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Abstract

Secure Systems from Insecure Components

by

Emma Dauterman

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Raluca Ada Popa, Co-chair

Professor Ion Stoica, Co-chair

In many computer systems today, an attacker that compromises just one system component can
steal many users’ data. Unfortunately, past experience shows that attackers are very effective at
compromising system components, whether by exploiting some software vulnerability, compromising
hardware, or launching a phishing attack.

In this thesis, we show how to build systems that provide strong security and privacy properties even
if the individual components are insecure. This way, even if an attacker compromises any single
component in the system, it cannot compromise user security and privacy. While this property is
possible to achieve in theory using general-purpose cryptographic techniques, the challenge is to
instantiate it efficiently in practice. The key idea is to co-design the system with the cryptography to
reduce costs.

We examined two core aspects of this problem: hiding queries and securing accounts. Users who
store their data encrypted at servers still need to query their data. We built systems that provide both
strong privacy guarantees and good concrete efficiency for keyword search (DORY), time-series
analytics queries (Waldo), and object stores (Snoopy). Users also need to protect their accounts in the
event of client device loss or compromise, but also in the event of service provider compromise. We
built an encrypted backup system that relies on secure hardware without fully trusting it (SafetyPin)
and a service that records every authentication without learning private information (larch).

The Signal end-to-end encrypted messaging application uses some of the techniques in Snoopy to
scale its private contact discovery service, which privately matches user contacts to Signal users.
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Chapter 1

Introduction

Today’s computer systems handle massive amounts of user data, from health records to social
security numbers to search queries. All of this information is a valuable target for attackers.

In order to protect this data from attackers, many systems deployed today provide security by
hardening a few key system components. These components could be application servers, databases,
or even secure hardware devices. As long as an attacker cannot break into one of these components,
then the attacker cannot steal user data. In this model, the security of the entire system can reduce to
the security of a single component.

However, past experience shows that we cannot rely on completely trustworthy components
in order to build secure systems. An attacker might exploit a software vulnerability, launch a
phishing attack, or even compromise hardware in order to breach a critical system component. For
example, in the 2023 LastPass data breach, attackers broke into an engineer’s personal computer by
exploiting vulnerable software [514]. By compromising that machine, attackers were ultimately able
to steal password information for many users. Human error also allows attackers to gain access to
sensitive data, with an estimated 68% of data breaches involving a human element such as stolen
credentials [501]. And even hardware designed to resist attack is not immune: researchers have found
vulnerabilities in secure enclaves [401, 495, 520], hardware security modules [190], and trusted
platform modules [209].

Attackers often compromise critical system components in order to steal user data and profit. In
2023 alone, there were 3,122 data breaches affecting roughly 349M individuals [259].

1.1 Approach
In this thesis, we take a different approach: systems should provide strong security even if some
individual components are insecure. This design principle ensures that the systems we build do not
have single points of security failure. In other words, an attacker that compromises some but not all
system components cannot steal user data.

While existing general-purpose cryptographic tools can realize this approach in theory [205,525],
the challenge is to build systems that are concretely efficient and frictionless to use in practice.
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System Functionality properties Security & privacy properties Performance properties

DORY Keyword search Hides queries, data, and Outperforms oblivious
for end-to-end search access patterns RAM baseline
encrypted filesystems from attacker controlling

1 of 2 servers

Waldo Time-series analytics Hides query filter values, Outperforms oblivious
queries data, and search access RAM and multi-party

patterns from attacker computation baselines
controlling 1 of 3 servers

Snoopy Object store Oblivious (hides access Horizontally scalable
patterns from servers)
using secure enclaves

SafetyPin Data backups with Protects backups from Horizontally scalable
short (6-digit) PINs compromise of a fraction of

hardware security modules

Larch Every authentication is Hides credentials and Adds ≤ 150ms at
correctly logged; authentication records authentication time
compatible with existing from log service
web servers

Table 1: Summary of thesis work. Functionality, security and privacy, and performance properties are
described informally at a high level.

In particular, these systems should respect the constraints and expectations of existing software
systems, hardware, and users.

To achieve this, we use a co-design of cryptography and systems techniques. The key idea
is to use cryptographic tools that provide only what is necessary and to take advantage of the
system model to reduce costs. This approach allows us to improve performance in comparison to
general-purpose solutions.

This thesis focuses on protecting two sensitive user assets:
• Queries (Part I). Users want to store their data encrypted at a server, but still retain the ability to

query their data. The technical challenge is enabling servers to execute a query without learning
any information, in a cryptographic sense, about the contents of the query or the outsourced
data.

• Accounts (Part II). User accounts often safeguard personal data and sensitive actions (e.g.,
wire transfers or publishing data). The technical challenge is essentially protecting the user
from a compromised or lost client device without creating a single point of security failure in
the system.
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1.2 Private queries
A substantial body of prior work has explored how to execute private queries on encrypted
data [72, 411, 464]. However, many existing constructions achieve good performance at the cost
of privacy: how the server accesses memory reveals some information about the query and/or the
data [269]. For example, even if the contents of a medical database are encrypted, if an attacker
sees which parts of the medical database are accessed for each query, this could reveal information
about patient medical conditions. The systems we built achieve good concrete efficiency without
sacrificing privacy—informally, the attacker learns no information about the data or query from
watching the server access memory in response to a query.

This thesis contributes techniques for hiding three classes of queries: keyword queries in DORY
(Chapter 2), time-series analytics queries in Waldo (Chapter 3), and object-store queries in Snoopy
(Chapter 4). While these three workloads seem quite different, the systems we built all achieve strong
privacy guarantees by employing the same design idea: scanning over all the data is asymptotically
slow, but, for some applications, can be concretely efficient with the right cryptographic tools.

1.2.1 DORY: a private search system for end-to-end encrypted filesystems
Users can protect their files by using an end-to-end encrypted filesystem: the client encrypts data
before storing it a storage server so that even if an attacker compromises the server, it does not learn
the contents of user files. However, users still expect to be able to search over their data. One class of
solutions for encrypted keyword search based on searchable encryption [72,411, 464] achieves good
efficiency at the expense of strong privacy guarantees [269]: how these constructions access memory
and the number of results can reveal private information. Another approach based on oblivious RAM
(ORAM) [206, 473] provides strong privacy, but incurs high costs for encrypted keyword search.

DORY shows that it is possible to have encrypted keyword search with both strong privacy and
good concrete efficiency [140]. In addition, we show that, for expected workloads, our system has
lower concrete overheads than an asymptotically faster ORAM-based solution. Achieving strong
privacy with good concrete efficiency in DORY requires distributing trust between two servers; if at
least one server is honest, then the attacker learns no private information. DORY is a step towards
ensuring that users do not need to choose between privacy and functionality. Users can have the
strong privacy of end-to-end encrypted filesystems while being able to search over their documents.

We built a prototype and show that it performs orders of magnitude better than a baseline built
on ORAM. Parallelized across 8 servers, each with 16 CPUs, DORY takes 116ms to search roughly
50K documents and 862ms to search over roughly 1M documents. We describe DORY’s design and
evaluation in more detail in Chapter 2.
Technical challenges and contributions. The first challenge was identifying a cryptographic
primitive that allowed us to hide access patterns, but did not incur the overheads of ORAM for
encrypted search. By distributing trust, we were able to use a distributed point function (DPF) [78,201]
for the task of private information retrieval [112]. Evaluating a DPF over a search index incurs costs
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linear in the index size (rather than logarithmic, as in ORAM), but this scan be concretely efficient
because it only relies on AES evaluations, which are fast in hardware.

Because evaluating a DPF requires scanning over the entire search index, the next challenge was
to design a compact index that permits concretely efficient updates and searches. The key idea is to
build a table of bits where the 𝑖th row corresponds to a bitmap of words for document 𝑖. This way,
updates simply require writing a row, and searches require privately retrieving a column with a DPF.
To reduce the cost of searches, which require a linear scan over the index, we use Bloom filters to
compress document contents without losing column alignment.

Another challenge was to protect the privacy and integrity of the search index contents without
substantially increasing the index size and thus the cost of searches. Authenticated encryption would
provide the necessary properties, but applied naïvely, would require encrypting and authenticating
every bit of the search index individually, as updates and searches are performed along different axes
of the table. This approach would dramatically increase the index size. Instead, we show how to
use a random mask to protect privacy while keeping the index compact, and we leverage aggregate
MACs in order to provide integrity at a low cost [280].

Finally, distributing trust across servers naturally requires more resources, especially when
we consider that each server needs to be replicated. We show how to provide low-overhead fault
tolerance by taking advantage of the properties of our search index.

1.2.2 Waldo: a private time-series database
End-to-end encrypted filesystems are only one setting where users and organizations need to
outsource sensitive data to servers and then later query it. For example, organizations store and query
time-series data, such as data produced by remote patient monitoring systems and smart homes. In
these applications, users and organizations need to hide data and query parameters from attackers.
For example, a doctor’s query to a remote patient monitoring system could reveal information about
a patient’s medical condition. ORAM and multi-party computation (MPC) [205, 525] are natural
tools for providing strong privacy and protecting access patterns, but they incur high overheads in
the time-series setting.

We built Waldo, a system that provides strong privacy for time-series analytics queries [142].
Like DORY, Waldo also splits trust, but it requires three servers and provides strong security and
privacy if an attacker compromises at most one of the servers. Waldo offers a path towards allowing
users and organizations to protect their privacy while still retaining the ability to extract valuable
insights from outsourced data.

We implemented Waldo and show performance improvements over ORAM and MPC baselines.
With 32-core machines and features modulo 256, Waldo runs a query with 8 range predicates for
210 records in 0.22s and 220 records in 11.82s. We include more details about Waldo’s design and
performance in Chapter 3.
Technical challenges and contributions. The high-level challenge in Waldo was extending the
core design principles in DORY to aggregation queries with multi-predicate filtering while keeping
concrete costs low. Waldo takes advantage of function secret sharing (FSS), which is a generalization
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of DPFs (used in DORY) that support more functionality [78]. While existing FSS constructions
offer a mechanism for filtering based on equality and range predicates, there is still a large gap
between what FSS provides and the properties that we want Waldo to achieve. While FSS is designed
for honest-but-curious servers with public inputs, Waldo needs to support malicious servers, secret
inputs, and chained predicates.

The first challenge was how to filter when both the query filter values and data should remain
private. FSS correctness requires that both servers have the same inputs, but providing the inputs in
plaintext would violate privacy. To solve this problem, we developed a shared one-hot index that
provides strong privacy while enabling appends and queries. To protect the contents of the index,
we use replicated secret sharing [31] with FSS, an approach that is inspired by Bunn et al. [82]. The
structure of the shared one-hot index together with the replicated secret sharing make it possible
to combine multiple predicates using Boolean operators via existing techniques for three-party
multiplication [31, 479].

The shared one-hot index allows us to filter based on a combination of multiple predicates,
but the aggregation operations that it supports are restricted to count, sum, and, by extension,
mean, variance, and standard deviation. To support more complex aggregates, we constructed a
shared aggregate tree, which only supports aggregation over time, but makes it possible to compute
functions like min, max, and top-k.

Finally, we needed to provide integrity against a malicious attacker that can cause a server to
behave arbitrarily. This requires linking the FSS queries sent by the client to the final result. To do
this, we draw inspiration from prior work on information-theoretic MACs for authenticating FSS
outputs [75], and we show how to securely combine FSS outputs while minimizing the verification
work done by the client: the client only needs to check the integrity of the final result and a random
linear combination of intermediate results.

1.2.3 Snoopy: an oblivious, scalable object store
Many applications managing sensitive data rely on object stores. In some applications, such as
medical databases, not only are the object contents sensitive, but also the access patterns made
by the application. Oblivious object stores hide access patterns from attackers observing external
storage [206]. However, many existing constructions have scalability bottlenecks [63, 97, 128, 206,
361,432,442,471–473], which are a critical barrier to deployment. A scalability bottleneck, a single
point in the system that all requests must pass through, limits the ability of the system to handle
more requests.

We showed that it is possible to build an object store that is both oblivious and scalable in
our system Snoopy [139]. Vivian Fang is a co-first-author on this project. In order to scale in the
cloud and support multiple clients, Snoopy leverages secure enclaves. (As enclaves have known
limitations, we explored how to ensure that secure hardware is not a single point of security failure
in an encrypted backup system in Chapter 5).

We built a Snoopy prototype, and it achieves 13.7× higher throughput than Obladi [128], the
prior state-of-the-art high-throughput oblivious object store. With two million 160-byte objects,
Obladi reaches a max throughput of 6.7K requests/s with a proxy machine and server machine,
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whereas Snoopy can use 18 machines to scale to 92K requests/s with average latency under 500ms.
Snoopy makes it possible to support oblivious object-store queries in high-throughput applications.
For example, the end-to-end encrypted messaging application Signal leverages techniques from
Snoopy in their private contact discovery system (see Section 1.4). We describe Snoopy’s design
and how it scales in more detail in Chapter 4.
Technical challenges and contributions. To illustrate why horizontal scaling is hard, consider two
common characteristics of existing oblivious storage systems. First, they often have some sort of
dynamic mapping of identifier to location, and this mapping must be checked and updated after
every access, creating a scalability bottleneck. Second, they are often based on a hierarchical or
tree-like structure for efficiency, and this leads to a scalability bottleneck at the root [472, 473].

To avoid these pitfalls, we based the design of Snoopy on a balls-into-bins argument: if there are
enough requests (“balls”), then we can distribute them across shards (“bins”) in a way that hides
information about the request distribution. This insight makes it possible to scale across shards, but
introduces new challenges. We needed techniques for generating batches of requests obliviously, as
well as a mechanism for efficiently executing batches of requests at each shard.

The first challenge was to group requests by shard without revealing any information about
the request contents. To do this, we ensure that the number of requests is based only on public
information (not the underlying request distribution), and we guarantee that, with high probability, no
requests are dropped. We also use an oblivious algorithm in order to hide the mapping of incoming
requests to shards. Notably, we can add more machines that perform this request grouping without
additional coordination.

Next, we needed to execute large batches of requests at individual shards. We could have used an
existing oblivious storage system [361] as a shard, but because we are executing a large batch of
requests instead of individual requests, we tailored the design to our setting. We use a linear scan
over the contents of the data, which we show can be concretely efficient for some workloads when
amortized over many requests.

1.3 Secure accounts
Account security is critical for users and organizations, but often remains a weak link: roughly
68% of data breaches involve a human element (e.g., stolen credentials) [501]. In our systems, we
explored how to protect users from themselves: if a user’s device is lost or compromised, users
should still have access to their accounts and strong security. Moreover, providing these guarantees
should not require trusting some server or hardware security module (HSM).

In this thesis, we present an encrypted backup system SafetyPin that uses HSMs without fully
trusting them (Chapter 5) and an authentication logging system larch that protects user secrets from
the logging service (Chapter 6). In both systems, we split user secrets across different entities to
ensure that there is no central point of attack while respecting system constraints (e.g., hardware or
protocol limitations).
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1.3.1 SafetyPin: an encrypted backup system that resists hardware attacks
Users need to back up sensitive data (e.g., documents, photos, and messages) to application servers
without the servers learning the contents of the data. Users should be able to recover this data even
if they lose all of their devices and can only remember some short PIN. One strawman approach is
to encrypt the user’s backup using a cryptographic key derived from the user’s PIN. However, short
PINs are susceptible to dictionary attacks that allow a compromised application provider to recover
user data. Industry has addressed this problem using secure hardware [296, 507, 515]. The secure
hardware essentially rate-limits recovery attempts, which ensures that if an attacker can compromise
the application servers but not the secure hardware, the attacker cannot run a dictionary attack.
While this approach defends against a compromised application provider, it requires trusting the
secure hardware with sensitive user secrets. If an attacker compromises just one secure hardware
device, the attacker can recover many users’ backups.

In SafetyPin, we showed that it is possible to have the benefits of secure hardware without
completely trusting it [137]. SafetyPin defends against an attacker that can adaptively compromise
some percent of the hardware security modules (HSMs) in the data centers.

We built a prototype with 100 $20 SoloKeys [463] to show that the cryptographic tools that we
employ work well on hardware with limited compute, communication, and storage. A recovery in
SafetyPin takes 1.01s, and we estimate that a SafetyPin deployment would need 3,100 SoloKeys to
process 1B recoveries a year. We describe SafetyPin’s design and the performance of our prototype
in Chapter 5.
Technical challenges and contributions. The core challenge in the design of SafetyPin was to
protect against an attacker that can adaptively compromise some percent of the HSMs while also
allowing the system to scale to many recovery requests. In particular, we wanted to provide the
security of splitting the client’s secret across many HSMs with the scalability of splitting the secret
across a few HSMs. The key idea to solve this problem is to use the user’s PIN to hide the set of
HSMs storing the user’s secret. This PIN does not have much entropy, but if an attacker does not
know the user’s PIN, then it does not know which HSMs to break into, and each additional PIN
guess essentially requires breaking into more HSMs. We introduce and formalize this primitive as
location-hiding encryption.

Location-hiding encryption solves some problems, but also creates new challenges. In particular,
different PIN attempts map to different HSMs, and so we needed a coordinated mechanism for
tracking the number of recovery attempts remaining across all users and across all HSMs. For
security, we could send every recovery request to every HSM, but this would not be scalable. Instead,
we show how to build a distributed append-only log tailored to our setting where each HSM does a
small amount of work, but with high probability, any misbehavior will be caught.

The other challenge comes at recovery time. An attacker that controls the network and watches a
user recover can see which HSMs store part of a user’s secret. After the user finishes recovering,
an attacker can simply break into these HSMs and recover a user’s secret, violating privacy. To
address this problem, we allow HSMs to revoke their ability to decrypt. Puncturable encryption [215]
provides the properties that we need, but is ill-suited to the resource constraints of HSMs. Therefore,
we adapt it to the setting where HSMs have limited storage.
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1.3.2 Larch: an authentication logging system without a single point of
security failure

Single sign-on systems help simplify the problem of authentication: not only do they permit a user
to remember just one password for the single sign-on service, but they also make it possible to
keep a comprehensive record of every authentication. This record is useful for auditing—an honest
user can see all authentications made by both the honest user and attackers. However, to keep this
record, users need to trust the single sign-on service with their credentials and private information.
If an attacker compromises the single sign-on service, they can access user accounts and learn
information like where a user has accounts, how often they authenticate, and other sensitive data.
For example, when attackers breached Okta servers at the end of 2023, they stole customer data and
authentication tokens that allowed attackers to access linked accounts [193, 395].

In larch, we show that it is possible to have the benefits of authentication logging without creating
a single point of security or privacy failure [141]. Larch ensures that a log service correctly records
every authentication, whether it is made by an honest user or an attacker that has compromised a
client device. At the same time, the log service does not have access to user secrets (i.e., credentials
or the contents of the authentication logs). To ease the path the deployment, larch is compatible
with web servers that support protocols like FIDO2 [179] (popularized by Yubikeys and Passkeys),
TOTP [369] (popularized by apps like Google Authenticator), and password-based login.

We implemented and evaluated larch. For a client with four cores and a log server with eight
cores, our split-secret authentication protocols take 150ms for FIDO2, 91ms for TOTP, and 74ms
for passwords (excluding preprocessing, which takes 1.23s for TOTP). We describe the design of
larch and evaluate its performance in Chapter 6.
Technical challenges and contributions. The technical challenge was to ensure that a client cannot
authenticate without the log service receiving a valid, encrypted log record, but at the same time,
the log service should learn no information about where the client is authenticating. Essentially, the
log service should correctly record every authentication without actually seeing each authentication.
To make it clear why this is hard, consider a simple strawman where the client authenticates with a
web server and then sends an encrypted log record to the log service. While this approach ensures
that the log service is not a single point of security or privacy failure and is backwards-compatible,
it does not protect against a malicious client; a malicious client can send an incorrect log record, or
no log record at all, and the log service cannot detect misbehavior.

We resolve this tension by constructing split-secret authentication protocols. When we authenti-
cate today without larch, the client has some secret (this could be a cryptographic key or a password)
that it uses to generate a credential and authenticate. In larch, we split the authentication secret
between the client and log service, ensuring that neither becomes a single point of security or privacy
failure. To authenticate, they must use their authentication secret shares to jointly run a new split-
secret authentication protocol, which is essentially a special-purpose two-party computation [525].
As a result of this protocol, the client gets a credential that it can use to authenticate, and the log
service gets a valid, encrypted log record. The protocol ensures that if the client misbehaves, causing
the log service to receive an incorrect log record, then the misbehaving client cannot authenticate.
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We designed, implemented, and evaluated split-secret authentication protocols for FIDO2, TOTP,
and password-based login. Our FIDO2 protocol uses zero-knowledge proofs [208] along with a
new, lightweight two-party ECDSA protocol tailored to our setting. Our TOTP protocol uses an
existing garbled circuit protocol with malicious security [511]. Our password-based protocol allows
the client to privately exchange a password for an encrypted log record using a discrete-log-based
proof [218].

1.4 Impact and adoption
The Signal end-to-end encrypted messaging application uses some of our techniques from Snoopy
to scale their private contact discovery system, which matches user contacts to Signal users [118].
In their private contact discovery system, the Signal servers should not learn a user’s contacts, but
also the user should not learn the entire set of Signal users. We helped Signal adapt some of our
techniques for horizontally scaling oblivious object stores. The resulting system, which draws on
techniques from several academic papers [361, 473] in addition to Snoopy, is deployed to Signal
users. The release of the new system allowed Signal to reduce the number of dedicated servers from
nearly 600 to around 10 [516].

For all of the systems in this thesis, we released open-source code. At conferences where artifact
evaluation was available, our systems achieved the “Artifact Available”, “Artifact Functional”, and
“Artifact Reproducible” badges.
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Part I

Private queries
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Chapter 2

DORY: A private search system for
end-to-end encrypted filesystems

2.1 Introduction
Users have grown increasingly reliant on filesharing systems such as Box, Dropbox, and iCloud.
However, attacks on storage servers [335, 374, 391, 431] have exfiltrated large amounts of sensitive
data belonging to many users, jeopardizing user privacy as well as the reputation and business of
the victim organizations. End-to-end encrypted storage systems [286, 417, 465, 476, 492] provide
a strong defense against this type of attack: the client stores all cryptographic keys and the server
receives only encrypted data, and so an attacker that compromises the server can only exfiltrate
encrypted data.

At the same time, end-to-end encrypted filesharing services struggle to provide the same
functionality as plaintext storage providers like Dropbox because the server cannot decrypt the data
to process it. Server-side search is a critical tool that users expect for convenience and companies
require for compliance.

Despite a large body of work on searchable encryption [95,104,129,148–151,192,202,274,275,
376, 436, 464, 469], practical and leakage-free search on encrypted data has remained an unsolved
problem for two decades. Existing work can largely be divided in two categories: (1) practical but
leaking search access patterns, or (2) not leaking search access patterns but expensive.

In the first category, an attacker can learn sensitive data by observing search access patterns.
We now explain what search access patterns are intuitively by contrasting them to the leakage
already existing in deployed end-to-end encrypted filesystems [286, 417, 465, 476, 492]. In these
filesystems, when a user accesses a file, the server learns that this specific user accessed that specific
file, but it does not see the content due to end-to-end encryption. The concern with leaking search
access patterns on top of this filesystem leakage is that search access patterns can leak information
at the word level, allowing an attacker to potentially reconstruct search queries and document
plaintext [94, 269, 284, 329, 410, 415, 534].

Consider a simple example of how an attacker can exploit search access patterns [534]. The
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server stores an inverted search index for Alice’s emails mapping an encrypted keyword to an
encrypted list of files. The attacker sends a one-word email to Alice containing “flu”. If Alice’s
client updates entry 924 of index on the server, the attacker learns that index[924] is for “flu”.
By repeating this process for every word in the dictionary, the attacker can discover the word
corresponding to every index entry. Later when Alice receives a confidential email, the attacker can
derive all the words in that email based on which index entries are updated. More sophisticated
attacks can reconstruct both entire documents and search queries from even more advanced search
schemes [94,269,284,329,410,415,534]. In this chapter, we informally define search access pattern
leakage as the set of documents matching a search keyword, the size of that set, and any information
about the search query. In contrast, if a scheme does not leak search access patterns, then during a
search on a folder, the search server learns only that a search is now happening in that folder.

The second category of existing work typically relies on Oblivious RAM (ORAM) [206,392,473],
a cryptographic tool that allows a client to read and write data from a server without revealing access
patterns. Many academic works point to an inverted index inside ORAM as a straightforward way to
eliminate leakage [254, 375, 469]. Unfortunately, even though the asymptotic complexity of ORAM
is polylogarithmic in the index size, the cost of even the most practical ORAM schemes remains
prohibitively expensive for our setting. For example, inserting a file requires an expensive ORAM
operation for every keyword in that file (and there can be hundreds).

Given that practical, leakage-free search remains a difficult problem, we revisit the system model:
What do real end-to-end encrypted filesharing systems actually require from a search system? Would
the problem become more tractable in their system model?
Choosing a system model. We met with five companies that provide end-to-end encrypted
filesharing, email, and/or chat services: Keybase [286], PreVeil [417], SpiderOak [465], Sync [476],
and Tresorit [492]. To the best of our knowledge, this is the first study of requirements for encrypted
search in real filesharing systems. We discuss our findings in Section 2.2 and summarize the ones
most relevant to DORY here:
Efficiency requirements. These companies care about two primary metrics: latency and monetary
cost. They are not concerned about the asymptotic complexity of the search algorithm and would
accept an algorithm with runtime linear in the number of documents as long as their concrete
performance and cost requirements are met (see Table 2).
Trust model requirements. Some of these companies were already splitting trust to back up secret
keys or distribute public keys, and we wanted to know if we could leverage a similar distributed trust
assumption to make the problem of encrypted search more tractable. While these companies were
willing to split trust across multiple domains, some had two requirements aimed at strengthening the
distributed trust assumptions. First, if at least one trust domain is honest, then an attacker that controls
all the remaining trust domains and observes user queries should not learn search access patterns. In
particular, we need to protect against a malicious attacker rather than an honest-but-curious one and
should not assume that the attacker follows the protocol. The second requirement, stated intuitively,
is that only search access patterns should be protected by distributed trust, and an attacker that
compromises all trust domains should not immediately learn the contents of the search index.

While prior work explores some forms of distributing trust for encrypted search [54, 73, 174,
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255, 266, 427], we are not aware of any work that meets both the efficiency and distributed trust
requirements outlined above without leaking any search access patterns, as explained in Section 2.8.
Our system: DORY. We design and implement DORY (Decentralized Oblivious Retrieval sYstem),
an encrypted-search system that splits trust to meet the real-world efficiency and trust requirements
summarized above (and detailed in Section 2.2). DORY ensures that an attacker who cannot
compromise every trust domain does not learn search access patterns.

We implemented and evaluated DORY to show that it performs better (for some metrics, orders
of magnitude better) than an ORAM baseline (Section 2.7). DORY also meets the companies’
efficiency requirements; parallelized across 8 servers, searching over 1M documents takes 862ms,
and, using workload estimates from the companies, we estimate that DORY costs roughly $0.0509
per user per month.

DORY combines cryptographic and systems techniques to overcome the security and efficiency
challenges of previous solutions.

2.1.1 Summary of techniques
Choosing an oblivious primitive. Given the inefficiencies of ORAM, a key challenge was choosing
a cryptographic primitive for hiding search access patterns. We identified a relatively recent
cryptographic tool, distributed point functions (DPFs) [201] (a specific type of function secret
sharing [77, 78]), as particularly promising for our setting. DPFs allow us to leverage ℓ servers (for
practical constructions, ℓ = 2) to retrieve part of the search index without any group of < ℓ servers
learning which part of the index we’re retrieving (the problem of private information retrieval, or
PIR [112, 113]). A DPF-based solution requires a linear scan over the index, but the overhead per
index entry is small because it relies on AES evaluations, which are implemented efficiently in
hardware.
Designing the search index. An important challenge is how to structure the search index to support
efficient search and update operations. To minimize the overhead of updating the search index
when a file is uploaded, the client should only need to upload a small amount of data per file, and
ideally avoid performing an expensive cryptographic operation for every keyword in that file. To
minimize search overhead, we need to limit the number of DPF queries. To achieve both of these
goals, we keep a table where each row corresponds to a bitmap of words for a document. An update
simply requires the client to insert a row by uploading a new bitmap, and a search only requires a
single DPF request to retrieve the column corresponding to a keyword (Section 2.4.1). However,
this bitmap can become quite large to accommodate every word in the dictionary. To reduce the
size of this bitmap (and thus the time for the linear scan), we use a Bloom filter, which provides
compression while preserving column alignment. Bandwidth from the servers to the client is linear
in the number of files searched over, but the bandwidth from a server to the client is less than 1 byte
per file (Section 2.7) and, more importantly, this fixed bandwidth enables DORY to hide the number
of search results, which can be exploited in volume-based attacks [94, 284, 410].
Encrypting the search index. To prevent an attacker that compromises all the servers from
immediately reconstructing the plaintext search index, we need to encrypt each bit in the Bloom
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filter before inserting it into the search index. Unfortunately, the expansion of encryption would
increase the size of the search index (and thus the time for the linear scan) by the security parameter.
To ensure that the encrypted index is the same size as the plaintext index, we instead mask the bits
using a random one-time pad that we ensure is unique for each version of the file (Section 2.4.1).
Defending against a malicious attacker. DPFs do not protect against malicious attackers. To protect
against a malicious attacker that compromises all but one of the trust domains, we leverage MACs to
allow the client to check the integrity of search results in a way that makes blackbox use of DPFs.
Applied naively, adding MACs would increase the search bandwidth and storage at the server by
a factor of the security parameter. To address this problem, we employ aggregate MACs [281] to
change the dependence on the security parameter from multiplicative to additive (Section 2.4.3).
Providing fault tolerance. Splitting trust across different trust domains naturally requires additional
servers. With secret-sharing, one tool for distributing trust, servers store different data that they
may not share. Then, to provide fault tolerance, each of these servers would need to be replicated.
We observe that in DORY, servers can use each other for fault-tolerance even though they are in
different trust domains due to two properties (Section 2.5): (1) each server has an identical copy of
the state, and (2) the client can perform integrity checks.
Reducing the cost of replication. To execute a search query correctly, all the servers must operate on
the same version of the state. This is challenging because clients can issue update and search requests
concurrently. One possibility is to use standard Byzantine fault-tolerant consensus techniques to
solve this problem, but this would require 3 𝑓 +1 trust domains to handle 𝑓 failures. Instead, we
observe (1) the ways in which our system setting is less demanding than that of BFT, and (2) that
our cryptographic protocol enables clients to check integrity even if all servers are compromised;
using these, DORY only needs 𝑓 +1 trust domains (Section 2.5).

2.2 Identifying a system model
To understand real-world use cases, we met with five companies providing end-to-end encrypted file
storage, email, and/or chat solutions: Keybase [286], PreVeil1 [417], SpiderOak [465], Sync [476],
and Tresorit [492]. For each company, we asked a set of questions over the course of discussion(s)
and email exchanges while we were in the process of designing our system. We summarize our
findings in Tables 1 and 2 and in the following sections, and we outline our prepared questions
in Section 2.9.3. We report statistics in aggregate to preserve the confidentiality of individual
companies, as they requested. These statistics and requirements motivate DORY’s system model.
About the companies. We now give a brief background about each company. Keybase [286],
founded in 2014 in the US and recently acquired by the video-conferencing company Zoom [529],
keeps a publicly auditable key directory and offers open-source, end-to-end encrypted chat and
storage systems. PreVeil [417], founded in 2015 in the US, focuses on both encrypted chat and
storage solutions and open-sources some of its tools. SpiderOak [465], founded in 2007 in the
US, offers encrypted storage, backup, and messaging solutions leveraging a private blockchain

1One of the authors was employed at PreVeil during this project.
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Keybase PreVeil SpiderOak Sync Tresorit

Need server search? ✓ ✓ ✓ ✓ ✓

Have server search? ✗ ✗ ✗ ✗ ✗

File sharing? ✓ ✓ ✓ ✓ ✓

Email? ✗ ✓ ✗ ✗ ✗

Chat? ✓ ✗ ✓ ✗ ✗

Mobile client? ✓ ✓ ✓ ✗ ✓

Table 1: The search use-cases for each of the five companies.

System cost and scale
Average number of docs/user 100 - 45K
Maximum number of docs/user 100K - 1.3M
Price/month/user $0-20

Search requirements
Maximum added $/month/user $0.70-5.54
Maximum search latencies (s) [0.5, 1, 1, 4]
Estimated update/search ratio 50/50

Table 2: Survey statistics. In accordance with the companies’ confidentiality wishes, we report most fields in
aggregate although we report individual responses for maximum permissible search latency (only 4 of the
companies responded).

and open-sources many of its tools. Sync [476], founded in 2011 in Canada, and Tresorit [492],
founded in 2011 in Switzerland, both provide encrypted storage. With the exception of Keybase,
these companies generally target enterprise customers and support compliance with regulations such
as GDPR or CMMC. Some of these companies report over 750K users in over 180 countries.
The need for server-side search. Every company expressed a need for server-side search on encrypted
data either for their desktop client in cases where users do not have all the files downloaded, or for
the mobile or web clients. However, none currently support server-side search; they all told us that
they tried at some point to develop a solution (most had researched the academic literature), but their
efforts were eventually thwarted by concerns about performance or search access patterns. Several
of the companies had built or used a client index as a temporary solution, but they did not see this as
a long-term solution because of its inability to index many files locally (e.g. enterprise data) or its
resource consumption (especially on mobile). In Section 2.7.5, we discuss how synchronization
between clients makes this solution infeasible in cases where documents are constantly updated.

They all stated interest in deploying a server-side solution that met their functionality, security,
and performance requirements, if such a solution were to exist.



CHAPTER 2. DORY: A PRIVATE SEARCH SYSTEM FOR END-TO-END ENCRYPTED
FILESYSTEMS 17

2.2.1 System requirements
Search must be responsive. The companies reported maximum search latencies between 500ms
and 4s (Table 2). The company that reported a maximum search latency of 500ms reported tens of
thousands to hundreds of thousands documents per user, while some of the companies that reported
larger maximum search latencies had users with approximately a million documents.
Monetary cost for search must be small. These companies prioritize keeping the cost of search
below $0.70 per user per month in order to make it feasible to deploy search to all users without
increasing prices (Table 2). While some companies were willing to consider charging more for the
ability to search, other companies believed that users would be unwilling to pay extra because they
are used to free search on other platforms.
Multiple users must be able to update and search the same documents. Each company allows
multiple users to access the same file. Therefore, a search solution should be designed with multiple
clients in mind and minimize the amount of state clients need to synchronize between operations.
Revoking a user’s access must be cheap. All these companies implement revocation lazily [39,
186, 203, 216, 273, 435], meaning that when a user’s access to a folder is revoked, the remaining
users generate a new key and, rather than re-encrypting every document in the folder under the new
key, simply use the new key for subsequent updates. In this way, the revoked user can still access
documents that haven’t been updated since the time of revocation. These companies want to adopt a
similar approach for search. When a user is revoked, rather than re-computing the entire search index
(as in ORAM-based solutions), subsequent updates should not allow the revoked user to search over
the updated documents.
Relaxations. In addition to learning requirements, we also learned several system relaxations these
companies accepted. The companies did not require search results to be fresh (they could be stale for
up to a few minutes), and they were also willing to accept a small number of false positives (several
other search schemes have also leveraged this allowance [54, 202]).

2.2.2 Distributed trust requirements
The majority of prior encrypted search work considers a single-server model where the attacker can
take control of the entire system. As some of these companies were already leveraging distributed
trust (e.g. Keybase to distribute public keys via social media servers, PreVeil to backup secret keys
secret-shared among multiple clients), we wanted to know if they were willing to accept a distributed
trust model for encrypted search as well, as this could be an opportunity for providing a more
efficient search. We found that all the companies were open to a distributed trust model, although
several companies had more specific requirements for how to distribute trust:
Hide search access patterns even with only one honest trust domain. These companies wanted
the guarantee that if at least one trust domain is honest, then an attacker cannot learn search access
patterns. They did not want to assume that other trust domains behaved correctly, so they wanted a
malicious threat model rather than an honest-but-curious one.
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Distributed trust only for search access patterns. These companies wanted to limit the damage
caused by an attacker who compromises all the ℓ trust domains by ensuring that putting the ℓ search
indices together does not readily provide the attacker with the plaintext search index. For example, if
a company is subpoenaed and every trust domain must hand over its search index and search access
patterns from then on, the company could potentially choose to suspend search services to protect
users’ privacy by reducing search access pattern leakage, similar to the case where Lavabit chose to
suspend operation rather than reveal Snowden’s emails [19]. In such a case, reconstructing the index
from the ℓ servers’ index shares should result in end-to-end encrypted data. This requirement rules
out solutions based on secret-sharing a plaintext search index across multiple servers because an
attacker compromising all trust domains can recover the plaintext index.

2.2.3 Opportunities
From the information we learned, we summarize what we considered opportunities to make the
problem of encrypted search easier:
• Performing a linear scan to search is feasible if the response time and the cost on expected

workloads are acceptable.
• Distributing trust across multiple trust domains is acceptable if certain security requirements are

met.
These opportunities serve as the basis for our system design.

2.2.4 Building a distributed trust system
We now discuss how to build a system where an attacker who compromises part of the infrastructure
cannot easily gain access to the entire infrastructure. Such a model has already been deployed
in several real systems, including cryptocurrencies relying on consensus such as Ripple [339] or
Stellar [333], Certificate Transparency [309], and academic work [121].
Split across clouds. By treating different clouds as distinct trust domains, a malicious cloud provider
(or an attacker that can exploit a vulnerability in one cloud infrastructure), cannot gain access to
both trust domains.
Split across institutions. By using trust domains in competing organizations or nonprofits generally
trusted by the public (e.g., the Electronic Frontier Foundation), users can have a stronger assurance
that the organizations are unlikely to collude.
Split across jurisdictions. By separating trust domains by jurisdiction (i.e. different countries), a
single legal authority cannot gain access to the entire system.

If the trust domains are deployed in the cloud, we can take advantage of the fact that cloud
providers are monetarily incentivized to provide availability. Fail stops can still occur naturally, but
cloud providers make it easy to detect failures and launch new servers. Clients can report statistics
on the lack of availability of a trust domain, and the organization deploying the system can take its
business elsewhere.
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2.2.5 Future directions
Some companies mentioned additional features that, while not necessary for initial deployment, are
desirable. Although we do not support these in DORY, we note them here as potential directions for
future work.
Concentrate resources in a single trust domain. The trust domain already used for the filesystem
should do most of the work for search as well. Each additional trust domain should do little work,
so that adding a new trust domain should be cheap. DORY concentrates resources to some extent,
(Section 2.5), but, as discussed in Section 2.4, still requires a server in each trust domain to perform
a linear scan.
Richer search functionality. Several companies mentioned that they would appreciate richer search
functionality beyond simple keyword search (e.g. ranked search based on term frequency.) DORY
only returns the set of documents containing a keyword, leaving ranked search for future work.

2.3 System design overview
In DORY, we focus only on the search system for end-to-end encrypted filesharing systems and not
on the design of these filesharing systems. These systems [286, 417, 465, 476, 492] already exist and
are in use. We design DORY to build on top of and interface with these systems as described in
Section 2.3.2. For this purpose, we abstract out the underlying filesystem.

2.3.1 The underlying filesystem
End-to-end encrypted filesystems (including the five companies we surveyed in Section 2.2) tend to
follow a common design pattern, which we now describe. To hide the contents (including the name)
of documents, these filesystems assign a document ID to each document and associate the ID with
an encryption of the document contents. Documents accessible by the same users are grouped into
folders, each of which has a corresponding ID. Users who have access to the same folder share a
(logical) secret key used to encrypt the documents in that folder. In this way, while the server learns
the IDs of documents being accessed, the number of documents in each folder, and which users
have access to which folders, it does not see the contents of the documents.

When a user is added to a folder, the other users share the existing folder key with the new user,
and when a user’s access to a folder is revoked, the remaining clients choose a new folder key. To
prevent the remaining clients from having to re-encrypt every document in the folder after a user is
revoked, these systems employ lazy revocation (as described in Section 2.2.1).

Users may choose to keep some documents synchronized with the server (i.e., store the most
recent version of the document locally) and others not synchronized (i.e., do not store locally and
retrieve them from the server only as needed). In either case, the user has already downloaded the
most recent version of the document before she sends an update. In the case where two clients try to
update the same file simultaneously, these systems often create two versions of a file.

DORY integrates with the filesystem (FS) using the following FS API (depicted in Figure 3):
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Figure 3: System software architecture. The figure shows the structure of the software rather than the physical
system itself, where the server is instantiated across multiple machines.

• getCurrKey(folderID) → 𝑘: Get the current key associated with the group of files in folderID.
• getDocKey(docID) → 𝑘: Get the key used in the most recent update for docID.
• getDocIDs(folderID) → docIDs: Get all the document IDs used for the documents in folderID.
• getVersion(folderID,docID) → version: Get the current version number associated with a file.

2.3.2 The DORY API
When a user searches or updates a file, the filesystem client calls the DORY client via DORY’s
API so that DORY performs the search or incorporates new updates into the search index. We now
describe DORY’s client API, depicted in Figure 3.

When the user updates a document in the underlying filesystem, the user’s client also sends
an update to the DORY client to maintain the search index, allowing DORY servers to respond to
subsequent search queries correctly.

The underlying filesystem already handles key management by giving permitted users access
to the folder key(s). DORY leverages this key management mechanism so the permissions of the
filesystem naturally extend to DORY: when a user is added to or removed from a folder in the
underlying filesystem, she also gains or loses the ability to search in DORY.

We also utilize the fact that to update a document in the underlying filesystem, the user has
already downloaded that document (if it is not being added for the first time). We employ the
conflict-resolution mechanisms in the underlying filesystem to resolve conflicts in search index
updates.

DORY exposes the following API to filesystem clients:
• Update(folderID,docID,prevWords,currWords): Given the folder ID, the document ID of a

document in that folder, the previous set of keywords in that document prevWords, and the current
set of keywords in that document currWords, update the state at the DORY servers.

• Search(folderID,keyword) → docIDs: Given the folder ID to search over and a keyword, find all
the documents containing that keyword. DORY has a small (configurable) false positive rate, but
DORY has no false negatives.

Updates require the client to upload a small, constant-sized amount of data per file, and searches
require the server to perform a linear scan over the search index for a given folder (the cost of search
for a user only depends on the number of files that user has access to).
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Figure 4: DORY’s physical system architecture for a single partition (filesystem server not pictured). Replicas
should be deployed in different trust domains, and each holds a copy of the search index.

2.3.3 System architecture
Folders in DORY are divided into partitions, each of which is managed by a different group of
servers. A deployed system may contain many such partitions, and execution across partitions
occurs in parallel. The following entities comprise DORY’s system architecture for a single partition
(Figure 4):
• Filesystem server: The underlying filesystem provides the functionality described in Section 2.3.1.
• Replicas: The ℓ DORY replicas maintain identical copies of the search index and execute search

queries. Each replica is deployed in a separate trust domain. In our implementation, we use ℓ = 2.
• Master: The DORY master ensures that the ℓ replicas have the same view of the state and that the

clients know the version of this state and which servers to contact. The master can be deployed in
any existing trust domain.

• Clients: Multiple clients send requests to the filesystem server and the DORY master and replicas.
Each client only needs to store three 128-bit keys (and can optionally cache version numbers
received from the master).

To search, the client must interact with ℓ replicas for each partition. The master can be co-located
with the filesystem server to ensure that updates to the search system and underlying filesystem
occur atomically, although this is not necessary.

2.3.4 Threat model and security properties
We now describe DORY’s security properties at a high level and delegate DORY’s formalism
(detailing the guarantees) and proof to Section 2.9. In short, we achieve the security goals in
Section 2.2.2. We discuss security at the level of trust domains, each of which may deploy one or
more servers.
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Below, we assume that the underlying filesystem is maliciously secure. In particular, we assume
that DORY’s client can always retrieve the correct version number from the underlying filesystem.
Providing such a guarantee (e.g., by detecting rollback and fork attacks in filesystems) is a well-
studied line of work [42, 258, 278, 289, 320]. If the underlying filesystem only defends against an
honest-but-curious attacker, though, DORY also only protects against such an attacker.
Security with one honest trust domain. A malicious attacker that compromises ℓ− 1 of the ℓ
trust domains does not learn any search access patterns. More precisely, such an attacker learns
nothing except what is leaked by the underlying filesystem, as well as the timing of individual
search requests and the folders they take place over. This security property implies both forward
privacy, the privacy of newly added files in the presence of previous queries, and backward privacy,
the privacy of deleted files after deletion, as defined by Stefanov et al. [469]. Notably, we do not
leak the number of search results; if leaked, this information could open the door to volume-based
attacks [410] (parameters that determine result sizes are public).
Security with no honest trust domains. DORY’s goal is to hide search access patterns when at
least one trust domain is honest. When all trust domains are compromised, we have the modest goal
of defaulting to the security of prior schemes leaking search access patterns, instead of readily losing
all security by immediately exposing the search index. In this case, the only additional leakage (on
top of what the attacker learns if at least one trust domain is honest) is a deterministic identifier for
the keyword queried. In the security definition for our cryptographic protocol, we model the attacker
as seeing queries only after the point of compromise; in reality, systems retain leakage (e.g. cache
state) that increases the amount of information the attacker can access [226].

We formally model the end-to-end security guarantees of DORY for the case where at least
one trust domain is honest and the case where no trust domains are honest by defining an ideal
functionality F that specifies the behavior of an ideal system, capturing the properties discussed
above. F further captures the fact that the client can verify the integrity of the result. In Section 2.9,
we present a formal definition using F and prove the following theorem, which captures DORY’s
security:
Theorem 1. Using the definitions in Section 2.9.1, DORY securely evaluates (with abort) the ideal
functionality F when instantiated with a secure PRF, a secure aggregate MAC, a secure distributed
point function, and a secure filesystem that implements the ideal filesystem functionality.

DORY does not provide availability if any one trust domain refuses to provide service (see
Section 2.2.4 for how cloud providers are monetarily incentivized to provide availability).
Relationship with underlying filesystem. DORY interfaces with deployed end-to-end encrypted
filesystems (Section 2.3.1). These, as mentioned, allow the server to learn the ID of the file being
accessed (but not its contents). While search itself is protected in DORY, some side effects of the
search results are not: If, after seeing the search results, a user decides to open (and retrieve from the
filesystem) a file in the results, an attacker could infer that the file matched the search. DORY does
not address these side effects, but simply aims to not add any leakage to the overall system during
search.
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Figure 5: Search index layout for 𝑛 documents with Bloom filters of length 𝑚. Updates write rows and searches
retrieve columns.

2.4 Search design
We start by describing a basic encrypted search scheme that leaks search access patterns and is only
secure against an honest-but-curious attacker in Section 2.4.1. We will show how to modify our
basic scheme to eliminate search access patterns in Section 2.4.2, move from an honest-but-curious
to malicious threat model in Section 2.4.3, and support dynamic membership in Section 2.4.4. We
show the pseudocode for the complete search protocol in Section 2.4.5. For simplicity, we only
discuss search servers, which we assume are deployed in different trust domains, and ignore the
master and filesystem servers in this section.

2.4.1 A strawman search index
In our initial version, clients have access to a single server. For every document, the server stores
an encrypted Bloom filter corresponding to the set of keywords in the document. To update the
search index for a particular document, the client computes the Bloom filter for the contents of
the document and encrypts it using a one time pad unique to that update. We generate the mask
for a document using a pseudorandom function (PRF) keyed with a per-folder key and the current
document version number as input. The key management functionality built into the underlying
filesystem ensures that every client has a copy of this PRF key.

If there are 𝑛 documents in the search index and Bloom filters are 𝑚 bits, then we can think of
the server as storing an 𝑛×𝑚 table where each element is a single bit (Figure 5). Each row in the
table is a Bloom filter for a document, and the 𝑖th row corresponds to the document with ID 𝑖. For
an update, the client sends a new row that the server inserts into its table. This allows the client to
easily modify existing documents and add new ones: the server either replaces an existing row with
the new row or appends the new row to the table.

To search for a keyword, the client must find all the documents where the Bloom filter indexes
corresponding to that keyword are set to “1”. The client can check this by retrieving from the server
the columns corresponding to the Bloom filter indexes for that keyword. The client can decrypt
bit 𝑏𝑖 in a column by computing the mask for row 𝑖, extracting the mask bit corresponding to that
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column 𝑟𝑖, and then evaluating 𝑏𝑖 ⊕ 𝑟𝑖. If the 𝑖th entry in each of the decrypted columns is set to “1”,
then the client marks document 𝑖 as containing the keyword. In order to prevent the attacker from
learning the queried keyword from the requested indexes, we compute the Bloom filter indexes using
a PRF keyed with a per-folder key and the keyword as input. This key is managed by the underlying
filesystem in the same way that the other PRF key is.

We note that in order for the contents of the client’s update to remain hidden from the server, the
client must be able to retrieve the correct version number from the underlying filesystem. Without
this guarantee, the client could use the same mask twice, leaking information about the update
contents. For this reason, we only provide security against a malicious attacker if the underlying
filesystem also provides the correct version numbers (discussed in Section 2.3.4). This strawman
proposal is similar to the one described in prior work [294].

2.4.2 Eliminating search access patterns
To eliminate search access patterns, we need to hide from the server which columns the client is
retrieving during a search. To do this, we use a private information retrieval (PIR) protocol [112,113],
which allows a client to retrieve an entry in a database from a server (1) without the server learning
which entry is being retrieved, and (2) using total communication sublinear in the database size.
Tool: Distributed Point Functions (DPFs). One concretely efficient way to implement PIR is using
a distributed point function (DPF) [201] (later generalized as function secret sharing [77,78]), which
we identify as particularly well-suited for our setting. DPFs allow a client to split a point function 𝑓
into function shares such that any strict subset of the shares reveal nothing about 𝑓 , but when the
evaluations at a given point 𝑥 are combined, the result is 𝑓 (𝑥).

A DPF is defined by the following algorithms, which implicitly take the security parameter as
input:
• DPF.Gen(𝑎, 𝑏) → (𝐾1, . . . , 𝐾ℓ): Generates keys 𝐾1, . . . , 𝐾ℓ that allow the ℓ servers to jointly

evaluate the point function that evaluates to 𝑏 at input 𝑎.
• DPF.Eval(𝐾𝑖, 𝑥) → 𝑦: Evaluates the function share corresponding to key 𝐾𝑖 at server 𝑖 on input 𝑥

to produce output 𝑦.
To evaluate the point function 𝑓 where 𝑓 (𝑎) = 𝑏 on some input 𝑥, the client generates keys for

all ℓ servers by running DPF.Gen(𝑎, 𝑏) and sending 𝐾𝑖 and 𝑥 to server 𝑖 for all ℓ servers. Server
𝑖 then runs DPF.Eval(𝐾𝑖, 𝑥) and returns the result 𝑦𝑖 to the client. The client can then compute
𝑦1 ⊕ 𝑦2 · · · ⊕ 𝑦ℓ to reconstruct 𝑓 (𝑥) = 𝑦. We make black-box use of the construction from Boyle et al.
where ℓ = 2 [78].
Leveraging DPFs to search. To hide search access patterns, we switch from having the client
interact with a single server to having the client interact with ℓ servers in different trust domains
that hold identical copies of the search index. To retrieve column 𝑗 , the client generates shares of
the point function that evaluate to all 1’s at column 𝑗 and all 0’s for all other columns. The client
then sends a function share to each server. Each server evaluates its function share for each column,
ANDing the DPF evaluation with the contents of the column, and sends the XOR of the results back
to the client. The client then assembles the responses to recover column 𝑗 .
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Using DPFs to retrieve columns requires a linear scan over the search index for a folder. While
this is expensive asymptotically, we only aim to show efficiency for realistic workloads, motivating
our decision to compress the search index using Bloom filters. Note that depending on the Bloom
filter size 𝑚, it may be more concretely efficient to send a secret-shared “one-hot” vector that is zero
everywhere and 1 at location 𝑗 in order to retrieve column 𝑗 .

2.4.3 Protecting against malicious attackers
So far, we have assumed that all servers are honest-but-curious. We now show how to defend against
a malicious attacker (namely, an attacker that can deviate from the protocol) that can compromise up
to ℓ−1 of the ℓ servers. To achieve this, we need to ensure that for a search, the server evaluates the
DPF on columns corresponding to the most recent updates sent by the client (not corrupted or old
updates).
Strawman: MAC for every bit. We start by showing a strawman that employs MACs, but increases
the bandwidth and search latency by roughly a factor of the MAC tag size. For each update, the
client additionally sends a MAC tag for every bit in the encrypted Bloom filter. The client cannot
send a single tag for the row because to search, the client must retrieve individual columns rather
than entire rows. We can think of the server as now storing a second table of MAC tags where each
entry of this table is the tag for the corresponding entry in the original table (as in Figure 5).

We need to ensure that (1) a tag is only valid for a particular document update (to prevent replay
attacks) and that (2) it cannot correspond to a different Bloom filter index. To do this, we compute
the MAC over not only the single Bloom filter bit, but also the document ID, Bloom filter index, and
document version number. As with the PRF key, we use the key management functionality in the
underlying filesystem to ensure that every client has a copy of the MAC key.

The client now runs the DPF over the columns in both the original table and the MAC tag table.
After assembling the responses from all ℓ servers, the client can check that the tag for every bit is
correct. However, this increases both the bandwidth and the time to perform the linear scan over the
index (i.e., the search latency) by a factor of the tag size. We identify aggregate MACs as a tool to
transform this factor from a multiplicative to an additive one.
Tool: Aggregate MACs. We leverage aggregate MACs [281] to allow the servers to combine
individual MAC tags into a single aggregate MAC tag. Aggregate MACs, analogous to aggregate
signatures [69], allow multiple MAC tags computed with possibly different keys on multiple, possibly
different messages to be aggregated into a shorter tag that can still be verified using all the keys.
Notably, aggregating MAC tags does not require access to the keys.

The Katz-Lindell aggregate MAC construction [281] works as follows. To generate a MAC tag
for some message 𝑚 using a key 𝑘 , we simply use a pseudorandom function MAC and compute
𝑡←MAC(𝑘,𝑚). To aggregate MAC tags 𝑡1, . . . , 𝑡𝑛, the aggregator computes 𝑇 ← ⊕𝑛𝑖=1𝑡𝑖. To verify
an aggregate MAC tag 𝑇 using messages 𝑚1, . . . ,𝑚𝑛 and keys 𝑘1, . . . , 𝑘𝑛, the verifier checks
𝑇

?
= ⊕𝑛𝑖=1MAC(𝑘𝑖,𝑚𝑖).

Aggregating MAC tags to improve performance. To improve performance by a factor of the tag
size, we allow the servers to combine individual tags into a single aggregate tag. To search, the
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server evaluates the DPF on the contents of the column and a single aggregate tag for the entire
column.

Aggregating MAC tags also allows us to reduces storage space at the servers. Rather than storing
an entire separate MAC table, the servers instead keep an array of aggregate tags, one for each
column. On each update, the client XORs the old tag with the new tag (which is why Update takes
both prevWords and currWords). By then XORing this value with the aggregate tag, the server can
remove the old tag and add the new tag. To ensure that this aggregate MAC tag is maintained
correctly, the server must check that the client has the latest version of the document; otherwise it
rejects the update.

2.4.4 Supporting dynamic membership
Users might be added to or removed from a folder, requiring the new group to generate a new key.
This new key might be in use at the same time that some parts of the search index were generated
using an old key in order to support lazy revocation. We let the underlying filesystem handle key
management, but we need to ensure that our search protocol supports multiple keys that may be
active at the same time.

Decrypting search results is straightforward; to decrypt the results for an individual document,
the client uses the same key from the last update to that document. Aggregating MAC tags is also
simple because we can aggregate tags computed with different keys. We can remove old tags and
add new tags with different keys using XOR in the same way as before.

2.4.5 Final DORY protocol
We show the pseudocode for the search protocol in Figures 6, 7, and 8.

2.5 Replication across trust domains
DORY requires that the servers processing search requests operate on the same version of the index
in order for the client to receive a valid response; otherwise, the cryptographic shares from the DPF
cannot be combined correctly. Because our system processes a mix of update and search requests,
the servers need to agree on the index state. The client also needs to know the document version
numbers corresponding to the index that the servers used to execute the search; otherwise, the client
will be unable to decrypt and verify the result.

Because we are in an adversarial environment, a natural solution is to use a Byzantine fault-
tolerant (BFT) consensus algorithm [15,60,96,125,295,307] to agree on the ordering of update and
search requests. Standard BFT provides the properties we need, but requires 3 𝑓 +1 servers, each in
its own trust domain, to handle 𝑓 failures. A large number of trust domains is expensive to maintain
and difficult to deploy, increasing the overall system cost. We make several observations about our
setting that allow us to use only 𝑓 +1 trust domains.
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def update (folder_id , doc_id,

old_keywords , new_keywords):

k1_bf, k1_prf, k1_mac = fsclient.get_curr_key(folder_id)

k2_bf, k2_prf, k2_mac = fsclient.get_key_for_doc(doc_id)

## Build encrypted Bloom filters.

a = bf.build(k1_bf, new_keywords)

b = bf.build(k2_bf, old_keywords)

v = fsclient.get_version(doc_id)

a = a ^ PRF(k1_prf, (doc_id, version + 1))

b = b ^ PRF(k2_prf, (doc_id, version))

## Compute tag for each Bloom filter entry.

for i = 1 to m:

x[i] = MAC(k_mac, (a[i], doc_id, i, version + 1))

y[i] = MAC(k_mac, (b[i], doc_id, i, version))

z[i] = x[i] ^ y[i]

## Send update to servers.

for i = 1 to num_servers:

dory_server[i].apply(folder_id , doc_id, a, z)

Figure 6: Pseudocode for client update protocol.

