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Abstract

Collaborative Learning: Aligning Goals and Outcomes

by

Mariel Anne Farrar Werner

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Chair

When multiple clients are collaboratively learning and training a shared model, incentives
problems can arise. The clients may have different learning objectives and application domains,
or they may be competitors whose participation in the learning system could reduce their
competitive advantage. While collaborative learning is a powerful framework that leverages
vast networks of compute and data to generate a better model for all, participants may defect
from collaboration if their incentives are misaligned with the guarantees of the system. In
this dissertation, I examine three areas where accounting for incentives is critical in designing
an effective collaborative learning system. I. When clients in the system have heterogeneous
data distributions and divergent learning tasks, full collaboration within the system can result
in a global model which performs poorly for individual clients. Personalization of the global
model to clusters of clients with similar learning objectives is a solution to this problem. We
propose a personalization method which has optimal convergence guarantees and is provably
robust to malicious attackers. II. Clients who are competitors may not want to participate
in collaborative learning system if their contributions will benefit their competitors and
disadvantage themselves. We design a collaborative learning scheme which guarantees that
clients lose no utility by participating. Additionally, we show that even as clients focus on
increasing their own revenues, their model qualities converge to the Nash bargaining solution,
thus optimizing for joint surplus. III. Finally, privacy concerns are a major deterrent for
joining collaborative learning systems. In the final chapter, we look at privacy dynamics in
systems of learning agents more broadly. Specifically, we study a repeated-interaction game
between potentially antagonistic learning agents – a buyer and a price-discriminating seller –
and show that privacy-protecting behavior endogenously arises at equilibrium.
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Chapter 1

Introduction

Collaborative learning is a powerful distributed optimization framework that allows multiple
clients in a network to train a single global model. It has many desirable properties. 1) Since
clients do not transmit their raw data across the network, only a version of the global model
which they have updated on their data, it guarantees a baseline of privacy. 2) It is efficient,
since no single client in the network has to store data beyond their own. 3) With large enough
networks, it is robust to some clients temporarily pausing updates to the model. However,
while the standard collaborative learning framework performs well for the average client –
returning a model trained on the clients’ aggregated training data – optimizing its utility for the
individual client is an ongoing challenge. Misalignment between the output of a collaborative
learning system and the learning goals of individual clients can dis-incentivize participation,
accounting in part for the slow adoption of collaborative learning in practice despite its
powerful theoretical guarantees. The focus of this dissertation is designing collaborative
learning systems that incentivize wide participation and guarantee good performance on
diverse tasks. I examine three areas of potential misalignment between system-wide guarantees
and individual client objectives and propose methods towards resolution. I. Clients will
only want to join a collaborative learning system if the resulting model performs well on
their individual tasks. We propose ways to personalize the global model to individual client
learning objectives, and do so with optimal convergence guarantees. II. If the clients in the
system are market competitors (e.g. autonomous car companies who are training self-driving
models), a client may not want to participate in the system if doing so would advantage its
competitors. Framing the collaborative learning system as an oligopoly of competitive firms,
we show that its possible for competitors to collaborate and simultaneously increase their
own revenues. III. Standard collaborative learning protocols guarantee a baseline level of
privacy since they exchange models or gradients rather than raw data. However, extensive
research has shown that these protections are insufficient, and in the real world, privacy
concerns are a major deterrent for joining a collaborative learning system, especially if the
clients have sensitive data (e.g. hospitals, banks). As a first step towards studying privacy
dynamics in multi-agent systems, we design a game between potentially antagonistic agents
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(specifically buyers and a price-discriminating seller), and observe that an equilibrium arises
in which the seller is incentivized to respect buyer privacy.

This dissertation consists of three chapters, each devoted to one of the following topics.

I: Personalized Collaborative Learning. The standard framework for collaborative
(specifically federated) learning, FedAvg [1], averages clients’ model weights, creating a global
model which may perform badly for an individual client if there is heterogeneity across the
clients’ data distributions. Similarly, if individual clients perform impactful local updates in
between global model updates, this can cause client drift [2], perturbing the final model away
from the true optimum of the average loss function. An intuitive solution to this problem is
to identify clusters of clients with similar data distributions and generate a model-per-cluster.
Then clients who have similar learning objectives can benefit from collaboration without
influence from dissimilar clients. Taking the ground-truth clustering to be clients who share
a loss-function optimum ([3] show this is theoretically optimal), we iteratively learn the
true clustering of clients while updating their models collaboratively via stochastic gradient
descent. Our algorithm converges at an optimal rate for each individual client. In particular,
the rate depends on three key parameters of the problem: the size of the client’s cluster, the
variance of the gradients within the client’s cluster, and the dissimilarity of the client’s loss
optimum from the optima of other clusters. Additionally, we use a novel clustering method
proposed in [4] which makes our algorithm provably robust against Byzantine attackers. We
empirically verify our theory, showing that on learning tasks where personalization is critical
our method out-performs existing personalization benchmarks and performs significantly
better than standard collaborative learning algorithms.

II: Collaborative Learning among Competitors. Even when clients are competitors,
there are still provable benefits to collaboration. To show this, we frame the collaborative
learning system as an oligopoly in which multiple firms (the clients) compete to sell models
to consumers (e.g. clients could be autonomous vehicle companies who are training models
for their cars). It benefits consumers for the firms to collaborate and share their models with
each other, especially if the firms’ training distributions are complementary. However, firms
have no incentive to collaborate if they lose revenue doing so. We propose a defection-free
algorithm that allows firms to simultaneously collaborate and improve their revenue. In
particular, the firms iteratively share their models with each other and update them in a way
that guarantees no loss of revenue at any step. Even when the firms focus on improving their
own revenues, we show that their model qualities converge to the Nash bargaining solution,
thus optimizing for joint surplus.

III: Privacy Dynamics in Systems of Learning Agents. Privacy is a central area of
concern in collaborative learning. While the standard collaborative setup ensures a light layer
of privacy (clients send model weights or gradients to each other, not raw data), information
about the clients’ data distributions can still be inferred from the weights. This insight has
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inspired extensive work in cryptography and differential privacy seeking to more rigorously
protect client information. We examine how incentives to protect privacy naturally arise from
systems of learning agents. In particular, we look at a game between a seller and multiple
buyers. Both the seller and buyers want to maximize their utility, and if buyers reveal their
true types, the seller could price discriminate in an effort to increase utility. This in turn
would incentivize buyers to lie about their true type. However, we show that over repeated
interactions between the seller and buyers, an equilibrium is reached in which both sides of
the market are incentivized to maintain a certain level of truthfulness and respect for privacy.
In particular, we show that a utility-maximizing equilibrium is achieved in which the seller
ignores buyer information (i.e. respects buyer privacy) with some probability. As a direction
for future work, understanding how privacy protection endogenously arises from interactions
between agents can help to formalize the privacy guarantees of collaborative learning systems.
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Chapter 2

Personalized Collaborative Learning

This chapter is based on Werner et al. 2023, published in Transactions on Machine Learning
Research (2023)

2.1 Introduction

We consider the federated learning setting in which there are N clients with individual
loss functions {fi}i∈[N ] who seek to jointly train a model or multiple models. The defacto
algorithm for problems in this setting is FedAvg [1] which has an objective of the form

x∗
FedAvg = argmin

x∈X

1

N

∑
i∈[N ]

fi(x). (2.1)

From (2.1), we see that FedAvg optimizes the average of the client losses. In many real-
world cases however, clients’ data distributions are heterogeneous, making such an approach
unsuitable since the global optimum (2.1) may be very far from the optima of individual
clients. Rather, we want algorithms which identify clusters of the clients that have relevant
data for each other and that only perform training within each cluster. However, this is
a challenging exercise since 1) it is unclear what it means for data distributions of two
clients to be useful for each other, or 2) how to automatically identify such subsets without
expensive multiple retraining [5]. In this work we propose algorithms which iteratively and
simultaneously 1) identify K clusters amongst the clients by clustering their gradients and 2)
optimize the clients’ losses within each cluster.

Related Work

Personalization via Clustering. Personalization in federated learning has recently enjoyed
tremendous attention (see [6, 7] for surveys). We focus on gradient-based clustering methods
for personalized federated learning. Several recent works propose and analyze clustering

https://arxiv.org/abs/2306.08393
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methods. [8] alternately train a global model with FedAvg and partition clients into smaller
clusters based on the global model’s performance on their local data. [9] and [10] instead
train personalized models from the start (as we do) without maintaining a global model.
They iteratively update K models and, using empirical risk minimization, assign each of
N clients one of the models at every step. In Section 2.2 we analyze these algorithms on
constructed examples and in Section 2.3 compare them to our method.

Since our work is closest to [10], we highlight key similarities and differences. Similarities:
1) We both design stochastic gradient descent- and clustering-based algorithms for personalized
federated learning. 2) We both assume sufficient intra-cluster closeness and inter-cluster
separation of clients for the clustering task (Assumptions 1 and 2 in their work; Assumptions
4 and 5 in ours). 3) Our convergence rates both scale inversely with the number of clients and
the inter-cluster separation parameter ∆. Differences: 1) They assume strong convexity of
the clients’ loss objectives, while our guarantees hold for all smooth (convex and non-convex)
functions. 2) They cluster clients based on similarity of loss-function values whereas we
cluster clients based on similarity of gradients. We show that clustering based on loss-function
values instead of gradients can be overly sensitive to model initialization (see Fig. 2.1b). 3)
Since we determine clusters based on distances in gradient space, we are able to apply an
aggregation rule which makes our algorithm robust to some fraction of malicious clients.
They determine cluster identity based on loss-function value and do not provide robustness
guarantees.

Recently, [11] established lower bounds showing that the optimal strategy is to cluster
clients who share the same optimum. Our algorithms and theoretical analysis are inspired by
this lower-bound, and our gradient-based clustering approach makes our algorithms amenable
to analysis à la their framework.

Multitask learning. Our work is closely related to multitask learning, which simultaneously
trains separate models for different-but-related tasks. [12] and [13] both cast personalized
federated learning as a multitask learning problem. In the first, the per-task models jointly
minimize an objective that encodes relationships between the tasks. In the second, models
are trained locally (for personalization) but regularized to be close to an optimal global
model (for task-relatedness). These settings are quite similar to our setting. However, we
use assumptions on gradient (dis)similarity across the domain space to encode relationships
between tasks, and we do not maintain a global model.

Robustness. Our methods are provably robust in the Byzantine [14, 15] setting, where
clients can make arbitrary updates to their gradients to corrupt the training process. Several
works on Byzantine robust distributed optimization [15–19] propose aggregation rules in
lieu of averaging as a step towards robustness. However, [20, 21] show that these rules are
not in fact robust and perform poorly in practice. [22] are the first to provide a provably
Byzantine-robust distributed optimization framework by combining a novel aggregation
rule with momentum-based stochastic gradient descent. We use a version of their centered-
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clipping aggregation rule to update client gradients. Due to this overlap in aggregation rule,
components of our convergence results are similar to their Theorem 6. However, our analysis
is significantly complicated by our personalization and clustering structure. In particular,
all non-malicious clients in [4, 22] have the same optimum and therefore can be viewed
as comprising a single cluster, whereas we consider multiple clusters of clients (without
necessarily assuming clients are i.i.d. within a cluster). The personalization algorithm in [13]
also has robustness properties, but they are only demonstrated empirically and analyzed on
toy examples.

Recent Empirical Approaches. Two recent works [23, 24] examine the setting in which
clients’ marginal distributions p(x) differ, whereas most prior work only allows their conditional
distributions p(y|x) to differ. One of our experiments (Section 2.4) assumes heterogeneity
between clients’ marginal distributions, while the others (Section 2.4) assume heterogeneity
only between their conditional distributions. In [23], the server maintains a global pool of
modules (neural networks) from which clients, via a routing algorithm, efficiently select and
combine sub-modules to create personalized models that perform well on their individual
distributions. Extending the work of [25], [24] model each client’s joint distribution as a
mixture of Gaussian distributions, with the weights of the mixture personalized to each
client. They then propose a federated Expectation-Maximization algorithm to optimize
the parameters of the mixture model. In general, the contributions and style of our work
and these others differ significantly. We focus on achieving and proving optimal theoretical
convergence rates which we verify empirically, whereas [23] and [24] emphasize empirical
application over theoretical analysis.

Our Contributions

To address the shortcomings in current approaches, we propose two personalized federated
learning algorithms, which simultaneously cluster similar clients and optimize their loss
objectives in a personalized manner. In each round of the procedure, we examine the
client gradients to identify the cluster structure as well as to update the model parameters.
Importantly, ours is the first method with theoretical guarantees for general non-convex
loss functions, and not just restrictive toy settings. We show that our method enjoys both
nearly optimal convergence, while also being robust to some malicious (Byzantine) client
updates. This is again the first theoretical proof of the utility of personalization for Byzantine
robustness. Specifically in this work,

• We show that existing or naive clustering methods for personalized learning, with
stronger assumptions than ours, can fail in simple settings (Fig. 2.1).

• We design a robust clustering subroutine (Algorithm 3) whose performance improves
with the separation between the cluster means and the number of data points being
clustered. We prove nearly matching lower bounds showing its near-optimality (Theorem
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2), and we show that the error due to malicious clients scales smoothly with the fraction
of such clients (Theorem 1).

• We propose two personalized learning algorithms (Algorithm 2 and Algorithm 4) which
converge at the optimal O(1/

√
niT ) rate in T for stochastic gradient descent for smooth

non-convex functions and scale with ni, the number of clients in client i’s cluster.

• We empirically verify our theoretical assumptions and demonstrate experimentally
that our learning algorithms benefit from collaboration, scale with the number of
collaborators, are competitive with SOTA personalized federated learning algorithms,
and are not sensitive to the model’s initial weights (Section 2.4).

2.2 Existing Clustering Methods for Personalized

Federated Learning

Our task at hand in this work is to simultaneously learn the clustering structure amongst
clients and minimize their losses. Current methods do not rigorously check similarity of
clients throughout the training process. Therefore they are not able to correct for early-on
erroneous clustering (e.g. due to gradient stochasticity, model initialization, or the form of
loss-functions far from their optima). In the next section we demonstrate such failure modes
of existing algorithms.

Failure Modes of Existing Methods

The first algorithm we discuss, Myopic-Clustering, does not appear in the existing literature,
but we create it in order to motivate the design of our method (Algorithm 2). In particular,
it is a natural first step towards our method, but has limitations which we correct when
designing our algorithm.

Myopic-Clustering (Algorithm 1). At every step, each client computes their gradient
at their current model and sends the gradient to a central server. The server clusters the
gradients and sends each cluster center to the clients assigned to that cluster. Each client then
performs a gradient descent update on their model with their received cluster center. This is
a natural federated clustering procedure and it is communication-efficient (O(N)). However,
it has two issues: 1) If it makes a clustering mistake at one step, models will be updated
with the wrong set of clients. This can cause models to diverge from their optima, gradients
of clients in the same cluster to drift apart, and gradients of clients in different clusters to
drift together, thus obscuring the correct clustering going forward. Furthermore, these errors
can compound over rounds. 2) Even if Myopic-Clustering clusters clients perfectly at each
step, the clients’ gradients will approach zero as the models converge to their optima. This
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Algorithm 1 Myopic-Clustering

Input Learning rate: η. Initial parameters: {x1,0 = ... = xN,0 = x0}.
1: for round t ∈ [T ] do
2: for client i in [N] do
3: Client i sends gi(xi,t−1) to server.
4: Server clusters {gi(xi,t−1)}i∈[N ], generating cluster centers {vk,t}k∈[K].
5: Server sends vki,t to client i, where ki denotes the cluster to which client i is

assigned.
6: Client i computes update: xi,t = xi,t−1 − ηvki,t.

7: Output: Personalized parameters: {x1,T , ..., xN,T}.

means that clients from different clusters will appear to belong to the same cluster as the
algorithm converges and all clients will collapse into a single cluster.

The following example (Fig. 2.1a) demonstrates these failure modes of Myopic-Clustering.

Let N = 3 and K = 2, with client loss functions

f1(x) =
1

6η
x2

f2(x) =

{
4(x− 1)3 + 3(x− 1)4 + 1 x < 1
1
2η
(x− 1)2 + 1 x ≥ 1,

f3(x) =
1

2η
(x− 2)2,

where η is the learning rate of the algorithm. With this structure, clients {1, 2} share the
same global minimum and belong to the same cluster, and client {3} belongs to its own
cluster. Suppose Myopic-Clustering is initialized at x0 = 1.5. At step 1, the client gradients
computed at x0 = 1.5 are 1/2η, 1/2η, and −1/2η respectively. Therefore, clients {1, 2} are
correctly clustered together and client {3} alone at this step. After updates, the clients’
parameters will next be x1,1 = 1, x2,1 = 1, x3,1 = 2 respectively. At this point, clients {2, 3}
will be incorrectly clustered together since their gradients will both be 0, while client {1}
will be clustered alone. As the algorithm proceeds, clients {2, 3} will always be clustered
together and will remain at x = 1 and x = 2 respectively, while client {1} will converge to its
optimum at x = 0. Consequently, two undesirable things happen: 1) Client {2} gets stuck at
the saddle point at x = 1 which occurred when it was incorrectly clustered with client {3} at
t = 1 and subsequently did not recover. 2) All gradients converge to 0, so at the end of the
algorithm all clients are clustered together.

To further motivate the design choice for our algorithms, we now discuss three clustering-
based algorithms in the literature on personalized federated learning. In particular, we
generate counter-examples on which they fail and show how our algorithm avoids such
pitfalls.
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The first two algorithms IFCA [10] and HypCluster [9] are closely related. They both
cluster loss function values rather than gradients, and like our algorithm they avoid the
myopic nature of Myopic-Clustering by, at each step, computing all client losses at all current
cluster parameters to determine the clustering. However, as we show in the next example
(Fig. 2.1b), they are brittle and sensitive to initialization.

IFCA [10]. Let N = 2, K = 2 with loss functions

f1(x) = (x+ 0.5)2

f2(x) = (x− 0.5)2,

and initialize clusters 1 and 2 at x1,0 = −1.5 and x2,0 = 0 respectively. Given this setup, both
clients initially select cluster 2 since their losses at x2,0 are smaller than at x1,0.

Option I: At x2,0 = 0, the client gradients will average to 0. Consequently the models will
remain stuck at their initializations, and both clients will be incorrectly assigned to cluster 2.

Option II: Both clients individually run τ steps of gradient descent starting at their
selected model x2,0 (i.e. perform the LocalUpdate function in line 18 of IFCA). Since the
clients’ individually updated models will be symmetric around 0 after this process, the server
will compute cluster 2’s model update in line 15 of IFCA as: x2,1 ← 0 = x2,0. Consequently,
the outcome is the same as in Option I: the models never update and both clients are
incorrectly assigned to cluster 2.

HypCluster [9]. This algorithm is a centralized version of Option II of IFCA. The server
alternately clusters clients by loss function value and runs stochastic gradient descent per-
cluster using the clients’ data. It performs as Option II of IFCA on the example above.

Finally, we discuss Clustered Federated Learning, the algorithm proposed in [8], which
runs the risk of clustering too finely, as in the next example (Fig. 2.1c).
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0.5 0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

x0

f1

f2

f3

(a) Myopic-Clustering (η = 0.5). Correct clustering: {1, 2} and {3}. Client {2} gets stuck at
x = 1, not reaching its optimum, and clients {1, 3} converge to their optima. All gradients being 0
at this point, the clients are incorrectly clustered together: {1, 2, 3}.

-2 -1 0 1 2
0

1

2

3

4

5

x1, 0

x2, 0

f1 f2

(b) IFCA/HypCluster. Correct clustering: {1}, {2}. Both clients’ function values are smaller
at initialization point x2,0 than x1,0 causing IFCA/HypCluster to initially cluster them together.
Since the average of the clients’ gradients at x2,0 is 0, the models never update and the algorithm
thinks the initial erroneous clustering, {1, 2} is correct.

-0.5 0 0.5 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

x1, 0 = x2, 0f1 f2

(c) Clustered Federated Learning. Correct clustering: {1}, {2, 3} (client 3 not drawn due to
its stochastic gradient – details on pg. 5). Clustered FL averages gradients of clients {1} and {2}
to 0, clustering them together, and with non-0 probability clusters {3} separately due to its
stochastic gradient. Based on this initial erroneous, the algorithm partitions the clients {1, 2} and
{3} and recursively runs on each group, never recovering the correct clustering.

Figure 2.1: We show how existing personalized FL algorithms miscluster and fail to converge
on constructed examples.

Clustered Federated Learning [8]. Clustered Federated Learning operates by recursively
bi-partitioning the set of clients based on the clients’ gradient values at the FedAvg optimum.
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Consider the following example. Let N = 3 and K = 2 with client gradients

g1(x) = x

g2(x) = x− 1/2

g3(x) =

{
x w.p. 1/2

x− 1 w.p. 1/2.

Therefore the correct clustering here is {1} and {2, 3}. The FedAvg optimum is x∗
FedAvg = 1/4,

at which the clients’ gradient values are g1(1/4) = 1/4, g2(1/4) = −1/4 and g3 = 1/4 w.p. 1/2.
Based on this computation, Clustered Federated Learning partitions the client set into {1, 2}
and {3} w.p. 1/2 and then proceeds to run the algorithm separately on each sub-cluster.
Therefore, the algorithm never corrects its initial error in separating clients {2} and {3}.

The behaviour of these algorithms motivates our method Federated-Clustering, which by
rigorously checking client similarity at every step of the training process can recover from
past clustering errors.

2.3 Proposed Method: Federated-Clustering

At a high level, Federated-Clustering works as follows. Each client i maintains a personalized
model which, at every step, it broadcasts to the other clients j ̸= i. Then each client j
computes its gradient on clients i’s model parameters and sends the gradient to client i.
Finally, client i runs a clustering procedure on the received gradients, determines which other
clients have gradients closest to its own at its current model, and updates its current model
by averaging the gradients of these similar clients. By the end of the algorithm, ideally each
client has a model which has been trained only on the data of similar clients.

The core of Federated-Clustering is a clustering procedure, Threshold-Clustering (Algo-
rithm 3), which identifies clients with similar gradients at each step. This clustering procedure,
which we discuss in the next section, has two important properties: it is robust and its error
rate is near-optimal.

Notation. For an arbitrary integer N , we let [N ] = {1, ..., N}. We take a ≳ b to mean
there is a sufficiently large constant c such that a ≥ cb, a ≲ b to mean there is a sufficiently
small constant c such that a ≤ cb, and a ≈ b to mean there is a constant c such that a = cb.

We write i ∼ j if clients i and j belong to the same cluster, i
i.i.d.∼ j if they belong to the same

cluster and their data is drawn independently from identical distributions (we will sometimes

equivalently write zi
i.i.d.∼ zj, where zi and zj are arbitrary points drawn from clients i’s and

j’s distributions), and i ̸∼ j if they belong to different clusters. For two different clients i
and j, same cluster or not, we write i ̸= j. Finally, ni denotes the number of clients in client
i’s cluster, δi = ni/N denotes the fraction of clients in client i’s cluster, and βi denotes the
fraction of clients that are malicious from client i’s perspective.
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Analysis of Clustering Procedure

Given the task of clustering N points into K clusters, at step l our clustering procedure has
current estimates of the K cluster-centers, v1,l, ..., vK,l. To update each estimate vk,l+1 ← vk,l,
it constructs a ball of radius τk,l around vk,l. If a point falls inside the ball, the point retains
its value; if it falls outside the ball, its value is mapped to the current cluster-center estimate.
The values of all the points are then averaged to set vk,l+1 (update rule (2.4)). The advantage
of this rule is that it is very conservative. If our algorithm is confident that its current
cluster-center estimate is close to the true cluster mean (i.e. there are many points nearby),
it will confidently improve its estimate by taking a large step in the right direction (where
the step size and direction are determined mainly by the nearby points). If our algorithm is
not confident about being close to the cluster mean, it will tentatively improve its estimate
by taking a small step in the right direction (where the step size and direction are small since
the majority of points are far away and thus do not change the current estimate).

To analyze the theoretical properties of this procedure, we look at a natural setting in
which clients within the same cluster have i.i.d. data (for analysis of our federated learning
algorithm, we will relax this strong notion of intra-cluster similarity). In particular, in our
setting there are N points {z1, ..., zN} which can be partitioned into K clusters within which
points are i.i.d.. We assume the following.

• Assumption 1 (Intra-cluster Similarity): For all i ∼ j,

zi
i.i.d.∼ zj.

• Assumption 2 (Inter-cluster Separation): For all i ̸∼ j,

∥Ezi − Ezj∥2 ≥ ∆2.

• Assumption 3 (Bounded Variance): For all zi,

E∥zi − Ezi∥2 ≤ σ2.

Theorem 1. Suppose there N points {zi}i∈[N ] for which Assumptions [1-3] hold with inter-
cluster separation parameter ∆ ≳ σ/δi. Running Algorithm 3 for

l ≳ max

{
1,max

i∈[N ]

log(σ/∆)

log(1− δi/2)

}
steps with fraction of malicious clients βi ≲ δi and thresholding radius τ ≈

√
δiσ∆ guarantees

that

E∥vki,l − Ezi∥2 ≲
σ2

ni

+
σ3

∆
+ βiσ∆. (2.2)
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Proof. See 2.6.

Supposing βi = 0, if we knew the identity of all points within zi’s cluster, we would simply
take their mean as the cluster-center estimate, incurring estimation error of σ2/ni (i.e. the
sample-mean’s variance). Since we don’t know the identity of points within clusters, the
additional factor of σ3/∆ in (2.2) is the price we pay to learn the clusters. This additional term
scales with the difficulty of the clustering problem. If true clusters are well-separated and/or
the variance of the points within each cluster is small (i.e. ∆ is large, σ2 is small), then
the clustering problem is easier and our bound is tighter. If clusters are less-well-separated
and/or the variance of the points within each cluster is large, accurate clustering is more
difficult and our bound weakens.

Setting τ . To achieve the rate in (2.2), we set τ ≈
√
σ∆, which is the geometric mean of

the standard deviation, σ, of points belonging to the same cluster and the distance, ∆, to a
different cluster. The intuition for this choice is that we want the radius for each cluster to be
at least as large as the standard deviation of the points belonging to that cluster in order to
capture in-cluster points. The radius could be significantly larger than the standard deviation
if ∆ is large, thus capturing many non-cluster points as well. However, the conservative
nature of our update rule (2.4) offsets this risk. By only updating the center with a step-size
proportional to the fraction of points inside the ball, it limits the influence of any mistakenly
captured points.

Threshold-Clustering has two important properties which we now discuss: it is Byzantine
robust and has a near-optimal error rate.

Robustness

We construct the following definition to characterize the robustness of Algorithm 3.

Definition 1 (Robustness). An algorithm A is robust if the error introduced by bad clients
can be bounded i.e. malicious clients do not have an arbitrarily large effect on the convergence.
Specifically, for a specific objective, let E1 be the base error of A with no bad clients, let β be
the fraction of bad clients, and let E2 be some bounded error added by the bad points. Then A
is robust if

Err(A) ≤ E1 + βE2.

Threat model. Our clustering procedure first estimates the centers of the K clusters from
the N points and constructs a ball of radius τk around the estimated center of each cluster k.
If a point falls inside the ball, the point retains its value; if it falls outside the ball, its value is
mapped to the current cluster-center estimate. Following the update rule (2.4), the values of
all the points are averaged to update the cluster-center estimate. Therefore, a bad point that
wants to distort the estimate of the k’th cluster’s center has the most influence by placing
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itself just within the boundary of the ball around that cluster-center, i.e. at τk-distance from
the cluster-center.

From (2.2) we see that the base squared-error of Algorithm 3 in estimating zi’s cluster-
center is ≲ σ2/ni + σ3/∆, and that the bad points introduce extra squared-error of order σ∆.
Given our threat model, this is exactly expected. The radius around zi’s cluster-center is
order

√
σ∆. Therefore, bad points placing themselves at the edge of the ball around zi’s

cluster-center estimate will be able to distort the estimate by order σ∆. The scaling of this
extra error by βi satisfies our definition of robustness, and the error smoothly vanishes as
βi → 0.

Near-Optimality

The next result shows that the upper bound (2.2) on the estimation error of Algorithm 3
nearly matches the best-achievable lower bound. In particular, it is tight within a factor of
σ/∆.

Theorem 2 (Near-optimality of Threshold-Clustering). For any algorithm A, there exists
a mixture of distributions D1 = (µ1, σ

2) and D2 = (µ2, σ
2) with ∥µ1 − µ2∥ ≥ ∆ such that the

estimator µ̂1 produced by A has error

E∥µ̂1 − µ1∥2 ≥ Ω

(
σ4

∆2
+

σ2

ni

)
.

Proof. See 2.6.

