. It starts with having really good raw data, observability,
and visualization tools. The ability to query. I’ve noticed, you know, so much of
this [ad-hoc bug exploration] is just—if you make the friction [to debug] lower,
people will do it more. So as an organization, you need to make the friction
very low for investigating what the data actually looks like, [such as] looking at
specific examples.

To diagnose bugs, interviewees typically sliced and diced data for different groups of
customers or data points (Md1, Lg3, Md3, Md4, Md6, Lg6). Slicing and dicing is known
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to be useful for identifying bias in models [165, 68], but we observed that our interviewees
used this technique beyond debugging bias and fairness; they sliced and diced to determine
common failure modes and data points similar to these failures. Md4 discussed annotating
bugs and only drilling down into their queue of bugs when they observed “systematic mistakes
for a large number of customers.”

Interviewees mentioned that after several iterations of chasing bespoke ML-related bugs in
production, they had developed a sense of paranoia while evaluating models offline—possibly
as a coping mechanism (Lg1, Md1, Lg3, Md5, Md6, Lg6). Lg1 said:

ML [bugs] don’t get caught by tests or production systems and just silently cause
errors. This is why [you] need to be paranoid when you’re writing ML code, and
then be paranoid when you’re coding.

Lg1 then recounted a bug that was “impossible to discover” after a deployment to pro-
duction: the code for a change that added new data augmentation to the training procedure
had two variables flipped, and this bug was miraculously caught during code review even
though the training accuracy was high. Lg1 claimed that there was “no mechanism by which
[they] would have found this besides someone just curiously reading the code.” Since ML
bugs don’t cause systems to go down, sometimes the only way to find them is to be cautious
when inspecting code, data, and models.

2.5 Discussion

Our findings suggest that automated production ML pipelines are enabled by MLEs working
through a continuous loop of i) data preparation, ii) experimentation, iii) evaluation &
deployment, and iv) monitoring and response (Figure 2.1). Although engineers leverage
different tools to help with technical aspects of their workflow, such as experiment tracking
and data validation [211, 20], patterns began to emerge when we studied how MLE practices
varied across company sizes and experience levels. We discuss these patterns as “the three
Vs of MLOps” (Section 2.5), and follow our discussion with implications for both production
ML tooling (Section 2.5), and opportunities for future work (Section 2.5).

Velocity, Visibility, Versioning: Three Vs of MLOps

Findings from our work and prior work suggest three broad themes of successful MLOps
practices: Velocity, Visibility, and Versioning. These themes have synergies and tensions
across each stage of MLEs’ workflow, as we discuss next.

Velocity

Since ML is so experimental in nature, it’s important to be able to prototype and iterate on
ideas quickly (e.g., go from a new idea to a trained model in a day). Interviewees attributed
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their productivity to development environments that prioritized high experimentation veloc-
ity and debugging environments that allowed them to test hypotheses quickly. Prior work has
extensively documented the Agile tendencies of MLEs, describing how they iterate quickly
(i.e. with velocity) to explore a large ML or data science search space [6, 98, 66, 145, 213].
Amershi et al. (2019) describe how experimentation can be sped up when labels are anno-
tated faster (i.e., rapid data preparation) [6]. Garcia et al. (2021) explore tooling to help
MLEs correct logging oversights from too much velocity in experimentation [47], and Paleyes
et al. (2022) mention the need to diagnose production bugs quickly to prevent future similar
issues from occurring [140]. First, our study re-enforces the view the MLEs are agile workers
who value fast results. P1 said that people who achieve the best outcomes from experi-
mentation are people with “scary high experimentation velocity.” Similarly, the multi-stage
deployment strategy can be viewed as an optimistic or high-velocity solution to deployment:
deploy first, and validate gradually across stages. Moreover, our study provides deeper in-
sight into how practitioners rapidly debug deployments—we identify and describe practices
such as on-call rotations, human-interpretable filters on model behavior, data quality alerts,
and model rollbacks.

At the same time, high velocity can lead to trouble if left unchecked. Sambasivan et al.
(2021) observed that, for high-stakes customers, practitioners iterated too quickly, causing
ML systems to fail—practitioners “moved fast, hacked model performance (through hyperpa-
rameters rather than data quality), and did not appear to be equipped to recognise upstream
and downstream people issues” [165] Our study exposed strategies that practitioners used
to prevent themselves from iterating too quickly: for example, in Section 2.4, we described
how some applications (e.g., autonomous vehicles) require separate teams to manage eval-
uation, making sure that bad models don’t get promoted from development to production.
Moreover, when measuring ML metrics outside of accuracy, e.g., fairness [68] or product
metrics (Section 2.4), it is challenging to make sure all metrics improve for each change
to the ML pipeline [140]. Understanding which metrics to prioritize requires domain and
business expertise [86], which could hinder velocity.

Visibility

In organizations, since many stakeholders and teams are impacted by ML-powered applica-
tions and services, it is important for MLEs to have an end-to-end view of ML pipelines.
P1 explicitly mentioned integrating “very high degree of observability into every part of
[the] pipeline” (Section 2.4). Prior work describes the importance of visibility: for exam-
ple, telemetry data from ML pipelines (e.g., logs and traces) can help engineers know if the
pipeline is broken [86], model explainability methods can establish customers’ trust in ML
predictions [140, 200, 87], and dashboards on ML pipeline health can help align nontechni-
cal stakeholders with engineers [81, 91]. In our view, the popularity of Jupyter notebooks
among MLEs, including among the participants in our study, can be explained by Jupyter’s
gains in velocity and visibility for ML experimentation, as it effectively combines REPL
(Read-Eval-Print-Loop)-style interaction and visualization capabilities despite its versioning
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shortcomings. Our findings corroborate these prior findings and provide further insight on
how visibility is achieved in practice. For example, engineers proactively monitor feedback
delays (Section 2.4). They also document live failures frequently to keep validation datasets
current (Section 2.4), and they engage in on-call rotations to investigate data quality alerts
(Section 2.4).

Visibility also helps with velocity. If engineers can quickly identify the source of a bug,
they can fix it faster. Or, if other stakeholders, such as product managers or business
analysts, can understand how an experiment or multi-staged deployment is progressing,
they can better use their domain knowledge to assess models according to product metrics
(see Section 2.4), and intervene sooner if there’s evidence of a problem. One of the pain
points we observed was that end-to-end experimentation—from the conception of an idea
to improve ML performance to validation of the idea—took too long. The uncertainty of
project success stems from the unpredictable, real-world nature of experiments.

Versioning

Amershi et al. (2019) mention that “fast-paced model iteration” requires careful versioning
of data and code [6]. Other work identifies a need to also manage model versions [193, 211].
Our work suggests that mananging all artifacts—data, code, models, data quality metrics,
filters, rules—in tandem is extremely challenging but vital to the success of ML deployments.
Prior work explains how these artifacts can be queried during debugging [19, 26, 169], and
our findings additionally show that versioning is particularly useful when teams of people
work on ML pipelines. For instance, during monitoring, on-call engineers may receive a
flood of false-positive alerts; looking at old alerts might help them understand whether a
specific type of alert actually requires action. In another example, during experimentation,
ML engineers often work on models and pipelines they didn’t initially create. Versioning
increases visibility: engineers can inspect old versions of experiments to understand ideas
that may or may not have worked.

Not only does versioning aid visibility, but it also enables workflows to maintain high
velocity. In Section 2.4, we explained how pipeline jungles are created by quickly responding
to ML bugs by constructing various filters and rules. If engineers had to fix the training
dataset or model for every bug, they would not be able to iterate quickly. Maintaining
different versions for different types of inputs (e.g., rules to auto-reject incomplete data or
different models for different users) also enables high velocity. However, there is also a tension
between velocity and versioning: in Section 2.4, we discussed how parallelizing experiment
ideas produces many versions, and ML engineers could not cognitively keep track of them.
In other words, having high velocity can mean drowning in a sea of versions.

Opportunities for ML Tooling

Our main takeaway is that production ML tooling needs to aid humans in their workflows,
not just automate technical practices (e.g., generating a feature or training a model). Tools
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should help improve at least one of the three Vs, and there are opportunities for tools in
each stage of the workflow. We discuss each in turn.

Data Preparation

As mentioned in Section 2.4, separate teams of data engineers typically manage pipelines to
ingest, clean, and preprocess data on a schedule. While existing tools automate scheduling
these activities, there are unadressed ML needs around retraining and labeling. Prior work
and our interviews indicate that ML engineers retrain models on some arbitrary cadence [140,
89], without understanding the effect of the cadence on the quality of predictions. Models
might be stale if they are retrained only monthly, or they might retrain using invalid or
corrupt data if they are retrained faster than the data is validated and cleaned (e.g., hourly).
Moreover, the optimal retraining cadence depends on the data, ML task, and amount of
organizational resources, such as compute, training time, and number of engineers on the
team. New tools can help with these challenges and determine the best retraining cadence for
ML pipelines. With respect to labeling, existing tools help with either labeling at scale [153]
or labeling with high quality [90], but it is hard to achieve both. As a result, organizations
have custom infrastructure and teams to resolve label mismatches, apply domain knowledge,
and reject incorrect labels. Labeling tools can leverage ensembling and add postprocessing
filters to reject and resolve incorrect and inconsistent labels. Moreover, they should track
feedback delays and surface this information to users.

Experimentation

As discussed in Section 2.4, experiments are typically done in development environments
and then promoted to production clusters during deployment. The mismatch between the
two (or more!) environments can cause bugs, creating an opportunity for new tools. The
development cluster should maximize iteration speed (velocity), while the production cluster
should minimize end-user prediction latency [31]. Hardware and software can be different
in each cluster, e.g., GPUs for training vs. CPUs for inference, and Python vs. C++,
which makes this problem challenging. New tools are prioritizing reproducibility—turning
Jupyter notebooks into production scripts [178], for instance—but should also standardize
how engineers interact with experimentation workflows. For example, while experiment
tracking tools can literally keep track of thousands of experiments, how can engineers sort
through all these versions and actually understand what the best experiments are doing?
Our findings and prior work show that the experimental nature of ML and data science leads
to undocumented tribal knowledge within organizations [85, 81]. Documentation solutions
for deployed models and datasets have been proposed [51, 124], but we see an opportunity
for tools to help document experiments—particularly, failed ones. Forcing engineers to write
down institutional knowledge about what ideas work or don’t work slows them down, and
automated documentation assistance would be quite useful.
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Evaluation and Deployment

Prior work has identified several opportunities in the evaluation and deployment space. For
example, there is a need to map ML metric gains to product or business gains [89, 115,
86]. Additionally, tools could help define and calculate subpopulation-specific performance
metrics [68]. From our study, we have observed a need for tooling around the multi-staged
deployment process. With multiple stages, the turnaround time from experiment idea to
having a full production deployment (i.e., deployed to all users) can take several months.
Invalidating ideas in earlier stages of deployment can increase overall, end-to-end velocity.
Our interviewees discussed how some feature ideas no longer make sense after a few months,
given the nature of how user behaviors change, which would cause an initially good idea
to never fully and finally deploy to production. Additionally, an organization’s key product
metrics—e.g., revenue or number of clicks—might change in the middle of a multi-stage
deployment, killing the deployment. This negatively impacts the engineers responsible for
the deployment. We see this as an opportunity for new tools to streamline ML deployments
in this multi-stage pattern, to minimize wasted work and help practitioners predict the
end-to-end gains for their ideas.

Monitoring and Response

Recent work in ML observability identifies a need for tools to give end-to-end visibility on
ML pipeline behavior and debug ML issues faster [175, 19]. Basic data quality statistics,
such as missing data and type or schema checks, fail to capture anomalies in the values
of data [126, 20, 146]. Our interviewees complained that existing tools that attempt to
flag anomalies in the values of data points produce too many false positives (Section 2.4).
An excessive number of false-positive alerts, i.e., data points flagged as invalid even if they
are valid, leads to two pain points: (1) unnecessarily maintaining many model versions or
simple heuristics for invalid data points, which can be hard to keep track of, and (2) a lower
overall accuracy or ML metric, as baseline models might not serve high-quality predictions
for these invalid points. Moreover, due to feedback delays, it may not be possible to track
ML performance (e.g., accuracy) in real time. What metrics can be reliably monitored in real
time, and what criteria should trigger alerts to maximize precision and recall when identifying
model performance drops? How can these metrics and alerting criteria automatically tune
themselves over time, as the underlying data changes? We envision this to be an opportunity
for new data management tools.

Moreover, as discussed in Section 2.4, when engineers quickly respond to production bugs,
they create pipeline jungles. Such jungles typically consist of several versions of models, rules,
and filters. Most of the ML pipelines that our interviewees discussed were pipeline jungles.
This combination of modern model-driven ML and old-fashioned rule-based AI indicates a
need for managing filters (and versions of filters) in addition to managing learned models.
The engineers we interviewed managed these artifacts themselves.
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Limitations and Future Work

Since we wanted to find common themes in production ML workflows across different ap-
plications and organizations, our interview study’s scope was quite broad: we set out on a
quest to discover shared patterns, rather than to predict or explain. We asked practitioners
open-ended questions about their MLOps workflows and challenges, but did not probe them
about questions of fairness, risk, and data governance: these questions could be studied in
future interviews. Moreover, we did not focus on the differences between practitioners’ work-
flows based on their company sizes, educational backgrounds, or industries. While there are
interview studies for specific applications of ML [148, 18, 44], we see further opportunities
to study the effect of organizational focus and maturity on the production ML workflow.
There are also questions for which interview studies are a poor fit. Given our findings on
the importance of collaborative and social dimensions of MLOps, we would like to explore
these ideas further through participant action research or contextual inquiry.

Moreover, this chapter focuses on a human-centered workflow surrounding production ML
pipelines. Focusing on the automated workflows in ML pipelines—for example, continuous
integration and continuous deployment (CI/CD)—could prove a fruitful research direction.
Finally, we only interviewed ML engineers, not other stakeholders, such as software engineers
or product managers. Kreuzberger et al. (2022) present a diagram of technical components
of the ML pipeline (e.g., feature engineering, model training) and interactions between ML
engineers and other stakeholders [89]. Another interview study could observe these interac-
tions and provide further insight into practitioners’ workflows.

2.6 Conclusion

In this chapter, we presented results from a semi-structured interview study of 18 ML engi-
neers spanning different organizations and applications to understand their workflow, best
practices, and challenges. Engineers reported several strategies to sustain and improve the
performance of production ML pipelines, and we identified four stages of their MLOps work-
flow: i) data preparation, ii) experimentation, iii) evaluation and deployment, and iv) mon-
itoring and response. Throughout these stages, we found that successful MLOps practices
center around having good velocity, visibility, and versioning. Finally, we discussed oppor-
tunities for tool development and research.
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Chapter 3

Context: The Missing Piece in the
Machine Learning Lifecycle

Machine learning (ML) models have become ubiquitous in modern applications. The ML
lifecycle describes a three-phase process used by data scientists and data engineers to de-
velop, train, and serve models. Unfortunately, context around the data, code, people, and
systems involved in these pipelines is not captured today. In this chapter1, we first discuss
common pitfalls that missing context creates. Some examples where context is missing in-
clude tracking the relationships between code and data and capturing experimental processes
over time. We then discuss techniques to address these challenges and briefly mention future
work around designing and implementing systems in this space.

3.1 Introduction

Most modern applications—ranging from personal voice assistants to manufacturing services—
rely on machine learning in some form. These applications rely on machine learning models
to render predictions in response to a query.

The development, training, and serving of machine learning models is the result of a pro-
cess that we call the Machine Learning Lifecycle. This lifecycle has three phases (Figure 3.1):
pipeline development, training, and inference. The pipeline development phase is an iterative
process in which data scientists transform and visualize data, explore various model designs,
and experiment with many features. Note that the focus on model design often leads to the
term “model development.” However, the true product of pipeline development is a reusable
pipeline that describes how to construct a model from a given dataset. This pipeline is then
executed on a much larger, near-real time dataset to generate a production-ready model, and
these trained models are in turn used to serve predictions for new inputs to the application.

The ML lifecycle is data-intensive and spans many individuals. Each stage is often man-
aged by a different team, with different incentives and different structures. The transitions

1Chapter published in KDD Workshop on Common Model Infrastructure (CMI) [46].
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Figure 3.1: The end-to-end machine learning lifecycle.

between stages and teams are usually ad-hoc and unstructured. As a result, in serious ma-
chine learning deployments today, no one person or system has an end-to-end view of the
ML lifecycle. This is problematic for a variety of reasons, including irreproducibility of ex-
perimental results, complicated debugging, and a lack of accountability. We believe there is
a key missing component required to capture this view: the context that surrounds the ML
lifecycle.

Recent work highlights data context [62] as a critical aspect of any data-centric effort,
including ML pipelines. That work defines data context as “all the information surrounding
the use of data in an organization.” It goes on to distinguish three key types of data context:
application context, behavioral context, and change over time (the “ABCs” of context). The
application context (A) captures semantic and statistical models that explain how bits should
be interpreted. Behavioral context (B) extends the traditional notion of data provenance
to capture how both people and software interact with data. Lastly, change over time (C)
captures how each of the other two types of data context are evolving.

In the next section, we highlight common pitfalls that arise from ignoring data context in
the ML lifecycle. We then discuss approaches to contextualize the ML lifecycle and briefly
mention future work.

3.2 The Absence of Context

In this section, we describe how code and data should be interpreted, how they evolve over
time, and what their relationship is to each other and the people that create and use them.
Our discussion also includes the history of an organization’s model management practices.
We consider more than just the success stories: we consider the context surrounding the
experiments that failed because of bugs, poor performance, excessive cost, and so on. We
strive to leverage this context to learn from our mistakes and the mistakes of others, to
reduce work duplication, and to formalize machine learning practices.
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The Code and Data Ecosystem

Data is a first class citizen in any machine learning pipeline. The same pipeline trained on
different data can yield a drastically different result. Unfortunately, most organizations today
do not capture the relationship between code and data, both within and across the phases
of the ML lifecycle. Most importantly, context around which data set was used to train a
particular version of a model is lost. Other basic information—like schemas, distributions,
and expectations—are even less available.

In the rest of this section, we describe a few common scenarios demonstrating the loss of
context in the code and data ecosystem.

This data looks wrong! The first step in the ML lifecycle often consists of transforming
raw data into a cleaned dataset. That dataset is often shared and reused. If a data scientist
or analyst who receives the data encounter issues, they need access to the original data and
transformation scripts. If this context is not explicitly logged, the derivation of the cleaned
dataset is opaque to the receiving user. What’s worse is that they may be unaware that the
data they received was derived through a transformation process. Missing Context: the
code and data used to construct the dataset.

If I could only find that model from last week! Pipeline development is inherently
experimental with many iterations of trial and error. There are a variety of reasons that we
may want to return to earlier versions of our models and data. For example, it is common to
reach a dead-end in model design only to return to an earlier model. Recreating an earlier
state requires reverting not only code but also data, parameters, and configurations. Finding
the earlier best version may require searching through many alternative versions. Missing
Context: the versions of code, data, parameters, and configurations over time.

It worked better yesterday! Models inevitably degrade in their predictive power.
There are many reasons for this degradation. For example, a shift in the data distribution
can result in a rapid decline in predictive power. Diagnosing this decline requires comparing
training data with live data. Solving the problem may require retraining the model, revisiting
earlier design decisions, or even rearchitecting the underlying model. Missing Context:
the full lineage of the model through each stage of the ML lifecycle as it existed at the time
of training.

I fixed it, who needs to know? Models are routinely composed in production. For
example, modeling a users likelihood to buy a product might depend on predictions about the
user’s political preference. Changes to upstream model will impact the quality of predictions
from a downstream model. Surprisingly, improving the accuracy of an upstream model can in
some cases degrade the accuracy of downstream models because the downstream models were
trained to compensate for errors. Missing Context: the eventual consumers of predictions
from models.
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Learning From Your Mistakes

An analyst’s first question when debugging might be to ask if they are encountering a well-
known problem. Answering this requires context in two scopes. First, it requires context
around past experiments for this pipeline—both successful and unsuccessful. It could also
potentially require surrounding other, related projects in the organization. We next look at
two examples of this sort, one diagnosing a problem and the other remediating a problem.

I’ve seen this problem before. Any organization will develop a set of recurring
problems in their ML lifecycle. Imagine a model for a ride-sharing service is predicting
negative trip durations. A natural question might be to ask why the training data would
lead to this prediction and whether there’s a standard data cleaning step that is missing.
An expert on trip data might know that canceled trips are logged as having -1 duration
and that these trips should be dropped; however, this information is not readily available
without experience. Missing context: Standard transformations applied to a dataset.

I tried that already! Imagine a data scientist is tasked with improving the performance
of a certain predictor developed by a different team member. It is likely that the same set
of common model designs has already been considered. Knowing this information can help
avoid redundant work. Missing context: Past designs and their resulting test scores.