Observations we leverage. We make three observations that allow us to tailor the problem of
consensus to DORY:
DORY deterministically detects server misbehavior. Our cryptographic protocol already defends
against malicious servers; if a server executes the client’s query incorrectly or over an incorrect
version of the index, the client will detect this (triggering a manual investigation). This is a significant
departure from the Byzantine fault model where failure information is imperfect. By handling server
misbehavior at the cryptographic protocol layer, we can use a fail-stop rather than Byzantine failure
model at the consensus layer. This and the next observations allow us to use just 𝑓 +1 trust domains
to tolerate 𝑓 failures.
Trust domains provide availability. To support search, DORY needs all 𝑓 +1 replicas to be available.
We need to ensure that servers across multiple trust domains remain online to allow clients to search.
Here we leverage the observation that for trust domains deployed in the cloud, the cloud provider is
monetarily incentivized to provide availability (Section 2.2.4). This means that if a server in a trust
domain fails, either it will eventually come back online or another server will take its place; even if
failures occur, 𝑓 +1 servers will be available again at some point in the future.
DPFs give us replication for free. The challenge now is to reinitialize the state of these failed servers.
The use of DPFs in our cryptographic protocol requires all replicas to have identical copies of the
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def search (folder_id , keyword):

doc_ids = fsclient.get_doc_ids(folder_id)

k_bf, _, _ = fsclient.get_curr_key(folder_id)

I = bf.get_indexes(k_bf, keyword)

for i in I:

## Evaluate DPF for index i at servers.

K = dpf.gen(i, 1)

for j = 1 to num_servers:

v[j], t[j] = dory_server[j].eval(K[j])

y = 0

## Decrypt and verify result.

for doc_id in fsclient.get_doc_ids(folder_id):

w = xor_all(v[:][doc_id])

k_prf, k_mac = fsclient.get_doc_key(doc_id)

version = fsclient.get_version(doc_id)

y = y ^ MAC(k_mac, (w, doc_id, i, version))

x = PRF(k_prf, (doc_id, version))

w = w ^ x[i]

## Remove doc_id if no match.

if w = 0:

doc_ids.remove(doc_id)

## Abort if verification fails.

if y != xor_all(t):

return Error("Verification failed.")

return doc_ids

Figure 7: Pseudocode for client search protocol.
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def eval(folder_id , K):

r = [0 for i in range(sizeof(agg_mac[0])]

s = [0 for i in range(m)]

## Evaluate the DPF for each Bloom filter index.

for i = 0 to m:

b = dpf.eval(K,i)

for j = 0 to sizeof(agg_mac[0]):

r[j] = r[j] ^ (b & (agg_mac[i] & (1 << j)))

for doc_id in fsserver.get_doc_ids(folder_id):

s[doc_id] = s[doc_id] ^ (b & enc_contents[doc_id][i])

return (r,s)

def apply(folder_id , doc_id, contents_update , mac_update):

enc_contents[doc_id] = contents_update

agg_mac = agg_mac ^ mac_update

Figure 8: Pseudocode for server protocols.

search index. Normally it is unsafe to transfer state between trust domains, as the recipient has no
way to verify correctness. However, because the client can check the integrity of the state used to
execute a search query, we can safely copy state across trust domains. Because we have 𝑓 +1 servers,
at least one server will always remain online to preserve the state of the index.

2.5.1 Algorithm
A DORY cluster contains the following entities (Figure 9):
Master: The master receives updates and manages replica state. The master stores the most recent
updates and version numbers (both the overall system version number and individual document
version numbers), but not the entire search index. The master can be deployed in any trust domain,
as clients can detect misbehavior when verifying search results.
Replicas: The replicas receive updates from the master and perform searches from the user. The
replicas store the most recent versions of the index as well as the version numbers (both the overall
system version number and individual document version numbers). We must deploy ℓ replicas
in ℓ different trust domains to ensure that the client can split its search request across different
trust domains. However, the total number of replicas 𝑛 may be greater than ℓ in order to improve
fault-tolerance.
We additionally use a watchdog service (commonly available in the cloud) that periodically checks
that all servers are still online and triggers recovery when it detects a crash.
Properties. Our replication algorithm should provide the following properties:

• Correctness: If all of the replicas and the master fail, a client with the correct set of document
version numbers can detect this.
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Figure 9: System architecture and protocol flow for updates (left) and searches (right). ➊ Client sends update
to master. ➋ Master propagates updates to replicas. ➌ Client requests version number(s) from master. ➍

Client splits search request across replicas.

• Fault-tolerance: If at most 𝑛−1 of the 𝑛 replicas fail, then the search index is preserved. If the
master fails, then the most recent set of updates can be recovered with help from the client.

We do not guarantee availability if individual trust domains do not provide availability.
Algorithm. We now explain how we handle updates and searches and recover from failure
(see Figure 9).
Updating a document. To update a document, the client sends the update along with the new
document version number to the master. The master needs to send the update to the replicas and
increment the version number. Because the master might fail while sending the update to the replicas,
the master runs two-phase commit [308] with the replicas to ensure that all the replicas receive
the update and associated version number. We do not need to worry about replica failures during
two-phase commit (and so do not need multiple replicas in each trust domain); if a replica fails, the
watchdog service will detect this and coordinate recovery as described below.
Searching for a keyword. To search for a keyword, the client first needs to learn the current version
numbers from the master (both the overall system version number and the corresponding individual
document version numbers). If the client has a relatively recent set of document version numbers,
the master can simply send updates for a few of the document version numbers, making the overall
bandwidth much smaller than the number of documents. The client then generates a search query
for ℓ of the replicas. The replicas execute the search on the version of the index corresponding to the
system version number sent by the client.
Coordinating recovery. We rely on the watchdog service to detect failures. If at least ℓ of the replicas
across ℓ different trust domains remain online, clients can continue searching. Otherwise, we can
start new replicas and transfer the state from a remaining replica to the new replica, even if the
replicas are in different trust domains. This will cause a slight delay for clients waiting to search,
but is safe due to the underlying cryptographic protocol (as discussed above). We do not need to
worry if the master fails, because the master does not respond to the client until it has propagated
the update to the replicas. If a replica fails during two-phase commit, the master can roll back the
two-phase commit and then start another replica in the same trust domain and copy the state across
trust domains.
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2.5.2 Batching
Rather than running two-phase commit between the master and replicas for every update, we can
apply batching to amortize the cost. Instead of immediately sending an update to the replicas, the
master aggregates a batch of updates, and, when this batch reaches a certain size or a certain amount
of time has elapsed, it runs two-phase commit with the replicas to transfer the current batch of data.

However, now that the master is responding to clients before sending the updates to the replicas,
we need to ensure that the master does not lose state when it fails. In particular, the master needs to
be able to recover the updates that were waiting to be committed to the replicas. The master does this
by comparing the individual document version numbers at the replicas with those at the filesystem
server. For each document where the version numbers differ, the master can request an update from
the next client to come online with access to that document.

2.6 Implementation
We implemented DORY in ∼5,000 lines of C (for the distributed point function and other low-level
cryptographic operations) and Go (for the networking and consensus). We used the OpenSSL
library, and our DPF implementation closely follows the one in Express [167]. We instantiate
the PRF using AES. We also implemented the DORY client on an Android Google Pixel 4. In
addition to the C code, which we ported to the mobile platform, we wrote ∼1,200 lines of Java. We
used the tiny AES library [488] to minimize memory usage in our mobile implementation. Our
implementation supports a single folder and does not include the watchdog service and coordinated
recovery described as part of Section 2.5. We always generate DPF keys, regardless of the Bloom
filter size. The source code is available at https://github.com/ucbrise/dory.

2.6.1 Parallelism
The linear scan over the search index can be easily parallelized across both cores and servers because
it carries no state from document to document.
Thread-level parallelism. Since we evaluate the DPF on each column of the search index, we
parallelize the scan operation by simply assigning each thread a number of columns and then
combining the results computed by each thread.
Server-level parallelism. We can partition the search index by having different pairs of replicas
maintain different parts of the search index. The client then sends a search query to all pairs of
replicas and simply computes the union of the results. Replica partitioning improves latency since
each replica now only needs to search over a part of the index instead of the full index. Each pair
of replicas can store part of the search index for many folders, making it possible to keep search
latency low, but the overall throughput high.

https://github.com/ucbrise/dory
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Docs BF size
≤ 210 140 B
≤ 211 160 B
≤ 212 180 B
≤ 213 200 B
≤ 214 225 B
≤ 215 250 B
≤ 216 280 B
≤ 217 315 B
≤ 218 350 B
≤ 219 390 B
≤ 220 435 B

(a)

Docs Time breakdown, p=1 (ms) End-to-end latency (ms)
Consensus Client Network Server p=1 p=2 p=4

210 0.73 0.54 58.67 2.68 62.62 61.81 61.51
211 0.73 0.87 58.41 4.11 64.12 62.39 61.89
212 0.73 1.52 57.99 7.09 67.33 64.46 62.92
213 0.73 2.80 58.74 12.03 74.30 68.08 64.78
214 0.75 5.30 77.88 26.24 110.17 75.76 68.59
215 0.76 10.18 80.59 50.97 142.50 112.71 76.76
216 0.81 19.83 100.67 108.78 230.09 147.39 115.50
217 0.86 38.99 119.38 240.45 399.48 243.43 153.56
218 1.19 76.92 142.28 527.67 748.06 428.40 256.15
219 1.78 154.37 151.98 1172.46 1480.59 800.98 454.52
220 2.81 306.34 148.96 2602.83 3060.94 1636.80 862.42

(b)

Table 10: On the left, Bloom filter sizes (in bytes) necessary for < 1 expected false positive assuming an
average of 73.18 keywords per document where each keyword hashes to 7 Bloom filter indexes (Table 10a).
On the right, breakdown of search latency without parallelism and end-to-end search latency with parallelism
where 𝑝 is the degree of server parallelism (Table 10b).

2.6.2 Fast PRF evaluation
In order to decrypt the search result received from the server, the client must compute a mask for
each individual document. To reduce the number of PRF evaluations to decrypt, we group Bloom
filter indexes for the same keyword in the same 128-bit block. This grouping allows the client to
decrypt the search results for one document using a single PRF evaluation. This does not significantly
impact the false positive rate of the Bloom filter because we can now model a 𝑚-bit Bloom filter
storing 𝑤 words as 𝑚/128 independent Bloom filters each storing 128𝑤/𝑚 words.

2.7 Evaluation
We evaluated DORY to determine (1) how it performs in comparison to existing techniques and
(2) whether it meets the requirements outlined by the companies we surveyed. We consider the
following metrics: latency (Section 2.7.2), throughput (Section 2.7.3), storage (Section 2.7.4),
bandwidth (Section 2.7.5), and cost (Section 2.7.6). We compare DORY’s performance to two
different variations of DORY as well as plaintext search and a baseline built on ORAM (Section 2.7.1)
that provides similar guarantees to those of DORY. We show that DORY meets the requirements
outlined by the companies we surveyed and outperforms (in some cases, by orders of magnitude)
our ORAM baseline (Section 2.7.1).
Experimental setup. We evaluate DORY on AWS using r5n.4xlarge instances with 128GB of
memory and 16 vCPUs for the replicas and the master. We use a c5.large client with 4GB of memory
and 2 vCPUs to model a user’s desktop machine. We use an Android Pixel 4 to measure the time
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to search on a mobile client. We place the two trust domains in different regions to ensure that
machines are in different clusters to model different organizations, although in practice these clusters
would likely be geographically close to maximize performance. We use us-east-1 and us-east-2

for our DORY experiments and us-west-1 and us-west-2 for our ORAM baseline experiments. All
DORY communication occurs over TLS. We run experiments for a single folder; a real system would
maintain many such folders in parallel. Our experiments assume queries with just one keyword. To
support queries with up to 𝑘 keywords, the client could make 𝑘 requests in parallel.
System parameters from Enron email dataset. We use the Enron email dataset, which is commonly
used to evaluate encrypted search schemes [94, 269, 329, 361, 375, 376, 534] to set Bloom filter sizes
for DORY. We leverage the same standard keyword extraction techniques used in Oblix [361]: we
stemmed the words and removed stopwords and words that were > 20 or < 4 characters long or
contained non-alphabetic characters. In the over 500K emails, each email has an average of 73.18
keywords with a standard deviation of 114.89.

Regarding the configuration of the Bloom filters, each keyword hashes to 7 locations in the
Bloom filter, as we found that it provided a reasonable tradeoff between the time to perform the
linear scan at the server and bandwidth. We choose the Bloom filter size based on the number of
documents in a folder so that, for every search in that folder, the search results have less than one
false positive document in expectation. The sizes of the Bloom filters are specified in Table 10a.

2.7.1 Baselines
We evaluate DORY in comparison to four baselines:
• ORAM baseline: Eliminates search access patterns using ORAM (expected to incur a significant

overhead). With this baseline, we show how DORY compares to a solution that provides comparable
security guarantees.

• Plaintext search: Searches over a plaintext inverted index and does not provide any security
guarantees (expected to have much lower overhead than DORY, even though not optimized).

• Semihonest DORY: Modifies the DORY protocol to only provide security against semihonest
adversaries (expected to have lower overhead than DORY).

• Leaky DORY: Modifies the DORY protocol to allow search access pattern leakage by using only
one trust domain and querying the replica directly for the indexes corresponding to a keyword
rather than using a DPF (expected to have lower overhead than DORY).

Semihonest DORY illustrates the overhead of the MAC checks necessary to defend against malicious
adversaries, and leaky DORY illustrates the overhead of the DPF queries. In all of the baselines
except the ORAM baseline, we use the same consensus system as in DORY, although for the
baselines where there is only one trust domain (leaky DORY and plaintext search), the master only
needs to send update batches to a single trust domain (we model this by placing all servers in the
same AWS region). Only the ORAM baseline has security guarantees comparable to those of DORY.
ORAM baseline. Many academic works [254, 269, 375, 469] point to an inverted index in
ORAM [206, 392] as a way to achieve searchable encryption without search access pattern leakage,
making it a natural baseline for searching within a folder. Traditional ORAM is designed for a
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single client and requires the client to maintain ORAM client state hidden from the server [473]. A
separate line of work explores extending single-user constructions to multi-user settings [40, 110,
241, 341, 342, 352]. Mayberry et al.’s system [352] is particularly fit for our setting as it protects
mutually trusting clients (clients with access to a given folder) from a malicious server. For a
semi-honest server or for a malicious server for which we have a mechanism to verify the data
returned (discussed in Section 2.3.4), their protocol uses a single-user ORAM and requires clients
to store the encrypted ORAM client at the server. To perform an operation, the client acquires a lock
at the server, downloads and decrypts the ORAM client state, performs the operation, encrypts and
sends back the state, releasing the lock.
Client failures. We observed that the above proposal did not consider client failures. If a client fails
after issuing operations at the server but before uploading the updated client ORAM state, the next
client’s access may leak search access patterns (e.g. if it searched for the same word as the previous
client). To handle client failures, we require each client to record a client “prepare” operation at the
server, and if it fails before completing, the next client can finish the operation.
Eliminating frequency leakage. Popular keywords require multiple ORAM blocks to store all the
document identifiers containing that keyword. We need to ensure that the number of blocks accessed
doesn’t leak the frequency of a keyword due to known attacks [410], as DORY does not leak this
frequency. For each search, we fetch the maximum number of blocks a keyword maps to. Similarly
for each keyword we update in a document, we fetch the maximum number of blocks a keyword
maps to and write back a single block.
Implementation. We implemented our baseline on top of an existing open-source PathORAM
implementation in Go [402].
Evaluation on Enron email dataset. While DORY’s performance relies only on the system
parameters and not the contents of the documents themselves, the performance of both our ORAM
and plaintext search baselines depends on document contents. We evaluate these baselines using
subsets of the Enron email dataset with the same keyword extraction techniques described above. To
evaluate different numbers of documents, we take different-sized subsets of the Enron email dataset.
We treat updates as adding an entire email to the index. Because the Enron email dataset only has
∼ 528K emails, we do not measure the ORAM and plaintext search baseline beyond that number of
documents.

2.7.2 Latency
Update latency. Figure 11 shows that the update latency of DORY is orders of magnitude faster
than that of the ORAM baseline. This holds for both the desktop and mobile clients (Figure 12). The
baseline requires a number of ORAM accesses (each of which necessitates round trips) linear in the
number of document keywords. In contrast, DORY simply uploads a single encrypted Bloom filter.
Update latency determines (1) how long it takes for updates to be reflected in search results and (2)
how long the client must remain online. Neither is a concern in DORY where updates are processed
in less than 1ms, but the ORAM baseline requires clients to remain online for potentially hours.
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Figure 11: Search latency and update latency. The left and center figures use a logarithmic scale on both axes,
and the right figure uses a linear scale on both axes (𝑝 denotes server parallelism). The update latency of
leaky DORY exactly matches that of DORY, and the search latency of semihonest DORY is slightly less than
that of DORY.

Note that semihonest DORY has a faster update time than DORY because the client does not have to
generate a MAC for every bit in the Bloom filter.
Search latency. Table 10b shows the breakdown in search latency. As the number of documents
increases, the majority of time is spent performing the linear scan at the server. This is apparent in
Figure 11, where leaky DORY’s search latency is significantly lower than that of DORY and stays
relatively constant as the number of documents increases due to the fact that leaky DORY does not
need to perform a linear scan.

Despite overheads incurred due to the linear scan, DORY is orders of magnitude faster than the
ORAM baseline. The MAC overhead to protect against malicious adversaries is barely noticeable, as
semihonest DORY and DORY have almost identical search latencies. Mobile clients incur additional
overhead in comparison to desktop clients (the mobile client spends 5 seconds on client-side
processing for 1M documents). This overhead is below 1 second for 217 documents (Figure 12).

By increasing the degree of parallelism 𝑝 and partitioning the search index across replica groups,
we can reduce the server time by roughly a factor of 𝑝, as this time is linear in the number of
documents (Figure 11). Parallelism allows us to reach the target latency set by the companies
(Table 2).

2.7.3 Throughput
DORY achieves significantly higher throughput than the ORAM baseline (Figure 13). Parallelism
improves DORY’s throughput by roughly a factor of 𝑝 for larger numbers of documents (Figure 14).
Relative to other workloads, DORY performs best under update-heavy workloads (updates require
an insertion while searches require a linear scan), and the ORAM baseline performs best under
search-heavy workloads (searches require fewer ORAM accesses than updates).
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Figure 12: Latency for mobile client and desktop client. Both plots use a logarithmic scale on both axes.
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Figure 13: Throughput under a variety of workloads (U indicates updates, S indicates searches). The
performance of semihonest DORY closely matches that of DORY. All plots use a logarithmic scale on both
axes.

2.7.4 Storage
Server state. Figure 15 shows how DORY uses substantially less storage space at the server than the
ORAM baseline and storage space comparable to that of a plaintext inverted index. The plaintext
search index grows more slowly than DORY’s search index, making the plaintext search index
smaller than the DORY search index for larger numbers of documents.
Client state. DORY only requires that the client store three 128-bit keys. To generate an update
or decrypt a search result, the client also needs to know the version number for each document.
To minimize bandwidth, the client can optionally cache the latest version numbers so that it only
needs to retrieve the version numbers that changed. For 45K documents (the highest average number
of documents per user among the companies we surveyed), storing these version numbers would
require 175.8KB. For 1M documents, storing these would require 3.84MB. Our ORAM baseline
only requires the client to store a single 128-bit AES key to encrypt and decrypt the ORAM client,
and plaintext search requires no client storage.
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Figure 14: Effect of parallelism (𝑝 denotes the degree of parallelism) on throughput for different workloads
(U indicates updates, S indicates searches).

2.7.5 Bandwidth
Search and update bandwidth is also much smaller in DORY than in the ORAM baseline (Figure 15).
The ORAM baseline incurs a significant overhead by sending the encrypted client state, but ORAM
accesses are responsible for the majority of the communication. In contrast, the search bandwidth in
DORY is linear in the number of documents, and the update bandwidth depends on the size of the
Bloom filter. MACs are responsible for a significant part of the update bandwidth in DORY, which
is why semihonest DORY has much lower update bandwidth. The difference in search bandwidth
between leaky DORY and DORY is due to the size of the DPF keys; however, unlike plaintext
search, the search bandwidth for both is still linear in the number of documents. We do not include
the bandwidth to retrieve version numbers for individual document numbers in DORY, as these
version numbers can for the most part be cached at the client as described above.
Comparison to client index. To evaluate the practicality of a client-side index instead of DORY,
we built an inverted index over the Enron email dataset using a B+ tree. We found that the
index is 159.9MB, and while it is feasible to store this amount of data, even on a mobile device,
synchronization requires significant bandwidth. One way to keep this data structure updated would
be to require each client to download the contents of every update. However, this solution requires
roughly the same amount of bandwidth as syncing all the files locally, which we were trying to avoid
in the first place. Instead, we could keep an encrypted copy of the client index at the server. Which
part of the index is updated leaks information about the document contents, and so whenever a client
performs an update, it must encrypt the entire index and send it to the server. Before a client updates
or searches, it must download the most recent copy of the search index. This results in roughly a
365× increase in search bandwidth and a 3,334× increase in update bandwidth in comparison to
DORY.

2.7.6 Cost
The companies we met with estimated a workload with 50% updates and 50% searches, and the
highest average number of documents per user reported was 45K. The throughput of two replicas
and a master operating on a folder of 45K documents under this workload is 19.5 operations/second.
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Figure 15: Storage space and bandwidth for DORY in comparison to other baselines. The update bandwidth
of leaky DORY exactly matches that of DORY, and the search bandwidth of semihonest DORY is slightly
less than that of DORY.

One of the companies reported that active users make roughly 50 updates per day, and so based on
100 operations per day and the cost to run a single r5n.4xlarge instance ($1.192/hour), each user
costs roughly $0.0509 per month, well under the maximum permissible cost per user per month of
$0.70-$5.54 reported by the companies. Depending on the way in which trust is distributed (see
Section 2.2.4), trust domains may incur additional setup and maintenance costs not captured by our
calculation.

2.8 Related Work
We first describe related work before the time of publication of the original paper [140] (Section 2.8.1),
and then we describe related work after publication (Section 2.8.2).

2.8.1 Related work before publication
Symmetric Searchable Encryption (SSE). A long line of work has examined the problem of
Symmetric Searchable Encryption (SSE) [95,104,129,148–151,192,202,274,275,376,436,464,469],
summarized in the following surveys [72, 242, 411]. Many of these schemes assume a single user
and do not support efficient revocation, but more importantly, many permit some search access
pattern leakage, opening the door to attacks [94, 269, 284, 329, 410, 415, 534]. SEAL [150] explicitly
allows developers to tradeoff between leakage and performance.
Multi-server SSE and ORAM. Some SSE schemes use multiple servers to improve efficiency
but still permit leakage, with some providing richer functionality than simple keyword search [54,
174, 266, 303, 399, 427]. Bösch et al. [73] and Hoang et al. [255] use multiple servers to hide
search access patterns and improve efficiency. Hoang et al. [255] use a similar table layout where
updates and searches correspond to different dimensions in the table. However, both schemes do not
support multiple users, assume honest-but-curious servers, and require expensive updates to hide
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the document being updated. Our scheme also has similarities to distributed ORAM schemes that
leverage multiple servers to hide access patterns with improved efficiency [17, 161, 212, 336, 470].
Implementing search with one of these schemes would still require clients to perform an ORAM
access for every document keyword during an update.
Multi-user SSE and ORAM. Many existing multi-user searchable encryption schemes that
support fast revocation use a different key for each user and leverage proxy encryption [34, 45] or
pairings [45, 288, 412, 481]. This class of schemes use deterministic query encryption algorithms
that leak search access patterns. The most efficient ORAM constructions assume a single user,
with multi-user ORAMs incurring a much larger overhead by leveraging expensive tools such as
multi-party computation [40, 110, 241, 341, 342].
SSE and ORAM with trusted hardware. One way to improve performance and, in the case of
search, potentially reduce leakage is by leveraging trusted hardware. ZeroTrace [445], Obliviate [21],
ObliDB [168], GhostRider [328], Tiny ORAM [181], and Shroud [334] combine oblivious techniques
with trusted hardware. HardIDX [187], Oblix [361], POSUP [253], and Amjad et al. [25] use trusted
hardware specifically for the problem of searching on encrypted data. Unlike DORY, such solutions
only require a single server, but they necessitate both additional trust assumptions (due to known
side-channel attacks) and additional deployment costs.
Prior use of DPFs in systems. Splinter [508] uses function secret sharing (both DPFs and range
queries) to allow users to efficiently make private queries on a public database. DURASIFT [174]
uses DPFs with multi-party computation across multiple servers to support boolean expressions of
keyword searches for multiple users without leaking search access patterns. However, its techniques
incur significant overhead in comparison to ours, and the authors consider thousands rather than
millions of documents. Floram [161] uses DPFs to implement a distributed-trust ORAM that has
linear costs but fast concrete performance. Metadata-hiding communication also benefits from DPFs
(e.g. Riposte [122] and Express [167]).
BFT consensus and fault-tolerance. BFT consensus [15,60,96,125,295] is a classical problem. Prior
work has explored reducing the number of participants in BFT consensus by separating agreement
from execution [528], only activating some nodes when failures are detected [159,276,518], relaxing
synchrony assumptions [16, 332, 414], adopting a hybrid fault model [414], and using an attested,
append-only log [114]. A separate line of theoretical work considers Byzantine fault-tolerance
specifically for the case of private information retrieval [44,50,185,475] using information-theoretic
tools.
Oblivious systems. ObliviStore [471], Obladi [128], Opaque [536], Cipherbase [32], and Taos-
tore [442] are practical systems for obliviously storing and querying data (not necessarily for the
problem of searchable encryption).

2.8.2 Subsequent related work
We now include some related work from after the time of the original paper publication [140].
Searchable encryption and leakage-abuse attacks. Researchers have proposed a number of new
searchable encryption schemes, including schemes that take into account corrupted participants [100],



CHAPTER 2. DORY: A PRIVATE SEARCH SYSTEM FOR END-TO-END ENCRYPTED
FILESYSTEMS 40

reduce costs when deletions are permitted [99], optimize for I/O efficiency [366], and resist volume
leakage [330] (see this 2023 survey [319]). Researchers have also developed new leakage-abuse
attacks [134, 381, 393, 394, 519, 533] taking advantage of leakage from memory accesses, search
patterns, and the number of results. Another line of work has pointed out the importance of
considering leakage from the larger system that a searchable encryption scheme is a part of [231]—in
particular, the leakage introduced by retrieving documents. DORY is a search engine that integrates
with an end-to-end encrypted filesystem that can leak information, and so this context is important
to consider for a DORY deployment. The system SWiSSSE aims to address this problem [232]. Gui,
Paterson, and Tang describe attacks that arise from integrating MongoDB’s queryable encryption
with a larger database system [233].
Private search systems. Another line of work builds search systems with strong privacy guarantees
via access-pattern-hiding primitives. Coeus allows a user to privately retrieve a list of ranked query
results for Wikipedia documents and then privately fetch the document [22]. Tiptoe uses linearly
homomorphic encryption with techniques from machine learning in order to privately search over
roughly 360M webpages [249]. DeSearch uses trusted hardware in order to build a decentralized
search engine for decentralized services (e.g., blockchain applications) [321]. Like DORY, these
systems provide strong privacy for user queries, but unlike DORY, they search over public data.

Servan-Schreiber et al. show how to support private approximate nearest-neighbor search using
two non-colluding servers and distributed point functions [449]. Their scheme aims to protect client
queries from the servers and server data (other than the query response) from the clients. We also
built Waldo, which provides guarantees similar in spirit to those of DORY, but supports more
complex queries (Chapter 3).
Setting up distributed-trust systems. We explored how challenging it is to bootstrap distributed-
trust systems and showed how to take advantage of existing cloud infrastructure and secure hardware
to make this process easier [138]. Flock uses serverless functions to make it possible to deploy
distributed-trust applications from the client [283]. These techniques could make it easier to set up a
DORY deployment.
Private information retrieval. DORY is based on private information retrieval (PIR). Researchers
have recently proposed a number of PIR schemes with good concrete efficiency, some of which rely
on preprocessing and some of which batch queries together [250, 317, 331, 358, 359, 370, 371, 538].
A line of work around authenticated PIR provides integrity guarantees, much as DORY provides
integrity guarantees for queries [117, 146, 158, 513].

2.9 Security analysis
We use the simulation paradigm of multi-party computation. to define DORY’s security guarantees
against an adversary who can compromise any number of servers. In particular, we allow our
adversary to be malicious and so deviate arbitrarily from the protocol. We define security using
an ideal world where rather than running the DORY protocol, the clients interact with an ideal
functionality F . We compare the ideal world to the real world, where the clients, honest server(s),
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Figure 16: Real world, including the clients 𝐶 with access to a given folder (all other clients are controlled by
A), the honest servers 𝑃, and the adversary A, which includes the compromised servers.
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Figure 17: Ideal world, including the client 𝐶 with access to a given folder (all other clients are controlled by
A), the filesystem ideal functionality Ffilesys, the consensus ideal functionality Fconsensus, the DORY ideal
functionality F , the honest servers 𝑃, the simulator S , and the adversary A, which includes the compromised
servers.

and adversary interact directly using the DORY protocol. For simplicity, we frame our analysis in
terms of servers rather than trust domains and assume that each server is deployed in a different
trust domain. Our modeling of a system using the simulation paradigm draws inspiration from
Ghostor [258].

In the ideal world, the ideal functionality F allows us to exactly define the leakage for DORY
using a simulator S . The clients interact with F and F gives to S exactly what DORY leaks. S then
executes the operation via interaction with the adversary A. The challenge is for the adversary A to
tell whether it is being invoked in the real world (Figure 16) or the ideal world (Figure 17).

We allow A to adaptively choose the operations issued by clients and see the results of those
operations in both the real and ideal worlds. This choice strengthens our security definition, as it
allows us to model what happens if an adversary is able to influence the operations performed by
the client (e.g. in the real world, an adversary might be able to make the client update the index by
sending an email) or observe the outputs of operations. Note that the adversary can only observe the
final outputs of the operations; the adversary cannot observe the messages sent from the honest
server to the client.

To model systems that provide folders for different groups of clients that do not trust each other,
we will consider clients with access to a single folder and the adversary A as having control of every
client without access to that folder. The set of clients not controlled by A is static, and the folder
they have access to does not change.
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We additionally augment the protocol such that a client verifies that it has access to a folder
before making an update or search request to the folder. We assume that the clients under the control
of A only send valid requests.

We will show (informally) that for some ideal functionality F modeling the functionality that
DORY provides, there exists a simulator S in the ideal world such that for every adversary A, A
cannot tell whether it is in the real world or interacting with the simulator S.
What we don’t model. We model our consensus protocol in a blackbox way, treating it simply as
the ideal functionality Fconsensus. We make this choice to focus on the cryptographic components
of the DORY protocol and because two-phase commit is already well-studied. As our protocol
interacts with the underlying filesystem in a blackbox way without specifying an implementation,
we also model the filesystem as the ideal functionality Ffilesys. We also do not model dynamic
membership (in particular, user revocation) for simplicity; the set of compromised clients and the
set of compromised folders are static.

2.9.1 Definitions
Ideal functionality for filesystem. To simplify our analysis, we model the underlying filesystem as
the ideal functionality Ffilesys. We now define the ideal functionality for Ffilesys following the API
defined in Section 2.3.1.

For each folder, Ffilesys keeps:
• the current key for that folder, and
• a list of the document IDs docIDs in that folder. Each document ID has a corresponding:

– most recently used key, and
– version number.

Each time an update for a document is received, the most recently used key for that document is
set to the current key for that folder and the version number is incremented. The current key for a
folder only changes when a client’s access to a folder is revoked (our analysis does not include user
revocation).

The ideal functionality Ffilesys uses this data to respond to the following API queries (see
Section 2.3.1):

• getCurrKey(folderID) → 𝑘: Get the current key associated with the group of files in folderID.
• getDocKey(docID) → 𝑘: Get the key used in the most recent update for docID.
• getDocIDs(folderID) → docIDs: Get all the document IDs used for the documents in folderID.
• getVersion(folderID,docID) → version: Get the current version number associated with a file.

For each function, Ffilesys only responds to the query if the client making the request has access to
the folder.
Leakage of underlying filesystem. In order to allow our analysis to apply to many types of filesystems
that implement this ideal functionality but may permit different levels of leakage, we define the
leakage of the underlying filesystem in terms of the leakage of the filesystem API defined above. We
use the leakage function L to denote the leakage of each filesystem function.
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Ideal functionality for consensus. We also simplify our analysis by modeling our consensus
algorithm as the ideal functionality Fconsensus. We do this to focus on DORY’s cryptographic
guarantees and because two-phase commit is already well studied. Fconsensus simply serializes the
requests from the client 𝐶 before forwarding the requests to either the ideal search functionality F
(in the ideal world) or the DORY protocol (in the real world).
Definition structure for search ideal functionality.
Ideal world model. We define the ideal world functionality as a function F . The simulator S interacts
with F , and the adversary can interact with S . The client 𝐶 represents all the clients with access to
the folder in question and can issue requests in parallel based on the API defined in Section 2.4.
We only trust the clients with access to the folder in question; all other clients are controlled by
A. The client can also interact with the filesystem, modeled as Ffilesys. At startup, the ideal world
functionality takes as input the number of servers in the system and the identities of the servers that
are or will be compromised. The ideal functionality in turn passes this information to the simulator
S, which can use this information to determine execution. This information dictates which of two
cases F is in: either at least one server is honest, or no servers are honest. This means that the
adversary A must statically declare its corruptions at the beginning of execution. As a reminder,
the goal of DORY is to minimize leakage when at least one server is honest; we model both cases
here to show that DORY still provides some level of protection in the event that all servers are
compromised.
Real world model. The real world models DORY’s execution. We describe the differences from the
ideal world for each of the API calls with the client 𝐶 and the adversary A:

• Update(𝑘, folderID,docID,prevWords,currWords): In addition to what S receives in the ideal
world, A additionally receives the update request sent by 𝐶, as specified in Section 2.4 (namely,
the update requests received by the servers controlled by A).

• Search(𝑘, folderID,keyword) → (docIDs): In addition to what S receives in the ideal world, A
additionally receives some number of search requests sent by 𝐶, as specified in Section 2.4,
depending on the number of servers compromised (namely, the search requests received by the
servers controlled by A).

Definition structure. We break our definition into two cases: (1) at least one server is honest, and (2)
no servers are honest. These cases correspond to different attacker models in the real world, and
different numbers of compromised servers given as input to F in the ideal world. We describe the
ideal functionality and simulator for each case separately.
At least one honest server. We begin by describing the ideal functionality for the case where at
least one server is honest.
Defining ideal functionality. We start by defining the ideal functionality F for the case where the
adversary has statically compromised at most ℓ−1 of the ℓ servers. We denote the remaining honest
server(s) as 𝑃. 𝑃 also interacts with F to process requests. We define F for this case as follows:

• Update(folderID,docID,prevWords,currWords):
– F replaces the old keywords prevWords with the new keywords currWords for docID.
– F sends S:
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∗ the request type (Update),
∗ folderID,
∗ docID,
∗ L(Ffilesys.getCurrKey(folderID)),
∗ L(Ffilesys.getDocKey(docID)),
∗ L(Ffilesys.getVersion(docID)), and
∗ the bit 𝛽 where 𝛽 = 1 if the return value of Ffilesys.getCurrKey(folderID) changed since

the last update request; 𝛽 = 0 otherwise.
• Search(folderID,keyword) → (docIDs):

– F builds Bloom filters for the documents in folderID and returns the documents docIDs
that match the Bloom filter indexes for keyword.

– F sends S the request type (Search) and, for each docID in folderID:
∗ the request type (Search),
∗ folderID,
∗ L(Ffilesys.getDocIDs(folderID)), and
∗ for each docID in folderID,

· L(Ffilesys.getVersion(docID)), and
· L(Ffilesys.getDocKey(docID)).

No honest servers. We now move to the case where no servers are honest and describe the ideal
functionality for this case.
Defining ideal functionality. We define the ideal functionality F for the case where every server
is compromised as follows. We represent leakage that allows the attacker to correlate queries by
attaching an ID to each query. As the ideal functionality is only different from the case where at
least one server is honest for search and is identical for update, we only describe search:

• Search(folderID,keyword) → (docIDs):
– F builds Bloom filters for the documents in folderID and returns the documents docIDs

that match the Bloom filter indexes for keyword.
– F sends S the request type (Search) and, for each docID in folderID:

∗ the request type (Search),
∗ folderID,
∗ L(Ffilesys.getDocIDs(folderID)),
∗ for each docID in folderID,

· L(Ffilesys.getVersion(docID)) and
· L(Ffilesys.getDocKey(docID)),

∗ the current queryID, and
∗ the queryIDs of all prior identical queries.
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Defining security. We denote the security parameter as 𝜆 in our definition and proof.

Definition 1. Let Π be the protocol for an encrypted search system. Let A be an adversary that
outputs a single bit. For any set of compromised servers 𝜔 statically chosen by A, let Π,A,𝜔 (1𝜆) be
the random variable denoting A’s output when interacting with the real world where clients only
make queries to folders they have access to. For a simulator S , an adversary A that outputs a single
bit, and the set of compromised servers 𝜔, let IdealS ,A,𝜔 (1𝜆) be the random variable denoting A’s
output when interacting with the ideal world where clients only make queries to folders they have
access to.

We say that a protocol Π securely evaluates (with abort) the ideal functionality F defined above
if there exists a non-uniform algorithm S probabilistic polynomial-time in 𝜆 such that for every
non-uniform adversary A probabilistic polynomial-time in 𝜆 that outputs a single bit, for every set
of compromised servers 𝜔 statically chosen by A, the probability ensemble of Π,A,𝜔 (1𝜆) over 𝜆 is
computationally indistinguishable from the probability ensemble of IdealS ,A,𝜔 (1𝜆) over 𝜆:

∃S ∀A ∀𝜔 {Π,A,𝜔 (1𝜆)}𝜆 ≈𝑐 {IdealS ,A,𝜔 (1𝜆)}𝜆 .

2.9.2 Proof
Theorem 1. Using the definitions in Section 2.9.1, DORY securely evaluates (with abort) the ideal
functionality F when instantiated with a secure PRF, a secure aggregate MAC, a secure distributed
point function, and a secure filesystem that implements the ideal filesystem functionality.

Proof. We begin by defining the simulator S . The simulator S takes in as input the total number of
servers and the number of compromised servers. We initialize the system so that a Bloom filter is of
length 𝑚 and each keyword hashes to 𝜅 indexes. Based on the number of compromised servers, we
define S in one of the two following ways.
Constructing the simulator with at least one honest server. We start by describing how to
construct the simulator for the case where at least one server is honest; namely, adversary A has
statically compromised at most ℓ−1 out of ℓ servers. We construct a simulator S for a single folder
in the ideal world for this case as follows.

• We initialize S as follows:
– S samples 𝑘←R {0,1}𝜆.
– For each folder, S keeps a Bloom filter table mapping document IDs to strings in {0,1}𝑚.

Every entry in this table is initialized with 0𝑚.
– S keeps a key table mapping document IDs to active keys. Every entry in this table is

initialized with 𝑘 .
– S keeps a version number table mapping document IDs to version numbers. Every entry in

this table is initialized with 0.
• When S receives an update request from F for docID:

– If the bit 𝛽 = 1, 𝑘←R {0,1}𝜆.
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– S samples the string 𝑏←R {0,1}𝑚.
– S retrieves the entry in the table for docID, called 𝑏′.
– S looks up the version number for docID in the version number table, called version.
– S looks up the current key for docID in the key table, called 𝑘′.
– For 𝑖 ∈ [𝑚]:

∗ 𝑦𝑖←MAC(𝑘, (𝑏𝑖,docID, 𝑖,version+1))
∗ 𝑦′𝑖←MAC(𝑘′, (𝑏′𝑖,docID, 𝑖,version))
∗ 𝑧𝑖← 𝑦𝑖 ⊕ 𝑦′𝑖

– S increments the entry in the version number table for docID.
– S sets the entry in the key table for docID to 𝑘 .
– S sets the entry in the Bloom filter table for docID to 𝑏.
– S sends (𝑏, 𝑧1, . . . , 𝑧𝑚) to A along with the rest of the data that S received from F .
– S returns the response from A.

• When S receives a search request from F :
– For 𝑗 ∈ [𝜅], S computes:

∗ 𝑖 𝑗←R [𝑚]
∗ 𝐾 𝑗 ,1, . . . , 𝐾 𝑗 ,ℓ−1← DPF.Gen(𝑖 𝑗 )

– S sends 𝐾1,1, . . . , 𝐾𝜅,ℓ−1 to A along with the rest of the data that S received from F .
– S returns the response from A.

Constructing the simulator with no honest servers. We now construct a simulator S for a single
folder in the ideal world for the case where the attacker has compromised every honest server. We
have S respond to updates requests in the same way as the case where at least one server is honest,
and so we only describe how S responds to searches in this case.

• We initialize S in the same way as in the case where at least one server is honest, but with one
addition:

– For each folder, S keeps a query ID table mapping sets of query IDs to 𝜅 indexes in [𝑚].
This table is initially empty.

• When S receives a search request from F :
– S begins by looking up the queryIDs of all prior identical queries in the query ID table.

∗ If there is an entry for the queryIDs, add the new queryID to the list of query IDs in
that entry, and set 𝑥1, . . . , 𝑥𝜅 ∈ [𝑚] to be the indexes at that entry.

∗ Otherwise, for 𝑖 ∈ [𝜅], sample 𝑥𝑖←R [𝑚] and add a new entry to the table: {{queryID},
{𝑥1, . . . , 𝑥𝜅}}.

– For 𝑖 ∈ [𝜅], S computes 𝐾𝑖,1, . . . , 𝐾𝑖,ℓ−1← DPF.Gen(𝑥𝑖).
– S sends 𝐾1,1, . . . , 𝐾𝜅,ℓ to A along with the rest of the data that S received from F .
– S returns the response from A.
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Putting it together. Lemma 2 proves that security holds against an adversary that can statically
corrupt at most ℓ−1 of the ℓ servers, and Lemma 3 proves that security holds against an adversary
that can corrupt all ℓ servers. Together these complete the proof. □

Lemma 2. DORY securely evaluates (with abort) the ideal functionality F as defined in Definition 1
for the case when the adversary can statically corrupt at most ℓ−1 of the ℓ servers when instantiated
with a secure PRF, a secure aggregate MAC scheme, a secure distributed point function, and a
secure filesystem that implements the filesystem ideal functionality defined in Section 2.9.1.

Proof. To prove the above lemma, we construct a series of hybrid protocols H0, . . . ,H3. We show
that for 𝑖 ∈ {0,1,2}, the adversary A cannot distinguish between H𝑖 and H𝑖+1.
Hybrid 0. We start off running the DORY protocol without any modifications (see pseudocode in
Section 2.4.5).
Hybrid 1. We now modify the protocol from H0 such that for an update, rather than masking the
𝑚-bit Bloom filter 𝑏 ∈ {0,1}𝑚 with the output of a PRF evaluated at the document ID and its version
number (obtained via Ffilesys.getVersion) keyed with Ffilesys.getCurrKey evaluated at the folder ID,
we mask 𝑏 with a random 𝑟←R {0,1}𝑚.

Updates in H0 and H1 are computationally indistinguishable. This follows from the security of
the PRF (which ensures that the output of the PRF is computationally indistinguishable from random
because the key can only be accessed by legitimate clients) and the underlying filesystem (which
ensures that the PRF is evaluated on unique inputs so that a mask is never repeated and that the
PRF key is only known to legitimate users). Because the updates in H0 and H1 are computationally
indistinguishable, A cannot distinguish between H0 and H1.
Hybrid 2. We change the protocol from H1 to hide the contents of updates. For an update, H1
computes the Bloom filter 𝑏 ∈ {0,1}𝑚 and samples 𝑟←R {0,1}𝑚 and sends 𝑏 ⊕ 𝑟. In H2, we instead
just send 𝑟.

The value 𝑟 is acting as a one-time pad, making the updates statistically indistinguishable, and
so A cannot distinguish between H1 and H2.
Hybrid 3. To construct H3, we modify the search operation in H2 to argue that we don’t leak
information about the keyword being searched for. Rather than running DPF.Gen on the indexes
corresponding to the keyword that the client is searching for, we instead sample 𝑖1, . . . , 𝑖𝜅←R [𝑚].

Because the adversary only gets access to at most ℓ−1 of the ℓ function shares, from the security
of distributed point functions, the adversary cannot tell the difference between function shares chosen
from random 𝑖1, . . . , 𝑖𝜅 and the indexes corresponding to the query, and so A cannot distinguish
between H2 and H3. Notice that H3 is identical to S for the case where at most ℓ−1 out of ℓ servers
are honest.

We now show that H3 cannot provide incorrect results without detection by the user. This follows
directly from the security of the underlying MAC scheme; a user with access to the correct version
numbers can verify that every bit in the search result was derived from the most recent update.
Furthermore, as the MAC is generated using a key retrieved via Ffilesys.getCurrKey, only legitimate
clients can generate MACs, and A cannot forge MACs. This ensures that the adversary cannot
distinguish between H3 and the real world, thus completing the proof. □
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Lemma 3. DORY securely evaluates (with abort) the ideal functionality F as defined in Definition 1
for the case when the adversary can corrupt all ℓ servers when instantiated with a secure PRF,
a secure aggregate MAC scheme, and a secure filesystem that implements the filesystem ideal
functionality defined in Section 2.9.1.

Proof. To prove the above lemma, we construct a series of hybrid protocols H0, . . . ,H3. We show
that for 𝑖 ∈ {0,1,2}, the adversary A cannot distinguish between H𝑖 and H𝑖+1. Hybrids H0,H1,
and H2 match that of Lemma 2, as they concern hiding the contents of updates, and the ideal
functionality F and simulator S behavior for updates match in both cases.
Hybrid 0. (Same as H0 in Lemma 2.) We start off running the DORY protocol without any
modifications (see pseudocode in Section 2.4.5).
Hybrid 1. (Same as H1 in Lemma 2.) We now modify the protocol from H0 such that for an update,
rather than masking the 𝑚-bit Bloom filter 𝑏 ∈ {0,1}𝑚 with the output of a PRF evaluated at the
document ID and its version number (obtained via Ffilesys.getVersion) keyed with Ffilesys.getCurrKey
evaluated at the folder ID, we mask 𝑏 with a random 𝑟←R {0,1}𝑚.

Updates in H0 and H1 are computationally indistinguishable. This follows from the security of
the PRF (which ensures that the output of the PRF is computationally indistinguishable from random
because the key can only be accessed by legitimate clients) and the underlying filesystem (which
ensures that the PRF is evaluated on unique inputs so that a mask is never repeated and that the
PRF key is only known to legitimate users). Because the updates in H0 and H1 are computationally
indistinguishable, A cannot distinguish between H0 and H1.
Hybrid 2. (Same as H2 in Lemma 2.) We change the protocol from H1 to hide the contents of
updates. For an update, H1 computes the Bloom filter 𝑏 ∈ {0,1}𝑚 and samples 𝑟←R {0,1}𝑚 and sends
𝑏 ⊕ 𝑟. In H2, we instead just send 𝑟.

The value 𝑟 is acting as a one-time pad, making the updates statistically indistinguishable, and
so A cannot distinguish between H1 and H2.
Hybrid 3. To construct H3, we modify the search operation in H2 to argue that we only leak the
set of previous queries corresponding to the same keyword. Rather than running DPF.Gen on the
indexes corresponding to the keyword that the client is searching for, the client instead keeps a
mapping of keywords to indexes. If a keyword has already been searched for, the client uses those
indexes. Otherwise, the client samples a new set of indexes 𝑖1, . . . , 𝑖𝜅←R [𝑚] and updates the mapping
accordingly.

Because the adversary can see all ℓ function shares, it can tell which indexes the client is
retrieving. However, because the client chooses the indexes as PRF(𝑘,keyword) where 𝑘 is obtained
via Ffilesys.getCurrKey, the set of indexes queried is computationally indistinguishable from random
(only legitimate clients have access to the key), and so A cannot distinguish between H2 and H3.
Notice that H3 is identical to S for the case where all ℓ servers are compromised.

As in the proof for Lemma 2, H3 cannot provide incorrect results without detection by the client.
This follows directly from the security of the underlying MAC scheme; a client with access to the
correct version numbers can verify that every bit in the search result was derived from the most recent
update. Furthermore, as the MAC is generated using a key retrieved via Ffilesys.getCurrKey, only
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legitimate clients can generate MACs, and A cannot forge MACs. This ensures that the adversary
cannot distinguish between H3 and the real world, thus completing the proof. □

2.9.3 Our questions for companies
For each company, we asked a set of questions over the course of discussion(s) and email exchanges.
We asked these questions as we were in the process of designing our system. Some of the answers
were already available in publicly available material; in these cases, we used this information and
did not repeat the question during the course of our discussion. As many of these questions were
asked over the course of a discussion, we did not use the same wording every time, but summarize
our questions below for reference:
Encrypted search use-case.

1. Do you have a need for encrypted search?
2. What settings do you need encrypted search for? Mobile? Desktop? Offline files?
3. Have you explored implementing encrypted search? If so, what progress did you make and

what, if any, challenges did you encounter?
Performance and cost.

1. What are the requirements for the overhead of search?
a) If cost mentioned: How much would you be willing to pay per user per month to support

search?
b) If speed mentioned: What maximum end-to-end search latency would you consider

acceptable to deploy? Is a linear scan over the documents acceptable for searching, provided
the overall latency was low?

2. What are the requirements for the overhead of updates? Is it feasible to perform an expensive
cryptographic operation such as an ORAM write for each keyword in a document?

3. How do you handle membership changes and, in particular, revocation? Would you accept a
solution that required you to recompute the entire search index when a user’s access is revoked?

Workload.
1. What is the average and maximum number of files each user has access to?
2. What do you anticipate will be the ratio of updates to searches?
3. How many updates on average does a user currently perform each day?

Splitting trust.
1. Are you already splitting trust in your system? If so, how?
2. Would you consider deploying a solution that split trust between multiple servers? What trust

guarantees would you require to consider a multi-server solution?
3. If yes to the above question: Is it acceptable to split trust to hide the contents of the search

index?
Other relaxations.
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1. Is it acceptable if there is some delay between when updates are performed and when search
results are returned?

2. Is it acceptable to allow a small (configurable) number of false positives in the search results?

2.10 Conclusion
DORY is an encrypted search system that distributes trust to meet real-world efficiency and security
requirements. By reexamining the system model, we are able to build a system that is performant
without leaking search access patterns.
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Chapter 3

Waldo: A private time-series database

3.1 Introduction
Organizations today rely on the ability to continuously collect and analyze time-series data. To
cheaply store and query this data, organizations turn to cloud databases [24, 260, 484]. However,
many systems produce time-series data that is not only useful, but also sensitive. For example,
remote patient monitoring systems and smart homes both generate time-series data that users might
not want to store in the cloud due to the danger of data breaches [335, 374, 391, 431].

One solution to this problem is to perform queries over encrypted time-series data, as Time-
crypt [83] and Zeph [84] do. These systems have two serious limitations. The first is that they only
support aggregation by time over a data stream (e.g. average heart rate over a week). Many modern
time-series databases [30, 260, 388, 484] support multidimensional data and allow users to filter
based on different predicates that are not predefined. Multi-predicate queries are critical for some
applications. For example, a doctor might want to run the following query to assess congestive heart
failure risk without revealing the filter values or query result to the server [474]:

SELECT COUNT(*) FROM MedicalHistory

WHERE (systolic < 90 OR diastolic < 50 OR

weight_gain > 2 OR heart_rate < 40

OR heart_rate > 90) AND (time BETWEEN

2021:07:01:00:00 AND 2021:08:01:00:00)

The second limitation is that Timecrypt and Zeph reveal the query time interval to the server, which
could be problematic for some applications. For example, if a doctor is querying for a patient’s
heart rate, the queried time period could reveal when the patient had a heart attack or started a
new medication. To address the first limitation (functionality), we could leverage techniques from
encrypted databases [188, 247, 396, 398, 407, 413, 452, 493, 537]. While many of these systems
can support multi-predicate queries, they generally achieve good performance by permitting some
leakage, which an attacker can exploit to learn information about the query and the database contents
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(e.g. the attacker could learn the patient’s blood pressure) [94, 223, 224, 230, 269, 284, 292, 293, 305,
393, 410, 534].

Both oblivious RAM (ORAM) [206, 392] and general-purpose secure multiparty computation
(MPC) [55, 205, 525] are natural tools for this problem. ORAM is suited to the trusted proxy
setting (common in encrypted databases [396, 407, 413]), and MPC works in the distributed-trust
setting where servers are deployed in different trust domains (the same setting used in Zeph [84]).
Unfortunately, both are prohibitively expensive for the time-series setting. Storing a multidimensional
tree in ORAM makes it possible to execute queries in polylogarithmic time, but appends are just as or
more expensive than executing queries and require many round-trips, which results in poor throughput
due to the append-intensive nature of time-series workloads (Section 3.7). General-purpose MPC
is also a poor fit, as existing tools require massive amounts of communication (Section 3.7). In a
distributed-trust setting in which servers are likely deployed in different clouds to minimize the
chance that multiple servers are compromised, many round-trips and large bandwidth imply high
latency and high monetary cost.

We present Waldo, an oblivious, maliciously secure time-series database that leverages distributed
trust. Waldo provides:
• Multi-predicate functionality: Waldo provides two types of indices: one that supports additive

aggregates (e.g. sum, count, mean, variance, standard deviation) based on multiple predicates
(Section 3.4) and another that supports arbitrary aggregates (e.g. max, min, top-k) over a time
interval (Section 3.5). Prior work [83, 84] only supports aggregation over time.

• Obliviousness with malicious security: Waldo distributes trust to protect not only the data
contents, but also the query filter values and search access patterns (Section 3.3). Our design uses
three servers and provides malicious security when at least two servers are honest.

• Efficiency: We implement and evaluate Waldo (Section 3.6, Section 3.7) on a set of 32-core
machines. With features modulo 28, Waldo (specifically our index with multi-predicate support in
Section 3.4) runs a query with 8 range predicates for 210 records in 0.22s, compared with 1.75s
for an MPC baseline and 9.60s for an ORAM baseline, and 220 records in 11.82s, compared
with 45.72s for MPC and 16.70s for ORAM. The MPC baseline uses 9−82× more bandwidth
between servers than Waldo for 210 to 220 records, and the ORAM baseline uses 20−152× more
bandwidth between the client and server(s) than Waldo for 1-10 predicates. Waldo is also highly
parallelizable.

3.1.1 Summary of techniques
As we show in Section 3.7, ORAM and general-purpose MPC are poorly suited to the time-series
database setting due to the many rounds of interaction (ORAM) and substantial communication
overhead (MPC) they require. We design Waldo to overcome these shortcomings and be efficient
when servers are in different trust domains: we need to rely less on communication, which is limited
and expensive [1], and instead take advantage of compute resources, which are significantly cheaper
and easy to increase. With this goal in mind, we turn to function secret sharing (FSS) [77, 78], a
recent cryptographic tool that allows the client to generate compact shares of a function that the
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servers can then use to evaluate the corresponding equality or range predicate without learning
what the predicate is (critical for security). Crucially, the servers can evaluate their shares of the
predicate without interaction (in contrast, other state-of-the-art MPC techniques require interaction
proportional to the number of comparisons).