Federated-Clustering on Examples in Section 2.2

We describe how Federated-Clustering successfully handles the examples in Section 2.2.

Example 1: Fig. 2.1a. Federated-Clustering checks at every step the gradient values of
all N clients at the current parameters of all K clusters. This verification process avoids the
type of errors made by Myopic-Clustering. For instance, at t = 1 when Myopic-Clustering
makes its error, Federated-Clustering computes the gradients of all clients at client {1}’s
current parameters: g1(1) = 1/3η, g2(1) = 0, and g3(1) = −1/η. Therefore it correctly clusters
{1, 2} together at this point, and client {2}’s parameters update beyond the saddle-point
and converge to the global minimum at x = 0.

Example 2: Fig. 2.1b. By clustering clients based on gradient instead of loss value,
Federated-Clustering initially computes the clients’ gradients of +1 and −1 respectively at
x2,0 = 0, and given the continued separation of their gradients around 0 as the algorithm
converges, correctly identifies that they belong to different clusters.
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Example 3: Fig. 2.1c. Recall how Clustered FL fails on this example. Based on an initial
clustering error, it partitions the clients incorrectly early on and then evaluates each subset
separately going forward, thus never recovering the correct clustering. Our algorithm avoids
this type of mistake by considering all clients during each clustering at every step.

Analysis of Federated-Clustering

We now proceed with the analysis of Federated-Clustering. First, we establish necessary
assumptions: intra-cluster similarity, inter-cluster separation, bounded variance of stochastic
gradients, and smoothness of loss objectives.

• Assumption 4 (Intra-cluster Similarity): For all x, i ∼ j, and some constant A ≥ 0,

∥∇fi(x)−∇f̄i(x)∥2 ≤ A2∥∇f̄i(x)∥2,

where f̄i(x) ≜ 1
ni

∑
j∼i fj(x).

• Assumption 5 (Inter-cluster Separation): For all x, i ̸∼ j, and some constant D ≥ 0,

∥∇fi(x)−∇fj(x)∥2 ≥ ∆2 −D2∥∇fi(x)∥2.

This formulation is motivated by the information theoretic lower-bounds of [11] who show
that the optimal clustering strategy is to group all clients with the same optimum (even if they
are non-iid). Assumptions 4 and 5 are in fact a slight strengthening of this very statement.
To see this, note that for a client with loss function fi(x), belonging to cluster f̄i(x) with a
first-order stationary points x̄∗, Assumption 4 implies that if ∇f̄i(x̄∗) = 0 ⇒ ∇fi(x̄∗) = 0,
and so x̄∗ is also a stationary point for client i. Thus, all clients within a cluster have shared
stationary points. Assumption 4 further implies that the gradient difference elsewhere away
from the optima is also bounded. This latter strengthening is motivated by the fact the the
loss functions are smooth, and so the gradients cannot diverge arbitrarily as we move away
from the shared optima. In fact, it is closely related to the strong growth condition (equation
(1) in [26]), which is shown to be a very useful notion in practical deep learning. We also
empirically verify its validity in Fig. 2.2 (left).

Similarly, Assumption 5 is a strengthening of the condition that clients across different
clusters need to have different optima. For two clients i and j who belong to different clusters
and with first-order stationary points x∗

i and x∗
j , Assumption 5 implies that ∥∇fi(x∗

j)∥2 ≥ ∆
and ∥∇fj(x∗

i )∥2 ≥ ∆. Thus, they do not share any common optimum. Similar to the
Assumption 4, Assumption 5 also describes what happens elsewhere away from the optima -
it allows for the difference between the gradients to be smaller than ∆ as we move away from
the stationary points. Again, this specific formulation is motivated by smoothness of the loss
function, and empirical validation (Fig. 2.2, right).

In the following lemma, we give a specific setting in which Assumptions 4 and 5 hold.
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Lemma 1. Suppose losses fi are L-smooth and µ-strongly convex and clients in the same
cluster have the same optima. Then for all clients i

∥∇fi(x)−∇f̄i(x)∥2 ≤ (2L/µ)2∥∇f̄i(x)∥2,

and for clients i ̸∼ j in different clusters

∥∇fi(x)−∇fj(x)∥2 ≥
1

2
(max

j ̸∼i
∥∇fj(x∗

i )∥)2 − 2(1 + (L/µ)2)∥∇fi(x)∥2

for all x.

Proof. See 2.6.

• Assumption 6 (Bounded Variance of Stochastic Gradients): For all x,

E∥gi(x)−∇fi(x)∥2 ≤ σ2,

where E[gi(x)|x] = ∇fi(x) and each client i’s stochastic gradients gi(x) are independent.

• Assumption 7 (Smoothness of Loss Functions): For any x, y,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.

Theorem 3. Let Assumptions [4-7] hold with inter-cluster separation parameter

∆ ≳ max(1,A4)max(1,D2)σ/δi.

Under these conditions, suppose we run Algorithm 2 for T rounds with learning rate η ≤ 1/L,
fraction of malicious clients βi ≲ δi, and batch size

|Bi| ≳ min(
√

max(1, A2)(σ2/ni + σ3/∆ + βiσ∆)mi,mi),

where mi is the size of client i’s training dataset. If, in each round t ∈ [T ], we cluster with
radius τ ≈

√
δiσ∆ for

l ≥ max

{
1,max

i∈N ]

log(σ/
√

|Bi|∆)

log(1− δi/2)

}
steps, then

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲
√

max(1, A2)(σ2/ni + σ3/∆ + βiσ∆)

T
. (2.3)

Proof. See 2.6.
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We note a few things. 1) The rate in (2.3) is the optimal rate in T for stochastic gradient
descent on non-convex functions [27]. 2) The dependence on

√
σ2/ni is intuitive, since

convergence error should increase as the variance of points in the cluster increases and
decrease as the number of points in the cluster increases. It is also optimal as shown in
[11]. 3) The dependence on

√
βiσ∆ is also expected. We choose a radius τ ≈

√
σ∆ for

clustering. Given our threat model, the most adversarial behavior of the bad clients from
client i’s perspective is to place themselves at the edge of the ball surrounding the estimated
location of i’s gradient, thus adding error of order

√
βiσ∆. When there are no malicious

clients, this extra error vanishes. 4) If the constraint on batch-size in Theorem 3 requires
|Bi| = mi, then the variance of stochastic gradients vanishes and the standard O(1/T) rate
for deterministic gradient descent is recovered (see equation (2.22) in proof). We also note
that as long as there are no malicious clients (i.e. βiσ∆ term is 0), there are a large enough
number of clients ni in the cluster, and inter-cluster separation ∆ is sufficiently larger than
the inter-cluster-variance σ2, then minimum-batch size will likely be less than mi.

If losses are smooth and strongly convex, our proof techniques for Theorem 3 get an
O(1/T) convergence rate with the specific constants A, D, and ∆ stated in Lemma 1.

Privacy. Since Federated-Clustering requires clients to compute distances between gradients,
they must share their models and gradients which compromises privacy. The focus of our
work is not on optimizing privacy, so we accommodate only the lightest layer of privacy for
federated learning: sharing of models and gradients rather than raw data. Applying more
robust privacy techniques is a direction for future work. In the meantime, we refer the reader
to the extensive literature on differential privacy, multi-party computation, and homomorphic
encryption in federated learning.

Communication Overhead. At each step, Federated-Clustering requires O(N2) rounds
of communication since each client sends its model to every other client, evaluates its own
gradient at every other client’s model and then sends this gradient back to the client who
owns the model. We pay this communication price to mitigate the effect of past clustering
mistakes. For example, say at one round a client mis-clusters itself and updates its model
incorrectly. At the next step, due to communication with all other clients, it can check
the gradients of all other clients at its current model, have a chance to cluster correctly at
this step, and update its model towards the optimum, regardless of the previous clustering
error. Recall on the other hand that an algorithm like Myopic-Clustering (Alg. 1), while
communication efficient (N rounds per step), may not recover from past clustering mistakes
since it doesn’t check gradients rigorously in the same way. In the next section, we propose a
more communication-efficient algorithm, Momentum-Clustering (Algorithm 4), which clusters
momentums instead of gradients (reducing variance and thus clustering error) and requires
only O(N) communication rounds per step.
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Algorithm 2 Federated-Clustering

Input Learning rate: η. Initial parameters for each client: {x1,0, ..., xN,0}. Batch-size |Bi|
(see Theorem 3 for a lower bound on this quantity)1

1: for client i ∈ [N ] do
2: Send xi,0 to all clients j ̸= i.

3: for round t ∈ [T ] do
4: for client i in [N] do
5: Compute gi(xj,t−1) with batch-size |Bi|2and send to client j for all j ̸= i ∈ [N ].
6: Compute vi,t ← Threshold-Clustering({gj(xi,t−1)}j∈[N ]; 1 cluster; gi(xi,t−1)).
7: Update parameter: xi,t = xi,t−1 − ηvi,t.
8: Send xi,t to all clients j ̸= i.

9: Output: Personalized parameters: {x1,T , ..., xN,T}.

Algorithm 3 Threshold-Clustering

Input Points to be clustered: {z1, ..., zN}. Number of clusters: K. Cluster-center initializa-
tions: {v1,0, ..., vK,0}.
1: for round l ∈ [M ] do
2: for cluster k in [K] do
3: Set radius τk,l.
4: Update cluster-center estimate:

vk,l =
1

N

N∑
i=1

(
zi1(∥zi − vk,l−1∥ ≤ τk,l) + vk,l−11(∥zi − vk,l−1∥ > τk,l)

)
. (2.4)

5: Output: Cluster-center estimates {v1 = v1,M , ..., vK = vK,M}.

Improving Communication Overhead with Momentum

Federated-Clustering is inefficient, requiring N2 rounds of communication between clients
at each step (each client computes their gradient at every other client’s parameter). Since
momentums change much more slowly from round-to-round than gradients, a past clustering
mistake will not have as much of a harmful impact on future correct clustering and convergence
as when clustering gradients.

In Algorithm 4, at each step each client computes their momentum and sends it to the
server. The server clusters the N momentums, computes an update per-cluster, and sends

1The batch-size constraint reduces variance of the stochastic gradients (Lemma 7). In Section 2.3 we
propose another algorithm Momentum-Clustering for which there is no batch-size restriction and which
reduces variance by clustering momentums instead of gradients.

2gi(xj,t−1) = 1
|Bi|

∑
b gi(xj,t−1; b), where gi(xj,t−1; b) is the gradient computed using sample b in the

batch.
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the update to the clients in each cluster. Therefore, communication is limited to N rounds
per step.

Analysis of Momentum-Clustering

The analysis of the momentum based method requires adapting the intra-cluster similarity
and inter-cluster separation assumptions from before.

• Assumption 8 (Intra-cluster Similarity): For all i ∼ j and t ∈ [T ],

mi,t
i.i.d.∼ mj,t,

where mi,t is defined as in (2.6).

• Assumption 9 (Inter-cluster Separation): For all i ̸∼ j and t ∈ [T ],

∥Emi,t − Emj,t∥2 ≥ ∆2.

Note that the intra-cluster similarity assumption in this momentum setting is stronger than
in the gradient setting (Assumption 4): namely we require that the momentum of clients
in the same cluster be i.i.d. at all points. This stronger assumption is the price we pay
for a simpler and more practical algorithm. Finally, due to the fact that momentums are
low-variance counterparts of gradients (Lemma 14), we can eliminate constraints on the batch
size and still achieve the same rate.

Theorem 4. Let Assumptions [6-9] hold with inter-cluster separation parameter ∆ ≳ σ/δi.
Under these conditions, suppose we run Algorithm 4 for T rounds with learning rate η ≲

min

{
1
L
,
√

E(fi(xi,0)−f∗
i )

LT (σ2/ni+σ3/∆)

}
(f ∗

i is the global minimum of fi), fraction of bad clients βi ≲ δi, and

momentum parameter α ≳ Lη. If, in each round t ∈ [T ], we cluster with radius τ ≈
√
δiσ∆

for

l ≥ max

{
1,max

i∈N ]

log(
√
ασ/∆)

log(1− δi/2)

}
steps, then for all i ∈ [N ]

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲
√

σ2/ni + σ3/∆

T
+

βiσ∆

T
1
4 (σ2/ni + σ3/∆)

1
4

. (2.5)

Proof. See 2.6.

We see from (2.5) that when there are no malicious clients (βi = 0), Momentum-Clustering
achieves the same

√
σ2/niT convergence rate observed in (2.3), with no restrictions on the

batch size.
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Algorithm 4 Momentum-Clustering

Input Learning rate: η. Initial parameters: {x1,0 = ... = xN,0}.
1: for round t ∈ [T ] do
2: for client i in [N] do
3: Client i sends

mi,t = αgi(xi,t−1) + (1− α)mi,t−1 (2.6)

to server.
4: Server generates cluster centers

{vk,t}k∈[K] ← Threshold-Clustering({mi,t};K clusters; {vk,t−1}k∈[K])

and sends vki,t to client i, where ki denotes the cluster to which i is assigned in this step.
5: Client i computes update: xi,t = xi,t−1 − ηvki,t.

6: Output: Personalized parameters: {x1,T , ..., xN,T}.
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Figure 2.2: Here, we show empirically on a synthetic dataset that the intra-cluster variance
ratio is upper-bounded by a constant (left subplot) and the inter-cluster variance that is
lower-bounded by a constant (right subplot).

2.4 Experiments

In this section, we first use a synthetic dataset to verify the assumptions and rates claimed
in our theoretical analysis in the previous section; and second, we use the MNIST dataset
[28] and CIFAR dataset [29] to compare our proposed algorithm, Federated-Clustering, with
existing state-of-the-art federated learning algorithms. All algorithms are implemented with
PyTorch [30], and code for all experiments is available at this github repo.

https://github.com/liehe/PRFL
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Synthetic dataset

Construction of synthetic dataset. We consider a synthetic linear regression task with
squared loss for which we construct K = 4 clusters, each with ni = 75 clients. Clients
in cluster k ∈ [K] share the same minimizer x⋆

k ∈ Rd. For each client i in cluster k, we
generate a sample matrix Ai ∈ Rd×n from N (k,1d×n) and compute the associated target as
yi = A⊤

i x
⋆
k ∈ Rn. We choose the model dimension d = 10 to be greater than the number of

local samples n = 9 such that the local linear system yi = A⊤
i x is overdetermined and the

error ∥x⋆ − x∥22 is large. A desired federated clustering algorithm determines the minimizer
by incorporating information from other clients j ∼ i in the same cluster.

Estimating constants in Assumptions 4 and 5. In Fig. 2.2, using the above synthetic
dataset

• we estimate the intra-cluster variance ratio A2 by finding the upper bound of (2.7)

∥∇fi(x)−∇f̄i(x)∥22
∥∇f̄i(x)∥22

; (2.7)

• we estimate the inter-cluster variance ∆2 by setting D = 0 and computing the lower
bound of (2.8)

∥∇fi(x)−∇fj(x)∥22. (2.8)

We run Federated-Clustering with perfect clustering assignments and estimate these
bounds over time. The result is shown in Fig. 2.2 where grey lines are the quantities in (2.7)
and (2.8) for individual clients, black lines are those quantities averaged within clusters, and
red dashed lines are empirical bounds on the quantities. The left figure demonstrates that the
intra-cluster variance ratio does not grow with time and can therefore reasonably be upper
bounded by a constant A2. Similarly, the right figure shows that the inter-cluster variance
can be reasonably lower bounded by a positive constant ∆2. These figures/prfl empirically
demonstrate that Assumptions 4 and 5 are realistic in practice.

Performance. In Fig. 2.3, we compare the performance of our algorithm Federated-
Clustering (FC) with several baselines: standalone training (Local), IFCA [10], FedAvg
(Global) [1], and distributed training with ground truth (GT) cluster information. We
consider the synthetic dataset from before, starting with cluster parameters (K,ni) = (4, 4)
and observe performance when increasing parameters to ni = 16 and K = 16 separately. In
each step of optimization, we run Threshold-Clustering for l = 10 rounds so that heuristically
the outputs are close enough to cluster centers, cf. Fig. 2.7. We tune the learning rate
separately for each algorithm through grid search, but preserve all other algorithmic setups.
Our algorithm outperforms the non-oracle baselines in all cases. While Federated-Clustering
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Figure 2.3: The performance of our algorithm vs. baselines on a synthetic dataset. When ni

is small, the ground-truth outperforms our algorithm, but this difference vanishes with
increasing ni. This behavior is consistent with the dependence of the convergence rate on ni

in Theorem 3: increasing ni improves convergence.

Table 2.1: Comparison of test losses and accuracies for federated personalization algorithms
on MNIST. FC outperforms all non-oracle baselines on two learning tasks.

Rotation Private label

Acc.(%) Loss Acc.(%) Loss

Local 71.3 0.517 75.2 0.489
Global 46.6 0.631 22.2 0.803
Ditto 62.0 0.576 61.7 0.578
IFCA 54.6 0.588 65.4 0.531
KNN 52.1 2.395 63.2 1.411

FC (ours) 75.4 0.475 77.0 0.468

GT (oracle) 84.7 0.432 85.1 0.430

is slightly worse than ground truth when (K,ni) = (4, 4), their performances are almost
identical in the middle subplot for ni = 16. This observation is consistent with the ni-scaling
observed in (2.3): as the number of clients-per-cluster increases, convergence improves.

MNIST experiment

In this section, we compare Federated-Clustering to existing federated learning baselines on
the MNIST dataset. The dataset is constructed as follows, similar to [10]. The data samples
are randomly shuffled and split into K = 4 clusters with ni = 75 clients in each cluster. We
consider two different tasks: 1) the rotation task transforms images in cluster k by k ∗ 90
degrees; 2) the private label task transforms labels in cluster k with Tk(y) : y 7→ (y + k
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mod 10), such that the same image may have different labels from cluster-to-cluster.

Algorithm hyperparameters. For these two experimental tasks, in addition to the
baselines from our synthetic experiment, we include the KNN-personalization [25] and
Ditto [13] algorithms which both interpolate between a local and global model. The KNN-
personalization is a linear combination of a global model, trained with FedAvg [1], and a local
model which is the aggregation of nearest-neighbor predictions in the client’s local dataset
to the global model’s prediction. We set the coefficients of this linear combination to be
λknn = 0.5 and λknn = 0.9 for the rotation and private label tasks, respectively. The Ditto
objective is a personalized loss with an added regularization term that encourages closeness
between the personalized and global models. Since tuning this regularization parameter λditto

leads to a degenerated ”Local” training where λditto = 0, we fix λditto = 1 for both rotation
and private label tasks. To reduce the computation cost of our algorithm, in each iteration
we randomly divide the N clients into 16 subgroups and apply Federated-Clustering to each
subgroup simultaneously. The clipping radius τk,l for each cluster k is adaptively chosen to
be the 20th-percentile of distances to the cluster-center.

Performance. The experimental results are listed in Table 2.1. Since an image can
have different labels across clusters in the private label task, a model trained over the pool
of all datasets only admits inferior performance. Therefore, distributed training algorithms
that maintain a global model, such as FedAvg, Ditto, and KNN, perform poorly compared
to training alone. On the other hand, our algorithm Federated-Clustering outperforms
standalone training and all personalization baselines. This experiment suggests that our
algorithm successfully explored the cluster structure and benefited from collaborative training.

CIFAR experiment

In this section, we evaluate the efficacy of various clustering algorithms on the CIFAR-10
and CIFAR-100 datasets [29].

CIFAR-10

For the CIFAR-10 experiment, we create 4 clusters, each containing 5 clients and transform
the labels in each cluster such that different clusters can have different labels for the same
image (the private label task in Section 2.4). We train a VGG-16 model [31] with batch size
32, learning rate 0.1, and momentum 0.9. The outcomes are presented in Fig. 2.4. The left
subplot illustrates that collaborative clustering algorithms designed for global model training
(e.g., Ditto, IFCA, Global) yield suboptimal models, as not all participating clients benefit
from each other. On the other hand, Local and GroundTruth training are not influenced by
the conflicting labels from other clusters so they significantly outperform Ditto and IFCA.
Our Federated-Clustering (FC) algorithm also excludes such adversarial influence and, more
importantly, outperforms Local training, showing that FC benefits from collaboration.
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Figure 2.4: Performance of algorithms on CIFAR-10 dataset with the private labels task.
Left: Relative accuracy of clustering algorithms. Algorithms optimized for global model
performance, such as Ditto, IFCA, Global (FedAvg), perform poorly on personalization. FC
outperforms Local training, showing that it benefits from collaboration between clients, and
is competitive with GroundTruth. Middle: Impact of thresholding radius τ on accuracy. τ
is the percentile of gradients distances from the cluster-center. Right: Impact of local
gradient steps between two clustering calls. Early on in training, clusters are less identifiable
so local optimization helps but these gains lessen later on when gradients from different
clusters drift apart and clusters are better defined.

In the middle subplot, we examine the impact on accuracy of varying the thresholding
radius τ (i.e. τ is set as the percentile of gradient distances from the cluster-center, so smaller
percentile corresponds to smaller τ). Our findings indicate that adopting a more conservative
value for τ (lower percentile) does not substantially compromise accuracy.

The right subplot demonstrates the behavior of Federated-Clustering when the clustering
oracle is invoked intermittently. The results suggest that increasing the number of local
iterations boosts the learning curve early in training when gradients from different clusters
are close together and clusters are ill-defined. However, this improvement plateaus when
gradients become separated and clusters become well-defined.

CIFAR-100

We consider the CIFAR-100 dataset distributed over 10 clusters so that each cluster contains
10 unique labels. In each cluster, we set 10 clients with IID data. We use a VGG-8 model
for training and the same hyperparameters as those in the CIFAR-10 experiment (Section
2.4) and report the results in Fig. 2.5. While clients’ data within each cluster share similar
features, a small model like VGG-8 cannot sufficiently benefit from intra-cluster collaboration.
Therefore the performance of Global training plateaus at a very low level while in contrast
Federated-Clustering (FC) still benefits from collaboration and continues to improve over
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Figure 2.5: Performance of
Federated-Clustering (FC) on
the CIFAR-100 dataset. The
Global (FedAvg) accuracy
plateaus while FC continually
improves.
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Figure 2.6: Performance of Federated-Clustering (FC)
against a large gradient attack (left) and bit-flipping
attack (right). FC is robust to these attacks and
significantly outperforms Global (FedAvg) performance.

time.

Defense against Byzantine attacks

Byzantine attacks, in which attackers have full knowledge of the system and can deviate
from the prescribed algorithm, are prevalent in distributed environments [14]. There are
many forms of Byzantine attacks. For example, our private label setting in Sections 2.4 and
2.4 corresponds to the label-flipping attack in the Byzantine-robustness literature, since a
malicious client can try to corrupt the model by assigning the wrong label to an image in
training data.

In this section, we investigate two other attacks: Byzantine workers send either very
large gradients or gradients with opposite signs. Using the MNIST dataset with the private
label task, we set 4 clusters with 50 non-malicious clients each (so non-malicious clients from
different clusters can have private labels) and add 50 Byzantine works to each cluster. We
demonstrate the robustness of Federated-Clustering (FC) in Fig. 2.6. In both cases, Global
training suffers from serious model degradation while FC successfully reaches high accuracy
under these attacks, demonstrating its robustness.
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Figure 2.7: The average distance to cluster centers as a function of the number of clipping
iterations l. The distance between cluster-centers (∆) is fixed while inter-cluster standard
deviation σ differs.

Empirical Study on Clipping Iterations in Algorithm 3

We employ Algorithm 3 (Threshold-Clustering) on datasets to discern the effectiveness of
the clipping iterations in identifying optimal cluster centers. These datasets share the same
groundtruth cluster centers, and thus the same ∆, but vary in their inter-cluster standard
deviations, with σ values of 0.5, 1, 2, 4. Each dataset is made up of 90 ten-dimensional samples
from 10 clusters, generated using the scikit-learn package [32]. For each iteration l within
cluster k, the clipping radius τk,l is defined as the 10th percentile of gradients’ distances from
the cluster-center. We repeat this experimental setup ten times for consistency.

The outcomes, presented in Fig. 2.7, show that the average distances initially decrease
rapidly, then steadily approach convergence. To identify the elbow of a given curve f , we use
the formula f(l)−f(l−1)

f(l−1)−minl f(l)
, where curves post-elbow are notably flat. These elbows elucidate

the correlation between σ and l, indicating that for a fixed dataset (and its corresponding σ),
one can pinpoint the minimal iterations l needed for convergence. Notably, this observation
appears to align with the l ≳ log σ lower bound stated in Theorem 1.

2.5 Conclusion

We develop gradient-based clustering algorithms to achieve personalization in federated
learning. Our algorithms have optimal convergence guarantees. They asymptotically match
the achievable rates when the true clustering of clients is known, and our analysis holds under
light assumptions (e.g., for all smooth convex and non-convex losses). Furthermore, our
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algorithms are provably robust in the Byzantine setting where some fraction of the clients can
arbitrarily corrupt their gradients. Future directions involve developing bespoke analysis for
the convex-loss case and developing more communication-efficient versions of our algorithms.
Further, our analysis can be used to show that our algorithms are incentive-compatible and
lead to stable coalitions as in [33]. This would form a strong argument towards encouraging
participants in a federated learning system. Investigating such incentives and fairness concerns
is another promising future direction.

2.6 Proofs of Theoretical Results

Proof of Theorem 1

First we establish some notation.

Notation.

• Gi are the good points and Bi the bad points from point zi’s perspective. Therefore
|Gi|+ |Bi| = N .

• ki denotes the cluster to which client i is assigned at the end of Threshold-Clustering.

• To facilitate the proof, we introduce a variable c2ki,l that quantifies the distance from
the cluster-center-estimates to the true cluster means at each step of thresholding.
Specifically, for client i’s cluster ki at round l of Threshold-Clustering, we set

c2ki,l = E∥vki,l−1 − Ezi∥2.

• For client i’s cluster ki at round l of Threshold-Clustering, we use thresholding radius

τ 2ki,l ≈ c2ki,l + δiσ∆.

• We introduce a variable yj,l to denote the points clipped by Threshold-Clustering:

vk,l =
1

N

∑
j∈[N ]

zj1(∥zj − vk,l−1∥ ≤ τk,l) + vk,l−11(∥zj − vk,l−1∥ > τk,l)︸ ︷︷ ︸
yj,l

.

Proof of Theorem 1. We prove the main result with the following sequence of inequalities,
and then justify the labeled steps afterwards.

E∥vki,l − Ezi∥2 = E
∥∥∥∥ 1

N

∑
j∈[N ]

yj,l − Ezi
∥∥∥∥2
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= E
∥∥∥∥(1− βi)

(
1

|Gi|
∑
j∈Gi

yj,l − Ezi
)
+ βi

(
1

|Bi|
∑
j∈Bi

yj,l − Ezi
)∥∥∥∥2

(i)

≤ (1 + βi)(1− βi)
2E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,l

)
− Ezi

∥∥∥∥2
+

(
1 +

1

βi

)
β2
i E
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,l

)
− Exi

∥∥∥∥2
≲ E

∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,l

)
− Ezi

∥∥∥∥2︸ ︷︷ ︸
E1

+βi E
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,l

)
− Ezi

∥∥∥∥2︸ ︷︷ ︸
E2

(ii)

≲

(
(1− δi)c

2
ki,l

+
σ2

ni

+
σ3

∆

)
+ βi(c

2
ki,l

+ δiσ∆)

(iii)

≲ (1− δi/2)c2ki,l +

(
σ2

ni

+
σ3

∆
+ βiσ∆

)
(iv)

≲ (1− δi/2)lc2ki,1 +

(
σ2

ni

+
σ3

∆
+ βiσ∆

) l−1∑
q=0

(1− δi/2)q

(v)

≲ (1− δi/2)lσ2 +

(
σ2

ni

+
σ3

∆
+ βiσ∆

)
(vi)

≲
σ2

ni

+
σ3

∆
+ βiσ∆. (2.9)

Justifications for the labeled steps are:

• (i) Young’s inequality: ∥x+ y∥2 ≤ (1 + ϵ)∥x∥2 + (1 + 1/ϵ)∥y∥2 for any ϵ > 0.

• (ii) We prove this bound in Lemmas 2 and 6. Importantly, it shows that the clustering
error is composed of two quantities: E1, the error contributed by good points from the
cluster’s perspective, and E2, the error contributed by the bad points from the cluster’s
perspective.

• (iii) Assumption that βi ≲ δi

• (iv) Since E∥vki,l−Ezi∥2 = c2ki,l+1, the inequality forms a recursion which we unroll over
l steps.

• (v) Assumption that c2ki,1 = E∥vki,0 − Ezi∥2 ≤ σ2. Also, the partial sum in the second
term can be upper-bounded by a large-enough constant.