Proper Methodology

The statistical nature of the ML Lifecycle requires experimental discipline. To some degree,
this discipline can be captured and checked by recording the behavior of analysts and the
structure of the pipelines themselves. While no single approach will solve all of the problems
surrounding statistical and methodological practices, context will play a crucial role.

Have I used this test data before? When developing models, it’s important to
separate training and testing datasets. Overuse of testing data during training can lead to
poor generalization and performance. For example, tuning a parameter by repeatedly testing
on the same data can lead to over-fitting. Missing context: Behavior of the analyst and
content & structure of the pipeline.

3.3 System Requirements for Model Lifecycle

Management

Software engineering systems exist for building complex software projects, managing ver-
sions, automatically testing and deploying built binaries, logging, monitoring, and so on.
More importantly, software engineering systems may have close analogs for the ML Lifecy-
cle, and could serve as a sound starting point for research. However, there are characteristics
of the ML Lifecycle that are unique to model management, and as a result, we do not expect
to find strong parallels from software engineering. The characteristics that are special to the
ML Lifecycle are the following: unlike the software engineering lifecycle, the ML Lifecycle is
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empirical, combinatorial, and data driven. The ML Lifecycle is empirical and combinatorial
because even the most experienced and meticulous pipeline engineers will have only a vague
idea of the elements and structure of the final pipeline. Context will play a central role
in navigating the vast space of possibilities: it will be necessary to understand which data
artifacts were used to train which models, and with what configurations. The ML Lifecycle
is also data-driven because the model, the output of training, is inextricably linked to the
data it was trained on. Contrast this with a software project, where the build or compi-
lation of such systems are data independent. Context will be indispensable for the data
and sample management systems that are used throughout the phases of the ML Lifecycle.
Finally, as [168] notes, the use of machine learning models in an application often results in
substantial technical costs stemming from the failure of traditional abstractions and software
design principles in the presence of machine learning. While decades of research in software
engineering has established techniques and tools to manage the development and deploy-
ment of complex software applications, there has been very little research into managing the
development and deployment of machine learning applications.

Pipeline Tools

For pipeline development, we must build tools with which we can easily change the elements
and structure of pipelines and feel confident in undoing unsuccessful attempts. Tools that
support and enable pipeline development are “composition tools” [158]. These tools must
support hypothesis formation, evaluation of alternatives, interpretation of intermediary re-
sults, and dissemination of results. Experienced pipeline engineers tasked with designing an
ML pipeline often have a vague idea of the elements and structure of the pipeline in advance,
but the particular configuration and final architecture must be discovered. For example, the
pipeline engineer may know to use a neural network rather than a Naive Bayes Classifier,
but the final number of layers and neurons per layer are unknown at the onset. To the extent
that pipeline development is a creative and empirical endeavor, pipeline engineers must be
encouraged to explore the space of possible alternatives. Tools that encourage exploration
must have “low viscosity”, meaning that they should easily enable changes to all aspects of
the pipeline [158]; additionally, these tools must have very good undo capabilities, so the
pipeline engineer feels comfortable trying new things, and powerful yet efficient previewing
mechanisms to limit the consumption of scarce and valuable resources (such as computing
time, memory, and data) without impeding exploration.

There are many possible roles for context in pipeline development tools. As a more
general form of meta-data, context can help us interpret, and therefore compare the artifacts
within pipelines and across their versions. Consider how a version control system, such as
Git, would benefit from context. Git, which is tailored for source control and the software
engineering lifecycle, defines change semantics as line-by-line differences. But these semantics
are meaningless for binary and data artifacts. To detect meaningful change in data, we should
look at metadata properties including the schema, distributions across different attributes,
or topics in the data, instead of the exact contents of the records. When comparing binary
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objects such as two different models, it will be much more useful to compare the metadata
of these models – e.g., their accuracy, recall, training hyper-parameter configurations, and
so on – rather than just diffing their binaries.

Training Systems

Frameworks such as TensorFlow manage many of the problems of distributed training at
scale; namely, scheduling computation to run on different devices, and managing the commu-
nication between these devices [1]. However, data engineers are still responsible for managing
very large datasets and their versions over time, provisioning resources, and controlling for
variability inherent in training in the cloud (attributable to multi-tenancy, hardware, work-
load, and data variability, and so on). In many cases, as deployed models interact with the
world they produce new data that can be used to retrain existing models. In these cases,
automated systems will periodically re-train existing models in response to changes in data
or code. Unlike pipeline development, training does not require any human design consid-
erations, and the search space is exhaustively enumerable in principle. However, data and
model management requirements increase substantially. Of special significance to training
will be techniques to automatically decide when to train, leverage knowledge of multiple
pipelines to improve training performance, and study mechanisms to mitigate the risk of
over-fitting.

Now, we consider how training systems may leverage and benefit from context. Context
may benefit training in two ways: mitigating the risk of over-fitting and surfacing opportu-
nities for optimization. Context about the training data and the processes that generated
it, as well as context about how and how often that data is used can help reduce the risk
of over-fitting to the data. As for optimization opportunities, organizations or cloud ser-
vice providers will simultaneously run many training jobs often. In this case, it would be
extremely valuable if the pipeline training system could characterize the pipelines that it is
running and compare them to find common or equivalent transformations or sub-graphs. To-
day, this kind of context is not widely available to the distributed systems that train models.
This means that the system cannot intelligently schedule similar pipelines to run together,
and re-use or share intermediate artifacts. The failure to understand the resource needs
(meta-data) of each action in the pipeline can also lead to lost opportunities to schedule the
execution of dis-similar pipelines more optimally. In summary, missed application context
about the pipelines results in re-computation and poor schedules.

Inference Systems

During inference, trained models are used to render predictions for new inputs. The primary
systems challenge of inference is delivering low latency, highly available predictions under
heavy and often bursty query load. However, an often overlooked but critical component of
inference is managing model versions and tracking variation in queries and prediction errors.
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Understanding, how models are performing production and debugging their failures depends
critically on capturing their provenance.

Inference is the ML Lifecycle phase that already takes the most advantage of context.
Prediction serving systems monitor the end-user application for feedback to measure the
quality of the predictions. Other ways in which context could help inference is by leveraging
context describing the input and output interfaces of models, together with the metadata
about the training data and intended use for the model. If this context is available, the pre-
diction serving system can more intelligently compose or combine models or their predictions
to improve robustness and decrease latency.

3.4 Related Work

Data Context Services. Modern data analytics ecosystems can benefit from a rich no-
tion of data context, which captures all the information surrounding the use of data in
organization. Data context includes traditional notions of metadata combined with data
provenance and version histories. Recent work has discussed systems, such as Ground [62]
and ProvDB [121], that enable users to capture richer data context. As discussed earlier,
our work here builds on data context. However, this chapter’s key contribution is a domain-
specific discussion of the benefits of data context in one domain. In other words, the ideas
discussed here consistute an “Aboveground” application discussed in [62].

Model Management & Serving. A variety of recent work [32, 2, 33] has focused
on the inference stage of the end-to-end ML lifecycle shown in Figure 3.1. Data context
is essential for prediction serving systems that are fundamentally disconnected from the
pipeline development and training stages of the ML lifecycle. For instance, explaining change
in prediction accuracy is challenging without access to full lineage of the models, training
data, and any hyperparameters. Similarly, ModelDB [195] captures context in the pipeline
development phase but is disconnected from the broader ML lifecycle.

3.5 Conclusion

In this chapter, we characterized the ML Lifecycle and postulated that the crucial missing
piece within and across every phase is context : “all the information surrounding the use of
data in an organization.” The transitions between stages and teams are usually ad-hoc and
unstructured, meaning no single individual or system will have a global, end-to-end view of
the ML Lifecycle. This can lead to problems like irreproducibility, over-fitting, and missed
opportunities for improved productivity, performance, and robustness.

Some of the scenarios that illustrate the problems of missing context include those where
the code and data used to clean data are lost, past versions are irretrievable, and deployed
models degrade in performance over time. We also consider organizational context, often
termed “tribal knowledge”, that can be leveraged to reduce work duplication and respond
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to common problems, and some of the behavioral context that is generated during a pipeline
engineer’s activities, and how this context can be used to characterize and potentially help
them improve their process.

The ML Lifecycle has some similarities with the software engineering lifecycle, such as
how engineers describe pipelines for building a binary artifact, how there is a need to maintain
different versions over time, and so on. This observation motivates our recommendation of
drawing inspiration and guidance from software engineering when designing the tools for ML
Lifecycle. However, we also note that the ML Lifecycle has some important differences from
software engineering: namely, the ML Lifecycle is empirical, combinatorial, and data-driven.
We also argue that context will be the key component in supplementing existing tools and
creating future ones for the service of the ML Lifecycle.

Finally, we would like to end by noting that we are actively developing a system called
Flor2, a context-first tool for managing the ML Lifecycle. Our initial focus has been on
tooling the pipeline development process, but we hope that these techniques will be applicable
in the broader scope of the ML Lifecycle.

2github.com/ucbrise/flor
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Chapter 4

Application Context: Hindsight
Logging for Model Training

In modern Machine Learning, model training is an iterative, experimental process that can
consume enormous computation resources and developer time. To aid in that process, experi-
enced model developers log and visualize program variables during training runs. Exhaustive
logging of all variables is infeasible, so developers are left to choose between slowing down
training via extensive conservative logging, or letting training run fast via minimalist op-
timistic logging that may omit key information. As a compromise, optimistic logging can
be accompanied by program checkpoints; this allows developers to add log statements post-
hoc, and “replay” desired log statements from checkpoint—a process we refer to as hindsight
logging. Unfortunately, hindsight logging raises tricky problems in data management and
software engineering. Done poorly, hindsight logging can waste resources and generate tech-
nical debt embodied in multiple variants of training code. In this chapter1 , we present
methodologies for efficient and effective logging practices for model training, with a focus
on techniques for hindsight logging. Our goal is for experienced model developers to learn
and adopt these practices. To make this easier, we provide an open-source suite of tools
for Fast Low-Overhead Recovery (FLOR) that embodies our design across three tasks: (i)
efficient background logging in Python, (ii) adaptive periodic checkpointing, and (iii) an in-
strumentation library that codifies hindsight logging for efficient and automatic record-replay
of model-training. Model developers can use each flor tool separately as they see fit, or
they can use flor in hands-free mode, entrusting it to instrument their code end-to-end for
efficient record-replay. Our solutions leverage techniques from physiological transaction logs
and recovery in database systems. Evaluations on modern ML benchmarks demonstrate that
flor can produce fast checkpointing with small user-specifiable overheads (e.g. 7%), and
still provide hindsight log replay times orders of magnitude faster than restarting training
from scratch.

1Chapter published as a VLDB conference paper [48].
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4.1 Introduction

Due to the growing scale and complexity of sophisticated models [39, 154, 188], exploratory
model development increasingly poses data management problems [182]. At every step of
exploration, model developers routinely track and visualize time series data to diagnose
common training problems such as exploding/vanishing gradients [65], dead ReLUs [112],
and reward hacking [7]. Model developers use state-of-the-art loggers specialized to machine
learning (e.g. TensorBoard [53], and WandB [17]) to efficiently trace and visualize data as it
changes over time. The following are common examples of times series data logged in model
training:

• Training Metrics: The loss, accuracy, learning rate, and other metrics as they change
over time.

• Tensor Histograms: Histograms of weights, gradients, activations, and other tensors
as they change over time.

• Images & Overlays: Segmentation masks, bounding boxes, embeddings, and other
transformed images as they change over time.

In our experience, all model developers log some training metrics by default. Whether
their logging practice is conservative or optimistic depends on whether they log additional
training data by default. Next, we illustrate the relevant differences between conservative
and optimistic logging, with the aid of three fictitious characters: Mike for methodical
conservative logging, Chuck for ad-hoc optimistic logging, and Judy for methodical optimistic
logging.

Conservative Logging

Conservative logging is eager and characterized by stable expectations about what data (and
how much of it) will be necessary for analysis [210]. It is especially well-suited to later stages
of the machine learning lifecycle, where models are periodically trained for many hours on
fresh data [185], and refinements of the model training pipeline are usually light and limited
to some tuning [46].

Mike records everything (mnemonic for microphone)

Mike is a model developer for a major tech company. His organization’s policy is that model
developers should log training metrics, tensor histograms, and some images and overlays by
default. Although his logging practices can add substantial overhead to training (black bar
in Figure 4.1), his jobs usually run as offline batches, and his productivity is not blocked on
the results of training. Moreover, when he receives an alert from the training or monitoring
system, the execution data he needs for post-hoc analysis will be ready.
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Figure 4.1: Conservative v. Optimistic logging performance at 100 epochs of Squeezenet
on CIFAR-100 [76]. All workloads log tensor histograms for the activations, weights, and
gradients 4× per epoch. The gray horizontal line corresponds to the same training job but
without any logging. Both, the purple bar and line, correspond to flor logging.

Although reducing logging overhead is not a high priority for Mike, he is not the only de-
veloper in his organization using high-end GPU clusters. At scale, even minor improvements
to training efficiency will translate into measurable benefits for the organization. Later in
this chapter, we will present a tool for low-overhead materialization in the background
(Section 4.3). Our tool enables Mike to continue to log data at the same rate and with
his logger of choice (e.g. tensorboardx), at a fraction of the original overhead (purple bar in
Figure 4.1).

Optimistic Logging

In contrast to conservative logging, optimistic logging is an agile and lazy practice especially
well-suited to early and unstructured stages of exploratory model development. In optimistic
logging, model developers log training metrics such as the loss and accuracy by default, and
defer collection of additional data until analysis time, when they may restore it selectively.
Execution data is restored by adding logging statements to training post-hoc, and replaying—
possibly from checkpoint. We refer to this practice as hindsight logging. Optimistic logging
consists of (i) logging some training metrics by default, and (ii) selectively restoring additional
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training data post-hoc with hindsight logging. Model developers gain agility in exploration
from optimistic logging in three ways:

• Deferred Overhead: Each training batch executes and produces results as quickly
as possible. Faster evaluations means more trials in the same time span.

• Flexible Cost Schedule: Model developers can selectively restore just the data they
need post-hoc. The fewer epochs they need to probe; the fewer resources they burn.

• Separation of Concerns: Concerns about what data to log and how much of it do
not burden the developer during design and tuning—these are postponed until analysis
time.

In the fast path of the common case, model developers get all the relevant information
from the training loss, and move on. In exceptional cases, however, training replay may be
necessary for post-hoc data restoration. Compare how Chuck and Judy would restore data.

Chuck doesn’t record anything (mnemonic for toss)

Chuck is a first year graduate student in Astronomy who is knowledgeable about the latest
developments in machine learning, but ill-versed in software engineering practices. Chuck
logs the training loss and accuracy by default, but does not save checkpoints during training.

Judy uses good judgment (mnemonic for judge)

Judy is an experienced model developer with a strong software engineering background.
Like Chuck, she only logs the training loss and accuracy by default; unlike Chuck, she also
checkpoints model training periodically, and manages the many versions of her code and
data.

When either Chuck or Judy need to restore training data post-hoc—say, the tensor
histograms for the gradients at a rate of 4× per epoch—they will selectively add the necessary
logging statements to their training code, and re-train. In many cases, Chuck and Judy will
only want to restore data for a small fraction of training (e.g. 25% of the epochs), near the
region where the loss exhibits an anomaly (e.g. near the middle of training). Because Judy
checkpointed her training execution, she is able to resume training at an arbitrary epoch.
Chuck, on the other hand, must retrain from the start. In the right pane of Figure 4.1, we
plot training plus replay times for Chuck (blue line) and Judy (green line).

In this chapter, we will concretely define the methodology that enables Judy to achieve
effective record-replay of model training (Section 4.2). Our goal is for experienced model de-
velopers to learn and adopt these best practices, for their numerous benefits. One surprising
consequence of Judy’s approach is that she can parallelize replay of model training with
her periodic checkpoints (Section 4.2). The purple line in Figure 4.1 represents Judy’s par-
allel replay. Additionally, we evaluate (Section 5.6) and open-source our Fast Low-Overhead
Recovery suite (abbreviated as FLOR) for hindsight logging—with the following set of tools:
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• An optimized materialization library for low-overhead logging and checkpointing in
Python (Section 4.3).

• An adaptive periodic checkpointing mechanism, so record overhead never exceeds a
specifiable limit (Section 4.3).

• An instrumentation library that can transparently transform Python training code to
conform with the methodical hindsight logging approach (Section 4.3). This protects
model developers from incurring technical debt as a consequence of lapses in discipline,
and enables novices to restore time series data as efficiently as experts.

4.2 Methodical Hindsight Logging

In hindsight logging, model developers can choose what to log long after model training:
at analysis time and with a question in mind. In essence, we want to query past execution
state, without versioning that state in full. We draw inspiration from the rich body of
work in databases dedicated to fast recovery [127, 201, 216]. Although that work focuses
mostly on transactions, the lessons and trade-offs transfer naturally to execution recovery
for arbitrary programs. There are two means for recovering execution data: physically, by
reading it from disk; and logically, by recomputing it. Both a purely physical approach and a
purely logical approach are unattractive in our setting, due to prohibitive overhead on record
and prohibitive latency on replay, respectively. Instead, hindsight logging—like transaction
logging—embraces a hybrid “physiological” [57] approach that takes partial checkpoints on
the first pass (henceforth the record phase), and uses those checkpoints to speedup redo
(henceforth the replay phase). In this section, we give a high-level overview of the enabling
methodology behind efficient hindsight logging:

1. First and foremost, checkpoint periodically during training. At least once per epoch
for partial replay, but much less frequently is sufficient for parallel replay.

2. Additionally, enclose long-running code inside a conditional statement to ex-
ploit memoization speedups. On record, the execution materializes the side-effects
of each memoized block. On replay, model developers will run their code from the
start without modification, and the execution will intelligently skip the recomputation
of some blocks by loading their side-effects from disk.

3. Finally, include logic to resume training from a checkpoint. Replay of model
training is embarrassingly parallel given periodic checkpoints. To parallelize replay of
model training, a model developer dispatches multiple training jobs in parallel, each
loading checkpoints to resume training from a different epoch and terminating early.

If at any point through our forthcoming discussion the programming burden seems too high,
the reader should note that we also provide a tool that codifies and automatically applies
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1 init_globals ()

2 checkpoint_resume(args , (net , optimizer ))

3 for epoch in range(args.start , args.stop):

4 if skipblock.step_into (...):

5 for batch in training_data:

6 predictions = net(batch.X)

7 avg_loss = loss(predictions , batch.y)

8 avg_loss.backward ()

9 optimizer.step()

10 skipblock.end(net , optimizer)

11 evaluate(net , test_data)

Figure 4.2: Training script prepared for methodical hindsight logging: checkpoint resume
(line 2), block memoization (lines 4 - 10), and periodic checkpointing (line 10). The semantics
of skipblock are covered in subsection 4.2.

these methods for the benefit of the user: an instrumentation library that features a hands-
free mode for convenience and robustness (Section 4.3).

Periodic Checkpointing & Memoization

Many model developers already checkpoint training periodically. This is traditionally done
for warm-starting training as well as for fault tolerance. In this section, we show how to
exploit further benefits from periodic checkpointing, without incurring additional overheads.
In Figure 4.2, we provide an example of how a model developer would materialize the model
and optimizer state once per epoch (line 10). This state serves a dual purpose. First, it
comprises the relevant side-effects of the preceding code block (lines 4-9), so it serves a
memoization purpose (computation skipping). Second, it captures all of the state that is
modified every epoch of training, so it comprises a valid and complete checkpoint. This dual
purpose of selective state capture is a fortunate coincidence that arises naturally from the
nested loops structure of model training.

We make use of the skipblock language construct [25], to denote block memoization.
The first two requirements for efficient record-replay are periodic checkpointing and block
memoization. Both are achievable by the following functionality, which is encapsulated by
the skipblock for ease of exposition:

• Parameterized Branching: skipblock always applies the side-effects of the enclosed
block to the program state, but does so in one of two ways: (a) by executing the
enclosed block, or (b) by skipping the block and instead loading the memoized side-
effects from its corresponding checkpoint. skipblock automatically determines whether
to execute or skip the enclosed block. It is parameterized by relevant execution state:
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i.e. record-execution, replay-resume, replay-execution, and whether the enclosed block
is probed.

• Side-Effect Memoization (i.e. Periodic Checkpointing): When the enclosed block is
executed, skipblock materializes its side-effects (the arguments passed to the call in line
10, Figure 4.2). It is possible to optimize the skipblock for low-overhead background
materialization (Section 4.3), and adaptive periodic materialization (Section 4.3), but
these optimizations do not alter the semantics of skipblock.