At its core, FSS is a simple primitive designed for semihonest servers with public inputs where
efficient implementations exist for a limited class of functions [77, 78]. The high-level challenge
in Waldo is to adapt this fairly simple primitive to the much more complex encrypted time-series
database setting where there are malicious servers, secret inputs, and chained predicates. Prior
work has explored applying FSS in different settings that require some combination of private data,
malicious security, and complex queries [75, 79, 82, 140, 161, 508], but as we discuss below (and in
Section 3.9), these techniques do not easily translate to our setting. These shortcomings motivate
the techniques we develop in Waldo, which we summarize below.
FSS for private predicates (Section 3.4.1). Using FSS to evaluate predicates on private data is
not straightforward because, for correctness, servers evaluating function shares must provide the
same input. Providing the input in plaintext is clearly a problem for implementing equality or range
predicates where the server should not know the values being compared. To circumvent this problem,
prior works on FSS for secure computation [75, 79] use additive masks to hide secret values, but
as we discuss in Section 3.4.1, this technique is highly inefficient in our setting, requiring client
communication linear in the database size. To solve this problem, we develop a shared one-hot
index, which hides the contents of the data while supporting high-throughput appends and private
queries with FSS. The way in which we split our index across the servers is inspired by Bunn et al.’s
distributed ORAM [82] that combines FSS with replicated secret sharing [31]. However, distributed
ORAM only requires a block storage abstraction, whereas we need to evaluate different range and
equality predicates on the database contents. We introduce new techniques that build on top of FSS
and replicated secret sharing to obliviously evaluate predicates (Section 3.4.1).
Combining multiple predicates (Section 3.4.2). To support multi-predicate queries, we need a
mechanism for efficiently combining the outputs of equality and range queries. There are two critical
challenges here: (1) how to structure the outputs of the FSS evaluations so that they can be efficiently
merged, and (2) how to perform the actual merging. To solve (1), we design our shared one-hot index
such that the FSS evaluation output is a vector of zeroes and ones that can easily be combined with a
vector for another predicate. Then, to address (2), we leverage the fact that our vectors are shared
using replicated secret sharing to take advantage of existing communication-efficient techniques
for semihonest 3-party honest-majority multiplication [31, 479]. Our techniques for combining
predicates are effective for computing count, sum, and, by extension, mean, variance, and standard
deviation.
Supporting complex aggregates (Section 3.5). The above protocol supports complex filtering, but
a limited set of aggregates. To support more complex aggregates (e.g. max, min, top-k), we show
how to build a shared aggregate tree that supports any user-defined aggregation function where
the server does not have to know how values are aggregated. Like our shared one-hot index, our
shared aggregate tree uses FSS and replicated secret sharing to hide the query and data. Our shared
aggregate tree only supports aggregation over time, but notably, queries do not require any server
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interaction. Furthermore, server execution time is independent of the aggregation function.
Providing malicious security (Section 3.4.3, Section 3.5). For both types of queries, we need to
defend against a malicious adversary that might try to tamper with the query results. Some 3-party
honest-majority MPC protocols can rely on replication coupled with cut-and-choose [189, 365]
or triple sacrifice techniques [164], but these solutions don’t work for us because we use 2-party
FSS. We need to authenticate the results of the FSS evaluations in a way that is compatible with our
techniques for combining outputs from multiple predicates. Our solution is inspired by Boyle et al.’s
use of information-theoretic MACs [56,126,133] for authenticating FSS evaluation outputs [75]. The
challenge is to make this approach compatible with multiplications: the multiplication protocol that
we use for combining multiple predicate outputs is very efficient, but designed for the semihonest
setting [31, 479]. We show how to use authenticated outputs from FSS evaluations to securely chain
multiplications together such that the client only needs to check the integrity of the final result and a
random linear combination of intermediate results.

3.2 System overview

3.2.1 Time-series workloads
Waldo accounts for these elements of time-series workloads:

• Append-only: Time-series databases tend to be append-only, as records represent data captured
at some timestamp [485].

• Write-intensive: Time-series workloads have a high ratio of appends to queries, and so the
database must be able to process a large volume of appends quickly [261, 367].

• Multiple features, multiple predicates: The data recorded for a timestamp often has multiple
features. Therefore, queries with predicates corresponding to more than one feature are very
common [260, 421].

• Recent data is more valuable: Even though the number of records grows rapidly over time
(time-series workloads are append-only and append-intensive), the most recent data is the most
relevant, and the value of data decays over time [261].

• Aggregation: Aggregation queries are very common in time-series workloads. Plaintext
time-series databases build specialized indices to quickly aggregate data [27, 484]

3.2.2 Running example: Remote Patient Monitoring
Time-series data is critical to many applications, including smart homes [387], smart cars [458],
energy conservation [460], and industrial internet-of-things (IoT) [486]. We now discuss remote
patient monitoring as a running example (although Waldo can support a wide variety of applications).
Remote patient monitoring systems allow doctors to use sensors to monitor at-risk patients while
they are home. The COVID-19 pandemic has made these tools even more critical, with more patients
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Data producers Queriers

Figure 1: System architecture. Here the ECG sensor and blood pressure monitor are data producers, and the
doctors are queriers. The servers are deployed in different trust domains.

opting for telehealth visits and the federal government expanding Medicare coverage to remote
patient monitoring [383].

RPM can be particularly valuable for at-risk patients to manage conditions such as hypertension,
chronic obstructive pulmonary disease, diabetes, and asthma [418]. In some cases, doctors only need
to monitor a single vital sign (e.g. glucose levels in a diabetes patient), but in a growing number of
cases, doctors find it valuable to make decisions based on more biometric data (e.g. blood pressure,
heart rate, and weight [474]).

One challenge for remote patient monitoring is that this data is extremely sensitive, and the query
itself can reveal information about a patient’s condition. For example, the threshold vital signs that a
doctor checks for may reveal if a patient is diabetic. Waldo ensures that the attacker only learns the
database schema and the structure, origin, and timing of queries (Section 3.3).

3.2.3 System architecture
The Waldo system is composed of the following entities (Figure 1):

• Clients: There are two types of clients: data producers and queriers. Some clients may be both.
– Data producers: Sensors or other devices collect real-time data and update the servers’

state.
– Queriers: Queriers query the data collected by the data producers and stored at the servers.

• Servers: Three servers in different trust domains store data collected by data producers and
execute queries made by queriers. If a majority of the servers are honest, the single malicious
server cannot not learn the data contents, query filter values, or any search access patterns.
These “logical” servers might be distributed across multiple machines.

Because Waldo leverages distributed trust (Section 3.3), each server should be deployed in a
different trust domain. This could mean that the servers are hosted in different clouds, managed by
different, potentially competing organizations, and/or deployed in different jurisdictions. Clients
send messages directly to each of the three servers. This is in contrast to prior works that use a trusted
proxy [396, 407, 413]: with a trusted proxy, users route their queries through a computationally
powerful machine that interacts with the server on behalf of the clients. The proxy model has the
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disadvantage that the clients must set up a powerful, trusted-by-all machine rather than outsourcing
computation to the cloud. In Waldo, both storage and computation are outsourced, and clients
interact directly with the untrusted servers.

3.2.4 Waldo API
We now describe the API that clients use to interact with Waldo. Waldo exposes two types of indices
to clients: WaldoTable and WaldoTree. WaldoTable stores multiple features for a single timestamp
and supports multi-predicate queries. WaldoTree, on the other hand, stores a single feature for a
timestamp and only supports queries over a time range. While WaldoTable supports more complex
multi-predicate filtering, WaldoTree supports a larger class of aggregation functions and is more
performant. WaldoTree is also useful for queries with predefined filters (as it is faster and uses
less storage than WaldoTable), whereas WaldoTable is useful when queries are unpredictable. Both
types of indices support Init, Append, and Query operations where Init and Append are invoked by
data producers, and Query is invoked by the queriers. All routines trigger execution at the servers.
We describe the API for both below.
WaldoTable:

• Init(1𝜆,1𝑠, schema): Initialize a table index given computational security parameter 𝜆, statistical
security parameter 𝑠, and a schema layout parameter schema = (𝑁,𝐹,2ℓ1 , . . . ,2ℓ𝐹 ) where 𝑁 is
the number of records in the window, 𝐹 is the number of features associated with a timestamp,
and 2ℓ𝑖 is the feature size for feature 𝑖.

• Append(𝑡, 𝑣1, . . . , 𝑣𝐹): Update the table index to store record with timestamp 𝑡 and values
𝑣1 ∈ Z2ℓ1 , . . . , 𝑣𝐹 ∈ Z2ℓ𝐹 .

• Query(𝑃1∧· · ·∧𝑃𝑛, feature, type) → 𝑥: Aggregate by type for feature over the boolean formula
composed of predicates 𝑃1, . . . , 𝑃𝑛, where each 𝑃𝑖 implicitly conveys the feature it applies
to. Here type ∈ {count, sum, mean, variance, stdev}. Output the aggregate of values in
feature filtered by the query predicates (or abort if integrity checks fail).

WaldoTree:
• Init(1𝜆,1𝑠, schema). Initialize a tree index given computational security parameter 𝜆, statistical

security parameter 𝑠, and a schema layout parameter schema = (2ℓ, type), where 2ℓ is the
feature size of the values in the tree index and type is any user-defined aggregation function
(Section 3.5).

• Append(𝑡, 𝑣): Update the tree index to store record with timestamp 𝑡 and value 𝑣 ∈ Z2ℓ .
• Query(𝑡1, 𝑡2) → 𝑥: Aggregate over time interval (𝑡1, 𝑡2) by type (set during initialization) and

output the result (or abort if integrity checks fail).
In WaldoTable, the schema parameter takes a number of records in the window, 𝑁 . Because

records are constantly appended, 𝑁 is not the total number of records in the table, but rather the
number of most recent records that the client can query (recall that the most recent data is typically
the most valuable). The parameter 𝑁 represents a tradeoff between performance (smaller 𝑁 values
result in better performance) and query expressiveness (clients might want access to data further in
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the past). WaldoTable can easily be extended to support multiple window sizes 𝑁 if the client is
willing to reveal which window size is being used for the current query.

WaldoTable supports both equality (𝑥 = 𝑎) and range (𝑎 < 𝑥 < 𝑏) predicates. Clients can chain
predicates together using AND operations. The servers can easily compute NOTs (Section 3.4.2),
and so we can express any combination of ANDs, ORs, and NOTs via De Morgan’s laws in a
WaldoTable query.
Access control. Waldo enforces different permissions for clients across different tables. Because
the servers know the identity of the client, access control is straightforward: all three servers must
participate to compute a query, and we allow at most one server to be malicious, so we can restrict
the types of queries that different users are allowed to make using a standard database access control
list [145]. Each server checks a client’s permissions, and if a client doesn’t have permission for
that operation, the honest servers will simply refuse to participate. Note that the servers can only
enforce permissions for the parts of the query that are public (e.g. the data that the query is executing
on and the query structure), but not the parts that remain private. Also, permission to make some
types of queries (e.g. mean) implicitly gives permission to view some intermediate values (e.g. sum
and count to compute mean). Access control can be at the record level in WaldoTable and at the
database-table level in WaldoTree. For simplicity, when describing the design of Waldo, we focus
on the case of a single table, as it is straightforward to extend this design to multiple tables with
access control.

3.2.5 Notation
In Waldo, we consider all database values ∈ Z2ℓ where ℓ depends on the feature size defined in
schema. Waldo uses secret-sharing to split a value 𝑥 ∈ Z2ℓ into parts [𝑥]1, . . . , [𝑥] 𝑝 ∈ Z2ℓ where
𝑝 ∈ {2,3} such that 𝑥 = (∑𝑝

𝑖=1 [𝑥]𝑖) mod 2ℓ. Note that we can sample shares in Z2𝑚 for 𝑚 ≥ ℓ to
represent values in Z2ℓ . We sometimes use 𝑥1, . . . , 𝑥𝑝 and 𝑥 (1) , . . . , 𝑥 (𝑝) to also refer to the secret
shares of 𝑥, and within a server’s context, we sometimes drop the share subscript altogether. All
arithmetic operations such as (+,−, ·) correspond to ring operations. Arithmetic operations on
vectors refers to their component-wise application in the underlying ring. [𝑁] denotes the set
{0, . . . , 𝑁 −1}. We use 𝑎← 𝑏 to denote assignment of 𝑏’s value to 𝑎, and 𝑎←R R denotes randomly
sampling 𝑎 from ring R. We denote the computational security parameter as 𝜆 and the statistical
security parameter as 𝑠.

3.3 Threat model and security guarantees
We describe Waldo’s security guarantees and, due to space constraints, delegate Waldo’s formalism
(detailing its guarantees) to Section 3.10. Waldo operates in the malicious three-party honest-majority
setting, meaning that it provides security with abort if at most one server is malicious. In the malicious
threat model, the attacker can influence the server’s behavior arbitrarily. If a server is malicious, the
client does not receive output and only learns that an error occurred.
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If at most one server is corrupted, then Waldo guarantees that the attacker does not learn
the record contents, query filter values, or any search access patterns and only learns public
information. The public information available to the attacker is: (1) the database schema (i.e.
for each table, the number of records, number of features, and the size of each feature); (2) the
structure of the query (i.e. the number of predicates, the type of each predicate, the structure of
conjunctions and negations, the feature being aggregated, and, in the case of WaldoTable, the
aggregation function); and (3) when a query is performed and which client performed the query.
The predicate type includes whether the predicate is an equality or range (single-sided or interval)
predicate and the feature corresponding to the predicate. To make the query structure leakage more
concrete, we consider the congestive heart failure query in Section 3.1: the attacker learns that the
query is computing COUNT(*) for (RANGE(f1) OR RANGE(f2) OR RANGE(f3) OR RANGE(f4) OR

RANGE(f5)) AND (RANGE(f6) AND RANGE(f6)) where RANGE implies a single-sided range predicate
and the mapping of features to feature ID is consistent across queries. Expressing queries in terms of
some query “normal form” with dummy predicates could eliminate leakage due to query structure,
although this would negatively impact performance and query expressiveness. As discussed in
Section 3.2.4, for some types of queries, clients are able to learn intermediate values (e.g. the client
learns sum and count when running a mean query).

Notably, Waldo does not reveal any information about the filter values, which records are
selected in a query, or how many records are selected, among other potential sources of leakage;
protecting access patterns and volume leakage defends against a large class of leakage-abuse
attacks [94, 223, 225, 230, 269, 284, 292, 293, 305, 393, 410, 534]. Because Waldo is maliciously
secure, the client can check the integrity of the query result. If at most one server is corrupted,
Waldo ensures that only clients granted permission to make queries or updates to a given table are
able to perform those operations. Waldo does not provide availability if any one server refuses to
provide service.

We formally model the end-to-end security guarantees of Waldo by defining an ideal functionality
F that specifies the behavior of an ideal system, capturing the properties discussed above. F
additionally captures the fact that the client can verify the integrity of the result. In Section 3.10, we
present a formal definition of security using F , which we use in the following theorem:
Theorem 2. Using Definition 4 (Section 3.10), Waldo securely evaluates (with abort) the ideal
functionality F (Section 3.10) when instantiated with secure distributed point and comparison
functions and a pseudo-random function, all with a computational security parameter of 𝜆.

We include the full proof in Section 3.10.

3.4 Multi-predicate queries
In this section, we describe how to implement the WaldoTable API to filter on multiple predicates.
We will start with a strawman that provides limited functionality and incomplete security and show
how to modify our scheme to support the full query functionality and security guarantees we want.
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3.4.1 Single predicate with semihonest security
Our first step is to choose a building block to help us obliviously filter by predicates. As we discussed
previously, ORAM and generic MPC are natural candidates, but these solutions perform poorly in
the time-series setting (Section 3.7). We instead identified two-party function secret-sharing to be
an excellent fit for equality and range predicates.
Tool: Function Secret Sharing (FSS). Two-party function secret sharing (FSS) makes it possible
to split a function 𝑓 into succinct function shares such that any strict subset of the shares doesn’t
reveal anything about the function 𝑓 , but when the evaluations at a given point 𝑥 are combined, the
result is 𝑓 (𝑥). A two-party FSS scheme is defined by the following algorithms:
• Gen(1𝜆, 𝑓 ) → 𝐾1,𝐾2: Given the security parameter 1𝜆 and a function description 𝑓 , output keys
𝐾1 and 𝐾2.

• Eval(𝐾𝑖, 𝑥) → 𝑦𝑖: Given the key 𝐾𝑖 and input 𝑥, output value 𝑦𝑖, corresponding to this party’s
share of 𝑓 (𝑥). We assume that key 𝐾𝑖 implicitly contains the party index 𝑖.

Adding together the two outputs of Eval 𝑦1, 𝑦2 yields 𝑓 (𝑥).
We identify two FSS constructions as a natural fit for Waldo: distributed point functions and

distributed comparison functions [75, 77, 78]. Distributed point functions (DPFs) are FSS schemes
for the point function 𝑓𝛼,𝛽 where 𝑓𝛼,𝛽 (𝛼) = 𝛽 and 𝑓𝛼,𝛽 (𝛼′) = 0 for all 𝛼′ ≠ 𝛼 [77, 78]. Similarly
distributed comparison functions (DCFs) are for functions 𝑔𝛼,𝛽 where 𝑔𝛼,𝛽 (𝑥) = 𝛽 if 𝑥 < 𝛼 and
𝑔𝛼,𝛽 (𝑥) = 0 otherwise [75]. Analogously, DCFs can also describe predicates 𝑥 > 𝛼. Constructions for
interval containment (IC) build on DCFs to express functions of the form 𝑎 < 𝑥 < 𝑏 [79]. Throughout
the chapter, we will use Gen=(1𝜆, 𝛼, 𝛽) and Gen< (1𝜆, 𝛼, 𝛽) to refer to FSS generator algorithms for
DPFs and DCFs respectively. For 𝑎 < 𝑥 < 𝑏 predicates, we use the IC construction from Boyle et
al. [79] that requires 2 DCF keys per IC, and we refer to its generator as GenIC(1𝜆, 𝑎, 𝑏, 𝛽). For all
these cases, we refer to the evaluation algorithms as Eval, and we assume the keys implicitly convey
the type of algorithm being invoked.

DPFs are a natural fit for equality queries, and DCFs are a natural fit for range queries.
FSS for private data. Applying FSS to filter public data based on an equality or range predicate is
fairly straightforward [75, 78, 508]. Two servers store identical copies of a public database (here the
database is just a list of values). To privately query the database for the number of records matching
a predicate, the client generates FSS keys with 𝛽 = 1 for the equality or range predicate using a DPF
or a DCF and sends a key to each server. Each server evaluates its key on each value in the database,
sums the evaluations together, and sends the results back to the client, computing

∑𝑁
𝑖=1Eval(𝐾, 𝑑𝑖)

for a database composed of values 𝑑𝑖, . . . , 𝑑𝑁 with FSS key 𝐾 on server 𝑠. When the client sums the
results from each server, it obtains the number of records matching the predicate.

Leveraging FSS to search over private data, however, introduces a new challenge: the server
cannot simply evaluate its FSS key on the database contents because the server should not be
able to view the database contents. At the same time, the servers need to evaluate their keys on
identical copies of the database to produce correct outputs. Prior works on using FSS for secure
computation [75,79] keep values secret by ensuring that the servers hold additively masked versions
of the secret. To output shares of 𝑓 (𝑥) instead of 𝑓 (𝑥 + 𝑟) (where 𝑓 is the shared function, 𝑥 is the
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secret input, and 𝑟 is the mask), they rely on sharing the matching function 𝑓𝑟 = 𝑓 (𝑥 − 𝑟). In the
database setting, each entry 𝑥𝑖 must be masked with an independently sampled 𝑟𝑖. Thus we would
need a different 𝑓𝑟𝑖 for each database entry 𝑥𝑖 even though the servers only need to evaluate a single
function 𝑓 . This practically means that the size of the function shares would match the size of the
database, defeating the purpose of using FSS to minimize communication. Therefore, we need
different techniques for the encrypted time-series database setting.

Our solution to this problem is inspired by that of DORY [140]. For each feature, we build a
table of size 𝑁 ×2ℓ where 𝑁 is the number of records that can be queried (the window size from
Section 3.2.4) and 2ℓ is the feature size (i.e. the number of possible values for that feature). For each
record, the corresponding row in the table is set to “1” at the location corresponding to record value
and “0” elsewhere. We call this structure a one-hot index, as it is a table of “one-hot” vectors, and
we use this tool as a building block to construct a shared one-hot index. While the construction of
the core one-hot index is very similar to the data structure in Dory, the shared one-hot index we
construct from it provides more powerful functionality and guarantees confidentiality and integrity
using different techniques, as we discuss later.

Now we can leverage FSS using the structure rather than content of the search index. We want
to compute the number of records matching the predicate. For every entry 𝑑𝑖, 𝑗 in the table 𝐷 for
record 𝑖 ∈ [𝑁] and feature value 𝑗 ∈ [2ℓ], the server 𝑠 evaluates its FSS key 𝐾 on the current value
𝑗 , multiplies the evaluation by the table entry 𝑑𝑖, 𝑗 , and then computes

EvalPred(𝑠,𝐾,𝐷) ←
2ℓ−1∑︁
𝑗=0

(
Eval(𝐾, 𝑗) ·

𝑁∑︁
𝑖=0

𝑑𝑖, 𝑗

)
(3.1)

There are two remaining challenges here. First, we need to understand how to encode different types
of record values using a small feature size 2ℓ, as the computation required is 𝑂 (𝑁 · 2ℓ). Second,
while this clearly works if 𝑑𝑖, 𝑗 ∈ {0,1}, if the values 𝑑𝑖, 𝑗 are encrypted, then the summation will not
produce the correct result. We address both below.
Encoding values with a small feature size. Choosing a small feature size 2ℓ is critical for good
performance in WaldoTable. For the remote patient monitoring applications we examine, we find
that all sensitive fields with a predicate computed over them are already from a small domain (size
28) or can easily be mapped to one (Section 3.7.2). Notably only the values being compared in
predicates need to use small feature sizes; the values being aggregated are not subject to these
restrictions. We summarize three techniques for encoding values in a large domain using a small
feature size below.

One way to represent a large set of values using a small feature size is by bucketing intervals
in Z2ℓ , improving performance at the expense of precision. Bucketing preserves ordering for
range predicates and is used in prior work [20, 84, 121] to efficiently compute aggregate statistics.
Candidates for bucketing include attributes such as weight, blood glucose level, salary, GPA, or
percentages.

Hash maps or Bloom filters can compress large values for point queries where high precision is
required (for Bloom filters, the client needs to check that each bit at each hash location is 1). One
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Figure 2: Query predicate evaluation with FSS and RSS.

example of a field that can be represented in this way and is only used in point queries is an identifier
(e.g. a client ID, company ID, social security number, or phone number).

Large domains can also be represented via a conjunction of predicates. For example, a time can
be represented as a timestamp or as a conjunction of the year, month, day, hour, and minute. The
number of predicates can leak information about the resulting filter, although this leakage can be
eliminated by always using the maximum number of predicates.
Identifying replicated secret sharing (RSS). To solve the second problem (protecting the database
contents while computing the correct sum), we turn to secret sharing. In standard 2-out-of-2 secret
sharing, to secret share a value 𝑥 ∈ Z2𝑘 , we sample shares [𝑥]1, [𝑥]2←R Z2𝑘 such that 𝑥 = [𝑥]1 + [𝑥]2.
Since the output of Eval is 2-out-of-2 shares of 𝑓 (𝑥), if the table 𝐷 is also shared in the same
way, then each of the 2ℓ multiplications in Equation (3.1) will require expensive MPC tools [48].
While 2ℓ secure multiplications might seem feasible, to chain together predicates, we will show in
Section 3.4.2 that we need to perform 𝑁 ·2ℓ multiplications to evaluate a single predicate, which
is impractical if these multiplications must use Beaver triples [48]. To overcome this challenge,
we leverage replicated secret sharing, which hides the data contents while only requiring local
multiplications. Replicated secret sharing requires switching from two servers to three servers, but
this third server allows us to significantly improve performance. This combination of RSS with FSS
makes single-depth multiplications essentially free (no communication required).

We use the 2-out-of-3 replicated secret sharing from Araki et al. [31]. To secret share a value
𝑥 ∈ Z2𝑘 , sample shares [𝑥]1, [𝑥]2, [𝑥]3←R Z2𝑘 such that 𝑥 = [𝑥]1 + [𝑥]2 + [𝑥]3. Each server gets a pair
of shares: 𝑆1 has ( [𝑥]1, [𝑥]2), 𝑆2 has ( [𝑥]2, [𝑥]3), and 𝑆3 has ( [𝑥]3, [𝑥]1).
Layering RSS with FSS. RSS provides the replication necessary for FSS without sacrificing
confidentiality. If the database is split into shares [𝐷]1, [𝐷]2, [𝐷]3, then the client can generate
three pairs of FSS keys (𝐾1

1 ,𝐾
1
2 ), (𝐾2

1 ,𝐾
2
2 ), and (𝐾3

1 ,𝐾
3
2 ). Each server’s share of the database is a

pair (𝐷.first, 𝐷.second), where 𝑆1 has ( [𝐷]1, [𝐷]2), 𝑆2 has ( [𝐷]2, [𝐷]3), and 𝑆3 has ( [𝐷]3, [𝐷]1).
The client sends 𝑆1 (𝐾1

1 ,𝐾
2
1 ), 𝑆2 (𝐾2

2 ,𝐾
3
1 ), and 𝑆3 (𝐾3

2 ,𝐾
1
2 )). Then

• 𝑆1 computes 𝑥 (1)1 ← EvalPred(1,𝐾1
1 , [𝐷]1) and

𝑥 (2)1 ← EvalPred(1,𝐾2
1 , [𝐷]2),

• 𝑆2 computes 𝑥 (2)2 ← EvalPred(2,𝐾2
2 , [𝐷]2) and
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𝑥 (3)1 ← EvalPred(2,𝐾3
1 , [𝐷]3), and

• 𝑆3 computes 𝑥 (3)2 ← EvalPred(3,𝐾3
2 , [𝐷]3) and

𝑥 (1)2 ← EvalPred(3,𝐾1
2 , [𝐷]1).

Client can fetch these and compute 𝑥 (1) ← 𝑥 (1)1 + 𝑥
(1)
2 , 𝑥 (2) ← 𝑥 (2)1 + 𝑥

(2)
2 , 𝑥 (3) ← 𝑥 (3)1 + 𝑥

(3)
2 , and

𝑥← 𝑥 (1) +𝑥 (2) +𝑥 (3) . This way, RSS allows us to hide contents of the data from servers and evaluate
a single predicate without communication between servers (Figure 2). We call this data structure
(and the corresponding API for appending to and querying it) a shared one-hot index.

Appends to this shared one-hot index are straightforward: to append value 𝑣𝑖 corresponding to
feature 𝑖 with feature size 2ℓ𝑖 , the data producer generates a one-hot vector 𝑉 ∈ Z2ℓ𝑖

2𝑘 where 𝑉 𝑗 = 1 if
𝑗 = 𝑣𝑖 and 𝑉 𝑗 = 0 if 𝑗 ≠ 𝑣𝑖. Then, the data producer splits 𝑉 component-wise into RSS shares and
sends a pair of shares to each server. Each server appends each share to its corresponding table. Note
that we do not support private updates to existing records, and so we only consider append-only
workloads like time-series. Bunn et al. [82] also explore how FSS and RSS compliment each other
in the distributed ORAM setting. They show how to provide a private key-value store interface,
whereas we build a data structure that can handle more complex queries while only requiring a small
number of FSS keys.

3.4.2 Multiple predicates with semihonest security
So far, we have focused on evaluating a single predicate, but our goal is to filter records based on a
combination of multiple predicates. We have also focused only on counting the number of records
matching a predicate, but in practice we additionally want to compute sums (below we describe how
to use sum and count as a foundation for other aggregates).

To support both of these, we transition from each server computing a single value (the number
of records matching the predicate) to each server computing a filter (a vector of size 𝑁 where the
value at index 𝑖 = 1 if record 𝑖 ∈ [𝑁] matches the predicate). Server 𝑠 with FSS key 𝐾 and table 𝐷
with table entry 𝑑𝑖, 𝑗 ∈ Z2ℓ can compute

FilterPred(𝑠,𝐾,𝐷) ←
( 2ℓ−1∑︁
𝑖=0

(
Eval(𝐾,𝑖) · 𝑑0,𝑖

)
, . . . ,

2ℓ−1∑︁
𝑖=0

(
Eval(𝐾,𝑖) · 𝑑𝑁−1,𝑖

) )
(3.2)

From this filter, it is easy to count the number of matching records as before: simply sum the elements
in the filter. Computing the sum of values for records matching the filter requires more work, as we
need to compute the dot product of the filter 𝐹 and the values𝑊 , where𝑊 is a vector of database
values corresponding to the feature being added (not in one-hot form), and both are secret-shared.

Combining filters using logical ANDs also requires multiplication. Given two filters 𝐹1 and 𝐹2,
we can compute 𝐹1∧𝐹2 by multiplying 𝐹1 and 𝐹2 together because all the elements are in {0,1}.
The NOT operator can be easily computed locally (one pair of shares is set to [𝑥]𝑖← 1− [𝑥]𝑖 and the
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others are set to [𝑥]𝑖←−[𝑥]𝑖), and the OR operator can be written as a combination of ANDs and
NOTs. Thus the problems of aggregating by sum and combining filters both reduce to the problem
of multiplying secret-shared values.
Tool: Multiplying RSS shares. Generic MPC tools for multiplication are particularly efficient
in the three-party honest-majority setting. Given shares 𝑥𝑖, 𝑥𝑖+1, 𝑦𝑖, 𝑦𝑖+1, we can compute 𝑧𝑖 =
𝑥𝑖𝑦𝑖 + 𝑥𝑖+1𝑦𝑖 + 𝑥𝑖𝑦𝑖+1. Then 𝑧1 + 𝑧2 + 𝑧3 = 𝑥𝑦, yielding a 3-out-of-3 additive sharing. We refer to this
existing technique as Mult, which takes in RSS shares of operands 𝑥, 𝑦 and outputs 3-out-of-3
shares of 𝑥𝑦. To obtain a replicated secret-sharing, 𝑆𝑖 can send a blinded share 𝑧𝑖 + 𝛼𝑖 to 𝑆𝑖+1
where (𝛼1, 𝛼2, 𝛼3) is a fresh secret-sharing of zero. To generate fresh sharings of zero, we rely on a
pseudorandom function (PRF) keyed during initialization. During setup, server 𝑆𝑖 samples PRF key 𝑘𝑖
and sends 𝑘𝑖 to server 𝑆𝑖+1. The 𝑗 th share of zero is (𝑧1, 𝑧2, 𝑧3) where 𝑧𝑖 = PRF(𝑘𝑖, 𝑗) −PRF(𝑘𝑖−1, 𝑗).
This general approach is used in CryptGPU [479], and the technique for generating fresh sharings of
zero is from Araki et al. [31]. We refer to this technique for resharing 3-out-of-3 shares to get RSS
shares as Reshare, and Mult followed by Reshare as MultAndReshare, which takes RSS shares of
𝑥, 𝑦 and outputs RSS shares of 𝑥𝑦.
Supporting multiple predicates. This multiplication tool simplifies the problem of summation and
combining multiple filters. The local computation costs are small, but now each server must send 𝑁
values where 𝑁 is the number of records for each multiplication. Generating filters using FSS with
RSS produces filters that are 3-out-of-3 shared, and so before multiplying them, we use the same
share conversion trick to get replicated secret shares. To reduce the cost of share conversion, we can
precompute the PRF evaluations and store them until we receive a query, making the online cost of
multiplication and resharing depend almost entirely on the cost of communication.
Supporting different types of aggregates. So far, we have described how to compute count
(summing elements in the filter 𝐹) and sum (computing the dot product of 𝐹 and the values𝑊). We
now discuss how to use these building blocks to compute other functions using previously known
techniques. A well-known technique for computing the mean is to run a sum and a count query and
divide locally. By storing not just the value 𝑋 but also 𝑋2, it is also straightforward to compute the
variance of 𝑋 as Var(𝑋) = 𝐸 [𝑋2] − (𝐸 [𝑋])2 using the above technique to compute the mean and
then squaring and subtracting locally. For standard deviation, the client locally computes the square
root of variance. When using the same filter with different aggregation functions, we can reuse the
filter to save computation.

3.4.3 Multiple predicates with malicious security
Up to this point, we have only considered a semihonest adversary, but to defend against a malicious
adversary, the client needs to be able to check that the servers performed the computation correctly.
We leverage information-theoretic MACs from MPC [126] and show how to provide integrity when
chaining together predicates evaluated using FSS.
Tool: Information-theoretic MACs. To authenticate a value 𝑥 in the ringZ2𝑘 , we use the information-
theoretic MACs from SPDZ2𝑘 [126]. The servers hold shares of 𝑥 over the ring Z2𝑘+𝑠 where 𝑠 is the
statistical security parameter. For some MAC key 𝛼 ∈ Z2𝑘+𝑠 not known to the servers, the servers
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also hold shares of 𝛼𝑥 ∈ Z2𝑘+𝑠 . These MACs are additively homomorphic: 𝛼𝑥1 +𝛼𝑥2 = 𝛼(𝑥1 + 𝑥2).
All computation is now performed in Z2𝑘+𝑠 over both the value and the MAC, and the protocol aborts
if the output 𝑦 and the MAC tag 𝜎 do not satisfy 𝛼𝑦 = 𝜎. The probability that the attacker can forge
the MAC is the probability that the attacker can guess 𝑠 lower bits of 𝛼, which is 1/2𝑠. We choose to
use rings rather than fields even though this means that we need a larger ring because it allows us to
take advantage of native instructions for addition and multiplication in our implementation.
Encoding information-theoretic MACs. We would like to apply information-theoretic MACs to
Waldo such that the client chooses a value 𝛼←R Z2𝑘+𝑠 and then receives a query result of the form
(𝑥,𝜎 = 𝛼𝑥). Existing RSS-based 3PC works in the honest-majority setting provide malicious security
for multiplications by replication combined with either cut-and-choose techniques [189, 365] or
triple sacrifice [164]. Our setting is different because we are interleaving 2-party FSS with 3-party
RSS. Using 2-party FSS requires us to use dishonest-majority techniques to provide malicious
security, and information-theoretic MACs are a natural candidate here [56, 75, 126, 133]. Because
we use MACs to authenticate the FSS evaluations, we can take advantage of authenticated input
shares to provide malicious security when we combine filters via multiplication.

To authenticate multiplications, we use linear combinations of all intermediate values 𝑥𝑖 and
their MAC tags 𝜎𝑖 with random coefficients 𝜒𝑖, i.e.,

∑
𝜒𝑖𝑥𝑖 and

∑
𝜒𝑖𝜎𝑖 where 𝜎𝑖 = 𝛼𝑥𝑖 [126]. This

technique allows us to safely compute the MAC tag for 𝑥𝑦 by multiplying 𝜎 = 𝛼𝑥 directly with 𝑦
because the batch check via random linear combinations ensures that 𝑥𝑦 is bound to the resulting
MAC tag. The servers can compute shares of a random value 𝜒𝑖 using the same technique with PRFs
that we use to generate random sharings of zero [31]; we refer to this as RandCoeff, which outputs
RSS shares of random values and takes as input server index ∈ {1,2,3} and the number of shares
needed. With RSS shares of 𝜒𝑖 values, servers invoke the Mult function with RSS shares of 𝜒𝑖 and 𝑥𝑖
to get 3-out-of-3 shares of 𝜒𝑖𝑥𝑖 and similarly for 𝜒𝑖𝜎𝑖. We refer to this function as RandComb. Prior
MPC work that computes random linear combinations of MACs requires the servers to perform
a two-round commit-and-open protocol [126], but we can avoid this cost by taking advantage of
the client. Each server simply sends the client its share of 𝑦 =

∑
𝜒𝑖𝑥𝑖 and 𝑧 =

∑
𝜒𝑖𝜎𝑖 and the client

assembles the shares and checks that 𝛼𝑦 = 𝑧. Prior work [126] shows that this check catches any
introduced errors with high probability; however, we only achieve 𝑠 = 𝑠− log(𝑠 + 1) parametric
statistical security (see Lemma 5).

The only remaining challenge is how to encode 𝛼. A natural choice would be to keep two
versions of the database where if the first version contains 𝑥, the second version contains 𝛼𝑥. Then,
the servers execute queries on both versions. This solution is secure but requires twice the amount of
storage and makes revocation challenging: every client knows 𝛼, so if access is revoked, the entire
table must be rebuilt with a new 𝛼′.

Instead, in our approach, the client chooses an 𝛼 value for every query and encodes 𝛼 in the FSS
key itself. Instead of sending one (logical) keypair per predicate, the client now sends two (logical)
FSS keypairs per predicate: one that evaluates to 1 on the desired input (as in the semihonest case),
and another that evaluates to 𝛼 on the desired input. (Note that because of the interaction with
RSS, the client actually now needs to send a total of six FSS keypairs instead of three) The servers
execute the query for the keys that evaluate to 1 to produce 𝑥 and then for the keys that evaluate to 𝛼
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to produce 𝜎, and the client checks that 𝛼𝑥 = 𝜎. This has two key benefits: (1) we do not need to
expand the size of the index for malicious security, and (2) clients do not need to share 𝛼 values
(no recomputation necessary when access is revoked). Boyle et al. [75] first explored the idea of
supporting malicious security by encoding 𝛼 values directly in FSS keys, but for the MPC setting
rather than the client-server setting in databases. A key difference between these settings is that, in
the MPC setting, the parties must perform a joint verification protocol, whereas in our setting, the
client can verify the MAC directly from the shares produced by each server.

3.4.4 Putting it together
We present the final protocol for the client in Figure 3 and the server in Figure 4 and provide a
high-level overview below.

In Figure 3, the client begins by sampling the MAC key 𝛼. For each predicate 𝑃𝑖, the client
samples three pairs of FSS keys, which evaluate to shares of 1 for inputs satisfying 𝑃𝑖. In addition,
for malicious security, the client samples three extra key pairs, which evaluate to shares of 𝛼 when
𝑃𝑖 is satisfied. The client sends the keys corresponding to the servers’ RSS shares of the data, along
with the predicate feature IDs, the ID of the feature being aggregated, and the type of aggregation
(e.g. sum, count). Once the client receives responses from the servers, it reconstructs the query result
𝑥 and the MAC tag 𝜎, as well as the value 𝑚̂ and its MAC tag 𝜎̂ that contain traces of malicious
behavior via a random linear combination of the entire transcript. The client can then verify the
MAC tags and output 𝑥 if the checks pass.

In Figure 4, the servers receive FSS keys corresponding to the query result and the query MAC
tag for each predicate and each RSS share of the data. For each predicate in the query, the servers
need to compute RSS shares of the intermediate filter and its corresponding MAC tag. To do this,
they evaluate each FSS key on the corresponding table share to generate a 1-out-of-6 share of the
resulting filter (FilterPred from §3.4.2). Each server has RSS shares of the table and receives 2 FSS
keys to evaluate each predicate, so it generates two 1-out-of-6 shares of the predicate filter, which
it can then combine into a single 1-out-of-3 share. By running the Reshare protocol, the servers
can convert their 1-out-of-3 shares to RSS shares. Then the servers run MultAndReshare (§3.4.2) to
combine predicates together and output an RSS sharing of the accumulated filter. They can then use
shares of the final accumulated filter to compute shares of the final aggregate. By performing this
process for both the FSS keys for the query result and the FSS keys for the MAC tag, the servers can
compute shares of both the query result and the MAC tag. To ensure that the malicious server does
not manipulate the filter shares or corresponding MAC tags during multiplication, the servers must
compute a random linear combination of all the messages they received using RandCoeff (§3.4.3).
The servers send back shares of the final result 𝑥 and the corresponding MAC tag 𝜎, as well as the
accumulated random linear combination 𝑚̂ and its corresponding MAC tag 𝜎̂.
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client.WaldoTable.Query𝑆1,𝑆2,𝑆3 (𝑃1∧ · · · ∧𝑃𝑛, 𝑝, type)
1: 𝛼←R Z2𝑘+𝑠 ,K𝑖,K′𝑖← {} for 𝑖 ∈ {1,2,3}
2: ∀𝑖 ∈ {1, . . . , 𝑛}, 𝑝𝑖← idx(𝑃𝑖)
3: for 𝑖 = 1 to 𝑛 do
4: for 𝑗 = 1 to 3 do
5: (𝐾 𝑗

1 )𝑖, (𝐾
𝑗
2 )𝑖← Gen(1𝜆, 𝑃𝑖,1)

6: (𝐾′ 𝑗1 )𝑖, (𝐾
′ 𝑗
2 )𝑖← Gen(1𝜆, 𝑃𝑖, 𝛼)

7: end for
8: K1←K1

⋃(𝐾1
1 )𝑖, (𝐾2

1 )𝑖 and K′1←K′1
⋃(𝐾′11 )𝑖, (𝐾′21 )𝑖

9: K2←K2
⋃(𝐾2

2 )𝑖, (𝐾3
1 )𝑖 and K′2←K′2

⋃(𝐾′22 )𝑖, (𝐾′31 )𝑖
10: K3←K3

⋃(𝐾3
2 )𝑖, (𝐾1

2 )𝑖 and K′3←K′3
⋃(𝐾′32 )𝑖, (𝐾′12 )𝑖

11: end for
12: for 𝑖 = 1 to 3 do
13: (𝑥𝑖,𝜎𝑖, 𝑚̂𝑖, 𝜎̂𝑖) ← 𝑆𝑖 .WaldoTable.Query(K𝑖,K′𝑖 , {𝑝 𝑗 } 𝑗 , 𝑝, type)
14: end for
15: 𝑥←∑3

𝑖=1 𝑥𝑖,𝜎←
∑3
𝑖=1𝜎𝑖, 𝑚̂←

∑3
𝑖=1 𝑚̂𝑖, 𝜎̂←

∑3
𝑖=1 𝜎̂𝑖

16: if (𝛼 · 𝑥 ≠ 𝜎) ∨ (𝛼 · 𝑚̂ ≠ 𝜎̂) then
17: Output ⊥ and broadcast ⊥ to all servers
18: end if
19: Output 𝑥

Figure 3: Client WaldoTable.Query algorithm. Gen(1𝜆, 𝑃𝑖 , 𝛽) refers to Gen=(1𝜆, 𝑎, 𝛽),Gen< (1𝜆, 𝑎, 𝛽), or
GenIC(1𝜆, 𝑎, 𝑏, 𝛽) depending on the predicate 𝑃𝑖 being 𝑥 = 𝑎,𝑥 < 𝑎, or 𝑎 < 𝑥 < 𝑏, respectively. We denote
𝑃𝑖’s feature ID as idx(𝑃𝑖), and {𝑝𝑖}𝑖 denotes {𝑝1, . . . , 𝑝𝑛}.

3.5 Complex aggregates over time ranges
While our shared one-hot index can compute a useful set of aggregates using sum and count
queries, not all valuable aggregates can be expressed as a combination of dot products (e.g. min,
max, top-k). In many cases, the client needs to compute a complex aggregate over a time period
(e.g. a doctor might want to compute the maximum glucose level of a diabetic patient in the last
week). Our WaldoTree index allows the client to compute any aggregate function over a time period
without server-server interaction and without revealing the time interval being queried (as prior
work does [83, 84]). Because it is more efficient than WaldoTable and doesn’t require interaction
between the servers, WaldoTree is also valuable in cases where the query predicates are predefined.

We call our solution to this problem a shared aggregate tree. Our core data structure is inspired
by ideas from authenticated data structures [318], Faber et al. [170], Arx [407], and Timecrypt [83]:
each leaf node contains a (private) record value, and each internal node contains the (private)
aggregate of its two children. Each leaf node has a public timestamp, and the 𝑛 leaf nodes are ordered
by time so that each internal node has a public time interval. In this way, the client can compute an
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server.WaldoTable.Query𝑆1,𝑆2,𝑆3 (K,K′, {𝑝𝑖}𝑖, 𝑝, type)
1: Parse K as (𝐾1)1, (𝐾2)1, . . . , (𝐾1)𝑛, (𝐾2)𝑛
2: Parse K′ as (𝐾′1)1, (𝐾′2)1, . . . , (𝐾′1)𝑛, (𝐾′2)𝑛
3: 𝑚̂← 0, 𝜎̂← 0, 𝑧1← 1 if ID = 2 and 0 otherwise, and 𝑧2← 1 if ID = 1 and 0 otherwise.
4: 𝐹̃← (𝑧𝑁1 , 𝑧𝑁2 ), 𝐹′← (𝑧𝑁1 , 𝑧𝑁2 ) ∈ Z𝑁2𝑘+𝑠 ×Z𝑁2𝑘+𝑠 .
5: for 𝑖 = 1 to 𝑛 do
6: 𝐺1← FilterPred(ID, (𝐾1)𝑖,𝑇𝑝𝑖 .first)
7: 𝐺2← FilterPred(ID, (𝐾2)𝑖,𝑇𝑝𝑖 .second)
8: 𝐺′1← FilterPred(ID, (𝐾′1)𝑖,𝑇𝑝𝑖 .first)
9: 𝐺′2← FilterPred(ID, (𝐾′2)𝑖,𝑇𝑝𝑖 .second)

10: 𝐺← 𝐺1 +𝐺2 and 𝐺′← 𝐺′1 +𝐺′2
11: 𝐻̃← Reshare𝑆1,𝑆2,𝑆3 (𝐺) and 𝐻̃′← Reshare𝑆1,𝑆2,𝑆3 (𝐺′)
12: 𝐹̃←MultAndReshare𝑆1,𝑆2,𝑆3 (𝐹̃, 𝐻̃)
13: 𝐹′←MultAndReshare𝑆1,𝑆2,𝑆3 (𝐹′, 𝐻̃)
14: {𝜒1, . . . , ˜𝜒2𝑁 } ← RandCoeff (ID,2𝑁)
15: 𝑚̂← 𝑚̂ +RandComb(𝐹̃ | |𝐻̃, {𝜒1, . . . , ˜𝜒2𝑁 })
16: 𝜎̂← 𝜎̂ +RandComb(𝐹′| |𝐻̃′, {𝜒1, . . . , ˜𝜒2𝑁 })
17: end for
18: if type is sum then
19: 𝑥←∑𝑁

𝑖=1Mult
(
𝐹̃𝑖, (𝐷 𝑝)𝑖

)
, 𝜎←∑𝑁

𝑖=1Mult
(
𝐹′𝑖, (𝐷 𝑝)𝑖

)
20: end if
21: if type is count then
22: 𝑥←∑𝑁

𝑖=1 𝐹̃𝑖 .first, 𝜎←
∑𝑁
𝑖=1𝐹

′
𝑖 .first

23: end if
24: Output (𝑥,𝜎, 𝑚̂, 𝜎̂)

Figure 4: Server WaldoTable.Query algorithm. We use 𝑁 for the window size, 𝑛 for the number of query
predicates, and ID ∈ {1,2,3} for the server id. Variables with “tilde" denote RSS shares. The variables 𝐷,𝑇
refer to RSS shares of database and its corresponding shared one-hot index, respectively. We use (𝐷 𝑝)𝑖 to
denote the 𝑖th record’s 𝑝th feature in 𝐷 (not in one-hot form), 𝑇𝑝𝑖 refers to the shared one-hot index for 𝑝𝑖th
feature, and 𝐹̃𝑖 denotes 𝑖th RSS share in 𝐹̃. We use first, second to access the respective component from
an RSS share. For simplicity we assume that predicates are chained via conjunctions; disjunctions can be
expressed by adding negations.

aggregate over some time interval by retrieving at most 2log𝑛+1 nodes. This set of nodes represents
the covering set, as it covers the time range that the client is querying (see Figure 5). Once the
client has retrieved the nodes in the covering set, the client can locally aggregate the intermediate
aggregates to compute the query result. To hide the contents of the tree from the server, we can
again use RSS to share the aggregate value of each node.
Oblivious queries. The client cannot directly request the covering set from the server, as this set
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0 1 72 3 4 5 6
Timestamp

Figure 5: Node activation for the query 0 < 𝑥 < 7. Green nodes are activated, and nodes with dashed boundary
are in the covering set.

reveals to the server the time period being queried. To hide this set, we can once again leverage
FSS. We use the same techniques for combining FSS with RSS discussed in Section 3.4.1 and so do
not describe the interplay between FSS and RSS. As a strawman, the client could send 2log𝑛+1
logical DPF keys to the servers (here we refer to each “logical” FSS key as corresponding to 3
“physical” FSS keys, one for each of the 3 pairs of servers), each of which corresponds to a node in
the covering set. Note that this strawman solution requires the timestamps at leaf nodes to be at
regular intervals (we fix this issue in our final solution). To prevent query leakage, clients always
need to send 2log𝑛+1 keys to the servers.

We can reduce the number of FSS keys that the client needs to send to just two logical keys per
server pair by instead using DCFs for the two intervals 𝑎 < 𝑥 and 𝑥 < 𝑏. The client generates the
DCF keys for the leaf level of the tree, sends the keys to the server, and then each server evaluates its
DCF keys on the timestamp for each leaf separately for both 𝑎 < 𝑥 and 𝑥 < 𝑏. We say that a leaf
node is “activated” if its DCF evaluation is a secret-share of one, meaning that the node is within
the range that the client is querying for (note that to protect the client’s query, the server does not
know whether or not a node is activated). Each server then projects the DCF evaluation for each
single-sided range at the leaf nodes to the internal nodes. Projection maintains the invariant that
an internal node is “activated” only if both of its children are. We can perform this projection by
copying the value of the left or right child to the parent depending on the direction of the single-sided
range being evaluated. For example, in Figure 5, the value of node 0 is copied to the parent of node
0 and node 1 (as this is the left side of the range), and the value of node 7 is copied to the parent
of node 6 and node 7 (as this is the right side of the range). This projection operation allows us to
correctly copy the DCF evaluations (secret shares of the activation status) from the leaf nodes to the
internal nodes (1) without knowing which nodes are actually activated, while (2) maintaining the
invariant that a node is only activated if its time interval covers part of the queried time range.

However, we only want to retrieve the nodes in the covering set (i.e. the nodes where the parent
is not also activated); we can’t retrieve all activated nodes because the number of total activated
nodes is large and depends on the queried range. To filter out nodes where the parents are also
activated, we compute two sums for each level ℓ: (1) the sum of all the activated nodes 𝑋ℓ, and (2)
the sum of the children of the activated nodes 𝑌ℓ. Then for each level ℓ, we return 𝑋ℓ −𝑌ℓ−1. This
ensures that we return at most one node per level (we compute each single-sided range separately).
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At the end of the protocol, the client receives log𝑛 values for each of the single-sided ranges, which
the client can then use to recover the covering set for the intersection of the two ranges.
High-throughput appends. Because the leaves are ordered by time, appends are fairly straight-
forward. Nothing about the append is unpredictable or secret except for the value that the client is
appending, and so the server simply sends the path from the root to the right-most leaf node (the
tree will populate leaves moving to the right). The client uses these nodes to compute a path that
incorporates the new value being appended at the internal node and aggregates and sends this path
(secret-shared) to the servers. The servers use this path to update the tree to incorporate the new
node. To keep the tree balanced, the servers can periodically rotate the tree (if all servers rotate
the tree in the same way, the RSS sharings remain correct). Because access control is only at the
table level for WaldoTree, clients can view the aggregates in the upper levels of the tree without a
problem. Like WaldoTable, WaldoTree does not support privates updates to existing records (this
functionality would require privately writing an arbitrary path in the tree).

One way to reduce the append overhead for resource-constrained data producers is to batch
appends: the client retrieves the path along the right edge of the tree and then sends back the nodes
for paths for the new values in one round trip. This greatly reduces not only round trips, but also
total bandwidth because (1) only one path needs to be fetched, and (2) many of the new paths sent to
the servers overlap.
Malicious security. Malicious security for our shared aggregate tree is straightforward. As in the
shared one-hot index, we use information-theoretic MACs for queries by encoding them directly
into the FSS key, as initially proposed by Boyle et al. [75]. For our appends, we need to ensure that
the servers send the correct version of the right-most path in the tree. Here, we can rely on the fact
that at most one server is malicious and each secret share is stored at two servers: if a pair of shares
don’t match, the client knows a server is corrupt.
Summarizing old data. We need to ensure that the tree size (and query execution time) stays
bounded as the number of records increases. Our approach is inspired by Timecrypt [83]. When our
tree reaches a maximum size, we rotate the tree, causing the left-most leaves to exceed the maximum
depth. We then prune these leaves, leaving previously internal nodes as leaf nodes to summarize
the pruned data. The client can no longer make fine-grained queries over old data, but can make
coarse-grained queries that include this old data. Summarizing older data is common in modern
time-series databases [262, 484].
Aggregation functions. The aggregation function does not need to be based on addition and can
include min, max, top-k, bottom-k, histograms, and quantiles (some functions, like top-k, require
storing multiple aggregate values per node). Our shared aggregate tree can also in principle support
sketch algorithms [356], as well as aggregation-based encodings that allow private training of linear
models [121, 279]. Notably, aggregation functions with the same output size will require the same
amount of server execution time.
Final protocol. We present the final protocol for the client in Figure 6 and the server in Figure 7.
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client.WaldoTree.Query𝑆1,𝑆2,𝑆3 (0, 𝑡)
1: 𝛼←R Z2𝑘+𝑠

2: for 𝑖 = 1 to 3 do
3: 𝐾 𝑖1,𝐾

𝑖
2← Gen< (1𝜆, 𝑡,1)

4: 𝐾′𝑖1 ,𝐾
′𝑖
2 ← Gen< (1𝜆, 𝑡, 𝛼)

5: end for
6: K1← 𝐾1

1 ,𝐾
2
1 and K′1← 𝐾′11 ,𝐾

′2
1

7: K2← 𝐾2
2 ,𝐾

3
1 and K′2← 𝐾′22 ,𝐾

′3
1

8: K3← 𝐾3
2 ,𝐾

1
2 and K′3← 𝐾′32 ,𝐾

′1
2

9: for 𝑖 = 1 to 3 do
10: {𝑥 ( 𝑗)𝑖 }

log𝑛
𝑗=0 , {𝜎

( 𝑗)
𝑖 }

log𝑛
𝑗=0 ← 𝑆𝑖 .WaldoTree.Query(K𝑖,K′𝑖)

11: end for
12: for 𝑗 = 0 to log𝑛 do
13: 𝑥 ( 𝑗)←∑3

𝑖=1 𝑥
( 𝑗)
𝑖 ,𝜎 ( 𝑗)←∑3

𝑖=1𝜎
( 𝑗)
𝑖

14: if 𝛼 · 𝑥 ( 𝑗) ≠ 𝜎 ( 𝑗) then
15: Output ⊥ and broadcast ⊥ to all servers
16: end if
17: end for
18: Output 𝑥← Agg({𝑥 (0) , . . . , 𝑥 (log𝑛)})

Figure 6: Client WaldoTree.Query algorithm. 𝑛 is the number of leaves in the current shared aggregate tree.
Here the aggregate is computed over time range 0 to 𝑡. General case follows similarly by using double the
keys and servers returning 2log𝑛+1 values. Aggregation function Agg is defined by clients during call to Init
procedure; it takes in a list of values and outputs their aggregate. {𝑥𝑖}𝑏𝑖=𝑎 denotes {𝑥𝑎, . . . , 𝑥𝑏}.

3.6 Implementation
We implemented Waldo in ∼6,200 lines of C/C++ code (excluding tests and benchmarking
infrastructure). We used the libPSI [5] DPF implementation (with some minor modifications), the
cryptoTools library [3] for cryptographic primitives, and gRPC for communication. We configured
Waldo to aggregate values of up to size 232 and set our statistical security parameter 𝑠 = 80 and
computational security parameter 𝜆 = 128. This allows us to use a 128-bit ring, which makes the
additions and multiplications used to evaluate predicates very fast. Our implementation is available
at https://github.com/ucbrise/waldo.
EvalAll for DCFs. We extend the state-of-the-art DCF construction from Boyle et al. [75] to perform
full domain evaluations more efficiently. Waldo’s protocols rely on evaluating FSS key 𝐾 on each
point in the domain of size 2ℓ, referred to as EvalAll(𝐾) [78]. Boyle et al. [78] proposed an EvalAll
optimization for DPFs that reduces pseudorandom generator (PRG) invocations by a factor of ℓ.
We apply this same insight to DCFs, providing the first EvalAll implementation for DCFs that we
are aware of. This optimization improves single-threaded execution time for DCF EvalAll by 7.5×

https://github.com/ucbrise/waldo
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server.WaldoTree.Query𝑆1,𝑆2,𝑆3 (K,K′)
1: Parse K as 𝐾1,𝐾2 and K′ as 𝐾′1,𝐾

′
2

2: Initialize empty trees 𝑃,𝑄 with 𝑛 leaves each.
3: {𝑥0, . . . , 𝑥log𝑛} ← {0, . . . ,0}, {𝜎0, . . . ,𝜎log𝑛} ← {0 . . . ,0}
4: for 𝑖 ∈ 𝑛 do
5: 𝑃(𝑖)log𝑛←

(
Eval(𝐾1, 𝑖),Eval(𝐾2, 𝑖)

)
6: 𝑄 (𝑖)log𝑛←

(
Eval(𝐾′1, 𝑖),Eval(𝐾′2, 𝑖)

)
7: end for
8: for 𝑑 ∈ {log𝑛−1, . . . ,0} do
9: for 𝑖 ∈ {1, . . . ,2𝑑} do

10: 𝑃(𝑖)𝑑 ← 𝑃(𝑖)𝑑 .right and 𝑄 (𝑖)𝑑 ←𝑄 (𝑖)𝑑 .right
11: end for
12: end for
13: for 𝑑 ∈ {0, . . . , log𝑛} do
14: for 𝑖 ∈ {1, . . . ,2𝑑} do
15: 𝑥𝑑← 𝑥𝑑 +𝑃(𝑖)𝑑 ⊙

(
𝑇.first(𝑖)𝑑 ,𝑇 .second

(𝑖)
𝑑

)
16: 𝜎𝑑← 𝜎𝑑 +𝑄 (𝑖)𝑑 ⊙

(
𝑇.first(𝑖)𝑑 ,𝑇 .second

(𝑖)
𝑑

)
17: end for
18: end for
19: for 𝑑 ∈ {0, . . . , log𝑛−1} do
20: for 𝑖 ∈ {1, . . . ,2𝑑} do
21: 𝑐← 𝑇.first(𝑖)𝑑 .left+𝑇.first

(𝑖)
𝑑 .right

22: 𝑐← 𝑇.second(𝑖)𝑑 .left+𝑇.second
(𝑖)
𝑑 .right

23: 𝑥𝑑+1← 𝑥𝑑+1−𝑃(𝑖)𝑑 ⊙ (𝑐, 𝑐)
24: 𝜎𝑑+1← 𝜎𝑑+1−𝑄 (𝑖)𝑑 ⊙ (𝑐, 𝑐)
25: end for
26: end for
27: Output ({𝑥0, . . . , 𝑥log𝑛}, {𝜎0, . . . ,𝜎log𝑛})

Figure 7: Server WaldoTree.Query algorithm. 𝑛 is the number of leaves, ID ∈ {1,2,3} is the server id. 𝑇
denotes the shared aggregate tree corresponding to WaldoTree object. 𝑇 (𝑖)𝑑 denotes the 𝑖th node on 𝑑th
level of the tree and 𝑖.left, 𝑖.right access the value stored on the left and right child of a node 𝑖, respectively.
(𝑎, 𝑏) ⊙ (𝑐, 𝑑) = 𝑎𝑐+ 𝑏𝑑. Here the aggregate is computed over time range 0 to 𝑡, and so on line 10, the right
child’s activation status is used at parent. General case follows similarly by using twice as many keys and
returning 2log𝑛+1 values.

for ℓ = 20. Furthermore, our DCF implementation is only 60−70% more expensive than libPSI’s
implementation of DPFs.
Parallelism. We parallelize most of the query computation in WaldoTable and WaldoTree across
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32 threads. Waldo achieves parallelism both within and across the evaluation of predicates. We can
additionally parallelize the PRF evaluations for share conversion and malicious security.