• (vi) Assumption that l ≥ max

{
1, log(σ/∆)

log(1−δi/2)

}
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From (2.9), we see that c2ki,l ≲
σ2

ni
+ σ3

∆
+ βiσ∆. Plugging this into the expression for τ 2ki,l

gives τ 2ki,l ≈
σ2

ni
+ σ3

∆
+ δiσ∆ ≈ δiσ∆ for large ni and ∆.

Lemma 2 (Clustering Error due to Good Points).

E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,l

)
− Ezi

∥∥∥∥2 ≲ (1− δi)c
2
ki,l

+
σ2

ni

+
σ3

∆

Proof of Lemma 2. We prove the main result with the following sequence of inequalities and
justify the labeled steps afterward.

E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,l

)
− Ezi

∥∥∥∥2 = E
∥∥∥∥( 1

|Gi|
∑

j∈Gi:j∼i

(yj,l − Ezj)
)
+

(
1

|Gi|
∑

j∈Gi:j ̸∼i

(yj,l − Ezi)
)∥∥∥∥2

(i)

≤
(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,l − Ezj)
∥∥∥∥2

+

(
1 +

δi
2

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j ̸∼i

(yj,l − Ezi)
∥∥∥∥2

(ii)

≲

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(Eyj,l − Ezj)
∥∥∥∥2

+

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,l − Eyj,l)
∥∥∥∥2

+

(
1 +

δi
2

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j ̸∼i

(yj,l − Ezi)
∥∥∥∥2

≤
(
1 +

2

δi

)
δ2i ∥Ej∈Gi:j∼i(yj,l − zj)∥2

+

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,l − Eyj,l)
∥∥∥∥2

+

(
1 +

δi
2

)
(1− δi)

2Ej∈Gi:j ̸∼i∥yj,l − Ezi∥2

≲ δi ∥Ej∈Gi:j∼i(yj,l − zj)∥2︸ ︷︷ ︸
Ti

+

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,l − Eyj,l)
∥∥∥∥2︸ ︷︷ ︸

T2

+

(
1 +

δi
2

)
(1− δi)

2 Ej∈Gi:j ̸∼i∥yj,l − Ezi∥2︸ ︷︷ ︸
T3



CHAPTER 2. PERSONALIZED COLLABORATIVE LEARNING 30

(iii)

≲ δi

(
c2ki,l +

(c2ki,l + σ2)σ

δi∆

)
+

(
1 +

2

δi

)
ni

|Gi|2
σ2

+ (1− δi)
2

(
1 +

δi
2

)((
1 +

δi
2
+

σ2

δi∆2

)
c2ki,l +

σ3

∆

)
≲

(
1− δi +

σ

∆
+

σ2

δi∆2

)
c2ki,l +

(
σ2

ni

+
σ3

∆

)
(iv)

≲ (1− δi)c
2
ki,l

+

(
σ2

ni

+
σ3

∆

)
.

• (i), (ii) Young’s inequality

• (iii) We prove this bound in Lemmas 3, 4, and 5. Importantly, it shows that, from point
i’s perspective, the error of its cluster-center-estimate is composed of three quantities:
T1, the error introduced by our thresholding procedure on the good points which belong
to i’s cluster (and therefore ideally are included within the thresholding radius); T2,
which accounts for the variance of the points in i’s cluster; and T3, the error due to the
good points which don’t belong to i’s cluster (and therefore ideally are forced outside
the thresholding radius).

• (iv) Assumption that ∆ ≳ σ/δi.

Lemma 3 (Bound T1: Error due to In-Cluster Good Points).

∥Ej∈Gi:j∼i(yj,l − zj)∥2 ≲ c2ki,l +
(c2ki,l + σ2)σ

δi∆
.

Proof of Lemma 3. By definition of yj,l,

Ej∈Gi:j∼i∥yj,l − zj∥ = E[∥vki,l−1 − zj∥1(∥vki,l−1 − zj∥ > τki,l)]

≤ E[∥vki,l−1 − zj∥21(∥vki,l−1 − zj∥ > τki,l)]

τki,l

≤ E∥vki,l−1 − zj∥2

τki,l

≲
E∥vki,l−1 − Ezi∥2 + E∥Ezj − zj∥2

τki,l

≤
c2ki,l + σ2

τki,l

Finally, by Jensen’s inequality and plugging in the value for τki,l,

∥E(yj,l − zj)∥2 ≤ (E∥yj,l − zj∥)2
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≲
(c2ki,l + σ2)2

τ 2ki,l

≲
c4ki,l
c2ki,l

+
c2ki,lσ

2

δiσ∆
+

σ4

δiσ∆

= c2ki,l +
(c2ki,l + σ2)σ

δi∆
.

Lemma 4 (Bound T2: Variance of Clipped Points).

E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,l − Eyj,l)
∥∥∥∥2 ≤ ni

|Gi|2
σ2.

Proof of Lemma 4. Note that the elements in the sum
∑

j∈Gi:j∼i(yj,l −Eyj,l) are not indepen-
dent. Therefore, we cannot get rid of the cross terms when expanding the squared-norm.
However, if for each round of thresholding we were sample a fresh batch of points to set the
new cluster-center estimate, then the terms would be independent. With this resampling
strategy, our bounds would only change by a constant factor. Therefore, for ease of analysis,
we will assume the terms in the sum are independent. In that case,

E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,l − Eyj,l)
∥∥∥∥2 ≤ ni

|Gi|2
E∥yj,l − Eyj,l∥2

≤ ni

|Gi|2
E∥zj − Ezj∥2

≤ ni

|Gi|2
σ2,

where the second-to-last inequality follows from the contractivity of the thresholding procedure.

Lemma 5 (Bound T3: Error due to Out-of-Cluster Good Points).

Ej∈Gi:j ̸∼i∥yj,l − Ezi∥2 ≲
(
1 +

δi
2
+

σ2

δi∆2

)
c2ki,l +

σ3

∆
.

Proof of Lemma 5. By Young’s inequality,

Ej∈Gi:j ̸∼i∥yj,l − Ezi∥2 ≤
(
1 +

δi
2

)
E∥vki,l−1 − Ezi∥2 +

(
1 +

2

δi

)
Ej∈Gi:j ̸∼i∥yj,l − vki,l−1∥2

≤
(
1 +

δi
2

)
c2ki,l +

(
1 +

2

δi

)
Ej∈Gi:j ̸∼i∥yj,l − vki,l−1∥2
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=

(
1 +

δi
2

)
c2ki,l

+

(
1 +

2

δi

)
Ej∈Gi:j ̸∼i[∥zj − vki,l−1∥21{∥zj − vki,l−1∥ ≤ τki,l}]

≤
(
1 +

δi
2

)
c2ki,l +

(
1 +

2

δi

)
τ 2ki,lPj∈Gi:j ̸∼i(∥zj − vki,l−1∥ ≤ τki,l).

We now have to bound the probability in the expression above. Note that if ∥vki,l−1−zj∥ ≤ τki,l,
then

∥Ezj − Ezi∥2 ≲ ∥zj − Ezj∥2 + ∥zj − Evki,l−1∥2 + ∥Evki,l−1 − Ezi∥2

≲ ∥zj − Ezj∥2 + ∥zj − Ezj∥2 + ∥Ezj − Evki,l−1∥2

+ E∥vki,l−1 − Ezi∥2 + E∥zi − Ezi∥2

≲ ∥zj − Ezj∥2 + τ 2ki,l + c2ki,l + σ2.

By Assumption 2, this implies that

∆2 ≲ ∥zj − Ezj∥2 + τ 2ki,l + c2ki,l + σ2

which means that

∥zj − Ezj∥2 ≳ ∆2 − (τ 2ki,l + c2ki,l + σ2).

By Markov’s inequality,

P(∥zj − Ezj∥2 ≳ ∆2 − (τ 2ki,l + c2ki,l + σ2)) ≤ σ2

∆2 − (τ 2ki,l + c2ki,l + σ2)
≲

σ2

∆2

as long as

∆2 ≳ τ 2ki,l + c2ki,l + σ2,

which holds due to the constraint on ∆ in the theorem statement. Therefore

Ej∈Gi:j ̸∼i∥yj,l − Ezi∥2 ≲
(
1 +

δi
2

)
c2ki,l +

(
1 +

2

δi

)
(c2ki,l + δiσ∆)σ2

∆2

≤
(
1 +

δi
2
+

σ2

δi∆2

)
c2ki,l +

σ3

∆
.

Lemma 6 (Clustering Error due to Bad Points).

E
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,l

)
− Ezi

∥∥∥∥2 ≲ c2ki,l + δiσ∆
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Proof of Lemma 6.

E
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,l

)
− Ezi

∥∥∥∥2 ≤ Ej∈Bi
∥yj,l − Ezi∥2

≲ Ej∈Bi
∥yj,l − vki,l−1∥2 + E∥vki,l−1 − Ezi∥2

≲ c2ki,l + δiσ∆.

The last inequality follows from the intuition that bad points will position themselves at the
edge of the thresholding ball, a distance τki,l away from the current center-estimate vki,l−1.
Therefore we cannot do better than upper-bounding Ej∈Bi

∥yj,l−vki,l−1∥2 by τ 2ki,l ≈ c2ki,l+δiσ∆,
the squared-radius of the ball.

Proof of Theorem 2

Proof of Theorem 2. Let

D1 =

{
δ w.p. p
0 w.p. 1− p

and

D2 =

{
δ w.p. 1− p
0 w.p. p

and define the mixtureM = 1
2
D1 +

1
2
D2. Also consider the mixture M̃ = 1

2
D̃1 +

1
2
D̃2, where

D̃1 = 0 and D̃2 = δ. It is impossible to distinguish whether a sample comes fromM or M̃.
Therefore, if you at least know a sample came from eitherM or M̃ but not which one, the
best you can do is to estimate µ1 with µ̂1 =

δp
2
, half-way between the mean of D1, which is

δp, and the mean of D̃1, which is 0. In this case

E∥µ̂1 − µ1∥2 =
δ2p2

4
.

If p ≤ 1
2
, then

∆ = (1− p)δ − pδ = (1− 2p)δ. (2.10)

Also,
σ2 = δ2p(1− p). (2.11)

Equating δ2 in (2.10) and (2.11),

∆2

(1− 2p)2
=

σ2

p(1− p)
,

which can be rearranged to

(4σ2 +∆2)p2 − (4σ2 +∆2)p+ σ2 = 0.
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Solving for p,

p =
1

2
− ∆

2
√
4σ2 +∆2

. (2.12)

Note that,

δ2p2

4
=

σ2p2

4p(1− p)

=
σ2p

4(1− p)
. (2.13)

Plugging the expression for p from (2.12) into (2.13), we can see that

δ2p2

4
=

σ2

4

(√
4σ2 +∆2 −∆

∆

)
=

σ2

4

(√
1 +

4σ2

∆2
− 1

)
≥ σ2

4

(
2σ2

∆2
− 2σ4

∆4

)
.

The last step used an immediately verifiable inequality that
√
1 + x ≥ 1 + x

2
− x2

8
for all

x ∈ [0, 8]. Finally, we can choose ∆2 ≥ 2σ2 to give the result that

E∥µ̂1 − µ1∥2 ≥
δ2p2

4
≥ σ4

4∆2
.

Finally, suppose that there is only a single cluster with K = 1. Then, given n stochastic
samples. standard information theoretic lower bounds show that we will have an error at
least

E∥µ̂1 − µ1∥2 ≥
σ2

4n
.

Combining these two lower bounds yields the proof of the theorem.

Proof of Lemma 1

Proof. For h an L-smooth function and g a µ-strongly-convex function with shared optimum
x∗, the following inequality holds for all x:

∥∇h(x)∥2 ≤
(
L

µ

)2

∥∇g(x)∥2. (2.14)

To see this, note that by L-smoothness of h

∥∇h(x)∥2 = ∥∇h(x)−∇h(x∗)∥2 ≤ L2∥x− x∗∥2. (2.15)

By µ-strong-convexity of g and Cauchy-Schwarz inequality,

µ∥x− x∗∥2 ≤ ⟨∇g(x)−∇g(x∗), x− x∗⟩ ≤ ∥∇g(x)∥∥x− x∗∥. (2.16)
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Rearranging terms in (2.16), squaring both sides, and combining it with (2.15) gives (2.14).

We can now apply (2.14) to show that Assumptions 4 and 5 hold.

For Assumption 4, let h(x) = fi(x)−∇f̄i(x) and g(x) = ∇f̄i(x). Thus h and g have the
same optimum. Since the average of µ-strongly-convex functions is µ-strongly-convex, g is
µ-strongly-convex. By L-smoothness of fi,

∥(∇fi(x)−∇f̄i(x))− (∇fi(y)−∇f̄i(y))∥ ≤ ∥∇fi(x)−∇fi(y)∥+ ∥∇f̄i(x))−∇f̄i(y)∥
≤ 2L∥x− y∥,

showing that h is 2L-smooth. Therefore, by (2.14)

∥∇fi(x)−∇f̄i(x)∥2 ≤
(
2L

µ

)2

∥∇f̄i(x)∥2,

which shows that Assumption 4 is satisfied with A = 2L/µ.

For Assumption 5, let x∗
i be client i’s optimum (equivalently the optimum of all clients in

client i’s cluster).

∥∇fi(x)−∇fj(x)∥2 = ∥∇fi(x)− (∇fj(x)−∇fj(x∗
i ))− (∇fj(x∗

i )−∇fi(x∗
i )))∥2

(i)

≥ 1

2
∥∇fj(x∗

i )−∇fi(x∗
i )∥2 − ∥∇fi(x)− (∇fj(x)−∇fj(x∗

i ))∥2

(ii)

≥ 1

2
∥∇fj(x∗

i )−∇fi(x∗
i )∥2 − 2∥∇fi(x)∥2 − 2∥∇fj(x)−∇fj(x∗

i )∥2

(iii)

≥ 1

2
∥∇fj(x∗

i )−∇fi(x∗
i )∥2 − 2∥∇fi(x)∥2 − 2(L/µ)2∥∇fi(x)∥2

=
1

2
∥∇fj(x∗

i )−∇fi(x∗
i )∥2 − 2(1 + (L/µ)2)∥∇fi(x)∥2

=
1

2
∥∇fj(x∗

i )∥2 − 2(1 + (L/µ)2)∥∇fi(x)∥2, (2.17)

where justification for the steps are:

• (i) For all a, b, it holds that (a− b)2 ≥ 1
2
b2 − a2, since this inequality can be rearranged

to state (b/
√
2−
√
2a)2 ≥ 0.

• (ii) Young’s inequality.

• (iii) Set h(x) = fj(x)− ⟨fj(x∗
i ), x⟩ and g(x) = fi(x). Then ∇h(x) = ∇fj(x)−∇fj(x∗

i ),
from which we see that h and g have the same optimum x∗

i and h is L-smooth (since
∥∇h(x)−∇h(y)∥ = ∥(∇fj(x)−∇fj(x∗

i ))−(∇fj(y)−∇fj(x∗
i ))∥ = L∥x−y∥). Applying

(2.14) gives the desired result.

Therefore (2.17) shows that Assumption 5 is satisfied with ∆ = 1√
2
maxj ̸∼i ∥∇fj(x∗

i )∥ and
D =

√
2(1 + (L/µ)2).



CHAPTER 2. PERSONALIZED COLLABORATIVE LEARNING 36

Proof of Theorem 3

First we establish some notation.

Notation.

• Gi are the good clients and Bi the bad clients from client i’s perspective. Therefore
|Gi|+ |Bi| = N .

• Ex denotes conditional expectation given the parameter, e.g. Exg(x) = E[g(x)|x]. E
denotes expectation over all randomness.

• Xt ≜ 1
T

∑T
t=1Xt for a general variable Xt indexed by t.

• We use fi(x) to denote average loss on a general batch B of samples. That is, if fi(x; b)
is the loss on a single sample b, we define fi(x) =

1
|B|
∑

b∈B fi(x; b).

• f̄i(x) ≜ 1
ni

∑
j∈Gi:j∼i fj(x)

• We introduce a variable ρ2 to bound the variance of the gradients

E∥gi(x)− Exgi(x)∥2 ≤ ρ2,

and show in Lemma 7 how this can be written in terms of the variance of the gradients
computed over a batch size of 1.

• lt is the number of rounds that Threshold-Clustering is run in round t of Federated-
Clustering.

• ki denotes the cluster to which client i is assigned.

• vi,l,t denotes the gradient update for client i in round t of Federated-Clustering and
round l of Threshold-Clustering. That is, vi,lt,t corresponds to the quantity returned in
Step 6 of Algorithm 2.

• To facilitate the proof, we introduce a variable cki,l,t that quantifies the distance from
the cluster-center-estimates to the true cluster means. Specifically, for client i’s cluster
ki at round t of Federated-Clustering and round l of Threshold-Clustering we set

c2ki,l,t = E∥vi,l−1,t − Exḡi(xi,t−1)∥2.

• For client i’s cluster ki at round t of Federated-Clustering and round l of Threshold-
Clustering, we use thresholding radius

τ 2ki,l,t ≈ c2ki,l,t + A4E∥∇f̄i(xi,t−1)∥2 + δiρ∆.
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• Finally, we introduce a variable yj,l,t to denote the points clipped by Threshold-
Clustering:

vi,l,t =
1

N

∑
j∈[N ]

1(∥gj(xi,t−1)− vi,l−1,t∥ ≤ τkti ,l) + vi,l−1,t1(∥gj(xi,t−1)− vi,l−1,t∥ > τkti ,l︸ ︷︷ ︸
yj,l,t

).

Proof of Theorem 3. In this proof, our goal is to bound E∥∇fi(xi,t−1)∥2 for each client i, thus
showing convergence. Recall that our thresholding procedure clusters the gradients of clients
at each round and estimates the center of each cluster. These estimates are then used to
update the parameters of the clusters. Therefore, we expect E∥∇fi(xi,t−1)∥2 to be bounded
in terms of the error of this estimation procedure. The following sequence of inequalities
shows this.

By L-smoothness of fi and setting η ≤ 1/L,

fi(xi,t) ≤ fi(xi,t−1) + ⟨∇fi(xi,t−1), xi,t − xi,t−1⟩+
L

2
∥xi,t − xi,t−1∥2

= fi(xi,t−1)− η⟨∇fi(xi,t−1), vi,lt,t⟩+
Lη2

2
∥vi,lt,t∥2

= fi(xi,t−1) +
η

2
∥vi,lt,t −∇fi(xi,t−1)∥2 −

η

2
∥∇fi(xi,t−1)∥2 −

η

2
(1− Lη)∥vi,lt,t∥2

≤ fi(xi,t−1) + η∥vi,lt,t −∇f̄i(xi,t−1)∥2 + ηA2∥∇f̄i(xi,t−1)∥2

− η

2
∥∇fi(xi,t−1)∥2 −

η

2
(1− Lη)∥vi,lt,t∥2. (2.18)

Recall that vi,lt,t is client i’s cluster-center estimate at round t of optimization, so the second
term on the right side of (2.18) is the error due to the clustering procedure. In Lemma 8, we
show that, in expectation, this error is bounded by

δiE∥∇f̄i(xi,t−1)∥2 +
ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
.

Therefore, subtracting f ∗
i from both sides, summing (2.18) over t, dividing by T , taking

expectations, applying Lemma 8 to (2.18), and applying the constraint on ∆ from the theorem
statement, we have

ηE∥∇fi(xi,t−1)∥2 ≲
E(fi(xi,0)− f ∗

i )

T
+ ηA2E∥∇f̄i(xi,t−1)∥2

+ η

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
. (2.19)

The third term on the right side of (2.18) reflects the fact that clients in the same cluster
may have different loss objectives. Far from their optima, these loss objectives may look very
different and therefore be hard to cluster together.
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In order to bound this term, we use a similar argument as above. By L-smoothness of
fi’s and setting η ≤ 1/L,

f̄i(xi,t) ≤ f̄i(xi,t−1) + ⟨∇f̄i(xi,t−1), xi,t − xi,t−1⟩+
L

2
∥xi,t − xi,t−1∥2

= f̄i(xi,t−1)− η⟨∇f̄i(xi,t−1), vi,lt,t⟩+
Lη2

2
∥vi,lt,t∥2

= f̄i(xi,t−1) +
η

2
∥vi,lt,t −∇f̄i(xi,t−1)∥2 −

η

2
∥∇f̄i(xi,t−1)∥2 −

η

2
(1− Lη)∥vi,lt,t∥2.

Subtracting f̄ ∗
i from both sides, summing over t, dividing by T , taking expectations, and

applying Lemma 8,

ηE∥∇f̄i(xi,t−1)∥2 ≲
E(f̄i(xi,0)− f̄ ∗

i )

T
+

ηρ

∆
D2E∥∇fi(xi,t−1)∥2

+ η

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
. (2.20)

Combining (2.19) and (2.20), and applying the constraint on ∆ from the theorem statement,
we have that

ηE∥∇fi(xi,t−1)∥2 ≲
E(fi(xi,0)− f ∗

i ) + A2E(f̄i(x0)− f̄ ∗
i )

T

+ ηmax(1, A2)

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
. (2.21)

Dividing both sides of (2.21) by η = 1/L and noting that ρ2 = σ2/|B| from Lemma 7,

E∥∇fi(xi,t−1)∥2 ≲
E(fi(xi,0)− f ∗

i ) + A2E(f̄i(xi,0)− f̄ ∗
i )

ηT

+max(1, A2)

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
(2.22)

≤ L(E(fi(xi,0)− f ∗
i ) + A2E(f̄i(xi,0)− f̄ ∗

i ))

T

+
max(1, A2)(σ2/ni + σ3/∆ + βiσ∆)√

|B|

≲

√
max(1, A2)(σ2/ni + σ3/∆ + βiσ∆)

T
,

where the last inequality follows from setting

|B| ≳ max(1, A2)

(
σ2

ni

+
σ3

∆
+ βiσ∆

)
T.
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Since T = mi/|B|, this is equivalent to setting

|B| ≳

√
max(1, A2)

(
σ2

ni

+
σ3

∆
+ βiσ∆

)
mi.

Lemma 7 (Variance reduction using batches). If, for a single sample b,

Ex∥gi(x; b)− Exgi(x; b)∥2 ≤ σ2,

then for a batch B of samples,

Ex∥gi(x)− Exgi(x)∥2 ≤
σ2

|B|
.

Proof of Lemma 7. Due to the independence and unbiasedness of stochastic gradients,

Ex∥gi(x)− Exgi(x)∥2 =
1

|B|2
∑
b∈B

Ex∥gi(x; b)− Exgi(x; b)∥2

≤ σ2

|B|
.

Lemma 8 (Bound on Clustering Error).

E∥vi,lt,t −∇f̄i(xi,t−1)∥2 ≲ δiE∥∇f̄i(xi,t−1)∥2 +
ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
Proof of Lemma 8. We prove the main result with the following sequence of inequalities and
justify the labeled steps afterwards.

E∥vi,lt,t −∇f̄i(xi,t−1)∥2

= E∥vi,lt,t − Exḡi(xi,t−1)∥2

= E
∥∥∥∥ 1

N

∑
j∈[N ]

yj,lt,t − Exḡi(xi,t−1)

∥∥∥∥2

= E
∥∥∥∥(1− βi)

(
1

|Gi|
∑
j∈Gi

yj,lt,t − Exḡi(xi,t−1)

)
+ βi

(
1

|Bi|
∑
j∈Bi

yj,t,l − Exḡi(xi,t−1)

)∥∥∥∥2
(i)

≤ (1 + βi)(1− βi)
2E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2
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+

(
1 +

1

βi

)
β2
i E
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2

≤ E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2︸ ︷︷ ︸
E1

+βi E
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2︸ ︷︷ ︸
E2

(ii)

≲ (1− δi + βi)c2ki,lt,t + (δi + βiA
4)E∥∇f̄i(xi,t−1)∥2 +

ρ

∆
D2E∥∇fi(xi,t−1)∥2

+

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
(iii)

≲ (1− δi/2)c2ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 +
ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
(iv)

≲ (1− δi/2)ltc2ki,1,t + δiE∥∇f̄i(xi,t−1)∥2 +
ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
(v)

≤ ρ

∆
c2ki,1,t + δiE∥∇f̄i(xi,t−1)∥2 +

ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
. (2.23)

Justifications for the labeled steps are:

• (i) Young’s inequality: ∥x+ y∥2 ≤ (1 + ϵ)x2 + (1 + 1/ϵ)y2 for any ϵ > 0.

• (ii) We prove this bound in Lemmas 9 and 13. Importantly, it shows that the clustering
error is composed of two quantities: E1, the error contributed by good points from the
cluster’s perspective, and E2, the error contributed by the bad points from the cluster’s
perspective.

• (iii) Assumption that βi ≲ min(δi, δi/A4)

• (iv) Since E∥vi,lt,t −∇f̄i(xi,t−1)∥2 = c2ki,lt+1,t, the inequality forms a recursion which we
unroll over lt steps.

• (v) Assumption that lt ≥ max(1, log(ρ/∆)
log(1−δi/2)

)

Finally, we note that

c2ki,1,t = E∥gi(xi,t−1)− Exḡi(xi,t−1)∥2

≲ E∥gi(xi,t−1)− Exgi(xi,t−1)∥2 + E∥Exgi(xi,t−1)− Exḡi(xi,t−1)∥2

≤ ρ2 + A2E∥∇f̄i(xi,t−1)∥2.

Applying this bound to (2.23), and applying the bound on ∆ from the theorem statement,
we have

E∥vi,lt,t −∇f̄i(xi,t−1)∥2
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≲

(
δi +

ρA2

∆

)
E∥∇f̄i(xi,t−1)∥2 +

ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
≲ δiE∥∇f̄i(xi,t−1)∥2 +

ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
.

Lemma 9 (Clustering Error due to Good Points).

E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2
≲ (1− δi)c2ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 +

ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

(
ρ2

ni

+
ρ3

∆

)
Proof of Lemma 9. We prove the main result in the sequence of inequalities below and then
justify the labeled steps.

E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2

= E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,lt,t

)
− 1

|Gi|
∑

j∈Gi:j∼i

Exgj(xi,t−1)−
(

1

ni

− 1

|Gi|

) ∑
j∈Gi:j∼i

Exgj(xi,t−1)

∥∥∥∥2

= E
∥∥∥∥( 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Exgj(xi,t−1))

)
+

(
1

|Gi|
∑

j∈Gi:j ̸∼i

(yj,lt,t − Exḡi(xi,t−1))

)∥∥∥∥2
(i)

≤
(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Exgj(xi,t−1))

∥∥∥∥2

+

(
1 +

δi
2

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j ̸∼i

(yj,lt,t − Exḡi(xi,t−1))

∥∥∥∥2
(ii)

≲

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(Eyj,lt,t − Exgj(xi,t−1))

∥∥∥∥2

+

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2

+

(
1 +

δi
2

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j ̸∼i

(yj,lt,t − Exḡi(xi,t−1))

∥∥∥∥2
(iii)

≲

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

E(yj,lt,t − gj(xi,t−1))

∥∥∥∥2
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+

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(Exgj(xi,t−1)− Egj(xi,t−1))

∥∥∥∥2

+

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2

+

(
1 +

δi
2

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j ̸∼i

(yj,lt,t − Exḡi(xi,t−1))

∥∥∥∥2
(iv)

≲

(
1 +

2

δi

)
δ2i Ej∈Gi:j∼i∥E(yj,lt,t − gj(xi,t−1))∥2︸ ︷︷ ︸

T1

+

(
1 +

2

δi

)
ni

|Gi|2
ρ2

+

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2︸ ︷︷ ︸

T2

+

(
1 +

δi
2

)
(1− δi)

2 Ej∈Gi:j ̸∼i∥yj,lt,t − Exḡi(xi,t−1)∥2︸ ︷︷ ︸
T3

(v)

≲ δi

(
c2ki,lt,t + E∥∇f̄i(xi,t−1)∥2 +

ρ3

δi∆

)
+

(
1 +

2

δi

)
ni

|Gi|2
ρ2

+

(
1 +

δi
2

)
(1− δi)

2

((
1 +

δi
2

)
c2ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2

+
ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

ρ3

∆

)
(vi)

≲ δi

(
c2ki,lt,t + E∥∇f̄i(xi,t−1)∥2 +

ρ3

δi∆

)
+

ρ2

ni

+ (1− δi)

(
c2ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 +

ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

ρ3

∆

)
≲ (1− δi)c2ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 +

ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

(
ρ2

ni

+
ρ3

∆

)
.

Justifications for the labeled steps are:

• (i),(ii),(iii) Young’s inequality

• (iv) First, we can can interchange the sum and the norm due to independent stochasticity
of the gradients. Then by the Tower Property and Law of Total Variance for the 1st
and 3rd steps respectively,

E∥Exgj(xi,t−1)− Egj(xi,t−1))∥2 = E∥Exgj(xi,t−1)− E[Exgj(xi,t−1)]∥2
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= Var(Ex(gj(xi,t−1)))

= Var(gj(xi,t−1))− E(Varx(gj(xi,t−1)))

≤ Var(gj(xi,t−1))− E∥gj(xi,t−1)− Exgj(xi,t−1)∥2

≲ ρ2,

where the last inequality follows since the two terms above it are both bounded by ρ2.