• Side-Effect Restoration: Whenever the enclosed block is skipped, skipblock restores
its side-effects from its corresponding checkpoint (line 10, Figure 4.2). skipblock is able
to efficiently locate an execution’s corresponding checkpoint on disk, and apply its side-
effects to the program state.

A block may not be skipped on replay when the model developer adds a hindsight logging
statement inside the block. Although skipblock memoizes the block’s final state (i.e. state
that is visible to subsequent program statements), it does not materialize intermediate state,
such as the activations of the model (e.g. line 6 in Figure 4.2). Consequently, if the model
developer wishes to restore the model activations post-hoc, it will not be possible to skip
the nested training loop. To restore data in such cases, parallel replay is the only option for
reducing the latency of hindsight logging.

Parallel Replay by Checkpoint Resume

As we saw in the previous subsection, our approach cannot avoid expensive recomputation
when intermediate training state, such as the gradients or activations are logged post-hoc.
In such cases, model developers will want to reduce replay latency by utilizing additional
resources—specifically, more GPUs for parallelism. Although auto-parallelizing arbitrary
sequential code remains an open challenge [12], the replay of checkpointed model training is
a special case: training replay is embarrassingly parallel given periodic checkpoints. As we
multi-purposed periodic checkpointing in the previous section for memoization, so too we
now multi-purpose checkpoint resume—a current staple in the training code of many model
developers—for parallel replay. Parallel replay enables us to substantially cut hindsight
logging latency, and due to the prevalence of checkpoint resume, this is possible without
incurring a programming burden. To parallelize replay, a model developer simultaneously
resumes training from various checkpoints:

1. First, they dispatch multiple training jobs in parallel.

2. Then, each job loads the checkpoint (line 2 in Figure 4.2) that corresponds to the
epoch it is resuming from. For example, to resume training at epoch 25, the job loads
the checkpoint stored at the end of epoch 24.
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1 init_globals ()

2 for epoch in range(0, args.stop):

3 if skipblock.step_into (...

4 && epoch >= args.start):

5 for batch in training_data:

6 predictions = net(batch.X)

7 avg_loss = loss(predictions , batch.y)

8 avg_loss.backward ()

9 optimizer.step()

10 skipblock.end(net , optimizer)

11 lr_scheduler.step()

12 evaluate(net , test_data)

Figure 4.3: Training script prepared for methodical hindsight logging. Training can resume
from a partial checkpoint (no lr scheduler in checkpoint).

3. Finally, each job independently works on its share of work (see the range in line 3 of
Figure 4.2).

Pseudoresuming from partial checkpoints

When model developers write code for periodic checkpointing themselves, they can ensure
that the objects they capture constitute a complete checkpoint. However, when model
developers entrust flor to instrument their code for automatic periodic checkpointing, flor
will not be able to automatically determine whether the checkpoint is complete or partial with
respect to training. As we will discuss in Section 4.3, flor can only estimate the side-effects
of blocks of code enclosed by skipblocks: a restriction we use to render our static analysis
tractable. flor will not estimate the side-effects of the program at arbitrary points, and it will
not check whether the data materialized constitutes a complete (or partial) checkpoint with
respect to training, since doing so statically (i.e. with low overhead) would be intractable in
Python [67, 180, 136].

Consequently, flor assumes checkpoints materialized automatically are partial with re-
spect to training. By partial, we mean that there are objects modified every epoch that are
not stored by the checkpoints (e.g. the lr scheduler in Figure 4.3). As a result, it is not
possible to resume training from an arbitrary epoch merely by loading a partial checkpoint
(i.e. a physical recovery approach). Instead, we start training from the beginning (line 2 in
Figure 4.3), and use the partial checkpoints to skip recomputation of memoized blocks dur-
ing the initialization — or pseudoresume — phase (lines 3-4 in Figure 4.3). This approach
is characteristically physiological because it relies on a combination of recomputation and
disk reads for recovery. Although pseudoresume is especially important for auto-parallelizing
replay of model training, we share this method here because novice model developer may
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accidentally store partial checkpoints. This technique allows them to resume training effi-
ciently all the same. For illustration, suppose, that the model developer wants to resume
training from epoch 25, using the script in Figure 4.3. The skipblock would be initialized to
a pseudoresume state, and then toggle to an execution state.
Pseudoresume phase for epochs in the range 0-24 (inclusive):

1. Skip the nested training loop (lines 3-9 in Figure 4.3).

2. Load the side-effects of the skipped block (line 10 in Figure 4.3).

3. All other statements execute normally.

Execution phase from epoch 25 onward:

1. Step into the nested training loop (lines 3-9 in Figure 4.3).

2. All other statements execute normally.

In summary, memoization can resume model training from an arbitrary epoch, even
in the absence of complete checkpoints. As we will show in the evaluation, the overhead
of pseudoresume is amortized in parallel replay, so that the difference between checkpoint
resume and pseudoresume is imperceptible to the end-user. This result is important because
it enables us to efficiently auto-parallelize the replay of model training, even with partial
checkpoints.

4.3 Tooling for Hindsight Logging

Model developers may adopt the methods described in Section 4.2 to achieve efficient hind-
sight logging. To facilitate this adoption, we provide a suite of Fast Low-Overhead Recovery
tools—flor for short—as aid to the developer. Model developers may use each tool separately
as they see fit, or they may use flor in hands-free mode, entrusting it to instrument their
code end-to-end for efficient record-replay. flor provides the following tools:

• An optimized materialization library for low-overhead logging and checkpointing (Sec-
tion 4.3).

• An adaptive periodic checkpointing mechanism, so record overhead never exceeds a
specifiable limit (Section 4.3).

• An instrumentation library that can transparently transform training code to conform
to the methodical hindsight logging approach (Section 4.3). This protects model de-
velopers from incurring technical debt as a consequence of lapses in discipline, and
enables novices to restore time series data as efficiently as experts.
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Background Logging

flor provides a background materialization mechanism optimized for PyTorch, which is com-
patible with model developer’s machine learning logging service of choice (for example, Ten-
sorBoard [53], MLFlow [212], and WandB [17]). Background logging is used natively by
skipblocks for low-overhead periodic checkpointing (Section 4.2). It is also available sepa-
rately as a library for end-users.

Both logging and checkpointing can add measurable overhead to training because they
require moving data from GPU memory to DRAM, serializing it into byte arrays, and then
writing those arrays to disk. Of the latter two, serialization is typically much more ex-
pensive than I/O: by an average factor of 4.3× according to our microbenchmarks [108].
Consequently, after copying select data from GPU memory to DRAM (so it is protected
from overwrites), we would like to take materialization (both serialization and I/O) off the
main thread—which is dedicated to model training—and do it in the background. Despite
its maturity and widespread popularity, Python makes this very difficult.

The Python interpreter has a notorious Global Interpreter Lock that prevents parallelism
among Python threads. Unfortunately, the Python IPC schemes also require serialization by
the sending process—returning us to our original problem. To avoid serialization we could
use a solution like Apache Plasma, but it only avoids serialization for a subset of Python
data types (notably dataframes and arrays) and actually cannot serialize other data types
including Pytorch tensors. We eventually found a workaround at the operating system level,
using fork() as a mechanism to achieve efficient one-shot, one-way IPC between a parent
and child process, with copy-on-write concurrency. To materialize a record checkpoint, the
main process forks and then immediately resumes model training; the child process serializes
the checkpoint, writes it to disk, and then terminates. To prevent too many calls to fork(),
we buffer up checkpoints and process them in batches of 5000 objects. Given the short
lifespan of these child processes and an infrequent rate of forking due to batching, we have
never seen more than two live children at any point in our evaluations—including in models
that ran for many hours (Section 5.6).

In a technical report [108], we provide a more detailed discussion of the design and
performance of our background materialization mechanism. This mechanism cuts logging
overheads by 73.5% on average, according to our microbenchmarks [108]. Execution speedups
due to background logging are modest for workloads whose logging overheads are dominated
by periodic checkpointing (µ = 4.76% overhead down to µ = 1.74%). This is because periodic
checkpointing is already light and doesn’t add much overhead to training. However, as we
saw in Figure 4.1, background logging can have a drastic effect when used for conservative
logging (180% overhead down to 26%), since logging overheads account for a much larger
fraction of end-to-end training times in those cases.
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Table 4.1: Symbol table for Adaptive Periodic Checkpointing

Symbol Description

Mi time to materialize side-effects of block identified by i
Ri time to restore side-effects of block identified by i
Ci time to compute block identified by i
ni count of executions (so far) for block i
ki count of checkpoints (so far) for block i
G degree of replay parallelism
c constant scaling factor
ϵ tunable parameter denoting overhead tolerance

Adaptive Periodic Checkpointing

In this section, we present a decision rule for dynamically calculating an appropriate check-
pointing period or frequency. This condition is automatically tested by skipblocks to adapt
the frequency of checkpointing to each training workload. For many developers, checkpoint-
ing once per epoch is a good default, but in general, the right checkpointing frequency
depends on the training workload: e.g. how fast or slow the code executes relative to the
size of its checkpoints. The goal of adaptive periodic checkpointing is to automatically ma-
terialize checkpoints as frequently as will increase expected replay speedups, subject to the
constraint that record overhead does not exceed a user-specifiable limit. Next we derive the
invariants we use for adaptive periodic checkpointing. We refer the reader to the notation
in Table 4.1.

The Record Overhead Invariant

We require that the materialization overhead of a block is at most a small fraction of its
computation time: Mi < ϵCi. This simplistic invariant is enough to ensure that record never
exceeds a user-specifiable overhead (ϵ), but it is all-or-nothing: a block is memoized always
or never. Since blocks are often nested inside loops, and model developers may parallelize
replay even with a small number of checkpoints (e.g. 2 checkpoints: 3× parallelism), we
need to relax our invariant to account for periodic checkpointing. Specifically, due to the
nested loops structure of model training, we introduce ni and ki:

kiMi < niϵCi ⇒ Mi

Ci

<
niϵ

ki
(4.1)
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The Replay Latency Invariant

To avoid regret, record-replay should always be faster than two vanilla executions (with
neither overhead nor speedups). Even for hindsight logging workloads that do not permit
partial replay, the speedups from parallel replay alone should more-than-offset the overhead
incurred on record. Accounting for record overhead, we can assess each block i for this
condition as follows:

Mi +Ri +
(ni

G
− 1

)
Ci < niCi (4.2)

The −1 in Equation 4.2 accounts for the fact that each parallel worker resumes from a stored
checkpoint and does not need to compute its first iteration. Because G is determined on
replay and is not known during record, we satisfy the Replay Latency Invariant by testing
Equation 4.3 instead. Equation 4.3 guarantees the Replay Latency Invariant as long as there
is some parallelism (G ≥ 2); we omit the details for brevity.

Mi +Ri <
ni

ki
Ci and Ri = cMi

⇒ Mi

Ci

<
ni

ki(1 + c)

(4.3)

Because the time to restore is not known at record time, we assume that it is proportional to
the time to materialize. Our naive assumption is c = 1.0, and this estimate is refined after
observing materialization and restoration times from record-replay. In our case, the average
scaling factor over all measured workloads (Table 5.1) turned out to be c = 1.38.

The Joint Invariant

The Joint Invariant is automatically checked by skipblocks at record time for adapting the
frequency of checkpointing. Blocks are tested after executing, but before materialization.
By restricting memoization to blocks that pass the Joint Invariant test, flor simultaneously
satisfies the Record Overhead and Replay Latency invariants. This follows from the fact
that the Joint Invariant is derived algebraically from the two invariants.

Mi

Ci

<
ni

ki + 1
min (

1

1 + c
, ϵ)

c = 1.38, ϵ = 0.0667

(4.4)

Note the ki+1 in Equation 4.4: this accounts for the fact that the test is performed after the
execution of the block but before the materialization of its checkpoint. The goal is for the
invariant to continue to hold if the checkpoint is materialized. We derive the Joint Invariant,
Equation 4.4, from Equation 4.1 and Equation 4.3. Both invariants are satisfied when the
computed ratio, Mi/Ci, is less than the minimum of both thresholds.
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Table 4.2: Set of rules for static side-effect analysis. At most one rule is activated by each
program statement. The rules are sorted in descending order of precedence.

Rule Pattern ∆Changeset

0 v1, ..., vn = u1, ..., um ∧ ∃vi ∈ Changeset No Estimate

1 v1, ..., vn = obj.method(arg1, ..., argm) {obj, v1, ..., vn}
2 v1, ..., vn = func(arg1, ..., argm) {v1, ..., vn}
3 v1, ..., vn = u1, ..., um {v1, ..., vn}
4 obj.method(arg1, ..., argm) {obj}
5 func(arg1, ..., argm) No Estimate

Instrumentation for Hands-Free Mode

As desired by the user, flor can instrument their model training code for automatic and
efficient record-replay. The principal objectives of flor instrumentation are twofold:

1. Memoization and periodic checkpointing by nesting loops inside a skipblock, and stat-
ically estimating their side-effects.

2. Auto-parallelization of training replay by a syntax-directed transformation of loop
iterators, enabling pseudoresume from partial checkpoints (Subsection 4.2).

Autorecording Model Training

The first goal of instrumentation is to efficiently and correctly memoize loop executions for
the model developer—without their intervention. flor memoizes loops because, in machine
learning, they correspond to long-running code, and unlike arbitrary “long-running code”,
loops can be detected statically. Ensuring correct and efficient memoization requires (i) cap-
turing all of the loop’s side-effects, and (ii) avoiding the capture of too many redundancies.
Unfortunately, due to the language’s dynamic features and extensive reliance on (compiled)
C extensions, an exact and efficient side-effect analysis in Python is intractable [67, 180,
136]. Past work overcomes Python’s analysis limitations by restricting the expressiveness
of the language [8, 97], making some assumptions (e.g. that the variables don’t change
types [13]), or relying on user source annotations [198]. In a similar vein, we achieve efficient
side-effect analysis by assuming that loop bodies in model training are predominantly written
in PyTorch [144]. To the extent that loops deviate from our assumption, our static analysis
will be unsafe (i.e. may misdetect side-effects), so we will automatically perform deferred
correctness checks after replay and report any anomalies to the programmer. We find that
our assumption holds frequently enough to be useful for hindsight logging purposes. Model
developers do not typically build models or write training algorithms from scratch. Instead,
they rely on popular machine learning frameworks such as PyTorch. Like many 3rd-party
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libraries, PyTorch has a well-defined interface by which it modifies the user’s program in
limited ways [149]. The effects of PyTorch on the user’s program are limited to (i) assign-
ments and (ii) encapsulated state updates from method calls. As a result, all the side-effects
of PyTorch code can be detected statically, with two notable exceptions: when an optimizer
modifies a model, and when a learning rate scheduler modifies an optimizer [149].

First, flor estimates a set of changes (“changeset”) for each block using the six rules in
Table 4.2. flor walks the abstract syntax tree statement by statement, testing which rule is
activated by each statement. The changeset for a block accumulates the individual changes
of its member statements. Rules have a precedence such that at most one is activated per
statement. Statements that activate no rule are ignored. Next, flor performs a filtering
step on the changeset to remove variables that are scoped to the body of the loop. flor
removes from the changeset any variable that is defined in the body of the loop (henceforth
“loop-scoped variable”), under the assumption that this variable is local to the loop and
is not read after the end of the loop. Finally, we make use of our encoded library-specific
knowledge to augment the changeset at runtime (this is the only step that is not done
statically). For PyTorch, it suffices to encode two facts [149]: (i) the model may be updated
via the optimizer; and (ii) the optimizer may be updated via the learning rate schedule. flor
augments the changeset to include side-effects which were not detected by the rules, but
which can be inferred from other elements in the changeset.

Autoparallelizing Replay

The second goal of instrumentation is to autoparallelize replay of model training, assuming
partial checkpoints exist. Replay instrumentation consists of wrapping the main loop’s iter-
ator inside a flor.generator (line 10 in Figure 4.4), to model the pseudoresume behavior
we covered earlier (in Subsection 4.2 and Figure 4.3). Generators define an iterator by a
series of yield statements, and allow us to control global program state between iterations of
the main loop; namely, toggle the skipblocks from a skip state to a step-into state between
epochs (lines 3, 6 in Figure 4.4). We implement parallel replay by having every parallel
worker (NPARTS in total) execute the same instrumented code (as in Figure 4.4), and flor
sets PID to a different value for each worker so they work on distinct segments of the main
loop.

Deferred Checks for Correctness

As we have discussed, Python’s dynamic features and extensive reliance on (compiled) C
extensions, make an exact and efficient side-effect analysis intractable. flor’s approach to
detecting side-effects is efficient but unsafe: it may misdetect side-effects and thus fail to
checkpoint sufficient state for correct replay. To mitigate risk, we automatically check that
common user-observable state between record and replay matches [5]. The standard training
metrics that get logged by default (e.g. the loss and accuracy) form a fairly unique fingerprint
of a model’s training characteristics, so it’s hard to perturb state or data that the model
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1 def flor.generator (*args):

2 pseudoresume_sgmnt , work_sgmnt = partition (*args)

3 skipblock.set_state(’replay ’, ’skip’)

4 for element in pseudoresume_sgmnt:

5 yield element

6 skipblock.set_state(’replay ’, ’step_into ’)

7 for element in work_sgmnt:

8 yield element

9

10 for epoch in flor.generator(range(N), PID , NPARTS ):

11 ...

Figure 4.4: flor instrumentation nests the main loop’s iterator inside a generator to parallelize
replay (with pseudoresume). A generator defines an iterator, and enables us to control global
state between iterations of the main loop.

Table 4.3: Computer vision and NLP benchmarks used in our evaluation.

Name Benchmark Task Model Dataset Train/Tune Epochs

RTE GLUE Recognizing Textual Entailment RoBERTa RTE Fine-Tune 200
CoLA GLUE Language Acceptability RoBERTa CoLA Fine-Tune 80
Cifr Classic CV Image Classification Squeezenet Cifar100 Train 200
RsNt Classic CV Image Classification ResNet-152 Cifar100 Train 200
Wiki GLUE Language Modeling RoBERTa Wiki Train 12
Jasp MLPerf Speech Recognition Jasper LibriSpeech Train 4
ImgN Classic CV Image Classification Squeezenet ImageNet Train 8
RnnT MLPerf Language Translation RNN w/ Attention WMT16 Train 8

depends on without this being reflected in one of the model’s metrics. Consequently, at the
end of replay, we run diff, and warn the user if the replay logs differ from the record logs
in any way other than the statements added for hindsight logging.

4.4 Evaluation

To assess flor’s ability to meet the goals of Section 4.1 in practice, we evaluated eight diverse
machine learning workloads, taken from three separate benchmarks: classic computer vision,
the General Language Understanding and Evaluation (GLUE) [199], and ML Perf [120]
(Table 5.1). These workloads vary in their tasks, model architectures, execution time scales,
and software engineering patterns; they are jointly representative of a large class of model
training workloads. Every experiment was run on P3.8xLarge EC2 instances with 4 Tesla
V100 GPUs, 64 GB of GPU memory in aggregate, 32 vCPUs, 244 GB of RAM, and an
EBS bandwidth (IO throughput) of 7Gbps. The checkpoints generated by flor record were
spooled from EBS to an S3 bucket by a background process.
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Figure 4.5: Comparison of model training times, with and without checkpointing, in hours.
“Periodic Checkpointing” measures the time achievable when a model developer judiciously
selects the contents of a checkpoint, at a frequency of once per epoch. The overhead added
by flor Record is denoted by the text labels over each group of bars.

Flor Record Overhead is Low

We compared the overhead added by manual periodic checkpointing, at a rate of once per
epoch, against the overhead added by automatic flor record (Figure 4.5). We did not man-
ually set the period for any of the flor record experiments. The checkpointing period was
automatically calibrated by the mechanism in Section 4.3. flor record does not add
significant overhead to training, so it may be enabled by default. Moreover, the flor

instrumentation library achieves a comparable outcome as hand-tuned periodic
checkpointing, with competitive performance, and without intervention from the user. For
manual periodic checkpointing, we assume that each checkpoint is complete with respect to
training. For flor record we only assume partial checkpoints: each checkpoint corresponds to
the side-effects of the code block it memoizes (Section 4.2), but it may be incomplete with
respect to training.