3.7 Evaluation
In evaluating Waldo, we ask the following questions:

1. How does the performance of Waldo compare to that of an ORAM and generic MPC baseline
in terms of latency (Section 3.7.3, Section 3.7.4), throughput (Section 3.7.5), bandwidth
(Section 3.7.6), and monetary cost (Section 3.7.7)?

2. How do the individual components of Waldo perform, and how are they affected by different
parameter settings (Section 3.7.3, Section 3.7.4)?

Experimental setup. We evaluate Waldo on AWS EC2 instances. For the servers, we use r5n.16xlarge
instances with 32 physical cores and 512 GB memory running on a 3.1 GHz Intel Xeon scalable
processor. For the client, we use an r4.2xlarge instance with 4 physical cores and 61 GB memory
running on a 2.3 GHz Intel Xeon E5-2686 v4 processor. To model the cost of transferring data
between trust domains where the servers are geographically close but located in different data
centers, server machines have a network bandwidth of 3 Gbps (max bandwidth to an external IP
address in Google Cloud [115]) with 20ms RTT (the ping time we measured between AWS regions
us-west-1 and us-west-2).

3.7.1 Baselines
We now describe the two baselines that we compare Waldo to: a multidimensional tree in ORAM and
our functionality executed in a generic MPC framework. We do not compare against Timecrypt [83]
or Zeph [84] because they do not support multi-predicate queries and provide less security (only
semihonest security, and they leak the query).
Oblivious multidimensional tree. Prior work shows how to achieve obliviousness for multidimen-
sional queries by layering oblivious tools like private information retrieval with a multidimensional
tree [199, 287]. Because we need to support both searches and updates, we store a multidimensional
tree in ORAM. We use an R-tree [237] because it handles updates well (k-d trees cannot be easily
rebalanced [58]). However, R-trees are poorly suited to oblivious exact query execution (prior work
uses them for approximate queries). While the average-case search complexity is logarithmic in
tree size, the worst-case search complexity is linear. Our baseline does not pad the number of
node accesses to the worst-case (this is impractical), and so its security guarantees are weaker than
Waldo’s. An interesting direction for future work would be to design a multidimensional tree for
time-series data compatible with ORAM.

We implement our oblivious R-tree by taking an existing R-tree implementation [237] and
replacing reads and writes to nodes in local memory with ORAM accesses. We use SEAL-ORAM’s
implementation of PathORAM [7], which relies on MongoDB for block storage. Because Waldo
uses an in-memory index, we configure MongoDB to use a memory-mapped file. A full-fledged
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implementation would use techniques from oblivious data structures (ODS) [512] to encode data
about the position map in the R-tree itself to minimize client local storage. For simplicity, we store
the entire position map locally, as using ODS techniques would likely only add overhead (at the bare
minimum, we would need to keep pointers in ORAM blocks). We use random data and random
predicate values for our ORAM baseline, which adds a small amount of noise to our experiments
(in contrast, Waldo and our MP-SPDZ baseline are fully oblivious, and so their performance is not
affected by the data or query values). Point and range queries are executed in the same way, and we
set tree dimension to the number of query predicates (for WaldoTable, the dimension is 1).
MP-SPDZ. For the MPC baseline, we implement Waldo’s functionality in MP-SPDZ [6, 285], a
state-of-the-art framework for general-purpose MPC. For WaldoTable queries, servers first check
which records match the predicate(s), select the values for the matching records, and then aggregate.
For WaldoTree queries, to give our baseline the advantage, we assume that the client encodes the
query as indices of nodes in the covering set (padded to the worst-case size). Servers securely select
nodes from secret shares of these indices and then aggregate by depth.

MP-SPDZ offers implementations of many different 3-party honest-majority protocols. We
tested each and found that the post-processing variant of the RSS-based maliciously secure protocol
from Eerikson et al. [164] was best for our setting. We used the library’s mixed-mode circuit support,
as well as loop decorators to parallelize computation and reduce the number of round trips. Values
are aggregated modulo 232 with 80-bit statistical security. All comparisons and equality checks are
done only over ℓ bits for feature size of 2ℓ, as in Waldo. For simplicity, we only implement the server
processing and so only report server execution time (the client only has to submit a query).

3.7.2 Queries for real-world applications
We measure the performance of WaldoTable by evaluating sum queries with conjunctions of 2, 4,
and 8 point and range predicates. A count query is a slightly cheaper version of the sum query (does
not include a final multiplication by the values being summed), and mean, standard deviation, and
variance are simply combinations of sum and count queries. For simplicity, we measure the case
where all predicates are either point or range predicates, although real queries would likely contain a
mix. Because Waldo is oblivious, performance does not depend on the query values or data contents.
However, to make our results more concrete, we describe real-world applications where doctors need
to examine relationships between measurements that correspond to two, four, and eight predicates.
Throughout our evaluation, we use feature size 28 as it supports the applications we describe below
(to the best of our knowledge as we are not medical experts).

Queries with two predicates can be used to compute the number of times an asthma patient’s
peak exipatory flow rate exceeded some patient-specific threshold in the last week [419]. Queries
with four predicates can help identify at-risk pregnancies: doctors need to check for elevated
blood pressure (systolic < 120 AND diastolic < 80) and sudden weight change over a time
period [345]. Queries with eight predicates are useful for predicting heart failure decompensation:
the success of the HeartLogic index has shown that the relationship between the first and third heart
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sounds, intrathoracic impedance, respiration rate, the ratio of respiration rate to tidal volume, heart
rate, and patient activity over a time period can help identify at-risk heart failure patients [444].

WaldoTree queries can be used to compute a patient’s maximum or minimum heart rate (for
patients with heart conditions) or maximum or minimum glucose levels (for diabetic patients) over
some time period. The execution time is independent of the time interval and aggregation function
(we do not measure the time for the client to aggregate nodes in the covering set, as this should be
very fast).

3.7.3 Latency: WaldoTable

Understanding Waldo’s performance. In Table 8, we show WaldoTable query latency for different
numbers of records 𝑁 and different numbers of predicates 𝑃. As expected in Waldo, after a certain
point (𝑁 = 216), the latency grows linearly with 𝑁 and 𝑃, as both computation and communication
costs are 𝑂 (𝑁𝑃) (fixed ℓ). Range and point predicates perform very similarly (small performance
differences are due to implementation differences). For larger values of 𝑁 , the overhead of malicious
security is 6−7× that of semihonest security: we can use 32-bit integers rather than 128-bit integers
if we only need semihonest security (4× saving), and we don’t need MACs (2× saving).

Figure 9 illustrates the breakdown in query execution time for 210 and 220 records with different
numbers of predicates (𝑃). The majority of the overhead is due to network latency, particularly for
smaller 𝑁 and larger 𝑃. This is due to the fact that the number of Waldo round-trips is linear in
𝑃. For larger numbers of records, the computation and the bandwidth increase, but the number of
round trips does not, and so the ratio of compute time to network time increases. Note that the PRF
evaluation time (for re-sharing after multiplications and random linear combinations of MACs)
could be moved into a separate preprocessing step to reduce online latency.
Comparison to baselines. In Figure 10a, we show how WaldoTable’s query latency compares
to that of the two baselines for different numbers of records 𝑁 with 8 predicates. The latency of
WaldoTable and MP-SPDZ increase at roughly the same rate, as expected, as both incur costs linear
in 𝑁 . Although they grow at similar rates, WaldoTable remains substantially faster than MP-SPDZ,
7.8× for 210 records for both point and range queries, and for 220 records, 2.5× for point queries
and 3.9× for range queries (range predicates are more expensive to evaluate in MP-SPDZ as they
require two comparisons rather than one). On a slightly slower 1Gbps connection between the
servers, Waldo performs 7.8× better than MP-SPDZ for 220 records with 8 range predicates. On
the other hand, the ORAM baseline latency starts high but grows slowly, as expected due to its
polylogarithmic complexity: for 210 records, Waldo is approximately 37× faster, and for 220 records,
approximately 1.4× faster. Recall that our ORAM baseline does not pad to the maximum number of
accesses and so has an advantage over Waldo.
Parallelism across servers. WaldoTable is parallelizable not just across cores, but also across
servers without introducing new trust domains. We can split each “logical” server into 𝑛 “physical”
servers. The client divides its index into 𝑛 equally-sized sub-indexes and delegates a sub-index
to a triple of servers split across trust domains. The client can run its query on all 𝑛 sub-indexes
and locally aggregate the results. Because each triple processes its query chunk independently,
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WaldoTable latency (s)

– Point – – Range –
log𝑁 𝑃 = 2 𝑃 = 4 𝑃 = 8 𝑃 = 2 𝑃 = 4 𝑃 = 8

M
al

ici
ou

s
10 0.08 0.13 0.23 0.07 0.12 0.22
12 0.09 0.14 0.24 0.08 0.13 0.24
14 0.11 0.18 0.31 0.10 0.17 0.32
16 0.22 0.40 0.79 0.21 0.39 0.77
18 0.78 1.53 3.11 0.80 1.56 3.03
20 3.10 6.00 11.94 3.03 6.18 11.82

Se
m

ih
on

es
t 10 0.07 0.12 0.21 0.07 0.11 0.21

12 0.08 0.12 0.22 0.07 0.12 0.21
14 0.09 0.14 0.23 0.08 0.13 0.23
16 0.11 0.16 0.28 0.10 0.15 0.27
18 0.19 0.28 0.49 0.18 0.27 0.47
20 0.57 0.94 1.70 0.55 0.90 1.65

Table 8: WaldoTable query latency for 𝑃 predicates and 𝑁 records.
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Figure 9: Breakdown of WaldoTable query latency with different numbers of predicates (𝑃).
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Figure 10: WaldoTable query latency is for 8 predicates, and latency for point and range predicates is almost
identical.

parallelism is trivial. By using 12 servers instead of 3, we estimate that 8-predicate range queries
take 3.0s, whereas with 3 servers they take 11.82s.

3.7.4 Latency: WaldoTree

In Figure 10b, we show that WaldoTree queries are much faster than queries in our two baselines.
WaldoTree achieves an 8−20× improvement in query latency over MP-SPDZ, with the gap increasing
for larger 𝑁 . This gap is due to the fact that WaldoTree does not require server interaction, whereas
MP-SPDZ requires a substantial amount of communication for comparisons. WaldoTree achieves a
45× improvement over ORAM for 210 records and a 17× improvement for 220 records. Again, this
improvement is due to the fact that WaldoTree does not require any network overhead to execute the
query whereas the client must perform many ORAM accesses to traverse the tree, resulting in many
round trips.

3.7.5 Throughput
In Figure 11a and Figure 11b, we compare Waldo’s throughput to that of our ORAM baseline for a
90% append, 10% query workload (time-series workloads are append-heavy, see Section 3.2.1).
Waldo’s throughput is orders of magnitude higher: with 210 records, WaldoTable’s throughput is
roughly 303× that of ORAM, and with 220 records, roughly 22× that of ORAM. For WaldoTree,
this gap is even more pronounced: with 210 records, the throughput difference is approximately
488×, and with 220 records, approximately 431×. The throughput gap is much larger than the latency
gap due to the differing cost of updates. ORAM baseline updates require multiple ORAM accesses
for inserting into and potentially rebalancing the R-tree. In contrast, Waldo clients only send a
secret-shared one-hot vector to the three servers.
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Figure 11: WaldoTable is configured with 8 predicates and has similar throughput for point and range
predicates. ORAM throughput fluctuates due to the fact that it is not fully oblivious (doesn’t make the max
number of accesses) and we randomly sample the data and queries.

We don’t report MP-SPDZ throughput numbers because our baseline only uses the MP-SPDZ
framework for query execution and we do not implement updates. However, it is easy to compute a
reasonable upper bound on MP-SPDZ’s throughput. Appends in a system with MP-SPDZ would
only require sending a small amount of data to each server, and so we can use 10ms as a lower bound
for append latency (20ms round-trip time). From this, we can upper-bound MP-SPDZ’s throughput
for 90% appends and 10% searches: for WaldoTable functionality, with 210 records, MP-SPDZ can
achieve at most 5 ops/sec for point and range predicates (Waldo’s throughput is 3.7× larger) and
with 220 records, 0.33 ops/sec for point predicates (Waldo’s is 2× larger) and 0.22 ops/sec for range
predicates (3× larger). For WaldoTree functionality, with 210 records, MP-SPDZ can reach at most
5.7 ops/sec (Waldo’s throughput is 7× larger), and with 220 records, at most 0.5 ops/sec (Waldo’s is
19× larger).

3.7.6 Communication
Server communication. In Figure 12, we compare the bandwidth between servers for Waldo and
MP-SPDZ (ORAM is single-server). MP-SPDZ uses 80−82×more server bandwidth for 210 records,
and 5.8−8.9× more for 220 records. This is due to the fact that MP-SPDZ uses communication to
perform comparisons to evaluate predicates, whereas Waldo only uses compute for these evaluations.
The MP-SPDZ bandwidth for 210 records is inflated due to how MP-SPDZ batches comparisons;
bandwidth grows linearly starting at 214 records.
Client communication. In Figure 13a and Figure 13b, we show how the client bandwidth of Waldo
compares to that of our ORAM baseline. Again, we do not include MP-SPDZ here because we did
not implement a client, although the client bandwidth cost would likely be small. While Waldo is
in the range of tens of kilobytes, our ORAM baseline is clearly in the range of megabytes (even
without the ORAM baseline padding the number of accesses to match Waldo’s security). In Waldo,
the client only has to send 4 FSS keys to each server for every predicate for a WaldoTable query, and
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Figure 12: Overhead and cost of total bandwidth between servers for a WaldoTable query with 8 predicates.
We use the minimum AWS egress bandwidth cost of $0.05/GB [38] to compute the cost (bandwidth pricing is
based on total egress bandwidth per month).
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Figure 13: WaldoTable is configured with 210 records and has almost identical bandwidth for point and range
predicates.

8 FSS keys total for a WaldoTree query. In contrast, the ORAM baseline requires many roundtrips,
performing multiple ORAM accesses for queries.

3.7.7 System cost
Server bandwidth has serious implications for system cost. Clouds typically charge steep prices for
transferring data out of the cloud to incentivize customers to keep their data in the cloud. This cost is
challenging for a distributed trust setting where servers routinely need to send information between
clouds. For example, AWS charges $0.09/GB if communication is less than 10TB each month and
$0.05/GB if communication is greater than 150TB per month [38]. Executing a query with 8 range
predicates for 220 records with MP-SPDZ costs $1.34-$2.41 (depending on communication cost). In
contrast, a Waldo query with 8 predicates only costs $0.15-$0.27 (depending on communication
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cost) because Waldo uses much less communication. Each server (r5n.16xlarge instance) only costs
$4.77 per hour.

3.8 Limitations and future work
Small feature sizes are critical for good performance in WaldoTable. In Section 3.4.1, we discuss
techniques for encoding values in a large domain using a small feature size. While Waldo supports
richer functionality than prior work [83,84], it does not support all features provided by some modern
plaintext time-series databases (e.g. retrieving individual records, sorts, group by, or joins [30,484]).
Also, Zeph [84] supports differential privacy [163] but Waldo does not because it provides malicious
security: the servers would need to add noise in a verifiably correct way and without causing
MAC verification to fail. Supporting more expressive queries and providing differential privacy are
valuable directions for future work. Finally, our ORAM baseline has weaker security guarantees
than Waldo (recall that we do not pad to the maximum number of accesses), and so our baseline
has a performance advantage. We expect that at some point for a very large number of records,
the ORAM baseline will outperform Waldo because of its asymptotic complexity, but because the
ORAM baseline has a performance advantage, it is not clear exactly where an ORAM solution of
comparable security overtakes Waldo.

3.9 Related work
We first describe related work before the time of the original publication of this project [142]
(Section 3.9.1), and then we summarize related work after publication (Section 3.9.2).

3.9.1 Related work at the time of publication
Private time series queries. Timecrypt [83] and Zeph [84] both support queries over encrypted
time-series data. Unlike Waldo, they do not support filtering and leak the queried time interval. Also
unlike Waldo, both systems also focus on allowing a third-party service fine-grained access to data,
with Zeph considering aggregation across users. Other works explore similarity range queries over
encrypted time-series data [537] and queries over encrypted and compressed time-series data [247],
but these use specialized encryption schemes that have leakage that can be leveraged in statistical
attacks.
FSS for private queries and secure computation. Splinter [508] uses FSS to allow users to
make a variety of private queries, but unlike Waldo, the data is public and the servers are assumed
to be semihonest. DORY [140] uses DPFs to enable clients to privately search for keywords in
encrypted files without leaking search access patterns. DORY’s queries are much simpler than
Waldo’s, and while DORY defends against malicious adversaries, its techniques don’t easily extend
to our setting because there isn’t a clear way to combine its MAC tags for different predicates in
the same query. Durasift [174] uses 𝑛 servers to support at most 𝑛− 3 conjunctions of arbitrary
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boolean expressions of keywords using private information retrieval, implemented with a DPF.
Unlike Waldo, Durasift operates in the semihonest setting, can only combine a limited number
of predicates, does not support range predicates, and operates on lists of documents rather than
aggregates. Floram [161] and Bunn et al. [82] use DPFs for private reading and writing in the
distributed ORAM setting; these works only need to provide a block storage abstraction, whereas
Waldo must evaluate predicates and combine filters. Boyle et al. first explored how FSS can be used
to implement secure computation [79], with subsequent work improving on these constructions
providing malicious security [75].
Encrypted databases. Encrypted databases [150, 188, 396, 398, 407, 413, 493] execute expressive
queries on encrypted data, but often achieve good performance by permitting some leakage. This
leakage can be exploited in statistical attacks to learn the query and database contents [94, 223,
225, 230, 269, 284, 292, 293, 305, 393, 410, 534]. SisoSPIR [266] improves performance and reduce
leakages by splitting trust, but only shows how to traverse a B-tree obliviously, which is not enough
to compute multi-predicate aggregates. Some encrypted databases achieve good performance by
using secure hardware [168,187,420,503,536]. These solutions require additional trust assumptions
due to known side-channel attacks. Another set of encrypted databases are tailored to the IoT setting,
but these systems do not provide the same security and functionality as Waldo: they use encryption
schemes that leak information about the database contents, reveal the query to the server, or do not
support filtering [240, 451, 452, 522].
Collaborative analytics. Collaborative analytics, a related line of work, allows mutually distrusting
parties to run analytics queries over their combined data. Although the setting is different than ours,
like Waldo, these works split trust across parties and leverage MPC techniques to run database
queries. Senate [408], Secrecy [324], SMCQL [47], and Conclave [504] support more complex
analytics queries than Waldo, although they use more heavyweight tools to do so.
Secure Aggregation. Prior work also explores aggregating data across many users without a
single trusted server. Some of these systems split trust across multiple servers using secret
sharing [20, 121, 135, 165, 301, 455]. Like Waldo, they support aggregation on private data, but
unlike Waldo, they do not support private queries.

3.9.2 Subsequent related work
We now describe some particularly relevant related work since the time of publication. Vizard uses
two non-colluding servers and distributed point functions to support analytics queries while hiding
access patterns [86]. TVA uses techniques from multi-party computation to support time-series
analytics, like Waldo, but uses four servers to support more advanced filtering and window selection,
as well as out-of-order records [173]. HEDA uses fully homomorphic encryption specifically for
aggregation queries in an encrypted database [433]. HE3DB is an encrypted database that uses
fully homomorphic encryption to support SQL queries, including operators like “GROUP BY” and
“JOIN” [61]. CoVault uses techniques from multi-party computation with secure hardware in order
to run private analytics queries on data from many users [147]. TimeClave executes time-series
analytics queries inside Intel SGX and hides enclave access patterns via a new oblivious RAM
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construction [41]. Solmssen also showed how to use function secret sharing for time-series queries,
but his work used two semi-honest servers and supported simpler queries [461]. Orca uses function
secret sharing like Waldo, but for the task of secure training and inference in conjunction with
GPUs [271]. We refer the reader to Section 2.8.2 for related work on bootstrapping distributed-trust
systems.

3.10 Security analysis
We use the simulation paradigm [326] of multiparty computation (MPC) to prove Waldo’s security
guarantees, similarly to how we proved security for DORY in Section 2.9. We consider a probabilistic
polynomial time (PPT) adversary A who statically corrupts at most one of the three servers. Under
A’s control, the corrupted server is allowed to be malicious, meaning that it can deviate arbitrarily
from the protocol specification. To keep the proof description simple, we first assume that client
behaves honestly. At the end of this section, we extend to the case of malicious clients as well as
collusion between client and a malicious server.

Proving security under the simulation paradigm requires defining two worlds: the real world
where the actual protocol is run by honest parties, and an ideal world where an ideal functionality F
takes inputs from the parties and directly outputs the result to the concerned party. A controls the
behavior of the corrupted server as well as observes its view during the protocol run. To make the
ideal world view of A indistinguishable from the real world, we need to define a simulator S whose
job is to “simulate" messages to A that are similar to what the client and honest servers send to
the corrupted server in the real world. However, S can only interact with the corrupted server and
F . If the ideal functionality F correctly models the leakage that our protocols claim to have and
if A cannot distinguish between the two worlds, then we deem our protocols as being secure. To
account for the case where an adversary is able to influence the operations issued by clients, and see
their final result, we allow A to freely choose the queries issued by clients and see the result. For
simplicity, we assume that predicates are only connected via conjunctions (see Section 3.4.2 for a
discussion of negations, which are necessary to support disjunctions).
Ideal Functionality F . We first define our stateful ideal functionality F which stores the current
time series database and responds to requests in the following way:

1. Init(1𝜆,1𝑠, schema): F runs initialization given security parameters 𝜆, 𝑠 and a schema layout
parameter schema, where for WaldoTable, schema = (𝑁,𝐹,2ℓ1 , . . . ,2ℓ𝐹 ) with 𝑁 number of
records in the window, 𝐹 is the number of features and ℓ𝑖 the feature size for 𝑖th feature, and
for WaldoTree, schema = (2ℓ, type) with ℓ being the feature size and type is a user-defined
aggregation function.

2. WaldoTable.Append(𝑡, 𝑣1, . . . , 𝑣𝐹): F updates the current index to store record with timestamp
𝑡 and value 𝑣1 ∈ Z2ℓ1 , . . . , 𝑣𝐹 ∈ Z2ℓ𝐹 .

3. WaldoTree.Append(𝑡, 𝑣): F updates the tree index with the new entry for timestamp 𝑡 and value
𝑣 ∈ Z2ℓ .
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4. WaldoTable.Query(𝑃1∧ · · · ∧𝑃𝑛, feature, type) → 𝑥: F aggregates by type for feature over the
boolean formula composed of predicates 𝑃1, . . . , 𝑃𝑛 and outputs the result 𝑥 only to the client.

5. WaldoTree.Query(𝑡1, 𝑡2) → 𝑥: F aggregates by type over time interval (𝑡1, 𝑡2). It finally outputs
the result 𝑥 only to the client.

We allow F to leak Leak(F) = (schema, struct𝑄), where query structure struct𝑄 is defined
as: (1) (Init,𝜆, 𝑠) for Init, (2) (Append, 𝑡) for Append, (3) (Query, 𝑛, feature, type,kind,fid) for
WaldoTable.Query with type denoting the aggregation function (e.g. sum, count), kind denoting
point or range predicates, and fid denoting a vector of feature ids corresponding to each predicate,
and (4) (Query) for WaldoTree.Query.

Definition 4. Let Π be a protocol for an encrypted time-series database which takes as input requests
from clients, say 𝑄. The functionality F as defined above models the functionality provided by Π
as a trusted party. Let A be an adversary who observes the view of a statically corrupted server
during the protocol run and gets the final client output. Let ViewReal

Π(𝑄) denote A’s view in the real
world experiment. In the ideal world, a simulator S generates a simulated view ViewIdeal

S ,Leak(F (𝑄))
to A given only the leakage of F . Then, ∀ non-uniform algorithms A PPT in 𝜆, 𝑠, where 𝜆, 𝑠 are
computational and statistical security parameters, respectively, ∃ a PPT algorithm S s.t.

Pr[𝑄←A(1𝜆,1𝑠);𝑏←R {0,1};A(View𝑏,𝑄) = 𝑏]
≤ 1

2
+negl(𝜆) +negl(𝑠)

where View0 = ViewReal
Π(𝑄) ,View1 = ViewIdeal

S ,Leak(F (𝑄))

Theorem 2. Using Definition 4 (Section 3.10), Waldo securely evaluates (with abort) the ideal
functionality F (Section 3.10) when instantiated with secure distributed point and comparison
functions and a pseudo-random function, all with a computational security parameter of 𝜆.

Proof. We begin by first providing a construction for our simulator S for the ideal world. We work
in the hybrid model [326], where invocations of sub-protocols can be replaced with that of the
corresponding functionalities, as long as the sub-protocol is proven to be secure. We will operate
in the FCorrelated-hybrid model, where we assume the existence of a secure protocol ΠCorrelated
(described in prior works [31, 479]), which realizes the ideal functionality FCorrelated that generates
3-party RSS shares of the value 0 (used in Reshare) or a random value (used in RandCoeff).
Simulator Construction. Without loss of generality, let 𝑆1 be the corrupted party. Depending on
the current request 𝑄 and given access to Leak(F (𝑄)), S does the following:

1. On receiving (Init, schema,𝜆, 𝑠) from F : S stores it locally and forwards it to A (who we
assumed corrupts 𝑆1).

2. On receiving (Append, 𝑡) from F : S samples RSS shares of a randomly sampled record
satisfying the structure dictated by the schema and appends them to the local database. S then
forwards 𝑆1’s share to A.
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3. On receiving (Query) from F : S samples a random query 𝑄 satisfying the structure dictated by
schema and generates corresponding DCF keys. S then sends the keys for 𝑆1 to A. At the end,
S receives the final output shares of 𝑆1 from A. If received shares aren’t exactly as expected (S
has the RSS shares and FSS keys of 𝑆1 to check this), then output ⊥ to A.

4. On receiving (Query, 𝑛, feature, type,kind,fid) from F : S samples a random query 𝑄 satisfying
the structure (schema, 𝑛, feature, type,kind,fid). S generates FSS keys (DPF keys if kind = 0
and DCF otherwise) for 𝑄 and stores them locally. It then sends the keys for 𝑆1 to A. Given
access to FCorrelated, S follows the rest of the steps (for multiplication) emulating the actions
performed by 𝑆2, 𝑆3 in the real protocol. Since S has access to the FSS keys as well as all the
database shares, it can generate the expected versions of messages from A that it should see. If
any of the messages deviate, S sets an abort flag and continues. At the end, S receives the final
output share of 𝑆1 from A. If the abort flag is set, then output ⊥ to A.

We now prove that the view generated by S in the ideal world is indistinguishable from the real
world for a computationally (in 𝜆, 𝑠) bounded A through a sequence of hybrids H0, . . . ,H5.
Hybrid 0. We start with the ideal world as our initial hybrid.
Hybrid 1. Simulator S replaces FSS keys for the random query𝑄 with the outputs of FSS simulators
SDPF and SDCF [75, 79]. Since S has access to the database shares of all the three servers and the
simulated FSS keys, it can check if the messages received from A are exactly as expected or not.
From the security of FSS schemes for DPF and DCF, it follows that A’s advantage in distinguishing
H0 from H1 is negl(𝜆).
Hybrid 2. We let our ideal functionality F forward the real queries WaldoTable.Query(𝑃1∧ · · · ∧
𝑃𝑛, feature, type), WaldoTree.Query(𝑡1, 𝑡2) to S . Recall that we allow A to specify these queries. S
generates FSS keys for the real query and replaces the simulated keys from H1 with the real ones.
From the security of aforementioned FSS schemes, it holds that A’s advantage in distinguishing H1
from H2 remains negl(𝜆).
Hybrid 3. We now allowF to also forward the real append queriesWaldoTable.Append(𝑡, 𝑣1, . . . , 𝑣𝐹)
and WaldoTree.Append(𝑡, 𝑣) to S. S generates and distributes RSS shares of the real incoming
record and uses that instead of RSS shares for randomly sampled record. Although A specifies the
append query and knows the incoming record’s value, it only sees RSS shares of at most one server.
These limited shares are independent of the actual record values. Therefore, A’s view in H2 and H3
is identical.
Hybrid 4. This hybrid corresponds to the real world with calls to FCorrelated. The only difference
in H4 over H3 is the reliance on MACs to detect malicious behavior. As mentioned earlier, we
allow the adversary to observe the client’s final output for every query that it issues. A’s view is
distinguishable from H3 when the client’s output is erroneous and it still doesn’t abort. In Lemma 5,
we prove that the probability of A cheating and not getting caught during MAC verification step is
negl(𝑠), for statistical security parameter 𝑠. Thus the distinguishing advantage of A between H3 and
H4 is negl(𝑠).
Hybrid 5. In our final hybrid, we replace the calls to FCorrelated with the PRF calls to realize
ΠCorrelated for Reshare and RandCoeff. From the security of ΠCorrelated [31] (relies on PRF security),



CHAPTER 3. WALDO: A PRIVATE TIME-SERIES DATABASE 84

we have that A cannot tell H4 and H5 apart with probability any better than negl(𝜆) over a random
guess.

This concludes our proof that given views of either the real or ideal world, A cannot correctly
guess which view it is, except with probability ≤ 1

2 +negl(𝑠) +negl(𝜆). □

Lemma 5. In our proposed protocols, a cheating server is caught by the client during MAC
verification step with probability 1− negl(𝑠), where 𝑠 = 𝑠 − log(𝑠 + 1) is the statistical security
parameter.

Proof. Any locally introduced error cascades down in the subsequent computation across all servers
due to exchange of malformed messages from the adversary. This can be modeled as an equivalent
additive error of adversary’s choosing in the protocol messages it sends. In particular, the only
time servers communicate with each other is during Reshare, and any error introduced by A at
this point, translates to the same error in the RSS shares that are next established. We formalize
this using a non-uniform PPT algorithm (𝑒1, 𝑗 , . . . , 𝑒𝑁, 𝑗 ) ← ChooseError( 𝑗 , 𝑡), where 𝑗 denotes the
communication round in the protocol and 𝑡 is the current state available to A. 𝑡 includes all the
information that A has about the distribution of secrets, initial protocol state as well as the transcript
so far.

Our MAC check is: 𝛼 ·∑𝑖, 𝑗 𝜒𝑖, 𝑗𝑥𝑖, 𝑗
?
=
∑
𝑖, 𝑗 𝜒𝑖, 𝑗𝜎𝑖, 𝑗 , where 𝜒𝑖, 𝑗 are random coefficients sampled

from Z2𝑘+𝑠 and 𝑥𝑖, 𝑗 (resp. 𝜎𝑖, 𝑗 ) are all messages (resp. their MACs) whose secret shares are exchanged
during 𝑗 th communication round in the protocol. No server knows the values 𝜒𝑖, 𝑗 . Given that
∃𝑖, 𝑗 such that 𝑒𝑖, 𝑗 ≠ 0 (otherwise, there is no tampering), then passing the MAC check requires:
𝛼 · (∑𝑖, 𝑗 𝜒𝑖, 𝑗 (𝑥𝑖, 𝑗 + 𝑒𝑖, 𝑗 )) −

∑
𝑖, 𝑗 𝜒𝑖, 𝑗𝜎𝑖, 𝑗 +Δ = 0, where Δ is the corrective error A needs for the check

to pass. It was shown in [126] that given 𝛼 is sampled uniformly from Z2𝑘+𝑠 , the probability of
passing the check 2−𝑠+log(𝑠+1) . □

Client and Server Collusion. In the case of an adversarial client, the only goal of collusion can be
to learn information about database entries that aren’t accessible to the client based on the set access
control policies. If the client tries to access databases outside its clearance, the two honest servers
will immediately abort the protocol before even sending their first protocol message. Given that
shares of the database with the remaining server (colluding with the client) are independent of the
actual contents of the database, and neither the client nor the server receive any message from the
two honest servers except an abort, it is straightforward to see that the case of a malicious client
is securely dealt with. Note that the case of a malicious non-colluding client is subsumed in this
preceding argument.

3.11 Conclusion
We presented Waldo, a private time-series database that operates in the malicious three-party
honest-majority setting. While prior work [83, 84] only supports time-based filtering and reveals
the queried time intervals, Waldo enables multi-predicate filtering while hiding the filter values
and search access patterns. Waldo contributes new techniques that build on top of function secret
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sharing to enable Waldo to evaluate predicates non-interactively. Our MPC baseline uses 9−82×
more bandwidth between servers than Waldo (for different numbers of records), and our ORAM
baseline uses 20−152× more bandwidth between the client and server(s) than Waldo (for different
numbers of predicates).
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Chapter 4

Snoopy: An oblivious, scalable object store

4.1 Introduction
Organizations increasingly outsource sensitive data to the cloud for better convenience, cost-efficiency
and availability [180, 300, 450]. Encryption cannot fully protect this data: how the user accesses
data (the “access pattern”) can leak sensitive information to the cloud [94, 150, 225, 269, 284, 291].
For example, the way in which a doctor accesses a medication database might reveal a patient’s
diagnosis.

Oblivious object stores allow clients to outsource data to a storage server without revealing
access patterns to the storage server. A rich line of work has shown how to build efficient oblivious
RAMs (ORAMs), which can be used to construct oblivious object stores [63, 97, 128, 206, 392, 432,
442, 471–473, 517]. In order to be practical for applications, oblivious storage must provide many of
the same properties as plaintext storage. Prior work has shown how to reduce latency [361,432,473],
scale to large data sizes via data parallelism [334], and improve request throughput [128, 442, 517].
Despite this progress, leveraging task parallelism to scale for high-throughput workloads remains an
open problem: existing oblivious storage systems do not scale.
Identifying the scalability bottleneck. Scalability bottlenecks are system components that must
perform computation for every request and cannot be parallelized. These bottlenecks limit the
overall system throughput; once their maximum throughput has been reached, adding resources
to the system no longer improves performance. To scale, plaintext object stores traditionally shard
objects across servers, and clients can route their queries to the appropriate server. Unfortunately,
this approach is insecure for oblivious object stores because it reveals the mapping of objects to
partitions [94, 225, 269, 284, 291]. For example, if clients query different shards, the attacker learns
that the requests were for different objects.

To understand why scaling oblivious storage is hard, we examine two properties oblivious storage
systems traditionally satisfy. First, systems typically maintain a dynamic mapping (hidden from
the server) between the logical layout and physical layout of the outsourced data. Clients must look
up their logical key using the freshest mapping and remap it to a new location after every access,
creating a central point of coordination. Second, for efficient access, oblivious systems typically
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store data in a hierarchical or tree-like structure, creating a bottleneck at the root [432, 472, 473].
Thus high-throughput oblivious storage systems are all built on hierarchical [472] or tree-

like [432,473] structures and either require a centralized coordination point (e.g., a query log [97,517]
or trusted proxy [63, 128, 442, 471]) or inter-client communication [76]. We ask: How can we build
an oblivious object store that handles high throughput by scaling in the same way as a plaintext
object store?
Removing the scalability bottleneck. In this work, we propose Snoopy (scalable nodes for oblivious
object repository), a high-throughput oblivious storage system that scales similarly to a plaintext
storage system. While our system is secure for any workload, we design it for high-throughput
workloads. Specifically, we develop techniques for grouping requests into equal-sized batches for
each partition regardless of the underlying request distribution and with minimal cover traffic. These
techniques enable us to efficiently partition and securely distribute every system component without
prohibitive coordination costs.

Like prior work, Snoopy leverages hardware enclaves for both performance and security [21,
361, 445]. Hardware enclaves makes it possible to (1) deploy the entire system in a public cloud;
(2) reduce network overheads, as private and public state can be located on the same machine;
and (3) support multiple clients without creating a central point of attack. This is in contrast with
the traditional trusted proxy model (Figure 1), which can be both a deployment headache and a
scalability concern. Hardware enclaves do not entirely solve the problem of hiding access patterns for
oblivious storage: enclave side channels allow attackers to exploit data-dependent memory accesses
to extract enclave secrets [81, 239, 311, 315, 363, 448, 498, 520]. To defend against these attacks,
we must ensure that all algorithms running inside the enclave are oblivious, meaning that memory
accesses are data-independent. Existing work targets latency-sensitive deployments [21, 361, 445]
and is prohibitively expensive for the concurrent, high-throughput deployment we target. We instead
leverage our oblivious partitioning scheme to design new algorithms tailored to our setting.

We experimentally show that Snoopy scales to achieve high throughput. The state-of-the-art
oblivious storage system Obladi [128] reaches a throughput of 6,716 reqs/sec with average latency
under 80ms for two million 160-byte objects and cannot scale beyond a proxy machine (32
cores) and server machine (16 cores). In contrast, Snoopy uses 18 4-core machines to scale to a
throughput of 92K reqs/sec with average latency under 500ms for the same data size, achieving a
13.7× improvement over Obladi. We report numbers with 18 machines due to cloud quota limits,
not because Snoopy stops scaling. We formally prove the security of the entire Snoopy system,
independent of the request load.

4.1.1 Summary of techniques
Snoopy is comprised of two types of entities: load balancers and subORAMs (Figure 1). Load
balancers assemble batches of requests, and subORAMs, which store data partitions, process the
requests. In order to securely achieve horizontal scaling, we must consider how to design both
the load balancer and subORAM to (1) leverage efficient oblivious algorithms to defend against
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(a) ORAM in hardware enclave
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Figure 1: Different oblivious storage system architectures: (a) ORAM in a hardware enclave is bottlenecked
by the single machine, (b) ORAM with a trusted proxy is bottlenecked by the proxy machine, and (c) Snoopy
can continue scaling as more subORAMs and load balancers are added to the system.

memory-based side-channel attacks, and (2) be easy to partition without incurring coordination
costs.
Challenge #1: Building an oblivious load balancer. To protect the contents of the requests, our
load balancer design must guarantee that (1) the batch structure leaks no information about the
requests, and (2) the process of constructing these batches is oblivious and efficient. Furthermore,
we need to design our oblivious algorithm such that we can add load balancers without incurring
additional coordination costs.
Approach. We build an efficient, oblivious algorithm that groups requests into batches without
revealing the mapping between requests and subORAMs. We size batches using only public
information, ensuring that the load balancer never drops requests and the batch size does not leak
information. Our load balancer design enables us to run load balancers independently and in parallel,
allowing Snoopy to scale past the capacity of a single load balancer (Section 4.4).
Challenge #2: Designing a high-throughput subORAM. To ensure that Snoopy can achieve
high throughput, we need a subORAM design that efficiently processes large batches of requests
and defends against enclave side-channel attacks. Existing ORAMs that make use of hardware
enclaves [21, 361, 445] only process requests sequentially and are a poor fit for the high-throughput
scenario we target.
Approach. Rather than building batching support into an existing ORAM scheme, we design a new
ORAM that only supports batched accesses. We observe that in the case where data is partitioned
over many subORAMs, a single scan amortized over a large batch of requests is concretely cheaper
than servicing the batch using ORAMs with polylogarithmic access costs [21, 361, 445], particularly
in the hardware enclave setting. We leverage a specialized data structure to process batches efficiently
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and obliviously in a single linear scan (Section 4.5).
Challenge #3: Choosing the optimal configuration. The design of Snoopy makes it possible to
scale the system by adding both load balancers and subORAMs. An application developer needs to
know how to configure the system to meet certain performance targets while minimizing cost.
Approach. To solve this problem, we design a planner that, given a minimum throughput, maximum
average latency, and data size, outputs a configuration minimizing cost (Section 4.6).
Limitations. Snoopy is designed specifically to overcome ORAM’s scalability bottleneck to
support high-throughput workloads, as solutions already exist for low-throughput, low-latency
workloads [432, 473]. In the low-throughput regime, although Snoopy is still secure, its latency
will likely be higher than that of non-batching systems like ConcurORAM [97], TaoStore [442],
or PrivateFS [517]. For large data sizes and low request volume, a system like Shroud [334] will
leverage resources more efficiently. Snoopy can use a different, latency-optimized subORAM with
a shorter epoch time if latency is a priority. We leave for future work the problem of adaptively
switching between solutions that are optimal under different workloads.

4.2 Security and correctness guarantees
We consider a cloud attacker that can:

• control the entire cloud software stack outside the enclave (including the operating system),
• view (encrypted) network traffic arriving at and within the cloud (including traffic sent by clients

and message timing),
• view or modify (encrypted) memory outside the enclaves in the cloud, and
• observe access patterns between the enclaves and external memory in the cloud.

We design Snoopy on top of an abstract enclave model where the attacker controls the software stack
outside the enclave and can observe memory access patterns but cannot learn the contents of the
data inside the processor. Snoopy can be used with any enclave implementation [74, 124, 312]; we
chose to implement Snoopy on Intel SGX as it is publicly available on Microsoft Azure. Enclaves
do not hide memory access patterns, enabling a large class of side-channel attacks, including but not
limited to cache attacks [81,239,363,448], branch prediction [315], paging-based attacks [498,520],
and memory bus snooping [311]. By using oblivious algorithms, Snoopy defends against this class
of attacks. Snoopy does not defend against enclave integrity attacks such as rollback [401] and
transient execution attacks [109, 424, 447, 495, 496, 499, 500], which we discuss in greater detail
below.

We defend against memory access patterns to both data and code by building oblivious algorithms
on top of an oblivious “compare-and-set” operator. While our source code defends against access
patterns to code, we do not ensure that the final binary does, as other factors like compiler
optimizations and cache replacement policies may leak information (existing solutions may be
employed here [227, 328]).
Timing attacks. A cloud attacker has access to three types of timing information: (1) when client
requests arrive, (2) when inter-cloud processing messages are sent/received, and (3) when client
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responses are sent. Snoopy allows the attacker to learn (1). In theory, these arrival times can leak
data, and so we could hide when clients send requests and how many they send by requiring clients
to send a constant number of requests at predefined time intervals [29]; we do not take this approach
because of the substantial overhead and because, for some applications, clients may not always be
online. Snoopy ensures that (2) and (3) do not leak request contents; the time to execute a batch
depends entirely on public information, as defined in Section 4.2.1.
Data integrity and protection against rollback attacks. Snoopy guarantees the integrity of the
stored objects in a straightforward way: for memory within the enclave, we use Intel SGX’s built-in
integrity tree, and for memory outside the enclave, we store a digest of each block inside the enclave.
We assume that the attacker cannot roll back the state of the system [401]. We discuss how Snoopy
can integrate with existing rollback-attack solutions in Section 4.9.
Attacks out of scope. We build on an abstract enclave model where the attacker’s power is
limited to viewing or modifying external memory and observing memory access patterns (we
formalize this as an ideal functionality in Section 4.12). Any attack that breaks the abstract enclave
model is out of scope and should be addressed with techniques complementary to Snoopy. For
example, we do not defend against leakage due to power consumption [111, 372, 480] or denial-of-
service attacks due to memory corruptions [228, 270]. We additionally consider transient execution
attacks [109,424,447,495,496,499,500] to be out of scope; in many cases, these have been patched
by the enclave vendor or the cloud provider. These attacks break Snoopy’s assumptions (and hence
guarantees) as they allow the attacker to, in many cases, extract enclave secrets. We note that,
Snoopy’s design is not tied to Intel SGX, and also applies to academic enclaves like MI6 [74],
Keystone [312], or Sanctum [124], which avoid many of the drawbacks of Intel SGX.

We also do not defend against denial-of-service attacks; the attacker may refuse queries or even
delete the clients’ data.
Clients. For simplicity, in the rest of the chapter, we describe the case where all clients are honest.
We make this simplification to focus on protecting client requests from the server, a technical
challenge that motivates our techniques. However, in practice, we might not want to trust every
client with read and write access to every object in the system. Adding access-control lookups to
our system is fairly straightforward and requires an oblivious lookup in an access-control matrix to
check a client’s privileges for a given object. We can perform this check obliviously via a recursive
lookup in Snoopy (we describe how this works in Section 4.14). Supporting access control in
Snoopy ensures that compromised clients cannot read or write data that they do not have access
to. Furthermore, if compromised clients collude with the cloud, the cloud does not learn anything
beyond the public information that it already learns (specified in Section 4.2.1) and the results of
read requests revealed by compromised clients.
Linearizability. Because we handle multiple simultaneous requests, we must provide some ordering
guarantee. Snoopy provides linearizability [251]: if one operation happens after another in real time,
then the second will always see the effects of the first (see Section 4.4.3 for how we achieve this).
We include a linearizability proof in Section 4.13.
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4.2.1 Formalizing security
We formalize our system and prove its security in Section 4.12. We build our security definition on
an enclave ideal functionality (representing the abstract enclave model), which provides an interface
to load a program onto a network of enclaves and then execute that program on an input. Execution
produces the program output, as well as a trace containing the network communication and memory
access patterns generated as a result of execution (what the adversary has access to in the abstract
enclave model).

The Snoopy protocol allows the attacker to learn public information such as the number of
requests sent by each client, request timing, data size (number of objects and object size), and system
configuration (number of load balancers and subORAMs); this public information is standard in
oblivious storage. Snoopy protects private information, including the data content and, for each
request, the identity of the requested object, the request type, and any read or write content. To prove
security, we show how to simulate all accesses based solely on public information (as is standard for
ORAM security [206]). Our construction is secure if an adversary cannot distinguish whether it
is interacting with enclaves running the real Snoopy protocol (the “real” experiment) or an ideal
functionality that interacts with enclaves running a simulator program that only has access to public
information (the “ideal” experiment) from the trace generated by execution. We now informally
define these experiments, delegating the formal details to Figure 18.
Real and ideal experiments (informal). In the real experiment, we load the protocol Π (either
our Snoopy protocol or our subORAM protocol, depending on what we are proving security of)
onto a network of enclaves and execute the initialization procedure (the adversary can view the
resulting trace). Then, the adversary can run the batch access protocol specified by Π on any set of
queries and view the trace. The adversary repeats this process a polynomial number of times before
outputting a bit.

The ideal experiment proceeds in the same way as the real experiment, except that, instead
of interacting with enclaves running Π, the adversary interacts with an ideal functionality that in
turn interacts with the enclaves running the simulator program. The adversary can view the traces
generated by the simulator enclaves. The goal of the adversary is to distinguish between these
experiments. We describe both experiments more formally in Figure 18.

Using these experiments, we present our security definition:

Definition 6. The oblivious storage scheme Π is secure if for any non-uniform probabilistic
polynomial-time (PPT) adversary Adv, there exists a PPT Sim such that���Pr

[
RealOStore

Π,Adv (𝜆) = 1
]
−Pr

[
IdealOStore

Sim,Adv (𝜆) = 1
] ���≤ negl(𝜆)

where 𝜆 is the security parameter, the real and ideal experiments are defined informally above and
formally in Figure 18, and the randomness is taken over the random bits used by the algorithms of
Π, Sim, and Adv.

We prove security in a modular way, which enables future systems to make standalone use of our
subORAM design. We note that our subORAM scheme is secure only if the batch received contains
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unique requests (this property is guaranteed by our load balancer). We describe these requirements
formally and prove security in Definition 10. We prove the security of Snoopy using any subORAM
scheme that is secure under this modified definition.

Theorem 7. Given a two-tiered oblivious hash table [102], an oblivious compare-and-set operator,
and an oblivious compaction algorithm, the subORAM scheme described in Section 4.5 and formally
defined in Figure 19 is secure according to Definition 10.

Theorem 8. Given a keyed cryptographic hash function, an oblivious compare-and-set operator, an
oblivious sorting algorithm, an oblivious compaction algorithm, and an oblivious storage scheme
(secure according to Definition 10), Snoopy, as described in Section 4.4 and formally defined in
Figure 21, is secure according to Definition 6.

All of the tools we use in the above theorems can be built from standard cryptographic
assumptions. We prove both theorems in Section 4.12.

4.3 System overview
To motivate the design of our system, we begin by describing several solutions that do not work for
our purposes.
Attempt #1: Scalable but not secure. Sharding is a straightforward way to achieve horizontal
scaling. Each server maintains a separate ORAM for its data shard, and the client queries the
appropriate server. This simple solution is insecure: repeated accesses to the same shard leaks
query information. For example, if two clients query different servers, the attacker learns that they
requested different objects.
Attempt #2: Secure but not scalable. To fix the above problem, we could remap an object to a
different partition after it is accessed, similar to how single-server ORAMs remap objects after
accesses [432, 473]. A central proxy running on a lightweight, trusted machine keeps a mapping of
objects to servers. The client sends its request to the proxy, which then accesses the server currently
storing that object and remaps that object to a new server [63, 471]. While this solution is secure,
this single proxy is a scalability bottleneck. Every request must use the most up-to-date mapping for
security; otherwise, requests might fail and re-trying them will leak when the requested object was
last accessed. Therefore, all requests must be serialized at the proxy, and so the proxy’s throughput
limits the system’s throughput.
Our approach. We achieve the scalability of the first approach and the security of the second
approach. To efficiently scale, we exploit characteristics of the high-throughput regime to develop
new techniques that allow us to provide security without remapping objects across partitions. These
techniques enable us to send equal-sized batches to each partition while both (1) hiding the mapping
between requests and partitions (for security), and (2) ensuring that requests are distributed somewhat
equally across partitions (for scalability).
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Figure 2: Secure distribution of requests in Snoopy. ➊ The load balancer receives requests from clients. ➋ At
the end of the epoch, the load balancer generates a batch of requests for each subORAM, padding with dummy
requests as necessary.

4.3.1 System architecture
Snoopy’s system architecture (Figure 2) consists of clients (running on private machines) and, in the
public cloud, load balancers and subORAMs (running on hardware enclaves). All communication is
encrypted using an authenticated encryption scheme with a nonce to prevent replay attacks. We
establish all communication channels using remote attestation so that clients are confident that they
are interacting with legitimate enclaves running Snoopy [36].

The role of the load balancer is to partition requests received during the last epoch into equally
sized batches while providing security and efficiency (Section 4.4). In order to horizontally scale the
load balancer, each load balancer must be able to operate independently and without coordination.
The role of the subORAM is to manage a data partition, storing the current version of the data and
executing batches of requests from the load balancers (Section 4.5). Snoopy can be deployed using
any oblivious storage scheme for hardware enclaves [21, 361, 445] as a subORAM. However, our
subORAM design is uniquely tailored to our target workload and end-to-end system design.

4.3.2 Real-world applications
Snoopy is valuable for applications that need a high-throughput object store for confidential data,
including outsourced file storage [21], cloud electronic health records, and Signal’s private contact
discovery [346]. Privacy-preserving cryptocurrency light clients can also benefit from Snoopy.
These allow lightweight clients to query full nodes for relevant transactions [349]. Maintaining many
ORAM replicas is not enough to support high-throughput blockchains because each replica needs to
keep up with the system state. As blockchains continue to increase in the throughput [339, 459],
oblivious storage systems like Obladi [128] with a scalability bottleneck simply cannot keep up.

Snoopy can also enable private queries to a transparency log; for example, Alice could look up
Bob’s public key in a key transparency log [9, 355] without the server learning that she wants to
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talk to Bob. A key transparency log should support up to a billion users, making high throughput
critical [211].

4.4 Oblivious load balancer
In this section, we detail the design of the load balancer, focusing on how batching can be used to
hide the mapping between requests and subORAMs at low cost (Section 4.4.1), designing oblivious
algorithms to efficiently generate batches while protecting the contents of the requests (Section 4.4.2),
and scaling the load balancer across machines (Section 4.4.3).

4.4.1 Setting the batch size
To provide security, we need to ensure that constructing batches leaks no information about the
requests. Specifically, we must guarantee that (1) the size of batches leaks no information, and
(2) the process of constructing batches is similarly oblivious. We focus on (1) now and discuss
(2) in Section 4.4.2. For security, we need to ensure that the batch size 𝐵 depends only on public
information visible to the attacker: namely, the number of requests 𝑅 and number of subORAMs 𝑆,
but not the contents of these requests. Therefore, we define 𝐵 as a function 𝐵 = 𝑓 (𝑅, 𝑆) that outputs
an efficient yet secure batch size for 𝑅 requests and 𝑆 subORAMs. Each subORAM will receive
𝐵 requests. Because 𝑅 is not fixed across epochs (requests can be bursty), 𝐵 can also vary across
epochs.

In choosing how to define this function 𝑓 , we need to (1) protect against dropping requests, and
(2) minimize the overhead of dummy requests. Ensuring that requests are not dropped is critical for
security: if a request is dropped, the client will retry the request, and an attacker who sees a client
participate in two consecutive epochs may infer that a request was dropped, leaking information
about request contents. Minimizing the overhead of dummy requests is important for scalability. A
simple way to satisfy security would be to set 𝑓 (𝑅, 𝑆) = 𝑅; this ensures that even if all the requests
are for the same object, no request was potentially dropped. However, this approach is not scalable
because every subORAM would need to process a request for every client request. We refine this
approach in two steps.
Deduplication to address skew. When assembling a batch of requests, the load balancer can ensure
that all requests in a batch are for distinct objects by aggregating reads and writes for the same
object (for writes, we use a “last write wins” policy) [128]. Deduplication allows us to combat
workload skew. If the load balancer receives many requests for object A and a single request for
object B, the load balancer only needs to send one request for object A and one request for object
B. Deduplication simplifies the problem statement; we now need to distribute a batch of at most
𝑅 unique requests across subORAMs. This reframing allows us to achieve security with high
probability for 𝑓 (𝑅, 𝑆) < 𝑅 if we distribute objects randomly across subORAMs, as we now do not
have to worry about the case where all requests are for the same object.
Choosing a batch size. Given 𝑅 requests and 𝑆 subORAMs, we need to find the batch size 𝐵 such
that the probability that any subORAM receives more than 𝐵 requests is negligible in our security
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parameter 𝜆. Like many systems that shard data, we use a hash function to distribute objects across
subORAMs, allowing us to recast the problem of choosing 𝐵 as a balls-into-bins problem [422]:
we have 𝑅 balls (requests) that we randomly toss into 𝑆 bins (subORAMs), and we must find a bin
size 𝐵 (batch size) such that the probability that a bin overflows is negligible. We add balls (dummy
requests) to each of the 𝑆 bins such that each bin contains exactly 𝐵 balls.

Using the balls-into-bins model, we can start to understand how we expect 𝑅 and 𝑆 to affect 𝐵.
As we add more balls to the system (𝑅 ↑), it becomes more likely for the balls to be distributed evenly
over every bin, and the ratio of dummy balls to original balls decreases. Conversely, as we add more
bins to the system (𝑆 ↑), we need to proportionally add more dummy balls. We validate this intuition
in Figure 3 and Figure 4. Figure 3 shows that as the total number of requests 𝑅 increases, the percent
overhead due to dummy requests decreases. Thus larger batch sizes are preferable, as they minimize
the overhead introduced by dummy requests. Figure 4 illustrates how adding more subORAMs
increases the total request capacity of Snoopy, but at a slower rate than a plaintext system. Adding
subORAMs helps Snoopy scale by breaking data into partitions, but adding subORAMs is not free,
as it increases the dummy overhead.

We prove that the following 𝑓 for setting batch size 𝐵 guarantees negligible overflow probability
in Section 4.11:

Theorem 9. For any set of 𝑅 requests that are distinct and randomly distributed, number of
subORAMs 𝑆, and security parameter 𝜆, let 𝜇 = 𝑅/𝑆, 𝛾 = − log(1/(𝑆 ·2𝜆)), and𝑊0(·) be branch 0
of the Lambert𝑊 function [120]. Then for the following function 𝑓 (𝑅, 𝑆) that outputs a batch size,
the probability that a request is dropped is negligible in 𝜆:

𝑓 (𝑅, 𝑆) = min(𝑅, 𝜇 · exp
[
𝑊0

(
𝑒−1 (𝛾/𝜇−1)

)
+1

]
) .

Proof intuition. For a single subORAM 𝑠, let 𝑋1, . . . , 𝑋𝑅 ∈ {0,1} be independent random variables
where 𝑋𝑖 represents request 𝑖 mapping to 𝑠. Then, Pr[𝑋𝑖 = 1] = 1/𝑆. Next, let the random variable
𝑋 =

∑𝑅
𝑖=1 𝑋𝑖 represent the total number of requests that hashed to 𝑠. We use a Chernoff bound to

upper-bound the probability that there are more than 𝑘 requests to a single subORAM, Pr[𝑋 ≥ 𝑘].
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In order to upper-bound the probability of overflow for all subORAMs, we use the union bound and
solve for the smallest 𝑘 that results in an upper bound on the probability of overflow negligible in 𝜆.
In order to solve for 𝑘 , we coerce the inequality into a form that can be solved with the Lambert𝑊
function, which is the inverse relation of 𝑓 (𝑤) = 𝑤𝑒𝑤 , i.e.,𝑊 (𝑤𝑒𝑤) = 𝑤 [120]. When 𝑓 (𝑅, 𝑆) = 𝑅,
the overflow probability is zero, and so we can safely upper-bound 𝑓 (𝑅, 𝑆) by 𝑅. We target the
high-throughput case where 𝑅 is large, in which case our bound is less than 𝑅.