• (v) We prove this bound in Lemmas 10, 11, and 12. It shows that, from point i’s
perspective, the error of its cluster-center-estimate is composed of three quantities: T1,
the error introduced by our thresholding procedure on the good points which belong
to i’s cluster (and therefore ideally are included within the thresholding radius); T2,
which accounts for the variance of the clipped points in i’s cluster; and T3, the error due
to the good points which don’t belong to i’s cluster (and therefore ideally are forced
outside the thresholding radius).

• (vi) (1 + x/2)2(1− x)2 ≤ 1− x for all x ∈ [0, 1]

Lemma 10 (Bound T1: Error due to In-Cluster Good Points).

Ej∈Gi:j∼i∥E(yj,lt,t − gj(xi,t−1))∥2 ≲ c2ki,lt,t + E∥∇f̄i(xi,t−1)∥2 +
ρ3

δi∆
.

Proof of Lemma 10. In this sequence of steps, we bound the clustering error due to good
points from client i’s cluster. By definition of yj,lt,t,

E∥yj,lt,t − gj(xi,t−1)∥ = E[∥vi,lt−1,t − gj(xi,t−1)∥1(∥vi,lt−1,t − gj(xi,t−1)∥ > τki,lt,t)]

≤ E[∥vi,lt−1,t − gj(xi,t−1)∥21(∥vi,lt−1,t − gj(xi,t−1)∥ > τki,lt,t)]

τkti ,lt

≤ E∥vi,lt−1,t − gj(xi,t−1)∥2

τki,lt,t
.

Therefore, by Jensen’s inequality and plugging in the value for τki,lt,t,

∥E(yj,lt,t − gj(xi,t−1))∥2

≤ (E∥yj,lt,t − gj(xi,t−1)∥)2

≤ (E∥vi,lt−1,t − gj(xi,t−1)∥2)2

τ 2ki,lt,t

≲

(
1

τ 2ki,lt,t

)
·
(
E∥vi,lt−1,t − Exḡi(xi,t−1)∥2 + E∥Exḡi(xi,t−1)− Exgj(xi,t−1)∥2
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+ E∥gj(xi,t−1)− Exgj(xi,t−1)∥2)2
)2

≤
(c2ki,lt,t + A2E∥∇f̄i(xi,t−1)∥2 + ρ2)2

τ 2ki,lt,t

≲
(c2ki,lt,t + A2E∥∇f̄i(xi,t−1)∥2 + ρ2)2

c2ki,lt,t + A4E∥∇f̄i(xi,t−1)∥2 + δiρ∆

≲

(
1 +

ρ

δi∆

)
c2ki,lt,t +

(
1 +

ρA2

δi∆

)
E∥∇f̄i(xi,t−1)∥2 +

ρ3

δi∆

≲ c2ki,lt,t + E∥∇f̄i(xi,t−1)∥2 +
ρ3

δi∆
, (2.24)

where the last inequality follows from constraints on ∆. The second inequality follows from
Young’s inequality. The second-to-last inequality follows by separating the fraction into a
sum of fractions and selecting terms from the denominator for each fraction that cancel with
terms in the numerator to achieve the desired rate.

Summing (2.24) over t and dividing by T , we have

Ej∈Gi:j∼i∥Ex(yj,lt,t − gj(xi,t−1))∥2 = E∥yj,lt,t − gj(xi,t−1)∥2

≲ c2ki,lt,t + E∥∇f̄i(xi,t−1)∥2 +
ρ3

δi∆
.

Lemma 11 (Bound T2: Variance of Clipped Points).

E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2 ≤ ni

|Gi|2
ρ2.

Proof of Lemma 11. The first thing to note is that the elements in the sum
∑

j∈Gi:j∼i(yj,lt,t−
Eyj,lt,t) are not independent. Therefore, we cannot get rid of the cross terms when expanding
the squared-norm. However, if for each round of thresholding we sampled a fresh batch of
points to set the new cluster-center estimate, then the terms would be independent. With
such a resampling strategy, our bounds in these proofs only change by a constant factor.
Therefore, for ease of analysis, we will assume the terms in the sum are independent. In that
case,

E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2 ≤ ni

|Gi|2
E∥yj,lt,t − Eyj,lt,t∥2

≤ ni

|Gi|2
E∥gj(xi,t−1)− Egj(xi,t−1)∥2
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≤ ni

|Gi|2
ρ2,

where the second-to-last inequality follows from the contractivity of the thresholding procedure.

Lemma 12 (Bound T3: Error due to Out-of-Cluster Good Points).

Ej∈Gi:j ̸∼i∥yj,lt,t − Exḡi(xi,t−1)∥2 ≲
(
1 +

δi
2

)
c2ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2

+
ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

ρ3

∆
.
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Proof of Lemma 12. This sequence of steps bounds the clustering error due to points not
from client i’s cluster. Using Young’s inequality for the first step,

Ej∈Gi:j ̸∼i∥yj,lt,t − Exḡi(xi,t−1)∥2

≤
(
1 +

δi
2

)
E∥vi,lt−1,t − Exḡi(xi,t−1)∥2 +

(
1 +

2

δi

)
Ej∈Gi:j ̸∼i∥yj,lt,t − vi,lt−1,t∥2

≤
(
1 +

δi
2

)
c2ki,lt,t +

(
1 +

2

δi

)
Ej∈Gi:j ̸∼i∥yj,lt,t − vi,lt−1,t∥2

=

(
1 +

δi
2

)
c2ki,lt,t

+

(
1 +

2

δi

)
Ej∈Gi:j ̸∼i[∥gj(xi,t−1)− vi,lt−1,t∥21{∥gj(xi,t−1)− vi,lt−1,t∥ ≤ τki,lt,t}]

≤
(
1 +

δi
2

)
c2ki,lt,t +

(
1 +

2

δi

)
τ 2ki,lt,tPj∈Gi:j ̸∼i(∥gj(xi,t−1)− vi,lt−1,t∥ ≤ τki,lt,t)

≲

(
1 +

δi
2

)
c2ki,lt,t

+

(
1

δi

)
(c2ki,lt,t + A4E∥∇f̄i(xi,t−1)∥2 + δiρ∆)Pj∈Gi:j ̸∼i(∥gj(xi,t−1)− vi,lt−1,t∥ ≤ τki,lt,t).

The next step is to bound the probability term in the inequality above. Note that if
∥vi,lt−1,t − gj(xi,t−1)∥ ≤ τkti ,lt , then

∥Exgj(xi,t−1)− Exgi(xi,t−1)∥2 ≲ ∥gj(xi,t−1)− Exgj(xi,t−1)∥2 + ∥gj(xi,t−1)− vi,lt−1,t∥2

+ ∥vi,lt−1,t − Exgi(xi,t−1)∥2

≲ ∥gj(xi,t−1)− Exgj(xi,t−1)∥2 + τ 2ki,lt,t

+ ∥vi,lt−1,t − Exḡi(xi,t−1)∥2 + ∥Exgi(xi,t−1)− Exḡi(xi,t−1)∥2

≲ ∥gj(xi,t−1)− Exgj(xi,t−1)∥2 + τ 2ki,lt,t

+ ∥vi,lt−1,t − Exḡi(xi,t−1)∥2 + A2∥∇f̄i(xi,t−1)∥2.

By Assumption 4, the previous inequality implies

∆2 −D2∥∇fi(xi,t−1)∥2 ≲ ∥gj(xi,t−1)− Exgj(xi,t−1)∥2 + τ 2ki,lt,t + A2∥∇f̄i(xi,t−1)∥2

+ ∥vi,lt−1,t − Exḡi(xi,t−1)∥2

which, summing over t and dividing by T , implies

∆2 − τ 2ki,lt,t ≲ ∥gj(xi,t−1)− Exgj(xi,t−1)∥2 + ∥vi,lt−1,t − Exḡi(xi,t−1)∥2

+ A2∥∇f̄i(xi,t−1)∥2 +D2∥∇fi(xi,t−1)∥2.
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By Markov’s inequality, the probability of this event is upper-bounded by

ρ2 + E∥vi,lt−1,t − Exḡi(xi,t−1)∥2 + A2E∥∇f̄i(xi,t−1)∥2 +D2E∥∇fi(xi,t−1)∥2

∆2 − τ 2ki,lt,t

≲
ρ2 + c2ki,lt,t + A2E∥∇f̄i(xi,t−1)∥2 +D2E∥∇fi(xi,t−1)∥2

∆2
,

where the second inequality holds due to the constraint on ∆ from the theorem statement.
Therefore,

Ej∈Gi:j ̸∼i∥yj,lt,t − Exḡi(xi,t−1)∥2

≲

(
1 +

δi
2
+

ρ

∆
+

ρ2 + c2ki,lt,t + A2E∥∇f̄i(xi,t−1)∥2 +D2E∥∇fi(xi,t−1)∥2

δi∆2

)
c2ki,lt,t

+

(
ρA2

∆
+

A4(ρ2 + c2ki,lt,t + A2E∥∇f̄i(xi,t−1)∥2 +D2E∥∇fi(xi,t−1)∥2)
δi∆2

)
E∥∇f̄i(xi,t−1)∥2

+
ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

ρ3

∆

≲

(
1 +

δi
2

)
c2ki,lt,t + δiE∥∇f̄i(xi,t−1)∥2 +

ρ

∆
D2E∥∇fi(xi,t−1)∥2 +

ρ3

∆
,

where for the last inequality we again apply the constraint on ∆.

Lemma 13 (Clustering Error due to Bad Points).

E
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2 ≲ c2ki,lt,t + A4E∥∇f̄i(xi,t−1)∥2 + δiρ∆

Proof of Lemma 13. This lemma bounds the clustering error due to the bad clients from
client i’s perspective. The goal of such clients would be to corrupt the cluster-center estimate
of client i’s cluster as much as possible at each round. They can have the maximum negative
effect by setting their gradients to be just inside the thresholding radius around client i’s
cluster-center estimate. This way, the gradients will keep their value (rather than be assigned
the value of the current cluster-center estimate per our update rule), but they will have
maximal effect in moving the cluster-center estimate from its current position. Therefore, in
step 3 of the inequalities below, we can not do better than bounding the distance between
these bad points and the current cluster center estimate (i.e. ∥yj,lt,t − vi,lt−1,t∥2) by the
thresholding radius (τ 2ki,lt,t).

E
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,lt,t

)
− Exḡi(xi,t−1)

∥∥∥∥2 ≤ Ej∈Bi
∥yj,lt,t − Exḡi(xi,t−1)∥2
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≲ Ej∈Bi
∥yj,lt,t − vi,lt−1,t∥2 + E∥vi,lt−1,t − Exḡi(xi,t−1)∥2

≤ τ 2ki,lt,t + c2ki,lt,t

≲ c2ki,lt,t + A4E∥∇f̄i(xi,t−1)∥2 + δiρ∆.

The last inequality applies the definition of τki,lt,t, and the result of the lemma follows by
summing this inequality over t and dividing by T .

Proof of Theorem 4

First we establish some notation.

Notation.

• Gi are the good clients and Bi the bad clients from client i’s perspective.

• Ex denotes conditional expectation given the parameter, e.g. Exg(x) = E[g(x)|x].
E denotes expectation over all randomness.

• kt
i is the cluster to which client i is assigned at round t of the algorithm.

• Xt ≜ 1
T

∑T
t=1Xt for a general variable Xt indexed by t.

• f̄i(x) ≜ 1
ni

∑
j∈Gi:j∼i fj(x)

• m̄i,t ≜ 1
ni

∑
j∈Gi:j∼i mj,t

• We introduce a variable ρ2 to bound the variance of the momentums

Ex∥mi,t − Exmi,t∥2 ≤ ρ2,

and show in Lemma 14 how this can be written in terms of the variance of the gradients,
σ2.

• lt is the number of rounds that Threshold-Clustering is run in round t of Federated-
Clustering.

• ki denotes the cluster to which client i is assigned.

• vki,l,t denotes the gradient update for client i in round t of Momentum-Clustering and
round l of Threshold-Clustering. That is, vki,l,t corresponds to the quantity returned in
Step 4 of Algorithm 4.
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• To facilitate the proof, we introduce a variable cki,l,t that quantifies the distance from
the cluster-center-estimates to the true cluster means. Specifically, for client i’s cluster
ki at round t of Federated-Clustering and round l of Threshold-Clustering we set

c2ki,l,t = E∥vki,l−1,t − Exm̄i,t∥2.

• For client i’s cluster ki at round t of Federated-Clustering and round l of Threshold-
Clustering, we use thresholding radius

τ 2ki,l,t ≈ c2ki,l,t + δiρ∆.

• Finally, we introduce a variable, yj,l,t, to denote the points clipped by Threshold-
Clustering:

vki,l,t =
1

N

∑
j∈[N ]

1(∥mj,t − vki,l−1,t∥ ≤ τki,l,t) + vki,l−1,t1(∥mj,t − vki,l−1,t∥ > τki,l,t︸ ︷︷ ︸
yj,l,t

).

Proof of Theorem 4. In this proof, our goal is to bound E∥∇fi(xi,t−1)∥2. We use
L-smoothness of the loss objectives to get started, and justify the non-trivial steps afterwards.

Efi(xi,t)
(i)

≤ Efi(xi,t−1) + E⟨∇fi(xi,t−1), xi,t − xi,t−1⟩+
L

2
E∥xi,t − xi,t−1∥2

= Efi(xi,t−1)− ηE⟨∇fi(xi,t−1), vki,lt,t⟩+
Lη2

2
E∥vki,lt,t∥2

= Efi(xi,t−1) +
η

2
E∥vki,lt,t −∇fi(xi,t−1)∥2

− η

2
E∥∇fi(xi,t−1)∥2 −

η

2
(1− Lη)E∥vki,lt,t∥2

(ii)

≲ Efi(xi,t−1) + ηE∥vki,lt,t − Exm̄i,t∥2 + ηE∥Exm̄i,t −∇fi(xi,t−1)∥2

− η

2
E∥∇fi(xi,t−1)∥2 −

η

2
(1− Lη)E∥vki,lt,t∥2

(iii)

≲ Efi(xi,t−1) + η

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
+ ηE∥Exm̄i,t −∇fi(xi,t−1)∥2

− η

2
E∥∇fi(xi,t−1)∥2 −

η

2
(1− Lη)E∥vki,lt,t∥2. (2.25)

Justifications for the labeled steps are:

• (i) L-smoothness of fi and η ≤ 1/L

• (ii) Young’s inequality

• (iii) Lemma 15
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Now it remains to bound the E∥Exm̄i,t −∇fi(xi,t−1)∥2 term.

E∥Exm̄i,t −∇fi(xi,t−1)∥2 ≤ E∥Exmi,t −∇fi(xi,t−1)∥2

= (1− α)2·
E∥Exmi,t−1 −∇fi(xi,t−2) +∇fi(xi,t−2)−∇fi(xi,t−1)∥2

(i)

≲ (1− α)2(1 + α)E∥Exmi,t−1 −∇fi(xi,t−2)∥2

+ (1− α)2
(
1 +

1

α

)
L2η2E∥vki,lt−1,t−1∥2

(ii)

≤ 1

2
(1− Lη)

T∑
t=2

E∥vki,lt−1,t−1∥2,

where justifications for the labeled steps are:

• (i) Young’s inequality

• (ii) Assumption that α ≳ Lη

Plugging this bound back into (2.25), summing over t = 1 : T , and dividing by T gives

η

2T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲
E(fi(xi,0)− f ∗

i )

T
+ η

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
. (2.26)

By the variance reduction from momentum (Lemma 14) it follows from (2.26) that

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲
E(fi(xi,0)− f ∗

i )

ηT
+

(
ασ2

ni

+
α3/2σ3

∆
+ βi

√
ασ∆

)
≲

E(fi(xi,0)− f ∗
i )

ηT
+

(
Lησ2

ni

+
Lησ3

∆
+ βi

√
Lησ∆

)
.

Finally, setting η ≲ min

{
1
L
,
√

E(fi(xi,0)−f∗
i )

LT (σ2/ni+σ3/∆)

}
,

1

T

T∑
t=1

E∥∇fi(xi,t−1)∥2 ≲
√

σ2/ni + σ3/∆

T
+

βiσ∆

T
1
4 (σ2/ni + σ3/∆)

1
4

.

Lemma 14 (Variance reduction using Momentum). Suppose that for all i ∈ [N ] and x,

E∥gi(x)− Exgi(x)∥2 ≤ σ2.

Then

E∥mi,t − Exmi,t∥2 ≤ ασ2.
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Proof of Lemma 14.

E∥mi,t − Emi,t∥2 = E∥α(gi(xi,t−1)−∇fi(xi,t−1)) + (1− α)(mi,t−1 − Emi,t−1)∥2

≤ α2E∥gi(xi,t−1)−∇fi(xi,t−1)∥2 + (1− α)2E∥mi,t−1 − Emi,t−1∥2

≤ α2E∥gi(xi,t−1)−∇fi(xi,t−1)∥2 + (1− α)E∥mi,t−1 − Emi,t−1∥2

≤ α2σ2

t−1∑
q=0

(1− α)q

≤ α2σ2 (1− α)t − 1

(1− α)− 1

≤ α2σ2 1

α
= ασ2.

Lemma 15 (Bound on Clustering Error).

E∥vkti ,lt − Exm̄i,t∥2 ≲
ρ2

ni

+
ρ3

∆
+ βiρ∆

Proof of Lemma 15. We prove the main result, and then justify each step afterwards.

E∥vki,lt,t − Exm̄i,t∥2 = E
∥∥∥∥ 1

N

∑
j∈[N ]

yj,lt,t − Exm̄i,t

∥∥∥∥2

= E
∥∥∥∥(1− βi)

(
1

|Gi|
∑
j∈Gi

yj,lt,t − Exm̄i,t

)
+ βi

(
1

|Bi|
∑
j∈Bi

yj,t,l − Exm̄i,t

)∥∥∥∥2

(i)

≤ (1 + βi)(1− βi)
2E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2

+

(
1 +

1

βi

)
β2
i E
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2

≲ E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2 + βiE
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2
(ii)

≲ (1− δi + βi)c2ki,lt,t +

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
(iii)

≲ (1− δi/2)c2ki,lt,t +

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
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(iv)

≲ (1− δi/2)ltc2ki,1,t +

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
(v)

≤ ρ

∆
c2ki,1,t +

(
ρ2

ni

+
ρ3

∆
+ βiρ∆

)
. (2.27)

We justify each step.

• (i) Young’s inequality

• (ii) We prove this bound in Lemmas 16 and 20. Importantly, it shows that the clustering
error is composed of two quantities: E1, the error contributed by good points from the
cluster’s perspective, and E2, the error contributed by the bad points from the cluster’s
perspective.

• (iii) Assumption that βi ≲ min(δi, δi/A4)

• (iv) Since E∥vi,lt,t−Exm̄i,t∥2 = c2ki,lt+1,t, the inequality forms a recursion which we unroll
over lt steps.

• (v) Assumption that lt ≥ max(1, log(ρ/∆)
log(1−δi/2)

)

Finally, we note that

c2kti ,1,t
= E∥m̄i,t − Exmi,t∥2

≲ E∥mj,t − Exmj,t∥2 + E∥Exmj,t − Exmi,t∥2

≤ ρ2.

Applying this bound to (2.27) gives

E∥vki,lt,t − Exm̄i,t∥2 ≲
ρ2

ni

+
ρ3

∆
+ βiρ∆

Lemma 16 (Clustering Error due to Good Points).

E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2 ≲ (1− δi)c2ki,lt,t +

(
ρ2

ni

+
ρ3

∆

)
.

Proof of Lemma 16. We state the main sequence of steps and then justify them afterwards.

E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,lt,t

)
− Exm̄i,t)

∥∥∥∥2
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= E
∥∥∥∥( 1

|Gi|
∑
j∈Gi

yj,lt,t

)
− 1

|Gi|
∑

j∈Gi:j∼i

Exmj,t −
(

1

ni

− 1

|Gi|

) ∑
j∈Gi:j∼i

Exmj,t

∥∥∥∥2
= E

∥∥∥∥( 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Exmj,t)

)
+

(
1

|Gi|
∑

j∈Gi:j ̸∼i

(yj,lt,t − Exm̄i,t)

)∥∥∥∥2
(i)

≤
(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Exmj,t)

∥∥∥∥2 + (1 + δi
2

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j ̸∼i

(yj,lt,t − Exm̄i,t)

∥∥∥∥2
(ii)

≲

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

Eyj,lt,t − Exmj,t

∥∥∥∥2 + (1 + 2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Exyj,lt,t)

∥∥∥∥2
+

(
1 +

δi
2

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j ̸∼i

(yj,lt,t − Exm̄i,t)

∥∥∥∥2
(iii)

≲

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

E(yj,lt,t −mj,t)

∥∥∥∥2 + (1 + 2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(Emj,t − Exmj,t)

∥∥∥∥2
+

(
1 +

2

δi

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2 + (1 + δi

2

)
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j ̸∼i

(yj,lt,t − Exm̄i,t)

∥∥∥∥2
(iv)

≲

(
1 +

2

δi

)
δ2i Ej∈Gi:j∼i∥Ex(yj,lt,t −mj,t)∥2︸ ︷︷ ︸

T1

+

(
1 +

2

δi

)
ni

|Gi|2
ρ2

+

(
1 +

2

δi

)
ni

|Gi|2
E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2︸ ︷︷ ︸

T2

+

(
1 +

δi
2

)
(1− δi)

2 Ej∈Gi:j ̸∼i∥yj,lt,t − Exm̄i,t∥2︸ ︷︷ ︸
T3

(v)

≲ δiEj∈Gi:j∼i∥Ex(yj,lt,t −mj,t)∥2 +
ρ2

ni

+

(
1 +

δi
2

)
(1− δi)

2Ej∈Gi:j ̸∼i∥yj,lt,t − Exm̄i,t∥2

(vi)

≲ δi

(
c2ki,lt,t +

ρ3

δi∆

)
+

ρ2

ni

+

(
1 +

δi
2

)
(1− δi)

2

((
1 +

δi
2

)
c2ki,lt,t +

ρ3

∆

)
≲ δi

(
c2ki,lt,t +

ρ3

δi∆

)
+

ρ2

ni

+ (1− δi)

(
c2ki,lt,t +

ρ3

∆

)
≲ (1− δi)c2ki,lt,t +

(
ρ2

ni

+
ρ3

∆

)
.

Justifications for the labeled steps are:

• (i), (ii), (iii) Young’s inequality
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• (iv) First, we can can interchange the sum and the norm due to independent stochasticity
of the momentums. Then, by the Tower Property and Law of Total Variance for the
1st and 3rd steps respectively

E∥Exmj,t − Emj,t∥2 = E∥Exmj,t − E[Exmj,t]∥2

= Var(Exmj,t)

= Var(mj,t)− E(Varx(mj,t))

= Var(mj,t)− E∥mj,t − Exmj,t∥2

≲ ρ2,

where the last inequality follows since the two terms above it are both bounded by ρ2.

• (v) We prove this bound in Lemmas 17, 18, and 19. It shows that, from point i’s
perspective, the error of its cluster-center-estimate is composed of three quantities: T1,
the error introduced by our thresholding procedure on the good points which belong
to i’s cluster (and therefore ideally are included within the thresholding radius); T2,
which accounts for the variance of the clipped points in i’s cluster; and T3, the error due
to the good points which don’t belong to i’s cluster (and therefore ideally are forced
outside the thresholding radius).

• (vi) (1 + x/2)2(1− x)2 ≤ 1− x for all x ∈ [0, 1]

Lemma 17 (Bound T1: Error due to In-Cluster Good Points).

Ej∈Gi:j∼i∥E(yj,lt,t −mj,t)∥2 ≲ c2ki,lt,t +
ρ3

δi∆
.

Proof of Lemma 17. By definition of yj,lt,t,

E∥yj,lt,t −mj,t∥ = E[∥vki,lt−1,t −mj,t∥1(∥vki,lt−1,t −mj,t∥ > τki,lt,t)]

≤ E[∥vki,lt−1,t −mj,t∥21(∥vki,lt−1,t −mj,t∥ > τki,lt,t)]

τki,lt,t
.

Therefore by Jensen’s inequality,

∥Eyj,lt,t −mj,t∥2 ≤ (E∥yj,lt,t −mj,t∥)2

≤ (E∥vki,lt−1,t −mj,t∥2)2

τ 2ki,lt,t

≲
(E∥vki,lt−1,t − Exm̄i,t∥2 + E∥Exm̄i,t −mj,t∥2)2

τ 2ki,lt,t
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=
(E∥vki,lt−1,t − Exm̄i,t∥2 + E∥Exmj,t −mj,t∥2)2

τ 2ki,lt,t

≤
(c2ki,lt,t + ρ2)2

τ 2ki,lt,t

≲
(c2ki,lt,t + ρ2)2

c2ki,lt,t + δiρ∆

≲

(
1 +

ρ

δi∆

)
c2ki,lt,t +

ρ3

δi∆

≲ c2ki,lt,t +
ρ3

δi∆
.

Summing this inequality over t and dividing by T , we have

Ej∈Gi:j∼i∥Ex(yj,lt,t −mj,t)∥2 ≤ E∥yj,lt,t −mj,t∥2

≲ c2ki,lt,t +
ρ3

δi∆
.

Lemma 18 (Bound T2: Variance of Clipped Points).

E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2 ≤ ni

|Gi|2
ρ2.

Proof of Lemma 18. Note that the elements in the sum
∑

j∈Gi:j∼i(yj,lt,t − Eyj,lt,t) are not
independent. Therefore, we cannot get rid of the cross terms when expanding the squared-
norm. However, if for each round of thresholding we sampled a fresh batch of points to set
the new cluster-center estimate, then the terms would be independent. With this resampling
strategy, our bounds would only change by a constant factor. Therefore, for ease of analysis,
we will assume the terms in the sum are independent. In that case,

E
∥∥∥∥ 1

|Gi|
∑

j∈Gi:j∼i

(yj,lt,t − Eyj,lt,t)
∥∥∥∥2 ≤ ni

|Gi|2
E∥yj,lt,t − Eyj,lt,t∥2

≤ ni

|Gi|2
E∥mj,t − Emj,t∥2

≤ ni

|Gi|2
ρ2,

where the second-to-last inequality follows from the contractivity of the thresholding procedure.
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Lemma 19 (Bound T3: Error due to Out-of-Cluster Good Points).

Ej∈Gi:j ̸∼i∥yj,lt,t − Exm̄i,t∥2 ≲
(
1 +

δi
2

)
c2ki,lt,t +

ρ3

∆
.

Proof of Lemma 19. This sequence of steps bounds the clustering error due to points not
from client i’s cluster. Using Young’s inequality for the first step,

Ej∈Gi:j ̸∼i∥yj,lt,t − Exm̄i,t∥2

≤
(
1 +

δi
2

)
E∥vkti ,lt−1 − Exm̄i,t∥2 +

(
1 +

2

δi

)
Ej∈Gi:j ̸∼i∥yj,lt,t − vki,lt−1,t∥2

≤
(
1 +

δi
2

)
c2ki,lt,t +

(
1 +

2

δi

)
Ej∈Gi:j ̸∼i∥yj,lt,t − vki,lt−1,t∥2

=

(
1 +

δi
2

)
c2ki,lt,t +

(
1 +

2

δi

)
Ej∈Gi:j ̸∼i[∥mj,t − vki,lt−1,t∥21{∥mj,t − vki,lt−1,t∥ ≤ τki,lt,t}]

≤
(
1 +

δi
2

)
c2ki,lt,t +

(
1 +

2

δi

)
τ 2ki,lt,tPj∈Gi:j ̸∼i(∥mj,t − vki,lt−1,t∥ ≤ τki,lt,t)

≲

(
1 +

δi
2

)
c2ki,lt,t +

(
1

δi

)
(c2ki,lt,t + δiρ∆)Pj∈Gi:j ̸∼i(∥mj,t − vkti ,lt−1∥ ≤ τki,lt,t).

If ∥vkti ,lt−1 −mj,t∥ ≤ τki,lt,t, then

∥Exmj,t − Exmi,t∥2 ≲ ∥mj,t − Exmj,t∥2 + ∥mj,t − vki,lt−1,t∥2 + ∥vkti ,lt−1 − Exm̄i,t∥2

≲ ∥mj,t − Exmj,t∥2 + τ 2ki,lt,t + ∥vki,lt−1,t − Exm̄i,t∥2

By Assumption 9,

∆2 ≲ ∥mj,t − Exmj,t∥2 + τ 2ki,lt,t + ∥vki,lt−1,t − Exm̄i,t∥2

which, summing over t and dividing by T , implies

∥mj,t − Exmj,t∥2 + ∥vki,lt−1,t − Exm̄i,t∥2 ≳ ∆2 − τ 2ki,lt,t.