Flor Record Overhead is Adaptive

Different model developers have different sensitivies to overhead. In this section, we measured
that record is able to adjust its checkpointing frequency to stay within the user-specifiable
overhead limits (e.g. ϵ = 6.67%). The nested training loops in most model training workloads
are memoized every epoch by ’s adaptive checkpointing mechanism. This is because the time
to materialize their checkpoints is negligible compared to the time it takes to execute them.
In contrast, the sharp drop in overhead for fine-tuning workloads is due to their less frequent
checkpointing (Figure 4.6). Fine-tuning workloads are checkpointed less frequently because
their loops have poor materialization time to computation time ratios: their checkpoints are



CHAPTER 4. APPLICATION CONTEXT: HINDSIGHT LOGGING FOR MODEL
TRAINING 66

Figure 4.6: Impact of adaptivity on record overhead. The two upward arrows denote extreme
values: adaptivity-disabled overhead is 91% for RTE and 28% for CoLA. The user-specifiable
overhead tolerance (6.67%) is denoted by the gray horizontal line. No workload exceeds the
overhead limit with adaptive checkpointing.

massive relative to their short execution times. This is the case because the vast majority of
weights are frozen in model fine-tuning, so a loop execution quickly updates a small fraction
of values in an enormous model [71]. We find that adaptive checkpointing drastically
reduces overhead on model fine-tuning workloads (RTE & CoLA), and ensures that no
workload exceeds the user’s overhead tolerance.

Flor Replay Latency is Low

In this section, we measure the replay speedups achieved by replay, assuming record check-
points were materialized during training. Consequently, we measure the replay speedups
when instruments model developers’ code end-to-end for efficient hindsight logging—without
intervention from the developer.

Replay latencies are query dependent: they depend on the position of hindsight logging
statements in the code. In cases when the model developer probes only the outer loop
of training (as in line 13 of Figure 4.8), partial replay can provide latencies on the
order of minutes, even when model training takes many hours to execute. This
is achieved by skipping unnecessary recomputation with loop memoization (e.g. skipping
the nested training loop). The top subplot in Figure 4.7 shows outer-loop probe latencies
for each of our models. Note the improvements range from 7× to 1123×—with the more
significant improvements favoring the longer experiments (recall Figure 4.5). When the
model developer logs data post-hoc from the inner training loop (as in line 10 in Figure 4.8),
then that loop must be re-executed on replay, and it will not contribute to savings from loop
memoization. For these workloads, we will need to rely on parallelism to reduce latencies.
We measured the hindsight logging latencies when a full re-execution of model training was
necessary by running replay on multiple machines—this is shown in the bottom subplot in
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Figure 4.7: Replay latency, factored by the position of hindsight logging statements. The top
plot reports partial and parallel replay speedups when the model developer probes only the
outer main loop (as in line 13 of Figure 4.8). The bottom plot reports parallel-only replay
speedups when the model developer probes the inner training loop and a full re-execution is
needed (as in line 10 of Figure 4.8). Each workload uses as many machines, from a pool of
four machines, as will result in parallelism gains. Text labels show speedup factors relative
to naive re-execution.

Figure 4.7. Assuming no work or guidance from the model developer, beyond the insertion
of a couple hindsight logging statements, automatically parallelizes and conditionally
skips computation on the re-execution of model training (Subsection 4.3).

The parallel replay workloads used as many machines from the pool of 4 machines as
would provide further parallelism gains. Each machine has 4 GPUs. In the limit, every epoch
may re-execute in parallel, but the degree of parallelism may be increased even further by
checkpointing additional state, which we leave as future work.

Ideal Parallelism and Scale-out

Next, we compare the performance of parallel replay with checkpoint resume against parallel
replay with checkpoint pseudoresume (refer to Subsection 4.2). An expert model developer,
such as Judy, who does periodic checkpointing by-hand can ensure that the checkpoints are
complete with respect to training. Thus, they can achieve the checkpoint resume performance
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1 init_globals ()

2 checkpoint_resume(args , (net , optimizer ))

3 for epoch in range(args.start , args.stop):

4 if skipblock.step_into (...):

5 for batch in training_data:

6 predictions = net(batch.X)

7 avg_loss = loss(predictions , batch.y)

8 avg_loss.backward ()

9 optimizer.step()

10 tensorboard.add_histogram(net.params ())

11 skipblock.end(net , optimizer)

12 evaluate(net , test_data)

13 tensorboard.add_overlays(net , test_data)

Figure 4.8: Model training example with
checkpoint resume. Lines 10 and 13 cor-
respond to hindsight logging statements,
or logging statements added after train-
ing.

1 init_globals ()

2 for epoch in range(0, args.stop):

3 if skipblock.step_into (...

4 && epoch >= args.start):

5 for batch in training_data:

6 predictions = net(batch.X)

7 avg_loss = loss(predictions , batch.y)

8 avg_loss.backward ()

9 optimizer.step()

10 tensorboard.add_histogram(net.params ())

11 skipblock.end(net , optimizer)

12 lr_scheduler.step()

13 evaluate(net , test_data)

14 tensorboard.add_overlays(net , test_data)

Figure 4.9: Model training example with
checkpoint pseudoresume. Lines 10 and
14 correspond to hindsight logging state-
ments (added after training).

Figure 4.10: Parallel replay time of model training jobs (4x parallelism), as fraction of a serial
re-execution. RTE & CoLA only have 6 work partitions each, so parallelism on 4 GPUs leads
to at best 2/6 = 33% replay time.
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Figure 4.11: Replay time using GPUs from multiple P3.8xLarge machines, on experiment
RsNt. The “checkpoint resume” speedup relative to a sequential execution is denoted by the
text labels.

in Figures 4.10 and 5.11. On the other hand, when flor instruments training code on behalf
of the developer, it will rely on checkpoint pseudoresume, because as we discussed earlier, flor
cannot automatically ensure that its checkpoints are complete with respect to training, and
it assumes that the checkpoints are partial. Our results show that, although pseudoresuming
training adds initialization overhead, this overhead is amortized through the course of parallel
replay, such that there is a negligible difference between checkpoint resume and
checkpoint pseudoresume.

In Figure 4.10, we measured parallel replay performance, and observe that flor replay
achieves near-ideal parallelism. Ideal parallelism is denoted by the gray horizontal line
in each subplot (Figure 4.10). These results are possible because model training replay is
embarrassingly parallel given (complete or partial) checkpoints.

Because parallel workers do not need to communicate or coordinate, flor replay is es-
pecially well-suited for elastic and horizontally scalable cloud computing, in which it can
scale out to more GPUs at low marginal costs. To assess our scaling performance, in
Figure 5.11 we illustrate the incremental speedup as we add 4-GPU machines. We choose
RsNt as our experiment because it has 200 epochs to parallelize. The modest gap between
our results and ideal here is due to load balancing limitations: balancing 200 epochs over
16 parallel workers results in each worker doing up to 13 epochs of work. Consequently, the
maximum achievable speedup on 16 GPUs is 200

13
: 15.38×.
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4.5 Related Work

ML lifecycle management

The machine learning lifecycle encompasses many tasks, including model design and devel-
opment, training, validation, deployment, inference, and monitoring [46]. There is a wide
range of research and tooling being developed to support these many tasks. ML lifecycle
management is especially challenging because it involves many cycles of trial-and-error [99],
and its dependencies are hard to scope [168]. When something goes wrong, ML engineers
may need to rollback their model to an earlier version [123, 196], inspect old versions of the
training data [72, 79, 117], or audit the code that was used for training [122, 167]. Those
activities require the proper management, versioning, and provenance tracking of data, mod-
els, code, and other context; existing solutions provide some support [16, 62, 101, 105, 212].
Hindsight logging is a novel contribution in the lifecycle, and its minimalist, low-friction
interface makes it complementary to the prior work. flor is designed to be compatible with
any of the tools in the Python ecosystem. In terms of training libraries, we have focused
on PyTorch, but adopting another training library involves only encoding any side-effects in
the library’s API (Section 4.3).

Model Debugging

There are many tools and techniques for helping users understand the behavior of their
models [55, 113, 159, 160, 170], and for inspecting model internals [109, 155, 192, 194,
137]. These techniques only inspect models, so they are complementary to our work—which
focuses on the execution data generated while training the models. The value of execution
data is evidenced by widespread use of domain-specific loggers and visualization tools for
that data, including TensorBoard [53], MLflow Tracking [212], and WandB [17]. Hindsight
logging allows developers to keep their current logging practices and tools, and use them to
“query the past”.

Partial Materialization

Inspired by classical work on materialized views [27], a new body of work addresses par-
tial materialization of state in ML workflows, to aid in iterative tasks like debugging. As
representative examples, Columbus [214] accelerates the exploration of feature selection by
choosing to cache feature columns; Helix [207] focuses on choosing to cache and reuse the
outputs of black-box workflow steps; Mistique [194] focuses on techniques for compressing
model-related state and deciding whether to materialize or recompute. These systems intro-
duce bespoke languages for pre-declaring what to capture prior to computation; they also
provide custom query APIs to interrogate the results. Hindsight logging is complementary:
it enables post-hoc materialization in cases when it was not prespecified. Precisely because
flor does not dictate a new API, it is compatible with this prior work: users of these systems
(or any library with pre-declared annotations) can benefit from flor to add annotations in
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hindsight, and benefit from flor’s efficient replay to add materialized state. At a more mecha-
nistic level, some of the policies and mechanisms from this work (e.g., the model compression
of Mistique) could be adapted into hindsight logging context to further improve upon our
results.

Recovery and Replay Systems

Our techniques are inspired by literature on both database recovery and program replay.
Hindsight logging is a redo-only workload, and we use a “physiological” approach [57]: in our
view, a model training script is a complete logical log (in the WAL sense) of a model training
execution, and occasional physical checkpoints serve solely to speed up redo processing.
Parallel and selective redo recovery was studied as early as ARIES [127, 201]. Parallelism
in those techniques is data-partitioned and recovers the most recent consistent state; we
are in essence time-partitioned and recover all prior states. In that sense our work bears a
resemblance to multiversion storage schemes from POSTGRES [183] onward to more recent
efforts (e.g., [110, 134]). These systems focus on storing complete physical versions, which
is infeasible in our setting due to constraints on runtime overhead.

Numerous program record-replay systems have been used in the past for less data-oriented
problems. Jalangi is a system for dynamic program analysis that automatically records the
required state during normal processing, and enables high-fidelity selective replay [171]. This
is achieved by identifying and storing memory loads that may not be available at replay
time, using a “shadow memory” technique. Unlike flor, Jalangi replay has strict correctness
guarantees. flor uses side-effect analysis rather than shadow memory because the former is
lighter on overhead: in this sense, we risk replay anomalies to reduce record overhead and
replay latency.

Prior work on Output Deterministic Replay [5] makes a similar trade-off as we do. How-
ever that work pays for higher latencies to enable reproduction of nondeterministic bugs;
we can avoid that overhead in Python model-training scenarios because sources of non-
determinism may be captured, and model-training frameworks are increasingly designed for
reproducibility. An interesting line of work enables reverse replay with relatively high fi-
delity and without overhead by using memory dumps on a crash [35]—this impressive result
is made possible by the spatial locality of bugs in the vicinity of execution crashes; one
complication with model debugging is that training errors, such as over-fitting, may not
crash the program. We borrow the skipblock language construct from Chasins and Bodik’s
record-replay system for web scraping [25].

4.6 Conclusion

At every step of exploration, model developers routinely track and visualize time series data
to assess learning. Most model developers log training metrics such as the loss and accuracy
by default, but there soon arise important differences between what additional training data
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model developers log—with major implications for data management. In contrast to conser-
vative logging, optimistic logging is an agile and lazy practice especially well-suited to early
and unstructured stages of exploratory model development. In optimistic logging, model
developers log training metrics such as the loss and accuracy by default, and defer collec-
tion of more expensive data until analysis time, when they may restore it selectively with
hindsight logging. In the common case, or fast path, model developers get all the relevant
information from the training loss, and move on. In exceptional cases, however, training
replay may be necessary for post-hoc data restoration. In this chapter, we documented a
system of method for efficient record-replay of model training. Methodical hindsight logging
consists of: (i) periodic checkpointing, (ii) block memoization, and (iii) checkpoint resume.
To extend the benefits of methodical hindsight logging to novices and experts alike, we open
source the flor suite for hindsight logging, which includes tools for: (i) low-overhead back-
ground logging, (ii) adaptive periodic checkpointing, and (iii) end-to-end instrumentation
for efficient and fully automatic record-replay. We evaluated methodical hindsight logging
to show that it achieves the goal of efficient record-replay, and then compared the instru-
mentation library provided by flor against the methodical expert-tuned approach, and find
that the performance is comparable.
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Chapter 5

Change Over Time: Multiversion
Hindsight Logging for Continuous
Training

Production Machine Learning is a data-intensive process, involving continuous retraining of
multiple versions of models, many of which may be running in production at once. When
model performance does not meet expectations, Machine Learning Engineers must explore
and analyze numerous versions of code, logs and training data to identify root causes and
mitigate problems. Traditional software engineering tools fall short in this data-rich context.
FlorDB introduces multiversion hindsight logging, a form of acquisitional query processing
that allows engineers to use the most recent version’s logging statements to query past
versions’ logs, even when older versions logged different data. FlorDB provides a replay
query interface with accurate cost estimates to help the end-user refine their queries. Once
a replay query plan is confirmed, logging statements are propagated across code versions,
and the modified training scripts are replayed based on checkpoints from previous runs.
Finally, FlorDB presents a unified relational view of log history across versions, making it
easy to explore behavior across past code iterations. We present a performance evaluation on
diverse benchmarks confirming scalability and the ability to deliver real-time query responses,
leveraging query-based filtering and checkpoint-based parallelism for efficient replay.

5.1 Introduction

Model development for machine learning (ML) is an iterative, experimental and data-intensive
process that differs from traditional software engineering. The primary goal in model devel-
opment is to boost predictive performance, leading developers to adopt empirical methods
involving thorough logging and continuous updates to code and training data [208]. A re-
cent study highlighted the importance of high-speed experimentation in this field: as one
participant stated, “the most important thing to do is achieve scary high experimentation
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velocity” [176]. This approach, however, generates a significant data management challenge
for engineers, who must handle numerous iterations of code, datasets, and logs.

For this aggressively agile approach to be successful, machine learning engineers (MLEs)
must be able to retroactively examine rich and diverse data from past runs to guide ongoing
experiments [46]. One method to enable model developers to “query the past” is by generat-
ing and maintaining comprehensive experiment logs, but this is burdensome and unrealistic.
Ensuring comprehensive logs requires (a) foresight to add logging statements to the code for
all relevant metrics, without knowing which ones are relevant in advance, and (b) data man-
agement discipline for the many log files, code versions, training data and requisite metadata
that ensues.

In this chapter, we explore a different approach: we show it is possible to query the
past of machine learning experiments efficiently and on-demand, even in the absence of
experiment logs. We achieve this automatically on the developer’s behalf, by managing
model training checkpoints and the corresponding versions of code and data, and exposing
experimental history—both what was actually logged and what could have been logged—as
a virtual database that can be queried with familiar APIs like SQL or dataframe libraries.

Multiversion Hindsight Logging

Hindsight logging [48] is a lightweight record-replay technique that allows MLEs to add log-
ging statements to a long-running Python program after it executes, and then incrementally
replay parts of the program very quickly to generate the log outputs that would have emerged
had the statements been in the code originally. This technique encourages MLEs to operate
optimistically and flexibly with a minimal initial logging scheme, typically restricted to loss
and accuracy metrics during the training phase. Additional logging is added retroactively,
when evidence of issues arises (e.g., in deployment) and further key information is required
for debugging.

We realized the concept of hindsight logging in Flor, a record-replay system specifically
designed for model training [48]. Flor embodies two salient features: low-overhead check-
pointing, and low-latency replay from checkpoint. Flor checkpointing is adaptive and runs in
the background, facilitating low-overhead checkpointing, and limiting the computational re-
sources expended during model training. Simultaneously, the system ensures reduced latency
during replay by leveraging memoization and parallelism through checkpoint-resume.

While hindsight logging is a useful core technology, it is insufficient on its own to address
typical ML workflows, which invariably involve many training runs. MLEs, in their pursuit
of high-velocity experimentation, often wish to revisit not just the most recent run of an
experiment, but also prior runs that were performed using different versions of code and
data. This presents a complex challenge that goes beyond the capabilities of traditional
logging and debugging tools.

To tackle this challenge, in this chapter we introduce multiversion hindsight logging, and a
system called FlorDB that provides an efficient and easy-to-use solution. Multiversion hind-
sight logging is designed to track and manage multiple versions of ML experiments. In doing
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so, it provides a more comprehensive and effective solution than simple hindsight logging,
ensuring that MLEs can readily look back through their iterative development processes,
thereby better understanding and learning from their experimentation history. Achieving
these goals requires overcoming a set of technical challenges described below.

Contributions

FlorDB, a Multiversion Hindsight Logging system, provides a tabular query interface, treat-
ing every run of a version as a set of rows, and each logging statement as a “virtual column”.
FlorDB includes automatic version control through Git and is designed to interoperate with
multiple ML experiment management tools. In addressing the inherent challenges of imple-
menting Multiversion Hindsight Logging, FlorDB makes the following key contributions:

1. Historical Query Manager using a Unified Relational Model: FlorDB presents
MLEs with a simple metaphor of a relational view of queryable log results—whether
the log statements were previously materialized, or need to be generated on demand
via hindsight logging. The unified relational model allows users to issue ad-hoc queries
using familiar SQL or pandas, thereby simplifying the process of exploring historical
code executions .

2. Multiversion Hindsight Logging as Acquisitional Query Processing: FlorDB
extends the concept of Acquisitional Query Processing (AQP) [116] by seamlessly inte-
grating data acquisition into query execution through experiment replay. This frame-
work differs from traditional systems that query static datasets. Selected experimental
versions undergo sequential processing: logging statements are propagated to generate
required data, followed by the partial or parallel replay of modified training scripts.

3. Accurate Time Estimation for Query Refinement: FlorDB incorporates highly
accurate cost prediction for estimating the runtime of on-demand replay queries. By
leveraging runtime profiling statistics collected during the initial record phase, FlorDB
provides highly accurate (error ≤ 5%) replay cost estimates. This precision enables
developers to refine their queries before being bogged down by unnecessarily lengthy
execution times.

FlorDB’s integrated features provide machine learning engineers with a flexible relational
abstraction to capture and query the extended histories of their ML experiments. By har-
nessing the framework of FlorDB, MLEs can more quickly iterate from prior attempts to
successful models.

5.2 Scenario: Catastrophic Forgetting

For readers who are not MLEs, we motivate FlorDB with an example of catastrophic forget-
ting, a pressing ML issue that is especially problematic in production settings [176]. This
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Figure 5.1: Average training losses and F1-scores for Alice’s object detection model over
the last 6 months. The model undergoes continuous training, with batches of labeled data
added approximately twice a month. These batch dumps result in temporary fluctuations
in the loss. F1-round is the F1-score for roundabouts; F1-score is the global F1-score.

Figure 5.2: BDD100K dashcam images with bounding boxes. Top row contains sample
images used by Alice for fine-tuning on roundabouts; bottom row corresponds to images for
which the model fails to detect pedestrians.

phenomenon occurs when a model, upon being fine-tuned for a new task, loses its ability to
perform well on a previously learned task. This creates a balancing act between updating
the model (for new data or tasks) and maintaining its performance (for older tasks).
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Object Detection in Autonomous Vehicles

Imagine an MLE named Alice, responsible for the ongoing fine-tuning of an object detection
model used in autonomous vehicles. Operating in a dynamic environment, Alice frequently
updates the model with bi-weekly batches of labeled data. Her current focus is the specialized
task of object detection within traffic roundabouts. Standard metrics like loss functions and
F1-scores, shown in Figure 5.1, serve as her evaluation benchmarks.

However, Alice encounters an unexpected problem. A colleague, Bob, informs her of
persistent failures in pedestrian detection that have arisen in her new model versions. Upon
examining a representative set of images (refer to the bottom row of Figure 5.2), she verifies
the issue.

Responding to Performance Regressions

To combat this specific case of catastrophic forgetting in pedestrian detection, Alice employs
hindsight logging for two key actions:

• Model Rollback: Alice would like to add hindsight logging statements to calculate
the F1 score for pedestrian detection across previous model versions. This would allow
her to identify the latest point where the model still successfully detected pedestrians,
enabling an informed rollback.

• Alert Tuning: To prevent the issue from recurring, Alice wants to add alerting logic
that checks the value of the pedestrian detector F1 score. However she needs to avoid
“alert fatigue”, when too many spurious alerts are issued. To ensure that her altering is
calibrated, she again utilizes hindsight logging to ensure the F1 thresholds for alerting
is not triggered by valid runs.

Alice’s scenario underscores a significant limitation in current approaches to model ver-
sioning and logging. Given the expansive history of model versions, it is neither practical nor
efficient for Alice to manually revisit past iterations of training to insert additional logging
statements, replay training, and analyze the results. Multiversion hindsight logging provides
the high performance replay mechanisms for retroactive logging statement replay with auto-
mated back-propagation of those statements to previous versions of code for a comprehensive
evaluation. This enables Alice to retroactively analyze metrics (e.g. F1 scores specific to
pedestrian detection) across all historical versions.