We now explain how Theorem 9 applies to Snoopy. For security, it is important that an attacker
cannot (except with negligible probability) choose a set of requests that causes a batch to overflow.
Thus Snoopy needs to ensure that requests chosen by the attacker are transformed to a set of requests
that are distinct and randomly distributed across subORAMs. Snoopy ensures that requests are
distinct through deduplication and that requests are randomly distributed by using a keyed hash
function where the attacker does not know the key. Because the keyed hash function remains the
same across epochs, Snoopy must prevent the attacker from learning which request is assigned to
which subORAM during execution (otherwise, the attacker could use this information to construct
requests that will overflow a batch). Snoopy does this by ensuring that each subORAM receives
the same number of requests and by obliviously assigning requests to the correct subORAM batch
(Section 4.4.2). Theorem 9 allows us to choose a batch size that is less than 𝑅 in the high-throughput
setting (for scalability) while ensuring that the probability that an attacker can construct a batch that
causes overflow is cryptographically negligible. Thus Snoopy achieves security for all workloads,
including skewed ones.

The bound we derive is valuable in applications beyond Snoopy where there are a large number
of balls and it is important that the overflow probability is very small for different numbers of
balls and bins. Our bound is particularly useful in the case where the overflow probability must be
negligible in the security parameter as opposed to an application parameter (e.g. the number of
bins) [59, 362, 422].

4.4.2 Oblivious batch coordination
As with other components of the system, the load balancer runs inside a hardware enclave, and so
we must ensure that its memory accesses remain independent of request content. The load balancer
runs two algorithms that must be oblivious: generating batches of requests and matching subORAM
responses to client requests.

Practically, designing oblivious algorithms requires ensuring that the memory addresses accessed
do not depend on the data; often this means that the access pattern is fixed and depends only on
public information (alternatively, access patterns might be randomized). The data contents remain
encrypted and inaccessible to the attacker, and only the pattern in which memory is accessed is
visible. We build our algorithms on top of an oblivious “compare-and-set” operator that allows us to
copy a value if a condition is true without leaking if the copy happened or not.
Background: oblivious building blocks. We first provide the necessary background for two
oblivious building blocks from existing work that we will use in our algorithms.
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Figure 5: Generating batches of requests at the load balancer.

Oblivious sorting. An oblivious sort orders an array of 𝑛 objects without leaking information about
the relative ordering of objects. We use bitonic sort, which runs in time 𝑂 (𝑛 log2 𝑛) and is highly
parallelizable [46]. Bitonic sort accesses the objects and performs compare-and-swaps in a fixed,
predefined order. Since its access pattern is independent of the final order of the objects, bitonic sort
is oblivious.
Oblivious compaction. Given an array of 𝑛 objects, each of which is tagged with a bit 𝑏 ∈ {0,1},
oblivious compaction removes all objects with bit 𝑏 = 0 without leaking information about which
objects were kept or removed (except for the the total number of objects kept). We use Goodrich’s
algorithm, which runs in time 𝑂 (𝑛 log𝑛) and is order-preserving, meaning that the relative order of
objects is preserved after compaction [210]. Goodrich’s algorithm accesses array locations in a fixed
order using a log𝑛-deep routing network that shifts each element a fixed number of steps in every
layer.
Generating batches of requests. Generating fixed-size batches obliviously requires care. It is
not enough to simply pad batches with a variable number of dummy requests, as this can leak the
number of real requests in each batch. Instead, we must pad each batch with the right number of
dummy requests without revealing the exact number of dummy requests added to each batch. To
solve this problem, we obliviously generate batches in three steps, which we show in Figure 5:
➊ we first assign client requests to subORAMs according to their requested object; ➋ we add the
maximum number of dummy requests to each subORAM; ➌ we construct batches with those extra
dummies; and ➍ we filter out unnecessary dummies.

First (➊), we scan through the list of client requests. For each client request, we compute the
subORAM ID by hashing the object ID, and we store it with the client request. Second (➋), we
append the maximum number of dummy requests for each subORAM, 𝐵 = 𝑓 (𝑅, 𝑆) to the end of the
list. These dummy requests all have a tag bit 𝑏 = 1. Third (➌), we group real and dummy requests into
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Figure 6: Mapping subORAM responses to client requests at the load balancer.

batches by subORAM. We do this by obliviously sorting the lists of requests, setting the comparison
function to order first by subORAM (to group requests into subORAM batches), then by tag bit 𝑏
(to push the dummies to the end of the batches), and then by object ID (to place duplicates next to
each other). Finally (➍), to choose which requests to keep and which to remove, we iterate through
the sorted request list again. We keep a counter 𝑥 of the number of distinct requests seen so far for
the current subORAM. We securely update the counter by performing an oblivious compare-and-set
for each request, ensuring that access patterns don’t reveal when the counter is updated. If 𝑥 < 𝐵 and
the request is not a duplicate (i.e. it is not preceded by a request for the same object), we set bit 𝑏 = 1
(otherwise 𝑏 = 0). To filter out unnecessary dummy requests and duplicates, we obliviously compact
by bit 𝑏, leaving us with a 𝐵-sized batch for each subORAM.

The algorithm is oblivious because it only relies on linear scans and appends (both are data-
independent) and our oblivious building blocks. The runtime is dominated by the cost of oblivious
sorting and compaction.
Mapping responses to client requests. Once we receive the batches of responses from the
subORAMs, we need to send replies to clients. This requires mapping the data from subORAM
responses to the original requests, making sure that we propagate data correctly to duplicate responses
and that we ignore responses to dummy requests. We accomplish this obliviously in four steps,
which we show in Figure 6: ➊ we merge together the client requests and the subORAM responses
and then sort the list; ➋ we sort the merged list to group requests with responses; ➌ we propagate
data from the responses to the original requests; and ➍ we filter out the now unnecessary subORAM
responses.

The load balancer takes as input two lists: a list of subORAM responses and a list of client
requests. First (➊), we merge the two lists, tagging the subORAM responses with a bit 𝑏 = 0 and the
client requests with 𝑏 = 1. Second (➋), we sort this combined list by object ID and then, to break
ties, by the tag bit 𝑏. Breaking ties by the tag bit 𝑏 arranges the data so that we can easily propagate
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data from subORAM responses to requests. Third (➌), we iterate through the list, propagating data
in objects with the tag bit 𝑏 = 0 (the subORAM responses) to the following object(s) with the tag
bit 𝑏 = 1 (the client requests). As we iterate through the list, we keep track of the last object we
have seen with 𝑏 = 1, prev (i.e. the last subORAM response we’ve scanned over). Then, for the
current object curr, we copy the contents of prev into the curr if 𝑏 = 0 for curr (it’s a request). Any
requests following a response must be for the same object because every request has a corresponding
response and we sort by object ID. Note that dummy responses will not have a corresponding client
request. Finally (➍), we need to filter down the list to include only the client requests. We do this
using oblivious compaction, removing objects with the tag bit 𝑏 = 0 (the subORAM responses).
Note that, in order to respond to a request, we need to map a client request to the original network
connection; we can do this by keeping a pointer to the connection with the request data.

This procedure is oblivious because it relies only on oblivious building objects as well as
concatenating two lists and a linear scan, both of which are data-independent. As in the algorithm
for generating batches, the runtime is dominated by the cost of oblivious sorting and oblivious
compaction.

4.4.3 Scaling the load balancer
Our load balancer design scales horizontally; it is both correct and secure to add load balancers
without introducing additional coordination costs. Clients randomly choose one load balancer to
contact, and then each load balancer batches requests independently. This is a significant departure
from prior work where a centralized proxy receives all client requests and must maintain dynamic
state relevant to all requests [63,128,442,471]. SubORAMs execute load balancer batches in a fixed
order, and within a single load balancer, we aggregate reads and writes using a “last-write-wins”
policy.

Adding load balancers eliminates a potential bottleneck, but is not entirely free. Because (1)
load balancers do not coordinate to deduplicate requests and (2) subORAMs assume that a batch
contains distinct requests, subORAMs cannot combine batches from different load balancers. Our
subORAM must scan over all stored objects to process a single batch (Section 4.5). As a result, if
there are 𝐿 load balancers, each subORAM must perform 𝐿 scans over the data every epoch.

4.5 Throughput-optimized subORAM
Many ORAMs target asymptotic complexity, often at the expense of concrete cost. In contrast, recent
work has explored how to leverage linear scans to build systems that can achieve better performance
for expected workloads than their asymptotically more efficient counterparts [140, 161]. We take
a similar approach to design a high-throughput subORAM optimized for hardware enclaves. We
exploit the fact that, due to Snoopy’s design, each subORAM stores a relatively small data partition
and receives a batch of distinct requests. In this setting, using a single linear scan over the data
partition to process a batch is concretely efficient in terms of amortized per-request cost.
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We draw inspiration from Signal’s private contact discovery protocol [346]. There, the client
sends its contacts to an enclave, and the enclave must determine which contacts are Signal users
without leaking the client’s contacts. Their solution employs an oblivious hash table. The core idea
is that the enclave performs some expensive computation to construct a hash table such that the
construction access patterns don’t leak the mapping of contacts to buckets. Once this hash table is
constructed, the enclave can directly access the hash bucket for a contact without the memory access
pattern revealing which contact was looked up. Note that obliviousness only holds if (1) the enclave
performs a lookup for each contact at most once, and (2) the enclave scans the entire bucket (to
avoid revealing the location of the contact accessed inside the bucket). With this tool, private contact
discovery is straightforward: the enclave constructs an oblivious hash table for the client’s contacts
and then scans over every Signal user, looking up each Signal user in the contact hash table.

Signal’s setting is similar to ours: instead of a set of contacts, we have a batch of distinct
requests, and instead of needing to find matches with the Signal users, we need to find the stored
objects corresponding to requests. However, Signal’s approach has some serious shortcomings
when applied to our setting. First, their hash table construction takes 𝑂 (𝑛2) time for 𝑛 contacts.
While this complexity is acceptable when 𝑛 is the size of a user’s contacts list (relatively small),
it is prohibitively expensive for batches with thousands of requests. Second, they do not size their
buckets to prevent overflow. Overflows can leak information about bucket contents, and attempting
to recover causes further leakage [102, 302].
Choosing an oblivious hash table. We need to identify an oblivious hash table that is efficient and
secure in our setting. A natural first attempt to solve the overflow problem is to use the number of
requests that hash to each bucket to set the bucket size dynamically. This simple solution is insecure:
the attacker can infer the probability that an object was requested based on the size of the bucket that
object hashes to.

Instead, we need to set the bucket size so that the overflow probability is cryptographically
negligible. This provides the security property we want, and is exactly the problem that we solved
in the load balancer, where we separated requests into “bins” such that the probability that any
“bin” overflows is negligible. Using our load balancer approach also reduces construction cost from
𝑂 (𝑛2) to 𝑂 (𝑛polylog𝑛). However, while this solution works well at the load balancer, it becomes
expensive when applied to the subORAM. Recall that to perform an oblivious lookup, we must scan
the entire bucket that might contain a request, and so we want buckets to be as small as possible.
Unfortunately, decreasing the bucket size results in substantial dummy overhead. This overhead
was the reason for making our batches as large as possible at the load balancer (Figure 3). In our
subORAM, we want to keep the dummy overhead low and have a small bucket size.

To achieve both these properties, we identify oblivious two-tier hash tables as a particularly
well-suited to our setting [102]. Chan et al. show how to size buckets such that overflow requests
are placed into a second hash table, allowing us to have both low dummy overhead and a small
bucket size: for batches of 4,096 requests, buckets in a two-tier hash table are ∼10× smaller than
their single-tier counterparts. Construction now requires two oblivious sorts, one for each tier, but is
still much faster than Signal’s approach, both asymptotically and concretely for our expected batch
sizes. We refer the reader to Chan et al. for the details of oblivious construction, oblivious lookups,
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and the security analysis [102].
Processing a batch of requests. We now describe how to leverage an oblivious two-tier hash table
to obliviously process a batch of requests (Figure 7). First (➊), when the batch of requests arrives,
we construct the oblivious two-tier hash table as described above. To avoid leaking the relationship
between requests across batches, for every batch we sample a new key (unknown to the attacker)
for the keyed hash function assigning objects to buckets. Second (➋), we iterate through the stored
objects. For each object obj, we perform an oblivious hash table lookup. A lookup requires hashing
obj.id in order to find the corresponding bucket in both hash tables and then scanning the entire
bucket; this scan is necessary to hide the specific object being looked up. For every request req
scanned, we perform an oblivious compare-and-set to update either the req in the hash table or the
obj in subORAM storage depending on (1) whether req.id matches obj.id, and (2) whether req is a
read or write. By conditioning the oblivious compare-and-set on the request type and performing it
twice (once on the contents of req and once on the contents of obj), we hide whether the request is a
read or a write.

Finally, we scan through every hash table bucket, marking real requests with tag bit 𝑏 = 1 and
dummies with 𝑏 = 0. We then use oblivious compaction to filter out the dummies, leaving us with
real entries to send back to the load balancer.

4.6 Planner
Our Snoopy planner takes as input a data size 𝐷, minimum throughput 𝑋Sys, maximum latency 𝐿Sys,
and outputs a configuration (number of load balancers and subORAMs) that minimizes system cost.
As the search space is large, we rely on heuristics and make simplifying assumptions to approximate
the optimal configuration. We derive three equations capturing the relationship between our core
system parameters: the epoch length 𝑇 , number of objects 𝑁 , number of subORAMs 𝑆, and number
of load balancers 𝐵.

To estimate throughput for some epoch time 𝑇 , we observe that, on average, we must be able
to process all requests received during the epoch in time ≤ 𝑇 (otherwise, the set of outstanding
requests continues growing). We can pipeline the subORAM and load balancer processing such that
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the upper bound on the requests we can process per epoch is determined by either the load balancer
or subORAM processing time, depending on which is slower. Adding load balancers decreases the
work done at each load balancer, but each subORAM must process a batch of requests from every
load balancer. Let 𝐿LB(𝑅, 𝑆) be the time it takes a load balancer to process 𝑅 requests in a system
with 𝑆 subORAMs, and let 𝐿𝑆 (𝑅, 𝑆, 𝑁) be the time it takes a subORAM to process a batch of 𝑅
requests with 𝑁 stored objects. We then derive:

𝑇 ≥ max[𝐿LB(𝑋Sys ·𝑇/𝐵, 𝑆), 𝐵 · 𝐿𝑆 ( 𝑓 (𝑋Sys ·𝑇/𝐵, 𝑆), 𝑁)] (4.1)

Requests will arrive at different times and have to wait until the end of the current epoch to be
serviced, and so on average, if the timing of requests is uniformly distributed, requests will wait
on average 𝑇/2 time to be serviced. The time to process a batch is upper-bounded by 𝑇 at both the
subORAM and the load balancer, and so:

𝐿Sys ≤ 5𝑇/2 (4.2)

Let 𝐶𝐿𝐵 be the cost of a load balancer and 𝐶𝑆 be the cost of a subORAM. We then compute the
system cost 𝐶Sys:

𝐶Sys(𝐵, 𝑆) = 𝐵 ·𝐶𝐿𝐵 + 𝑆 ·𝐶𝑆 (4.3)

Our planner uses these equations and experimental data to approximate the cheapest configuration
meeting performance requirements. While our planner is useful for selecting a configuration, it
does not provide strong performance guarantees, as our model makes simplifying assumptions and
ignores subtleties that could affect performance (e.g. our simple model assumes that requests are
uniformly distributed). Our planner is meant to be a starting point for finding a configuration. Our
design could be extended to provide different functionality; for example, given a throughput, data
size, and cost, output a configuration minimizing latency.

4.7 Implementation
We implemented Snoopy in ∼7,000 lines of C++ using the OpenEnclave framework v0.13 [386]
and Intel SGX v2.13. We use gRPC v1.35 for communication and OpenSSL for cryptographic
operations. Our bitonic sort [46] and oblivious compaction [210] implementations set the size of
oblivious memory to the register size. We use Intel’s AVX-512 SIMD instructions for oblivious
compare-and-swaps and compare-and-sets. Our implementation is open-source [8].
Reducing enclave paging overhead. The size of the protected enclave memory (EPC) is limited
and enclave memory pages that do not fit must be paged in when accessed, which imposes high
overheads [389]. The data at a subORAM often does not fit inside the EPC, so to reduce the latency
to page in from untrusted memory, we rely on a shared buffer between the enclave and the host. A
host loader thread fills the buffer with the next objects that the linear scan will read. This eliminates
the need to exit and re-enter the enclave to fetch data, dramatically reducing linear scan time. The
enclave encrypts objects (for confidentiality) and stores digests of the contents inside the enclave
(for integrity). This approach has been explored in prior enclave systems [406, 409].
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Redis [430] Obladi [128] Oblix [361] Snoopy
Oblivious ✗ ✓ ✓ ✓

No trusted proxy ✓ ✗ ✓ ✓

High throughput ✓ ✓ ✗ ✓

Throughput scales with machines ✓ ✗ ✗ ✓

Table 8: Comparison of baselines based on security guarantees (oblivious), setup (no trusted proxy), and
performance properties (high throughput and throughput scales).

4.8 Evaluation
To quantify how Snoopy overcomes the scalability bottleneck in oblivious storage, we ask:
1. How does Snoopy’s throughput scale with more compute, and how does it compare to existing

systems? (Section 4.8.2)
2. How does adding compute resources help Snoopy reduce latency and scale to larger data sizes?

(Section 4.8.3)
3. How do Snoopy’s individual components perform? (Section 4.8.4)
4. Given performance and monetary constraints, what is the optimal way to allocate resources in

Snoopy? (Section 4.8.5)
Experiment Setup. We run Snoopy on Microsoft Azure, which provides support for Intel SGX
hardware enclaves in the DCsv2 series. For the load balancers and subORAMs, we use DC4s_v2

instances with 4-core Intel Xeon E-2288G processors with Intel SGX support and 16GB of memory.
For clients, we use D16d_v4 instances with 16-core Intel Xeon Platinum 8272CL processors and
64GB of memory. We choose these instances for their comparatively high network bandwidth. We
evaluate our baselines Redis [430] on D4d_v4 instances, Obladi [128] on D32d_v4 for the proxy and
D16d_v4 for the storage server, and Oblix on the same DC4s_v2 instances as our subORAMs. For
benchmarking, we use a uniform request distribution. This choice is only relevant for our Redis
baseline; the oblivious security guarantees of Snoopy and other oblivious storage systems ensure
that the request distribution does not impact their performance. Unless otherwise specified, we set
the object size to 160 bytes (same as Oblix [361]).

4.8.1 Baselines
We compare Snoopy to three state-of-the-art baselines: Obladi [128] is a batched, high-throughput
oblivious storage system, Oblix [361] efficiently leverages enclaves for oblivious storage, and
Redis [430] is a widely used plaintext key-value store. Each baseline provides a different set of
security guarantees and performance properties (Table 8).
Obladi. Obladi [128] uses batching and parallelizes RingORAM [432] to achieve high throughput.
While Obladi also uses batching to improve throughput, its security model is different, as it
uses a single trusted proxy rather than a hardware enclave. The trusted proxy model has two
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Figure 9: Snoopy achieves higher throughput with more machines. Boxed points denote when a load balancer
is added instead of a subORAM. Oblix and Obladi cannot securely scale past 1 and 2 machines, respectively.

primary drawbacks: (1) the trusted proxy cannot be deployed in the untrusted cloud (desirable
for convenience and scalability), and (2) the proxy is a central point of attack in the system (an
attacker that compromises the proxy learns the queries of every user in the system). Practically,
using a trusted proxy rather than a hardware enclave means the proxy does not have to use oblivious
algorithms. Designing an oblivious algorithm for Obladi’s proxy is not straightforward and would
likely introduce significant overhead. Further, Obladi’s trusted proxy is a compute bottleneck that
cannot be horizontally scaled securely without new techniques, and so we only measure Obladi with
two machines (proxy and storage server). We configure Obladi with a batch size of 500.
Oblix. Oblix [361] uses hardware enclaves and provides security guarantees comparable to ours.
However, Oblix optimizes for latency rather than throughput; requests are sequential, and, unlike
Obladi, Oblix does not employ batching or parallelism. Like Obladi, Oblix cannot securely scale
across machines. We measure performance using Oblix’s DORAM implementation and simulate
the overhead of recursively storing the position map (as in §VI.A of [361]).
Redis. To measure the overhead of security (obliviousness), we compare Snoopy to an insecure
baseline Redis [430], a popular unencrypted key-value store. In Redis, the server can directly see
access patterns and data contents. We benchmark a Redis cluster using its own memtier benchmark
tool [357], enabling client pipelining to trade latency for throughput. We expect it to achieve a much
higher throughput than Snoopy.

4.8.2 Throughput scaling
Figure 9a shows that adding more machines to Snoopy improves throughput. We measure throughput
where the average latency is less than 300ms, 500ms, and 1s. We start with 4 machines (3 subORAMs
and 1 load balancer) and scale to 18 machines (13 subORAMs and 5 load balancers for 1s latency;
15 subORAMs and 3 load balancers for 500ms/300ms latency). For 2M objects, Snoopy uses 18
machines to process 68K reqs/sec with 300ms latency, 92K reqs/sec with 500ms latency, and 130K
reqs/sec with 1s latency. Each additional machine improves throughput by 8.6K reqs/sec on average
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Figure 10: Throughput of Snoopy using Oblix [361] as a subORAM (2M objects, 160B block size). We
measure throughput with different maximum average latencies.

for 1s latency. Relaxing the latency requirement improves throughput because we can group requests
into larger batches, reducing the overhead of dummy requests.

We generate Figure 9a by measuring throughput with different system configurations and plotting
the highest throughput configuration for each number of machines. We start with 4 machines rather
than 2 because we need to partition the 2M objects to meet our 300ms latency requirement due to
the subORAM linear scan (recall Equation (4.2) would require a subORAM to process a batch in
≤ 120ms). Both the load balancer and subORAM are memory-bound, as the EPC size is limited and
enclave paging costs are high (Section 4.7).

Snoopy achieves higher throughput than Oblix (1,153 reqs/sec) and Obladi (6,716 reqs/sec) as
we increase the number of machines. For 300ms, Snoopy outperforms Oblix with ≥5 machines and
Obladi with ≥6 machines, and for 500ms and 1s, Snoopy outperforms Oblix and Obladi for all
configurations. Oblix and Obladi beat Snoopy with a small number of machines for low latency
requirements because our subORAM performs a linear scan over subORAM data whereas Oblix
and Obladi only incur polylogarithmic access costs, allowing them to handle larger data sizes on a
single machine. Snoopy can scale to larger data sizes by adding more machines (Section 4.8.3).
Comparison to Redis. To show the overhead of obliviousness, we also measure the throughput of
Redis for 2M 160-byte objects with an increasing cluster size. For 15 machines, Redis achieves a
throughput of 4.2M reqs/sec, 39.1× higher than Snoopy when configured with 1s latency. Because
we pipeline Redis aggressively in order to maximize throughput, the mean Redis latency is <800ms.
Application: key transparency. Figure 9b shows throughput for parameter settings that support key
transparency (KT) [9, 355] for 5 million users. Due to the security guarantees of oblivious storage,
an application’s performance does not depend on its workload (i.e. request distribution), but only on
the parameter settings. In KT, to look up Bob’s key, Alice must retrieve (1) Bob’s key, (2) the signed
root of the transparency log, and (3) a proof that Bob’s key is included in the transparency log
(relative to the signed root) [355]. This inclusion proof is simply a Merkle proof. Thus, for 𝑛 users,
Alice must make log2 𝑛+1 ORAM accesses (Alice can request the signed root directly). Figure 9b
shows that by adding machines, Snoopy scales to support high throughput for KT. At 18 machines
(15 subORAMs and 3 load balancers), Snoopy can process 1.1K reqs/sec with 300ms latency, 3.2K
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Figure 11: (a) Adding more subORAMs allows for increasing the data size while keeping the average response
time under 160ms (RTT from US to Europe). (b) Adding more subORAMs reduces latency. Snoopy is running
1 load balancer and storing 2M objects.

reqs/sec with 500ms latency, and 6.1K reqs/sec with 1s latency. Note that the throughput in Figure 9b
is much lower than Figure 9a because each KT operation requires 24 ORAM accesses.
Oblix as a subORAM. In Figure 10, we run Oblix [361] as a subORAM instead of Snoopy’s
throughput-optimized subORAM (Section 4.5). Snoopy’s load balancer design enables us to securely
scale Oblix beyond a single machine, achieving 15.6× higher throughput with Snoopy-Oblix for 17
machines with a max latency of 500ms (18K reqs/sec) than vanilla, single-machine Oblix (1.1K
reqs/sec). The spike in throughput between 8 and 9 machines is due to sharding the data such that two
instead of three layers of recursive lookups are required for every ORAM access. Snoopy-Oblix’s
performance also illustrates the value of our subORAM design; using our throughput-optimized
subORAM (Figure 9a) improves throughput by 4.85× with 17 machines and 500ms latency.

4.8.3 Scaling for latency and data size
While Snoopy is designed specifically for throughput scaling (Section 4.8.2), adding machines to
Snoopy can have other benefits if the load remains constant. We show how scaling can be used
to both reduce latency and tolerate larger data sizes under constant load in Figure 11. Figure 11a
illustrates how adding more subORAMs enables us to increase the number of objects Snoopy can
store while keeping average response time under 160ms (the round-trip time from the US to Europe).
The number of subORAMs required scales linearly with the data size because of the linear scan
every epoch. Adding a subORAM allows us to store on average 191K more objects, and with 15
subORAMs, we can store 2.8M objects.

Figure 11b shows how adding subORAMs reduces latency when data size and load are fixed: for
2M objects, the mean latency is 847ms with 1 subORAM and 112ms with 15 subORAMs. Adding
subORAMs parallelizes the linear scan across more machines, but has diminishing returns on
latency because the dummy request overhead also increases when we add subORAMs (Figure 3). As
expected, Oblix achieves a substantially lower latency (1.1ms) because it uses a tree-based ORAM
and processes requests sequentially. Obladi achieves a latency of 79ms with batch size 500.
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Figure 12: Breakdown of time to process one batch for different data sizes (one load balancer and one
subORAM).

1 thread 2 threads 3 threads Adaptive

210 212 214 216

Objects

1

5
10

50
100

So
rt

Ti
m

e
(s

)

(a) Bitonic sort

212 215 218 221

Objects

125

250

500

1,000
Pr

oc
es

sB
at

ch
Ti

m
e

(m
s)

(b) SubORAM process batch

Figure 13: (a) Parallelizing bitonic sort across multiple threads. (b) Parallelizing batch processing at the
subORAM across multiple enclave threads (batch size 4K requests).

4.8.4 Microbenchmarks
Breakdown of batch processing time. Figure 12 illustrates how time is spent processing a batch of
requests as batch size increases. As batch size increases, the load balancer time also increases, as the
load balancer must obliviously generate batches. The subORAM time is largely dependent on the
data size, as the processing time is dominated by the linear scan over the data. The subORAM batch
processing time jumps between 215 and 220 objects due to the cost of enclave paging.
Sorting parallelism. In Figure 13a, we show how parallelizing bitonic sort across threads reduces
latency, especially for larger data sizes. For smaller data sizes, the coordination overhead actually
makes it cheaper to use a single thread, and so we adaptively switch between a single-threaded and
multi-threaded sort depending on data size. Parallelizing bitonic sort improves load balancer and
subORAM performance.
SubORAM Parallelism. Similarly, in Figure 13b, we show how additional cores can be used to
reduce subORAM batch processing time. We rely on a host thread to buffer in the encrypted data in
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Figure 14: Optimal system configuration as throughput requirements increase for different data sizes (max
latency 1s). Larger dot sizes represent higher throughput requirements. We show a subset of configurations
from our planner in order to illustrate the overall trend of how adding machines best improves throughput.

the linear scan over the all objects in the subORAM (Section 4.7), and we can use the remaining
cores to parallelize both the hash table construction and linear scan.

4.8.5 Planner
In Figure 14, we use our planner to find the optimal resource allocation for different performance
requirements. Figure 14a shows the optimal number of subORAMs and load balancers to handle an
increasing request load for different data sizes with 1s average latency. To support higher throughput
levels, deployments with larger data sizes benefit from a higher ratio of subORAMs to load balancers,
as partitioning across subORAMs parallelizes the linear scan over stored objects. In Figure 14b, we
show how increasing throughput requirements affects system cost for different data sizes. Increasing
data increases system cost: for ∼$4K/month, we can support 51.6K reqs/sec for 1M objects and
122.9K reqs/sec for 10K objects. To compute these configurations, the planner takes as input
microbenchmarks for different batch sizes and data sizes. Because we cannot benchmark every
possible batch and data size, we use the microbenchmarks for the closest parameter settings. Our
planner’s estimates could be sharpened further by running microbenchmarks at a finer granularity.

4.9 Discussion
Fault tolerance and rollback protection. Data loss in Snoopy can arise through node crashes
and malicious rollback attacks. Many modern enclaves are susceptible to rollback attacks where,
after shutdown, the attacker replaces the latest sealed data with an older version without the enclave
detecting this change [401]. Prior work has explored how to defend against such attacks [80, 348].
Fault tolerance and rollback prevention are not the focus of this chapter, and so we only briefly
describe how Snoopy could be extended to defend against data loss. All techniques are standard.
Load balancers are stateless; we thus exclusively consider subORAMs. We propose to use a quorum
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replication scheme to replicate data to 𝑓 + 𝑟 +1 nodes where 𝑓 is the maximum number of nodes
that can fail by crashing and 𝑟 the maximum number of nodes that can be maliciously rolled back.
Systems like ROTE [348] or SGX’s monotonic counter provide a trusted counter abstraction that
can be used to detect which of the received replies corresponds to the most recent epoch. The
performance overhead of rollback protection would depend on the trusted counter mechanism
employed, but Snoopy only invokes the trusted counter once per epoch.
Next-generation SGX enclaves. While current SGX enclaves can only support a maximum EPC
size of 256MB, upcoming third-generation SGX enclaves can support EPC sizes up to 1TB [263].
This new enclave would not affect Snoopy’s core design, but could improve performance by reducing
the time for the per-epoch linear scan in the subORAM. With improved subORAM performance,
Snoopy might need fewer subORAMs for the same amount of data, affecting the configurations
produced by the planner (Section 4.8.5).
Private Information Retrieval (PIR). Snoopy’s techniques can also be applied to the problem of
private information retrieval (PIR) [112, 113]. A PIR protocol allows a client to retrieve an object
from a storage server without the server learning the object retrieved. One fundamental limitation of
PIR is that, if the object store is stored in its original form, the server must scan the entire object
store for each request.

Snoopy’s techniques can help overcome this limitation. We can replace the subORAMs with
PIR servers, each of which stores a shard of the data. Our load balancer design then makes it
possible to obliviously route requests to the PIR server holding the correct shard of the data. “Batch”
PIR schemes that allow a client to fetch many objects at roughly the server-side cost of fetching a
single object are well-suited tor our setting, as the load balancer is already aggregating batches of
requests [248, 267]. Existing systems develop relevant batching [29, 236] and preprocessing [290]
techniques.

4.10 Related work
We first describe related work at the time of publication of the original paper [139] (Section 4.10.1),
and then we include subsequent related work (Section 4.10.2).

4.10.1 Related work at the time of publication
We summarize relevant existing work, focusing on (1) oblivious algorithms designed for hardware
enclaves, (2) ORAM parallelism, (3) distributing an ORAM across machines, and (4) balls-into-bins
bounds for maximum load.
ORAMs with secure hardware. Existing research on oblivious computation using hardware enclave
primarily targets latency. Oblix [361], ZeroTrace [445], Obliviate [21], Pyramid ORAM [123],
and POSUP [253] do not support concurrency. Snoopy, in contrast, optimizes for throughput and
leverages batching for security and scalability. ObliDB [168] supports SQL queries by integrating
PathORAM with hardware enclaves, but uses an oblivious memory pool unavailable in Intel SGX.



CHAPTER 4. SNOOPY: AN OBLIVIOUS, SCALABLE OBJECT STORE 110

GhostRider [328] and Tiny ORAM [181] use FPGA prototypes designed specifically for ORAM.
While no general-purpose, enclave-based ORAM supports request parallelism, MOSE [252] and
Shroud [334] leverage data parallelism to improve the latency of a single request on large datasets.
MOSE runs CircuitORAM [103] inside a hardware enclave and distributes the work for a single
request across multiple cores. Shroud instead parallelizes Binary Tree ORAM across many secure
co-processors by accessing different layers of the ORAM tree in parallel. Shroud uses data parallelism
to optimize for latency and data size; throughput scaling is still limited because requests are processed
sequentially.
Supporting ORAM parallelism. A rich line of work explores executing multiple client requests
in parallel at a single ORAM server. Each requires some centralized component(s) that eventually
bottlenecks scalability. PrivateFS [517] and ConcurORAM [97] coordinate concurrent requests
to shared data using an encrypted query log on top of a hierarchical ORAM or a tree-based
ORAM, respectively. This query log quickly becomes a serialization bottleneck. TaoStore [442] and
Obladi [128] similarly rely on a trusted proxy to coordinate accesses to PathORAM and RingORAM,
respectively. Taostore processes requests immediately, maintaining a local subtree to securely
handle requests with overlapping paths. Obladi instead processes requests in batches, amortizing the
cost of reading/writing blocks over multiple requests. Batching also removes any potential timing
side-channels; while TaoStore has to time client responses carefully, Obladi can respond to all client
requests at once, just as in Snoopy.

PRO-ORAM [490], a read-only ORAM running inside an enclave, parallelizes the shuffling of
batches of

√
𝑁 requests across cores, offering competitive performance for read workloads. Snoopy,

in contrast, supports both reads and writes.
A separate, more theoretical line of work considers the problem of Oblivious Parallel RAMs

(OPRAMs), designed to capture parallelism in modern CPUs. Initiated by Boyle et al. [76],
OPRAMs have been explored in subsequent work [101–103, 108] and expanded to other models of
parallelism [425].
Scaling out ORAMs. Several ORAMs support distributing compute and/or storage across multiple
servers. Oblivistore [471] distributes partitions of SSS-ORAM [472] across machines and leverages
a load balancer to coordinate accesses to these partitions. This load balancer, however, does not
scale and becomes a central point of serialization. CURIOUS [63] is similar, but uses a simpler
design that supports different subORAMs (e.g. PathORAM). CURIOUS distributes storage but
not compute; a single proxy maintains the mapping of blocks between subORAMs and runs the
subORAM clients, which bottlenecks scalability. In contrast, Snoopy distributes both compute and
storage and can scale in the number of subORAMs and load-balancers. Moreover, Snoopy remains
secure when an attacker can see client response timing, unlike Oblivistore or CURIOUS [442].

Pancake [222] leverages a trusted proxy to transform a set of plaintext accesses to a uniformly
distributed set of encrypted accesses that can be forwarded directly to an encrypted, non-oblivious
storage server. While this approach achieves high throughput, the proxy remains a bottleneck as it
must maintain dynamic state about the request distribution.
Balls-into-bins analysis. Prior work derives bounds for the maximum number of balls in a bin that
hold with varying definitions of high probability, but are poorly suited to our setting because they
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are either inefficient to evaluate or do not have a cryptographically negligible overflow probability
under realistic system parameters [59, 362, 422]. Berenbrink et al. [59] assume a sufficiently large
number of bins to derive an overflow probability 𝑛−𝑐 for 𝑛 bins and some constant 𝑐 (Onodera
and Shibuya [385] apply this bound in the ORAM setting). Raab and Steger [422] use the first
and second moment method to derive a bound where overflow probability depends on bucket
load. Ramakrishna’s [426] bound can be numerically evaluated but is limited by the accuracy
of floating-point arithmetic, and we were unable to compute bounds with a negligible overflow
probability for 𝜆 ≥ 44. Reviriego et al. [434] provide an alternate formulation that can be evaluated
by a symbolic computation tool, but we were unable to efficiently evaluate it with SymPy.

4.10.2 Subsequent related work
We will now describe some related work since the time of publication of the original paper [139].

Recent work has explored how to improve the properties of oblivious storage systems. Shortstack
and QuORAM examine the problem of providing obliviousness and availability even when there are
failures [343, 505]. We discuss fault tolerance in Snoopy in Section 4.9, although it is not a core
part of our design. BULKOR makes bulk loading in PathORAM more efficient, and it supports
deployment on enclaves via doubly oblivious primitives [323]. Waffle [344] builds on Pancake [222]
to provide obliviousness against an attacker that can chose the sequence of requests, as opposed
to an adversary that can see accesses but cannot affect the requests (as in Pancake). EnigMap
constructs an oblivious map with an enclave and optimizes for the case where there is limited
external memory [487]. EnigMap targets the application of Signal private contact discovery, as well
as key transparency and databases.

Researchers have also proposed enclave-based oblivious systems that provide functionality
different from that of Snoopy. GraphOS allows a client to outsource a graph to a storage server and
obliviously run graph queries [98]. Boomerang uses enclaves for metadata-hiding messaging, and it
leverages our load balancer algorithm for adding dummy requests [272].

Recent work has also improved core oblivious building blocks. Ngai et al. develop oblivious
sorting and shuffling algorithms that scale across enclaves [378] Sasy, Johnson, and Goldberg
introduce oblivious sorting and shuffling algorithms in the offline/online model [446]. Gu et
al. designed a new oblivious sorting algorithm for enclaves that minimizes compute and page
swaps [229].

4.11 Parameter analysis
Theorem 9. For any set of 𝑅 requests that are distinct and randomly distributed, number of
subORAMs 𝑆, and security parameter 𝜆, let 𝜇 = 𝑅/𝑆, 𝛾 = − log(1/(𝑆 ·2𝜆)), and𝑊0(·) be branch 0
of the Lambert𝑊 function [120]. Then for the following function 𝑓 (𝑅, 𝑆) that outputs a batch size,
the probability that a request is dropped is negligible in 𝜆:

𝑓 (𝑅, 𝑆) = min(𝑅, 𝜇 · exp
[
𝑊0

(
𝑒−1 (𝛾/𝜇−1)

)
+1

]
) .
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Proof. Let 𝑋1, 𝑋2, . . . , 𝑋𝑅 be independent 0/1 random variables that represent request 𝑖 hashing to a
specific subORAM where Pr[𝑋𝑖 = 1] = 1/𝑆. Then, 𝑋 =

∑𝑅
𝑖=1 𝑋𝑖 is a random variable representing

the total amount of requests hashing to a specific subORAM.
We can apply the Chernoff bound here. Let 𝜇 = E[𝑋], which is

∑𝑅
𝑖=1 1/𝑆 = 𝑅/𝑆. Then,

Pr[𝑋 ≥ (1+ 𝛿)𝜇] ≤
(

𝑒𝛿

(𝛿+1)𝛿+1
)𝜇

The variable 𝑋 represents the total number of requests mapping to subORAM 𝑆, but we want to
upper bound the number of requests received at any subORAM. We can define a bad event overflow
that occurs when the number of requests received at any subORAM exceeds our upper bound. We
can compute the probability of this bad event by taking a union bound over all 𝑆 subORAMs:

Pr[overflow] ≤
𝑆∑︁
𝑗=1

Pr[𝑋 ≥ (1+ 𝛿)𝜇] = 𝑆 ·Pr[𝑋 ≥ (1+ 𝛿)𝜇]

In order to ensure that we do not drop a request except with negligible probability, we want
Pr[overflow] ≤ 1/2𝜆, which means we need to find some 𝛿 such that:

Pr[𝑋 ≥ (1+ 𝛿)𝜇] ≤
(

𝑒𝛿

(𝛿+1)𝛿+1
)𝜇
≤ 1
𝑆 ·2𝜆

From this point, we can solve for 𝛿 to find the upper bound:

− log
((

𝑒𝛿

(𝛿+1)𝛿+1
)𝜇)
≥ − log

(
1

𝑆 ·2𝜆
)
= 𝛾

−𝜇(log(𝑒𝛿) − (𝛿+1) log(𝛿+1)) ≥ 𝛾
−𝛿+ (𝛿+1) log(𝛿+1) ≥ 𝛾

𝜇

(−𝛿−1) + (𝛿+1) log(𝛿+1) ≥ 𝛾
𝜇
−1

(𝛿+1) (log(𝛿+1) −1) ≥ 𝛾
𝜇
−1

𝑒log(𝛿+1) (log(𝛿+1) −1) ≥ 𝛾
𝜇
−1

𝑒log(𝛿+1)−1(log(𝛿+1) −1) ≥ 𝑒−1
(
𝛾

𝜇
−1

)
log(𝛿+1) −1 ≥𝑊0

(
𝑒−1

(
𝛾

𝜇
−1

))
𝛿 ≥ 𝑒𝑊0

(
𝑒−1

(
𝛾
𝜇−1

))
+1−1

where𝑊0(·) is branch 0 of the Lambert𝑊 function [120].



CHAPTER 4. SNOOPY: AN OBLIVIOUS, SCALABLE OBJECT STORE 113

For small 𝑅, the above bound is greater than 𝑅. For 𝑓 (𝑅, 𝑆) = 𝑅, the overflow probability is zero,
and so we can safely upper-bound 𝑓 by 𝑅.

□

4.12 Security analysis
We adopt the standard security definition for ORAM [472, 473]. Intuitively, this security definition
requires that the server learns nothing about the access pattern. In the enclave setting, this means
that the enclave’s memory access pattern shouldn’t reveal any information about the requests or data.
Because Snoopy uses multiple enclaves, the communication pattern between enclaves also shouldn’t
reveal any information. We refer to the information that the adversary learns (the memory access
patterns and communication patterns) as the “trace”. At a high level, we must prove security by
showing that the adversary cannot distinguish between a real experiment, where enclaves are running
the Snoopy protocol on real requests and data, and an ideal experiment, where enclaves are running
a simulator program that only takes as input public information. We define these experiments in
detail below.

4.12.1 Enclave definition
We model a directed acyclic graph (DAG) of enclaves as the ideal functionality FEnc with the
following interface:

• EP← Load(P): The load function takes a program P and produces an enclave DAG EP loaded
with P (the program specifies the individual programs running on each enclave and the paths of
communication). This is implemented using a remote attestation procedure in Intel SGX.

• (out, 𝛾) ← Execute(EP, in): The execute function takes an enclave DAG loaded with P, feeds
in to the enclave DAG and produces the resulting output out as well as a trace of memory
accesses and communication patterns between enclaves 𝛾. Execute supports programs that
communicate across enclaves and access individual enclave memories and simply outputs the
trace of executing such programs.

We treat the enclave DAG as a black box that realizes the above ideal functionalities. We assume
that the server cannot roll back the enclaves during execution and that Execute provides privacy and
integrity for the enclave’s internal memory and communication between enclaves.

Our ideal functionality interface is loosely based on the interface in ZeroTrace [445]. However,
ZeroTrace only considers a single enclave whereas we consider a DAG of enclaves (similar to
Opaque [536]). Also, ZeroTrace outputs proofs of correctness, whereas we use an ideal functionality
where the enclave always loads and executes correctly.

4.12.2 Our model
We only model the case where there is a single client controlled by the adversary. We informally
discuss how to extend our security guarantees to the multi-user setting in Section 4.12.7.
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Adv FEnc(Π)
Input

Output, 𝛾

Figure 15: Real experiment for protocol Π running inside the enclave ideal functionality FEnc where 𝛾 is the
trace.

Adv Fideal FEnc(Sim)
Input

Output, 𝛾

Public input

𝛾

Figure 16: Ideal experiment where adversary interacts with the ideal functionality (computes the output for
the given input) and the ideal functionality sends the public information to a simulator program running inside
the enclave ideal functionality (FEnc) to generate the trace 𝛾.

Our ideal enclave DAG functionality hides the details of how enclaves securely communicate;
using authenticated encryption and nonces to avoid replaying messages are standard techniques
and discussed in other works [536]. We assume that the system configuration (the number of load
balancers and subORAMs) is fixed. Also, our ideal functionality protects the contents of memory,
and so we do not model the optimization (Section 4.7) where we place encrypted data in external
memory in order to reduce enclave paging overhead. Finally, we do not allow the attacker to perform
rollbacks attacks and we do not model fault tolerance (we do not model the system using the fault
tolerance and rollback protection techniques discussed in Section 4.9).

4.12.3 Oblivious storage definitions
An oblivious storage scheme consists of two protocols (OStoreInitialize,
OStoreBatchAccess), where OStoreInitialize initializes the memory, and
OStoreBatchAccess performs a batch of accesses. We describe the syntax for both protocols
below, which we will load and execute on an enclave DAG:

• OStoreInitialize(1𝜆, O), takes as input a security parameter 𝜆 and an object store O and
runs initialization.

• V←OStoreBatchAccess(R), a protocol where the client’s input is a batch R of requests
of the form (op, 𝑖, 𝑣𝑖) where op is the type of operation (read or write), 𝑖 is an index, 𝑣𝑖 is the
value to be written (for op = read, 𝑣𝑖 = ⊥). The output consists of the updated secret state 𝜎
and the requested values V (i.e., 𝑣1, . . . , 𝑣𝜇) assigned to the 𝑖1, . . . , 𝑖𝜇 values of O if op = read

(for op = write, the returned value is the value before the write).

Security. The security of an oblivious storage scheme is defined using a real experiment and an
ideal experiment, similarly to DORY (Section 2.9) and Waldo (Section 3.10). In the real experiment
(Figure 15), the adversary interacts with an enclave DAG loaded with the real protocol, and in
the ideal experiment (Figure 16), the adversary interacts with an ideal functionality. The ideal
functionality has the same interface as the real scheme but, rather than running the real protocol on the
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𝑏𝑖𝑡← RealOStore
Π,Adv (𝜆):

1: (𝑠, O) ← Adv(1𝜆)
2: EP← FEnc.Load(Π)
3: 𝛾0← FEnc.Execute(EP, (OStoreInitialize, 1𝜆,O)).
4: for 𝑘 = 1 to 𝑞 do ⊲ q: polynomial #queries
5: (R𝑘 , 𝑠) ← Adv1(𝛾0, . . . , 𝛾𝑘−1, V1, . . . ,V𝑘−1, 𝑠).
6: (V𝑘 , 𝛾𝑘 ) ← FEnc.Execute(EP, (OStoreBatchAccess, R𝑘 )).
7: end for
8: return 𝑏𝑖𝑡← Adv(𝛾0, . . . , 𝛾𝑘 , V1, . . . ,V𝑘 , 𝑠).
𝑏𝑖𝑡← IdealOStore

Sim,Adv (𝜆):
1: (𝑠, O) ← Adv(1𝜆).
2: EP← FEnc.Load(Sim)
3: 𝛾0← IdealOStoreInitialize(EP, 1𝜆, O).
4: for 𝑘 = 1 to 𝑞 do ⊲ q: polynomial #queries
5: (R𝑘 , 𝑠) ← Adv1(𝛾0, . . . , 𝛾𝑘−1, V1, . . . ,V𝑘−1, 𝑠).
6: (V𝑘 , 𝛾𝑘 ) ← IdealOStoreBatchAccess(EP, R𝑘 ).
7: end for
8: return 𝑏𝑖𝑡← Adv(𝛾0, . . . , 𝛾𝑘 , V1, . . . ,V𝑘 , 𝑠).

1 Security Definition 10 (weaker oblivious storage definition): Adv is not allowed to submit
duplicate requests in batch 𝑅𝑘 .

Figure 17: Real and ideal experiments for an oblivious storage scheme.

enclave DAG, it instead invokes a simulator (executing on the enclave DAG). Crucially, the simulator
does not get access to the set of requests and only knows the public information, which includes the
number of requests, structure of enclave DAG, and any other protocol-specific public parameters
(e.g. number of load balancers and subORAMs). The adversary can execute OStoreInitialize
and a polynomial number of OStoreBatchAccess for any set of requests, during which it
observes the memory access patterns and communication patterns in the enclave DAG (represented
by the trace produced by the Execute routine). The goal of the adversary is to distinguish between
the real and ideal experiments.

An oblivious storage scheme is secure if no efficient polynomial-time adversary can distinguish
between these two experiments with more than negligible probability. Our security definition has
a different setup than that of traditional ORAM [472, 473] (we use a network of enclaves rather
than the traditional client-server model), but our definition embodies the same security guarantees
(namely, that the trace generated from an access is simulatable from public information).

We prove the security of Snoopy modularly: we first prove that our subORAM construction is
secure, and then we prove that our Snoopy construction is secure when built on top of a secure
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𝛾← IdealOStoreInitialize(EP, 1𝜆, O):
1: Initialize a key-value store 𝑆 with contents from O.
2: Run 𝛾← FEnc.Execute(EP, (SimOStoreInitialize, 1𝜆, |O|))
3: return 𝛾.
(V, 𝛾) ← IdealOStoreBatchAccess(EP, R):

1: Run the batch of requests R on the key-value store 𝑆 to produced requested values V.
2: Run 𝛾← FEnc.Execute(EP, (SimOStoreBatchAccess, |R|))
3: return (V, 𝛾).

Figure 18: Ideal functionalities.

subORAM. To do this, we need a slightly different notion of subORAMs. In particular, our SubORAM
construction cannot be proven secure with Definition 6, since its security relies on the assumption
that a batch of oblivious accesses contains distinct requests. In order to prove the security of our
SubORAM we introduce a second, weaker security definition below.

Definition 10. (Weaker oblivious storage def.) The oblivious storage scheme Π is secure if for any
non-uniform probabilistic polynomial-time (PPT) adversary Adv who does not submit duplicated
requests inside a batch there exists a PPT Sim such that���Pr

[
RealOStore

Π,Adv (𝜆) = 1
]
−Pr

[
IdealOStore

Sim,Adv (𝜆) = 1
] ���≤ negl(𝜆)

where 𝜆 is the security parameter, the above experiments are defined in Figure 18 (see note 1), and
the randomness is taken over the random bits used by the algorithms of Π, Sim, and Adv.

4.12.4 Oblivious building blocks
We use the following oblivious building blocks:

• OCmpSwap(𝑏, 𝑥, 𝑦): If 𝑏 = 1, swap 𝑥 and 𝑦.
• OCmpSet(𝑏, 𝑥, 𝑦): If 𝑏 = 1, set 𝑥← 𝑦.
• 𝐿′←OSort(𝐿, 𝑓 ): Obliviously sorts the list 𝐿 by some ordering function 𝑓 , outputs sorted list
𝐿′.

• 𝐿′← OCompact(𝐿, 𝐵): Obliviously compacts the list 𝐿, outputting element 𝐿𝑖 only if 𝐵𝑖 = 1.
The order of the original list 𝐿 is preserved.

Our algorithms require only a simple “oblivious swap” primitive to build oblivious compare-and-
set, oblivious sort, and oblivious compact. In our implementation, we instantiate oblivious sort using
bitonic sort [46] and oblivious compaction using Goodrich’s algorithm [210]. We set the client’s
memory to be constant size in both. OCmpSwap and OCmpSet are standard oblivious building
blocks, as described in Oblix [361]. Thus, we can assume the existence of simulators SimOCmpSwap,
SimOCmpSet, SimOSort, and SimOCompact. While simulator algorithms usually run in their own
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“address space”, because we need to produce memory traces that are indistinguishable from those
produced by the original algorithm, we need to pass in the address of some objects, even if the
algorithms do not need to know the values of these objects. We define the following simulator
algorithms:

• SimOCmpSwap(addr⟨𝑥⟩, addr⟨𝑦⟩)): Simulates swapping 𝑥 and 𝑦 given a hidden input bit.
• SimOCmpSet(addr⟨𝑥⟩), addr⟨𝑦⟩)): Simulates setting 𝑥 to 𝑦 given a hidden input bit.
• SimOSort(addr⟨𝐿⟩, 𝑛, 𝑓 ): Simulates sorting list 𝐿 of length 𝑛 by ordering function 𝑓 .
• SimOCompact(addr⟨𝐿⟩, 𝑛, addr⟨𝐵⟩, 𝑚): Simulates compacting list 𝐿 of length 𝑛 using bits

in list 𝐵 where the number of bits in 𝐵 set to 1 is 𝑚.
We additionally use OHashTable [102], which is a two-tiered oblivious hash table that consists

of the polynomial-time algorithms (Construct, GetBuckets):
• 𝑇 ← OHashTable.Construct(𝐷): Given some data 𝐷, output a two-tiered oblivious hash table
𝑇 .

• (𝐵1, 𝐵2) ←OHashTable.GetBuckets(𝑇, idx): Given an oblivious hash table 𝑇 and some index
idx, output pointers to the two buckets corresponding to idx. Note that these buckets may be
both read from and written to.

As these algorithms are oblivious [102], we can assume the existence of a simulator SimOHashTable
with algorithms (Construct, GetBuckets):

• 𝑇 ← SimOHashTable.Construct(addr⟨𝐷⟩, 𝑛): Given the address of data 𝐷 of size 𝑛, simulate
constructing an oblivious hash table.

• (𝐵1, 𝐵2) ← SimOHashTable.GetBuckets(𝑇, addr⟨idx⟩): Given a hash table 𝑇 , simulate out-
putting pointers to two buckets corresponding to the private input idx.

Finally, we assume we have access to a keyed cryptographic hash function 𝐻.

4.12.5 SubORAM
We define an oblivious storage scheme SubORAM in Figure 19 that provides the interface defined
in Section 4.12.3 (we leave some empty lines in the protocol figure and corresponding simulator
figure so that corresponding operations have the same line number).

Theorem 7. Given a two-tiered oblivious hash table [102], an oblivious compare-and-set operator,
and an oblivious compaction algorithm, the subORAM scheme described in Section 4.5 and formally
defined in Figure 19 is secure according to Definition 10.

Proof. We construct our simulator in Figure 20 (we leave some empty lines so that corresponding
operations in Figure 19 have the same line number). We need to argue that the traces the adversary
receives as a result of executing the Initialize and BatchAccess routines do not allow the adversary
to distinguish between the real and ideal experiments. Communication patterns aren’t a concern,
as SubORAM only uses a DAG with a single enclave. Thus we only need to show that memory
access patterns are indistinguishable. To simplify the proof and our description of the simulator,
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we assume that functions with different signatures are indistinguishable; the memory accesses of
simulator functions that take fewer parameters (because they only take public input) can easily be
made indistinguishable from those of the actual functions by passing in dummy arguments. We
show how memory accesses are indistinguishable, first for Initialize and then for BatchAccess (line
numbers correspond to Figure 19 and Figure 20).
Initialization.

• (Line 1) The subORAM algorithm takes as input an array of size 𝑛, whereas the simulator
algorithm generates a random array of the same size with the same size objects. The resulting
arrays are indistinguishable.

• (Line 2) These steps are the same and only involve storing the arrays that we already established
are indistinguishable.

Batch access.
• (Lines 1-4) The original algorithm doesn’t perform any processing while the simulator algorithm

generates an array of the same size and same object size as the array passed as input to the
original algorithm. Even though the objects are randomly chosen in the simulator algorithm,
because the sizes of the same, both have the same memory usage.

• (Line 5) From the security of the two-tier oblivious hash table, the hash table construction
algorithm and the corresponding simulator algorithm produce indistinguishable memory access
patterns.

• (Lines 6, 8, 9) Both use the same looping structure that depends only on public data (i.e. the
number of objects and the bucket size).

• (Line 7) By the security of the oblivious hash table, the get buckets algorithm and the
corresponding simulator algorithm produce indistinguishable memory access patterns.

• (Lines 10, 11) By the security of the oblivious compare-and-swap, the original algorithm and
the simulator algorithm produce indistinguishable memory access patterns.

• (Line 15) Both algorithms perform linear scans over an array with a public size and add an
extra bit to each array entry.

• (Line 16) These lines are identical and make a new array where the size is public (same size
and object size as an existing array).

• (Line 17) By the security of oblivious compaction, the original compaction algorithm and the
simulator algorithm produce indistinguishable memory access patterns.

The only task that remains is to show that the responses returned in the real and ideal experiments
are indistinguishable. The correctness of the results follows from Theorem 12, where we prove that
our subORAM responds to read requests to an object by returning the last write to that object. □

4.12.6 Snoopy
We now define Snoopy as a protocol for 𝐿 load balancers and 𝑆 subORAMs S1, . . . ,S𝑆 in Figure 21,
as well as a load balancer scheme in Figure 23 and Figure 25 (we leave some empty lines in the
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SubORAM.Initialize(1𝜆,O)
1: Parse O as (𝑜1, . . . , 𝑜𝑛) where 𝑜𝑖 = (idx, content).
2: Store O.

V← SubORAM.BatchAccess(R)
1: Parse R as (𝑟1, . . . , 𝑟𝑁 ), where 𝑟𝑖 = (type, idx, content).
2: if R contains duplicates then
3: return ⊥.
4: end if
5: Set 𝑇 ← OHashTable.Construct(R).
6: for 𝑖 = 1, . . . , 𝑛 do
7: Set Bkt1,Bkt2← OHashTable.GetBuckets(𝑇, O[𝑖] .idx).
8: for 𝑗 = 1,2 do
9: for 𝑙 = 1, . . . , |Bkt 𝑗 | do

10: OCmpSet((Bkt 𝑗 [𝑙] .idx ?
= O[𝑖] .idx), O[𝑖] .content, Bkt 𝑗 [𝑙] .content).

11: OCmpSet((Bkt 𝑗 [𝑙] .idx ?
= O[𝑖] .idx) ∧ (Bkt 𝑗 [𝑙] .type ?