By Markov’s inequality, the probability of this event is upper-bounded by

ρ2 + E∥vki,lt−1,t − Exm̄i,t∥2

∆2 − τ 2ki,lt,t
≲

ρ2 + c2ki,lt,t
∆2

,

where the inequality holds due to the constraint on ∆ from the theorem statement. Therefore,

Ej∈Gi:j ̸∼i∥yj,lt,t − Exm̄i,t∥2 ≲
(
1 +

δi
2
+

ρ

∆
+

ρ2 + c2ki,lt,t
δi∆2

)
c2ki,lt,t +

ρ3

∆

≲

(
1 +

δi
2

)
c2ki,lt,t +

ρ3

∆
,

where again we apply the constraint on ∆ for the second inequality.
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Lemma 20 (Clustering Error due to Bad Points).

E
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2 ≲ c2ki,lt,t + δiρ∆

Proof of Lemma 20. This lemma gives a bound on the clustering error due to the bad clients
from client i’s perspective. The goal of such clients would be to corrupt the cluster-center
estimate of client i’s cluster as much as possible at each round. They can have the maximum
negative effect by setting their gradients to be just inside the thresholding radius around
client i’s cluster-center estimate. This way, the gradients will keep their value (rather than be
assigned the value of the current cluster-center estimate per our update rule), but they will
have maximal effect in moving the cluster-center estimate from its current position. Therefore,
in step 3 of the inequalities below, we can not do better than bounding the distance between
these bad points and the current cluster center estimate (i.e. ∥yj,lt,t − vki,lt−1,t∥2) by the
thresholding radius τki,lt,t.

E
∥∥∥∥( 1

|Bi|
∑
j∈Bi

yj,lt,t

)
− Exm̄i,t

∥∥∥∥2 ≤ Ej∈Bi
∥yj,lt,t − Exm̄i,t∥2

≲ Ej∈Bi
∥yj,lt,t − vki,lt−1,t∥2 + E∥vki,lt−1,t − Exm̄i,t∥2

≤ τ 2ki,lt,t + c2ki,lt,t

≲ c2ki,lt,t + δiρ∆.

The last inequality applies the definition of τki,lt,t, and the result of the lemma follows by
summing this inequality over t and dividing by T .
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Chapter 3

Collaborative Learning among
Competitors

3.1 Introduction

When the guarantees of a collaborative learning system are misaligned with the objectives of
the learners, it can disincentivize participation and prompt defections. Recent work [34–36]
examines the incentives that clients have to participate in or defect from a collaborative
learning system. Misalignment between system-wide and client objectives can lead to unde-
sirable outcomes. For example, [37] show that some clients might free-ride, burdening other
participants in the network with all the training work while contributing nothing themselves.
[8–10, 13, 25, 38] show that if there is heterogeneity across clients’ data distributions the
global model returned by standard collaborative learning protocols might perform poorly for
individual clients. To address the misalignment problem, [39] propose an algorithm whose
model updates guarantee that client losses degrade sufficiently from step to step to ensure
that no client defects (albeit at some cost to the accuracy of the final global model). In this
paper, we take an economics-based view of the problem, framing client utility/revenue as
the determining factor in defection. We frame clients as competitive firms who are selling
their models’ predictions to consumers and competing for market share. As in the standard
collaborative learning protocol, the firms collaboratively train a global model, but if at any
point in the process their revenue decreases, they defect from participation.

Motivating Example. Consider two autonomous vehicle companies training self-driving
models, each with initial access only to their own training data. Further, suppose their
individual training data does not fully reflect the distribution on which the models must
perform well at test time. For example, one company might have a lot of urban data and very
little rural data and the other company the opposite. Clearly, if these companies combined
their models, they could offer safer and better cars to consumers. However, by collaborating
they might also lose their competitive advantage in the market, disincentivizing them from
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participating. Our objective is to design a collaboration scheme such that neither firm loses
revenue, thus incentivizing participation.

Our Contributions. We frame the collaborative learning system as a duopoly of com-
petitive firms whose conditions for joining the system are to improve (or at least not lose)
revenue, and we show that collaboration is possible under such conditions.

1. We first show surprising outcomes of two possible collaboration schemes. When both
firms contribute fully to the collaboration scheme, their model qualities improve maxi-
mally but their revenues go to zero. When only the low-quality firm contributes to the
collaboration scheme, both firms’ model qualities and revenues improve.

2. We next design a defection-free algorithm which allows both firms to contribute to the
collaborative system without losing revenue at any step.

3. We show that, except in trivial cases, our algorithm converges to the Nash bargaining
solution. This is a significant result because we show that even when both firms
myopically focus on improving their own revenues, a solution is reached that maximizes
the joint surplus of the firms.

Related Work

Collaborative learning allows multiple clients to collaboratively train a global model without
transmitting raw data [1]. In this paper, we characterize the participants in a collaborative
learning system as market competitors who will defect from collaboration if they lose revenue
by participating. Competitive behavior of firms in markets is a well-established field of study
in economics (see [40] for an overview). Particularly relevant to our work is competition in
oligopolies [41]. As in [42], we structure our problem as a duopoly of competitive firms. One
difference is that they incentivize collaboration with revenue sharing between the firms rather
than a guarantee of no-revenue-loss as we do in this paper. Also relevant, [43] parameterize the
data sharing problem in terms of competition-type (Bertrand [44] or Cournot [41]) between
firms, the number of data points each firm has, and the difficulty of the learning task, and
give conditions on these parameters under which collaboration is profitable. As we do, they
analyze various data sharing schemes, such as full vs partial collaboration, and propose Nash
bargaining [45] as a strategy for partial collaboration. However, we additionally propose a
federated optimization algorithm for reaching the Nash bargaining solution, guaranteeing no
defections.

3.2 Collaborative Learning in an Oligopoly

For the rest of the paper, we frame the collaborative learning system as a duopoly (i.e. two
firms), but all results can be extended to an oligopoly of more than two firms.
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Our setup is the following. Each firm possesses a model whose qualities are initially
differentiated by classification accuracy on a target dataset. That is, one firm’s model has
low accuracy and the other firm’s model has high accuracy on the target dataset. The
consumers care about performance on the target distribution, which is different from the
firms’ individual data distributions. For example, in the autonomous vehicle example above,
the target distribution would represent a variety of geographical locations, traffic instances,
times of day/night, etc. while the individual distributions would not. Additionally we
assume that the firms’ individual distributions are complementary, so their combined data is
distributed as the target distribution, motivating the benefit of collaboration. Finally, we
assume that, prior to collaboration, one firm has better initial model quality than the other
(e.g. they have more training resources).

A consumer has one of three options: 1) pay a higher price for the high-quality firm’s
model, 2) pay a lower price for the low-quality firm’s model, or 3) buy neither model. We
assume that all consumers would prefer the higher-quality model if the prices of both models
were the same – that is, the firms’ models are vertically differentiated. Consumers would
be happiest if both firms collaborated fully since this would give them two maximally good
models to choose from, but the initially high-quality firm would have sacrificed revenue in
this scenario (we show this formally in Section 3.3), causing it to defect. Based on this,
our motivating question is: can we incentivize firms to join the collaboration scheme, thus
benefiting consumers, while giving them no reason to defect due to revenue loss at any stage
of the training process? We answer this question affirmatively.

In the following section, we formally describe the duopoly model.

Duopoly Model

Notation and Assumptions

1. A consumer’s type corresponds to how much they value quality of prediction. We assume
that consumer-types are uniformly distributed on Θ = [0, 1], where consumer-type
θ = 0 places no value on quality and consumer-type θ = 1 places maximal value on
quality.

2. We denote the low-quality firm’s loss on its dataset with model parameters x ∈ X as
f(x; l) ∈ [0, 1] and the high-quality firm’s loss on its dataset as f(x;h) ∈ [0, 1]. In the
collaborative learning process, both firms want to solve the optimization problem

x∗ = argmin
x∈X

f(x), where f(x)
def
=

f(x; l) + f(x;h)

2
. (3.1)

That is, each firm wants to find the model which has minimal average loss across both
firms’ datasets. When the objective (3.1) is evaluated at the firms’ models xl and xh,
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we use the shorthand notation

fl
def
=

f(xl; l) + f(xl;h)

2
, fh

def
=

f(xh; l) + f(xh;h)

2
.

Finally, we define model qualities q(x)
def
= 1− f(x), ql

def
= 1− fl and qh

def
= 1− fh.

3. Consumers pay prices pl/h ∈ [0,∞) for the low/high-quality firm’s model xl/h, where
pl ≤ ph.

Equilibrium Quantities

The following definition gives the consumer’s utility.

Definition 2. [Consumer Utility] A type-θ consumer has utility

Uc(θ) =


θqh − ph if buys high-quality firm’s model

θql − pl if buys low-quality firm’s model

0 if buys neither model.

(3.2)

The consumer utilities in Definition 2 induce the following demands for the firms.

Lemma 21 (Consumer Demands). Given the utilities in Definition 2,

1. consumer demand for the low-quality firm is Dl =
ph−pl
qh−ql

− pl
ql
, and

2. consumer demand for the high-quality firm is Dh = 1− ph−pl
qh−ql

.

Proof. See Section 3.7.

Using the consumer demands in Lemma 21, we can define the utilities of the firms.

Definition 3. [Firm Utility/Revenue] The low/high firm’s utility/revenue from selling its
model is

Ul/h(ql, qh, pl, ph) = pl/hDl/h. (3.3)

At equilibrium, the firms will set prices pl and ph that maximize (3.3), yielding price-
optimal utilities.

Lemma 22 (Equilibrium Prices and Utilities). The optimal prices for the low and high firms
are

p∗l =
ql(qh − ql)

4qh − ql
, p∗h =

2qh(qh − ql)

4qh − ql
,
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yielding price-optimal utilities

Ul(ql, qh, p
∗
l , p

∗
h) =

qlqh(qh − ql)

(4qh − ql)2
, Uh(ql, qh, p

∗
l , p

∗
h) =

4q2h(qh − ql)

(4qh − ql)2
. (3.4)

Proof. See Section 3.7.

Going forward, we will use the shorthand Ul/h
def
= Ul/h(ql, qh, p

∗
l , p

∗
h).

Remark 1. Since the firms make their pricing decisions simultaneously and compete based
on prices, this is the Bertrand model of competition [44]. This is distinct from other forms
of oligopolistic competition, such as Cournot competition [41] in which firms compete based
on quantity (i.e. the firms independently and simultaneously decide quantities to produce
which then determine market price), or Stackelberg competition [46] in which the firms
non-independently and sequentially decide quantities to produce.

The following proposition states how the firms’ utilities vary with quality and is key in
our analysis going forward.

Proposition 1 (Relationship between utilities and qualities). For ql ≤ qh,

1. Uh is increasing in qh,

2. Uh is decreasing in ql,

3. Ul is increasing in qh, and

4. Ul is increasing in ql for ql ≤ 4
7
qh and decreasing in ql otherwise.

Proof. See Section 3.7

In the next section, we examine various collaboration schemes between the firms and
observe the impact on their revenues and model qualities.

3.3 Collaboration Schemes

To motivate our method, we describe two potential collaboration schemes between competitors
that have sub-optimal and non-intuitive outcomes.

Sharing Protocol. As in standard federated learning protocols, we do not assume that the
firms transmit their raw data to each other. Instead, firm A shares with firm B by evaluating
the loss of firm B’s model on firm A’s data. Then firm A shares with firm B the loss, or the
gradient of the loss, which allows firm B to optimize the objective (3.1). These exchanges
can happen either directly between the firms are through a trusted central coordinator.
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Figure 3.1: Performance of Complete Sharing scheme on MNIST. When both firms share
with each other, their models converge to the same utility, driving their utilities to zero.

Notation and Assumptions

1. f(x; l/h) is convex and L-smooth in x.

2. We use ql/h,t and fl/h,t to refer to the firms’ objectives when the model parameters are
xl/h,t, i.e. the model parameters at round t of optimization.

3. We define ρt =
ql,t
qh,t

, the ratio of the firms’ model qualities at round t of optimization.

4. We assume model qualities can only improve or stay the same, not degrade.

Complete Collaboration

In this arrangement, both firms fully collaborate, sharing their models with each other and
therefore obtaining identical-quality models. (Note that this algorithm is just FedAvg [1].)
While this collaboration scheme is optimal for the consumer, giving them the choice of two
maximally high-quality models, it drives both firms’ utilities to zero. With identical-quality
models, each firm will continually undercut the other’s price by small amounts to capture the
entire market share, eventually reaching equilibrium prices pl = ph = 0.

Lemma 23 (Firm Revenues under Complete Collaboration). Under Complete Collaboration,
the firms’ equilibrium utilities are Ul = Uh = 0.

Figure 3.1 shows that when both firms’ qualities increase freely in a Complete Collaboration
scheme, their qualities both improve maximally, benefiting the consumer, but their utilities
are driven to zero. Therefore, both firms have cause to defect from this collaboration scheme.

One-sided Collaboration

In One-sided Collaboration, one firm shares its model while the other doesn’t. There are two
possibilities.
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Only high-quality firm shares. From Proposition 1, the high-quality firm’s revenue
increases in qh but decreases in ql. Therefore, if the quality of xh does not increase sufficiently
to compensate for the increase in quality of xl, the high-quality firm will lose revenue, causing
it to defect. (In the proof of Proposition 3, we give this increase-threshold precisely.) In our
problem setup, the individual firms’ training distributions are different than target distribution
on which the qualities of their models are evaluated. Therefore, if the low-quality firm benefits
from the high-quality firm’s model, its performance on the target distribution will outpace
the high-quality firm, which is limited to training on its own data. Figure 3.2a gives an
example of this outcome. Due to collaboration, the low-quality firm’s model out-performs
the high-quality firm’s model, causing the high-quality firm’s revenue to decrease.

Only low-quality firm shares. From Proposition 1, both firms’ utilities increase in qh.
Therefore, both firms will increase their revenue if the low-quality firm shares its model with
the high-quality firm. Figure 3.2b depicts the outcome of this collaboration scheme. Over
time, both firms’ revenues increase. While this arrangement is defection-free, the low-quality
firm is stuck with its own training data, causing it to potentially have lower revenue that
it would under a more equitable scheme. To address this, we next propose a defection-free
scheme in which both firms participate in collaboration without losing revenue.

3.4 Defection-Free Collaborative Learning

In this section, we introduce our method, Defection-Free Collaborative Learning (Defection-
Free CL). Our objectives in designing this algorithm are that

1. for all starting values (ql,0, qh,0), neither firm’s revenue decreases at any round, and

2. the algorithm converges to the Nash bargaining solution, which we denote (q∗l , q
∗
h). (See

Section 3.4.)

The first objective ensures that the algorithm is defection-free. The second seeks a point
of convergence that maximizes the joint surplus of the firms. In Section 3.4, we show that
Algorithm 5 achieves 1) entirely and achieves 2) for a large range of starting conditions.
Before describing our algorithm, we first motivate the Nash bargaining solution as a suitable
convergence goal for our problem setting.

Nash Bargaining

In cooperative bargaining, agents determine how to share a surplus amongst themselves. If
negotiations fail, each agent is guaranteed some fixed surplus, known as the disagreement
point. A typical application of bargaining involves deciding how to split a firm’s profits
amongst its employees. The bargaining framework is suitable for our purposes because the
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(b) Only low-quality firm shares.

Figure 3.2: Performance of One-sided Sharing schemes on MNIST. When only the
high-quality firm shares, the high-quality firm’s revenue becomes negative. When only the
low-quality firm shares, both firms have positive, but less, revenue than with our
collaboration scheme (Figure 3.3).

firms must agree how to share a “surplus of quality” (i.e. set model qualities relative to each
other) so that neither firm’s revenue decreases at any one round.

An important framework in cooperative bargaining is Nash bargaining [45], a two-person
bargaining scheme, which solves for

(q∗l , q
∗
h) = argmax

(ql,qh)

N(ql, qh, ql,0, qh,0)

s.t. Ul(ql, qh) ≥ Ul(ql,0, qh,0)

Uh(ql, qh) ≥ Uh(ql,0, qh,0),

where

N(ql, qh, ql,0, qh,0)
def
= (Ul(ql, qh)− Ul(ql,0, qh,0))(Uh(ql, qh)− Uh(ql,0, qh,0)),

and (ql,0, qh,0) are the initial model qualities of the firms. The Nash bargaining solution,
(q∗l , q

∗
h), maximizes the product of the improvement in the firms’ utilities. Therefore, unlike

one-sided collaboration, the Nash objective rewards improvement in the low-quality firm’s
utility as well as the high-quality firm’s utility. In Nash bargaining, the disagreement point
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(ql,0, qh,0) determines the surplus for the parties if negotiations fall apart. In our setting,
if either firm defects from collaboration, both firms retain their current model qualities.
Going forward, we use N(ql, qh) as shorthand for N(ql, qh, ql,0, qh,0). The Nash bargaining
solution (q∗l , q

∗
h) has four important properties: 1) it is invariant to affine transformation of

the utility functions, 2) it is pareto efficient, 3) it is symmetric, and 4) it is independent of
irrelevant alternatives. In fact, the point (ql, qh) with these four properties is uniquely the
Nash bargaining solution.

The next proposition shows that q∗h is equivalent to the high-quality firm’s maximal
quality.

Proposition 2 (Equivalence between maximal quality and the Nash bargaining solution).

q∗h = max
x∈X

q(x).

Proof. From Proposition 1, ∂Uh

∂qh
and ∂Ul

∂qh
are both non-negative for all ql ≤ qh, and consequently

∂N(ql,qh)
∂qh

≥ 0 for all ql ≤ qh. This means that for any ql, the N(ql, qh) can always be improved

by increasing qh. Therefore, q
∗
h is necessarily maxx∈X q(x).

Section 3.3 shows there’s a defection-free scheme in which the low-quality firm shares but
the high-quality firm doesn’t. In Algorithm 5, we give a way for both firms to contribute to
collaboration with neither firm losing revenue at any step. Due to the more equitable design
of this collaboration scheme, its dynamics mirror those of Nash bargaining which maximizes
the joint surplus of the participants.

The difficulty of designing Algorithm 5 is that, in order to reach (q∗l , q
∗
h) without decreasing

revenues at any step, neither firm can improve its quality too much in a given step. Given an
increase in the high-quality firm’s quality qh,t−1 → qh,t, the low-quality firm can only improve
by some limited amount without decreasing the high-firm’s revenue (since Uh is decreasing in
ql by Prop. 1). Because of this capped permissible improvement for the low-quality firm, if
the high-quality firm converges to q∗h too quickly, the low-quality firm will never reach q∗l .

We describe the key steps of Algorithm 5. We also assume that, prior to the algorithm,
both firms have saturated training on their own datasets and will only update their models
collaboratively going forward. Since Ul and Uh both increase in qh, the low-quality firm
should always share with the high-quality firm. Step 4 ensures this, where the high-quality
firm has access to the low-quality firm’s loss on its model xh,t−1 when updating. As we
show in Section 3.4, in order to converge to the Nash bargaining solution, the low-quality
firm should not update if ql,t ≥ q∗l or ρt−1 > ρ∗. Step 7 ensures this. Since Uh decreases
in ql, the low-quality firm cannot improve its model beyond a certain threshold before the
high-quality firm loses revenue. This threshold q̂l,t is computed in Step 8, and in Steps 9-11,
the high-quality firm will only collaborate if the collaborative updates to the low-quality
firm’s model do not improve its quality beyond q̂l,t.
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Algorithm 5 Defection-Free Collaborative Learning

Input: Low-quality model: xl,0. High-quality model: xh,0.
Note: We assume both firms are trusted parties and will honestly exchange information.
For example, to perform the necessary computations, the high-quality firm requires xl and
∇f(xh; l) from the low-quality firm, and the low-quality firm requires xh, ∇f(xl;h), f(xh;h),
and f(xl;h) from the high-quality firm.

1: for t ∈ [T ] do
2: High-quality Model Update

3: Set αh,t ≤ 1
L
.

4: Update: xh,t = xh,t−1 − αh,t∇xh,t−1
fh,t−1.

5: Low-quality Model Update
6: xl,t = xl,t−1.

7: if ql,t < q∗l and
ql,t
qh,t
≤ ρ∗ =

q∗l
q∗h

then

8: Compute: q̂l,t = B

(
ρt−1,

qh,t
qh,t−1

)
qh,t, where

B(a, b)
def
= 4− (4− a)2

2(1− a)

(
b−

√
b2 − 12(1− a)

(4− a)2
b

)
.

9: while ql,t ≤ q̂l,t do
10: Set: αl,t.
11: Update: xl,t ← xl,t − αl,t∇xl,t

fl,t

12: Output: xl,T , xh,T

In the next section we prove the two key properties of Defection-Free Collaborative
Learning: 1) it guarantees the firms non-decreasing revenue at every step, and 2) it converges
to the Nash bargaining solution for all but trivial starting conditions.

Theory and Analysis

The following proposition shows that Algorithm 5 is defection-free.

Proposition 3 (Non-decreasing revenues). There exist learning rate schedules {αl,t}t and
{αh,t}t such that at no step of Algorithm 5 does either firm’s revenue decrease.

Proof. See Section 3.7.

We next examine starting conditions for which Algorithm 5 converges to the Nash
bargaining solution. Proposition 4 gives a trivial starting condition for which it does not
converge.
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Proposition 4 (Impossibility of convergence to the Nash bargaining solution). If ql,0 > q∗l ,
then Algorithm 5 cannot converge to (q∗l , q

∗
h).

Proof. Since firms do not degrade their model quality, the low-quality firm cannot converge
to q∗l .

In the next proposition, we show that for all other starting conditions, Algorithm 5
converges to (q∗l , q

∗
h). Our key insight in the proof of this proposition is that if the high-quality

firm converges too quickly to q∗h, the low-quality firm will not be able to make sufficient
progress towards q∗l without violating the no-revenue-loss condition. Therefore, we must
design a learning rate schedule for the high-quality firm {αh,t}t such that convergence to q∗h
is properly paced.

Proposition 5 (Convergence to the Nash bargaining solution). If ql,0 ≤ q∗l , then there exist
learning rate schedules {αl,t}Tt=1 and {αh,t}Tt=1 such that after T rounds Algorithm 5 converges
to (q∗l , q

∗
h).

Proof. See Section 3.7.

Proposition 5 shows that even when both firms myopically attend to improving their
own revenues, Algorithm 5 converges to the Nash bargaining solution which maximizes joint
surplus. The following theorem gives the rate of convergence to the Nash bargaining solution
for convex and L-smooth losses.

Theorem 5 (Convergence Rate of Defection-Free Collaborative Learning). Suppose ql,0 ≤ q∗l .
Then running Algorithm 5 for T rounds ensures

N(q∗l , q
∗
h)−N(ql,T , qh,T ) ≲

∥xh,0 − x∗
h∥2∑T

t=1 αh,t

+ |ρ∗ − ρT |. (3.5)

Proof. See Section 3.7.

The first term in the bound (3.5) shows that the convergence rate to the Nash bargaining
solution is determined by the rate at which qh converges to q∗h.

The following corollary shows the rate at which the |ρ∗ − ρT | term in Theorem 5 vanishes
with T .

Corollary 1. Suppose ql,0 ≤ q∗l . Running Algorithm 5 for T ≳ L∥xh,0−x∗
h∥

2

ϵ
rounds ensures

that

N(q∗l , q
∗
h)−N(ql,T , qh,T ) ≲

∥xh,0 − x∗
h∥2∑T

t=1 αh,t

+ (4− 5ρ∗) log

(
q∗h

q∗h − ϵ

)
.

Proof. See Section 3.7.
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Figure 3.3: Performance of Defection-Free FL on MNIST. Both firms’ qualities increase
(figure 1), their revenues increase and approach a higher level than under One-sided
Collaboration (figure 2), and the firms’ qualities approach the Nash bargaining solution
(figure 4).

3.5 Experiments

All algorithms in our are implemented with PyTorch [47]. Our general experimental setup is
the following. We construct three datasets: the low-quality firm’s dataset Dl,train, the high-
quality firm’s dataset Dh,train, and a common test set for both firms Dtarget. The datasets are
constructed such that Dl,train ̸∼ Dtarget and Dh,train ̸∼ Dtarget, but Dl,train ∪ Dh,train ∼ Dtarget,
i.e. neither firm’s individual distribution matches the target distribution, but their combined
datasets are distributed as the target distribution, incentivizing them to share. We use
cross-entropy loss and PyTorch’s built-in SGD optimizer for all experiments. Code for all
experiments is available at this github repo.

MNIST We use a LeNet-5 model [48], set |Dl,train| = |Dh,train| = 1000, and use the MNIST

test set as Dtarget. We construct Dl,train so that F̂ (5) = 0.8 and Dh,train so that F̂ (5) = 0.2,

where F̂ is the empirical CDF over the label space. We train the high-quality firm’s model
for 10 initial epochs, and for all models and experiments set the learning rate to 0.01.

Defection-Free Collaborative Learning (Fig. 3.3). Since the low-quality firm shares
with the high-quality firm, the high-quality firm improves maximally. The high-quality firm
only shares with the low-quality firm to the extent that neither firm’s revenue decreases.
Under this sharing scheme, we see in the first figure that both firms’ qualities increase, and
the ratio of their qualities converges to the optimal ratio. The second figure shows that
revenues increase (do not decrease), and notably their revenues reach a higher level than under
One-sided Collaboration (Section 3.3). Finally, the last figure shows that the Nash bargaining
objective approaches its maximal value, showing convergence to the Nash bargaining solution.

https://github.com/mwerner28/defection-free-collaborative-learning
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3.6 Conclusion

We introduce a defection-free collaborative learning scheme in which participants iteratively
optimize their models by sharing training resources, without losing utility at any round and
having cause to defect from participation. Framing the collaborative learning system as a
duopoly of competitive firms, we show that both firms can improve their model qualities
by sharing data with each other without losing revenue at any round. We describe other
collaboration schemes for which this is not possible. Notably, even when both firms myopically
focus on improving their own revenues, we show that our algorithm converges to the Nash
bargaining solution, thus optimizing for joint surplus.

3.7 Proofs of Theoretical Results

Proofs for Section 3.2

Proof of Lemma 21. Let θ̂l be the type of the consumer who is indifferent between buying
from the low-quality firm and not buying at all. Then, based on the consumer’s utility
function (3.2),

θ̂lql − pl = 0. (3.6)

Let θ̂h be the type of the consumer who is indifferent between buying from the high-quality
firm and low-quality firm. Then, from (3.2),

θ̂hql − pl = θ̂hqh − ph. (3.7)

Therefore any consumer with type θ ∈ [θ̂l, θ̂h) will buy from the low-quality firm and any
consumer with type θ ∈ [θ̂h, 1] will buy from the high-quality firm, giving demands Dl = θ̂h−θ̂l
and Dh = 1− θ̂h. Solving (3.6) and (3.7) for θ̂l and θ̂h completes the proof.

Proof of Lemma 22. From Lemma 21, the demand for the low-quality firm is Dl =
ph−pl
qh−ql

− pl
ql
,

yielding low-quality firm utility

Ul = pl

(
ph − pl
qh − ql

− pl
ql

)
. (3.8)

To maximize its utility, the low-quality firm sets price

p∗l = argmax
pl

∂Ul

∂pl

= argmax
pl

(
ph − 2pl
qh − ql

− 2pl
ql

)



CHAPTER 3. COLLABORATIVE LEARNING AMONG COMPETITORS 71

=
qlph
2qh

. (3.9)

Similarly, demand for the high-quality firm is Dh = 1 − ph−pl
qh−ql

, yielding high-quality firm
utility

Uh = ph

(
1− ph − pl

qh − ql

)
. (3.10)

To maximize its utility, the high-quality firm sets price

p∗h = argmax
ph

∂Uh

∂ph

= argmax
ph

(
1− 2ph − pl

qh − ql

)
=

pl + (qh − ql)

2
. (3.11)

Resolving (3.9) and (3.11) yields

p∗l =
ql(qh − ql)

4qh − ql
(3.12)

and

p∗h =
2qh(qh − ql)

4qh − ql
. (3.13)

Finally, evaluating (3.8) and (3.10) at the optimal prices (3.12) and (3.13) yields the price-
optimal utilities (3.4).

Proof of Proposition 1. The proposition follows from observing the partial derivatives of the
firms’ utility functions. For ql ≤ qh,

∂Uh

∂qh
=

4qh(4q
2
h − 3qhql + 2q2l )

(4qh − ql)3
≥ 0,

∂Ul

∂qh
=

q2l (2qh + ql)

(4qh − ql)3
≥ 0,

∂Ul

∂ql
=

q2h(4qh − 7ql)

(4qh − ql)3

{
≥ 0 if ql ≤ 4

7
qh

< 0 if ql >
4
7
qh

and

∂Uh

∂ql
= −4q2h(2qh + ql)

(4qh − ql)3
≤ 0.