5.3 User Experience & API

In this section, we explore how Alice leverages FlorDB1 for addressing performance regres-
sions in pedestrian detection, notably without pre-logged F1-scores for pedestrians. FlorDB

1Available on PyPI, installable via pip install flordb
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Figure 5.3: Alice’s PyTorch training with Flor API.
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projid tstamp filename hidden lr batch size seed f1 score f1 round f1 ped

roundabouts 2023-06-23 train.py 500 0.001 32 81 0.7022215 0.90000000 0.5192609
roundabouts 2023-06-24 train.py 500 0.001 32 63 0.7043473 0.88589064 0.5590010
roundabouts 2023-06-29 train.py 500 0.001 32 157 0.6912616 0.86693724 0.5482590
roundabouts 2023-06-30 train.py 500 0.001 32 42 0.6994197 0.89759576 0.5170792

. . . . . . . . . . . . . . . . . . . . . . . . . . .
roundabouts 2023-08-27 train.py 500 0.001 32 213 0.6982518 0.84088466 0.2392322
roundabouts 2023-08-28 train.py 500 0.001 32 12 0.6770945 0.90000000 0.2493409
roundabouts 2023-08-29 train.py 500 0.001 32 333 0.7026935 0.86367500 0.2493730
roundabouts 2023-08-30 train.py 500 0.001 32 99 0.6818689 0.88571969 0.2351695
roundabouts 2023-08-31 train.py 500 0.001 32 475 0.6995291 0.87202768 0.2285919
roundabouts 2023-09-01 train.py 500 0.001 32 198 0.6850775 0.88872464 0.2265961
roundabouts 2023-09-02 train.py 500 0.001 32 94 0.7200135 0.89775851 0.2485293
roundabouts 2023-09-03 train.py 500 0.001 32 37 0.7030796 0.86352228 0.2305369
roundabouts 2023-09-04 train.py 500 0.001 32 292 0.7084305 0.89572726 0.2373573
roundabouts 2023-09-05 train.py 500 0.001 32 70 0.7090070 0.87411934 0.2364624
roundabouts 2023-09-06 train.py 500 0.001 32 553 0.6865721 0.84508553 0.2418998

Figure 5.4: Alice’s flor.dataframe before and after hindsight logging (black and green text,
respectively).

enables her to effectively identify and revert to a more efficient model version, and fine-tune
alert thresholds. Our discussion underscores the FlorDB API’s role in simplifying the ML
workflow, facilitating rapid iteration and in-depth analysis for users with varied expertise.
We illustrate the API’s functionality in key activities such as logging, parameter manage-
ment, and hindsight logging for model refinement. Key API features include:

• flor.log(name: str, value: T) -> T

Logs a given value with the specified name. Useful for tracking variables or parameters
during an experiment run.

• flor.arg(name: str, default: T) -> T

Reads a value from the command line if provided; else uses the default value. During
replay, retrieves logged values from history. Good for setting configuration parameters
and allowing for quick adjustments via the command line.

• flor.loop(name:str, vals:Iterable[T]) -> Iterable[T]

Functions as a Python generator that maintains global state between iterations. Useful
for “indexing” replay and coordinating checkpoints.

• flor.checkpointing(**kwargs) -> ContextManager[None]

Scopes the set of objects to be checkpointed, such as a model or optimizer, via a Python
context manager. Checkpointing is done adaptively at flor.loop iteration boundaries,
based on the checkpoint size and the loop iteration time [48].

• flor.dataframe(*args) -> pd.DataFrame

Produces a Pandas DataFrame of FlorDB log information with a column corresponding
to each argument in *args. The DataFrame also contains “dimension” columns, such
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as the project id, version id, timestamp, and so on. It is the default view in FlorDB
for querying log data and selecting model checkpoints to load, using either Pandas or
DataFrame-compatible SQL engines like DuckDB [150].

Running Experiments

Returning to our scenario, Alice executes her model training via the following command that
starts her train.py script with specific hyper-parameters:

python train.py --kwargs lr=0.001 batch_size=32

Alice’s script (Figure 5.3) uses native Python functionality to run her ML experiment.
Hyper-parameters such as learning rate and batch size are passed in using standard command-
line arguments, which makes hindsight logging seamless and capable of interoperating with
other tools typically used in the ML workflow.

Args & Logs

In the context of running experiments, Alice utilizes the Flor API to enhance configurability
and traceability. The flor.arg function (lines 5-8 in Figure 5.3) is instrumental in param-
eterizing her experiments, allowing her to define hyper-parameters such as hidden_size,
learning_rate, batch_size, and seed either via the command-line or by utilizing default
values specified within the script. This ensures adaptability and reproducibility of her ex-
periment’s configuration. In addition, flor.log is employed (line 20 in Figure 5.3) to record
the experiment’s loss metrics and associated metadata at each optimizer step. The logging
of the loss captures the dynamics of the model’s performance, enabling Alice to monitor the
training process.

Checkpointing on Loop Boundaries

Alice’s code defines the set of objects to be checkpointed using flor.checkpointing (line 11);
within that context, Alice calls flor.loop (lines 12-13) to use the checkpoints and control
record-replay. After each iteration of the outermost loop, which here corresponds to the
completion of an “epoch,” FlorDB assesses whether to checkpoint. This decision is based on
a balance between the checkpoint’s size and the iteration’s duration, adhering to a strategy
from prior work [48]. Checkpoints are created adaptively, approximately once per epoch.

Automatically commit changes to Git

At the end of the experiment, FlorDB writes a JSON logfile containing the execution’s
sequence of log records to the experiment repository, and commits all changes. This is so
future users of the repository can view historical logs and arguments, and better reproduce
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the experiments. By committing after every run, Flor ensures historical versions of code are
later available for hindsight logging.

Experiment Analysis and Hindsight Logging

Alice reviews FlorDB’s flor.dataframe output, comparing F1-scores across datasets (see
Figure 5.4). After receiving insights from her colleague, Alice shifts her analysis focus to
the pedestrian F1-scores. By editing train.py to include a new flor.log for f1 ped, Alice
leverages hindsight logging to populate this metric retroactively. She invokes the replay
feature via CLI as follows:

python -m flor replay f1_ped "tstamp >= ’2023-06-23’"

This command extends f1 ped logging to any past experiments dated June 23, 2023 or later,
in preparation for subsequent analysis.

Upon initiating the replay command, Alice is shown a schedule of experiments slated for
replay and must confirm to proceed. After receiving confirmation, Flor prepares to replay
the selected prior runs: it restores their versions from github, adds the new f1 ped logging
statement to each, and executes all versions using the configuration variable values originally
logged via flor.arg. Notably, during this replay, Flor’s hindsight logging functionality can
bypass the main loop (lines 12-22 in Figure 5.3) to directly load the model’s final state, since
the f1 ped statement is computed post-training (line 25 in Figure 5.3).

Once replay is finished, Alice views the updated results with the following command:

cols = [’hidden ’, ’lr’, ’batch_size ’, ’seed’]

cols += [’f1_score ’, ’f1_round ’, ’f1_ped ’]

flor.dataframe (*cols)

This command now generates a table including the f1 ped metric (green text in Figure 5.4)
for entries dated June 23, 2023, or later. This new data reveals a previously unnoticed
performance regression in pedestrian classifications, as Bob had indicated (f1 ped values in
the range tstamp ≥ 08-27).

To further refine the analysis and calibrate alert thresholds, Alice updates the validation
function to add a new flor.log statement as part of an assertion that pedestrian F1-scores
never fall below some threshold. For retroactive application, she again employs FlorDB’s
replay feature:

python -m flor replay f1_alert \

"tstamp >= ’2023-06-23’ and tstamp < ’2023-07-01’"

This process selectively executes each epoch’s validation logic (lines 21-22), avoiding re-
training (lines 13-20) by loading final epoch states from checkpoints. FlorDB’s control via
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Figure 5.5: FlorDB architecture diagram with subsection headers in parentheses.

flor.loop facilitates this selective process: the outer loop cycles through epochs using check-
points, while the inner loop is bypassed.

5.4 System Architecture

The design of FlorDB aims to provide a unified platform for the management of code,
checkpoints, logs, and their evolution over time (Figure 5.5). FlorDB maintains a cross-
referenced relational database that interconnects code versions in git, large files in your
preferred storage solution (e.g. an S3 bucket), and metadata stored in the database. This
section outlines the mechanisms FlorDB uses for executing experiments and replaying them
for hindsight logging, highlighting how it stores, manages and tracks the data and metadata
of model training.

Storage and Data Layout

As shown in the bottom of Figure 5.5, FlorDB’s storage architecture consists of the following
three units:

• Git Repository: For code version control, FlorDB uses git to capture the state of
the working directory and JSON log files post-execution. FlorDB and the user commit
to the same Git repository, but FlorDB auto-commits to a dedicated branch for added
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safety — the user may treat that branch as any other branch. This facilitates a
comprehensive tracking of code versions and more transparent sharing of execution
metadata, enhancing experiment reproducibility and analysis.

• Relational Database: Following execution and logging to JSON, FlorDB unpacks
and normalizes data from the JSON logs to populate a relational database (which
is pluggable; FlorDB uses SQLite by default). This process transforms the semi-
structured JSON data into a structured format, suitable for efficient querying and
analysis.

• Object Storage: This component is responsible for storing large files and checkpoints,
integrating with the database system to offer scalable and flexible storage solutions,
whether locally or in the cloud.

This heterogeneous approach to storage ensures that FlorDB is well-equipped to manage
the complexities of code versioning, data checkpointing, and metadata storage.

Serialization Layer

The API utilizes a serialization layer to prepare objects for storage. This layer differentiates
between object types — PyTorch objects are serialized using native PyTorch functionality,
while cloudpickle provides a general-purpose serialization solution. For in-depth information
on how fork and copy-on-write are used for background serialization, the reader is referred
to a technical report [108].

Relational Schema

The relational schema of FlorDB is a structured and normalized view over the JSON logs.
As depicted in Figure 5.6, the logs table is central to this schema, managing the data and
relevant metadata of experiments. The schema for the logs table includes:

• projid: Basename of the root-level working directory.

• tstamp: Datetime marking when the run was started.

• filename: Name of the source file producing the log entry.

• ctx id: An integer acting as a foreign key to associate each log entry with a related
entry in the loops table.

• value name: text descriptor for the variable being logged.

• value: The actual data logged, stored as text.

• value type: Integer classifying the type of data logged.
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Complementing the logs table, the loops table tracks the context of the execution flow
(the call stack) as follows:

• ctx id: Unique identifier for a specific loop context.

• parent ctx id: References the parent context in nested loops.

• loop name: The name or identifier of the loop.

• loop entries: Number of entries or iterations within the loop.

• loop iteration: Specific iteration count within a loop.

The “unpack” process involves converting logging objects from JSON format into the
relational structure of the database. Each JSON log record is parsed. The data is then
mapped to the relevant columns in both the logs and loops tables. In the case of a
null loop indicating a top-level log entry, the log record is mapped solely within the logs

table; in cases of nested loops, the JSON object encapsulates the hierarchical structure of
an experiment’s iterations, and the corresponding log record is reflected in both logs and
loops tables.

Pivoted Views

The flor.dataframe presents the content of the database in a single-table view (Figure 5.7).
This view is generated from the relational schema (Figure 5.6) by joining the logs ta-
ble with additional dimensions of data, such as the loops table, which are essential for
capturing the full context of each experimental run. This is followed by a series of trans-
formations that pivot the combined data, turning relational values (e.g., logs.value name,
loops.loop name) into column headers, to create a wide-format table where each unique
loop and log entry name becomes a distinct column in the DataFrame (e.g. Figure 5.4).

Domain Mapping

We use the flor.dataframe as the default Flor view because of its easy-to-understand
application-level semantics. Specifically:

• Running Experiments → Adding Rows: The execution of a new experiment
results in the addition of rows to flor.dataframe. Each row in the DataFrame signifies
a discrete iteration within an experiment, collating related data such as metrics, hyper-
parameters, and state.

• Adding Logging Statements → Adding Virtual Columns: The inclusion of
logging statements in the source code induces FlorDB to add virtual columns to the
view produced by flor.dataframe. These virtual columns can then be referenced in
subsequent queries like any other column in flor.dataframe.
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loops

ctx id: integer
parent ctx id: integer
loop name: text
loop entries: integer
loop iteration: integer

logs

projid: text
tstamp: datetime
filename: text
ctx id: integer
value name: text
value: text
value type: integer

ts2vid

ts start: datetime
vid: text
ts end: datetime

git

vid: text
filename: text
parent vid: text
contents: text

obj store

projid: text
tstamp: datetime
filename: text
ctx id: integer
value name: text
contents: blob

Figure 5.6: Data Model Diagram in Crow’s Foot Notation. Tables with a white background
are basic; those in gray are virtual.

• Replay from Checkpoint → Backfilling Nulls: Replaying an experiment from
checkpoints corresponds to the backfilling of null values in the flor.dataframe view.
This capability is critical to achieving the hindsight logging abstraction that FlorDB
supports.

The ML developer can envision the flor.dataframe as a universal relational view over
the columns they have selected, where the rows represent individual experiment runs or,
in the presence of loops, iterations within those runs. The columns in the flor.dataframe

view are potentially infinite; they can be defined post-hoc and subsequently populated using
replay from a checkpoint. This fluidity in defining and back-filling columns and data allows
a relational model to adapt to an experimenter’s evolving analytical needs.
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def dataframe(conn , *args):

dataframes = []

loops = pd.read_sql("SELECT * FROM loops", conn)

for val_name in args:

logs = pd.read_sql(f"""

SELECT * FROM logs

WHERE value_name = "{ val_name }"

""", conn)

logs = logs.rename(columns ={"value": value_name })

# Unroll loop context

while logs["ctx_id"].notna ().any():

# Iterate until fixpoint

logs = pd.merge(left=loops , right=logs ,

how="inner", on=["ctx_id"])

ln = logs["loop_name"]. unique ()

logs = logs.drop(columns =["loop_name", loop_entries ])

logs = logs.rename(columns ={"loop_iteration": ln [0]})

logs["ctx_id"] = logs["p_ctx_id"]

logs = logs.drop(columns =["p_ctx_id"])

logs = logs.drop(columns =["ctx_id"])

dataframes.append(logs)

all_joined = reduce(outer_join_on_common_columns , dataframes)

cols = [c for c in all_joined.columns if c not in args]

return all_joined[cols + list(args)]

Figure 5.7: Python code implementing data reshaping for flor.dataframe. This figure illus-
trates the sequence of operations—merging, transforming, and pivoting—used to construct
the experiment view within FlorDB.

5.5 Acquisitional Query Processing

FlorDB extends the concept of Acquisitional Query Processing (AQP) [116], which involves
efficient data acquisition during query execution. AQP was originally presented in the con-
text of live sensing; here we acquire data by re-running training code from checkpoints.
The process begins at the query construction stage, where criteria for selecting experimental
versions are established (Section 5.5). Each selected version has logging statements propa-
gated to it in order to generate the required data (Section 5.5). Subsequently, a modified
training script is executed with a --replay_flor flag, enabling replay query operators to
perform partial or parallel model training replay (Section 5.5). In this section, we describe
multiversion hindsight logging via the sequence of mechanisms by which FlorDB integrates
data acquisition into query execution. This also paves the way for comprehensive post-hoc
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analysis and continuous model refinement.

Query Parsing

The flor replay operation begins with query construction, a step that determines the
scope and precision of the retrospective analysis. This stage is crucial for identifying the
code versions to be replayed and for setting the level of detail in the logging process. The
query is formulated using the following command structure:

python -m flor replay [-h] VARS [where_clause]

The components of the query include:

• VARS: This argument specifies the logging variables that the user wishes to gener-
ate during the replay. These variables correspond to the log statements that will be
regenerated across different code versions.

• where clause: This optional argument acts as a filter to refine the replay’s scope. It
can be used to constrain the replay to certain conditions, such as experiments conducted
within a specific timeframe or parameter set. The where clause is evaluated against
a flor.dataframe prior to replay.

By judiciously crafting the query, users can ensure that the replay operation is both
focused on the necessary aspects of the experiment and efficient in terms of computational
resource usage.

Empirical Cost Prediction & Plan Execution

Machine Learning (ML) training scripts can be long-running, and even selective replay can
be time-consuming. Therefore, ML engineers need to know how long a replay will take, to
decide whether further query refinement is needed. Traditional query cost estimation is a
notoriously hard problem, often exhibiting orders of magnitude errors in estimation [102].
By contrast, we can estimate query runtime for replay executions extremely accurately (Fig-
ure 5.8). This is because FlorDB profiles runtime information during the record phase. When
initiating a Flor replay, these runtime statistics are queried using the flor.dataframe API
call. This allows us to reliably predict the time required for replay, enabling users to tailor
their queries for efficiency. We categorize the cost estimation into four levels:

1. Prefix Scan: Executes statements before the main loop, logging preliminary setup
operations (e.g., lines 1-10 in Figure 5.3. This level is useful when examining data
preparation and featurization.

2. Suffix Scan: Executes the initial setup code (as in prefix scan), loads the end state of
the outermost loop from a checkpoint, and runs the final script segments (lines 23-EOF
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Figure 5.8: Time estimation error per replay operator; micro-benchmarks correspond to a
2-layer neural network.

in Figure 5.3). This level provides a more detailed view, useful when examining the
results of training (e.g. accuracy, recall, F1-scores).

3. Validation Scan. Steps through the main training loop to execute model validation
logic (lines 21-22 in Figure 5.3)., loading checkpoints once per epoch but skipping the
nested training loop. This level is useful for examining the validation process in detail.

4. Range Scan: Runs the training loop in depth (lines 12-22 in Figure 5.3) over a selected
range to capture nested logging statements — used for the most granular analyses (e.g.
of gradients). A range scan running from epoch 0 to N is considered a full scan. To
achieve replay parallelism, FlorDB executes range scans over non-overlapping intervals.

Plan Execution

Once the replay’s depth level has been determined by a static analysis of the training script,
and the end-user has accepted the replay plan, a replay subprocess is invoked for each version
in the plan, with CLI flags and arguments formatted as strings parameterizing the replay’s
depth level. Flor replay arguments can be used to break out of the execution in a prefix
scan upon encountering the first flor.loop or set to skip the first flor.loop loading its end
checkpoint as part of a suffix scan; or set to step into the the first flor.loop as part of a
validation scan, and so on. As shown above, validation scans and range scans control access
to the outermost loop, and the nested loop, a key difference being that in validation scan
the nested loop is skipped but not in the range scan.
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Logging Statement Propagation

After selecting the versions and log variables for replay, but before the execution of individual
Flor replay subprocesses, FlorDB adapts the code from the git repository to incorporate new
log statements. This involves propagating log statements from a newer version Y to an older
version X (X < Y ). The core challenge here is one of code-block alignment: we must identify
the most appropriate line in version X to insert a logging statement that was originally in
line L of version Y . Code alignment is a fundamental task in software engineering, essential
for understanding and managing changes in source files [69, 96]. It allows developers to track
modifications and maintain consistency across different versions of a file. In this context,
GumTree emerges as a state-of-the-art technique for code block alignment.

Why GumTree is Sufficient for Our Use Case.

FlorDB’s code alignment uses GumTree [43] for aligning code blocks, aiding in the accu-
rate insertion of log statements across versions. The flor.loop() function establishes stable
anchor points, with main and nested training loops typically serving as consistent markers
across versions. This consistency, enhanced by GumTree’s alignment capabilities, ensures
accurate log statement propagation. While GumTree is capable of aligning code blocks with-
out Flor API anchors, the presence of these static loop identifiers all but ensures its efficiency
and accuracy: in all instances of logging statement propagation evaluated in Section 5.6, this
combined approach was successful.

To assess the effectiveness of these techniques, we conducted an evaluation focusing on
accuracy and comparing GumTree with the Myers algorithm [132, 43]. The evaluation in-
cluded synthetic benchmarks, randomly mutated PyTorch programs, and ecological bench-
marks from GitHub. Our findings, detailed in a technical report [37], show GumTree’s
superior performance, especially in handling code refactoring and variable renaming.

5.6 Evaluation

This evaluation aims to demonstrate the key strengths of FlorDB: its ability to efficiently han-
dle multiversion hindsight logging and its potential for significant speed-ups during replay.
We showcase FlorDB’s versatility by applying it to a diverse range of model architectures,

Table 5.1: Computer vision and NLP benchmarks used in our evaluation.