=
write), Bkt 𝑗 [𝑙] .content, O[𝑖] .content).

12: end for
13: end for
14: end for
15: Scan through 𝑇 , marking each entry 𝑖 with bit 𝑏𝑖 = 0 if it is a dummy, setting 𝑏𝑖 = 1

otherwise.
16: Set B← (𝑏1, . . . , 𝑏 |𝑇 |).
17: Run V← OCompact(𝑇, B).
18: return V.

Figure 19: Our subORAM construction.

protocol figures and corresponding simulator figures so that corresponding operations have the same
line number).

Theorem 8. Given a keyed cryptographic hash function, an oblivious compare-and-set operator, an
oblivious sorting algorithm, an oblivious compaction algorithm, and an oblivious storage scheme
(secure according to Definition 10), Snoopy, as described in Section 4.4 and formally defined in
Figure 21, is secure according to Definition 6.

Proof. Our Snoopy construction is presented in Figure 21, with the corresponding simulator in
Figure 22. We again need to show that the traces that the adversary receives as a result of executing
Initialize and BatchAccess do not allow the adversary to distinguish between the real and ideal
experiments.
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SimSubORAM.Initialize(1𝜆, |O|)
1: Let (𝑛, 𝜅) = |O| (𝜅 is the object size). Create an array O = 𝑜1, . . . , 𝑜𝑛 of random entries of

size 𝜅, where 𝑜𝑖 = (idx, content).
2: Store O.

SimSubORAM.BatchAccess(𝑁)
1: Let 𝑁 be a public parameter, which denotes the number of requests that the input batch

contains.
2: Choose 𝑁 random distinct identifiers idx1, . . . , idx𝑁 where for all 𝑖 ∈ [𝑁], idx𝑖 is an idx value

in O.
3: Create R of the form (𝑟1, . . . , 𝑟𝑁 ), where 𝑟𝑖 = (read, idx𝑖, ⊥).
4:
5: Run 𝑇 ← SimOHashTable.Construct(addr⟨R⟩, 𝑁).
6: for 𝑖 = 1, . . . , 𝑛 do
7: Set Bkt1,Bkt2← SimOHashTable.GetBuckets(𝑇,addr⟨O[𝑖] .idx⟩).
8: for 𝑗 = 1,2 do
9: for 𝑙 = 1, . . . , |Bkt 𝑗 | do

10: SimOCmpSet(addr⟨O[𝑖] .content⟩, addr⟨Bkt 𝑗 [𝑙] .content⟩).
11: SimOCmpSet(addr⟨Bkt 𝑗 [𝑙] .content⟩, addr⟨O[𝑖] .content⟩).
12: end for
13: end for
14: end for
15: Scan through 𝑇 , marking each entry with bit 𝑏𝑖 = 0.
16: Set B← (𝑏1, . . . , 𝑏 |𝑇 |).
17: Run V← SimOCompact(addr⟨𝑇⟩, |𝑇 |, addr⟨B⟩, 𝑁).
18:

Figure 20: Simulator algorithms SimSubORAM = (Initialize, BatchAccess).

The communication patterns in the real and ideal experiments are indistinguishable. Both
experiments perform setup at the first load balancer and then copy state to the remaining load
balancer (communication pattern is deterministic). For BatchAccess, in both experiments, we choose
a random load balancer, which then communicates with every subORAM (the amount of data sent to
each subORAM depends only on public information). Thus there is no difference in the distribution
of communication patterns between the real and ideal experiments.

We now discuss memory access patterns. As in the proof for Theorem 8, to simplify the
proof and our description of the simulator, we assume that functions with different signatures are
indistinguishable; the memory accesses of simulator functions that take fewer parameters (because
they only take public input) can easily be made indistinguishable from those of the actual functions
by passing in dummy arguments. As is clear from Figure 21 and Figure 22, the Initialize and
BatchAccess algorithms are identical except that (1) the simulator algorithm generates random
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objects and random requests rather than taking them as input, and (2) the simulator algorithm calls
the SimLoadBalancer algorithms. Thus the only task that remains is to show that the memory access
patterns generated by the LoadBalancer and SimLoadBalancer algorithms are indistinguishable.

We start with Initialize and then examine BatchAccess (line numbers correspond to Figure 23,
Figure 24, Figure 25, Figure 26).
Initialization.

• (Lines 1-2) The load balancer algorithm takes an array O whereas the simulator algorithm
generates a random array of the same size (same number of objects and same object size). Thus
the memory used by these arrays is indistinguishable.

• (Lines 3-8) These lines are identical. We sample a key and then perform a linear scan over an
array where the size of the array and object size is public, attaching a tag to each element.

• (Line 9) By the security of our oblivious sort, the sorting algorithms over different arrays
with the same length, same object size, and same ordering function produce indistinguishable
memory access patterns because of the existence of the simulator function that only takes in
array length, object size, and the ordering function.

• (Lines 10-17) These lines are identical. We iterate over the array where the array size is public.
We write the algorithm as branching based on a comparison to private data in order to improve
readability, but this would in practice be implemented using OCmpSet in the original algorithm
and SimOCmpSet in the simulator algorithm, which produce indistinguishable access patterns.

• (Lines 19-21) By the security of the underlying subORAM scheme, the initialize procedure for
the subORAM and the corresponding simulator algorithm produce indistinguishable memory
access patterns.

• (Lines 22-23) These lines are identical and only store a cryptographic key.
Batch access.

• (Lines 1-2) Establishing parameters and hash functions.
• (Lines 3-4) The load balancer receives a list of requests whereas the simulator algorithm

generates a random array of the same size (same number of requests and same format). Thus
the memory used by these arrays is indistinguishable.

• (Lines 5-11) These lines are identical and only compute a function based on public information
and perform a linear scan over an array (same size and format in both). Thus the memory access
patterns are indistinguishable.

• (Line 12) By the security of the oblivious sorting algorithm, the oblivious sort and the
corresponding simulator algorithm produce indistinguishable memory access patterns.

• (Line 13) These lines are identical and require accessing 𝛼 objects in a fixed location where 𝛼
is computed using public information.

• (Line 14) By the security of the oblivious compaction algorithm, the oblivious compaction and
the corresponding simulator algorithm produce indistinguishable memory access patterns.

• (Lines 15-17) By the security of the underlying subORAM scheme, the batch access algorithm
and the corresponding simulator algorithm produce indistinguishable memory access patterns.
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• (Line 18) These lines are identical and create an array where the number of objects is based on
public information and the object size is a public parameter.

• (Line 19) These lines set the same function.
• (Line 20) By the security of the underlying sorting algorithm, the oblivious sort and the

corresponding simulator algorithm produce indistinguishable memory access patterns.
• (Line 21-24) The structure of the loop is the same in both algorithms and depends only on

public information (𝑁 +𝛼𝑆), and the compare-swap primitive guarantees that the algorithm and
the simulator algorithm produce indistinguishable memory access patterns.

• (Line 25) Creates a list where the list size is based on public information (𝑁 +𝛼𝑆) and the
object size is public.

• (Line 26) By the security of the underlying compaction algorithm, the oblivious compaction
and the corresponding simulator algorithm produce indistinguishable memory access patterns.

While the memory access patterns generated are indistinguishable in all cases, the adversary
could potentially be able to distinguish between the real and ideal experiments if the adversary
could cause the responses between the real and ideal experiments to differ. The only way that the
adversary could do this is if the number of requests assigned to a subORAM exceeds 𝑓 (𝑁,𝑆) for 𝑁
total requests and 𝑆 subORAMs. The load balancer algorithm guarantees that requests in a batch
are distinct (we use oblivious compaction to remove duplicates) and randomly distributed (we use
a keyed hash function). Furthermore, the attacker cannot learn information about how requests
are routed to subORAMs because the access patterns do not leak the assignment of requests to
subORAMs (as proven above). Thus we can apply Theorem 9, and so the probability that a batch
overflows is negligible in 𝜆. Finally, Theorem 11 guarantees that reads always see the result of the
last write, and so, the probability that the adversary can distinguish between the real experiment and
the ideal experiment is negligible in 𝜆. □

4.12.7 Discussion of multiple clients
Our proof only considers a single client, and so we briefly (and informally) discuss how to extend
our guarantees to multiple clients. In the case where multiple clients are controlled by a single
adversary, we simply need to modify the adversary to choose requests for each client, and then the
clients forward the requests to the oblivious storage system. The oblivious storage protocol and the
ideal functionality then needs to route the correct response to the correct client (rather than sorting
by object ID on line 19 in Figure 25, the load balancer can sort by the client ID, object ID, bit 𝑏
tuple).

We now consider the case where there is an honest client submitting read requests and all other
clients are controlled by the adversary. Note that write requests cannot be private in the case where
the adversary can make read requests, as the adversary can always read all objects to tell what
objects was written to by the honest client. We simply want to hide the contents of the read requests
made by the honest client (we do not hide the timing or the number). In our proof, we show that the
trace generated by operating on the batch of requests submitted by the adversary is indistinguishable
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Snoopy.Initialize𝐿,𝑆 (1𝜆, O)
1: Let 𝐿 be a public parameter, which denotes the number of load balancers.
2: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
3: 𝑘← LoadBalancer.Initialize𝑆 (1𝜆, O).
4: Send 𝑘 to the remaining 𝐿−1 load balancers.

V← Snoopy.BatchAccess𝐿,𝑆 (R)
1: Let 𝐿 be a public parameter, which denotes the number of load balancers.
2: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
3: Wait to receive |R| requests.
4: Pick at random a load balancer 𝑖.
5: Run V𝑖← LoadBalancer𝑖 .BatchAccess𝑆 (R).
6: return V𝑖.

Figure 21: Our Snoopy construction.

SimSnoopy.Initialize𝐿,𝑆 (1𝜆, |O|)
1: Let 𝐿 be a public parameter, which denotes the number of load balancers.
2: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
3: 𝑘← SimLoadBalancer.Initialize𝑆 (1𝜆, |O|).
4: Send 𝑘 to the remaining 𝐿−1 load balancers.

SimSnoopy.BatchAccess𝐿,𝑆 (𝑁)
1: Let 𝐿 be a public parameter, which denotes the number of load balancers.
2: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
3: Let 𝑁 be the number of requests.
4: Pick at random a load balancer 𝑖.
5: Run SimLoadBalancer𝑖 .BatchAccess𝑆 (𝑁).
6:

Figure 22: Simulator algorithms SimSnoopy = (Initialize, BatchAccess).

from the trace generated by operating on a random batch of requests, and so the execution trace will
not reveal information about the honest client’s accesses. Using the modification described above,
we also ensure that the correct responses are routed to the correct client, and so the adversary cannot
learn information about the honest client’s read requests from the returned responses.

4.13 Linearizability
Snoopy implements a linearizable key-value store. We define the following terms:
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𝑘← LoadBalancer.Initialize𝑆 (1𝜆, O)
1: Parse O as 𝑜1, . . . , 𝑜𝑛.
2: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
3: Let 𝐻 be a keyed cryptographic hash function that outputs an element in [𝑆].
4: Sample a secret key 𝑘←R {0,1}𝜆.
5: for 𝑖 = 1, . . . , 𝑛 do
6: Attach to 𝑜𝑖 the tag 𝑡 = 𝐻𝑘 (𝑜𝑖 .idx).
7: end for
8: Let 𝑓order be the ordering function that orders by tag 𝑡.
9: O← OSort(O, 𝑓order).

10: Let 𝑥← 0.
11: Let prev←⊥.
12: for 𝑖 = 1, . . . , |O| do
13: if O[𝑖] .𝑡 ≠ prev then
14: Let 𝑦𝑥← 𝑖.
15: Let 𝑥← 𝑥 +1.
16: Let prev←O[𝑖] .𝑡.
17: end if
18: end for
19: for 𝑖 = 1, . . . , 𝑆 do
20: Run SubORAM.Initialize(1𝜆, O[𝑦𝑖−1 : 𝑦𝑖]).
21: end for
22: Store 𝑘 .
23: return 𝑘 .

Figure 23: Our load balancer initialization construction. Lines 13-16 would in practice be implemented using
OCmpSet, but we write it using an if statement that depends on private data to improve readability.

• An operation 𝑜 has both a start time 𝑜𝑠𝑡𝑎𝑟𝑡 (the time at which the operation was received by a
load balancer), and an end time 𝑜𝑒𝑛𝑑 (the time at which the operation was committed by the
load balancer).

• Operation 𝑜′ follows operation 𝑜 in real-time (𝑜 −→
𝑟𝑡
𝑜′) if 𝑜𝑒𝑛𝑑 < 𝑜′𝑠𝑡𝑎𝑟𝑡 .

• 𝑜′ and 𝑜 are said to be concurrent if neither 𝑜 nor 𝑜′ follow each other.
• Operations can be either reads (𝑟𝑒𝑎𝑑 (𝑥), which reads key 𝑥), or writes (𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣), which

writes value 𝑣 to key 𝑥).
Linearizability requires that for any set of operations, there exists a total ordered sequence of these

operations (a linearization – we write 𝑜 −→ 𝑜′ if o’ follows o in the linearization) such that:
• The linearization respects the real-time order of operations in the set: If 𝑜 −→

𝑟𝑡
𝑜′ then 𝑜 −→ 𝑜′

(C1).



CHAPTER 4. SNOOPY: AN OBLIVIOUS, SCALABLE OBJECT STORE 125

𝑘← SimLoadBalancer.Initialize(1𝜆, |O|)
1: Let (𝑛, 𝜅) = |O|. ⊲ 𝜅 is the size of the object
2: Create an array O (1, 𝑜1), (2, 𝑜2), . . . , (𝑛, 𝑜𝑛) of the form (idx, content), where 𝑜𝑖 is a

random entry of size 𝜅.
3: Let 𝐻 be a keyed cryptographic hash function that outputs an element in [𝑆].
4: Sample a secret key 𝑘←R {0,1}𝜆.
5: for 𝑖 = 1, . . . , 𝑛 do
6: Attach to 𝑜𝑖 the tag 𝑡 = 𝐻𝑘 (𝑜𝑖 .idx).
7: end for
8: Let 𝑓order be the ordering function that orders by tag 𝑡.
9: OSort(O, 𝑓order).

10: Let 𝑥← 0.
11: Let prev←⊥.
12: for 𝑖 = 1, . . . , |O| do
13: if M[𝑖] .𝑡 ≠ prev then
14: Let 𝑦𝑥← 𝑖.
15: Let 𝑥← 𝑥 +1.
16: Let prev←O[𝑖] .𝑡.
17: end if
18: end for
19: for 𝑖 = 1, . . . , 𝑆 do
20: Run SimSubORAM𝑖 .Initialize(1𝜆, |O[𝑦𝑖−1 : 𝑦𝑖] |).
21: end for
22: Store 𝑘 .
23: return 𝑘 .

Figure 24: Load balancer simulator for SimLoadBalancer.Initialize. Lines 13-16 would in practice be
implemented using OCmpSet, but we write it using an if statement that depends on private data to improve
readability.

• The linearization respects the sequential semantics of the underlying data-structure. Snoopy
follows the semantics of a hashmap: given two operations 𝑜 and 𝑜′ on the same key, where 𝑜
is a write 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣), and 𝑜′ is a read 𝑟𝑒𝑎𝑑 (𝑥), then, if there does not exist an 𝑜′′ such that
𝑜′′ = 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣′) and 𝑜 −→

𝑟𝑡
𝑜′′ −→

𝑟𝑡
𝑜′, then 𝑟𝑒𝑎𝑑 (𝑥) = 𝑣. In other words, the data structure always

returns the value of the latest write to that key (C2).
As in our security proofs, we prove linearizability separately for our subORAM scheme and for

Snoopy instantiated with any subORAM.

Theorem 11. Snoopy is linearizable when the subORAM is instantiated with a oblivious storage
scheme that is secure according to Definition 10.
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V← LoadBalancer.BatchAccess𝑆 (R)
1: Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
2: Let H𝑘 (·) be a cryptographic hash function keyed by stored key 𝑘 that outputs an element

in [𝑆].
3: Parse R as (𝑟1, . . . , 𝑟𝑁 ), where 𝑟𝑖 = (type, idx, content).
4:
5: Compute 𝛼← 𝑓 (𝑁,𝑆) and initialize the empty list L of size 𝑁 +𝛼𝑆.
6: for 𝑖 = 1, . . . , 𝑁 do
7: L[𝑖] = (𝑟𝑖 .type, 𝑟𝑖 .idx, 𝑟𝑖 .content, H𝑘 (𝑟𝑖 .idx)).
8: end for
9: L′← Create a copy of L.

10: Append to L′ 𝛼 dummy requests for each SubORAM of the form (read, idx, ⊥, 𝑠), where
idx is H𝑘 (idx) = 𝑠.

11: Let 𝑓order be the ordering function that orders by SubORAM and then by type (where ⊥ is
last and treated as read).

12: Run L′← OSort(L, 𝑓order).
13: Tag the first 𝛼 distinct requests per SubORAM with 𝑏 = 1 and the remaining requests with

𝑏 = 0.
14: Set B← (𝑏1, . . . , 𝑏𝑁+𝛼𝑆) and run L′← OCompact(L′, B).
15: for 𝑖 = 1, . . . , 𝑆 do
16: Run V𝑖← SubORAM𝑖 .BatchAccess(L′[(𝑖−1)𝛼+1 : 𝑖𝛼]).
17: end for
18: Set X← (V1, . . . ,V𝑆,L) tagging all responses with 𝑏 = 0 and requests with 𝑏 = 1.
19: Let 𝑓order be the ordering function that orders by idx and then by 𝑏 (i.e., giving priority to

responses over requests).
20: Set X′← OSort(X, 𝑓order).
21: Set prev←⊥.
22: for 𝑖 = 1, . . . , |𝑋′| do
23: OCmpSet(𝑏𝑖 ?

= 0, prev, X′[𝑖] .content) and OCmpSet(𝑏𝑖 ?
= 1, X′[𝑖] .content, prev).

24: end for
25: Set B← (𝑏1, . . . , 𝑏𝑁+𝛼𝑆).
26: Run V← OCompact(X′, B).
27: return V.

Figure 25: Our load balancer construction.

Proof. We prove that there exists a linearization that follows the hashmap’s sequential specification:
each operation is totally ordered according to the (batch commit time epoch, load balancer id lb,
operation type optype, batch insertion index ind) tuple (sorting first by batch commit time, next
by load balancer id, next giving priority to reads over writes, and finally by arrival order) . Let
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SimLoadBalancer.BatchAccess(𝑁)
1: Let 𝑁 be a public parameter, which denotes the number of requests that the queried batch

contains. Let 𝑆 be a public parameter, which denotes the number of used SubORAMs.
2: Let H𝑘 (·) be a cryptographic hash function keyed by stored key 𝑘 that outputs an element

in [𝑆].
3: Choose 𝑁 random identifiers idx1, . . . , idx𝑁 where for all 𝑖 ∈ [𝑁], idx𝑖 is an idx value in O.
4: Create R of the form (𝑟1, . . . , 𝑟𝑁 ), where 𝑟𝑖 = (read, idx𝑖, ⊥).
5: Compute 𝛼← 𝑓 (𝑁,𝑆,𝜆) and initialize the empty list L of size 𝑁 +𝛼𝑆.
6: for 𝑖 = 1, . . . , 𝑁 do
7: L[𝑖] = (𝑟𝑖 .type, 𝑟𝑖 .idx, 𝑟𝑖 .content, H𝑘 (𝑟𝑖 .idx)).
8: end for
9: L′← Create a copy of L.

10: Append to L′ 𝛼 dummy requests for each SubORAM of the form (read, idx, ⊥, 𝑠), where
idx is H𝑘 (idx) = 𝑠.

11: Let 𝑓order be the ordering function that orders by SubORAM and then by type (where ⊥ is
last and treated as read).

12: Run SimOSort(addr⟨L′⟩, |L′|, 𝑓order).
13: Tag the first 𝛼 requests per SubORAM with 𝑏 = 1 and the remaining requests with 𝑏 = 0.
14: Set B← (𝑏1, . . . , 𝑏𝑁+𝛼𝑆) and run SimOCompact(addr⟨L′, ⟩, 𝑁 +𝛼𝑆, addr⟨B⟩, 𝛼𝑆).
15: for 𝑖 = 1, . . . , 𝑆 do
16: Run V𝑖← SimSubORAM𝑖 .BatchAccess(𝛼).
17: end for
18: Let X be an array of 𝑁 +𝛼𝑆 objects the same size as the objects in L with a tag bit.
19: Let 𝑓order be the ordering function that orders by idx and then by 𝑏 (i.e., giving priority to

responses over requests).
20: Run SimOSort(addr⟨X⟩, |X|, 𝑓order).
21: Set prev←⊥.
22: for 𝑖 = 1, . . . , |X′| do
23: SimOCmpSet(addr⟨prev⟩, addr⟨X′[𝑖] .content⟩) and

SimOCmpSet(addr⟨X′[𝑖] .content⟩, addr⟨prev⟩).
24: end for
25: Set B← (𝑏1, . . . , 𝑏𝑁+𝛼𝑆).
26: Run SimOCompact(addr⟨X′⟩, |X′|, addr⟨B⟩, 𝑁).
27:

Figure 26: Load balancer simulator for SimLoadBalancer.BatchAccess.

𝑜1 −→ 𝑜2 −→ ... −→ ..𝑜𝑛 be the resulting linearization. We prove the aforementioned statement in two
steps: (1) the statement holds true for 𝑜𝑛 −→ 𝑜𝑛+1, and (2) the statement holds true transitively. Note
that we assume load balancers and subORAMs can take a single action per timestep.
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1. 𝑜𝑛 −→ 𝑜𝑛+1 We prove this by contradiction. Assume that 𝑜 −→ 𝑜′ violates either condition C1 or
condition C2.

• (C1) Assume that condition C1 is violated: 𝑜𝑒𝑛𝑑 ≥ 𝑜′𝑠𝑡𝑎𝑟𝑡 . Now, consider 𝑜 −→ 𝑜′: it follows
by assumption that (𝑏𝑎𝑡𝑐ℎ𝑜, 𝑙𝑏𝑜) ≤ (𝑏𝑎𝑡𝑐ℎ𝑜′ , 𝑙𝑏𝑜′). If 𝑙𝑏𝑜 == 𝑙𝑏𝑜′ , o and o’ are either
in the same epoch or 𝑜′ is in the epoch that follows 𝑜 at the same load balancer. In
both cases, 𝑜′ cannot have a start time greater or equal than 𝑜’s start time: each load
balancer processes each epoch sequentially and waits for all batches to commit. We have
a contradiction. Consider next the case in which 𝑏𝑎𝑡𝑐ℎ𝑜 == 𝑏𝑎𝑡𝑐ℎ𝑜′ and 𝑙𝑏𝑜 ≤ 𝑙𝑏𝑜′ . We
have 𝑜𝑠𝑡𝑎𝑟𝑡 < 𝑏𝑎𝑡𝑐ℎ𝑜 < 𝑜𝑒𝑛𝑑 and 𝑜′𝑠𝑡𝑎𝑟𝑡 < 𝑏𝑎𝑡𝑐ℎ𝑜′ < 𝑜′𝑒𝑛𝑑 . As 𝑏𝑎𝑡𝑐ℎ𝑜 == 𝑏𝑎𝑡𝑐ℎ𝑜′ , we have
𝑜′𝑠𝑡𝑎𝑟𝑡 < 𝑒𝑝𝑜𝑐ℎ𝑜 < 𝑜𝑒𝑛𝑑 . We once again have a contradiction.

• (C2) Assume that condition C2 is violated: 𝑜 = 𝑤𝑟𝑖𝑡𝑒(𝑥, 𝑣) and 𝑜′ = 𝑟𝑒𝑎𝑑 (𝑥), but 𝑜′ returns
𝑣 ≠ 𝑣′ and there does not exist an 𝑜′ such that 𝑜 −→

𝑟𝑡
𝑜′′ −→

𝑟𝑡
𝑜′. We consider two cases: (1)

𝑜 and 𝑜′ are in different batches, and (2) 𝑜 and 𝑜′ are in the same batch. First, consider
the case in which 𝑜 and 𝑜′ are in different batches and 𝑏𝑎𝑡𝑐ℎ𝑜 < 𝑏𝑎𝑡𝑐ℎ𝑜′ (if 𝑜 and 𝑜′
write to the same key 𝑥 and are in different batches, then 𝑏𝑎𝑡𝑐ℎ𝑜 ≠ 𝑏𝑎𝑡𝑐ℎ𝑜′ as subORAMs
processes batches of requests sequentially). It follows that 𝑜′ executed after 𝑜. There are
two cases: (1) 𝑜 is the write in the batch with the highest index, and (2) there exists a write
𝑜′′ with a higher index. In the latter case, we have a contradiction: our linearization order
orders writes by index, as such there exists an intermediate write 𝑜′′ in the linearization
order 𝑜 −→ 𝑜′′ −→ 𝑜′. Instead, consider 𝑜 to be the write with the highest index. This write
gets persisted to the subORAM as part of the batch. By the correctness of the underlying
oblivious storage scheme, a read from oblivious storage (instantiated in our system as a
subORAM, see Theorem 12) returns the latest write to that key. As such, if 𝑜′ reads 𝑥 in
a batch that follows 𝑜’s write to 𝑥 with no intermediate writes to that key, 𝑜′ will return
the value written by 𝑜. We have a contradiction once again. (2) If 𝑜 and 𝑜′ are instead in
the same batch, then 𝑏𝑎𝑡𝑐ℎ𝑜 == 𝑏𝑎𝑡𝑐ℎ′𝑜. By our linearization order specification, reads are
always ordered before writes in a batch, so 𝑜′ −→ 𝑜. We have a contradiction.

2. Transitivity. The proof holds trivially for chains of arbitrary length 𝑜1 −→ .. −→ 𝑜𝑛 due the
transitive nature of inequalities and the pairwise nature of operation correctness on a hashmap.

□

Theorem 12. Our subORAM (Figure 19) always returns the value of the latest write to an
object, provided that it is instantiated from a two-tiered oblivious hash table [102], an oblivious
compare-and-set operator, and an oblivious compaction algorithm.

Proof. We prove this by contradiction. Assume that the last write to object 𝑜 was value 𝑣 and a
subsequent read of object 𝑜 in epoch 𝑖 returns value 𝑣′ where 𝑣 ≠ 𝑣′. Because reads are ordered
before writes in the same epoch, a write cannot take place between the end of the end of epoch 𝑖−1
and a read in epoch 𝑖. Then, by the correctness of the oblivious hash table (which we use to retrieve
the correct request for an object when scanning through all objects), the oblivious compare-and-set
primitive (which copies the object value correctly to the request’s response data if the request is a
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read), and oblivious compaction (which ensures that entries in the hash table corresponding to real
requests are returned) it must be the case that the value for object 𝑜 in the subORAM at the end of
epoch 𝑖−1 is 𝑣′. By the correctness of our oblivious hash table (which we use to retrieve the correct
request for an object when scanning through all objects) and oblivious compare-and-set primitive
(which copies the request value correctly to the object value if the request is a write) and because
write requests in the same batch are distinct (our load balancer deduplicates requests in the same
epoch), the last write to object 𝑜 before epoch 𝑖 must have been value 𝑣′. Thus we have reached a
contradiction (𝑣 ≠ 𝑣′), completing the proof. □

4.14 Access control
Throughout the chapter, we assume that all clients are trusted to make any requests for any objects.
However, practical applications may require access control. We now (informally) describe how to
implement access control for Snoopy. A plaintext system can store an access control matrix and,
upon receiving a request, look up the user ID and object ID in the matrix to check if that user has the
privileges to make that request. In an oblivious system, the challenge is that the load balancer cannot
query the access control matrix directly, as the location in the access control matrix reveals the
object ID requested by the client. We instead need to access the access control matrix obliviously.

We can do this using Snoopy recursively. In addition to the objects themselves, the subORAMs
now need to store the access control matrix, where each object has the tuple (user ID, object ID,
type) as the key (where type is either “read” or “write”) and 1 or 0 as the value depending on
whether or not the user has permission for that operation. The load balancer then needs to obliviously
retrieve the access-control rule pertaining to the requests it received from the clients and apply the
access-control rule when generating responses for the clients. Notably, if a client does not have
permission to perform a read, Snoopy should return a null value instead of the object value, and
if the client does not have permission to perform a write, it should not copy the value from the
request to the object. In order to ensure that a user is querying with the correct user ID, users should
authenticate to the load balancer using a standard authentication mechanism (e.g. password or digital
signature).

Now, upon receiving a request, the load balancer generates a read request to the access control
matrix for the tuple (user ID, object ID, type) corresponding to the original request. The load
balancer generates batches of access-control read requests that it shards across the subORAMs. This
is equivalent to running Snoopy recursively where the load balancer acts as both a client and load
balancer for the batch of access-control read requests. When the load balancer receives the results of
the access-control read requests, it then matches the access-control responses to the original requests
by performing an oblivious sort by (user ID, object ID, type) on both the access-control responses
and the original list of requests. The load balancer scans through the lists in tandem (examine both
lists at index 0, then at index 1, etc.), copying the bit 𝑏 returned in the access-control response to the
original request. The load balancer then sends the original requests (including this new bit 𝑏) to the
subORAMs as in the original design of Snoopy.
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When executing the requests, the subORAMs additionally check the value of 𝑏 in the oblivious
compare-and-set operation (lines 10 and 11 in Figure 19) to ensure that the operation is permitted
before performing it. Note that it is critical that we hide which operations are permitted and which
are not during execution; otherwise, an attacker can submit requests that aren’t permitted and, by
observing execution, see where in the sorted list of requests the failed request was (which leaks
information about the permitted requests). Executing requests with access control now requires two
epochs of execution (one to query the access control matrix and one to process the client’s actual
request) to return the response to the user.

4.15 Conclusion
Snoopy is a high-throughput oblivious storage system that scales like a plaintext storage system.
Through techniques that enable every system component to be distributed and parallelized while
maintaining security, Snoopy overcomes the scalability bottleneck present in prior work. With 18
machines, Snoopy can scale to a throughput of 92K reqs/sec with average latency under 500ms for
2M 160-byte objects, achieving a 13.7× improvement over Obladi [128].

The end-to-end encrypted messaging application Signal uses techniques from Snoopy in their
private contact discovery system, which matches Signal users to users’ contacts [118]. Signal uses
some of our techniques for horizontally scaling ORAM, along with techniques from Oblix [361]
and PathORAM [473] in their new, deployed system. Signal reported that the new system allowed
them to use roughly 10 servers instead of roughly 600 for private contact discovery [516].
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Part II

Secure accounts
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Chapter 5

SafetyPin: An encrypted backup system that
resists hardware attacks

5.1 Introduction
Modern mobile phones and tablets back up sensitive data to the cloud. To protect users’ privacy,
this data must be encrypted under keys that are not available to the cloud provider. Unfortunately,
with 3.8 billion smartphone users, it is impractical to expect them all to store, say, a 128-bit AES
backup key. Not everyone has a computer, or trustworthy friends who can keep shares of a backup
key, or even a safe place to store a backup key on paper. As a result, mobile OSes have fallen back to
protecting backups with the least common denominator: device screen-lock PINs. Using PINs is
good for security because a user’s screen-lock PIN never leaves her device (so the cloud provider
never learns it). Using PINs is good for usability because users generally remember them.

Unfortunately, PINs have such low entropy (e.g, six decimal digits) that no feasible amount
of key stretching can protect against brute-force PIN-guessing attacks. Instead, modern backup
systems—such as those from Apple [296], Google [507], and Signal [337]—rely on secure hardware
devices like hardware-security modules (HSMs) to thwart brute-force attacks. Specifically, devices
encrypt their backup keys under the public keys of HSMs, but each device includes a hash of its
screen-lock PIN as part of the plaintext. HSMs return decrypted plaintext only to clients that can
supply this PIN hash. Furthermore, HSMs limit the number of decryption attempts for any given
user account. For fault tolerance, a device typically encrypts its backup key to the public keys of
some number of HSMs, allowing any one of the these to recover the backup key.

This status quo still falls short of acceptable privacy for two reasons. First, HSMs are not perfect,
yet each HSM in these systems is a single point of security failure for millions of users’ backup
keys. Second, these systems make it difficult for clients to detect security breaches. For instance,
if a malicious insider working in a data center physically steals an HSM, then to anyone outside
the company it looks like an unremarkable single hardware failure. Alternatively, if an insider
successfully guesses someone’s PIN, the victim may have no idea her backup was ever compromised.

This chapter presents SafetyPin, a PIN-based encrypted-backup system with stronger security
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Figure 1: Our cluster of 100 low-cost hardware security modules (SoloKeys [463]) on which we evaluate
SafetyPin.

properties. The key idea behind SafetyPin is that recovering any user’s backed-up data either requires
(a) guessing the user’s PIN or (b) compromising a very large number of HSMs—e.g., 6% of all HSMs
operated by a provider. (The 6% figure here is a tunable system parameter.) Such large-scale attacks
would typically need to span multiple data centers, be harder for insiders to pull off undetected
against physical devices, cost more, and also likely cause service disruptions visible to end users.

One way to achieve SafetyPin’s security goal would be to threshold-encrypt the client’s hashed
PIN and backup key in such a way that decrypting the client’s backup key would require the
participation of 6% of all HSMs in the system. Unfortunately, this approach lacks scalability. If
each client recovering a backup must interact with 6% of the system’s HSMs, adding more HSMs
improves security without improving throughput. As the number of HSMs in the system increases,
we would like the system’s overall throughput to increase in tandem with its security (i.e., the
attacker’s cost).

To achieve scalability, SafetyPin takes a different approach: devices threshold-encrypt their
backup keys to a small cluster of 𝑛 HSMs such that decryption requires the participation of most
HSMs in the cluster. The cluster size 𝑛 is independent of the total number of HSMs in the system,
and depends on both the fraction of compromised HSMs the system can tolerate and the fraction
of HSMs that can fail-stop. (For example, to tolerate the compromise of 6% of HSMs where half
of a cluster is allowed to fail-stop, we can set the cluster size 𝑛 = 40.) This design achieves our
scalability goal, since each device need only communicate with a small fixed number of HSMs
during recovery. This design also achieves our security goal because the cluster of 𝑛 HSMs that can
decrypt a client’s backup depends on the client’s secret PIN, via a primitive we introduce called
location-hiding encryption. Hence, even if an attacker compromises 6% of the HSMs in the system
as a whole, the chances that the attacker compromises a “useful” set of HSMs—i.e., at least half of
the HSMs in the device’s chosen cluster—is very small. More precisely, we show that if the total
number of HSMs in the system is large enough (a few hundred or more), the probability that an
attacker can decrypt a backup via HSM compromise is not much higher than the probability of
simply guessing the client’s PIN.

In modern backup systems, each HSM only needs to monitor the number of PIN attempts for a
small subset of users, but because of our location-hiding encryption primitive, every HSM needs to
be able to verify the number of PIN attempts for every user. To maintain this information scalably, the
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HSMs use a new type of distributed log. Third parties can monitor this log to alert users whenever a
backup-recovery attempt is underway. Since a compromised service provider may see which HSMs
a mobile device interacts with during recovery (and could compromise those HSMs to recover
the users’ backed-up data), HSMs revoke their ability to decrypt backups after completing the
recovery process. Implementing this revocation requires adapting “puncturable encryption” [215] to
storage-limited HSMs. While our prototype is focused on PIN-protected backups, these primitives
have potentially broader applicability to problems such as private storage in peer-to-peer systems
and cryptocurrency “brain wallets.”

We implemented SafetyPin on low-cost SoloKey HSMs [463]. We evaluate the system using a
cluster of 100 SoloKeys (Figure 1) and an Android phone (representing the client device). Generating
a recovery ciphertext on the client, excluding the time to encrypt the disk image, takes 0.37 seconds.
To process 1B recoveries a year, or 123K recoveries per hour, we estimate that we would need 3,100
SoloKeys. In a SafetyPin deployment of 3,100 HSMs, tolerating the compromise of 6% of the HSMs
(i.e., 194 HSMs), the client must interact with a cluster of 40 HSMs during recovery. Running our
backup-recovery protocol across a cluster of this size takes 1.01 seconds.
Limitations. A limitation of SafetyPin is that the set of HSMs a device uses for recovery can leak
information about the user’s PIN. In particular, an attacker who controls the data center can learn a
salted hash of the user’s PIN during recovery. This is unfortunate in the common case that people
re-use the same PIN after recovery [136, 194, 246, 454]. We discuss one mitigation in Section 5.8.
Also, while it is possible to detect when PINs can safely be re-used, we have not yet implemented
this functionality.

In addition, SafetyPin is more expensive than today’s PIN-based backup systems. SafetyPin
requires the data center operator to operate a much larger fleet of HSMs (roughly 50−100× larger)
than the standard HSM-based backup systems require. SafetyPin clients must also download roughly
2MB of keying material per day in a SafetyPin deployment supporting one billion recoveries per
year, due to the periodic rotation of large HSM keys. Even so, we expect that the cost of storing and
transferring disk images (GBs/user) will dwarf these costs.

5.2 The setting
Entities. Our encrypted-backup system involves three entities, whose roles we describe here.
Client. Initially, the client holds (1) a username with the service provider, (2) a human-memorable
passphrase or PIN, (3) a disk image to be backed up, and (4) the public keys of the service provider’s
HSMs. Later on, the client should be able to recover her backed-up data using only her username,
her PIN, and access to the other components of the backup system.

In SafetyPin, as in today’s PIN-based backup systems, security depends on the client having
access to the HSMs’ true public keys: If a malicious service provider can swap out the HSMs’ true
public keys for its own public keys without detection, the service provider can immediately break
security. Using a distributed log (Section 5.6) can ensure that all clients see a common set of HSM
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Device Price 𝑔𝑥/sec. Storage FIPS

SoloKey [463] $20 8 256 KB★
YubiHSM 2 [530] $650 14 126 KB

SafeNet A700 [441] $18,468 2,000 2,048 KB ✓

Intel i7-8569U (CPU) $431 22,338 n/a

Table 2: Hardware security modules offer physical security protections but are computationally weak
compared to a standard CPU.

he 𝑔𝑥 /sec is NIST P256 elliptic-curve point-multiplications per second. “FIPS?” refers to whether the device
meets the FIPS 140-2 standard for HSMs. (★ The 256 KB storage on the SoloKey is shared between code and
data.)

public keys, to prevent targeted attacks. Hardware-attestation techniques, as used in the FIDO [416]
and SGX [264] specs, can provide another defense.

We also assume the provider has traditional account authentication (e.g., Gmail passwords) to
prevent random third parties from consuming PIN guesses, but we omit this from the discussion for
simplicity.
Service provider. The service provider offers the encrypted-backup service to a pool of clients and it
maintains the data centers in which the backup system runs. For example, the service provider could
be a mobile-phone vendor, such as Apple or Google. The service provider’s data centers contain
the network infrastructure that connects the HSMs. They also contain large amounts of (potentially
untrustworthy) storage and computing resources. Our security properties will hold against a service
provider that becomes compromised at any point after the system is set up.
Hardware security modules (HSMs). The service provider’s data centers contain thousands of
hardware security modules. An HSM is a tamper-resistant computing device meant for storing
cryptographic secrets. HSMs have fully programmable processors but are typically resource-poor
(see Table 2). It is possible to lock an HSM’s firmware before deployment, which makes remote
compromise and key-extraction attacks more difficult. Each HSM has a public key and stores the
corresponding secret key in its secure memory.
The attack scenario. The service provider (Apple, Google, etc.) spends vast amounts of money
acquiring a large user base for products that store user data in the cloud. The provider risks
reputational damage and journalistic scrutiny if it cannot ensure the durability and confidentiality of
user data.

A service provider can deploy SafetyPin as a way to build trust among its user base and to
protect its own infrastructure against future compromise. By enlisting third-party organizations to
monitor the SafetyPin deployment’s public distributed log, the provider can build further public
trust in the system.

At some point after the provider deploys SafetyPin, a powerful attacker wishes to steal user data.
The attacker may have malicious insiders working for the provider. It may physically compromise
data centers to steal HSMs. It may intercept shipments to tamper with some of the HSMs on their
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way to the data center. The attacker could also be a state actor employing legal pressure to gain
access to data centers. Nonetheless, the attacker is sensitive to both the cost of attacks and the risk of
public exposure.

Both the attack cost and risk of exposure increase with the number of HSMs the attacker must
compromise. For instance, while a malicious insider working at a data center may be able to abscond
with a single HSM—passing the missing device off as a hardware failure—removing 100 HSMs
is a much riskier proposition. A state actor who can order the provider to hand over HSMs may
be dissuaded if doing so will attract press coverage either by making non-targeted clients’ data
unrecoverable or creating a damning public audit trail.

The attacker may compromise clients as well as the provider. For instance, the attacker may have
a good guess at a target user’s PIN, perhaps because of CCTV footage showing the user unlocking a
mobile device. While SafetyPin cannot prevent the attacker from gaining access to the data with the
correct PIN, the risk will be higher to the attacker if stolen PINs cannot be used without exposing
the attack in SafetyPin’s public distributed log.
Notation. The set Z>0 refers to the set of natural numbers {1,2,3, . . . }. For a positive integer 𝑛, we
let [𝑛] = {1, . . . , 𝑛} and we use ⊥ to denote a failure symbol. For strings 𝑎 and 𝑏, we write their
concatenation as 𝑎∥𝑏. Throughout, we use 𝜆 to denote the security parameter, and we typically take
𝜆 = 128 (i.e., for 128-bit security).

5.3 System goals
SafetyPin implements an encrypted-backup functionality, which consists of two routines:

• the backup algorithm, which the client uses to produce its encrypted backup, and
• the recovery protocol, in which the client uses HSMs to recover the backup plaintext from

ciphertext.
We define these protocols with respect to a number of HSMs 𝑁 ∈ Z>0 and a finite PIN space

P ⊆ {0,1}∗. For convenience, we define the master public key mpk for a data center to be all 𝑁
HSMs’ public keys: mpk = (pk1, . . . ,pk𝑁 ). The syntax of an encrypted-backup system is then as
follows:
Backup(mpk,user,pin,msg) → ct. Given the master public key mpk, a client username user, the

client’s PIN pin ∈ P , and a message msg ∈ {0,1}∗ to be backed up, output a recovery ciphertext
ct. This routine runs on the client and requires no interaction with HSMs. The client uploads the
resulting ciphertext ct to the service provider.

RecoverS ,H1,...,H𝑁 (mpk,user,pin,ct) →msg or ⊥. The client initiates the recovery routine, which
takes as input the master public key mpk, a client username user, a PIN pin ∈ P , and a recovery
ciphertext ct.
During the execution of Recover, the client interacts with the service provider S and a subset of
the HSMs H1, . . . ,H𝑁 . Each HSM H𝑖 holds the master public key mpk, and its secret decryption
key sk𝑖. During recovery, the data center provides the client’s username user to each HSM.
The recovery routine outputs a backed-up message msg ∈ {0,1}∗ or a failure symbol ⊥.
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We now describe the security properties that such a system should satisfy. We work in an
asynchronous network model; we use standard cryptographic primitives to set up authenticated and
encrypted channels between the client, service provider, and HSMs.
Property 1: Security. If the client obtains the HSMs’ true public keys, then even an attacker that:

• controls the service provider (in particular, is an active network attacker inside the data centers
and has control of the service provider’s servers and storage),

• compromises an 𝑓secret (e.g., 𝑓secret = 1
16 ) fraction of HSMs in the data center before the client

begins the recovery process, and
• compromises all of the HSMs in the data center after the recovery protocol completes,

still should learn nothing about any honest client’s encrypted message (in a semantic-security
sense [207]) beyond what it can learn by guessing that client’s PIN.
Discussion: The adversary can inspect all clients’ recovery ciphertexts and then choose to compromise
a large set of HSMs that depends on these ciphertexts. Such attacks are relevant when, for example,
a state actor with the power to compromise many HSMs targets the backed-up data of a specific set
of users.

Two important caveats are: (1) SafetyPin does not protect against an attacker compromising
HSMs while recovery is in progress (see Figure 4) and (2) as implemented, SafetyPin does not
protect the PIN: an adversary that observes which HSMs the client contacts during recovery may
learn a salted hash of the PIN after recovery completes. Section 5.6.3 discusses how to detect and
mitigate this leakage by protecting the salt.
Property 2: Scalability. The recovery protocol should require the client to interact with a constant
number of HSMs, independent of the number of HSMs in the data center. (This constant may depend
on the security parameter and on the fraction of HSMs whose compromise the system can tolerate.)
Hence, providers can deploy additional HSMs to scale capacity. Concretely, when we configure the
system to tolerate the compromise of 𝑓secret = 1

16 of the data center’s HSMs, our protocol requires
the client to communicate with 40 HSMs during recovery.
Property 3: Fault tolerance. Every client should be able to recover her encrypted message even if a
constant fraction 𝑓live (e.g. 𝑓live = 1

64 ) of the HSMs in the data center fail-stop.
Setting parameters. For the remainder of this chapter, we set the fraction of compromised HSMs
that the system can tolerate to 𝑓secret = 1

16 and the fraction of HSMs that can fail while still allowing
the client to recover her backup to 𝑓live =

1
64 . This choice is reasonable because large companies

have more than 16 data centers, while smaller companies can collaborate on a shared deployment
with 16 physical security perimeters. By adjusting the other parameters, it is possible to achieve any
0 < 𝑓secret < 1 or 0 < 𝑓live < 1. (In Section 5.9.2, we discuss how the choice of these values affects
other system parameters.)

5.4 Architecture overview
We now describe our encrypted-backup protocol (Figure 3) and explain how it satisfies the design
goals of Section 5.3. We will discuss possible extensions and deployment considerations in
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Figure 3: An overview of the recovery-protocol flow. Each HSM 8 holds a secret key sk8 . The client holds a vector mpk of all HSMs’ public keys.
  During backup, the client uses its PIN and the master public key to encrypt its data msg into a recovery ciphertext ct. The client then uploads
this recovery ciphertext ct to the service provider. À During recovery, the client downloads its recovery ciphertext. Ã The client asks the data
center to log its recovery attempt. Õ The service provider collects a batch of client log-insertion requests, updates the log, and aggregates the
new log into a Merkle tree. The service provider and HSMs run a log-update protocol. At the end of this protocol, each HSM holds the root of
the Merkle tree computed over the latest log. Œ The service provider sends the client a Merkle proof c that the client’s recovery attempt is
included in the latest log (i.e., in the latest Merkle root). œ The client sends the recovery ciphertext ct and log-inclusion proof c to the subset of
HSMs needed to decrypt the recovery ciphertext. – The HSMs check the proof and return shares of the decrypted ciphertext to the client. The
client uses these to recover the backed-up data msg.

First, the client asks the service provider to record its recov-
ery attempt in the append-only log, implemented collectively
by the service provider and HSMs. The log holds a mapping
of identifiers to values. The service provider can insert new
identifier-value pairs into the log but the service provider can-
not modify or delete the values of defined identifiers, ensuring
that there is at most one immutable value for each identifier.

The recovery attempt is logged as follows. The client begins
by using public information (service name, username, and salt
in the recovery ciphertext) along with its secret PIN to recover
the subset of = HSMs it picked during backup. The client
then hashes these values together with some randomness to
produce a cryptographic commitment ⌘ to the identities of
these HSMs and to its recovery ciphertext. The client then
asks the service provider to insert the identifier-value pair
(user, ⌘) into the log, where user is the client’s username. (In
this discussion, we use the client’s username as the key for
simplicity. In practice, to preserve privacy, we might use an
opaque device-install UUID.)

The service provider collects a batch of these log-insertion
requests, produces a Merkle-tree [67] digest over the updated
log, and runs a log-update protocol with the HSMs. At the end
of this protocol, the HSMs hold the updated log digest. The
service provider then returns to the client a Merkle proof c
proving that the pair (user, ⌘) appears in the latest log digest.

Since the service provider and HSMs run the log-update
protocol periodically (e.g., every 10 minutes), the client will
have to wait a few minutes on average to decrypt its backup.
The client already has to download its large encrypted disk
image, which will likely take minutes, so these steps can
proceed in parallel.

The client then contacts its chosen set of = HSMs over an
encrypted channel, such as TLS. The client sends to each
HSM: its username, the opening of its commitment ⌘ (i.e., the
values and randomness used to construct the commitment ⌘),
and the Merkle inclusion proof c. Each HSM

• recomputes the commitment ⌘ and checks the inclusion
proof c (to confirm that the recovery attempt is logged),
and

• decrypts its share of the client’s AES key, confirms that
the username in the decrypted plaintext matches the
one provided by the client (which prevents user � from
attempting to decrypt user ⌫’s ciphertext, in collusion
with a malicious service provider).

If both of these checks pass, the HSM returns the AES-key
share to the client.

Given any C of these decryption-key shares, the client can
recover the AES key used to encrypt its backup. The client
can then use this AES key to decrypt its backed-up message.

Since at most one log entry can exist per username, the
use of the log ensures that each user can make at most one
recovery attempt. In this way, the system defeats brute-force
PIN-guessing attacks. With a slight modification, it is possible
to allow each user to make a fixed number (e.g., 5) guesses, or
a fixed number of guesses per time period (e.g., 5 per month).

A counter-intuitive property of this scheme is that the client
never explicitly provides its PIN to the HSMs. The fact that the
client knows which subset of the HSMs to contact implicitly
proves the client’s knowledge of the PIN because the set of =
HSMs is much smaller than the total number of HSMs # .

This overview leaves some technical details unexplained.
In particular:

Challenge 2. How do the HSMs implement the append-only
log without sacrificing scalability or security?

A straightforward way to implement the log would be to have
each HSM store the entire state of the log. But then every HSM
would have to participate in every recovery attempt, which
would not meet our scalability goals. Another implementation
would be to have the data-center operators maintain the log,
but then malicious data centers could violate the append-only

Figure 3: An overview of the recovery-protocol flow. Each HSM 𝑖 holds a secret key sk𝑖. The client holds a
vector mpk of all HSMs’ public keys. ➊ During backup, the client uses its PIN and the master public key
to encrypt its data msg into a recovery ciphertext ct. The client then uploads this recovery ciphertext ct to
the service provider. ➋ During recovery, the client downloads its recovery ciphertext. ➌ The client asks
the data center to log its recovery attempt. ➍ The service provider collects a batch of client log-insertion
requests, updates the log, and aggregates the new log into a Merkle tree. The service provider and HSMs run
a log-update protocol. At the end of this protocol, each HSM holds the root of the Merkle tree computed over
the latest log. ➎ The service provider sends the client a Merkle proof 𝜋 that the client’s recovery attempt
is included in the latest log (i.e., in the latest Merkle root). ➏ The client sends the recovery ciphertext ct
and log-inclusion proof 𝜋 to the subset of HSMs needed to decrypt the recovery ciphertext. ➐ The HSMs
check the proof and return shares of the decrypted ciphertext to the client. The client uses these to recover the
backed-up data msg.

Section 5.8.

5.4.1 The back-up process
The client begins the back-up process holding

• the public keys of all HSMs in the data center,
• its secret PIN, and
• a disk image to be backed up (the “message”).

To back up its disk image, the client samples a subset of 𝑛 HSMs out of the 𝑁 total HSMs in the data
center where 𝑛≪ 𝑁 . The client chooses this subset by hashing (a) public information: the service
name, its username, and a public salt the client chooses at random, and (b) its secret PIN. The client
then encrypts its message with a random AES encryption key, and then splits this AES key into 𝑛
threshold shares using Shamir secret sharing [453], such that any threshold 𝑡 of the shares suffice to
recover the AES key. The client then encrypts one share to the public key of each HSM in its chosen
subset. To ensure that a ciphertext is bound a username, we use a username-specific hash function
when encrypting (Section 5.11.4).

The client’s recovery ciphertext then consists of: its public salt, the AES-encrypted message, the
𝑛 encrypted shares of the AES key, and a configuration-epoch number that the service provider can
use to identify the set of HSMs that were in service at the time the client created its backup. The
client computes the ciphertext locally and uploads it to the backup service provider, with no HSM
interactions required.
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To explain why this construction is scalable: since only a constant number of HSMs 𝑛≪ 𝑁
participate in the decryption process, the system scales well as the number of HSMs in the data
center increases.

To explain why this construction should be secure: if the attacker cannot guess the client’s PIN,
the attacker does not know which set of 𝑛 HSMs (out of the 𝑁 total) it needs to compromise to
recover the client’s AES key. So, the best attacks are either to: guess the client’s PIN or compromise
a large fraction of the data center.

This argument requires that each individual key-share ciphertext leak no information about
which HSM can decrypt it—a cryptographic property known as “key privacy” [51]. However, even
key-private encryption schemes do not always remain secure against an adversary that adaptively
compromises secret keys, which leads to our first technical challenge:

Challenge 1. How can we ensure that the client’s recovery ciphertext “leaks nothing” about which
HSMs are required to decrypt the client’s message, even against an attacker who can adaptively
compromise HSMs?

In Section 5.5, we explain how to solve this problem using location-hiding encryption, a new
cryptographic primitive.

5.4.2 The recovery process
The client begins the recovery process holding:

• the public keys of all HSMs in the data center,
• its secret PIN, and
• its recovery ciphertext (which the client can fetch from the service provider).

First, the client asks the service provider to record its recovery attempt in the append-only log,
implemented collectively by the service provider and HSMs. The log holds a mapping of identifiers
to values. The service provider can insert new identifier-value pairs into the log but the service
provider cannot modify or delete the values of defined identifiers, ensuring that there is at most one
immutable value for each identifier.

The recovery attempt is logged as follows. The client begins by using public information (service
name, username, and salt in the recovery ciphertext) along with its secret PIN to recover the subset of
𝑛 HSMs it picked during backup. The client then hashes these values together with some randomness
to produce a cryptographic commitment ℎ to the identities of these HSMs and to its recovery
ciphertext. The client then asks the service provider to insert the identifier-value pair (user, ℎ) into
the log, where user is the client’s username. (In this discussion, we use the client’s username as the
key for simplicity. In practice, to preserve privacy, we might use an opaque device-install UUID.)

The service provider collects a batch of these log-insertion requests, produces a Merkle-tree [360]
digest over the updated log, and runs a log-update protocol with the HSMs. At the end of this
protocol, the HSMs hold the updated log digest. The service provider then returns to the client a
Merkle proof 𝜋 proving that the pair (user, ℎ) appears in the latest log digest.
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Since the service provider and HSMs run the log-update protocol periodically (e.g., every 10
minutes), the client will have to wait a few minutes on average to decrypt its backup. The client
already has to download its large encrypted disk image, which will likely take minutes, so these
steps can proceed in parallel.

The client then contacts its chosen set of 𝑛 HSMs over an encrypted channel, such as TLS. The
client sends to each HSM: its username, the opening of its commitment ℎ (i.e., the values and
randomness used to construct the commitment ℎ), and the Merkle inclusion proof 𝜋. Each HSM

• recomputes the commitment ℎ and checks the inclusion proof 𝜋 (to confirm that the recovery
attempt is logged), and

• decrypts its share of the client’s AES key.
If both of these checks pass, the HSM returns the AES-key share to the client.

Given any 𝑡 of these decryption-key shares, the client can recover the AES key used to encrypt
its backup. The client can then use this AES key to decrypt its backed-up message.

Since at most one log entry can exist per username, the use of the log ensures that each user can
make at most one recovery attempt. In this way, the system defeats brute-force PIN-guessing attacks.
With a slight modification, it is possible to allow each user to make a fixed number (e.g., 5) guesses,
or a fixed number of guesses per time period (e.g., 5 per month).

A counter-intuitive property of this scheme is that the client never explicitly provides its PIN to
the HSMs. The fact that the client knows which subset of the HSMs to contact implicitly proves the
client’s knowledge of the PIN because the set of 𝑛 HSMs is much smaller than the total number of
HSMs 𝑁 .

This overview leaves some technical details unexplained. In particular:

Challenge 2. How do the HSMs implement the append-only log without sacrificing scalability or
security?

A straightforward way to implement the log would be to have each HSM store the entire state
of the log. But then every HSM would have to participate in every recovery attempt, which would
not meet our scalability goals. Another implementation would be to have the data-center operators
maintain the log, but then malicious data centers could violate the append-only property, and thus
mount brute-force PIN-guessing attacks, without HSMs noticing.

In Section 5.6, we explain how the HSMs can collectively maintain such an append-only log in a
scalable and secure manner. At a high level, the (potentially adversarial) data center maintains the
state of the log, which we represent as a list of identifier-value pairs. Every time the data center
wants to insert an identifier-value pair into the log, the data center must prove to a random subset
of the HSMs that the identifier to be inserted is undefined in the current log. Provided that at least
one honest HSM audits each log-insertion, we can guarantee that the values associated with log
identifiers are immutable (i.e., that we maintain the log’s append-only property). In this way, (a)
each HSM needs to participate in only a vanishing fraction of the recovery attempts and (b) even an
attacker who can compromise many of the HSMs cannot break the append-only nature of the log.
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Figure 4: Since HSMs in SafetyPin revoke their ability to decrypt a
client’s recovery ciphertext, SafetyPin protects against HSM com-
promise attacks that take place before recovery begins and after it
completes. An attacker who can compromise HSMs while recovery
is in progress can break security.

property, and thus mount brute-force PIN-guessing attacks,
without HSMs noticing.

In Section 6, we explain how the HSMs can collectively
maintain such an append-only log in a scalable and secure
manner. At a high level, the (potentially adversarial) data
center maintains the state of the log, which we represent as a
list of identifier-value pairs. Every time the data center wants to
insert an identifier-value pair into the log, the data center must
prove to a random subset of the HSMs that the identifier to be
inserted is undefined in the current log. Provided that at least
one honest HSM audits each log-insertion, we can guarantee
that the values associated with log identifiers are immutable
(i.e., that we maintain the log’s append-only property). In this
way, (a) each HSM needs to participate in only a vanishing
fraction of the recovery attempts and (b) even an attacker
who can compromise many of the HSMs cannot break the
append-only nature of the log.