Figure 3.4 provides a graphical representation of this proposition.
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Figure 3.4: This figure shows how the firms’ utilities vary with model quality. Ul and Uh are
both increasing in qh, Uh is decreasing in ql, and Ul is increasing in ql for ql ≤ 4qh

7
and

decreasing in ql otherwise.

Proofs for Section 3.4

Proof of Proposition 3. Suppose that at round t, given current qualities ql,t−1 and qh,t−1, the
high-quality firm improves to qh,t. Then, in order for neither firm to lose revenue, ql,t must
be such that

4q2h,t(qh,t − ql,t)

(4qh,t − ql,t)2
≥

4q2h,t−1(qh,t−1 − ql,t−1)

(4qh,t−1 − ql,t−1)2
(3.14)

and

ql,tqh,t(qh,t − ql,t)

(4qh,t − ql,t)2
≥ ql,t−1qh,t−1(qh,t−1 − ql,t−1)

(4qh,t−1 − ql,t−1)2
. (3.15)

Rearranging terms, (3.14) can be written as an inequality involving a convex quadratic of ql,t:

[4q2h,t−1(qh,t−1 − ql,t−1)]q
2
l,t

+ [4(4qh,t−1 − ql,t−1)
2q2h,t − 32q2h,t−1(qh,t−1 − ql,t−1)qh,t]ql,t

+ [64q2h,t−1(qh,t−1 − ql,t−1)q
2
h,t − 4(4qh,t−1 − ql,t−1)

2q3h,t] < 0.

The right-most root of this quadratic is

qhl,t = 4qh,t −
(4− ρt−1)

2

2(1− ρt−1)

(
q2h,t
qh,t−1

−

√
q4h,t
q2h,t−1

− 12(1− ρt−1)

(4− ρt−1)2
q3h,t
qh,t−1

)
.
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Similarly, (3.15) can be written as an inequality involving a convex quadratic of ql,t:

[ql,t−1qh,t−1(qh,t−1 − ql,t−1) + (4qh,t−1 − ql,t−1)
2qh,t]q

2
l,t

+ [−8ql,t−1qh,t−1(qh,t−1 − ql,t−1)qh,t − (4qh,t−1 − ql,t−1)
2q2h,t]ql,t

+ [16ql,t−1qh,t−1(qh,t−1 − ql,t−1)q
2
h,t] < 0.

The right-most root of this quadratic is

qll,t =

(
1

2((1− ρt−1)ρt−1qh,t−1 + (4− ρt−1)2qh,t)

)
·(

8(1− ρt−1)ρt−1qh,t−1 + (4− ρt−1)
2qh,t

+ (4− ρt−1)
√
(4− ρt−1)2q2h,t − 48ρt−1(1− ρt−1)qh,t−1qh,t

)
.

It can be verified with graphing software that for all feasible parameters, qhl,t ≤ qll,t. Therefore,
the low-quality firm can improve its quality to at most

q̂l,t = 4qh,t −
(4− ρt−1)

2

2(1− ρt−1)

(
q2h,t
qh,t−1

−

√
q4h,t
q2h,t−1

− 12(1− ρt−1)

(4− ρt−1)2
q3h,t
qh,t−1

)
,

before at least one of the firms loses revenue. Algorithm 5 ensures that ql,t does not exceed
q̂l,t.

It remains to prove that there exist learning rate sequences {αl,t}t and {αh,t}t that respect
the constraint ql,t ≤ q̂l,t. Since improvement in qh increases the revenues of both firms
(Prop. 1), the high-quality firm can set any learning rate schedule {αh,t}t without violating
the no-revenue-loss constraints (3.14) and 3.15. For the low-quality firm’s learning rate
schedule, note that fl(x), as the average of convex functions f(x; l) and f(x;h), is also convex.
Therefore,

fl,t ≥ fl,t−1 +∇xl,t−1
fT
l,t−1(xl,t − xl,t−1)

= fl,t−1 − αl,t∥∇xl,t−1
fl,t−1∥2.

Rearranging terms,

αl,t ≥
fl,t−1 − fl,t
∥∇xl,t−1

fl,t−1∥2

=
ql,t − ql,t−1

∥∇xl,t−1
fl,t−1∥2

.

Therefore, setting αl,t = min

{
q̂l,t−ql,t−1

∥∇xl,t−1
fl,t−1∥2

, 1

}
ensures that the low-quality firm’s updated

quality ql,t does not exceed q̂l,t.

Proof of Proposition 5. We handle the proof in cases.
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Figure 3.5: B(a, b) ≥ a for all b ≥ 1.

Case 1: ql,0 ≤ q∗l and ρ0 ≥ ρ∗.

When
ql,t−1

qh,t
≥ ρ∗, the low-quality firm does not update (line 7 of Alg. 5). Once the

high-quality firm improves sufficiently so that
ql,t
qh,t

= ρ∗ (note that such a t exists if ql,0 ≤ q∗l ),

then convergence is guaranteed. To see this, we use the following lemma.

Lemma 24. B(a, b) ≥ a for all b ≥ 1. (See Figure 3.5 for pictorial proof.)

Consider step t+ 1 at which ρt =
ql,t
qh,t

= ρ∗. Given the high-quality firm’s improvement

qh,t → qh,t+1, if the low-quality firm improves to ql,t+1 = q̂l,t+1, by Lemma 24, ρt+1 ≥ ρt.
Therefore the low-quality firm can always improve to some level ql,t+1 ∈ [ql,t, q̂l,t+1] and ensure
that ρt+1 = ρ∗ with neither firm losing revenue. Maintaining this improvement schedule,
once the high-quality firm improves to q∗h (using any sequence of learning rates {αh,t}t), the
low-quality firm will be able to reach q∗l by observing the constraint in lines 9-11 of Alg. 5.

Case 2: ql,0 ≤ q∗l and ρ0 < ρ∗.

Our strategy for this case will be to show there exist sequences of learning rates {αh,t}t
and {αl,t}t such that

∑T
t=1(ρt− ρt−1) = ρT − ρ0 ≥ ρ∗− ρ0. We will do this by lower-bounding

the quality-ratio gaps ρt − ρt−1 = B(ρt−1, qh,t/qh,t−1)− ρt−1.

For each ρ ≤ 1, there is a point (possibly infinite)

bρ
def
= max{b ≥ 1 : (4− 5ρ) log10 b ≤ B(ρ, b)− ρ}}.

That is, for a given ρ, bρ is the point at which (4− 5ρ) log b goes from being a lower to an
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Figure 3.6: The green dots indicate, for a given ql,t−1/qh,t−1 (symbolized by a), the upper
bound on qh,t/qh,t−1 that ensures convergence to the Nash bargaining solution.

upper bound on B(ρ, b)− ρ. Define b̃ as the smallest such point over all ρ ≤ 1, so

b̃
def
= min

ρ≤1
bρ.

Figure 3.6 plots bρ for various values of ρ and shows that b̃ ≈ 1.03 = bρ≈0.33.

By definition of b̃, (4 − 5ρ) log10 b ≤ B(ρ, b) − ρ for any ρ ≤ 1 and b ≤ b̃. Suppose the
high-quality firm maintains a learning rate schedule {αh,t}t such that qh,t/qh,t−1 ≤ b̃ for all t
and T is such that q∗h − qh,T ≤ ϵ. Then

T∑
t=1

(ρt − ρt−1) =
T∑
t=1

(B(ρt−1, qh,t/qh,t−1)− ρt−1)

(i)

≥
T∑
t=1

(4− 5ρt−1) log10(qh,t/qh,t−1)

(ii)

≥ (4− 5ρ∗) log10(qh,T/qh,0)

≥ (4− 5ρ∗) log10((q
∗
h−ϵ)/qh,0),

where (i) is due to qh,t/qh,t−1 ≤ b̃, and (ii) is due to the fact that ρ0 ≤ ρ∗ and Lemma 24.

Figure 3.7 shows that (4− 5ρ∗) log10(q
∗
h/qh,0) ≥ ρ∗ − ρ0, so

(4− 5ρ∗) log10

(
q∗h − ϵ

qh,0

)
= (4− 5ρ∗)

(
log10

(
q∗h
qh,0

)
− log10

(
q∗h

q∗h − ϵ

))
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Figure 3.7: Empirical verification of the inequality: (4− 5ρ∗) log10(q
∗
h/qh,0) ≥ ρ∗ − ρ0

≥ (ρ∗ − ρ0)− (4− 5ρ∗) log10

(
q∗h

q∗h − ϵ

)
.

Therefore ρ∗ − ρT ≤ (4− 5ρ∗) log10

(
q∗h

q∗h−ϵ

)
.

It remains to show that there exists a sequence of learning rates {αh,t}t such that

qh,t/qh,t−1 ≤ b̃, and T such that q∗h − qh,T ≤ ϵ. Let αh,t = min

{
(b̃−1)qh,t−1

∥∇xh,t−1
fh,t−1∥2

, 1
L

}
. We analyze

what happens when αh,t is each of the values in the min expression.

First, suppose αh,t =
(b̃−1)qh,t−1

∥∇xh,t−1
fh,t−1∥2

for all t. fh, as the average of L-smooth and convex

functions, is also L-smooth and convex, so that

qh,t−1 +
αh,t

2
∥∇xh,t−1

fh,t−1∥2

qh,t−1

≤ qh,t
qh,t−1

≤
qh,t−1 + αh,t∥∇xh,t−1

fh,t−1∥2

qh,t−1

.

Therefore, the choice of αh,t guarantees that
b̃+1
2
≤ qh,t

qh,t−1
≤ b̃, giving

qh,T
qh,0
≥
(

b̃+1
2

)T

. From

this we see that setting T ≥ log(q∗h/qh,0)

log((b̃+1)/2)
guarantees convergence to q∗h in T ′ steps.

Now suppose αh,t =
1
L
for all t. Under this condition, standard convergence analysis for

gradient descent on convex and L-smooth functions gives

fh,T − f ∗
h ≤

L∥xh,0 − x∗
h∥2

2T
.

Therefore, fh,T − f ∗
h ≤ ϵ after T =

L∥xh,0−x∗
h∥

2

2ϵ
rounds.
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From the above analysis, we see that after at most T =
log(q∗h/qh,0)

log((b̃+1)/2)
+

L∥xh,0−x∗
h∥

2

2ϵ
rounds,

fh,T − f ∗
h = q∗h − qh,T ≤ ϵ, completing the proof.

Proof of Theorem 5. By Taylor’s theorem,

N(q∗l , q
∗
h) ≤ N(ql,T , qh,T ) +

∂N(ql, qh)

∂ql
(q∗l − ql,T ) +

∂N(ql, qh)

∂qh
(q∗h − qh,T )

+

(
max
ql,qh

∂2N(ql, qh)

∂q2l

)
(q∗l − ql,T )

2

2
+

(
max
ql,qh

∂2N(ql, qh)

∂q2h

)
(q∗h − qh,T )

2

2

+

(
max
ql,qh

∂2N(ql, qh)

∂qh∂ql

)
(q∗l − ql,T )(q

∗
h − qh,T )

(i)

≤ c1(q
∗
h − qh,T ) + c2(ρ

∗(q∗h − qh,T ) + qh,T |ρ∗ − ρT |)
≲ (q∗h − qh,T ) + |ρ∗ − ρT |,

where (i) follows from the fact that the gradients of N are bounded by small constants (can
be verified with graphing software), qualities q ∈ [0, 1], and q∗l − ql,T = ρ∗q∗h − ρT qh,T ≤
ρ∗(q∗h − qh,T ) + qh,T |ρ∗ − ρT |.

We now bound q∗h − qh,T . Note that fh, as the average of L-smooth and convex functions,
is also L-smooth and convex. Therefore,

fh,t
(i)

≤ fh,t−1 +

(
− αh,t +

Lα2
h,t

2

)
∥∇xh,t−1

fh,t−1∥2

(ii)

≤ fh,t−1 −
αh,t

2
∥∇xh,t−1

fh,t−1∥2

(iii)

≤ f ∗
h +∇xh,t−1

fT
h,t−1(xh,t−1 − x∗

h)−
αh,t

2
∥∇xh,t−1

fh,t−1∥2

= f ∗
h +

2

αh,t

(∥xh,t−1 − x∗
h∥2 − ∥xh,t − x∗

h∥2),

where (i) is due to L-smoothness of fh, (ii) is due to αh,t ≤ 1
L
, and (iii) is due to convexity

of fh. Rearranging terms and summing over t,

T∑
t=1

αh,t

2
(fh,t − f ∗

h) ≤
T∑
t=1

∥xh,t−1 − x∗
h∥2 − ∥xh,t − x∗

h∥2

≤ ∥xh,0 − x∗
h∥2. (3.16)

Since {fh,t}t are decreasing, (3.16) implies that

fh,T − f ∗
h ≤

2∥xh,0 − x∗
h∥2∑T

t=1 αh,t

.

Noting that fh,T − f ∗
h = q∗h − qh,T completes the proof.
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Proof of Corollary 1. Due to Theorem 5, showing that |ρ∗ − ρT | ≤ (4 − 5ρ∗) log

(
q∗h

q∗h−ϵ

)
if

T ≳ L∥xh,0−x∗
h∥

2

ϵ
completes the proof. We handle it in the same cases as in the proof of

Proposition 5.

Case 1: ρ0 ≥ ρ∗. From lines 9-11 of Algorithm 5, the low-quality firm will not update its
model until after round T , where ρT = ρ∗. With only the high-quality firm updating before
this point, the firms’ qualities will have reached a ratio ρ∗ by T steps if

ql,0
qh,T

= ρ∗. Dividing

both sides of this equation by qh,0 and rearranging terms,
qh,T
qh,0

= ρ0
ρ∗
. As we showed for this

case in the proof of Proposition 5,
qh,t

qh,t−1
≤ b̃. Therefore,

qh,T
qh,0

=
ρ0
ρ∗
≤ b̃T ,

which gives T ≥ log(ρ0/ρ∗)

log(b̃)
. That is, after log(ρ0/ρ∗)

log(b̃)
steps, ρT = ρ∗. As discussed in the proof of

Proposition 5, the firms can maintain a quality ration of ρ∗ for all future rounds, making
|ρ∗ − ρT | = 0.

Case 2: ρ0 < ρ∗. As the proof of this case in Proposition 5 directly shows, ρ∗ − ρT ≤

(4− 5ρ∗) log

(
q∗h

q∗h−ϵ

)
if T ≥ log(q∗h/qh,0)

log((b̃+1)/2)
+

L∥xh,0−x∗
h∥

2

2ϵ
.

Combining Cases 1 and 2, if T ≥ max

{
log(ρ0/ρ∗)

log(b̃)
,
log(q∗h/qh,0)

log((b̃+1)/2)
+

L∥xh,0−x∗
h∥

2

2ϵ

}
, then |ρ∗−ρT | ≤

(4− 5ρ∗) log

(
q∗h

q∗h−ϵ

)
, which completes the proof.

The following lemma further characterizes the Nash bargaining solution in our problem
setting.

Lemma 25. For all ρ0 s.t. ρ0 ≤ ρ∗, ρ∗ ≤ 0.43.

Proof of Lemma 25. The Nash bargaining objective evaluated at q∗h = 1 is

N(ql, q
∗
h) =

(
ql(1− ql)

(4− ql)2
− Ul,0

)(
4(1− ql)

(4− ql)2
− Uh,0

)
, (3.17)

where Uh,0
def
= Uh(ql,0, qh,0) and Ul,0

def
= Ul(ql,0, qh,0).



CHAPTER 3. COLLABORATIVE LEARNING AMONG COMPETITORS 79

0.0 0.2 0.4 0.6 0.8 1.0
ql

0.004

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

N
(q

l,q
h

=
1)

ql = 0.43

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

q l
,0

/q
h,

0

Figure 3.8: For a range of initial qualities and qh = q∗h = 1, the green dots mark the Nash
bargaining solution. The x-values of these points are smaller than 0.43.

Differentiating (3.17) with respect to ql,

∂N(ql, q
∗
h)

∂ql
=

(
1

(4− ql)5

)
· (3.18)(

(7Uh,0 + Uh,0ρ0 + 4)q3l + (−60Uh,0 − 6Uh,0ρ0 + 32)q2l

+ (144Uh,0 − 52)ql + (−64Uh,0 + 32Uh,0ρ0 + 16)

)
.

The roots of (3.18) correspond to the roots of the cubic numerator. It can be verified with
graphing software that over all starting points (ql,0, qh,0) such that ρ0 ≤ ρ∗, the roots q∗l of
this cubic are at most 0.43. (See Figure 3.8 for empirical evidence.)



80

Chapter 4

Privacy Dynamics in Systems of
Learning Agents

This chapter is based on Ananthakrishnan et al. 2024, published in Symposium on the
Foundations of Responsible Computing (2024)

4.1 Introduction

The question of how to define and preserve privacy in the age of machine learning has been a
topic of ongoing debate in the computer science and policy communities [49]. The widely
accepted theoretical framework of differential privacy [50] formalizes privacy as the ability to
withstand membership inference attacks. That is, differential privacy ensures that the output
of a computation obfuscates whether a particular data point was present in the input.

However, the practical implementations of differential privacy has been fraught with
challenges. There has been significant debate around how to interpret the key privacy
parameter ε and how to choose it [51]. This is especially true when data is continuously
collected from users (what does it mean to have a guarantee of ε = 1 per data point when a
user’s data is continuously collected?) This has also led to controversies where companies
have claimed their algorithms are private, when in fact the chosen ε value confers negligible
protection [52]. Further complicating matters, there are multiple variants and extensions of
differential privacy—e.g. (ε, δ)-DP [50], Reyni-DP [53], Gaussian-DP [54], etc.—each with
different parameters and interpretations.

Perhaps more fundamentally, a growing body of work argues that the public’s under-
standing of privacy is drastically different from differential privacy [55, 56]. While differential
privacy focuses on membership inference, privacy is more commonly understood to mean the
prevention of the platform using one’s data in ways that are misaligned with the individual’s
interests, such as price discrimination or other exploitative practices.

This work seeks to provide a new perspective on privacy that bridges the gap between

http://arxiv.org/abs/2404.10767
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the theoretical computer science view and the public’s intuitive understanding. We develop
a game-theoretic model of privacy that allows us to analyze the effect of privacy choices
on all the stakeholders. Additionally, the framework shows how to derive optimal privacy
mechanisms that balance the gain in privacy with loss of accuracy in order to maximize
net utility. In our model, a “principal” (e.g., a platform or seller) can observe signals from
“agents” (e.g., users or buyers) and use this information to maximize its own profit, while
the agents have an incentive to obfuscate their data to prevent exploitation. We focus on a
price-discrimination setting involving interactions between buyers and sellers.

We show that “buyer-induced privacy” behavior, which resembles randomized response,
arises endogenously as an equilibrium strategy. Furthermore, we find that the seller is often
better off committing to not observing the agents’ data at all (“seller-induced privacy”),
as the revenue loss from buyer-induced privacy can be substantial. Finally, we extend our
analysis to a dynamic setting where the seller is a learning agent who interacts with multiple
buyers over time. We demonstrate how a simple external auditing mechanism can implement
the sellers’s commitment to privacy and lead to an equilibrium with endogenously arising
privacy-preserving behavior.

Our results provide a new framework for understanding privacy that encompasses both
the theoretical guarantees of differential privacy and the practical, user-centric notion of
privacy. By modeling privacy as an emergent property of an economic system, we hope to
offer insights that can inform the design of privacy-preserving platforms and policies.

Motivating example. In the absence of regulation, online retailers may price dis-
criminate based on information they have collected about past purchases of the customers.
Some customers may be willing to pay more for a good than others, perhaps due to innate
preferences for certain types of good or because they have more disposable income. The
retailer wants to identify customers with higher valuations and charge them higher prices in
order to maximize their revenue.

Since customers are aware of the potential for price discrimination, they may engage in
evasive action to protect their privacy. Customers may avoid choosing goods that signal
their true preferences for less consequential purchases, e.g., a high-income customer choosing
between an expensive water bottle that is slightly better than a cheaper option may opt to
buy the cheaper bottle in an attempt to obscure their income status. This evasive action
imposes a cost on the customer, who misses out on buying their truly preferred product, and
also on the retailer, who would have preferred to sell the more expensive product.

What are the behaviors that arise at equilibrium? What if the seller can credibly commit
to not price discriminate? How do these behaviors change in more realistic settings where
game parameters are not known and strategies must be learned based on past interactions?
These are questions we answer in this paper.
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Preview of contributions

We introduce a price-discrimination game in Definition 4 that involves buyers of two types—
one with a high valuation and one with a low valuation of an item. A seller may potentially
track buyers’ signals that reveal their valuations. We characterize the perfect Bayes Nash
equilibrium of this game in Theorem 6 and show that a buyer-induced privacy mechanism
emerges in the equilibrium. That is, the buyer with a high valuation, with some probability,
chooses an evasive action to appear to have a low valuation.

We then introduce commitment ability for the seller wherein a seller can commit to
not track buyers’ signals with some probability. In the price-discrimination game with
commitment, the equilibrium response (Corollary 3) results in seller-induced privacy, which
obviates the need for buyer-induced privacy. That is, with some probability, the seller chooses
to commit to respect privacy and voluntarily does not track signals. Due to this privacy
commitment from the seller, it is optimal for buyers to truthfully report their type. We call
this seller-induced privacy the “commitment strategy” and denote the resulting utility U∗

1.

In Section 4.3, we remove the seller’s commitment ability but give buyers access to the
seller’s historical pricing. We model this as a repeated interaction between a seller and
buyers with each buyer participating in only one round. The pricing history is used by
buyers to construct the seller’s “reputation” (i.e., an estimate of the probability of price
discrimination), which buyers then use to inform their signaling strategy. We model the
buyers as using a reputation construction procedure that satisfies a consistency condition
given in Definition 6, which requires that the reputation is able to differentiate between
sellers employing price-discriminating strategies and non-price-discriminating strategies. In
Proposition 6, we show the existence of such a reputation mechanism using the available
history. We show that consistent reputation can yield seller-induced privacy (i.e., ignoring
signals), depending on the model of the seller; we consider no-regret and no-policy-regret
sellers. Our findings are:

1. With a no-regret seller, there could be no seller-induced privacy. That is, the seller can
use signals and price discriminate in every round and still be no-regret (Proposition 7).

2. Regret minimization achieves strictly less average utility (asymptotically) than U∗
1

(Proposition 8).

3. Employing the commitment strategy in every round is a no-policy-regret algorithm for
the seller (Proposition 9).

4. Employing the commitment strategy in every round ensures the seller (asymptoti-
cally) an average utility of U∗

1. This the highest possible average utility achievable
(asymptotically) in the repeated interaction (Proposition 10).
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Related work

Our work sits at the intersection of many areas, ranging from classical economics to online
learning.

There is a vast literature on privacy in computer science studying mechanisms for notions
of privacy such as differential privacy [50]. The mechanisms arising in our setting resemble
mechanisms in these works. We observe local privacy (buyer-induced privacy) where users
add noise to their data. We also observe central privacy (seller-induced privacy) where the
platform ensures similar outcomes for different user data.

Literature in economics studies the economic implications of enacting privacy mechanisms
(see [57] for a survey). Within this body of work, there is a literature on privacy and price
discrimination (e.g., [58–61]). We build on this work and extend to a setting that relaxes
common-prior assumptions for buyers and sellers so that players must now devise strategies
based on what they learn from repeated interactions.

In these repeated interactions, we observe the emergence of a reputation-based privacy
mechanism. This reputation, learned by buyers based on previous interactions, takes the
place of the prior that is used in the single-interaction game. There are numerous papers
in economics on reputation focusing on sellers’ reputations for the quality of the proffered
good [62–64]. We focus on seller’s reputation for enacting price discrimination and analyze
how this arises in an online learning framework.

We also study the differences in behavior that arise from seller commitment, which has
been studied in [65], [58], [61] and [66]. We show that even without commitment, similar
behavior can arise through repeated interactions where reputation substitutes for the role of
commitment.

Finally, we draw upon work on online learning and repeated games. There are a number
of papers [67–70] on repeated interactions between a principal and an agent where the agent
chooses actions based on evolving beliefs about the principal’s actions. In our setting, we
interpret the evolving beliefs as the reputation of the principal. Our setting differs in two
ways. The first is that the principal’s actions are not revealed at the end of the round.
Instead partial information about the action, depending on the agent’s response, is revealed.
The second is that our results hold for weaker conditions on the agent’s beliefs compared to
previous work.

4.2 A Price-Discrimination Game

We formulate price discrimination as a sequential, incomplete-information game between n
buyers and a seller.

Definition 4 (PD game). The price-discrimination game with parameters n, α, µ, θ, θ, cB, cS,
denoted the (n, α, µ, θ, θ, cB, cS)-PD game, has the following extensive-form representation.
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1. Nature’s move. The game begins with Nature assigning types to each participant
according to random draws. For i ∈ [n], the type for buyer i is θi ∈ {θ, θ}, representing
their valuation of the item being sold, with θ < θ. A buyer is type θ with probability µ
and type θ with probability 1− µ. The seller’s type χ is either signal aware (χ = 1) or
signal blind (χ = 0). The seller is signal aware with probability α and signal blind with
probability 1− α.

2. Signaling stage. Based on their assigned type θi, each buyer signals si ∈ {s, s}.
Signaling one’s true type (s for type θ and s for type θ) incurs no cost, whereas signaling
a mismatched type, referred to as “evasion,” imposes a cost cB on the buyer and a cost
cS on the seller.1

3. Pricing decision. The seller chooses a price pi to set for buyer i. The information
the seller can use to set the prices depends on the type of seller. A signal-aware seller
can set prices depending on the signals sent by the buyers, that is, they can set one
price for all buyers that signaled s and a different price for all buyers that signaled s. A
signal-blind seller must set the same price for all buyers since they have no information
to distinguish buyers.

4. Purchase decisions. Each buyer, based on the price pi set for them and their
valuation θi, makes a choice bi ∈ {0, 1}, to purchase the item (bi = 1) or not (bi = 0).

5. Utilities. All players receive their respective utilities. Each buyer’s positive utility is
zero if they do not buy the item and the difference between their valuation and price
otherwise. If they took evasive action in the signaling stage, their negative utility is
equal to their cost of evasion cB. That is, buyer i’s utility is

uB(θi, si, pi, bi) = (θi − pi)bi − cBe(θi, si) (4.1)

where e(θi, si) = 1{(θi = θ ∧ si = s) ∨ (θi = θ ∧ si = s)} indicates evasion or not. The
seller’s overall utility is the sum of utilities uS(θi, si, pi, bi) from their interactions with
each buyer. The positive utility due to buyer i is the revenue pi if buyer i buys and
zero otherwise. If the buyer took evasive action in the signaling stage, the seller incurs
negative utility cS. That is, the seller’s utility is

uS ((θi, si, pi, bi)
n
i=1) =

n∑
i=1

uS(θi, si, pi, bi) =
n∑

i=1

pibi − cSe(θi, si). (4.2)

1We can more generally allow for each type of buyer impose a different evasion cost (e.g., if a θ-buyer
evades, the costs are c̄B , c̄S ∈ R, and if a θ-buyer evades, the costs are cB , cS ∈ R. However, as we later show,
the only costs that are relevant are the evasion costs associated with the θ-seller, because the θ seller will
never choose to evade, so we can think of cB = c̄B and cS = c̄S .
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Mixed strategies. For simplicity of presentation, our game definition is stated in terms
of pure strategies (i.e., players take deterministic actions). However, we can more generally
allow players to employ mixed strategies. A mixed strategy for a player is a distribution over
allowed actions conditioned on the information available when taking the action: buyer i’s
mixed signaling strategy induces a conditional distribution over signals πs

i (·|θi) ∈ ∆({s, s});
the seller’s mixed pricing strategy induces conditional distributions πp(·|s, χ), πp(·|s, χ) over
positive reals with the constraint πp(·|s = s, χ = 0) = πp(·|s = s, χ = 0); finally, each buyer
i’s mixed buying strategy induces conditional distribution πb

i (·|θi, pi) ∈ ∆({0, 1}).
Let π = (πs, πp, πb) denote a mixed strategy profile. π, along with the probability of

player types described in Step 1 of Definition 4 (which we will denote p(χ) and p(θi)) induce
a distribution over action profiles with the probability of an action profile (χ, (θi, si, pi, bi)

n
i=1)

given by

P (χ, (θi, si, pi, bi)
n
i=1) = p(χ)

n∏
i=1

p(θi)π
s
i (si|θi)πp(pi|θi, χ)πb

i (bi|θi, pi). (4.3)

Given a mixed strategy profile π, we will denote the expected utility for the seller and buyer
i by

US(π) = E [uS ((θi, si, pi, bi)
n
i=1)] and U i

B(π) = E [uB (θi, si, pi, bi)] ,

where the expectation is over the joint distribution in (4.3).