Model Model Size Data Data Size Objective Evaluation Application

ResNet-152 [61] 242 MB ImageNet-1k [164] 156 GB image classification accuracy computer vision
BERT [40] 440 MB Wikipedia [45] 40.8 GB masked language modeling accuracy natural language processing
GPT-2 [152] 548 MB Wikipedia [45] 40.8 GB text generation perplexity natural language processing
LayoutLMv3 [73] 501 MB FUNSD [59] 36 MB form understanding F1-score document intelligence
DETR [23] 167 MB CPPE-5 [36] 234 MB object detection µ-precision computer vision
TAPAS [63] 443 MB WTQ [143] 429 MB table question answering accuracy document intelligence
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(a) ResNet-152 (b) BERT (c) GPT-2

(d) LayoutLMV3 (e) DETR (f) Tapas

Figure 5.9: Comparative visualization of processing times for different Flor record-replay
operations against the number of experiment versions. Note the logarithmic scale on the
y-axis, emphasizing the time disparities between different operations.

as detailed in Table 5.1. This table summarizes each model’s characteristics, evaluation
metrics, and real-world applications. Building upon our prior work that established Flor’s
low-overhead recording and parallel replay capabilities for single versions [48], this study
focuses on FlorDB’s ability to generalize and scale effectively across multiple versions. Our
evaluation delves into two key areas: scalability and responsiveness. FlorDB’s ability to
handle growing numbers of model versions is assessed, ensuring linear scaling without per-
formance degradation or cross-version interference. Experiments were run on our own server
with 4 CPU cores (11th Gen Intel Core i7), 32 GB of RAM, 1 TB SSD, and a GeForce RTX
3070 GPU with 8GB GDDR6.

Efficient Linear Scaling across Versions

To assess FlorDB’s ability to manage multiversion hindsight logging without cross-version
interference, we evaluated its performance across different model architectures. For each
model architecture, we measured the runtime for the following modes of execution (as defined
in Section 5.5):

• record: First run of model training; generates checkpoints.
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Figure 5.10: Storage Requirements

• replay-prefix: query runs a prefix scan over all versions.

• replay-suffix: query runs a suffix scan over all versions.

• replay-validation: query runs a validation scan over all versions.

Our findings, depicted in Figure 5.9, reveal that FlorDB’s time complexity scales linearly
with an increasing number of versions, as demonstrated by the log-scale on the y-axis. This
evidence of linear scalability, devoid of interaction effects or incremental overhead, validates
FlorDB’s ability to handle both large models and big datasets.

Interactive Response Times

In evaluating the impact of different replay operations on system response times (see orange
lines in Figure 5.9), the replay-prefix operation maintains the fastest processing times, con-
sistently delivering results in under 10 seconds. Even as the number of versions increases, the
processing time for replay-prefix remains the most stable, ensuring a responsive user expe-
rience. In contrast, replay-suffix and replay-validation operations exhibit longer processing
times as the version count rises, with replay-validation times increasing more steeply. One
factor is the amount of time it takes to evaluate the model. While replay-suffix may still offer
interactive speeds at lower version counts, replay-validation quickly surpasses the interactive
threshold: in scenarios where immediate feedback is crucial, users can refine the selectivity
of their queries for faster response times (as discussed in Section 5.5).
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Storage Requirements

Despite frequent commits across numerous versions, Git repositories remain remarkably com-
pact, typically under 5MB (see right pane of Figure 5.10). In contrast, checkpoints for large
models stored on shared storage can easily consume hundreds of gigabytes (see orange bars
in the left pane). To address potential local storage depletion, FlorDB’s default approach
is to spool least-recently-used checkpoints to a cloud object store like S32. If this is not
feasible, FlorDB may retain a subset of checkpoint per version—as few as just two (see green
bars in Figure 5.10)—evicting the rest. FlorDB retains checkpoints that are evenly spaced
across iterations. This ensures balanced work partitions and avoids stragglers that would
hinder replay parallelism. Importantly, even retaining just two checkpoints (one mid-run,
one at completion) offers significant benefits: i) the final checkpoint enables fast restores for
replay-prefix and replay-suffix queries, and the mid-run checkpoint enables 2x faster replay
execution compared to the original run.

Speed-up through Selectivity & Scale-out

As discussed in the previous section, multiversion hindsight logging queries may be long-
running tasks. In order to maintain interactive response times, it may be desirable to refine
the query to be more selective (Section 5.5), or to allocate more resources (e.g., GPUs)
and run the query in parallel. In some cases, a developer may be willing to pay the cost
of generating extensive hindsight log messages from the inner loop of their training script.
In this case each iteration of the inner loop must be replayed from checkpoint, and logs
generated; a compute- and data-intensive task. In these cases, parallelism comes into play:
because each loop iteration is based on a separate checkpoint, we can replay as many loop
iterations as possible at once with embarrassing parallelism. We refer the reader to the
experimental results in our earlier work measuring this effect [48]. To address the potential
for long query times and the desire for selectivity or resource scaling, let’s now examine the
bottlenecks involved and the cost/performance trade-offs associated with resource use.

Bottleneck Analysis — length-1 range scan

Figure 5.11 (top) depicts the runtime of a range scan over a single epoch. Assuming un-
bounded resources (e.g. in an idealized cloud), every version would be replayed in its own
machine. In this ideal scenario, a query’s bottleneck would be the time it takes for a sin-
gle Flor replay operation to finish. Replay-prefix, replay-suffix, and replay-validation would
each finish in about 100 seconds or less (Figure 5.9). In contrast, the cost of a range scan,
even for a single epoch, is higher. This operation requires stepping into the nested training
loop, performing a forward pass over the neural network, and back-propagating gradients.
Consequently, the range scan emerges as a bottleneck operator. In Figure 5.11 we evaluate
its runtime on a single epoch; running times for more epochs or versions can be linearly

2Storing 100 GB of data in S3 costs approximately $2.30 a month.
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Figure 5.11: Comparison of runtime (top) vs rental cost (bot).
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extrapolated. This is due to the ideal parallelism of replay-from-checkpoint (confirmed by
prior studies [48]) and the embarrassing parallelism of replay across versions.

Cost and Performance Trade-offs

Our bottleneck analysis assumed an ideal of unbounded resources. While parallelism can
significantly accelerate computation, it comes with increased resource consumption and fi-
nancial costs. Figure 5.11 (bottom) compares the estimated cost per epoch across CPU and
GPU platforms. Costs are based on AWS EC2 instance rental fees, with and without GPUs,
factoring in execution time. GPUs provide order-of-magnitude superior computational speed
but incur order-of-magnitude higher expenses. CPUs have the added benefit that they can
be elastically allocated en masse. This can improve throughput across many versions or
epochs, but as the bottleneck analysis indicates, there are limits to response times when
range scans are used.

5.7 Related Work

ModelDB [197] is a system designed to store, version, and manage ML models effectively.
Similar systems include Weights & Biases [17], VisTrails [15], and others [194, 21, 93].
ModelDB allows users to log complete model metadata, including hyper-parameters, data
splits, evaluation metrics, and the final model file. Moreover, it provides the ability to
query over this metadata, making it an effective tool for analysis and comparison of different
ML models and experiment runs. However, the focus of ModelDB is mainly on managing
the straightforward metadata of deployed models, and it does not provide any features for
hindsight logging. ModelDB’s focus on metadata is orthogonal to FlorDB’s multiversion
hindsight logging facilities; the two systems could be used in concert or individually.

MLFlow [212] is an open-source platform that helps manage the end-to-end machine
learning lifecycle, including experimentation, reproducibility, and deployment. It provides
functionalities to log parameters, versioned code, metrics, and output artifacts from each run
and later query them. Its modular design allows it to be used with any existing ML library
and development process. Similar systems include TFX [16], Airflow [11], Helix [206], and
others [9, 54]. Like ModelDB, MLFlow has no support for hindsight logging or versioned
log management. However, also like ModelDB, MLFlow and FlorDB can be fruitfully used
together or separately.

FlorDB’s query model builds on the notion of Acquisitional Query Processing (AQP) [116].
Traditional query processing assumes that data is pre-stored and ready for querying; AQP
introduced the concept of efficiently acquiring data as a part of the query process. The idea
is particularly useful for applications like sensor networks, where querying can be expensive
in terms of energy or computational resources. FlorDB’s multiversion hindsight logging also
uses a form of AQP, where queries are not just made over pre-stored data, but also consider
acquiring data through experiment replay. Unlike the original work on AQP, our acquisi-
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tion task—i.e., multiversion hindsight logging—raises unique technical challenges of its own,
forming the bulk of our work.

R3 [104], with its record-replay-retroaction mechanism, is primarily focused on database
queries and transactions, capturing and replaying states at the database level. This approach
is efficient for debugging with low-overhead recording and storage-efficient replay. While R3
aims to enhance the debugging and testing capabilities of database-backed applications,
FlorDB addresses the specific needs of machine learning model development and analysis
with its hindsight logging and query processing features.

5.8 Conclusion

This chapter introduces FlorDB, a system designed to address the unique challenges faced by
machine learning engineers (MLEs) in managing the iterative, data-rich model development
process. FlorDB’s approach to multiversion hindsight logging, a record-replay technique,
allows MLEs to add logging statements post-hoc, thereby enabling MLEs to “query the
past.” FlorDB’s key contributions include a unified relational model for querying log results,
automatic propagation of new logging statements across versions as part of acquisitional
query processing, and a highly accurate empirical cost predictor for replay query refinement.
These features streamline the ML experimentation process, enabling more efficient analysis
and faster iteration. We evaluate the system’s performance across various computer vision
and NLP benchmarks, demonstrating the scalability of FlorDB across multiple versions.
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Chapter 6

Context is All You Need: Closing the
Loop in the Machine Learning
Lifecycle

In the dynamic field of Artificial Intelligence (AI) and Machine Learning (ML), effective
software engineering remains a significant challenge, particularly in the maintenance of long-
running intelligent applications. Traditional software engineering systems often struggle with
the complexities introduced by the integration of code, data, and configuration parameters
into predictive models, leading to issues with context conservation throughout the AI/ML
development lifecycle. This chapter addresses these challenges by proposing a streamlined
ML lifecycle that minimizes manual interventions and automates key processes. Essential
elements include robust data infrastructure, automated model training and evaluation, con-
tinuous integration and deployment (CI/CD), and effective monitoring and feedback loops.

In this chapter, we extend FlorDB to manage the complete “ABC” of context [62],
making it a comprehensive context management system for the Machine Learning lifecycle.
By managing a full range of contextual metadata, FlorDB enables efficient workflow and
streamlined operations, enhancing the scalability and robustness of ML solutions. FlorDB
simplifies the workflow by focusing on what developers need most: logging and dataframe
queries. These fundamental tools are all that developers require to effectively manage and
interact with their ML projects. By providing a robust logging mechanism and powerful
dataframe query capabilities, FlorDB ensures that developers can easily track, retrieve, and
analyze the context of their ML experiments and deployments without additional overhead.

Traditional context management often emphasizes a “metadata first” approach, which
can introduce significant friction for developers. FlorDB reduces this friction through hind-
sight logging, allowing developers to add and refine metadata after the fact. This “metadata
later” approach provides flexibility and ease of use, enabling developers to focus on building
and improving models without being burdened by the immediate need to meticulously doc-
ument every step up front. By supporting hindsight logging, FlorDB offers a more intuitive
and developer-friendly way to manage contextual metadata, thereby enhancing productivity
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and lowering friction for developers. Through a series of use-cases, we demonstrate how
FlorDB facilitates high-velocity validation loops, reliable experimentation, and improved ef-
ficiency for both individual developers and small teams. Our contributions highlight the
importance of context management in closing the loop in the ML lifecycle.

6.1 Introduction

In the rapidly evolving field of Artificial Intelligence (AI) and Machine Learning (ML), the
software engineering and maintenance of intelligent applications has emerged as an enduring
challenge [168]. The blending of code, data, and configuration parameters into predictive
models blurs traditional abstraction boundaries, straining conventional software engineering
systems that rely on stricter separation of concerns and narrower problem scopes (e.g. “git is
for source code, not data”). Furthermore, the complexity introduced by this conglomeration
limits the ability of team members to effectively partition and manage distinct components
of the project [177]. We argue that these challenges — and countless others [46] — primarily
stem from either the absence of context or inadequate context conservation throughout the
AI/ML application development lifecycle.

Streamlining the ML Lifecycle

The ML lifecycle involves several interconnected stages, from problem formulation and data
collection to model deployment and maintenance. Optimizing this lifecycle requires address-
ing technical challenges at each stage and integrating processes and tools to reduce friction
and speed up development. A streamlined ML lifecycle minimizes manual interventions,
automates repetitive tasks, and ensures smooth data flow through the pipeline, resulting in
faster iterations, more robust models, and increased value generation [177]. Key elements
of this streamlined process include: i) building and maintaining robust data infrastructure;
ii) automating model training and evaluation; iii) continuous integration and multi-stage
deployment (CI/CD); and iv) monitoring and merging feedback loops. Effective streamlin-
ing enables organizations to maintain intelligent decision-based applications with minimal
human intervention, improving efficiency, reducing operational overhead, and enhancing the
scalability and robustness of ML solutions.

One of the persistent challenges in software engineering, particularly within the ML
domain, is balancing agility with the rigor of “strong typing” or “metadata first” approaches.
Agility requires flexibility and speed, allowing developers to iterate quickly and respond
to changing requirements. In contrast, “strong typing” emphasizes structure and strict
adherence to predefined metadata, which can slow down the development process but ensures
consistency and reliability. FlorDB’s approach substantially ameliorates this tension in two
ways:

1. Low-Friction Metadata via Log Statements and Dataframes Our system al-
lows developers to log and analyze metadata in a standard, open, low-friction manner.
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Metadata can be captured naturally — as easily as adding a print statement —
through log statements as part of the development workflow, without imposing sig-
nificant overhead or disrupting the developers’ focus on coding. Subsequently, these
log statements can be read back directly as tabular data using the standard Python
dataframe library, Pandas, without any need for data wrangling.

2. Hindsight Logging for “Metadata on Demand” Thanks to our hindsight logging
mechanism, we eliminate the need for “metadata first” altogether. Developers can add
or refine metadata post-hoc, on demand. This means that metadata can be captured
and integrated long after the initial development phase, allowing for flexibility and
adaptability without sacrificing the benefits of structured and comprehensive metadata
management. By supporting hindsight logging, we offer a more intuitive and developer-
friendly way to manage contextual metadata. This “metadata later” approach ensures
that developers can focus on agility and rapid iteration while still maintaining the
benefits of structured metadata management, reducing cognitive load and enhancing
productivity.

FlorDB & The ABCs of Context

The ML lifecycle is characterized by numerous fast-changing components, where it is easy to
lose the thread of essential metadata — what we term context. Context is metadata broadly
conceived: it represents a comprehensive framework that captures the nature, origins, evo-
lution, and functional significance of data and digital artifacts within an organization. Our
conceptualization of context is drawn from the work of Hellerstein et al. (2017) [62], who
proposed it as an extension of traditional database metadata. They introduced the “ABCs
of Context” mnemonic1, which we find particularly useful for understanding and navigating
the complex landscape of ML metadata. This framework provides a structured approach
to capturing and managing the rich tapestry of information that underpins real-world ML
applications. The ABCs of Context are as follows:

A. Application Context (What): This is core information that describes what raw
bits an application sees and interprets for its use. Most comprehensively, this involves
any information that could be logged; i.e., the value of arbitrary expressions at runtime.

B. Build Context (How): This is information about how data is created and used: e.g.,
dependency management for distribution and building across different machines and
by different people; provenance and lineage; routes, pathways, or branches in pipelines;
and flow of control and data.

1The “B” in [62] stands for “Behavior”; we change it to “Build” because we think it more accurately
describes the nature of metadata managed by FlorDB. Behavior implies human-human interactions, most
of which occurs outside of Python, whereas Build context is contained in build files and can be probed by
profiling tools and syscalls.
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C. Change Context (When): This is information about the version history of data,
code, configuration parameters, and associated information, including changes over
time to both structure and content.

Despite the critical nature of this metadata, modern ML applications lack a standard
mechanism for managing these details comprehensively. FlorDB addresses this gap by cap-
turing and managing extensive metadata in a familiar, unified API of log statements and
dataframe queries, ensuring the essential context is consistently maintained throughout the
ML lifecycle.

Goals and Contributions

In this chapter, our goals are to expand the management of context beyond continuous
training [49] to span the entire workflow, emphasizing not only individual tasks (e.g. training)
but entire pipelines and their regular execution. We demonstrate this through a three-part
case study, starting with a single user-developer and expanding to a small team, highlighting
the importance of context in streamlining development cycles and operational efficiency. Key
goals and their corresponding contributions include:

1. Widening the Scope: We aim to cover the whole workflow, or ML lifecycle, focusing
not just on individual tasks or operations but entire pipelines and their regular exe-
cution. To support this, we have developed Build extensions for FlorDB that enable
the management of the full ABCs of context. This includes mechanisms like flor.log

(for writing) and flor.dataframe (for reading), which were initially designed for mul-
tiversion hindsight logging [49] but are now adapted to manage Build context in any
workflow.

2. Build System Agnosticism: FlorDB is designed to function seamlessly with any
build system (e.g. Make, MLFlow [211], etc.). FlorDB uses Python profiling tools
such as inspect at import time to probe Build context automatically, such as the
name and location of the hosting Git repository, and the name of the Python file
being executed. FlorDB intercepts Build context at the Python-script level, making it
operable with any build system of choice.

3. API Stability Following Build Extensions: The FlorDB APIs to manage change
over time, i.e. with multiversion hindsight logging, remain backward-compatible and
fully operational. We have extended FlorDB to passively capture and expose the
Build context using the same APIs previously developed for managing Application
and Change contexts. The capabilities of FlorDB have been extended to manage the
full ABCs of context without affecting the API in Chapter 5.

4. Simplified yet Powerful Abstraction: A significant benefit of our open, standard
approach is that we simplify and improve the abstraction of metadata, subsuming
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1 # Makefile

2 prep:

3 python prep.py

4

5 train: prep

6 python train.py

Figure 6.1: Makefile and example Flor Dataframe after one call of make train. The logging
of batch size is unambiguous, given the projid, tstamp, and filename which are captured
automatically and make up the relevant build and change context.

features from various bespoke ML metadata systems — such as feature stores, model
registries, and label registries — into a unified and robust framework. By demonstrat-
ing effective methodology by which ML engineers can manage context, we illustrate
how FlorDB can be used to build workflows and streamline repeated ML operations,
closing the loop in the ML lifecycle.

6.2 Flow with FlorDB

In this section, we provide background information on Flor and FlorDB. Flor is a record-
replay system specifically designed for model training [48]. Its functionality is divided into
two main features: low-overhead checkpointing and low-latency replay from checkpoints.
Flor’s adaptive checkpointing runs in the background, minimizing computational resources
spent on model training. At the same time, it ensures reduced latency during replay by
leveraging memoization and parallelism through checkpoint-resume. As covered in detail in
Chapter 4, Flor manages application context via hindsight logging, which allows effectively
unbounded context to be queried or materialized post-hoc and on-demand.

FlorDB extends Flor to manage change over time by combining application context with
change context through multiversion hindsight logging [49]. As covered in detail in Chapter 5,
FlorDB employs a robust relational model, exposed via calls to flor.dataframe, that maps
individual logging statements into columns in a pivoted view, making it easy for users to
track changes over time. Building on FlorDB, we extend it in this chapter to add support for
build context, completing the ABCs of context. The extended FlorDB provides a seamless
and flexible framework for defining and executing complex and changing machine learning
pipelines or workflows. FlorDB works with Make by default but was designed to be agnostic
to the calling build system or workflow manager, and can be used with alternatives like
Airflow, MLFlow, Slurm, or any workflow management system of choice.



CHAPTER 6. CONTEXT IS ALL YOU NEED: CLOSING THE LOOP IN THE
MACHINE LEARNING LIFECYCLE 101

Build Context & Unambiguous Logging

The extended capabilities of FlorDB are designed to complement dependency management
systems like Make. While Make (or equivalent) handles the execution order of tasks based
on defined dependencies, FlorDB extends this process by automatically capturing, tracking,
and organizing the associated metadata throughout the execution of a workflow. Consider a
simple workflow defined directly in a Makefile, which manages the execution of tasks such as
prep and train. Each task executed by this Makefile triggers specific scripts that perform
designated operations. During these tasks, FlorDB is activated with import flor by the
executing process to capture crucial metadata. This includes:

• Start and end times of each task, providing a timeline of the workflow execution.

• Dependency details, which are managed by the developer in a build file (Makefile
by default) and the build file is committed to git on every run.

• Environmental parameters such as the operating system, Python environment
specifics, and hardware configurations, ensuring that all contextual factors affecting
the execution are documented.

• Project context, capturing the directory of the Git repository at the current working
directory to identify the project context clearly.

• File-specific metadata, utilizing the Python inspect module to log the filenames of
scripts being executed, thereby linking the execution logs directly to the specific code
being run.