One remaining issue is that an attacker who observes the
data center network may see which HSMs a client interacts
with during recovery and decide to compromise that exact set
of HSMs after recovery completes.

Challenge 3. For scalability, the client should only communi-
cate with a small number of HSMs during recovery. But then
how can we protect against an attacker who compromises
these HSMs after recovery completes?

Our idea is as follows: after a client runs the recovery
protocol, each participating HSM revokes its ability to decrypt
that client’s recovery ciphertext. So, even if an after-the-fact
attacker compromises the HSMs that participated in recovery,
the attacker learns no useful information. The only window
of vulnerability is at the moment after the client contacts its
HSMs and before the HSMs complete revocation (Figure 4).
We describe how to make this work on resource-limited HSMs
in Section 7.

5 Protecting the mapping of users to HSMs
with location-hiding encryption

In this section, we define and construct location-hiding en-
cryption, which the client uses to encrypt its backup data.

The location-hiding encryption routine takes as input (1) a
set of # public keys, (2) a short PIN, and (3) a message, and
outputs a ciphertext. In our application, the # public keys are
the public keys of the # HSMs in the data center.

The cryptosystem has three main properties, which we
formalize in Appendix A:
1. Security. To successfully decrypt the ciphertext, an attacker
must either (a) guess the PIN or (b) control more than a constant
fraction 5secret of the # total secret keys. This security property
must hold even if the attacker can adaptively compromise
an 5secret fraction of the # secret keys. In our application,
this implies that unless an adversary can guess the PIN or
compromise a constant 5secret fraction of the HSMs in the data
center, it learns nothing about the client’s backed-up data.
2. Scalability. Given the PIN used to encrypt the message, it
is possible to decrypt the message using a small subset of the
# secret keys corresponding to the # public keys used during
encryption. In our application, a client who knows the correct
PIN can recover its backup by interacting with only a small
cluster of = HSMs (for some parameter =⌧ #) out of the #
total HSMs, So as # grows, each HSM needs to participate in
a vanishing fraction of the total recovery attempts.
3. Fault tolerance. Given the PIN, it is possible to decrypt
a ciphertext even if a random fraction 5live of all secret keys
are unavailable. In our application, this implies clients can
recover their backups even if an 5live fraction of all HSMs fail.

We call this primitive “location-hiding encryption” because
there is a small set of = HSMs that the attacker could compro-
mise to decrypt the ciphertext, but the cryptosystem hides the
location of these HSMs within the larger pool of # HSMs.

Our construction
Our construction of location-hiding encryption is just a careful
composition of existing primitives. However, it takes some
analysis to prove that the composition provides the desired
security properties. We describe our construction here in
prose and we include the security definitions and proofs in
Appendix A. The construction makes use of a public-key
encryption scheme (hashed ElGamal encryption [32, 18]) and
an authenticated encryption scheme (e.g., AES-GCM).
Setup. In our construction, each HSM 8, for 8 2 [#], holds
a keypair (pk8 , sk8) for the public-key encryption scheme.
Let C 2 Z>0 be a threshold such that if each HSM fails with
probability 5live, then in a random sample of = HSMs, there
are at least C non-failed HSMs with extremely high probability.
Our instantiation takes C = =/2 for 5live = 1

64 .

Figure 4: Since HSMs in SafetyPin revoke their ability to decrypt a client’s recovery ciphertext, SafetyPin
protects against HSM compromise attacks that take place before recovery begins and after it completes. An
attacker who can compromise HSMs while recovery is in progress can break security.

One remaining issue is that an attacker who observes the data center network may see which
HSMs a client interacts with during recovery and decide to compromise that exact set of HSMs after
recovery completes.

Challenge 3. For scalability, the client should only communicate with a small number of HSMs
during recovery. But then how can we protect against an attacker who compromises these HSMs
after recovery completes?

Our idea is as follows: after a client runs the recovery protocol, each participating HSM revokes its
ability to decrypt that client’s recovery ciphertext. So, even if an after-the-fact attacker compromises
the HSMs that participated in recovery, the attacker learns no useful information. The only window
of vulnerability is at the moment after the client contacts its HSMs and before the HSMs complete
revocation (Figure 4). We describe how to make this work on resource-limited HSMs in Section 5.7.

5.5 Protecting the mapping of users to HSMs with
location-hiding encryption

In this section, we define and construct location-hiding encryption, which the client uses to encrypt
its backup data.

The location-hiding encryption routine takes as input (1) a set of 𝑁 public keys, (2) a short PIN,
and (3) a message, and outputs a ciphertext. In our application, the 𝑁 public keys are the public keys
of the 𝑁 HSMs in the data center.

The cryptosystem has three main properties, which we formalize in Section 5.11:
1. Security. To successfully decrypt the ciphertext, an attacker must either (a) guess the PIN or (b)
control more than a constant fraction 𝑓secret of the 𝑁 total secret keys. This security property must
hold even if the attacker can adaptively compromise an 𝑓secret fraction of the 𝑁 secret keys. In our
application, this implies that unless an adversary can guess the PIN or compromise a constant 𝑓secret
fraction of the HSMs in the data center, it learns nothing about the client’s backed-up data.
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2. Scalability. Given the PIN used to encrypt the message, it is possible to decrypt the message using
a small subset of the 𝑁 secret keys corresponding to the 𝑁 public keys used during encryption. In
our application, a client who knows the correct PIN can recover its backup by interacting with only
a small cluster of 𝑛 HSMs (for some parameter 𝑛≪ 𝑁) out of the 𝑁 total HSMs, So as 𝑁 grows,
each HSM needs to participate in a vanishing fraction of the total recovery attempts.
3. Fault tolerance. Given the PIN, it is possible to decrypt a ciphertext even if a random fraction 𝑓live
of all secret keys are unavailable. In our application, this implies clients can recover their backups
even if an 𝑓live fraction of all HSMs fail.

We call this primitive “location-hiding encryption” because there is a small set of 𝑛 HSMs that
the attacker could compromise to decrypt the ciphertext, but the cryptosystem hides the location of
these HSMs within the larger pool of 𝑁 HSMs.

5.5.1 Our construction
Our construction of location-hiding encryption is just a careful composition of existing primitives.
However, it takes some analysis to prove that the composition provides the desired security properties.
We describe our construction here in prose and we include the security definitions and proofs in
Section 5.11. The construction makes use of a public-key encryption scheme (hashed ElGamal
encryption [71,166]) and an authenticated encryption scheme (e.g., AES-GCM). We provide domain
separation between hashed ElGamal ciphertexts by prepending the client’s username and other
recovery parameters to the hash function used in encryption and decryption (see Section 5.11.4).
Setup. In our construction, each HSM 𝑖, for 𝑖 ∈ [𝑁], holds a keypair (pk𝑖, sk𝑖) for the public-key
encryption scheme. Let 𝑡 ∈ N be a threshold such that if each HSM fails with probability 𝑓live, then
in a random sample of 𝑛 HSMs, there are at least 𝑡 non-failed HSMs with extremely high probability.
Our instantiation takes 𝑡 = 𝑛/2 for 𝑓live = 1

64 .
Encryption. The encryption routine takes as input a list of 𝑁 public keys (pk1, . . . ,pk𝑁 ), a PIN, and
a message msg. To encrypt the message using our location-hiding encryption scheme:

1. Sample a random AES key 𝑘 and a random salt.
2. Split 𝑘 into 𝑡-out-of-𝑛-Shamir secret shares 𝑘1, . . . , 𝑘𝑛 [453].
3. Hash the PIN and salt and use the result as a seed to generate a list of 𝑛 random indices
𝑖1, . . . , 𝑖𝑛 ∈ [𝑁].

4. Encrypt each key-share 𝑘 𝑗 with public key pk𝑖 𝑗 .
5. Finally, return (a) the salt, (b) the 𝑛 public-key ciphertexts, and (c) the AES encryption of msg

under key 𝑘 .
Decryption. To decrypt given the ciphertext and PIN:

1. Hash the salt and PIN to reconstruct the set of indices 𝑖1, . . . , 𝑖𝑛 ∈ [𝑁] used during encryption.
2. Use secret keys sk𝑖1 , . . . , sk𝑖𝑛 to decrypt the 𝑛 shares of the AES key 𝑘 . (In fact, only 𝑡 of the

shares are necessary.)
3. Using the recovery routine for Shamir secret sharing, recompute the AES key 𝑘 from its shares.
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4. Decrypt and return msg using the AES key 𝑘 .
Notice that the decryption routine only uses the PIN to sample the set of secret keys used for

decryption. In our application, this implies that the client never needs to explicitly provide its PIN
(or even a hash of its PIN) to the HSMs; contacting the right subset of HSMs is enough to ensure
that the client provided the correct PIN.

The intuition behind the security analysis is straightforward: with hashed ElGamal encryption,
the ciphertext reveals no information about which 𝑛 public keys (out of the 𝑁 total where 𝑛≪ 𝑁)
were used during encryption. Thus, the ciphertext reveals no information about which secret keys
the attacker must compromise unless the attacker can guess the PIN. Without these secret keys, the
attacker cannot learn anything about 𝑘 , and therefore cannot decrypt the message.

The following theorem, which we prove as Theorem 22 in Section 5.11.6 makes this argument
precise:
Theorem (Informal). The location-hiding encryption scheme of Figure 15 instantiated with the
hashed ElGamal encryption scheme (Section 5.11.4) over a group G is secure (in the sense of
Definition 15) for certain values of 𝑛 and 𝑁 , provided that:

• the computational Diffie-Hellman problem is hard in G,
• the authenticated-encryption scheme is secure, and
• we model the hash functions used in the construction as random oracles.

There are two reasons why the security analysis is non-trivial: First, we must ensure that the
ciphertext leaks nothing about the 𝑛 keys to which it was encrypted (i.e., that it is key-private [51]).
Second, we must ensure that the encryption scheme remains secure even if an attacker can adaptively
compromise secret keys. This is known as security under selective-opening attack [52, 175, 256].
Showing that both properties hold at once is the source of the technical complexity.

5.6 The distributed log
In SafetyPin, the HSMs collectively maintain a distributed log, which any external party can read
and replay. The service provider maintains the log state and the HSMs monitor log insertions to
ensure that the service provider does not violate the log’s append-only property.

We use this log for two primary purposes:
1. Limiting PIN guesses. To prevent an attacker from brute-force guessing a client’s PIN, we

use the log (as described in Section 5.4) to enforce a global limit on the number of recovery
attempts that the HSMs allow per username.

2. Monitoring recovery attempts. The service provider logs each recovery attempt, so any
SafetyPin client can inspect the log to learn whether someone (e.g., a foreign attacker or
snooping acquaintance) has tried to recover their backed-up data. A client could then take
mitigating action—such as contacting their service provider, a law-enforcement agency, or the
press.

A third use for the log—which comes directly from related work [183] and which we have not
yet implemented—is to manage HSM group membership. Whenever the service provider wants
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Service provider HSM8

(3,30,')Holds stale log !, new log !0.
Build Merkle tree over log-chunk digests
and extension proofs.

Holds stale digest 3 = Digest(!).

“Audit (1,3)” Choose _ random chunks
in the range {1, . . . ,#} to audit.
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hMerkle proofs that these
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Signature f8
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aggregate public key,
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Figure 5: The protocol that the service provider and HSMs use to update the HSM’s log digest.

Digest(!)! 3. Return a constant-size digest 3 representing
the current state of the log.

ProveIncludes(!, id,val)! {cInc,?}. Output a proof cInc that
attests to the fact that the identifier-value pair (id,val) is
in the log represented by digest 3 = Digest(!).

DoesInclude(3, id,val,cInc) ! {0,1}. Return “1” iff cInc

proves that the log that digest 3 represents contains
(id,val).

ProveExtends(!, !0)! {cExt,?}. Output a proof cExt that
30 = Digest(!0) represents a log that extends the log that
digest 3 = Digest(!) represents.

DoesExtend(3,30,cExt)! {0,1}. Return “1” iff cExt proves
that the log that digest 30 represents extends the log that
digest 3 represents.

The inclusion and extension proofs must be complete (hon-
est verifiers accept valid proofs) and sound (honest verifiers
reject invalid proofs), as we define in Appendix B.1.
Implementing the data structure. Nissim and Naor [72]
show that it is possible to implement these log primitives using
only Merkle trees [67]. We summarize their construction in
Appendix B.2. At a very high level: the digest of the log is
just the root of a Merkle tree computed over all of the entries
of the log, represented as a binary search tree indexed by id. A
log-inclusion proof cInc is a Merkle proof of inclusion relative
to this root. A log-extension proof cExt is a proof that: (1)
every identifier inserted to the new log did not exist in the old
log and (2) the new digest represents the old log tree with the
new values inserted. It is possible to prove both assertions
using a number of Merkle proofs proportional to the number
of log insertions.

6.2 Building a distributed log
We now explain how to use the primitives of Section 6.1 to
build our distributed append-only log.

Initializing the log. The service provider maintains the entire
state of the log !. Each HSM stores a log digest 3 which, in
steady state, is the digest of the log ! that the service provider
holds. Initially, the log ! is empty and each HSM holds the
digest of the empty log.

Inserting into the log. A client can insert an entry (id,val)
into the log by simply sending the pair to the service provider.
The service provider adds this entry to its log state !.

Proving log membership to HSMs. Before the HSMs allow
a client to begin the recovery process, the HSMs require proof
that the client’s recovery attempt is logged. Assume for the mo-
ment that the service provider holds a log ! and all HSMs hold
the up-to-date digest 3 = Digest(!). (We will explain how the
HSMs get the latest log digest in a moment.) Then, a client can
prove inclusion of any pair (id,val) in the log by asking the
service provider for an inclusion proof. The service provider
computes cInc = ProveIncludes(!, id,val) and returns the in-
clusion proof to the client. The client then sends (id,val,cInc)
to the HSM, which can check DoesInclude(3, id,val,cInc) to
be convinced that (id,val) is in the log represented by its
digest 3. This inclusion check is fast—logarithmic in the log
length.

Updating the log digest at the HSMs. After a sequence of
log-insertions, the service provider holds a log state !0. The
HSMs will be holding a digest 3 = Digest(!) of a stale log !.
If the service provider is honest, the new log !0 extends the
old log !.

To update the log digest at the HSMs, the service provider
will first send the new digest 30 = Digest(!0) to every HSM.
Next, the data center must convince each HSM that this new
digest 30 represents a log that extends the log ! that the old
digest 3 represents.

One non-scalable way to achieve this would be for
the service provider to send an extension proof cExt =

Figure 5: The protocol that the service provider and HSMs use to update the HSM’s log digest.

to add or remove an HSM from the data center, the service provider operator could record this
information in the log before the other HSMs will accept the change. All SafetyPin clients can thus
verify that they are communicating with the same set of HSMs. In addition, clients can also detect
suspicious changes in the set of HSMs in the data center. (For example, if the service provider
replaces all HSMs in the data center over the course of a day.)

The log is simply a list of identifier-value pairs maintained by the service provider. Clients can
insert identifier-value pairs in order to record recovery attempts, and HSMs maintain a digest of the
log state. Our distributed log must satisfy the following key property:

If any honest HSM ever accepts that an identifier-value pair (id,val) is included in the
log, the HSM should never accept that (id,val′) is included in the log, for any value
val′ ≠ val.

5.6.1 Underlying data structure
Terminology. The log 𝐿 is a list of key-value pairs. Since we use the word “key” in this chapter to
refer to cryptographic keys, we call log keys “identifiers.” We say that a log 𝐿′ “extends” a log 𝐿 if
(a) 𝐿 is a prefix of 𝐿′ and (b) every identifier in 𝐿′ appears at most once.

Our distributed log uses an authenticated data structure [382, 478, 489] that implements the
following five routines:
Digest(𝐿) → 𝑑. Return a constant-size digest 𝑑 representing the current state of the log.
ProveIncludes(𝐿, id,val) → {𝜋Inc,⊥}. Output a proof 𝜋Inc that attests to the fact that the identifier-

value pair (id,val) is in the log represented by digest 𝑑 = Digest(𝐿).
DoesInclude(𝑑, id,val, 𝜋Inc) → {0,1}. Return “1” iff 𝜋Inc proves that the log that digest 𝑑 represents

contains (id,val).
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ProveExtends(𝐿, 𝐿′) → {𝜋Ext,⊥}. Output a proof 𝜋Ext that 𝑑′ = Digest(𝐿′) represents a log that
extends the log that digest 𝑑 = Digest(𝐿) represents.

DoesExtend(𝑑, 𝑑′, 𝜋Ext) → {0,1}. Return “1” iff 𝜋Ext proves that the log that digest 𝑑′ represents
extends the log that digest 𝑑 represents.
The inclusion and extension proofs must be complete (honest verifiers accept valid proofs) and

sound (honest verifiers reject invalid proofs). We define the properties that we need to hold below:
Inclusion completeness. Informally, DoesInclude accepts valid log-inclusion proofs produced by
ProveIncludes. That is, for all logs 𝐿, all identifier-value pairs (id,val) ∈ 𝐿, if 𝑑← Digest(𝐿) and
𝜋Inc← ProveIncludes(𝐿, id,val), then DoesInclude(𝑑, id,val, 𝜋Inc) = 1.
Inclusion soundness. Informally, for all efficient adversaries that output a log 𝐿, an identifier-value
pair (id,val) ∉ 𝐿, and a false inclusion proof 𝜋∗

Inc
, it holds that, for digest 𝑑 ← Digest(𝐿), the

probability Pr[DoesInclude(𝑑, id,val, 𝜋∗
Inc
) = 1] is negligible.

Extension completeness. Informally, DoesExtend accepts valid log-extension proofs produced by
ProveExtends. That is, for all logs 𝐿 and 𝐿′, where 𝐿′ extends 𝐿, if 𝑑←Digest(𝐿), 𝑑′←Digest(𝐿′),
and 𝜋Ext← ProveExtends(𝐿, 𝐿′), then DoesExtend(𝑑, 𝑑′, 𝜋Ext) = 1.
Extension soundness. Informally, for all efficient adversaries that output a pair of logs 𝐿 and 𝐿′ (such
that 𝐿′ does not extend 𝐿 and 𝐿 does not contain duplicate identifiers), and a false proof 𝜋∗

Ext
, if we

compute 𝑑← Digest(𝐿) and 𝑑′← Digest(𝐿′), the probability Pr[DoesExtend(𝑑, 𝑑′, 𝜋Ext) = 1] is
negligible.
Implementing the data structure. Nissim and Naor [382] show that it is possible to implement
these log primitives using only Merkle trees [360]. At a very high level: the digest of the log is just
the root of a Merkle tree computed over all of the entries of the log, represented as a binary search
tree indexed by id. A log-inclusion proof 𝜋Inc is a Merkle proof of inclusion relative to this root. A
log-extension proof 𝜋Ext is a proof that: (1) every identifier inserted to the new log did not exist
in the old log and (2) the new digest represents the old log tree with the new values inserted. It is
possible to prove both assertions using a number of Merkle proofs proportional to the number of log
insertions.

We now describe how to implement the above routines using a construction as in Nissim and
Naor [382]. In the following discussion, we define the “log tree” for a log 𝐿 to be a binary search tree,
ordered by identifiers id. Each internal node in the tree—in addition to containing a value—contains
the cryptographic hash of its two child nodes, as in a Merkle tree.
Digest(𝐿) → 𝑑. Construct the log tree for 𝐿 by inserting the elements of 𝐿 into a binary-search tree

one at a time. (We can use any type of self-balancing binary-search tree here.) As the digest 𝑑,
output the hash of the root of the log tree.

ProveIncludes(𝐿, id,val) → {𝜋Inc,⊥}. If (id,val) ∉ 𝐿, output ⊥. Otherwise, output the Merkle
inclusion proof that proves that (id,val) is in the log tree rooted at 𝑑 = Digest(𝐿).

DoesInclude(𝑑, id,val, 𝜋Inc) → {0,1}. Treating the digest 𝑑 as a log-tree root and 𝜋Inc as a Merkle
proof of inclusion, verify that (id,val) is included in the log tree rooted at 𝑑.

ProveExtends(𝐿, 𝐿′) → {𝜋Ext,⊥}. We show how the routine works in the special case in which 𝐿′
contains exactly one entry (id,val) that does not appear in 𝐿. To generalize to the case in which
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there are many new entries in 𝐿′, we run this routine once for each new entry and output the
concatenation of all of the resulting proofs.
If 𝐿′ does not extend 𝐿, output ⊥. Otherwise, find the identifiers idleft and idright that appear
just before and after id in the lexicographical ordering of identifiers in the old log 𝐿. Let their
corresponding values be valleft and valright.
The first portion of the proof 𝜋Ext is a Merkle proof of inclusion of (idleft,valleft) and
(idright,valright) in the old log tree rooted at digest 𝑑 = Digest(𝐿). These proofs prove that
the new identifier id is not in the log represented by the old digest 𝑑.
Next, insert (id,val) into the log tree for 𝐿 to get a log tree for 𝐿′ and its corresponding digest.
The second portion of the proof 𝜋Ext is a Merkle proof of inclusion of every node in the log
tree for 𝐿′ that does not appear in the log tree for 𝐿. These proofs prove that the new digest 𝑑′
represents the root of 𝐿’s log tree, with the new pair (id,val) inserted.

DoesExtend(𝑑, 𝑑′, 𝜋Ext) → {0,1}. Parse 𝜋Ext as a series of Merkle inclusion proofs over log trees.
Check that id lies between idleft and idright in lexicographic order. Verify each of the Merkle
proofs generated in ProveExtends. Checking the Merkle proofs in this case also requires verifying
that the nodes in log trees satisfy the proper ordering constraints of a binary search tree: the left
child’s value is less than the parent’s value and the right child’s value is greater than the parent’s
value. Accept if all of these proofs accept.

Security properties. The completeness properties are immediate. Inclusion soundness follows directly
from the analysis of Merkle proofs, which in turn rely on the collision-resistance of the underlying
hash function. To sketch the argument for extension soundness: The first part of the proof 𝜋Ext
convinces the verifier that the new identifier id does not appear in the log 𝐿 represented by the old
digest 𝑑. Therefore, the log 𝐿′ that digest 𝑑′ represents must not contain any duplicate identifiers,
since 𝐿 contains no duplicate identifiers. The second part of the proof 𝜋Ext convinces the verifier
that log tree rooted at 𝑑′ is identical to the log tree rooted at 𝑑, except with the pair (id,val) added.

5.6.2 Building a distributed log
We now explain how to use the primitives of Section 5.6.1 to build our distributed append-only log.
Initializing the log. The service provider maintains the entire state of the log 𝐿. Each HSM stores a
log digest 𝑑 which, in steady state, is the digest of the log 𝐿 that the service provider holds. Initially,
the log 𝐿 is empty and each HSM holds the digest of the empty log.
Inserting into the log. A client can insert an entry (id,val) into the log by simply sending the pair
to the service provider. The service provider adds this entry to its log state 𝐿.
Proving log membership to HSMs. Before the HSMs allow a client to begin the recovery process,
the HSMs require proof that the client’s recovery attempt is logged. Assume for the moment that the
service provider holds a log 𝐿 and all HSMs hold the up-to-date digest 𝑑 = Digest(𝐿). (We will
explain how the HSMs get the latest log digest in a moment.) Then, a client can prove inclusion of
any pair (id,val) in the log by asking the service provider for an inclusion proof. The service provider
computes 𝜋Inc = ProveIncludes(𝐿, id,val) and returns the inclusion proof to the client. The client
then sends (id,val, 𝜋Inc) to the HSM, which can check DoesInclude(𝑑, id,val, 𝜋Inc) to be convinced
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that (id,val) is in the log represented by its digest 𝑑. This inclusion check is fast—logarithmic in the
log length.
Updating the log digest at the HSMs. After a sequence of log-insertions, the service provider
holds a log state 𝐿′. The HSMs will be holding a digest 𝑑 = Digest(𝐿) of a stale log 𝐿. If the service
provider is honest, the new log 𝐿′ extends the old log 𝐿.

To update the log digest at the HSMs, the service provider will first send the new digest
𝑑′ = Digest(𝐿′) to every HSM. Next, the data center must convince each HSM that this new digest
𝑑′ represents a log that extends the log 𝐿 that the old digest 𝑑 represents.

One non-scalable way to achieve this would be for the service provider to send an extension
proof 𝜋Ext = ProveExtends(𝐿, 𝐿′) to every HSM. The problem is that the time required to check
this extension proof grows linearly with the number of new log entries. So if every HSMs checked
the entire extension proof, the throughput of the system would not increase as the number of HSMs
increases.

Instead, we use a randomized-checking approach, as in Figure 5. If there have been 𝐼 insertions to
the log since the last update, the service provider divides the updates into 𝑁 chunks, each containing
𝐼/𝑁 insertions. The service provider then applies these chunks of updates to the old log 𝐿 one at a
time, producing a digest 𝑑𝑖 and extension proof 𝜋𝑖 for each of the 𝑁 intermediate logs (𝑖 ∈ {1, . . . , 𝑁}).
The service provider then sends the root 𝑅 of a Merkle-tree commitment to these digests to each
HSM.

Each HSM then asks the service provider for a random 𝜆-size subset of the intermediate digests
and extension proofs, where 𝜆 is a security parameter. The service provider returns the requested
digests and extension proofs and proves that these values are included in the Merkle root 𝑅. Each
HSM checks its requested intermediate extension proofs using DoesExtend(·) and checks the Merkle
proof relative to the root 𝑅. The HSMs auditing the first and last chunks also ensure that the
intermediate digests match the old digest 𝑑 and the new digest 𝑑′, respectively.

If these extension and Merkle proofs are valid, each HSM signs the tuple (𝑑, 𝑑′, 𝑅) using an
aggregate signature scheme [69], and returns the signature to the service provider. Once all online
HSMs have signed, the service provider aggregates these signatures and broadcasts the aggregated
signature to all HSMs. If any HSM fails during this process, the service provider notifies the HSMs
and they restart this log-update process. (We later describe how the log can make progress even if
HSMs fail during the log-update protocol.)

The HSMs check the aggregate signature on (𝑑, 𝑑′, 𝑅) relative to the HSMs’ aggregate public
key. If the signature is valid, the HSMs accept the new digest 𝑑′.
Security. If there are at most 𝑓secret compromised HSMs, then even if 𝑓secret honest HSMs are slow,
(1−2 𝑓secret)𝑁 honest HSMs will participate in any successful protocol execution. If each of these
HSM audits 𝐶 chunks, then the probability that no honest HSM audits a particular log chunk is

Pr[fail] = (
1− 1

𝑁

) (1−2 𝑓secret)𝑁 ·𝐶 ≤ exp
((2 𝑓secret−1) ·𝐶) .

(Here, we use the fact that (1− 𝑥) ≤ exp(−𝑥).) If each HSM audits 𝐶 = 𝜆 ≈ 128 chunks, this failure
probability is ≪ 2−128. In other words, some honest HSM will catch a cheating service provider
with overwhelming probability. In addition, since all honest HSMs will expect a signature from all
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honest HSMs, this will cause the updating operation to fail and the system to halt. For this analysis,
we assume that the adversary cannot adaptively compromise HSMs while the recovery protocol is
running without taking them offline.
Scalability. Each HSM must check the extension proofs on 𝜆 chunks, where each chunk contains a
1/𝑁 fraction of the total updates in each epoch. Thus each HSM checks a vanishing fraction ( 𝜆𝑁 ) of
log insertions. Each HSM checks one aggregate signature, which requires time independent of the
number of HSMs [69]. Thus, the total work that each HSM performs per epoch decreases as the
number of HSMs 𝑁 increases.

Because we use the log primarily to limit the number of PIN attempts, garbage collection is
straightforward. The service provider simply creates a new empty log, effectively resetting the
number of PIN attempts for every user (old copies of the log can still be inspected to monitor
recovery attempts). To ensure that the service provider does not run garbage collection and clear
the state too frequently, each HSM will run garbage collection for a fixed number of times (e.g.
the expected number of garbage collections over two years) before refusing to respond to further
requests. This bounds the number of times the service provider can garbage collect the log.
Making progress in spite of failures. If frequent node failures prevent the log from making progress,
the HSMs can run the following more complicated log-update protocol. In this variant, each HSM
chooses which log chunks to audit as a deterministic function of the Merkle root 𝑅 and the HSM’s
own node ID.

Provided that we choose the constant 𝐶 large enough, for every choice of the Merkle root, 𝑅 at
least one honest HSM will audit each log chunk. In particular, by taking 𝐶 ≥ 384 the probability
that no honest HSM audits a particular chunk is less than 2−384. The probability that there exists
a 256-bit Merkle root 𝑅 that causes no honest HSM to audit a particular chunk is then at most
2256 · 2−384 = 2−128. So, no matter how the service provider influences the Merkle root 𝑅, at least
one honest HSM will attempt to audit each chunk.

Using this method, given the Merkle root 𝑅, every HSM can deterministically compute the set
of log chunks that every other HSM will audit. Then, if any HSM fails during the audit process, the
remaining non-failed HSMs can recursively run our randomized-checking protocol to check the log
chunks that the failed HSMs would have checked.

In this way, the protocol can make progress even if HSMs fail during the log-update process.

5.6.3 Transparency and external auditability
Our log design allows anyone to audit the log to ensure that the service provider correctly maintains
the log’s append-only property. Additional auditors only add to the security of the system by adding
another layer of protection, as they can detect log corruptions in the event that more than 𝑓secret
HSMs are compromised. In particular, for any two log digests 𝑑 and 𝑑′, an auditor can ask the data
center for the entire logs 𝐿 and 𝐿′ corresponding to both of these digests. The auditor confirms that
𝑑 is the root of the log tree for 𝐿 and that 𝑑′ is the root of the log tree for 𝐿′. Finally, the auditor
checks that 𝐿′ extends 𝐿.
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As an extra precaution, users could specify external parties (e.g., Let’s Encrypt) as designated
auditors during backup. During recovery, the HSMs would only complete the recovery if these
auditors sign the latest log digest. In this way, mounting a brute-force PIN-guessing attempt against
a user would require compromising the user’s external auditors as well.

The transparency log can also help with PIN re-use. As discussed in Section 5.8, instead of
storing the salt directly with the service provider, the salt itself can be encrypted using a second
round of location-hiding encryption and a null PIN. After recovery, the salt will be destroyed as
discussed in the next section. Once the salt has been destroyed, the device restoring a backup can
use the log to determine if anyone else has ever fetched the salt. If not, then it is safe for the user to
re-use the old PIN.

As described in Section 5.4, the log contains usernames, which could be sensitive. To prevent
leaking usernames, we would replace usernames with random device identifiers that are rerandomized
when the device is factory reset. However, even with this modification, the log still leaks information
about when and how often users restore backups, which the service provider may not wish to make
public. While we hope that organizations would make their logs public, we acknowledge that some
may only share their logs with several hand-picked organizations for auditing or may not share their
logs at all. In these cases, our security guarantees still hold, although some of the transparency
benefits are lost.

5.7 Forward security by puncturable encryption
We would like our encrypted-backup system to provide forward secrecy [91]. During the recovery
process, the client reveals the identity of the 𝑛≪ 𝑁 HSMs that can decrypt its backup. Without
forward secrecy, an attacker can break into these 𝑛 HSMs to recover the client’s backed-up data.
Forward secrecy ensures that after recovery, an attacker, even one who compromises all HSMs in
the data center, learns no information about the client’s backup.

One seemingly straightforward way to provide forward secrecy would be to use a new keypair for
each backup. However, because the client cannot interact with the HSMs it is encrypting to during
backup (as this would reveal their identities), using a unique keypair for every backup would require
every HSM in the data center to generate a new keypair for every backup, running counter to our
scalability goals.

5.7.1 Background: Puncturable encryption
We instead achieve forward secrecy using puncturable public-key encryption [93, 116, 152,
153, 215, 234]. A puncturable encryption scheme is a normal public-key encryption scheme
(KeyGen,Encrypt,Decrypt), with one extra routine:
Puncture(sk,ct) → skct. Given a decryption key sk and a ciphertext ct, output a new secret key skct

that can decrypt all ciphertexts that sk could decrypt except for ct.
Puncturable encryption for forward secrecy. To achieve forward security in SafetyPin, after an
HSM decrypts its share of a client’s recovery ciphertext ct, the HSM punctures its secret decryption
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key. The punctured key allows the HSM to decrypt all ciphertexts except for ct. Thus, if an attacker
compromises all HSMs in the data center after a client has recovered its backup, the attacker will be
unable to decrypt any backup images that clients have already recovered. Furthermore, if an attacker
compromises at most 𝑓secret ·𝑁 HSMs total, where 𝑓secret is a parameter of the system that we define
in Section 5.3, then the attacker will not be able to recover any backed-up data whatsoever.
Existing tool: Bloom-filter encryption. Our implementation uses a puncturable encryption scheme
called Bloom-filter encryption [152]. There are only two details of Bloom-filter encryption that are
important for this discussion.

1. The secret key is large. If a key supports 𝑃 ∈ Z>0 punctures and we want decryption to fail with
probability at most 2−𝜆, then the secret key for Bloom-filter encryption is an array of roughly
𝜆𝑃 elements of a cryptographic group G. After 𝑃 punctures, the secret key may no longer
decrypt messages and it is necessary to rotate encryption keys.

2. Puncturing is simple. Puncturing the secret key just requires deleting 𝜆 elements in the data
array that comprises the secret key.

Concretely, when we set the Bloom-filter-encryption parameters to suitable values for experimen-
tal evaluation, each Bloom-filter encryption secret key has size over 64 MB. Even high-end HSMs
have only 1–2 MB of storage (Table 2), so storing such large keys on an HSM would be impossible.

5.7.2 Outsourced storage with secure deletion
We describe how to efficiently outsource the storage of this large secret key in a way that preserves
forward secrecy of the punctured key. In particular, the HSM can outsource the storage of its
secret-key array to the untrustworthy service provider, while still retaining the ability to delete
portions of the key. To do this, we draw on techniques for outsourcing the storage of any data
array (not just secret keys) first described by Di Crescenzo et al. [157] and extended in subsequent
work [429, 437].
Desired functionality. At a high level, the HSM has access to (a) a small amount of internal storage
and (b) a large external block store, run by the service provider. The HSM wants to store an array of
𝐷 data blocks at the provider (data1, . . . ,data𝐷). The HSM should be able to subsequently read or
delete these blocks.

The following security properties should hold, even if the attacker, controlling the service
provider, may choose the data-array and sequence of operations the HSM performs:

• Integrity. If the service provider tampers with the stored data in a way that could cause a read
to return an incorrect result, the read operation outputs ⊥. Otherwise, the read operation for a
block 𝑖 returns the value of the last data that the client wrote to block 𝑖.

• Secure deletion. If the service provider compromises the HSM after the HSM has run the
delete operation for the 𝑖th data block, the attacker learns nothing about the data stored in block
𝑖. (This property implies a confidentiality property: the service provider learns nothing about
the outsourced data.)

For efficiency, the HSM storage requirements must be small (constant size) and the read and
delete routines should run quickly (in time logarithmic in the size 𝐷 of the data array). Unlike in
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Figure 6: The outsourced-storage scheme has a tree of keys. An
arrow 0! 1 denotes that value 1 is stored encrypted under key 0. A
service provider that stores all values it sees and later compromises
the HSM state (sk0) still does not learn the deleted data3 value.

Running the setup phase. During the setup phase, the
outsourced-storage scheme builds a binary tree with ⇡ leaves.
Every node of the tree contains a fresh symmetric encryption
key. During setup, for each node in the tree with key sk8 , we
encrypt the keys of the child nodes sk80 and sk81 with sk8 and
store this ciphertext AE.Encrypt(sk8 , sk80ksk81) in outsourced
storage. At the leaves of the tree, we encrypt the 8th data block
with the key sk8 at the 8th leaf and we store the ciphertext
AE.Encrypt(sk8 ,data8) in outsourced storage.

For example, in Figure 6, we use sk0 to encrypt sk00 and
sk01 and we store the result in outsourced storage. We use
key sk01 to decrypt data item 2. Thus, knowing the root key
sk is enough to decrypt the entire tree and access every data
element in the array.

Reading a data block. To retrieve the data block at index 8,
the HSM reads in the ciphertexts along the path from the tree
root to leaf 8. The HSM then decrypts the chain of ciphertexts
from the root down to recover the data block at index 8. For
example, in Figure 6, to retrieve data block 3, the HSM can
use sk to decrypt sk1, and sk1 to decrypt sk10, which it can
use to decrypt data item 1.

Deleting a data block. To delete the data block at index 8, the
HSM recovers (as in retrieval) the keys along the path from
the root to leaf 8. At the node containing the key to decrypt
data block 8, the HSM deletes the key. It then chooses a fresh
key and re-encrypts the other key at that node using the fresh
key. To maintain the ability of the parent key to decrypt the
child ciphertext, the HSM updates the parent of that node to
contain the fresh key for its child and re-encrypts the parent’s
keys under a new key. It continues this up the path to the root,
where the HSM chooses a new key sk0 to encrypt the root.
The HSM replaces sk with sk0, deleting the old sk, and then
sends the new ciphertexts along the path from the root to leaf
8 back to the service provider. For example, in Figure 6, to
delete data item 3, the HSM decrypts the keys (sk0ksk1) and

(sk10ksk11). The HSM then deletes sk10, chooses a new key
sk01 to encrypt sk11, and then chooses a new key sk0 to encrypt
sk0 and sk01. The HSM then replaces sk with sk0.
Efficiency. The setup time is linear in the size of the data array
⇡. The runtimes of retrieval and deletion are both logarithmic
in ⇡, and require only symmetric-key operations. The HSM
stores only the constant-sized root encryption key sk.
Security intuition. An HSM can always recover the keys nec-
essary to decrypt a data item, provided the HSM did not
previously delete any of the keys necessary for decryption.
Integrity follows immediately from the security of the under-
lying authenticated encryption scheme. Finally, we ensure
secure deletion by deleting the key necessary to decrypt a
certain data item and updating the root key. Without the old
root key, it is impossible to access the key necessary to decrypt
the deleted data item.
Putting it together. To summarize: the HSMs use a punc-
turable encryption scheme to prevent the compromise of HSM
secrets at time ) from allowing an adversary to learn about
backed-up data that was recovered any time before ) . We
implement puncturable encryption using Bloom-filter encryp-
tion and outsource the storage of the large secret decryption
key while allowing secure deletion.

8 Extensions and deployment considerations

The full SafetyPin implementation has to deal with a number
of additional issues, which we discuss now.
Failure during recovery. As discussed in Section 7, after
participating in recovery, HSMs revoke their ability to decrypt
the recovered ciphertext. One consequence is that a client
cannot recover the same backup ciphertext twice. This raises
the question of what happens if a replacement device fails
during or shortly after recovery, or if a communication failure
during recovery prevents the new device from receiving the
replies from the HSMs.

To solve this problem, when a client initiates recovery,
it first generates a fresh per-recovery keypair (sk,pk) for a
public-key encryption scheme. The client backs up this secret
key sk using SafetyPin before initiating its recovery. Next, the
client sends the public key pk to each HSM and then begins
the backup-recovery process. Each HSM encrypts its replies
to the client under pk, and each HSM sends a copy of each
reply to the data center. If a client device fails during recovery,
a second, replacement client device can retrieve the backed-up
secret key sk and use these to decrypt the replies stored at the
data center. This scheme nests arbitrarily, thereby handling
any number of consecutive device failures during recovery.
Incremental backups. In practice, mobile devices often gen-
erate incremental backups rather than encrypting the entire
disk image for each backup. SafetyPin supports incremental
backups in the following way. The user uses SafetyPin to store
a single AES key, which the user also keeps on her phone. The

Figure 6: The outsourced-storage scheme has a tree of keys. An arrow 𝑎→ 𝑏 denotes that value 𝑏 is stored
encrypted under key 𝑎. A service provider that stores all values it sees and later compromises the HSM state
(sk′) still does not learn the deleted data3 value.

ORAM [204, 206], our goal is not to hide the HSM’s data-access pattern from the service provider.
We aim only to hide the contents of the array.

5.7.3 Building secure outsourced storage
We explain the construction here in prose, drawing on techniques first described by Di Crescenzo et
al. [157].
Running the setup phase. During the setup phase, the outsourced-storage scheme builds a binary
tree with 𝐷 leaves. Every node of the tree contains a fresh symmetric encryption key. During
setup, for each node in the tree with key sk𝑖, we encrypt the keys of the child nodes sk𝑖0 and sk𝑖1
with sk𝑖 and store this ciphertext AE.Encrypt(sk𝑖, sk𝑖0∥sk𝑖1) in outsourced storage. At the leaves of
the tree, we encrypt the 𝑖th data block with the key sk𝑖 at the 𝑖th leaf and we store the ciphertext
AE.Encrypt(sk𝑖,data𝑖) in outsourced storage.

For example, in Figure 6, we use sk0 to encrypt sk00 and sk01 and we store the result in outsourced
storage. We use key sk01 to decrypt data item 2. Thus, knowing the root key sk is enough to decrypt
the entire tree and access every data element in the array.
Reading a data block. To retrieve the data block at index 𝑖, the HSM reads in the ciphertexts along
the path from the tree root to leaf 𝑖. The HSM then decrypts the chain of ciphertexts from the root
down to recover the data block at index 𝑖. For example, in Figure 6, to retrieve data block 3, the
HSM can use sk to decrypt sk1, and sk1 to decrypt sk10, which it can use to decrypt data item 1.
Deleting a data block. To delete the data block at index 𝑖, the HSM recovers (as in retrieval) the keys
along the path from the root to leaf 𝑖. At the node containing the key to decrypt data block 𝑖, the
HSM deletes the key. It then chooses a fresh key and re-encrypts the other key at that node using the
fresh key. To maintain the ability of the parent key to decrypt the child ciphertext, the HSM updates
the parent of that node to contain the fresh key for its child and re-encrypts the parent’s keys under a
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new key. It continues this up the path to the root, where the HSM chooses a new key sk′ to encrypt
the root. The HSM replaces sk with sk′, deleting the old sk, and then sends the new ciphertexts along
the path from the root to leaf 𝑖 back to the service provider. For example, in Figure 6, to delete data
item 3, the HSM decrypts the keys (sk0∥sk1) and (sk10∥sk11). The HSM then deletes sk10, chooses
a new key sk′1 to encrypt sk11, and then chooses a new key sk′ to encrypt sk0 and sk′1. The HSM then
replaces sk with sk′.
Efficiency. The setup time is linear in the size of the data array 𝐷. The runtimes of retrieval and
deletion are both logarithmic in 𝐷, and require only symmetric-key operations. The HSM stores
only the constant-sized root encryption key sk.
Security intuition. An HSM can always recover the keys necessary to decrypt a data item, provided
the HSM did not previously delete any of the keys necessary for decryption. Integrity follows
immediately from the security of the underlying authenticated encryption scheme. Finally, we ensure
secure deletion by deleting the key necessary to decrypt a certain data item and updating the root
key. Without the old root key, it is impossible to access the key necessary to decrypt the deleted data
item.
Putting it together. To summarize: the HSMs use a puncturable encryption scheme to prevent the
compromise of HSM secrets at time 𝑇 from allowing an adversary to learn about backed-up data
that was recovered any time before 𝑇 . We implement puncturable encryption using Bloom-filter
encryption and outsource the storage of the large secret decryption key while allowing secure
deletion.

5.8 Extensions and deployment considerations
A real-world SafetyPin implementation has to deal with a number of additional issues, which we
discuss now.
Failure during recovery. As discussed in Section 5.7, after participating in recovery, HSMs revoke
their ability to decrypt the recovered ciphertext. One consequence is that a client cannot recover the
same backup ciphertext twice. This raises the question of what happens if a replacement device fails
during or shortly after recovery, or if a communication failure during recovery prevents the new
device from receiving the replies from the HSMs.

To solve this problem, when a client initiates recovery, it first generates a fresh per-recovery
keypair (sk,pk) for a public-key encryption scheme. The client backs up this secret key sk using
SafetyPin before initiating its recovery. Next, the client sends the public key pk to each HSM and
then begins the backup-recovery process. Each HSM encrypts its replies to the client under pk, and
each HSM sends a copy of each reply to the data center. If a client device fails during recovery, a
second, replacement client device can retrieve the backed-up secret key sk and use these to decrypt
the replies stored at the data center. This scheme nests arbitrarily, thereby handling any number of
consecutive device failures during recovery.
Incremental backups. In practice, mobile devices often generate incremental backups rather than
encrypting the entire disk image for each backup. SafetyPin supports incremental backups in the



CHAPTER 5. SAFETYPIN: AN ENCRYPTED BACKUP SYSTEM THAT RESISTS HARDWARE
ATTACKS 153

Operation Ops/sec
Pairing 0.43
ECDSA ver 5.85
ElGamal dec 6.67
𝑔𝑥 ∈ GP256 7.69

Operation Ops/sec
HMAC-SHA256 2,173.91
AES-128 3,703.70

I/O

RTT, HID (32b) 71.43
RTT, CDC (32b) 2,277.90
Flash read (32b) ≈166,000

Table 7: Microbenchmarks on SoloKey. Pairing is on BLS12-381 curve using the JEDI library [299]. Other
public-key operations use NIST P256 curve.

following way. The user uses SafetyPin to store a single AES key, which the user also keeps on her
phone. The user can then encrypt incremental backups under this AES key and upload the resulting
ciphertext to the data center. When the user recovers, she recovers her AES key and can use this key
to decrypt the incremental updates.
Multiple recovery ciphertexts. Clients back up their phones regularly (e.g., every three days), and
will thus generate a series of recovery ciphertexts. We want to ensure that after a client recovers her
backup from time 𝑡, the HSMs involved in recovery puncture their secret decryption keys so that
they cannot decrypt that client’s backups from earlier times 𝑡′ < 𝑡, even if an attacker compromises
all HSMs in the data center. To achieve this, in the puncturable-encryption step (Section 5.7), we
have the client use the same salt for each recovery ciphertext it generates. In this way, the client
will encrypt its series of backups to the same set of HSMs. When these HSM puncture their secret
keys during the recovery process, they will destroy their ability to decrypt any previous recovery
ciphertexts from the given client. After recovery, the client chooses a new salt to generate subsequent
backups on its new device.
Preventing post-recovery PIN leakage. As we have discussed, an attacker that watches the client
recover can learn a salted hash of the user’s PIN, which can be used to mount an offline brute-force
attack to learn the user’s PIN.

One approach to protect against this attack would be to have each user store their salt in
secret-shared form at a random set 𝑆salt of HSMs, where 𝑆salt is included in the client’s recovery
ciphertext. Then, provided that the attacker does not compromise this set of HSMs, the attacker
would learn no useful information on the user’s PIN, even after recovery. An attacker could always
compromise every HSM in 𝑆salt, but an attacker that can compromise only a 𝑓secret fraction of HSMs
in the data center would not be able to mount this attack against too many clients’ salts. We hope to
model and prove this multi-user PIN-protection property in future work.

5.9 Implementation and evaluation
We implemented SafetyPin on an experimental data cluster of 100 hardware security devices
(Figure 1). Our prototype does not include all features necessary for a real-world deployment,
including those described in Section 5.8.
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Figure 8: Log-audit time after inserting 10K recovery attempts for a log with roughly 100M recovery attempts.
We only measure the auditing time for 100 HSMs as we only had 100 SoloKeys; we distribute the work as if
there were 𝑁 HSMs.

HSM. For the HSMs, we used SoloKeys [463], a low-cost open-source USB FIDO2 security key.
SoloKeys use a STM32L432 microcontroller with an ARM Cortex-M4 32-bit RISC core clocked
at 80MHz and 265KB of memory. The device is not side-channel resistant, but has a true random
number generator and can lock its firmware. We add roughly 2,500 lines of C code to the open-source
SoloKey firmware [462].

By default, SoloKeys communicate with the USB host via USB HID, an interrupt-based USB
class used typically for keyboards and mice that has a maximum throughput of 64KBps. To improve
performance, we rewrote parts of the firmware to use USB CDC, a high-throughput USB class
commonly used for networking devices. This gave a roughly 32× increase in I/O throughput (Table 7).

For the puncturable-encryption scheme (Section 5.7.1), we use a variant of Bloom-filter
encryption [152] that avoids the need for pairings [68] but increases the size of the HSMs’ public
keys. For the aggregate signature scheme needed for the log, we use BLS-style multisignatures [67]
over the JEDI [299] implementation of the BLS12-381 curve.

Our implementation does not encrypt communication between the client and HSMs. Based on
the time to run AES-128 and ElGamal encryption on the SoloKeys, we estimate that transport-layer
encryption would add two ElGamal decryptions and 2KB of AES operations per recovery, increasing
recovery time by approximately 0.3 seconds, or 30%. This overhead is comparatively high because
processing a recovery only requires a handful of symmetric and public key operations.
Service Provider. Our service provider host is a Linux machine with an Intel Xeon E5-2650 CPU
clocked at 2.60GHz. Our service-provider implementation is roughly 3,800 lines of C/C++ code
(excluding tests) and uses OpenSSL.
Client. Our client device is a Google Pixel 4. Our implementation is roughly 2,300 lines of C/C++
code (excluding tests) and uses OpenSSL.

5.9.1 Microbenchmarks
Log. Figure 8 demonstrates how increasing the number of HSMs reduces the log-digest update time.
We assume that the log is periodically garbage collected (i.e., approximately once a month), so that
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Figure 9: Time to run puncturable encryption on a single HSM as the maximum number of allowed punctures
(and also secret key size) grows. The cost of our outsourced storage scheme dominates, though the access
time is logarithmic in the size of the key.

it holds at most a hundred million recovery attempts at once. If the HSMs run the log-update process
every 10 minutes, each HSM spends approximately 11% of its active cycles auditing the log. The
choice of how often to update the log is a tradeoff between how long users must wait to recover their
backups and the total number of write cycles to non-volatile storage permitted by the hardware.
Puncturable encryption. Figure 9 shows the cost of performing a decrypt-and-puncture operation
as the number of supported punctures increases. The AES operations associated with our scheme
for outsourced storage with secure deletion (Section 5.7.2) dominate the cost.

Another way to implement outsourced storage with secure deletion would be to have the HSM
store the outsourced array encrypted under a single AES key 𝑘 . To delete an item, the HSM would
read in the entire array, delete the item, and write out the entire array encrypted under a fresh key 𝑘′.
With this approach, a deletion takes 48 minutes for a 64 MB array (the size of our outsourced secret
keys). Our scheme thus improves system throughput by roughly 4,423×.

Each HSM punctures its secret key (Section 5.7.1) once after each decryption it performs. Since
our puncturable-encryption scheme only supports a fixed number of punctures, each HSM must
periodically rotate its encryption keys. We configure our puncturable-encryption scheme to allow
each HSM to perform roughly 218 decryptions before it must rotate its keys (rotation is triggered
when half of the elements of the secret key have been deleted). Key rotation is expensive: we
estimate (based on the number of public-key operations required) that key rotation on our HSMs
will take roughly 75 hours. Each HSM spends approximately 139.4 hours processing recoveries and
maintaining the log between key rotations. Therefore, each HSM spends roughly 56% of its cycles
rotating its keys, and each HSM can process 1,503.9 recoveries per hour on average.

5.9.2 End-to-end costs
Parameters. We estimate that on average, each user will run recovery once a year. (There are 3.8B
smartphone users [467] and 1.5B smartphones sold annually [468], so we expect 1.5/3.8 = 0.39≪ 1
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Figure 10: Breakdown of time to save (on Android Pixel 4 phone) and recover (using our SoloKey cluster).
We do not consider the time to encrypt or decrypt disk images.

recovery/user/year.) We calculate that a SafetyPin deployment of 𝑁 = 3,100 HSMs could support
one billion users. So, we treat our small cluster of 100 HSMs as a representative slice of a larger
data center of 𝑁 = 3,100 HSMs. Within this larger data center, each client shares its recovery keys
among a cluster of 𝑛 = 40 HSMs. This choice of 𝑛 is based on the size of the data center 𝑁 and PINs
with six decimal digits, and is dictated by Theorem 22. We set the puncturable encryption keys to
allow 220 punctures, as we found this provides a reasonable tradeoff between the time to decrypt
and puncture and the time between key rotations. With these parameters, we maintain secrecy if at
most an 𝑓secret = 1

16 fraction of the HSMs are compromised (or 𝑓secret ·𝑁 ≈ 194 total). We allow data
recovery if at most an 𝑓live =

1
64 fraction fail due to benign hardware failures (or 𝑓live ·𝑁 ≈ 48 total).

Baseline. We compare against an encrypted-backup system modeled on the ones that Google and
Apple use [296, 507]. To backup, the client selects a fixed cluster of five HSMs and encrypts her
recovery key and a hash of her PIN under the cluster’s public key. At recovery, the client sends the
recovery ciphertext and a hash of her PIN to the cluster, and any HSM in the cluster can decrypt
the ciphertext, check that the PIN hashes match, and return the recovery key. To defeat brute-force
PIN-guessing attacks, each HSM independently limits the number of recovery attempts allowed on a
given ciphertext.
Client overhead. Figure 10 gives the overhead of generating a backup in SafetyPin, compared to the
baseline. The backup process takes 0.37 seconds. SafetyPin recovery ciphertexts are 16.5KB, versus
130B for our baseline, though we expect encrypted disk image to dominate the ciphertext size.

SafetyPin increases the bandwidth cost at the client. In the baseline scheme, the client downloads
five public keys—one from each of its five chosen HSMs. In SafetyPin, the client must fetch a
copy of all HSMs’ public keys. (This way, the service provider does not learn the subset of HSMs
to which the client is encrypting its backup.) So, when a client first joins the system, the client
must download all these keys (11.5MB). Whenever an HSM rotates its puncturable-encryption keys,
clients must download the HSM’s new public key. In a deployment of 𝑁 = 3,100 HSMs supporting
one billion recoveries annually, we estimate that each SafetyPin client must download 1.97MB of
keying material daily. Increasing the puncturable encryption failure probability would decrease
client bandwidth, although this would require decreasing the fraction of HSMs allowed to fail, 𝑓live.
If a client goes offline for several days, it must download the rotated public keys for each day it spent
offline (roughly 2MB/day), up to a maximum of 11.5MB (the size of all HSMs’ keys). However, the
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Figure 12: Estimated number of SafetyPin-protected
recoveries per year supported by clusters of different
HSM models and costs. We use 𝑔𝑥 /sec to compute the
expected throughput of more powerful HSMs based
on our measurements using SoloKeys (Table 2).

client only needs to store the public keys for the 𝑛 HSMs comprising its chosen recovery cluster
which amounts to 9.02KB.
Recovery time. At a cluster size of 𝑛 = 40 HSMs, Figure 11 shows that the end-to-end recovery
time takes 1.01 seconds. Puncturable-encryption operations dominate recovery time (Figure 10),
since these require expensive elliptic-curve operations for ElGamal decryption and many I/O and
AES operations in order to perform secure deletion (Section 5.7.2.
Tail latency. In a deployment of SafetyPin, it will be important to consider not only the average
throughput of the SafetyPin cluster, but also the request latency. Since recovery requests will arrive
concurrently and in a bursty fashion, we will need to overprovision the system slightly to ensure that
request tail latency does not grow too high, even under large transient loads. In Figure 13, we model
how many HSMs are required to achieve various 99th-percentile latencies, while handling different
average throughputs. We compute these values by modeling incoming requests using a Poisson
process and each HSM using a M/M/1 queue with service times derived from our experimental
results. As the figure demonstrates, by increasing the total number of HSMs, we can reduce the
tail latency even when accounting for request contention. We anticipate that recovery time will in
practice be dominated by the time to download the encrypted disk image, and so as long as the tail
latency is less than or close to this time, any delay is unlikely to be noticed by the user.
Financial cost. Figure 12 shows how throughput scales as the outlay on HSMs increases and
Table 14 presents dollar-cost estimates for SafetyPin deployments with different types of HSMs. For
a configuration that tolerates the compromise of 50 high-quality HSMs, we estimate that adding
SafetyPin to an unencrypted backup system would increase the system’s dollar cost by 2.5%.
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Figure 13: Data center sizes necessary to process different request rates with various 99th-percentile latency
requirements.

HSM Qty. 𝑓secret 𝑁evil Cost
SoloKey [463] 3,037 1/16 189 $60.7K
YubiHSM2 [530] 1,732 1/16 108 $1.1M
SafeNet A700 [441] 40 1/20 2 $738.7K
– 10 evil HSMs 320 1/32 10 $3.0M
– 50 evil HSMs 800 1/16 50 $14.8M

Estimated cost of storing 4GB × 109 users per year: $600M

Table 14: The estimated hardware cost of a SafetyPin deployment supporting one billion users, if each user
recovers once per year. The 𝑁evil number is how many corrupt HSMs the deployment tolerates.
We estimate the storage cost using AWS S3 infrequent access [23] ($0.0125 per GB/month). We estimate
YubiHSM2 and SafeNet HSM throughput using their data sheets (Table 2). When computing the number of
HSMs necessary to service a billion users, we account for key-rotation time. A cluster of 40 SafeNet HSMs
can meet the throughput demands of one billion users, so we also consider larger deployments tolerating more
compromised HSMs.

5.10 Related work
In Section 5.10.1, we describe related work from before the publication of the original paper [137],
and in Section 5.10.1, we include subsequent related work.