Solution concept. We study the perfect Bayes Nash equilibrium (PBNE). Mixed
strategies of players constitute a PBNE if the following conditions hold: (1) sequential
rationality, meaning that each player’s strategy constitutes a best response to their beliefs
about the other players’ types and strategies, given the history of the game up to the point of
choosing the action and (2) consistency of beliefs, meaning that players’ beliefs about other
players’ types are updated following Bayes’ rule.

The following theorem characterizes the PBNE of the price-discrimination game described
in Definition 4.

Theorem 6. An (n, α, µ, θ, θ, cB, cS)-PD game has the following unique perfect Bayes Nash
equilibrium. Define ∆θ = θ − θ.

(a) Buyers with type θi = θ will signal si = s.

(b) Buyers with type θi = θ will signal

si =

s w.p. q∗ if α > cB/∆θ where q∗ = min

{
1, (1−µ)θ

µ∆θ

}
s otherwise.
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(c) The signal-aware seller sets price

p∗signal aware(s) =

{
θ if signal s = s is observed

θ if signal s = s is observed.

(d) The signal-blind seller sets price

p∗signal blind =

{
θ if θ ≥ µθ

θ otherwise.

(e) Buyer i buys the good if and only if their price pi is at most their value, so

bi = 1{θi ≤ pi}.

The proof is given in Appendix 4.7.

Remark 2 (Buyer-induced privacy). The θ-buyers’ equilibrium response can be interpreted
as a privacy-protecting mechanism. This type of buyer is vulnerable to price discrimination,
so rather than always signaling their true type, they may choose to randomize their signal.
More specifically, if the cost of evasion is very high, the θ-buyer will tell the truth, but if the
evasion cost is low enough, the θ-buyer can receive a reduction in price that is higher than
their evasion cost. In the latter case, the θ-buyer must then choose the maximum evasion
probability q∗ such that it is still in the seller’s best interest to take the buyer’s signal at face
value. We call this randomization “buyer-induced privacy.”

Theorem 6 tells us that strategic behavior can only happen if cB < ∆θ (otherwise, we
can never have α > cB/∆θ, so buyers will always signal truthfully). For the rest of the paper,
we will focus on this setting.

Assumption 1. In all following results, we assume cB < ∆θ.

A natural next question is how each player’s utility is affected by the game parameters.
In particular, we focus on the effect of α, due to its connection to privacy. In Figure 4.1, we
visualize the utilities of the seller and θ-buyers as α varies from 0 to 1. Observe that the
seller’s utility increases for α less than some threshold value α∗, whose exact value we give in
the corollary below. This corresponds to the set of PD-games where the buyer’s equilibrium
response is truthful. Beyond α∗, the θ-buyers’ equilibrium response changes to being strategic
and the seller’s utility drops. We formalize the ordering of utilities in the following corollary.

Corollary 2. (Order of utilities) Fix n, µ, θ, θ, cB, cS and let uS(α), uB(α) denote the seller’s
and θ-buyers’ equilibrium utilities of the (n, α, µ, θ, θ, cB, cS)-PD game. uS(·) is maximized at
α∗ = cB/∆θ, and the equilibrium utilities for the settings where the seller is always signal
blind (α = 0), is always signal aware (α = 1), and is signal aware with probability α∗ (α = α∗)
have the following orderings:
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Figure 4.1: Plots of the θ-buyer and seller utilities as a function of α in the θ ≥ µθ setting
(left) and the θ < µθ setting (right).

(a) When θ ≥ µθ,

uS(α
∗) > uS(0) > uS(1) and uB(0) > uB(1) = uB(α

∗).

(b) When θ < µθ,

uS(α
∗) > uS(0) > uS(1) and uB(1) > uB(0) = uB(α

∗).

θ-buyers always receive a utility of zero, regardless of the value of α.

The proof is given in Appendix 4.7.

Price discrimination with seller commitment

A key takeaway from Corollary 2 is that the seller’s utilities are dependent on the value of α,
and if the seller could choose a value of α, they would want to choose α = α∗ to maximize
their utility. Suppose we are now in a setting where the seller is able to choose and publicly
commit to an α. As a motivating example, suppose that the seller must go through a data
broker to access signals, and the data broker publishes trusted summaries of what fraction of
buyers the seller requests data on. In such a setting, where α is chosen by the seller instead
of treated as given, we arrive at the following equilibrium.

Corollary 3. (Equilibrium of price-discrimination game with commitment) When the seller
has commitment power (i.e., is able to credibly communicate to sellers that they will not
price discriminate with some probability), the perfect Bayes Nash equilibrium of the PD-game
consists of the following strategies:

(a) The seller commits to not price-discriminating (by playing p∗signal blind from Theorem 6)
with probability 1− α∗, where α∗ = cB/∆θ.

(b) All buyers always signal truthfully.
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The buyers’ buying decisions are the same as in Theorem 6.

Proof. (a) follows directly from Corollary 2, which tells us that the seller’s utility is maximized
at α∗, and (b) comes from applying Theorem 6 with α = α∗.

Remark 3. Commitment ability allows the seller to achieve a higher utility by providing
seller-induced privacy. This seller-induced privacy obviates the need for buyers to take evasive
action to create buyer-induced privacy, which benefits the seller. We use U∗

1 to refer to the
seller’s maximum achievable equilibrium utility in the single interaction price discrimination
game with commitment. This utility is achieved when the seller plays the strategy given in
Corollary 3.

4.3 Repeated Interactions

In the previous section, we saw the emergence of seller-induced privacy when the seller
has commitment ability. If possible, the seller would commit to providing seller-induced
privacy (by ignoring signals with probability 1− α∗, as in Corollary 3), thereby limiting the
extent of price discrimination performed by the seller. However, these results hinge on the
buyer believing that the α stated by the seller truly corresponds to the probability of price
discrimination. Without this credible commitment from the seller, the story becomes more
complicated.

In this section, we study whether seller-induced privacy can still arise in the absence
of such commitment ability, through the development of a reputation based on the seller’s
historical pricing. We ask the question of how the extent of privacy and resulting utilities
differ under reputation-based privacy versus commitment-based privacy. We model the seller
as making pricing decisions using an online learning algorithm and show how different models
such as no-regret and no-policy-regret lead to different answers to this question.

In the repeated interaction setting, we also relax the assumptions that the distribution µ
over agent types and the probability α that the seller looks at the agent’s signal are publicly
known. Rather than playing the single-interaction equilibrium strategies, which require full
knowledge of game parameters, the players now have to learn strategies online based on past
interactions.

Setup

We consider repeated interactions between a seller and buyers where a new batch of buyers
is drawn at each round. We call this as the repeated PD protocol. Each round is similar
to the one-shot PD-game from Definition 4 but with the following differences: (1) There is
one fixed seller throughout all rounds. (2) When players choose actions, they not only have
access to information from the current round (as was the case in the one-shot PD game) but
also some information from previous rounds. Specifically, at round t, the seller has access to
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((sτi , p
τ
i )

n
i=1)

t−1
τ=1, the signals they observed and the prices they set in previous rounds, and each

buyer i has access to (((θτi , s
τ
i , p

τ
i )

n
i=1)

t−1
τ=1), the buyer types, signals, and prices of all buyers

from previous rounds. This modeling of the buyers’ access is appropriate in settings where
buyer information is pooled either through crowd-sourcing or by an auditing entity and made
available to buyers. (3) The parameter µ (the probability of a type-θ buyer) is not known to
the seller. (4) The probability that the seller will price discriminate is not known to buyers,
as was assumed in the one-shot PD game; rather, buyers must estimate this probability based
on past rounds. We write out the repeated interaction protocol in detail in Appendix 4.6.

Model of the buyers

Since each buyer participates in only one round of the repeated PD protocol, the equilibrium
response is still appropriate to model the buyer’s response. However, in the repeated
interaction setting, we no longer assume the buyers hold a static, prior belief about the
probability of a signal-aware seller. Instead, buyers have evolving beliefs based on the seller’s
interactions with past buyers.

Some specific buyer strategies we will refer to are πs
truthful, which corresponds to always

signaling truthfully, and πs
strategic, which corresponds to signaling s with probability q∗ (as

defined in Theorem 6) and signaling s with probability 1 − q∗. We consider the following
model of buyer behavior.

Definition 5 (Consistent belief based equilibrium responding (CBER) buyers). Consistent
belief based equilibrium responding buyers (or CBER-buyers) form a sequence of beliefs (α̂t)

T
t=1

satisfying a consistency property defined below and at round t, choose the corresponding
equilibrium strategy (from Theorem 6) of the PD-game with α = α̂t. That is, θ-buyers
always signal truthfully, and θ-buyers signal truthfully (play πs

truthful) if α̂t ≤ α∗ and signal
the opposite type with probability q∗ otherwise (play πs

strategic).

We now explain the consistency property. Given a sequence of seller mixed strategies
action profiles that induce the sequences of distributions (πp

t (·|s = s))Tt=1 and (πp
t (·|s = s))Tt=1

indicating price distributions at each round for signals s, s respectively, define αt to be

αt = PP∼πp
t (·|s=s),P∼πp

t (·|s=s)

[
P ̸= P

]
.

That is, αt denotes the probability of a different price for s compared to s at round t. The
probability here is over the randomness due to the seller’s mixed strategy at round t. αt is a
measure of extent of price discrimination by the seller at round t.

Definition 6 (Consistent sequence). Let ᾱT = (1/T )
∑T

t=1 αt. We say a sequence of
estimators (α̂t)

T
t=1 is consistent if limT→∞ |E[α̂T ]− ᾱT | = 0, where the expectation is taken

over the randomness of the history HT = ((θti , s
t
i, p

t
i)

n
i=1)

T−1
t=1 used to construct α̂T .

A useful implication of consistency is that α̂T converges pointwise to ᾱT .
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Lemma 26. If (α̂t)
T
t=1 is a consistent sequence of beliefs, then for any ϵ < 0 and δ > 0, there

exists some positive integer N such that for all T > N , we have P [|α̂T − ᾱT | ≥ ϵ] ≤ δ.

Proof. Due to consistency and the definition of limits, there exists N such that for all T > N ,
we have |E[α̂T ] − ᾱT | ≤ δϵ. Thus, for T > N , we can apply Markov’s inequality to get
P(|α̂T − ᾱT | ≥ ϵ) ≤ (|E[α̂T ]− ᾱT |)/ϵ ≤ δϵ/ϵ = δ.

The following proposition and associated proof provide an algorithm to construct a
consistent sequence of estimators (α̂t)

T
t=1.

Proposition 6 (Existence of consistent sequence). Assume that buyers equilibrium-respond
to α̂t at each round t. Then, for any sequence of seller actions, there exists a sequence of
estimators (α̂t)

T
t=1 that is consistent.

Proof sketch: Since there are multiple buyers at each round, we can infer whether
the seller is price discriminating or not by comparing the prices charged to a buyer who
signals s and a buyer who signals s. However, only some rounds are informative about
price discrimination; in rounds where all buyers send the same signal, we are not able
to determine if the seller had a price discriminatory pricing policy in place. The consis-
tent estimator α̂t we consider is the fraction of past rounds where price discrimination is
observed, normalized to account for the probability that a round is likely to be informa-
tive about price discrimination. We show that E[α̂t] = (1/t)

∑t−1
τ=1 ατ , which implies that

limT→∞ |E[α̂T ]− ᾱT | = limT→∞

∣∣∣(1/T )∑T−1
t=1 αt − (1/T )

∑T
t=1 αt

∣∣∣ = limT→∞ αT/T = 0. See

Appendix 4.7 for the full proof.

Model of the seller

Since the seller does not a priori know the distribution over buyer types and is engaged
in multiple rounds of the repeated interaction, modeling the seller’s response by the one-
shot equilibrium from Theorem 6 is not reasonable. Instead, we consider the seller as
optimizing various common objectives of repeated interactions such as regret minimization
and policy-regret minimization.

The seller’s mixed strategy at a given round is a pair of probability distributions πp
t =

(πp
t (·|s), π

p
t (·|s)). Let Π denote the set of possible mixed strategies. For rational sellers, we can

focus on distributions supported only on {θ, θ} without loss of generality. Prices supported on
{θ, θ} maximize seller revenue in each round. The seller’s effect on future rounds is also not
affected by limiting the support. This is because the parameters αt that the buyers’ consistent
estimator estimates treats any difference in prices as indicating price discrimination, so all
price differences are treated the same.

Some specific seller strategies we will refer to are πp
PD and πp

noPD. The former is the
“always-price-discriminating strategy,” with πp

PD(θ|s) = πp
PD(θ|s) = 1. The latter is the “never-



CHAPTER 4. PRIVACY DYNAMICS IN SYSTEMS OF LEARNING AGENTS 91

price-discriminating strategy,” with πp
noPD(θ|s) = πp

noPD(θ|s) = 1 if θ ≥ µθ and πp
noPD(θ|s) =

πp
noPD(θ|s) = 1 otherwise.

Regret-minimizing seller

The first seller model we consider is a regret-minimizing seller.

Definition 7 (Seller’s regret). Given a sequence of mixed strategy profiles
{πt} = {(πs

t , π
p
t , π

b
t )}Tt=1, the seller’s average regret is

RS
T ({πt}Tt=1) =

1

T

[
max
πp∗∈Π

T∑
t=1

US(π
s
t , π

p∗
t , πb

t )−
T∑
t=1

US(π
s
t , π

p
t , π

b
t )

]
.

Definition 8 (No-regret algorithm). Let AB be an algorithm employed by the buyer in
the repeated PD protocol. A seller algorithm AS in the repeated PD protocol is a no-regret
algorithm for the seller given AB if the sequence of mixed strategies (πt)

T
t=1 generated by the

interaction between AB and AS has seller’s average regret that is sublinear in the number of
rounds. That is, RS

T ((πt)
T
t=1) ∈ o(1).

We will denote by (πt)
T
t=1 the sequence of random variables denoting the players’ mixed

strategies in each round. Our results analyze the asymptotic convergence of average seller
utility. We say that the average seller utility asymptotically converges to some value v if

limT→∞ E
[
(1/T )

∑T
t=1 US(πt)

]
= v. We write US(π

p) and US(π
s, πp) when it is clear what

the other arguments are.

If the seller employs a no-regret algorithm, then the seller could end up always price-
discriminating i.e., no seller-induced privacy. This is stated below.

Proposition 7. (Always price-discriminating is regret minimizing) Given CBER-buyers, the
seller algorithm that always employs the price-discrimination strategy i.e., πp

t = πp
PD for all

timesteps t is a no-regret algorithm for the seller. The seller’s average utility asymptotically
converges to a value at most uS(1), where uS(1) is the seller’s equilibrium utility in the
single-interaction PD-game with α = 1.

Proof sketch. The strategy of CBER-buyers in each round is either πs
truthful or π

s
strategic. For

both these buyer responses, the seller’s optimal strategy is to always price discriminate, as
shown in the computation of the seller’s equilibrium response in the proof of Theorem 6. In
other words, the seller incurs zero regret in each round by always price-discriminating.

Next, we analyze the seller’s average utility. Note that when πp
t = πp

PD, the probability
of seeing different prices for different signals is αt = 1, so ᾱt = 1 for all t. By Lemma
26, α̂t becomes greater than α∗ eventually (where α∗ is as defined in Corollary 3), which
causes θ-buyers to play πs

strategic. In other words, eventually the seller and buyers will all be
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playing their equilibrium strategies for the PD-game with α = 1, so their average utilities will
converge to the corresponding equilibrium utilities. See Appendix 4.7 for the full proof.

The next proposition tells us that regret minimization necessarily causes the seller to
achieve a worse expected average utility that the optimal utility they can achieve in the single
interaction setting.

Proposition 8 (Regret minimization is inherently at odds with achieving U∗
1). Given CBER-

buyers, for any no-regret seller algorithm, the seller’s average utility asymptotically converges
to strictly less than U∗

1.

Proof sketch. Define T = {t ∈ [T ] : α̂t ≤ α∗} to be the set of rounds where θ-buyers’
signaling strategy is πs

truthful. In all other rounds, their signaling strategy is πs
strategic. Define

β = (1/T )
∑

t∈T αt to be a measure of simultaneous truthfulness from buyers and price-
discrimination by the seller. Our proof involves the following parts. We outline the parts and
state them as lemmas here and prove them in Appendix 4.7

1. Obtaining U∗
1 requires the buyers to be truthful strictly more than α∗ fraction of rounds.

Lemma 27. limT→∞ |T |/T ≤ α∗ implies that limT→∞

(∑T
t=1 US(πt)

)
/T < U∗

1.

2. The no regret property requires that the seller price discriminates in most rounds where
buyers are truthful. So β is close to |T |/T .

Lemma 28. limT→∞ |T |/T ≤ limT→∞
∑

t∈T αt/T .

3. There is a limit on simultaneous price-discrimination and truthful signaling due to the
buyers’ consistent beliefs. That is, β converges to at most α∗.

Lemma 29. limT→∞
∑

t∈T αt/T ≤ α∗.

From Lemmas 28, 29, limT→∞ |T |/T ≤ α∗. Lemma 27 shows that this means average
seller utility is strictly less than U∗

1.

Policy-regret-minimizing seller

As we have seen, regret minimization does not guarantee that the seller achieves higher than
price-discrimination utility. On the other hand, if we model the seller as minimizing policy
regret [71], the seller necessarily achieves utility that is higher than the utility achieved by
the naive strategy of always price discriminating.
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Definition 9 (Seller’s policy regret). Consider a buyer algorithm AB and a seller algorithm
AS. Let (πt(AB,AS))

T
t=1 be the sequence of mixed strategies generated by the interaction

between AB and AS. Given a sequence of mixed strategies (πt)
T
t=1, the seller’s average policy

regret of (πt)
T
t=1 relative to a buyer algorithm AB and a baseline class AS of seller algorithms

is

PRS
T

(
(πt)

T
t=1;AB,AS

)
= max

AS∈AS

1

T

T∑
t=1

US(πt(AB,AS))−
1

T

∑
t=1

US(πt)

Definition 10 (No-policy-regret algorithm). Let AB be an algorithm employed by the
buyer in the repeated PD protocol. An algorithm AS is a no-policy-regret algorithm for
the seller given AB and relative to a class of seller algorithms AS if the sequence of
mixed strategies (πt(AB,AS))

T
t=1 generated by the interaction between AB and AS satisfies

PRS
T ((πt(AB,AS);AB,AS)

T
t=1) ∈ o(1).

Consider a baseline class AMS
S consisting of seller algorithms that employ the same mixed

strategy in each round, that is, πp
t (·|s) is the same distribution for all t and similarly for

πp
t (·|s).

Proposition 9 (Policy-regret-minimizing seller achieves U∗
1). Given CBER-buyers, if the

seller achieves sub-linear policy regret relative to AMS
S , then the seller’s average utility

asymptotically converges to at least U∗
1.

Proof sketch. Under the conditions of this proposition, the seller’s utility must, by definition
of policy regret, approach a utility at least as high (or better) than the utility of any strategy
in AMS

S as T →∞. Recall that U∗
1 is the seller utility achieved in the PD game when α = α∗.

Consider the PD game that results in a seller utility of at least U∗
1 − ϵ, which is achieved

by the seller price-discriminating with probability α̃ < α∗. Then the repeated-interaction
strategy of always price-discriminating with probability α̃ has an average expected utility of
at least U∗

1 − ϵ (this must be true due to the consistency of buyer beliefs; see the full proof in
Appendix 4.7 for details). Taking ϵ to 0 gives the desired result.

Combining the previous result with the following result tells us that a no-policy regret
seller’s algorithm will cause the seller’s average utility to asymptotically converge to exactly
U∗

1. In fact, this result tells us the stronger result that there does not exist any seller algorithm
that can achieve utility higher than U∗

1.

Proposition 10. Given CBER-buyers, for any seller algorithm, the seller’s average utility
asymptotically converges to at most U∗

1.

Proof sketch. This proof is similar to the argument of the proof of Proposition 8 and the full
proof is in Appendix 4.7. The key ideas again are that for high seller utility, there must be
sufficiently many rounds where simultaneously, the seller price discriminates and the buyer
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reports truthfully. Since the buyers’ belief estimators are consistent, this cannot be the case.
The difference between the average seller utility and U∗

1 is a constant times the following
quantity: 1

T

∑
t∈T (π

p
t (θ|s) − πp

t (θ|s)) − α∗, where T is the set of rounds where the buyer
signals truthfully. Lemma 30, 29 (from the proof of Proposition 8) show that the consistency
property implies that this difference converges to most zero.

4.4 Experiments

In this section, we simulate Algorithm 6 with µ = 0.5, θ = 5, θ = 15, cB = cS = 5, and n = 10
and empirically verify our theoretical claims from Section 4.3. We report the convergence of
buyer and seller utilities, seller actions, and buyer estimators. The seller and buyer algorithms
we consider are described below. Code for all experiments is available at this github repo.

Algorithms

Seller

1. Signal-blind seller. The seller plays the regret-minimizing Exp3 algorithm (specifically
Exp3-IX in Chapter 12 of [72]). At round t the seller sets a price pt ∈ {θ, θ} according to
the algorithm’s current sampling distribution, charges pt to all buyers and updates the
sampling distribution based on the resulting average utility from the buyers’ purchase
decisions.

2. Signal-aware seller. The seller plays a contextual version of Exp3, which we call
CExp3, in which the algorithm maintains two sampling distributions over prices {θ, θ},
conditioned on the received signal, s or s. At each round, the seller samples once from
each distribution and charges one price p

t
to all buyers who signal s and pt to all buyers

who signal s. Depending on the sampling distributions, p
t
and pt may or may not be

equal.

3. Stackelberg equilibrium seller. The seller commits to an α∗ = cB/∆θ level of price-
discrimination, i.e., they play the (α = 1)-PD equilibrium strategy (Theorem 6) with
probability α∗ and the (α = 0)-PD equilibrium with probability 1− α∗.

CBER-Buyer. Using a sequence of consistent estimators {α̂τ}t−1
τ=1 (Def. 6) to estimate

the seller’s probability of price-discrimination at each round, each buyer plays the (α = α̂τ )-
PD equilibrium strategy. For our simulations, buyers use the estimator described in (4.7) to
estimate the seller’s probability of price discrimination at each round. All buyers in a single
round use the same estimator.

https://github.com/nivasini/PrivacyDynamics
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Figure 4.2: Convergence of seller and buyer utilities for various algorithms. θ < µθ with our
experiment parameters, so the buyer’s (α = 0)-PD and (α = α∗)-PD utilities are the same
(see Corollary 2).

Discussion

Convergence of Utilities. Figure 4.2 shows convergence of seller and buyer utilities for
each of the seller’s algorithms played against a CBER-buyer. As expected, when a seller plays
Exp3 (which ignores signals) against a CBER-buyer, the players’ utilities converge to the
(α = 0)-PD equilibrium utility (Theorem 6). When the seller plays CExp3 (which observes
signals) against a CBER-buyer, the seller’s utility converges to the (α = 1)-PD equilibrium
utility. Given our experiment parameters, multiple different distributions πp

t (·|s = s) reward
the seller equivalently, while some are more favorable for the buyer than others. Therefore,
while the seller’s utility will always converge to (α = 1)-PD, the buyer’s utility may converge
to something less than (α = 1)-PD. Finally, when the seller plays the Stackelberg equilibrium
against a CBER-buyer, the players’ utilities converge to the (α = α∗)-PD equilibrium utility.

Consistency of α̂. Figure 4.3 illustrates the consistency of the buyer’s estimator
((4.7)). Our simulations show that the buyer’s estimate α̂t of the seller’s probability of price
discrimination converges to 0 against a seller playing Exp3, to 0.5 against a seller playing
α∗-PD (where α∗ = cB/∆θ = 0.5 given our simulation parameters), and to higher-than-0.5
against a seller playing CExp3. Importantly, α̂t aligns with the seller’s true average probability
of price-discrimination, ᾱt, giving empirical evidence for Lemma 26.

Convergence of Seller Actions. In Figure 4.4, we track the cumulative proportion
of the seller’s price-discriminatory vs. non-price-discriminatory actions. Specifically, we
track four seller actions: 1) charging a high price regardless of signal, 2) charging a low
price regardless of signal, 3) charging a high price for a low signal and low price for a low
signal (PD), and 4) charging a low price for a high signal and a high price for a low signal
(reversePD). Given our parameter values for these simulations (i.e. θ < µθ and α∗ = 0.5),
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Figure 4.3: α̂t and ¯̂αt over time when seller is playing Exp3, CExp3, or α∗-PD. In all cases,
α̂ is a consistent estimator of the seller’s true probability of price discrimination.
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Figure 4.4: Relative frequency of actions for the seller playing Exp3, CExp3 and α∗-PD. The
number of PD and reversePD actions for the Exp3 seller are both 0, as is expected.

in equilibrium we would expect that, for each batch of n buyers at a single round: 1) a
signal-blind seller sets a high price for all n buyers, 2) a signal-aware seller sets a high price
for high-signal buyers and a low price for low-signal buyers, and 3) a α∗-PD seller sets a high
price for all high-signal buyers and low price for all low-signal buyers with probability 0.5
and sets a high price for all n buyers with probability 0.5. Figure 4.4 gives empirical evidence
for this intuition.

Biased α̂. In realistic settings, the buyer may not have a consistent estimate of price
discrimination and instead only have access to a biased α̂. Figure 4.5 examines whether a
seller can benefit from non-consistency in the buyer’s estimate. The y-axis of the figure tracks



CHAPTER 4. PRIVACY DYNAMICS IN SYSTEMS OF LEARNING AGENTS 97

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Estimator Bias Level

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Se
lle

r's
 C

um
ul

at
iv

e 
 A

ve
ra

ge
 U

til
ity

Exp3
CExp3

* -PD

( =0)-PD equil.
( =1)-PD equil.
( = * )-PD equil.

Figure 4.5: Cumulative average utility of the seller playing against CBER-buyers using
biased α̂’s.

the seller’s cumulative average utility after 20, 000 rounds of interaction with CBER-buyers.
We partition the interval [−1, 1] into twenty segments γi of width 0.1, and the buyers use
estimator α̂t + ϵt, where ϵt ∼ Unif(γi). The plot then tracks the seller’s cumulative average
utility after 20, 000 rounds of interaction with buyers for each biase interval γi. If α̂t + ϵt is
less than 0 or greater than 1, we clip it at those values respectively. In all cases, the seller is
hurt by a θ-buyer who overestimates the probability of price discrimination (high values of
ϵt) and is thus more likely to evade, costing the seller the evasion cost. Against a buyer who
underestimates the probability of price discrimination (low values of ϵt), neither the Exp3
nor α∗-PD seller gains utility, since the equilibrium behavior of the buyer with consistent α̂t

aligns with the no-price-discrimination equilibrium (see Figure 4.2). By contrast, the CExp3
seller benefits from a buyer who underestimates the probability of price discrimination, since
the seller benefits from discriminatory pricing without incurring the evasion cost. Against a
CBER-buyer with consistent estimates, this advantage is impossible at equilibrium.

4.5 Conclusion

Since the type and level of privacy desired generally depends on the utilities of stakeholders
and forms of interaction among them, we propose a game theoretic framework for privacy in
this paper. We analyzed the perfect Bayes Nash equilibrium in a single-interaction setting
as well as no-regret and no-policy-regret dynamics emerging over repeated interactions. In
both these settings, we show how the different components of the game—utilities, actions
and information sets (information available to players when choosing actions) impact the
privacy levels that emerge.

Our results shed light on the impacts of different privacy-related interventions—we showed
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that enabling a seller to credibly commit to privacy (e.g., through privacy legislation like the
GDPR) or revealing the seller’s past behavior (e.g., through privacy auditing) can surprisingly
improve their utility. Thus, we believe our framework can be used to help analyze and craft
privacy policies.

4.6 Repeated PD Protocol

Algorithm 6 makes clear what information is available to a given player at each point in the
repeated interaction setting.