This data is automatically captured by FlorDB at import time, and is included in every
write of flor.log(name, value) so there’s no ambiguity about where the log originated from.
Suppose that both prep and train log the batch size. Because the projid and filename

are captured and included in every log record, there will be no ambiguity when calling
flor.dataframe(batch_size) (see Figure 6.1). By hooking into Python profiling tools, as
well as tapping into system calls, FlorDB can gather comprehensive data without disrupting
the workflow’s normal operations.

FlorDB Extended API

The Flor API captures metadata about the executing file, so dataflow dependencies don’t
need to be re-stated in the API; the Makefile is sufficient. Because Flor profiles runtime
metadata, including the name of the file being executed, it is agnostic to the workflow or
dataflow management system used. Flor logging works seamlessly whether called by Make
or Airflow, and switching between these systems does not require any refactoring.

The Flor API includes the following functionalities as presented in Garcia et al. (2023) [49]:
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• flor.log(name: str, value: T) -> T

Logs a given value with the specified name. Constructs a log record with the associated
projid, tstamp, filename, and nesting dimensions defined by flor.loop (e.g. epoch
or page). Useful for tracking variables or parameters during a run.

• flor.arg(name: str, default: T) -> T

Reads a value from the command line if provided; otherwise, uses the default value.
During replay, retrieves historical values. Good for setting configuration parameters
for the scripts and allowing for quick adjustments via the command line.

• flor.loop(name:str, vals:Iterable[T]) -> Iterable[T]

Functions as a Python generator that maintains global state between iterations. Useful
for addressing flor.log records, “indexing” replay and coordinating checkpoints.

• flor.checkpointing(kwargs: Dict) -> ContextManager

Acts as a Python context manager that defines the set of objects, such as model or
optimizer, to be checkpointed adaptively — based on the size of the checkpoint and
the loop iteration time [48] — at flor.loop iteration boundaries.

• flor.dataframe(*args) -> pd.DataFrame

Produces a Pandas DataFrame of FlorDB log information with a column corresponding
to each argument in *args. The DataFrame also contains “dimension” columns, such
as the projid, tstamp, filename and so on. Each arg in *args corresponds to the
name of a flor.log and is mapped to a column in the flor.dataframe. It is the default
view in FlorDB for querying log data and selecting model checkpoints to load, using
either Pandas or DataFrame-compatible SQL engines like DuckDB [150].

In this chapter, FlorDB further extends the API as follows:

• flor.commit() -> None

An application-level transaction commit marker to support controlling the visibility of
long-running processes, such as Flask applications serving a front-end that commits
multiple transactions. On commit, FlorDB writes a log file, commits changes to git,
and increments the tstamp. This method is invoked automatically (by atexit) at the
end of a Python execution.

6.3 Closing the Loop in the ML Lifecycle

In a decoupled architecture of multiple applications and backend services, a unified view
of overall context can serve as a narrow gateway — a single point of access for the ba-
sic information about data, metadata and their usage. We envision FlorDB streamlining
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1 # Makefile

2

3 prep:

4 python prep.py

5

6 infer: prep

7 python infer.py

8

9 run: infer

10 flask run

11

12 train: prep

13 python train.py

Figure 6.2: Dataflow diagram and Makefile. infer uses flor.dataframe("acc", "recall")

to selects the model checkpoint with highest recall (or a fallback model if no checkpoint
exists) and uses it to segment documents, labeling pages with colors such that contiguous
pages with the same color belong to the same segment. run launches a Flask web application
to display the model predictions, overlaying a color layer over each page for human review.
On confirmation, Flask logs the final color of each page. train uses the human-reviewed data
(or feedback) to tune the model and improve its performance on future rounds of document
segmentation. The process is repeated again and again, oscillating between calls to make

run and make train. flor.log(name, value) manages writes, and flor.dataframe(*args)

manages reads.

ML engineer’s workflow by integrating fragmented metadata from scattered sources within
flor.dataframe: a single, unified solution.

FlorDB promotes an agile approach that emphasizes tight-loop development. This ap-
proach can involve an iterative multi-phase development process (or workflow) in which an
initial phase (e.g. infer in Figure 6.2) leverages inference pipelines to generate predictions
based on existing models. These predictions are then presented to users in a subsequent
phase (e.g. run in Figure 6.2), where human feedback is incorporated to refine and train
subsequent models. This creates a continuous feedback loop where user-verified labels are
ingested by train pipelines to create checkpoints for the infer pipelines. In Figure 6.2 we
show metadata being written via flor.log statements, and queried via the flor.dataframe

API.
While FlorDB supports generic Python pipelines, workflows, and build jobs, it is par-

ticularly helpful in managing closed loops, which are prevalent in production environments.
Effective management of these closed loops is often challenging and can be a point of failure,
making them a primary focus of our case study. The three cases presented next demonstrate
instances of this agile development framework. By successfully managing context in the ML
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lifecycle, ML engineers can close the loop, integrating feedback from later stages at each step
and providing each participant with a comprehensive view of the entire lifecycle.

6.4 Case Study

Next, we explore the progressive enhancement of document processing through the integra-
tion of AI features. The first case introduces the PDF Parser, a Flask-based web application
designed for efficient PDF document processing, including tasks like splitting PDFs, extract-
ing text, and preparing data for analysis using natural language processing (NLP) techniques.
Subsequent cases build on this foundation by delving into collaboration. Case 2 examines the
collaborative tool QUILT, which performs entity linking, emphasizing the importance of con-
text sharing in collaborative interfaces. Case 3, titled “Merging the Composite,” extends the
PDF Parser’s functionality by incorporating Named Entity Recognition (NER) capabilities
from Case 2. This integration shows how functionalities can be shared across projects, and
highlights the practical benefits of modular AI in streamlining complex document analysis
tasks, particularly in legal and academic applications.

Case 1: Document Segmentation with PDF Parser

The PDF Parser project2 is a Flask-based web application designed to simplify how users
process and analyze PDF documents. This case explores how the PDF Parser works, high-
lighting its key features and practical use cases. Users can interact with the parser through a
simple web interface, as shown in Figure 6.3. By understanding how the PDF Parser works
and its potential applications, users can leverage its features to gain valuable insights from
their PDF documents and streamline their workflows. We describe core components next.
The focus of the case 1 is simplicity. By seeing how flor is used to implement a real document
intelligence application, that this section will serve as a guide for others who are looking to
get started with FlorDB.

PDF Extraction & Text Featurization

Once the PDF is converted into text and image formats, ensuring there is one document per
page, the process of featurization begins (see lines 1-9 in Figure 6.4). This process typically
involves the following steps:

• Text Extraction: The pdf demux.py script is used to demultiplex each page of the
PDF into separate text and image files. This is crucial for handling documents where
text and visual data are intermixed. The text extraction component employs Opti-
cal Character Recognition (OCR) to convert any text found in images into machine-
readable format.

2https://github.com/ucbepic/pdf_parser
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Figure 6.3: Screenshot of the PDF Parser (Case 1). A scanned document appears on the
left pane, it can be scrolled vertically from page to page. A colored layer is overlaid over
each page for document segmentation: contiguous pages with the same color belong to the
same segment. Extracted text and other features are displayed on the right page, grouped
by page. The end-user may correct segmentation errors by clicking on the page overlay to
cycle over colors; they may correct OCR errors by editing the text in the right pane directly.

• Feature Engineering: The featurize.py script takes the cleaned text and applies
various natural language processing (NLP) techniques to extract meaningful features
from the text (e.g. headers and page numbers, as shown in Figure 6.5). This might
include tokenization, stemming, and the creation of n-grams. For images, feature en-
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1 process_pdfs: $(PDFS) pdf_demux.py

2 @echo "Processing PDF files ..."

3 @python pdf_demux.py

4 @touch process_pdfs

5

6 featurize: process_pdfs featurize.py

7 @echo "Featurizing Data ..."

8 @python featurize.py

9 @touch featurize

10

11 train: featurize hand_label train.py

12 @echo "Training ..."

13 @python train.py

14

15 model.pth: train export_ckpt.py

16 @echo "Generating model ..."

17 @python export_ckpt.py

18

19 infer: model.pth infer.py

20 @echo "Inferencing ..."

21 @python infer.py

22 @touch infer

23

24 hand_label: label_by_hand.py

25 @echo "Labeling by hand"

26 @python label_by_hand.py

27 @touch hand_label

28

29 run: featurize infer

30 @echo "Starting Flask ..."

31 @flask run

Figure 6.4: Makefile of the PDF Parser. Workflow consists of train and infer pipelines. On
run, PDF Parser extracts and featurizes documents and feeds them through the inference
pipeline to display document segmentation plan to the end-user. Following any corrections
and confirmation, the newly labeled data becomes training data for future rounds of training,
improving future runs of the infer pipeline.

gineering could involve extracting color histograms, texture patterns, or edge statistics
which are useful for computer vision models.

• Vectorization: The text features are then vectorized into a format suitable for ma-
chine learning models. This often involves transforming categorical data into numerical
data through techniques like neural embedding, one-hot encoding or the use of TF-IDF
(Term Frequency-Inverse Document Frequency) for text.
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1 for doc_name in flor.loop("document", os.listdir (...)):

2 N = get_num_pages(doc_name)

3 for page in flor.loop("page", range(N)):

4 # text_src is "OCR" or "TXT"

5 text_src , page_text = read_page(doc_name , page)

6 flor.log("text_src", text_src)

7 flor.log("page_text", page_text)

8

9 # Run some featurization

10 headings , page_numbers = analyze_text(page_text)

11 flor.log("headings", headings)

12 flor.log("page_numbers", page_numbers)

Figure 6.5: PDF Extraction and text featurization. Note that by logging features (e.g. lines
11-12), the developer has effectively populated a feature store (bottom dataframe).

This featurization process is essential for transforming raw PDF data into a structured
form that is amenable to analysis and machine learning applications. The described method-
ology focuses on maximizing the information extracted from each page, ensuring that both
textual and visual data contribute to the inferences made on the document.

Inference Pipeline

The inference pipeline automates the processing and analysis of images organized into
document-specific folders. The pipeline, contained in infer.py, systematically processes
each document’s pages and images. For each image, it loads the image file, applies standard
pre-processing steps such as resizing and normalization, and converts it into a format suit-
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1 from train import model , transform

2

3 cols = ["text_src", "headings"]

4 cols += ["page_numbers", "page_text"]

5 features = flor.dataframe (*cols)

6

7 metrics = flor.dataframe("val_acc", "val_recall")

8 metrics = flor.utils.latest(metrics)

9 best_ckpt = \

10 metrics[metrics.val_recall == metrics.val_recall.max()]

11

12 ckpts = {’model ’: model}

13 with flor.loading(ckpts , best_ckpt ):

14 for (doc_name , page), row in features:

15 tensor = transform(row[cols])

16 output = model(tensor)

17 logits , predicted = torch.max(output.data , 1)

18 p = int(predicted.item ())

19 flor.log("first_page", 1 if page == 0 else p)

Figure 6.6: Inference Pipeline. Developer queries a model registry (populated during train-
ing) to select the appropriate model for inference (lines 7-10, and bottom dataframe). Se-
lected model is applied on features (lines 3-5) derived by earlier steps in the workflow. Note
the versatility of FlorDB, how it can be used at once as a feature store and model registry.
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1 @app.route("/")

2 def home ():

3 return flask.render_template("index.html")

4

5 def get_colors ():

6 infer = flor.dataframe("first_page", "page_color")

7 infer = flor.utils.latest(

8 infer[infer.document_value == pdf_names [ -1]])

9 if infer.page_color.isna (). any ():

10 assert infer.first_page.notna (). all()

11 color = infer["first_page"]. astype(int). cumsum ()

12 infer["page_color"] = color - 1

13 return infer["page_color"]. to_list ()

14

15 @app.route("/save_colors", methods =["POST"])

16 def save_colors ():

17 j = request.get_json ()

18 colors = j.get("colors", [])

19 pdf_name = pdf_names.pop()

20 pdf_names.clear ()

21 with flor.iteration("document", None , pdf_name ):

22 for i in flor.loop("page", range(len(colors ))):

23 flor.log("page_color", colors[i])

24 flor.commit ()

25 return jsonify ({"message": "Colors saved"}), 200

Figure 6.7: Methods to read and write page overlay colors in Flask Web App. The
query in line 6 is displayed in the bottom dataframe. Page overlays are drawn from col-
umn first page or page color depending on whether the label was sourced from crowd-
workers (filename == label by hand.py) or the end-user (filename == flask). Note
how FlorDB seamlessly manages build context (e.g. label origins).
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able for input to the pre-trained model. The model then makes predictions on the images,
logging the final inferences (Figure 6.6).

UI: Web Application on Flask

The main Flask script outlines the core functionalities of a web application designed for
handling PDF documents and associated image files. It includes routes for displaying and
manipulating PDFs and their converted image previews within a web interface. The core of
the application is structured around Flask routes that handle web requests:

• The root route (“/”) displays a home page which lists all the PDF files located in
a specified directory. Each PDF file is represented with a preview image, and these
images are listed on the webpage using rendered HTML templates.

• The “/view-pdf” route handles requests to view a specific PDF. Depending on user
interactions and the file’s existence, it can display the document in different modes
such as labeled text or named entity recognition (NER) views. This route also handles
dynamic user settings that can influence how the document is processed and displayed.

• The “/save colors” route is a POST endpoint that processes user-submitted data con-
cerning color settings associated with a PDF’s pages (lines 15-25 in Figure 6.7). This
route captures this data, logs it for tracking, and acknowledges the successful saving
of data.

Helper functions such as get colors() fetch color data associated with the pages of
a document, integrating latest updates from a dataset (lines 5-13 and bottom dataframe
in Figure 6.7). The developer may choose to display labels generated by the model (e.g.
first page) or labels entered manually by an expert end-user (e.g. page color).

Training Pipeline

The training pipeline integrates several components of a typical machine learning workflow
including data preparation, model definition, training, and validation, specifically customized
to handle images extracted from PDF pages. The model used in this script is based on
the ResNet-18 architecture, a popular convolutional neural network that is commonly used
for image classification tasks. The final layer of the network is modified to suit a binary
classification problem, i.e. whether the page in question is a first-page or not. To optimize
performance, the script freezes the earlier layers of the model and only allows the final
layer to be trained. Data for the model is processed using transformations that standardize
and augment the image data, making it suitable for neural network processing. These
transformations include resizing, cropping, converting images to tensors, and normalizing
their pixel values.

Training and validation processes are conducted in a loop over a specified number of
epochs. During each epoch, the model undergoes training and validation phases. In the
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training phase, the model learns from the training data by adjusting its parameters to mini-
mize the loss function, which is calculated using a weighted cross-entropy loss to handle class
imbalance. The validation phase evaluates the model’s performance on unseen data, help-
ing monitor its ability to generalize. Throughout the training and validation, performance
metrics such as loss, accuracy, and recall are logged using FlorDB.

Figure 6.8: Screenshot of QUILT (Case 2). A scanned document is displayed on the left
pane. Recognized named entities in that document are displayed in a list of dropdowns on
the right pane. When the dropdown of a named entity is selected, the mentions of that entity
in the document are highlighted, and the dropdown is expanded. The expanded dropdown
shows a ranked list of known entities and their known attributes for entity linking.

Case 2: Entity Linking in a Collaborative Context

In the previous sections, we focused on the workflow of a single user interacting with a
document intelligence system. However, real-world projects often involve multiple team
members with diverse roles and expertise. In this section, we’ll expand our exploration to
a small team scenario, consisting of: i) the developer, primarily responsible for building
and maintaining the technical infrastructure of the entity linking system, and ii) the expert-
user, who brings specialized knowledge of the subject matter and provides valuable feedback
on the system’s accuracy and usefulness. To illustrate, our collaborators at the National
Association of Criminal Defense Lawyers (NACDL) presented the following scenario:

A team of public defenders wants to track police officers involved in police mis-
conduct cases. They have a collection of court case documents from the last ten
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1 # Path Variables

2 OFF_DIR = Officer_Data

3 CASE_DIR = Case_File_Processor

4 AGENCY_DIR = $(CASE_DIR )/ Find_Agency_Names
5

6 # Targets

7 case_file_processer:

8 @echo "Extracting case files ..."

9 @cd $(CASE_DIR) && \

10 python3 case_file_processer.py && cd ..

11 @touch case_file_processer

12

13 find_agency_names: case_file_processer

14 @echo "Query known agencies ..."

15 @cd $(AGENCY_DIR) && \

16 python3 find_agency_names.py && cd ../../

17 @touch find_agency_names

18

19 officer_matching: find_agency_names

20 @echo "Matching officers to cases ..."

21 @cd $(OFF_DIR) && \

22 python3 officer_matching.py && cd ..

23 @touch officer_matching

24

25 match_ranking: officer_matching

26 @echo "Sorting name matches ..."

27 @cd $(OFF_DIR) && \

28 python3 rank_matches.py && cd ..

29 @touch match_ranking

30

31 train: match_ranking

32 @echo "Calibrating the ranking model ..."

33 @cd $(OFF_DIR) && \

34 python3 train.py && cd ..

35 @touch train

36

37 run_server: match_ranking

38 @cd Server && flask run

Figure 6.9: Makefile of QUILT. Scanned documents pass through text extraction and named-
entity resolution before being displayed on a web page. Known entities fuzzy-matching
named-entities are queried from a production database. Known entities are ranked by simi-
larity score (to the named-entity).

years and a database containing information about police officers, their affilia-
tions, and dates of employment. The defenders aim to create a new dataset that
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1 agency_kw = {

2 "Maryland": ["Police Department"],

3 "New York": ["PD", "City of"],

4 ...

5 }

6 page_text = flor.dataframe("page_text")

7 if not page_text.empty:

8 for s in flor.loop("state", agency_kw ):

9 for kw in flor.loop("agency_kw", agency_kw[s]):

10 documents = page_text.document_value.unique ()

11 for doc_name in flor.loop("document", documents ):

12 c = page_text.document_value == doc_name

13 all_pages = page_text[c]

14 text = "\n".join(all_pages.page_text)

15 searchRes = search(text , 2, kw)

16 pd = checkDept(searchRes , kw)

17 flor.log("agency", pd)

Figure 6.10: Find Agency Names for a group of documents. Note how much build (projid,
filename) and change metadata (tstamp) is included in the "agency" dataframe (bottom
of this figure), and how the dimensions of the dataframe correspond to flor loops (e.g.
"state" and "document" in lines 8-11).

connects these documents with the officers mentioned in them.

In response, we developed QUILT3, an entity linking tool, through collaboration with
NACDL domain experts (Figure 6.8). Over two years, we met weekly with stakeholders
from NACDL and a journalist from KQED to discuss needs, identify requirements, iterate
on designs, and take feedback. We focused on supporting teams where one or a few members

3https://github.com/ucbepic/court-records-processing
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1 officer_roster = get_officer_roster ()

2 page_text = flor.dataframe("page_text")

3

4 docs = page_text.document_value.unique ()

5 for doc_name in flor.loop("document", docs):

6 pred = page_text.document_value == doc_name

7 file_text = "\n".join(page_text[pred]. page_text)

8 flor.log("case_num", find_case_num(file_text ))

9 filed_date , event_range = find_date(file_text)

10 flor.log("filed_date", filed_date)

11 flor.log("event_range", event_range)

12

13 for word in flor.loop("word", file_text.split ()):

14 ...

15 if last_name(word , officer_roster.name):

16 flor.log("pos_rank", pos_rank)

17 full_name = first + middle + last

18 flor.log("name_inferred", full_name)

Figure 6.11: Fuzzy-matching named-entities on known entities. Note the visibility added by
the bottom dataframe. We can see in the first row that “defendant case” (fourth column
from the right) is not person-entity but a case-file, and so further cleaning is needed before
logging a hit (lines 13-18).
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1 @app.route("/")

2 def home ():

3 return flask.render_template("index.html")

4

5 @app.route("/coordinates")

6 def coordinates ():

7 # assert app.static_folder is not None

8 # coord_file = open(

9 # os.path.join(app.static_folder ,

10 # "Output_Page_Coordinates.csv"), "r")

11 # reader = csv.reader(coord_file)

12 # data = list(reader)

13 # coord_file.close ()

14

15 # Get the coordinates from flor.dataframe

16 data = flor.dataframe("c_left", "c_top", "c_width", "c_height")

17 return flask.jsonify(data)

Figure 6.12: Reading NER coordinates for Web App text highlighting. Note how a single
flor dataframe (line 16) obviates an entire flask-method worth of ad-hoc data processing
code (lines 7-13). Also, note the schema is not readable in the commented version, but is
clearly visible in the flor dataframe call.

are developers, while the others are non-programmers who primarily review documents. The
project’s build dependencies are defined in Figure 6.9.
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PDF Extraction & Text Featurization

This subsection delves into the techniques and tools employed to extract meaningful text from
PDFs and convert it into numerical representations, paving the way for downstream entity
linking tasks. Once the PDF is converted into images, the next critical step is to extract
textual content from these images. This extraction is performed using the Tesseract OCR
engine, which interprets the pixel data of the images to produce corresponding text. The
script enhances OCR accuracy by pre-processing the images into a format more amenable to
OCR, such as converting them to grayscale or re-scaling. Additionally, common OCR errors,
such as incorrectly hyphenated text at line breaks, are programmatically corrected to ensure
the integrity and continuity of the extracted text. The extracted text is not just collected; it
is also transformed by flor dataframes into a structured format that can be readily used for
data analysis (e.g. “agency” in Figure 6.10) or fed into machine learning algorithms. This
involves cleaning and organizing the text into a coherent format free of common scanning
errors and artifacts. In addition to raw text extraction, the script logs various attributes of
the text, such as its coordinates and size on the page, which can be important for tasks that
require understanding the document layout or identifying key sections within the text.

Fuzzy Schema Integration

A core component of this process is fuzzy matching. Given the prevalence of OCR errors and
the common occurrence of variations in name spellings, fuzzy matching employs algorithms
like Levenshtein distance or Jaro-Winkler distance to quantify the similarity between strings.
This enables the identification of potential matches that might otherwise be missed due to
minor discrepancies. Once potential matches are identified, the system proceeds to rank them
based on a similarity score (Figure 6.11). This score takes into account not only the degree
of similarity between strings but also contextual factors, such as the frequency of occurrence
of the entities within the documents and their semantic relevance to the surrounding text.
The result is a ranked list of potential matches, aiding users in quickly identifying the most
relevant known entities for linking.

UI: Web Application on Flask

QUILT uses a Flask-based web application, designed to provide an intuitive and interac-
tive environment for exploring and validating entity recognition and matching results. The
web application seamlessly overlays predictions directly over the displayed PDF documents.
Recognized named entities are visually highlighted within the documents themselves, while
also being presented as a bulleted list in a separate pane. Users can click on names in this
list, dynamically updating the PDF view to highlight the selected entity and its mentions,
enhancing contextual understanding (Figure 6.12).

Selecting a name from the list reveals a ranked dropdown menu of candidate matches,
with the most likely match positioned at the top. The interface offers options to confirm,
tentatively accept (“maybe”), or reject matches. Each decision triggers a FlorDB transaction,
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Figure 6.13: Screenshot of the PDF Parser using NER from QUILT (Case 3). Named-entities
are highlighted in purple. Extracted text is displayed on the right pane.

logging the user’s choice in the system’s backend for potential further analysis. As shown
in Figure 6.12, backend logic has been optimized by replacing standard filesystem API calls
with flor.dataframe queries. This approach significantly simplifies data handling, reduces
repetitive database logic, and enhances system efficiency and maintainability, particularly in
environments that require rapid prototyping and frequent updates.
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1 process_pdfs: $(PDFS) pdf_demux.py

2 @echo "Processing PDF files ..."

3 @python pdf_demux.py

4 @touch process_pdfs

5
6 featurize: process_pdfs featurize.py

7 @echo "Featurizing Data ..."

8 @python featurize.py

9 @touch featurize

10
11 ner_parse:

12 @if [ -f ~/. flor/court -records -processing.db ]; then \

13 mv ~/. flor/court -records -processing.db ~/. flor/court -records -processing.db.bak; \

14 fi

15 @if [ -f ~/. flor/pdf_parser.db ]; then \

16 mv ~/. flor/pdf_parser.db ~/. flor/court -records -processing.db; \

17 fi

18 @if [ -d ../ court_records ]; then \

19 mv ../ court_records ../ court_records.bak; \

20 fi

21 @ln -sf $(realpath app/static/private/pdfs) ../ court_records

22
23 @cd ../court -records -processing && \

24 (git checkout flor.pdf_parser$(GIT_COMMIT) || \

25 git checkout -b flor.pdf_parser$(GIT_COMMIT )) && \

26 make case_file_processer

27
28 @rm -f ../ court_records

29 @if [ -d ../ court_records.bak ]; then \

30 mv ../ court_records.bak ../ court_records; \

31 fi

32 @mv ~/. flor/court -records -processing.db ~/. flor/pdf_parser.db

33 @if [ -f ~/. flor/court -records -processing.db.bak ]; then \

34 mv ~/. flor/court -records -processing.db.bak ~/. flor/court -records -processing.db; \

35 fi

36 @touch ner_parse

37
38 run: featurize ner_parse

39 @echo "Starting Flask ..."

40 @flask run

Figure 6.14: The PDF Parser Makefile is modified to set up and cleanup context, calling out
to QUILT for NER parsing (lines 11-22).

Case 3: Merging the Composite

In this case, we extend the capabilities of the PDF Parser, originally designed for document
segmentation and basic text analysis, by integrating Named Entity Recognition (NER) capa-
bilities from the QUILT system (Figure 6.13). The merge of both cases is managed through
modifications to the Makefile of the PDF Parser (Figure 6.14), which controls the file and
database operations necessary to leverage NER capabilities. This setup ensures that the
PDF Parser can operate seamlessly with the advanced tools developed in Case 2 without
extensive manipulation.

As shown in the Makefile snippet (Figure 6.14), the data processing workflow is adapted
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1 @app.route("/")

2 def home ():

3 return flask.render_template("index.html")

4

5 ...

6

7 def get_coordinates ():

8 data = flor.dataframe("c_left", "c_top", "c_width", "c_height")

9 return jsonify(data)

Figure 6.15: PDF Parser can now get the coordinates for named-entities in its documents,
e.g. document value == "AmericanHistoriansAmicus.pdf".

to include NER by calling the document preparation and processing stages in QUILT. Via the
featurize build target, the PDF documents are first converted into a text format suitable
for NER. Then, during a build of ner parse, the NER models from the QUILT system are
applied to the text data to detect and categorize named entities such as people, locations,
and dates.

UI: Web Application on Flask

The Flask-based web application serves as a critical interface for the PDF Parser, particularly
enhanced to handle Named Entity Recognition (NER) results effectively. With the incorpo-
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ration of NER capabilities, the application not only displays the processed documents but
also enriches them with interactive annotations of identified entities (four right-most columns
in Figure 6.15).

6.5 Discussion

In this section, we evaluate FlorDB in the context of modern MLOps principles and best
practices. We begin by examining how FlorDB embodies the 3Vs of MLOps as articulated
by Shankar & Garcia et al. (2024), demonstrating its effectiveness in enabling velocity,
visibility, and versioning throughout the machine learning lifecycle [177]. We then discuss
how its design draws inspiration from the Ground data context service and Postel’s law
of robustness, allowing it to flexibly ingest and organize metadata from diverse systems.
Through this analysis, we highlight the system’s strengths as a comprehensive platform for
streamlining and optimizing MLOps workflows.

MLOps Validation Criteria

Next, we evaluate the characteristics of FlorDB through the lens of the 3Vs of MLOps, as
defined by Shankar & Garcia et al. (2024):

• Velocity: FlorDB significantly enhances the speed of development, testing, and de-
ployment of machine learning models. By streamlining the integration of new data
and models into the existing workflow, FlorDB allows for rapid iteration and quick
adaptation to new requirements.

• Visibility: The system provides comprehensive logging and monitoring capabilities,
which increase the transparency of the ML lifecycle. In the three use-cases, stakeholders
were able to track each stage of the model development process, from initial data
ingestion to final deployment. This visibility not only facilitated easier debugging and
optimization but also enhanced the understanding of model behavior and performance
across different operational contexts.

• Versioning: FlorDB relies on version control to manage data, models, and code
changes. It supports detailed tracking of changes, allowing teams to revert to pre-
vious versions and understand the evolution of models over time.

By adhering to these principles, FlorDB addresses critical aspects of the MLOps lifecycle,
making it a versatile and powerful tool for organizations aiming to leverage machine learning
efficiently and effectively.



CHAPTER 6. CONTEXT IS ALL YOU NEED: CLOSING THE LOOP IN THE
MACHINE LEARNING LIFECYCLE 121

Postel’s Law of Robustness

FlorDB has been fundamentally informed by the Ground data context service [62]. A key
design principle we adopted from Ground is Postel’s law of robustness, which can be sum-
marized as:

Be conservative in what you do, be liberal in what you accept from others.

As discussed earlier, the machine learning lifecycle involves a complex interplay of data,
code, and hyper-parameters, each stage utilizing a diverse ecosystem of domain-specific sys-
tems with their own APIs. The ability to accept and process this information, regardless of
its source, and organize it into a user-friendly format is crucial. We implement this principle
through a logging metaphor for writing data and a dataframe metaphor for reading it. Essen-
tially, FlorDB is as easy to write to as NoSQL and as easy to read from as SQL. The various
components of contextual information are funneled into what we call a Flor Dataframe.
This dataframe acts as a common layer, or narrow gateway, for organizing metadata from
interleaved systems and disparate parts, making it both accessible and manageable for the
user.

6.6 Related Work

In the realm of AI and ML, managing the lifecycle of machine learning models and their
associated data is crucial for maintaining efficient and reproducible workflows. Several sys-
tems have been developed to address different aspects of this challenge, each with its unique
approach and focus. FlorDB builds upon these ideas, offering a comprehensive context man-
agement system that not only logs information but also integrates it into a broader context
for streamlined ML lifecycle management.

Experiment Tracking and Version Control: Systems like MLFlow [211], DVC (Data
Version Control) [78], and Weights & Biases [17] focus on managing experiments and ensur-
ing reproducibility. MLFlow provides tools for tracking experiments, packaging code into
reproducible runs, and sharing and deploying models. DVC manages large files, datasets,
machine learning models, and metrics alongside code, emphasizing reproducibility and col-
laboration. Both systems are crucial for tracking the evolution of models and data, and they
can be used alongside FlorDB, but they primarily concentrate on experiment management
without deeply integrating hindsight logging (and by extension data context) capabilities.

Model Management and Lineage: ModelDB, Mistique, and Pachyderm emphasize
version control and data lineage [193, 194, 77]. ModelDB tracks the lineage of models,
capturing relationships between models, their training data, and the code used to produce
them. Pachyderm combines data versioning, data pipelines, and lineage on Kubernetes,
providing a scalable environment for building reproducible data pipelines. These systems
focus on managing the provenance and evolution of models and data, offering a way to query
and visualize their history over time. The focus of both systems is more on artifacts and less
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on process: for example, ModelDB does not automatically version code, and has no way of
recovering missing data.

End-to-End ML Workflows: AWS SageMaker and Kubeflow provide comprehensive
solutions for building, training, and deploying ML models [105, 30]. SageMaker offers tools
for data labeling, model training, and hosting, integrating seamlessly with other AWS ser-
vices to support scalable ML workflows. Kubeflow, designed to run on Kubernetes, supports
the orchestration of complex ML pipelines and integrates with a wide range of ML frame-
works. Both platforms emphasize scalability and operational efficiency but primarily focus
on the deployment and operational aspects of ML workflows. Either system can be used by
FlorDB as a drop-in replacement to Make, the default build system. Other systems in this
space include Helix [207] and Motion [174].

Visualization and Monitoring: TensorBoard [53] is a visualization toolkit for Tensor-
Flow that allows users to track and visualize metrics, graphs, and other aspects of machine
learning experiments. Because FlorDB does not natively ship with visualization capabili-
ties, surfacing instead the context via Flor Dataframes, TensorBoard is a great option for
visualizing FlorDB data.

FlorDB distinguishes itself by addressing the need for comprehensive context manage-
ment across the entire ML lifecycle. By focusing on the ABCs of context—Application,
Build, and Change contexts—FlorDB captures and integrates metadata that spans the full
spectrum of data and model management. This includes not only tracking the execution of
code and data flow but also managing dependencies, version history, and changes over time.
In comparison to these systems, FlorDB’s unique contribution ensures that context is pre-
served and accessible across different stages and by different people across the ML lifecycle,
facilitating reproducibility and collaborative development. Furthermore, FlorDB’s architec-
ture supports integration with various build and workflow management tools, providing a
flexible and extensible solution for managing complex ML workflows.

6.7 Conclusion

In this chapter, we have presented an extended version of FlorDB, a system that extends
the Flor family of projects to support the management of context in the machine learning
lifecycle. By capturing and integrating comprehensive metadata across the dimensions of
Application, Build, and Change (the ABCs of context), FlorDB provides a unified solution
for managing the complex and fast-evolving landscape of AI/ML development.

Through a series of cases, we have demonstrated how FlorDB is used to streamline the
end-to-end ML lifecycle, from a single user-developer scenario to more complex collaborative
environments. These cases highlight the system’s ability to facilitate high-velocity develop-
ment cycles, reliable experimentation, and efficient collaboration by preserving and sharing
essential context across team members and stages of the ML workflow. In evaluating FlorDB
against the 3Vs of MLOps — Velocity, Visibility, and Versioning — we have shown how the
system embodies these principles to optimize the ML lifecycle. FlorDB’s design, informed



CHAPTER 6. CONTEXT IS ALL YOU NEED: CLOSING THE LOOP IN THE
MACHINE LEARNING LIFECYCLE 123

by the Ground data context service allows it to flexibly ingest and organize metadata from
heterogeneous sources, serving as a narrow gateway for accessing essential context.

In conclusion, FlorDB represents a significant step forward in managing the complexity of
AI/ML development by providing a unified solution for capturing, integrating, and leveraging
essential context across the entire ML lifecycle. By managing the ABCs of context FlorDB
empowers organizations to accelerate their ML initiatives while ensuring reproducibility,
collaboration, and continuous improvement. As such, it has the potential to become an
indispensable tool in the MLOps ecosystem, helping teams navigate the challenges and op-
portunities of AI/ML at scale.
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Chapter 7

Conclusion

In conclusion, FlorDB represents a significant advancement in managing the complex and
dynamic context inherent in the machine learning lifecycle. By comprehensively capturing
and organizing the ABCs of context — Application, Build, and Change — FlorDB empowers
machine learning engineers with increased transparency, traceability and control over their
ML projects. Through innovations like multiversion hindsight logging, and their integration
with build tools and relational data models, FlorDB transforms the scattered and often lost
metadata of the ML lifecycle into a structured, queryable dataframe. This unified interface
acts as a narrow gateway, channeling disparate information streams into actionable insights.
The impact of this holistic context management is significant. It enhances collaboration, en-
ables faster iteration, and critically, closes the feedback loop between model deployment and
training. By providing a unified solution for capturing, preserving, and leveraging context,
FlorDB empowers ML engineers to work more efficiently, collaboratively, and effectively. As
the field of machine learning continues to evolve, the importance of context management
will only grow, and FlorDB is poised to play a pivotal role in shaping the future of MLOps.
By making FlorDB open-source and readily available, we aim to foster a community-driven
approach to further innovation and improvement in the field of context management for
machine learning.

7.1 Looking Back

The state of play today for ML context management reflects the complex, multi-faceted na-
ture of modern machine learning workflows. What we observe is a hodgepodge of proprietary
systems, each addressing a specific aspect of the ML lifecycle: data catalogs, build systems,
feature stores, model registries, label managers, and more. While these tools individually
serve important functions, their disaggregated nature has led to a critical challenge in the
field. An unfortunate consequence of this fragmented landscape is the lack of a standard
mechanism to assemble a collective understanding of the origin, scope, and usage of the data
that ML applications manage. Despite the critical nature of this metadata, modern ML ap-
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plications have struggled to manage these details comprehensively. This gap has significant
implications for transparency, reproducibility, and efficiency in ML workflows.

Flor began as a tool for debugging long-running training scripts, but with the introduction
of multiversion support it became evident that the applicability was far broader. The key
innovation that emerged from this evolution was FlorDB’s approach to context capture and
management. By providing a familiar lingua franca for managing metadata through its
logging and dataframe API, FlorDB offers a unified interface that cuts across the disparate
tools and systems in the ML ecosystem. This approach transforms the scattered and often
lost metadata of the ML lifecycle into a structured, queryable dataframe, providing a single
point of reference for the basic information about data and its usage.

Perhaps most significantly, FlorDB’s core technology of hindsight logging addresses a
longstanding tension in ML workflows: the conflict between agile exploration and well-
governed metadata capture. This innovative approach allows context to be captured post-
hoc, and even by different individuals than those who build the initial models and pipelines.
It effectively cuts the Gordian knot that has long challenged ML engineers, allowing them
to work quickly and efficiently while still maintaining long-term organization and ensuring
essential context is always captured.

In our vision laid out earlier, Flor streamlines ML engineers’ workflows by integrating
fragmented metadata from scattered systems within a single, unified, lightweight solution.
By providing this narrow gateway — a unified interface for capturing, preserving, and lever-
aging context — FlorDB empowers ML engineers to work more efficiently, collaboratively,
and effectively, all while maintaining the crucial context that underpins their work. As we
look back on the development of FlorDB, we see not just a tool, but a paradigm shift in
how we approach context management in machine learning. It represents a move from frag-
mented, ad-hoc solutions to a holistic, integrated “metadata later” approach that recognizes
the central role of context in the ML lifecycle, and allows for it to be collected post-hoc.

7.2 Next Steps

As we look to the future of FlorDB, our focus will be on increasing adoption and building
a robust open-source community. We plan to develop comprehensive documentation, create
case studies, and engage with both academic and industry partners to promote FlorDB’s
use in diverse AI/ML use-cases. Establishing forums for knowledge sharing and organizing
regular events will be crucial in fostering collaboration among users and contributors.

Continuous development will remain a priority, with regular updates based on community
feedback and emerging ML trends. As machine learning evolves, so too will the challenges
in context management. By maintaining an open, community-driven approach, we’re com-
mitted to adapting FlorDB to meet the changing needs of ML practitioners and researchers.
We’re excited to see how FlorDB will shape the future of MLOps and context management
in the years to come.
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[134] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. “Fast serializable multi-
version concurrency control for main-memory database systems”. In: Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data. 2015,
pp. 677–689.

[135] Andrew Ng et al. Evaluating a model - advice for applying machine learning. url:
https://www.coursera.org/lecture/advanced-learning-algorithms/evaluating-

a-model-26yGi.

[136] Jens Nicolay et al. “Detecting function purity in JavaScript”. In: 2015 IEEE 15th In-
ternational Working Conference on Source Code Analysis and Manipulation (SCAM).
IEEE. 2015, pp. 101–110.



BIBLIOGRAPHY 136

[137] Chris Olah et al. “The building blocks of interpretability”. In: Distill 3.3 (2018), e10.

[138] Yaniv Ovadia et al. “Can You Trust Your Model’s Uncertainty? Evaluating Predictive
Uncertainty Under Dataset Shift”. In: NeurIPS. 2019.

[139] Cosmin Paduraru et al. “Challenges of Real-World Reinforcement Learning:Definitions,
Benchmarks & Analysis”. In: Machine Learning Journal (2021).

[140] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D. Lawrence. “Challenges in Deploying
Machine Learning: A Survey of Case Studies”. In: ACM Comput. Surv. (Apr. 2022).
Just Accepted. issn: 0360-0300. doi: 10.1145/3533378. url: https://doi.org/
10.1145/3533378.

[141] Samir Passi and Steven J Jackson. “Trust in data science: Collaboration, translation,
and accountability in corporate data science projects”. In: Proceedings of the ACM
on Human-Computer Interaction 2.CSCW (2018), pp. 1–28.

[142] Samir Passi and Steven J. Jackson. “Data Vision: Learning to See Through Algo-
rithmic Abstraction”. In: Proceedings of the 2017 ACM Conference on Computer
Supported Cooperative Work and Social Computing (2017).

[143] Panupong Pasupat and Percy Liang. Compositional Semantic Parsing on Semi-Structured
Tables. 2015. arXiv: 1508.00305 [cs.CL].

[144] Adam Paszke et al. “PyTorch: An imperative style, high-performance deep learning
library”. In: Advances in Neural Information Processing Systems. 2019, pp. 8024–
8035.

[145] Kayur Patel et al. “Investigating statistical machine learning as a tool for software de-
velopment”. In: International Conference on Human Factors in Computing Systems.
2008.

[146] Neoklis Polyzotis et al. “Data Lifecycle Challenges in Production Machine Learning:
A Survey”. en. In: SIGMOD Record 47.2 (2018), p. 12.

[147] Neoklis Polyzotis et al. “Data management challenges in production machine learn-
ing”. In: Proceedings of the 2017 ACM International Conference on Management of
Data. 2017, pp. 1723–1726.

[148] Luisa Pumplun et al. “Adoption of machine learning systems for medical diagnostics
in clinics: qualitative interview study”. In: Journal of Medical Internet Research 23.10
(2021), e29301.

[149] PyTorch Documentation. pytorch.org/docs. 2020.

[150] Mark Raasveldt and Hannes Mühleisen. “Duckdb: an embeddable analytical database”.
In: Proceedings of the 2019 International Conference on Management of Data. 2019,
pp. 1981–1984.
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