Algorithm 6 Repeated PD protocol

1: Parameters: (µ, θ, θ, cB, cS)
2: HB

1 , H
S
1 := ∅

3: for t = 1 to T do
4: for each buyer i = 1 to N do
5: Nature draws θti with θti = θ with probability µ and θti = θ otherwise
6: Buyer i chooses mixed strategy πi

S over signal sti ∈ {s, s} based on {θti} ∪HB
t

7: Seller chooses mixed strategy πp(· | s = sti) over price pti.
8: Buyer i decides to buy, denoted by indicator bti, based on {θti , pti} ∪HB

t

9: Buyer i receives utility uB(θ
t
i , s

t
i, p

t
i, b

t
i) and seller receives utility uS ((θ

t
i , s

t
i, p

t
i, b

t
i)

n
i=1),

as defined in (4.1) and (4.2).
10: HB

t+1 = HB
t ∪ {(θti , sti, pti)ni=1}

11: HS
t+1 = HS

t ∪ {(sti, pti)ni=1}

4.7 Proofs of Theoretical Results

Proof of Theorem 6

Proof. Part (a) comes from the fact that θ buyers have no reason to pretend to have a higher
valuation for the good than they actually do. Part (e) comes from the fact that buyers are
utility maximizing.

Part (c) comes from the following reasoning: since signal blind sellers cannot see the
buyers’ signals, they must choose one price to set for all buyers. The seller wants to maximize
their revenue, so they would ideally want to set the highest price that the buyer is willing
to pay (θ for θ-buyers and θ for θ-buyers). However, the seller does not know the type of
the buyer; all they know is the probability µ that the buyer is θ. The seller has to make a
decision between charging θ or θ. If the seller charges θ, both θ and θ agents would be willing
to buy, so the expected revenue is θ. If the seller charges the higher price θ, only θ agents
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would be willing to buy, so the expected revenue is µθ, which corresponds to

p∗signal blind =

{
θ if θ ≤ µθ

θ if θ > µθ.

Part (c) and (d) come from the following best-response arguments. Our goal is to show
p∗signal aware is a best response given q∗ and vice versa, where

p∗signal aware(s) =

{
θ if s = s is observed

θ if signal s = s is observed.

and

q∗ = min

{
1,

(1− µ)θ

µ∆θ

}

What is the signal aware seller’s best response after seeing s? From part (a), we know
that θ buyers never signal θ, so the seller knows that a s signal implies that the buyer is type
θ and should therefore set a price of θ after seeing s, i.e., p∗signal aware(s) = θ.

What is the signal aware seller’s best response after seeing s? In order for p∗signal aware to
be a best response, it must maximize the seller’s expected utility, where the expectation is
over the seller’s posterior belief over the buyer’s type given that they have signaled s. Given
probability q∗ that the θ buyer sends signal s, the seller’s posterior belief µ̂ that the buyer is
type θ is

µ̂ = P(θ = θ|s = s) =
P(s = s|θ = θ)P(θ = θ)

P(s = s|θ = θ)P(θ = θ) +P(s = s|θ = θ)P(θ = θ)
=

q∗µ

q∗µ+ 1− µ
.

Let f(p) denote the seller’s expected utility from charging price p after observing signal s, so

f(p) =

{
p− µ̂q∗cS if p < θ

µ̂p− µ̂q∗cS if p ∈ [θ, θ].

In order for p∗signal aware(s) to be a best response, it must be the value that maximizes f :

p∗signal aware(s) = max
p

f(p) =

θ if q∗ ≤ min

{
1, (1−µ)θ

µ∆θ

}
θ else.

= θ,

where the last equality comes from the choice of q∗. This shows that p∗signal aware(s) = θ is a

best response for the seller. We now turn our attention to the θ-buyer.
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What is the optimal probability q∗ of evasion for the θ-buyer? Let g(q) denote the the
expected utility for the θ buyer when they evade with probability q, given that the seller is
playing p∗signalblind if they are signal blind and p∗signalaware if they are signal aware, so

g(q) = P(seller is signal blind)(θ-buyer utility if seller plays p∗signal blind)

+P(seller is signal aware)(θ-buyer utility if seller plays p∗signal aware)

= (1− α)(θ-buyer utility if seller plays p∗signal blind)

+ α(θ-buyer utility if seller plays p∗signal aware)

= (1− α)[(∆θ − cBq)1(θ ≥ µθ) + (−cBq)1(θ < µθ)]

+ α[(∆θ − cB)q1(q ≤ min{1, (1−µ)θ/µ∆θ}) + (−cBq)1(q > min{1, (1−µ)θ/µ∆θ})].(4.4)

We analyze (4.4) in cases.

• If 1 ≤ (1−µ)θ/µ∆θ, this implies that θ ≥ µθ, so (4.4) simplifies to

uB = (1− α)∆θ + (α∆θ − cB)q.

• If (1−µ)θ/µ∆θ ≤ 1, this implies θ < µθ, so (4.4) simplifies to

uB =

{
(α∆θ − cB)q if q ≤ (1−µ)θ/µ∆θ

−cBq else.

Combining both cases, we see that the θ-buyer’s optimal probability of evasion is

q∗ =

min

{
1, (1−µ)θ

µ∆θ

}
if α > cB/∆θ

0 else.

Proof of Corollary 2

Proof. We summarize fundamental properties of the equilibrium in Theorem 6, from which
expressions for the buyer’s and seller’s expected utilities follow. At equilibrium,

1. When θ ≥ µθ, the signal blind seller always sets price θ.

2. When θ < µθ, the signal blind seller always sets price θ.

3. When θ ≥ µθ and α > cB/∆θ, the θ-buyer always evades (since 1 ≤ (1−µ)θ/µ∆θ when
θ ≥ µθ).
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4. When θ < µθ and α > cB/∆θ, the θ-buyer evades with probability (1−µ)θ/µ∆θ (since
(1−µ)θ/µ∆θ < 1 when θ < µθ).

5. The θ-buyer always signals truthfully when α ≤ cB/∆θ.

6. The θ-buyer always signals truthfully.

Buyer Utilities. It is straightforward to see that the θ-buyer’s expected utility is zero,
so we focus on the θ-buyer. The θ-buyer’s expected utility is

uB = P(seller is signal blind)[uB|seller is signal blind]
+P(seller is signal aware)[uB|seller is signal aware]

= (1− α)[uB|seller is signal blind] + α[uB|seller is signal aware]. (4.5)

where, by the properties above,

• If θ ≥ µθ,

uB|seller is signal blind = (∆θ − cB)1(α > cB/∆θ) + ∆θ1(α ≤ cB/∆θ).

uB|seller is signal aware = (∆θ − cB)1(α ≤ cB/∆θ).

• If θ < µθ,

uB|seller is signal blind = −cB((1−µ)θ/µ∆θ)1(α > cB/∆θ)

uB|seller is signal aware = (∆θ − cB)((1−µ)θ/µ∆θ)1(α ≤ cB/∆θ)

Seller Utility. The seller’s expected utility is

uS = P(seller is signal blind)[uS|seller is signal blind]
+P(seller is signal aware)[uS|seller is signal aware]

= (1− α)[uS|seller is signal blind] + α[uS|seller is signal aware]. (4.6)

where, by the properties above,

• If θ ≥ µθ,

uS|seller is signal blind
= P(buyer is type-θ)(uS|seller is signal blind and buyer is type-θ)

+P(buyer is type-θ)(uS|seller is signal blind and buyer is type-θ)

= (1− µ)θ + µ[(θ − cS)1(α > cB/∆θ) + θ1(α ≤ cB/∆θ)]
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and

uS|seller is signal aware
= P(buyer is type-θ)(uS|seller is signal aware and buyer is type-θ)

+P(buyer is type-θ)(uS|seller is signal aware and buyer is type-θ)

= (1− µ)θ + µ[(θ − cS)1(α > cB/∆θ) + θ1(α ≤ cB/∆θ)].

• If θ < µθ,

uS|seller is signal blind
= P(buyer is type-θ)(uS|seller is signal blind and buyer is type-θ)

+P(buyer is type-θ)(uS|seller is signal blind and buyer is type-θ)

= (1− µ)0

+ µ[(θ − cS)((1−µ)θ/µ∆θ)1(α > cB/∆θ)

+ θ(1− ((1−µ)θ/µ∆θ))1(α > cB/∆θ) + θ1(α ≤ cB/∆θ)]

and

uS|seller is signal aware
= P(buyer is type-θ)(uS|seller is signal aware and buyer is type-θ)

+P(buyer is type-θ)(uS|seller is signal aware and buyer is type-θ)

= (1− µ)θ

+ µ[(θ − cS)((1−µ)θ/µ∆θ)1(α > cB/∆θ)

+ θ(1− ((1−µ)θ/µ∆θ))1(α > cB/∆θ) + θ1(α ≤ cB/∆θ)].

Plugging in the relevant values of α to the buyer’s (4.5) and seller’s (4.6) utility expressions
gives the stated orderings. We also see that α∗ = cB/∆θ maximizes the seller’s utility.

Proof of Proposition 6

Proof. For each round t, let

It = 1{∃i s.t. sti = s and ∃j s.t. stj = s}

be an indicator for whether both types of signals are observed at round t, i.e., whether
round t is “informative” about if there is price discrimination. For rounds t with It = 1, we
additionally define the following random variables:

• P t = pti for the smallest i ∈ [N ] such that sti = s,
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• P t = ptj for the smallest j ∈ [N ] such that stj = s, and

• Xt = 1{P t ̸= P t}, an indicator for observed price discrimination.

Note that the choice to define P t and P t to correspond to the smallest index satisfying the
corresponding condition is simply for concreteness; we could equivalently sample uniformly
from the set of indices satisfying the condition.

Recall that Ht = ((θτi , s
τ
i , p

τ
i )

n
i=1)

t−1
τ=1 is the history known by buyers at the beginning of

round t. Consider the following estimator:

α̂t =
1

t

t−1∑
τ=1

XτIτ
E[Iτ |Hτ ]

(4.7)

The expectation E[Iτ |Hτ ] is over the randomness at round τ . Note that α̂t is computable
based on the history Ht, because E[Iτ |Hτ ] is computable for any τ < t. We will now show
that α̂t satisfies Definition 6. We start by computing the expectation of α̂t:

E[α̂t] = E

[
1

t

t−1∑
τ=1

XτIτ
E[Iτ |Hτ ]

]

=
1

t

t−1∑
τ=1

E
[

XτIτ
E[Iτ |Hτ ]

]
linearity of expectation

=
1

t

t−1∑
τ=1

E
[
E
[

XτIτ
E[Iτ |Hτ ]

∣∣∣∣Hτ

]]
tower rule

=
1

t

t−1∑
τ=1

E
[
E[XτIτ |Hτ ]

E[Iτ |Hτ ]

]
Observe that Xτ and Iτ are independent given Hτ . To see why, note that the randomness in
Xτ |Hτ comes only from the randomness in the seller’s mixed strategy at round τ , whereas the
randomness in Iτ |Hτ comes only from the randomness in the buyers mixed strategy at round
τ . The mixed strategies are fixed given Hτ , and the additional randomness is independent.
Thus,

=
1

t

t−1∑
τ=1

E
[
E[Xτ |Hτ ]E[Iτ |Hτ ]

E[Iτ |Hτ ]

]

=
1

t

t−1∑
τ=1

E[E[Xτ |Hτ ]]

=
1

t

t−1∑
τ=1

E
[
E
[
1{P τ ̸= P τ}|Hτ

]]
by definition of Xτ
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Since P τ |Hτ ∼ πp
t (·|s = s) and P τ |Hτ ∼ πp

t (·|s = s) by definition of the game, we have

=
1

t

t−1∑
τ=1

ατ

Finally, plugging in the above expression with t = T into the criterion for consistency, we
have

lim
T→∞

∣∣∣∣∣E[α̂T ]−
1

T

T∑
t=1

αt

∣∣∣∣∣ = lim
T→∞

∣∣∣∣∣ 1T
T−1∑
t=1

αt −
1

T

T∑
t=1

αt

∣∣∣∣∣ = lim
T→∞

αT

T
= 0

as desired. The last equality comes from the fact that αT is a probability, so it is bounded
between 0 and 1 for all T .

Proof of Proposition 7

Proof. First, we will show that always price-discriminating (πp
t = πp

PD for all t ∈ [T ]) is
no-regret against CBER-buyers. For CBER-buyers, their strategy πs

t at each round t is either
πs
truthful or π

s
strategic. For both these buyer responses, the seller’s optimal strategy is to always

price discriminate as shown in the computation of the seller’s equilibrium response in the
proof of Theorem 6. In other words, the seller incurs zero regret in each round and thus zero
average regret.

Next, we will analyze the seller’s average utility. Note that when πp
t = πp

PD, the probability
of seeing different prices for different signals is αt = 1, so (1/t)

∑t
τ=1 ατ = 1 for all t. By

the consistency property, α̂t becomes greater than α∗ eventually (where α∗ is as defined in
Corollary 3) and the buyer plays πs

strategic. In other words, eventually the seller and buyers
will all be playing their equilibrium strategies for the PD-game with α = 1, so their average
utilities will converge to the corresponding equilibrium utilities. We make this argument
formal below.

Define κ < ∞ to be the maximum utility that can be achieved by a seller in any
round. The finiteness of κ is guaranteed by definition of the seller’s utility function. Define
AT = {∃t >

√
T s.t. α̂t > α∗} and let AC

T = {α̂t > α∗ for all t >
√
T} denote the complement.

Let γT = P(AT ) and 1− γT = P(AC
T ) denote the corresponding probabilities. Then, we can

decompose the expected average seller’s utility as

E

[
1

T

T∑
t=1

US(πt)

]
= γtE

[
1

T

T∑
t=1

US(πt)

∣∣∣∣∣AT

]
+ (1− γt)E

[
1

T

T∑
t=1

US(πt)

∣∣∣∣∣AC
T

]
. (4.8)

The first term of (4.8) is trivially upper bounded by γTκ.

To bound the second term of (4.8), first note that for any round t where α̂t > α∗, the
buyer’s strategy will be equivalent to their equilibrium strategy with α = 1. Thus, the best



CHAPTER 4. PRIVACY DYNAMICS IN SYSTEMS OF LEARNING AGENTS 105

utility that the seller can achieve for those rounds is uS(1). It follows that under the condition
that α̂t > α∗ for every t >

√
T , we have

1

T

T∑
t=1

US(πt) =
1

T

T∑
t=

√
T

US(πt) +
1

T

√
T∑

t=1

US(πt)

≤ 1

T

T∑
t=

√
T

uS(1) +
1

T

√
T∑

t=1

κ

=
T −
√
T

T
uS(1) +

√
Tκ

T

≤ uS(1) +
κ− uS(1)√

T
.

Plugging back into (4.8), we get

E

[
1

T

T∑
t=1

US(πt)

]
≤ γtκ+ (1− γt)

(
uS(1) +

κ− uS(1)√
T

)
.

By the consistency property (Lemma 26), we know limT→∞ γT = 0, so

lim
T→∞

E

[
1

T

T∑
t=1

US(πt)

]
≤ uS(1).

Missing Proofs of Lemmas in Proof of Proposition 8

Proof of Lemma 27. Based on the utility orderings from Corollary 2, note the following
ordering of seller utilities for different combinations of buyer and seller policies:

US(π
s
truthful, π

p
PD) > US(π

s
truthful, π

p
noPD) > US(π

s
strategic, π

p
PD) > US(π

s
strategic, π

p),

where πp is any other pricing strategy besides πp
PD and πp

noPD. We can then write

1

T

T∑
t=1

US(πt) ≤
1

T

∑
t∈T

US(π
s
truthful, π

p
noPD) +

∑
t∈[T ]\T

US(π
s
strategic, π

p
PD)

=
|T |
T

US(π
s
truthful, π

p
noPD) +

(
1− |T |

T

)
US(π

s
strategic, π

p
PD)
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lim
T→∞

1

T

T∑
t=1

US(πt) ≤ US(π
s
truthful, π

p
noPD) lim

T→∞

|T |
T

+ US(π
s
strategic, π

p
PD)

(
1− lim

T→∞

|T |
T

)
Since US(π

s
truthful, π

p
PD) > US(π

s
strategic, π

p
PD), the above upper bound on the limit of the average

utility is increasing as limT→∞ |T |/T is increasing. When limT→∞ |T |/T ≤ α∗,

≤ α∗US(π
s
truthful, π

p
PD) + (1− α∗)US(π

s
strategic, π

p
PD)

< α∗US(π
s
truthful, π

p
PD) + (1− α∗)US(π

s
truthful, π

p
PD)

= U∗
1

Proof of Lemma 28. Let RS
T denote the average seller utility in the T rounds. Since the seller

is no regret, limT→∞RS
T = 0.

Consider the regret due to the seller deviating to πp
PD in each round. The gain in utility

in each round due to this deviation is non-negative since πp
PD is the best-response to both

possible buyer strategies πs
truthful, π

s
strategic. We can then lower bound the regret by considering

regret accumulated in rounds where α̂t ≤ α∗. In such rounds, all buyers are truthful, so
whenever the seller does not charge a buyer the price corresponding to their signal type, they
incur regret. The probability that the seller observes s but charges θ is µπp

t (θ|s), and this
yields a loss of utility of ∆θ, because the buyer is type θ. Similarly, the probability that the
seller observes s but charges θ is (1− µ)πp

t (θ|s), and this yields a loss of utility of θ, since the
buyer is type θ.

RS
T ≥

1

T

∑
t:α̂t≤α∗

µ∆θπp
t (θ|s) + (1− µ)θπp

t (θ|s)

Let κ = min{µ∆θ, (1− µ)θ}

≥ 1

T

∑
t:α̂t≤α∗

κ(1− (πp(θ|s)− πp(θ|s)))

=⇒ 1

T

∑
t∈T

(
πp
t (θ|s)− πp

t (θ|s)
)
≥ |T |

T
− RS

T

κ

The above inequality shows that |T |/T is bounded above by some measure of simultaneous
truthfulness and price discrimination. Each quantity πp

t (θ|s)− πp
t (θ|s) is a measure of price-

discrimination in each round and is related to αt as described in the following lemma.

Lemma 30. When seller pricing strategies are supported on {θ, θ}, αt ≥ πp
t (θ|s)− πp

t (θ|s)
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Proof of Lemma 30. Since seller pricing strategies are supported on {θ, θ}, αt which is the
probability of seeing different prices for different signals is

αt = πp
t (θ|s)π

p
t (θ|s) + πp

t (θ|s)π
p
t (θ|s)

= πp
t (θ|s)(1− πp

t (θ|s)) + (1− πp
t (θ|s))π

p
t (θ|s)

= πp
t (θ|s) + πp

t (θ|s)− 2πp
t (θ|s)π

p
t (θ|s)

= πp
t (θ|s)− πp

t (θ|s) + 2πp
t (θ|s)(1− πp

t (θ|s))
≥ πp

t (θ|s)− πp
t (θ|s)

By inequality 1, Lemma 30, and since limT→∞RS
T/κ = 0,

lim
T→∞

|T |
T
≤ lim

T→∞

1

T

∑
t∈T

αt.

Proof of Lemma 29. Consider the last index t∗ in T . Let us consider two cases. The first
case is limT→∞ t∗/T < α∗. Then, ∑

t∈T

αt/T ≤ |T |/T

≤ t∗/T

=⇒ lim
T→∞

∑
t∈T

αt/T ≤ α∗.

In the second case, limT→∞ t∗ = ∞. Consider ᾱt∗ = 1
t∗

∑
t≤t∗ αt ≥

∑
t∈T αt/T . By the

consistency property, limT→∞ ᾱt∗ = α̂t∗ . α̂t∗ ≤ α∗ since t∗ ∈ T .

Proof of Proposition 9

Proof. Under the conditions of this proposition, the seller’s utility must, by definition of
policy regret, approach a utility at least as high (or better) than the utility of any strategy
in AMS

S as T → ∞. Recall that U∗
1 is the seller utility achieved in the PD game when

α = α∗. For any ϵ > 0, there exists a value α̃ < α∗ such that the seller’s utility in the PD
game with α = α̃ (denoted uS(α̃)) is at least U∗

1 − ϵ. Consider the seller’s mixed strategy
of price-discriminating with probability α̃, so αt = α̃ for all t. Similar to the proof of
Proposition 7, define AT = {∃t >

√
T s.t. α̂t > α∗} and let AC

T = {α̂t > α∗ for all t >
√
T}

denote the complement. Let γT = P(AT ) and 1 − γT = P(AC
T ) denote the corresponding
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probabilities. The expected average seller’s utility can be decomposed as E
[
1
T

∑T
t=1 US(πt)

]
=

γtE
[
1
T

∑T
t=1 US(πt)|AT

]
+ (1− γt)E

[
1
T

∑T
t=1 US(πt)|AC

T

]
. Define m to be the smallest utility

that can be achieved by a seller in any round. Then the first term on the right side is trivially
lower bounded by γTm.

To bound the second term, note that for any round t where α̂t < α∗, the buyer’s
strategy will be equivalent to the equilibrium strategy of the PD game with α = α̃, so the

seller’s expected utility is uS(α̃). Thus, E
[
1
T

∑T
t=1 US(πt)|AC

T

]
= 1

T

∑T
t=

√
T E[US(πt) | αt <

α∗] + 1
T

∑√
T

t=1 E[US(πt)αt < α∗] ≥ 1
T

∑T
t=

√
T uS(α̃) +

1
T

∑√
T

t=1m = uS(α̃) + (m− us(α̃))/
√
T

Plugging back into the expected average seller’s utility yields E
[
1
T

∑T
t=1 US(πt)

]
≥ γTm+

(1−γT )[us(α̃)+(m−us(α̃))/
√
T ]. Since the seller is playing αt ≡ α̃ < α∗, the consistency of the

buyer’s beliefs tells us that limT→∞ γT = 0, so limT→∞ E
[
1
T

∑T
t=1 US(πt)

]
≥ uS(α̃) = U∗

1 − ϵ.

Taking ϵ to 0 gives the desired result.

Proof of Proposition 10

Proof. Similar to the proof of Proposition 8, we will show that due to the consistency property
of the beliefs (α̂t), we cannot simultaneously have a high degree of price-discrimination and
truthful behavior from buyers. And this will imply that the seller cannot be better than U∗

1

asymptotically.

We will provide the proof for the case θ ≤ µθ and the proof for the other case follows
similarly.

Let us compare the cumulative seller utilities due to a sequence of (πt)
T
t=1 versus T ·U∗

1. Let
us denote by πp∗ the commitment strategy given in Corollary 3. Then U∗

1 = US(π
s
truthful, π

p∗).
In the case of θ ≤ µθ, this is the strategy where πp(θ|s) = 1 and πp(θ|s) = α∗.∑T

t=1(US(πt)− US(π
∗)) is

∑
t∈T

(US(π
s
truthful, π

p
t )− US(π

s
truthful, π

p∗)) +
∑
t̸∈T

(
US(π

s
strategic, π

p
t )− US(π

s
truthful, π

p∗)
)

Note that for all πp, US(π
s
strategic, π

p
t ) ≤ US(π

s
strategic, π

p
PD) < US(π

s
truthful, π

p∗).

US(π
s
truthful, π

p∗)− US(π
s
strategic, π

p
PD) = α∗µθ + α∗(1− µ)θ + (1− α∗)θ − θ + µq∗cS

≥ α∗µ∆θ.

T∑
t=1

(US(πt)− US(π
∗)) ≤

∑
t∈T

[US(π
s
truthful, π

p
t )− US(π

s
truthful, π

p∗)]
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− α∗(T − |T |)µ∆θ

Note that for any πp, the seller’s utility when buyers signal truthfully is

US(π
s
truthful, π

p) = µθπp(θ|s) + µθπp(θ|s) + (1− µ)θπp(θ|s) + 0 · πp(θ|s)

Since θ ≤ µθ, πp∗(θ|s) = 1 and πp∗(θ|s) = α∗.

US(π
s
truthful, π

p)− US(π
s
truthful, π

p∗) = µθ(πpθ|s)− α∗) + µθ(1− πp − (1− α∗))

+ (1− µ)θ(πp(θ|s)− 1)

= µ∆θ(πpθ|s)− α∗) + (1− µ)θ(πp(θ|s)− 1)

T∑
t=1

(US(πt)− US(π
∗)) ≤

∑
t∈T

[
µ∆θ(πp(θ|s)− α∗)− (1− µ)θ(1− πp(θ|s))

]
− α∗(T − |T |)µ∆θ

Since µθ < θ, (1− µ)θ > µ∆θ. So,

<
∑
t∈T

µ∆θ(πp
t (θ|s)− πp

t (θ|s)− α∗)− α∗(T − |T |)µ∆θ

=
∑
t∈T

µ∆θ(πp
t (θ|s)− πp

t (θ|s))− α∗Tµ∆θ

≤ µ∆θ
∑
t∈T

αt − α∗Tµ∆θ (By Lemma 30)

=⇒ lim
T→∞

T∑
t=1

(US(πt)− US(π
∗)) ≤ µ∆θ

(
lim
T→∞

1

T

∑
t∈T

αt − α∗

)
≤ 0 (By Lemma 29)
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Chapter 5

Conclusion

In order to leverage the full power of collaborative learning, the incentives of the participants
must be accounted for – otherwise they are at risk of defecting from the system. This
dissertation examines three topics at the intersection of incentives and collaborative learning.
I summarize the contributions herein and propose directions for future work.

I. Personalized Collaborative Learning. In a collaborative learning system, when a
global model is trained on the clients’ aggregate data, it may perform poorly on individual
client tasks. Identifying clients with similar objectives and learning a model-per-cluster is an
intuitive and interpretable approach to this personalization problem. However, doing so with
provable and optimal guarantees has remained an open challenge. We formalize this problem
as a stochastic optimization problem, achieving optimal convergence rates for a large class
of loss functions. We propose simple iterative algorithms which identify clusters of similar
clients and train a personalized model-per-cluster, using local client gradients and flexible
constraints on the clusters. The convergence rates of our algorithms asymptotically match
those obtained if we knew the true underlying clustering of the clients and are provably
robust in the Byzantine setting where some fraction of the clients are malicious.

Future Directions. Theorem 1 gives an upper bound of O(σ3/∆) on the error of our
clustering algorithm, while Theorem 2 establishes a lower bound on any cluster-identification
algorithm for our problem setting of O(σ4/∆2). If ∆ is large, the gap between the lower and
upper bound may also be large. Designing an algorithm, or modifying the current analysis,
to close this gap is a direction for future work. Additionally, deriving rates as in Theorem 3
for more structured losses (e.g. convex, strongly-convex) remains to be done.

II. Collaborative Learning among Competitors. We study collaborative learning
systems in which the participants are competitors who will defect from the system if they
lose revenue by collaborating. As such, we frame the system as a duopoly of competitive
firms who are each training machine learning models and selling their predictions to a market
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of consumers. We first examine a fully collaborative scheme in which both firms share their
models with each other and show that this leads to a market collapse with the revenues of
both firms going to zero. We next show that one-sided collaboration in which only the firm
with the lower-quality model shares improves the revenue of both firms. Finally, we propose a
more equitable, defection-free scheme in which both firms share with each other while losing
no revenue. We show for all but trivial starting conditions our algorithm converges to the
Nash bargaining solution.

Future Directions. There is room to expand our theory to a more general problem setting.
For instance we study a duopoly, not a general oligopoly, we assume consumer types are
uniformly distributed, we derive convergence rates only for convex losses, and we only consider
the non-stochastic setting. Deriving all these results in more generality is open for future
work, in addition to a more rigorous analysis of consumer utility.

III. Privacy Dynamics in Systems of Learning Agents. In many real-world settings,
if clients in a collaborative learning system were guaranteed privacy and non-malicious
handling of their information, they would be much more likely to participate. We analyze
privacy dynamics in a learning system of buyers and a potentially price-discriminating
seller, showing that an equilibrium arises which is privacy-protecting for the participants.
Applying these insights to a more classic collaborative learning framework could spawn
more widespread adoption of collaborative learning frameworks in practice. We study price-
discrimination games between buyers and a seller where privacy arises endogenously—that
is, utility maximization yields equilibrium strategies where privacy occurs naturally. In this
game, buyers with a high valuation for a good have an incentive to keep their valuation
private, lest the seller charge them a higher price. This yields an equilibrium where some
buyers will send a signal that misrepresents their type with some probability; we refer to
this as buyer-induced privacy. When the seller is able to publicly commit to providing a
certain privacy level, we find that their equilibrium response is to commit to ignore buyers’
signals with some positive probability; we refer to this as seller-induced privacy. We then
turn our attention to a repeated interaction setting where the game parameters are unknown
and the seller cannot credibly commit to a level of seller-induced privacy. In this setting,
players must learn strategies based on information revealed in past rounds. We find that, even
without commitment ability, seller-induced privacy arises as a result of reputation building,
and we characterize the resulting seller-induced privacy and seller’s utility under no-regret
and no-policy-regret learning algorithms.

Future Directions. Integrating these insights on privacy into a collaborative learning
framework, thus providing privacy guarantees for the participants, is a direction for future
work.

While theoretically compelling, collaborative learning has yet to experience widespread
adoption in practice. Designing systems which guarantee desired outcomes for participants is
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essential for incentivizing participation. This dissertation analyzes key areas of misalignment
between system guarantees and client objectives and proposes solutions towards alignment.
Much remains to be done.
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