5.10.1 Related work before publication
Today’s encrypted-backup systems rely either on the security of hardware security modules [214,296],
secure microcontrollers [11], or secure enclaves [337, 354]. Vulnerabilities in these hardware
components leave encrypted-backup systems open to attack. And there is ample evidence of
vulnerabilities in both HSMs [10, 85, 190, 244, 282, 364, 377, 403] and enclaves [64, 81, 109, 169,
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213, 238, 313, 316, 372, 495, 497, 498], and reason for concern about hardware backdoors as
well [49, 298, 483, 524].

Many companies including Anchorage [26], Unbound Tech [494], Curv [130], and Ledger
Vault [310], offer systems for secret-sharing cryptocurrency secret keys across multiple hardware
devices. Unlike SafetyPin, these solutions use a small fixed set of HSMs, so they cannot simultaneously
provide scalability and protection against adaptive HSM compromise.

Mavroudis et al. [350] propose building a single trustworthy hardware security module from a
large array of potentially faulty hardware devices. To achieve this, they use cryptographic protocols
for threshold key-generation, decryption, and signing. Like Myst, SafetyPin distributes trust over a
large number of hardware devices. Unlike Myst, SafetyPin focuses on hardware-protected PIN-based
encrypted backups, rather than more traditional HSM operations, such as decryption and signing.

In recent theoretical work, Benhamouda et al. show how to scalably store secrets on proof-of-stake
blockchains when an adversary can adaptively corrupt some fraction of the stake [57]. They face
many of the same cryptographic challenges that we tackle in Section 5.5; their theoretical treatment
complements our implementation-focused approach. While they use proactive secret sharing to
periodically re-share the secret and hide the secret from an adversary controlling some fraction of
the stake, our approach allows a party with some low-entropy secret to recover the high-entropy
secret.

Di Crescenzo et al. show how to use a small amount of erasable memory to outsource the storage
of a much larger data array in non-erasable memory while providing secure deletion [157]. Their
construction uses a tree-based approach where reading, writing, or deleting an element requires a
number of symmetric key operations logarithmic in the size of the data array. Subsequent work has
applied similar techniques to B-trees [429] and dynamically sized arrays [437]. These works are part
of a larger body of work on secure deletion using cryptography [43, 62, 70, 195, 404, 405, 428, 482].

Transparency logs inspire our log design [9,28,309,322,355]. Enhanced certificate transparency
proposes a randomized checking technique to split the work of checking the correspondence between
a Merkle tree ordered lexicographically and another ordered by time [440], which is similar in spirit
to the way that we split verification across HSMs. The proofs we provide to the HSMs about the
state of the log draw on work on authenticated data structures [347, 397, 478] and cryptocurrency
light clients [373]. Kaptchuk et al. show how public ledgers can be used to build stateful systems
from stateless secure hardware [277], and they show how their techniques can be applied to Apple’s
encrypted-backup system. This work is complementary to ours, as they show how to securely
manage state in cases where HSMs do not have secure internal non-volatile storage (an assumption
we make in SafetyPin).

5.10.2 Subsequent related work
Since publication, WhatsApp has also proposed a solution for encrypted backups based on
HSMs [515]. Gareth et al. analyzed the security of this protocol [144].

Subsequent work on encrypted backups has shown how to provide security guarantees similar in
spirit to those of SafetyPin: secure hardware should not be a single point of security failure. We
observed that secret key backups could benefit from splitting trust across different trust domains,
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which could be instantiated as different types of secure hardware in different clouds [138]. Signal
has begun deployment of a new backup architecture, SVR3, that splits trust across different types of
enclaves and cloud providers in order to provide privacy in the event that an attacker compromises a
subset of the enclave types [119]. Juicebox allows users to back up their keys by splitting trust across
“hardware realms” (HSMs) and “software realms” (managed by different organizations) [491].

Orsini et al. develop a key recovery systems that does not require the user to remember a PIN.
However, it requires clients to refute recovery attempts initiated by an attacker, and so the client
needs to come online periodically for security [390].

Acsesor also addresses the problem that it is challenging for users to manage cryptographic keys.
Acsesor helps users manage their keys by splitting trust across some number of “guardians” that are
chosen by the user and enact policies [105].

Chen et al. build a system for blind cloud data with the goal of protecting data from cloud
providers while still allowing clients to access their data via a passphrase. Their solution splits trust
between an application server and a storage server, but they do not provide protection against a
compromised application provider that can access both the application server and storage.

Little, Qin, and Varia examine the problem of account recovery in the event that the ser-
vice provider does not have identifying information for any users (e.g., an email address for
verification) [327]. Their solution does not use secure hardware, but splits trust across multiple
servers.

Fábrega et al. observed that end-to-end encrypted backups can be vulnerable to injection attacks,
as backup size can leak information [171]. A real-world SafetyPin deployment would need to
consider defenses against this class of attacks.

5.11 Security analysis
Additional notation. We use 𝑥← 7 to indicate assignment. For a finite set 𝑆, we use 𝑥←R 𝑆 to denote
taking a uniform random sample from 𝑆. The notation poly(·) refers to a fixed polynomial function
and negl(·) refers to a fixed negligible function.

5.11.1 Syntax
We first define the syntax of a location-hiding encryption scheme. The scheme is parameterized
by a total number of HSMs 𝑁 , a cluster size 𝑛≪ 𝑁 , a PIN space P , a message space M, and two
constants:
(a) the fraction 𝑓live of the 𝑁 HSMs in a cluster whose benign failure we can tolerate while still

allowing message recovery, and
(b) the fraction 𝑓secret of the 𝑁 total HSMs whose compromise we can tolerate while still providing

security.
In our construction, we take 𝑓live = 1

64 and 𝑓secret = 1
16 , but any constants 0 < 𝑓live, 𝑓secret < 1 would

suffice with an adjustment to the parameters.
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Formally, a location-hiding encryption scheme consists of the following five algorithms:

KeyGen(1𝜆) → (pk, sk). On input security parameter 𝜆, expressed in unary, output a public-key
encryption keypair.

Encrypt(pk1, . . . ,pk𝑁 , salt,pin,msg) → ct. Given a list of 𝑁 public keys, generated using KeyGen, a
randomizing salt salt ∈ {0,1}∗, a PIN pin ∈ P , and a message msg ∈M, output a ciphertext ct.

Select(salt,pin) → (𝑖1, . . . , 𝑖𝑛). Given a salt and PIN, output the indices (𝑖1, . . . , 𝑖𝑛) ∈ [𝑁]𝑛 of the 𝑛
secret keys needed to reconstruct the encrypted message.

Decrypt(sk𝑖 𝑗 , 𝑖 𝑗 ,ct) → 𝜎𝑗 . Given a ciphertext ct, a secret key sk𝑖 𝑗 and an index 𝑖 𝑗 , produce the 𝑗-th
secret share 𝜎𝑖 𝑗 of the plaintext message.

Reconstruct(𝜎1, . . . ,𝜎𝑛) →msg. Given 𝑛 shares of the plaintext message msg returned by Decrypt,
reconstruct msg.
To understand the syntax, it may be helpful for us to explain how we use these routines in our

encrypted-backup application:
1. Setup. During device provisioning, each HSM runs (pk𝑖, sk𝑖) ← KeyGen(1𝜆) to generate its

keypair (pk𝑖, sk𝑖). The HSM stores the secret sk𝑖 in its internal memory and it publishes pk𝑖.
2. Backup. To back up its message msg with salt salt and PIN pin, given HSM public keys
(pk1, . . . ,pk𝑁 ) the client runs

ct← Encrypt(pk1, . . . ,pk𝑁 , salt,pin,msg).

The client uploads its recovery ciphertext ct to the service provider.
3. Recovery. During recovery, the client fetches its salt salt and recovery ciphertext ct from the

service provider. It then computes

(𝑖1, . . . , 𝑖𝑛) ← Select(salt,pin)

to identify the cluster of 𝑛 HSMs it must communicate with during recovery.
For each HSM 𝑖 𝑗 ∈ {𝑖1, . . . , 𝑖𝑛}, the client asks HSM 𝑖 𝑗 to decrypt the ciphertext ct. (Our full
protocol requires interaction with the service provider, but we elide those details here.) The
HSM, who holds the secret key sk𝑖 𝑗 , computes:

𝜎𝑗 ← Decrypt(sk𝑖 𝑗 , 𝑖 𝑗 ,ct).

Finally, the client recovers its plaintext as

msg← Reconstruct(𝜎1, . . . ,𝜎𝑛).

5.11.2 Definitions
Intuitively, the correctness property states that if a random 𝑓live fraction of the secret keys are
unavailable, decryption still succeeds.
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Experiment 14 (Location-hiding encryption: Correctness). We define the following correctness
experiment, which is parameterized by a location-hiding encryption scheme with parameters
(𝑁,𝑛,P ,M, 𝑓live, 𝑓secret), a PIN pin ∈ P , a message msg ∈M, and a security parameter 𝜆 ∈ N.
The experiment consists of the following steps:

(pk𝑖, sk𝑖) ← KeyGen(1𝜆), for 𝑖 = 1, . . . , 𝑁

salt←R {0,1}𝜆
ct← Encrypt(pk1, . . . ,pk𝑁 , salt,pin,msg)
𝐹← ∅

Add each element of {1, . . . , 𝑁} to 𝐹
with independent probability 𝑓live.

{𝑖1, . . . , 𝑖𝑛} ← Select(salt,pin)

𝜎𝑗 ←
{
⊥ for 𝑗 ∈ 𝐹
Decrypt(sk𝑖 𝑗 , 𝑖 𝑗 ,ct) otherwise

msg′← Reconstruct(𝜎1, . . . ,𝜎𝑛)

The output of the experiment is 1 if msg =msg′ and 0 otherwise.

Definition 13 (Correctness). Formally, we say that a location-hiding encryption scheme on parameters
(𝑁,𝑛,P ,M, 𝑓live, 𝑓secret) is correct if, for all PINs pin ∈ P , all messages msg ∈M, on security
parameter 𝜆 ∈ N Experiment 14 outputs 1, except with probability negl(𝜆).
This notion of correctness only guarantees message reconstruction if some shares 𝜎𝑖, computed
using the Decrypt routine, are deleted or unavailable. We do not consider the stronger notion of
correctness, in which message reconstruction is possible even if some of the shares 𝜎𝑖 are corrupted
(rather than just missing).

The security property for location-hiding encryption states that no efficient adversary can
distinguish the encryption of two chosen messages with probability much better than guessing the
PIN after roughly 𝑁 guesses. This property should hold even if the adversary may adaptively corrupt
up to 𝑓secret ·𝑁 of the 𝑁 total secret keys.

For a location-hiding encryption scheme on parameters (𝑁,𝑛,P ,M, 𝑓live, 𝑓secret), an adversary
A, and a security parameter 𝜆 ∈ N, let𝑊𝜆,𝛽 denote the probability that the adversary outputs “1” in
Experiment 16 with bit 𝛽 ∈ {0,1}. Then we define the advantage of A at attacking a location-hiding
encryption scheme E as:

LHEncAdv[A,E] (𝜆) :=
��𝑊𝜆,0−𝑊𝜆,1

�� .
Definition 15 (Security). Let E be a location-hiding encryption scheme. on parameters (𝑁,𝑛,P ,M,
𝑓live, 𝑓secret), such that𝑁 = poly(𝜆), 𝑛 = poly(𝜆), and |P | and |M| grow as (possibly superpolynomial)
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Experiment 16 (Location-hiding encryption: Security). We define the following security
experiment, which is parameterized by an adversary A, a location-hiding encryption scheme
with parameters (𝑁,𝑛,P ,M, 𝑓live, 𝑓secret), a security parameter 𝜆, and a bit 𝛽 ∈ {0,1}.

• The challenger runs:

(pk𝑖, sk𝑖) ← KeyGen(1𝜆), for 𝑖 = 1, . . . , 𝑁

salt←R {0,1}𝜆
pin←R P

and sends (pk1, . . . ,pk𝑁 ) to the adversary.
• The adversary chooses two messages msg0,msg1 ∈M and sends these to the challenger.
• The challenger computes

ct← Encrypt(pk1, . . . ,pk𝑁 , salt,pin,msg𝛽)

and sends (salt,ct) to the adversary.
• The adversary may make 𝑓secret ·𝑁 corruption queries. At each query:

– the adversary sends to the challenger an index 𝑖 ∈ [𝑁] and
– the challenger sends to the adversary sk𝑖.

• Finally, the adversary outputs a bit 𝛽′ ∈ {0,1}.
The output of the experiment is the bit 𝛽′.

functions of 𝜆. Then we say that the location-hiding encryption scheme E is secure if, for all efficient
adversaries A,

LHEncAdv[A,E] (𝜆) ≤ 𝑂 (𝑁/|P |) +negl(𝜆).

Remark 17 (Understanding the security definition.). Since our security definition allows the adversary
to corrupt up to 𝑓secret ·𝑁 of the secret keys, the adversary can always reconstruct the plaintext with
probability roughly 𝑓secret·𝑁

𝑛|P | using the following attack to decrypt a ciphertext ct with salt salt:
• Pick two messages msg0,msg1←R M.
• Pick a candidate PIN pin′←R P .
• Run 𝐼 = (𝑖1, . . . , 𝑖𝑛) ← Select(pin′, salt).
• Corrupt the keys in 𝐼 and use them to decrypt ct.

– If ct decrypts to either msg0 or msg1, guess the corresponding bit.
– Otherwise, try again with another PIN.

If the attacker can corrupt 𝑓secret · 𝑁 keys, it can try at least 𝑓secret · 𝑁/𝑛 PINs and its success
probability is at least 𝑓secret ·𝑁/(𝑛|P |). Our security analysis shows that this is nearly the best attack
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possible against our location-hiding encryption scheme, up to low-order terms.
Remark 18 (Chosen-ciphertext security). A stronger and more realistic definition of security would
allow the adversary to make decryption queries to the HSMs in the penultimate stage of the attack
game, as in the standard chosen-ciphertext attack (CCA) security game [127, 423]. Since our
underlying public-key encryption scheme (hashed ElGamal) is already CCA secure, we believe
that—at the cost of some additional complexity in the definitions and proofs—it would be able to
achieve a CCA-type notion for location-hiding encryption.

5.11.3 A tedious combinatorial lemma
We will need the following lemma about random sets to prove Theorem 22. The proof of this lemma
uses no difficult ideas, but keeping track of the constants involved is a bit tedious.

Definition 19. Let 𝑛, 𝑁 , and Φ be positive integers. Say that a set 𝑆 ⊆ [𝑁] “𝑛/2-covers” a list
𝐿 ∈ [𝑁]𝑛 if at least 𝑛/2 elements of the list 𝐿 appear in the set 𝑆.

Then, letCover𝑁,𝑛,Φ(𝛼, 𝛽) denote the probability, over the random choice of lists 𝐿1, . . . , 𝐿Φ←R [𝑁]𝑛,
that there exists a set 𝑆 ⊆ [𝑁] of size 𝛼𝑁 that 𝑛/2-covers more than 𝛽𝑁 of the lists.

Lemma 20. For 𝑁 > 𝑒𝑛 ≈ 2.71𝑛 and Φ < 2𝑛/2, we have

Cover𝑁,𝑛,Φ( 1
16 ,

3
𝑛 ) ≤ 2−𝑁/4.

Proof. Let 𝛼 = 1/16 and 𝛽 = 3/𝑛. Our task is then to bound the probability that there exists a set of
size 𝛼𝑁 that 𝑛/2-covers more than 𝛽𝑁 lists.

Fix a set 𝑆 ⊆ [𝑁] of size 𝛼𝑁 . We compute the probability that 𝑆 𝑛/2-covers more than 𝛽𝑁 of
the chosen lists.

The probability that a fixed set 𝑆 𝑛/2-covers a list 𝐿 is at most
( 𝑛
𝑛/2

) ·𝛼𝑛/2, over the random
choice of 𝐿←R [𝑁]𝑛. Using the inequality

(𝑛
𝑘

) ≤ (𝑛𝑒/𝑘)𝑘 , we can bound this probability by (2𝑒𝛼)𝑛/2.
Then, the probability that a fixed set 𝑆 𝑛/2-covers some subset of 𝛽𝑁 of the Φ lists is then(

Φ
𝛽𝑁

) (
(2𝑒𝛼)𝑛/2

) 𝛽𝑁
≤
(
Φ𝑒
𝛽𝑁
· (2𝑒𝛼)𝑛/2

) 𝛽𝑁
Finally we apply the union bound over all

( 𝑁
𝛼𝑁

)
possible choices of the set 𝑆 to get the final probability:(

𝑁

𝛼𝑁

)
·
(
Φ𝑒
𝛽𝑁
· (2𝑒𝛼)𝑛/2

) 𝛽𝑁
≤ (𝑒/𝛼)𝛼𝑁 ·

(
Φ𝑒
𝛽𝑁
· (2𝑒𝛼)𝑛/2

) 𝛽𝑁
≤ (𝑒/𝛼)𝛼𝑁 ·

(
Φ𝑒
𝛽𝑁
· (2𝑒𝛼)𝑛/2

) 𝛽𝑁
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and since (𝑒/𝛼)𝛼 = (16𝑒)1/16 < 21/2 and 𝛽 = 3/𝑛,

≤ 2𝑁/2 ·
(
Φ𝑒𝑛
3𝑁
· (2𝑒𝛼)𝑛/2

) 𝛽𝑁
and since we have assumed 𝑁 > 𝑒𝑛, 𝑒𝑛/𝑁 ≤ 1, so

≤
[
21/2 ·

(
Φ · (2𝑒𝛼)𝑛/2

) 𝛽]𝑁
and letting 𝛼 = 1/16 implies 2𝑒𝛼 = 𝑒/16 < 2−3/2, so

≤ 2𝑁/2
(
Φ ·2−3𝑛/4

)3𝑁/𝑛

and since Φ < 2𝑛/2,

≤ 2𝑁/2
(
2−𝑛/4

)3𝑁/𝑛
≤ 2−𝑁/4.

□

5.11.4 Our construction
Our construction, which is parameterized by a standard public-key encryption scheme, appears in
Figure 15. We instantiate the public-key encryption scheme with hashed ElGamal encryption, which
we recall here.
Hashed ElGamal We instantiate the location-hiding encryption scheme of Section 5.5 with the
“Hashed ElGamal” encryption scheme. The scheme uses a cyclic group G = ⟨𝑔⟩ of prime order
𝑝, in which we assume that the computational Diffie-Hellman problem is hard. It also uses an
authenticated encryption scheme (AE.Encrypt,AE.Decrypt) with key space K and a hash function
Hash′ : G→K.

A keypair is a pair (𝑥, 𝑔𝑥) ∈ Z𝑝 ×G, where 𝑥←R Z𝑝. To encrypt a message 𝑚 ∈ {0,1}ℓ to public
key 𝑋 ∈ G, the encryptor computes

(
𝑔𝑟 ,AE.Encrypt(Hash′(𝑋𝑟),𝑚)) .

A standard argument [71] shows that Hashed ElGamal satisfies semantic security against
chosen-ciphertext attacks [127, 423].

In our use of hashed ElGamal, we can provide domain separation between different ciphertexts
by prepending inputs to the hash function Hash′ during encryption and decryption with: (1) the
client’s username, (2) the salt associated with the ciphertext, and (3) the public keys of the 𝑛 public
keys to which the client encrypted the ciphertext. All of these values are available to the client during
encryption and to the HSMs during decryption.
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Location-hiding encryption scheme. The construction is parameterized by:
− a universe size 𝑁 ∈ N,
− a cluster size 𝑛 ∈ N,
− a PIN-space P ,
− a recovery threshold 𝑡 ∈ N,
− a public-key encryption scheme (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt), and
− an authenticated encryption scheme (AE.Encrypt,AE.Decrypt) with keyspace F (some

finite field), and
− a security parameter 𝜆 ∈ N.

The message space is {0,1}∗. We use a hash function Hash : {0,1}𝜆 ×P → [𝑁]𝑛 (e.g., built
from SHA-256) which we model as a random oracle [53]. We use 𝑡-out-of-𝑛 Shamir secret
sharing [453]; we denote the sharing and reconstruction algorithms over a finite field F by
(Shamir.ShareF,Shamir.ReconstF).
KeyGen(1𝜆) → (pk, sk).
− On input security parameter 𝜆, expressed in unary, run the key-generation routine for the

underlying public-key encryption scheme: (pk, sk) ← PKE.KeyGen(1𝜆).
Encrypt(pk1, . . . ,pk𝑁 ,pin,msg) → (salt,ct).
− Sample a random salt salt←R {0,1}𝜆 and compute (𝑖1, . . . , 𝑖𝑛) ← Hash(salt,pin).
− Sample a transport key 𝑘←R F and split it using 𝑡-out-of-𝑛-Shamir secret sharing [453]:
(𝑘1, . . . , 𝑘𝑛) ← Shamir.ShareF(𝑘).

− Encrypt each share of the key using the underlying public-key encryption scheme. That is,
for 𝑗 ∈ {1, . . . , 𝑛}, set 𝐶𝑖← PKE.Encrypt

(
pk𝑖 𝑗 , 𝑘𝑖

)
.

− Set 𝑀← AE.Encrypt(𝑘,msg), ct← (𝑀,𝐶1, . . . ,𝐶𝑛), and output (salt,ct).
Select(salt,pin) → (𝑖1, . . . , 𝑖𝑛) ∈ [𝑁]𝑛.
− Output Hash(salt,pin) ∈ [𝑁]𝑛.

Decrypt(sk, 𝑖,ct) → 𝜎𝑖 ∈ G.
− Parse ct as (𝑀,𝐶1, . . . ,𝐶𝑛).
− Output 𝜎← (

𝑀,PKE.Decrypt(sk,𝐶𝑖)
)
.

Reconstruct(𝜎1, . . . ,𝜎𝑛) →msg.
− For 𝑖 ∈ [𝑛], Parse each share 𝜎𝑖 as a pair (𝑀𝑖, 𝑘𝑖).
− Let 𝑘← Shamir.ReconstF(𝑘1, . . . , 𝑘𝑛) ∈ F.
− Let 𝑀 be the most common value in {𝑀1, . . . , 𝑀𝑛}.
− Output AE.Decrypt(𝑘,𝑀).

Figure 15: Our construction of location-hiding encryption.
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5.11.5 Proof of correctness
We now prove:

Theorem 21. Consider an instantiation of the encryption scheme E of Figure 15 with parameters
(𝑁,𝑛,P , 𝑡), with cluster size 𝑛 =Ω(𝜆), on security parameter 𝜆, and recovery threshold 𝑡 = 𝑛/2. Then
the resulting scheme is a correct location-hiding encryption scheme (in the sense of Definition 13)
for any fault-tolerance parameter 𝑓live ≤ 1

8 .

Proof. To prove the claim, we need to bound the probability that, out of a random size-𝑛 subset
of all 𝑁 keys, no more than 𝑡 = 𝑛/2 are failed. Fix a size-(𝑛/2) subset 𝑆 of the 𝑛 chosen keys. The
probability that the keys in 𝑆 are all failed is ( 𝑓live)𝑛/2. We can now take a union bound over all

( 𝑛
𝑛/2

)
choices of 𝑆 to bound the final failure probability:

Pr[fail] ≤
(
𝑛

𝑛/2

)
· ( 𝑓live)𝑛/2 ≤ 2𝑛 ·

(
1
23

)𝑛/2
= 2−𝑛/2.

Since we have taken 𝑛 = Ω(𝜆), this probability is negligible in 𝜆. □

5.11.6 Proof of security
We state the main theorem and then prove it here.

Theorem 22. The location-hiding encryption scheme E of Figure 15 instantiated with the hashed-
ElGamal public-key encryption system (Section 5.11.4) is secure, in the sense of Definition 15, in
the random-oracle model, for recovery threshold 𝑡 = 𝑛/2 and corruption threshold 𝑓secret = 1/16,

More precisely, we consider an instantiation of our location-hiding encryption scheme E with
parameters (𝑁,𝑛,P , 𝑡 = 𝑛/2), where 𝑁 > 𝑒 · 𝑛 ≈ 2.71𝑛 and |P | < 2𝑛/2, using hashed ElGamal
encryption for the public-key encryption scheme, and using an arbitrary authenticated encryption
scheme AE.

Then, let A be an adversary that attack E in the location-hiding encryptions security game
with corruption threshold 𝑓secret = 1/16. Denote A’s attack advantage as LHEncAdv[A,E], Then if
A makes at most 𝑄 queries to the random oracle Hash′, used in hashed ElGamal encryption, we
construct:
• an efficient algorithm BCDH that breaks CDH in group G with advantage CDHAdv[BCDH,G]

and
• an efficient algorithm BAE that breaks the authenticated encryption scheme AE with advantage
AEAdv[BAE,AE]

such that

LHEncAdv[A,E] ≤ 2−𝑁/4 + 𝑁 · 𝑄 · CDHAdv[BCDH,G] +
3𝑁
𝑛 |P | + AEAdv[BAE,AE] .
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Game 0. We define Game 0 by instantiating Experiment 16 our location-hiding encryption scheme,
instantiated in turn with hashed-ElGamal encryption (Section 5.11.4). Game 0 is parameterized by an
adversary A, a group G of prime order 𝑝 with generator 𝑔, a universe size 𝑁 ∈ N, a cluster size 𝑛 ∈ N, a
PIN-space P , a recovery threshold 𝑡, a security parameter 𝜆, hash functions Hash : {0,1}𝜆×P→ [𝑁]𝑛
and Hash′ : G→ F (which we model as random oracles where the challenger plays the role of the random
oracle), an authenticated encryption scheme (AE.Encrypt,AE.Decrypt) with keyspace F and message
space {0,1}∗, a security parameter 𝜆 ∈ N, and a bit 𝛽 ∈ {0,1}.
• The challenger runs

sk𝑖←R Z𝑝, pk𝑖← 𝑔sk𝑖 for 𝑖 ∈ {1, . . . , 𝑁}

and sends (pk1, . . . ,pk𝑁 ) to the adversary.
• The adversary chooses two messages msg0,msg1 ∈M and sends these to the challenger.
• The challenger then computes the ciphertext using our location-hiding encryption scheme instantiated

with hashed-ElGamal. That is, the challenger computes

salt←R {0,1}𝜆
pin←R P

(𝑖1, . . . , 𝑖𝑛) ← Hash(salt,pin)
𝑘←R F

(𝑘1, . . . , 𝑘𝑛) ← Shamir.ShareF(𝑘).

Here, Shamir.ShareF denotes 𝑡-out-of-𝑛 Shamir secret sharing over the field F. The challenger
then encrypts the shares (𝑘1, . . . , 𝑘𝑛) of the transport key 𝑘 using hashed ElGamal encryption. For
𝑗 ∈ {1, . . . , 𝑛}, the challenger computes:

𝑟 𝑗←R Z𝑝

𝜅 𝑗 ← Hash′((pk𝑖 𝑗 )𝑟 𝑗 )
𝐶 𝑗 ← (𝑔𝑟 𝑗 , 𝜅 𝑗 ⊕ 𝑘 𝑗).

Finally, the challenger encrypts the message msg with the transport key 𝑘 and outputs the ciphertext:

𝑀← AE.Encrypt(𝑘,msg𝛽)
ct← (𝑀,𝐶1, . . . ,𝐶𝑛)

and sends (salt,ct) to the adversary.
• The adversary may make adaptive 𝑓secret · 𝑁 corruption queries and may perform computation

between its queries. At each query:
– the adversary sends to the challenger an index 𝑖 ∈ [𝑁] and
– the challenger sends to the adversary sk𝑖 .

• Finally, the adversary outputs a bit 𝛽′ ∈ {0,1}.
The output of the experiment is the bit 𝛽′.
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Notice that if the number of HSMs 𝑁 grows much larger than the size of the PIN space |P |, the
bound of Theorem 22 on the adversary’s advantage becomes vacuous. (In fact, this limitation is
inherent—see Remark 17 in Section 5.11.) To support extremely large data deployments, it would
be possible to shard users into data centers of moderate size (e.g., 𝑁 ≈ 50,000).

The main technical challenge in proving Theorem 22 comes from the fact that the adversary may
adaptively compromise a subset of the secret keys. This is very similar to the issues that arise when
proving a cryptosystem secure against “selective opening attacks” [52, 162]

Proof of Theorem 22 (Security). We construct the following series of games and show that the
difference between the adversary’s advantage from one game to the next is small. For 𝑖 ∈ {0, . . . ,4},
let𝑊𝑖 the event that the adversary wins in Game 𝑖, where we define the winning condition for each
game below.
Game 0. Game 0 proceeds according to the location-hiding security game where the challenger
plays the role of the random oracle. For location-hiding encryption scheme E and adversary A in
Game 0, by definition,

Pr[𝑊0] = LHEncAdv[A,E] . (5.1)

Game 1. Game 1 proceeds in the same way as Game 0, except that for the adversary to win in
Game 1, we also require that a certain “bad event” does not take place. This bad event is that many
different PINs hash to the same set of HSMs. Formally, the bad event is that there exists a set 𝑆 of
𝑓live ·𝑁 = 𝑁/16 HSMs and a set of 3

𝑛 ·𝑁 PINs {pin1,pin2, . . . } such that, for each 𝑖 ∈ [𝑁/𝑛], it holds
that: |Hash(salt,pin𝑖) ∩ 𝑆 | ≥ 𝑡 = 𝑛/2. Using Definition 19, we can simply write the probability of
this bad event as Cover𝑁,𝑛,Φ( 1

16 ,
3
𝑛 ).

By Lemma 20, we have that

|Pr[𝑊0] −Pr[𝑊1] | ≤ 2−𝑁/40 . (5.2)

Game 2. Game 2 proceeds in the same way as Game 1 except that for the adversary to win, we
require that
• the adversary wins in Game 1, and
• the adversary never makes a random-oracle query for (pk𝑖)𝑟𝑖 where 𝑖 ∈ (𝑖1, . . . , 𝑖𝑛) unless the

adversary issued a corruption query for 𝑖 first.
Then by Lemma 23,

|Pr[𝑊1] −Pr[𝑊2] | < 𝑁 ·𝑄 ·CDHAdv[BCDH,G] . (5.3)

Game 3. Game 3 proceeds as in Game 2 except that for the adversary to win, we require that
• the adversary wins in Game 2, and
• the adversary makes fewer than 𝑡 = 𝑛/2 corruption queries to elements in 𝐼 = (𝑖1, . . . , 𝑖𝑛).
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Then, by Lemma 24,

|Pr[𝑊2] −Pr[𝑊3] | ≤ 3𝑁
𝑛|P | (5.4)

Game 4. In Game 4, we modify the behavior of the challenger. Rather than encrypting msg with 𝑘 ,
instead the challenger samples an additional key 𝑘′←R F for an authenticated encryption scheme and
uses 𝑘′ to encrypt msg.

Then, by Lemma 25,

|Pr[𝑊3] −Pr[𝑊4] | = 0. (5.5)

Final reduction. In Lemma 26, we show that

|Pr[𝑊4] | = AEAdv[BAE,AE] . (5.6)

Putting it together.
We can write Pr[𝑊0] as

Pr[𝑊0] ≤ |Pr[𝑊0] −Pr[𝑊1] |
+ |Pr[𝑊1] −Pr[𝑊2] |
+ |Pr[𝑊2] −Pr[𝑊3] |
+ |Pr[𝑊3] −Pr[𝑊4] | +Pr[𝑊4] .

Then, by (5.1)-(5.6), we can bound LHEncAdv as follows:

LHEncAdv[𝐴,E] ≤2−𝑁/40

+𝑁 ·𝑄 ·CDHAdv[BCDH,G]
+ 3𝑁
𝑛|P |
+AEAdv[BAE,AE] .

□

Lemma 23. Let 𝑊1 be the event that the adversary wins in Game 1 and 𝑊2 be the event that the
adversary wins in Game 2. In particular, for every adversary A in Game 1, we construct a CDH
adversary BCDH in group G with advantage CDHAdv[BCDH,G] that runs in time linear in the
runtime of A and makes 𝑄 Hash′-oracle queries such that

|Pr[𝑊1] −Pr[𝑊2] | ≤ 𝑁 ·𝑄 ·CDHAdv[BCDH,G] .
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Proof. Let 𝐹 be the event that the adversary makes a Hash′-oracle query at the point pk𝑟𝑖𝑖 before
making a corruption query for key 𝑖. Then, by the definition of Games 1 and 2, and the Difference
Lemma [456], we have

|Pr[𝑊1] −Pr[𝑊2] | ≤ Pr[𝐹] .
So, to prove the lemma we need only bound Pr[𝐹].

Given an adversary A in Game 1, we will construct a CDH adversary BCDH such that Pr[𝐹] ≤
𝑁 ·𝑄 ·CDHAdv[BCDH,G]. We construct BCDH as follows:
• The algorithm BCDH receives a challenge tuple (𝑔,𝑔𝑟 , 𝑔𝑥) ∈ G3 from the CDH challenger.
• The algorithm BCDH plays the role of the Game-1 challenger. The algorithm BCDH deviates

from the normal behavior of the Game-1 challenger in two ways:
1. The challenger chooses a random value 𝑖∗←R [𝑁]. For the 𝑖∗th keypair, algorithm BCDH sets

pk𝑖← 𝑔𝑥 , where 𝑔𝑥 is the value from the CDH challenger. (Algorithm BCDH generates all
other keypairs as the challenger in Game 1 does.)

2. When constructing the final ciphertext, algorithm BCDH sets the encryption nonce in the
𝑖∗th ciphertext to be the value 𝑔𝑟 , where 𝑔𝑟 is the value from the CDH challenger. For the
value Hash′((pk𝑖∗)𝑟) needed to construct the ciphertext, the algorithm BCDH just chooses a
random element in F.

• The algorithm BCDH then proceeds in the same way as the Game 1 challenger with the following
modification:

– If A makes a corruption query for 𝑖∗, BCDH outputs ⊥.
• If BCDH did not output ⊥, then BCDH randomly chooses one of the points at which A made an
Hash′-oracle query and returns the queried point to the CDH challenger.

We now compute algorithm BCDH’s CDH advantage. Whenever event 𝐹 occurs, the algorithm
A makes a random-oracle query to a point (pk𝑖)𝑟𝑖 , for some 𝑖 ∈ [𝑁], before issuing a corruption
query at 𝑖. Notice that BCDH succeeds whenever:

1. event 𝐹 occurs,
2. 𝑖 = 𝑖∗, and
3. the algorithm BCDH guesses the correct random-oracle query to output.

These three events are independent. Furthermore, their probabilities are:
1. Pr[𝐹] – to be computed later,
2. Pr[𝑖 = 𝑖∗] = 1/𝑁 , and
3. Pr[guesses correct r.o. query] = 1/𝑄.

Therefore,

CDHAdv[BCDH,G] ≥ Pr[𝐹] ·
(

1
𝑁

)
·
(

1
𝑄

)
,

which proves the lemma. □
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Lemma 24. Let 𝑊2 be the event that the adversary wins in Game 2 and 𝑊3 be the event that the
adversary wins in Game 3. Then

|Pr[𝑊2] −Pr[𝑊3] | ≤ 3𝑁
𝑛|P | .

Proof. Let 𝐹 be the event that the adversary A wins in Game 2 but not in Game 3. By construction
of the games, we have

|Pr[𝑊2] −Pr[𝑊3] | ≤ Pr[𝐹],
so our task is to bound Pr[𝐹].

To analyze Pr[𝐹], we consider a modified game between A and its challenger in Games 2
and 3. Here, we modify the challenger to halt the execution of A as soon as event 𝐹 occurs. This
modification cannot increase Pr[𝐹].

However, in the modified game, A’s view is independent of the uncorrupted elements of 𝐼 until
event 𝐹 occurs. This is so because the only values that the adversary sees that depend on the set
𝐼 are the 𝜅 𝑗 values. Since these are computed as the output of Hash′((pk𝑖)𝑟 𝑗 ), until the adversary
queries the random oracle Hash′ at the point (pk𝑖)𝑟 𝑗 , these 𝜅 values are also independent of 𝐼.

Since we have already argued (Game 2) that the challenger never queries the random oracle
at a point (pk𝑖)𝑟 𝑗 without having corrupted 𝑖, the ciphertext values that the adversary sees are
independent of the uncorrupted elements of 𝐼.

Therefore, the answers to the corruption queries give the adversary no information on the
uncorrupted elements of 𝐼. Then Pr[𝐹] is just the probability that the adversary makes 𝑁/16
non-adaptive corruption queries and is able to cause event 𝐹 to occur.

By the winning condition of Game 1, for any set of 𝑁/16 corrupted HSMs 𝑆, there are at most
3𝑁/𝑛 PINs pin such that |Hash(salt,pin) ∩ 𝑆 | > 𝑛/2. Therefore, the probability that 𝐹 occurs is
Pr[𝐹] ≤ (3𝑁/𝑛)/|P | = 3𝑁/(𝑛 |P |). □

Lemma 25. Let 𝑊3 be the event that the adversary wins in Game 3 and 𝑊4 be event that the
adversary wins in Game 4. Then

|Pr[𝑊3] −Pr[𝑊4] | = 0 .

Proof. We use the security of Shamir secret sharing to prove this lemma. For each of the indexes
that the adversary does not corrupt, we can replace 𝜅𝑖 ⊕ 𝑘𝑖 with a random element in F in both
games. We know that in both games, the adversary corrupts fewer than 𝑛/2 of the keys in 𝐼, and so
the adversary learns fewer than 𝑛/2 of the shares 𝑘1, . . . , 𝑘𝑛 of the transport key. Therefore, we can
replace the transport key 𝑘 with 𝑘′←R F, completing the proof. □

Lemma 26. Let 𝑊4 be event that the adversary wins in Game 4. Then given an adversary A in
Game 4, we construct an AE adversary BAE for AE scheme AE with advantage AEAdv[BAE,AE]
that runs in time linear in the runtime of A such that

Pr[𝑊4] = AEAdv[BAE,AE] .
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Proof. Given an adversary A in Game 4, we will construct an adversary BAE attacking the
authenticated encryption scheme AE such that the advantage of BAE is identical to that of A. We
construct BAE as follows:
• The algorithm BAE computes (pk1, . . . ,pk𝑁 ) in the same way as the Game 4 challenger and

sends them to A.
• When A returns the messages msg0,msg1 ∈M, BAE forwards the messages to the AE challenger

and receives the ciphertext 𝑐∗ from the AE challenger.
• The algorithm BAE then computes the ciphertext in the same way as the Game 4 challenger

except that instead of computing the ciphertext as (AE.Encrypt(𝑘,msg),𝐶1, . . . ,𝐶𝑛), BAE sends
A (𝑐∗,𝐶1, . . . ,𝐶𝑛).
• The algorithm BAE responds to queries in the same way as the Game 4 challenger.
• When A outputs bit 𝛽′ ∈ {0,1}, BAE forwards the response to the AE challenger.

Because in Game 4, we sample 𝑘′ independently from the rest of the messages, A cannot
distinguish between interaction with BAE and the Game 4 challenger. The advantage of A is exactly
AEAdv[BAE,AE], completing the proof. □

5.12 Conclusion
SafetyPin is an encrypted backup system that (a) requires its users to only remember a short PIN,
(b) defeats brute-force PIN-guessing attacks using hardware protections, and (c) provides strong
protection against hardware compromise. SafetyPin demonstrates that it is possible to reap the
benefits of hardware security protections without turning these hardware devices into single points
of security failure.
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Chapter 6

Larch: An authentication logging system
without a single point of security failure

6.1 Introduction
Account security is a perennial weak link in computer systems. Even well-engineered systems with
few bugs become vulnerable once human users are involved. With poorly engineered or configured
systems, account compromise is often the first of several cascading failures. In general, 82% of
data breaches involve a human element, with the most common methods including use of stolen
credentials (40%) and phishing (20%) [502].

When users and administrators identify stolen credentials, it is challenging to determine the
extent of the damage. Not knowing what an attacker accessed can lead to either inadequate or overly
extensive recovery. LastPass suffered a breach in November 2022 because they didn’t fully recover
from a compromise the previous August [438]. Conversely, Okta feared 366 organizations might
have been accessed when an attacker gained remote desktop access at one of their vendors. It took a
three-month investigation to determine that, in fact, only two organizations, not 366, had really been
victims of the breach [172].

Single sign-on schemes, such as OpenID [443] and “Sign in with Google,” can keep an
authentication log and thereby determine the extent of a credential compromise. However, these
centralized systems represent a security and privacy risk: they give a third party access to all of a
user’s accounts and to a trace of their authentication activity.

An ideal solution would give the benefits of universal authentication logging without the security
and privacy drawbacks of single-sign-on systems. For security, the logging service shouldn’t be able
to authenticate on behalf of a user. For privacy, the logging service should learn no information about
a user’s authentication history: the log service should not even learn if the user is authenticating to
the same web service twice or to two separate web services.

In this chapter, we propose larch (“login archive”), an accountable authentication framework
with strong security and privacy properties. Authentication takes place between a user and a service,
which we call the relying party. In larch, we add a third party: a user-chosen larch log service. The
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larch log service provides the user with a complete, comprehensive history of her authentication
activity, which helps users detect and recover from compromises. Once an account is registered with
larch, even an attacker who controls the user’s client cannot authenticate to the account without the
larch log service storing a record that allows the user to recover the time and relying-party name.

The key challenge in larch is allowing the log service to maintain a complete authentication
history without becoming a single point of security or privacy failure. A malicious larch log service
cannot access users’ accounts and learns no information about users’ authentication histories. Only
users can decrypt their own log records.

Larch works with any relying party that supports one of three standard user authentication
schemes: FIDO2 [179] (popularized by Yubikeys and Passkeys [14]), TOTP [369] (popularized
by Google Authenticator), and password-based login. FIDO2 is the most secure but least widely
deployed of the three options.

A larch deployment consists of two components: a browser add-on, which manages the user’s
authentication secrets, and one or more larch log services, which store authentication logs on behalf
of a set of users. At a high level, larch provides four operations. (1) Upon deciding to use larch,
a user performs a one-time enrollment with a log service. (2) For each account to use with larch,
the user runs registration. To relying parties, registration looks like adding a FIDO2 security key,
adding an authenticator app, or setting a password. (3) The user then performs authentication with
larch as necessary to access registered accounts. Finally, (4) at any point the user can audit login
activity by downloading and decrypting the complete history of authentication events to all accounts.
The client can use auditing for intrusion detection or to evaluate the extent of the damage after a
client has been compromised.

All authentication mechanisms require generating an authentication credential based on some
secret. In FIDO2, the secret is a signature key and the credential is a digital signature; the signed
payload depends on the name of the relying party and a fresh challenge, preventing both phishing
and credential reuse. With TOTP, the secret is an HMAC key and the credential an HMAC of the
current time, which prevents credential reuse in the future. With passwords, the credential is simply
the password, which has the disadvantage that it can be reused once a malicious client obtains it.

Larch splits the authentication secret between the client and log service so that both parties
must participate in authentication. We introduce split-secret authentication protocols for FIDO2,
TOTP, and password-based login. At the end of each protocol, the log service holds an encrypted
authentication log record and the client holds a credential. Larch ensures that if the client obtains
a valid credential, the log service also obtains a well-formed log record, even if the client is
compromised and behaves maliciously. At the same time, the log service learns no information
about the relying parties that the user authenticates to.

We design larch to achieve the following (informal) security and privacy goals:
• Log enforcement against a malicious client: An attacker that compromises a client cannot

authenticate to an account that the client created before compromise without the log obtaining a
well-formed, encrypted log record.
• Client privacy and security against a malicious log: A malicious log service cannot authenticate

to the user’s accounts or learn any information about the relying parties to which the user
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has authenticated, including whether two authentications are for the same account or different
accounts.
• Client privacy against a malicious relying party: Colluding malicious relying parties cannot

link a user across accounts.
Larch’s FIDO2 protocol uses zero-knowledge proofs [208] to convince the log that an encrypted

authentication log record generated by the client is well-formed relative to the digest of a FIDO2
payload. If it is, the client and log service sign the digest with a new, lightweight two-party ECDSA
signing protocol tailored to our setting. For TOTP, larch executes an authentication circuit using
an existing garbled-circuit-based multiparty computation protocol [511, 525]. For password-based
login, the client privately swaps a ciphertext encrypting the relying party’s identity for the log’s
share of the corresponding password using a discrete-log-based protocol [218].

In the event that a user’s device is compromised, a user can revoke access to all accounts—even
accounts she may have forgotten about—by interacting only with the log service. At the same
time, involving the log service in every authentication could pose a reliability risk (just as relying
on OpenID does). We show how to split trust across multiple log service providers to strengthen
availability guarantees, making larch strictly better than OpenID for all three of security, privacy,
and availability.

We expect users to perform many password-based authentications, some FIDO2 authentications,
and a comparatively small number of TOTP authentications. Given a client with four cores and a
log server with eight cores, an authentication with larch takes 150ms for FIDO2, 91ms for TOTP,
and 74ms for passwords (excluding preprocessing, which takes 1.23s for TOTP). One authentication
requires 1.73MiB of communication for FIDO2, 65.2MiB for TOTP, and 3.25KiB for passwords.
TOTP communication costs are comparatively high because we use garbled circuits [511]; however,
all but 202KiB of the communication can be moved into a preprocessing step.

Larch shows that it is possible to achieve privacy-preserving authentication logging that is
backwards compatible with existing standards. Moreover, larch provides new paths for FIDO2
adoption, as larch users can authenticate using FIDO2 without dedicated hardware tokens, which
could motivate more relying parties to deploy FIDO2. Users who do own hardware tokens can use
them to authenticate to the larch log service, providing strong security guarantees for relying parties
that do not yet support FIDO2 (albeit without the anti-phishing protection). We also suggest small
changes to the FIDO standard that would substantially reduce the overheads of larch while providing
the same security and privacy properties.

6.2 Design overview
We now give an overview of larch.

6.2.1 Entities
A larch deployment involves the following entities:
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Users. We envision a deployment with millions of users, each of which has hundreds of accounts
at different online services—shopping websites, financial institutions, news sites, and so on. Each
user has an account at a larch log service, secured by a strong, unique password and optionally (but
ideally) strong second-factor authentication such as a FIDO2 hardware security key. (In Section 6.6,
we describe how a user can create accounts with multiple log services in order to protect against
faulty logs.) A user also has a set of devices (e.g. laptop, phone, tablet) running larch client software
and storing larch secrets, including cryptographic keys and passwords.
Relying parties. A relying party is any website that a user authenticates to (e.g., a shopping
website or bank). Larch is compatible with any relying party that supports authentication via FIDO2
(U2F) [179,506], time-based one-time passwords (TOTP) [369], or standard passwords. The strength
of larch’s security guarantees depends on the strength of the underlying authentication method.
Log service. Whenever the user authenticates to a relying party, the client must communicate with
the log service. We envision a major service provider (e.g. Google or Apple) deploying this service
on behalf of their customers. The log service:
• keeps an encrypted record of the user’s authentication history, but
• learns no information about which relying party the user authenticates to.

At any time, a client can fetch this authentication record from the log service and decrypt it to see
the user’s authentication history. That is, if an attacker compromises one of Alice’s devices and
authenticates to github.com as Alice, the attacker will leave an indelible trace of this authentication
in the larch log. At the same time, to protect Alice’s privacy, the log service learns no information
about which relying parties Alice has authenticated to. A production log service should consist of
multiple, georeplicated servers to ensure high availability.

6.2.2 Protocol flow
Background. We use two-out-of-two additive secret sharing [453]: to secret-share a value 𝑥 ∈
{0, . . . , 𝑝 − 1}, choose random values 𝑥1, 𝑥2 ∈ {0, . . . , 𝑝 − 1} such that 𝑥1 + 𝑥2 = 𝑥 mod 𝑝. Neither
𝑥1 nor 𝑥2 individually reveals any information about 𝑥. We also use a cryptographic commitment
scheme: to commit to a value 𝑥 ∈ {0,1}∗, choose a random value 𝑟 ∈ {0,1}256 (the commitment
opening) and output the hash of (𝑥∥𝑟) using a cryptographic hash function such as SHA-256. For
computationally bounded parties, the commitment reveals no information about 𝑥, but makes it
impractical to convince another party that the commitment opens to a value 𝑥′ ≠ 𝑥.

The client’s interaction with the log service consists of four operations.
Step 1: Enrollment with a log service. To use larch, a user must first enroll with a larch log
service by creating an account. In addition to configuring traditional account authentication (i.e.,
setting a password and optionally registering FIDO2 keys), the user’s client generates a secret
archive key for each authentication method supported. For FIDO2 and TOTP, the archive key is
a symmetric encryption key, and the client sends the log service a commitment to this key. For
passwords, the archive key is an ElGamal private encryption key, so the client sends the log service
the corresponding public key. The client subsequently encrypts log records using these archive keys,
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while the log service verifies these log records are well-formed using the corresponding commitment
or public key.
Step 2: Registration with relying parties. After the user has enrolled with a log service, she can
create accounts at relying parties (e.g., github.com) using larch-protected credentials. We call this
process registration. Registration works differently depending on which authentication mechanism
the relying party uses: FIDO2 public-key authentication, TOTP codes, or standard passwords. All
generally follow the same pattern where at the conclusion of the registration protocol:
• the log service holds an encryption of the relying party’s identity under a key that only the

client knows,
• the log service and client jointly hold the account’s authentication secret using two-out-of-two

secret sharing [453],
• the relying party is unaware of larch and holds the usual information necessary to verify account

access: an ECDSA public key (for FIDO2), an HMAC secret key (for TOTP), or a password
hash (for password-based login), and
• the log service learns nothing about the identity of the relying party.

By splitting the user’s authentication secret between the client and the log, we ensure that the log
service participates in all of the user’s authentication attempts, which allows the log service to
guarantee that every authentication attempt is correctly logged.

The underlying authentication mechanisms (FIDO2, TOTP, and password-based login) only
provide security for a given relying party if the user’s device was uncompromised at the time of
registration; larch provides the same guarantees.
Step 3: Authentication to a relying party. Registering with a relying party lets the user later
authenticate to that relying party (Figure 1). At the conclusion of an authentication operation, larch
must ensure that:
• authentication succeeds at the relying party,
• the log service holds a record of the authentication attempt that includes the name of the relying

party, encrypted under the archive key known only to the client, and
• the log service learns no information about the identity of the relying party involved.

The technical challenge here is guaranteeing that a compromised client cannot successfully
authenticate to a relying party without creating a valid log record. In particular, the log service must
verify that the log record contains a valid encryption of the relying party’s name under the archive
key without learning anything about the relying party’s identity.

To achieve these goals, we design split-secret authentication protocols that allow the client
and log to use their split authentication secrets to jointly produce an authentication credential.
Our split-secret authentication protocols are essentially special-purpose two-party computation
protocols [526]. In a two-party computation, each party holds a secret input, and the protocol allows
the parties to jointly compute a function on their inputs while keeping each party’s input secret from
the other. Our split-secret authentication protocols follow a general pattern, although the specifics
depend on the underlying authentication mechanism in use (FIDO2, TOTP, or password-based
login):
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Figure 1: The client and log service run split-secret authentication where the client obtains the credential for
amazon.com and the log service obtains an encryption of amazon.com under the client’s key. The client’s inputs
are its share 𝑥 of the authentication secret, the archive key 𝑘 , a random nonce 𝑟, and the string amazon.com.
The log’s inputs are its shares 𝑦amazon, . . . , 𝑦google of all the client’s authentication secrets and the commitment
cm to the archive key generated at enrollment. The MakeCred function takes extra inputs for FIDO2 and
TOTP.

• The client algorithm takes as input the identity of the relying party, the client’s share of the
corresponding authentication secret, the archive key, and the opening for the log service’s
commitment to the archive key.
• The log algorithm takes as input its shares of authentication secrets and the client’s commitment

to the archive key (which it received at enrollment).
• The client algorithm outputs an authentication credential: a signature (for FIDO2), an HMAC

code (for TOTP), or a password (for password-based login).
• The log algorithm outputs an encryption of the relying party identifier under the archive key.

In this way, the client and log service jointly generate authentication credentials while guaranteeing
that every successful authentication is correctly logged. The client and log do not learn any
information beyond the outputs of the computation. We use this general pattern to construct split-
secret authentication protocols for FIDO2 (Section 6.3), TOTP (Section 6.4), and password-based
login (Section 6.5).
Step 4: Auditing with the log. Finally, at any time, the user can ask the log service for its collection
of log entries encrypted under the archive key. A user could do this when she suspects that an
attacker has compromised her credentials. The user’s client could also perform this auditing in the
background and notify the user if it ever detects anomalous behavior. The client uses the encryption
key it generated during enrollment to decrypt log entries.

6.2.3 System goals
We now describe the security goals of larch (Figure 2).
Goal 1: Log enforcement against a malicious client. Say that an honest client enrolls with an honest
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Figure 2: Larch security goals.

log service and then registers with a set of relying parties. Later on, an attacker compromises the
client’s secrets (e.g., by compromising one of the user’s devices and causing it to behave maliciously).
Every successful authentication attempt that the attacker makes using credentials managed by larch
will appear in the client’s authentication log stored at the larch log service. Furthermore, the honest
client can decrypt these log entries using its secret key.
Goal 2: Client privacy and security against a malicious log. Even if the log service deviates
arbitrarily from the prescribed protocol, it learns no information about (a) the client’s authentication
secrets (meaning that the log service cannot authenticate on behalf of the client) or (b) which relying
parties a client has interacted with.
Goal 3: Client privacy against a malicious relying party. A set of colluding malicious relying
parties learn no information about which registered accounts belong to the same client. That is,
relying parties cannot link a client across multiple relying parties using information they learn
during registration or authentication.

To be usable in practice, larch should additionally achieve the following functionality goal:
Goal 4: No changes to the relying party. Relying parties that support FIDO2 (U2F), TOTP,
or password authentication do not need to be aware of larch. Clients can unilaterally register
authentication credentials such that all future authentications are logged in larch.

6.2.4 Non-goals and extensions
Availability against a compromised log service. Larch does not provide availability if the log service
refuses to provide service. We discuss defenses against availability attacks in Section 6.6.
Privacy against colluding log and relying party. If the log service colludes with a relying party, they
can always use timing information to map log entries to authentication requests. Therefore, larch
makes no effort to obscure the relationship between private messages seen by the two parties and
only guarantees privacy when the relying party and log service do not collude.
Limitations of underlying authentication schemes. Larch provides security guarantees that match the
security of the underlying authentication schemes. FIDO2 provides the strongest security, followed
by TOTP, and then followed by passwords. For TOTP and password-based login, larch provides no
protection against credential breaches: if an attacker steals users’ authentication secrets (MAC keys
or passwords) from the relying party, the attacker can use those secrets to authenticate without those
authentications appearing in the log. FIDO2 defends against credential breaches because the relying
party only ever sees the client’s public key.
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Larch does protect against device compromise for all three authentication mechanisms: even if
an attacker gains control of a user’s device, generating any of the user’s larch-protected credentials
requires communicating with the log service and results in an archived log record. If the user
discovers the device break-in later on, she can recover from the log a list of authentications and take
steps to remediate the effects of compromise (contacting the affected relying parties, etc.).

An attacker who compromises an account can often disable two-factor authentication or add
its own credentials to a compromised account. Therefore, only an attacker’s first successful access
to a given relying party is guaranteed to be archived in larch. That said, many relying parties send
out notifications, require step-up authentication, or revoke access to logged in clients on credential
updates, all of which could complicate an attack or alert legitimate users to a problem. Hence, it
is valuable to ensure that all accesses with the original account credentials are logged. Larch can
make this guarantee for FIDO2, where every authentication requires a unique two-party signature. It
does not provide this guarantee with passwords, as the attacker learns the password as part of the
authentication process: only the attacker’s first authentication to a given relying party will be logged.
With TOTP, each generated code produces a larch log record. Some relying parties implement a
TOTP replay cache, in which case one code allows one login. Other relying parties allow a single
TOTP code to be used for arbitrarily many authentications in a short time period (generally about a
minute).

Fortunately, when recovering from compromise, a user is most interested in learning whether an
attacker has accessed an account zero times or more than zero times. For larch-generated credentials,
users will always be able to learn this information from the larch log. However, if users import
passwords that are not unique into larch, this guarantee does not hold. By default, the larch client
software generates a unique random password for every relying party, but it also allows user to
import existing legacy passwords, which might not be unique. In the event of password reuse, the
attacker can generate a single log record to obtain the password and then use it to authenticate to all
affected relying parties.

6.3 Logging for FIDO2

6.3.1 Background
FIDO2 protocol. The FIDO2 protocol [179,506] allows a client to authenticate using cryptographic
keys stored on a device (e.g., a Yubikey hardware token or a Google passkey). To register with a
relying party (e.g., github.com), the client generates an ECDSA keypair, stores the secret key, and
sends the public key to the relying party. When the client subsequently wants to authenticate to
relying party github.com, Github’s server sends the client a random challenge. The client then signs
the hash of the string github.com and the Github-chosen challenge using the secret key the client
generated for github.com at registration. If the signature is valid, the Github server authorizes the
client. Because the message signed by the client is bound to the name github.com, FIDO2 provides
a strong defense against phishing attacks. The FIDO2 protocol supports passwordless, second-factor,
and multi-factor authentication.
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Zero-knowledge arguments. Informally, zero-knowledge arguments allow a prover to convince a
verifier that a statement is true without revealing why the statement is true [208]. More precisely,
we consider non-interactive zero-knowledge argument systems [66, 178] in the random-oracle
model [53]. Both the prover and verifier hold the description of a computation 𝐶 and a public input 𝑥.
The prover’s goal is to produce a proof 𝜋 that convinces the verifier that there exists a witness 𝑤 that
causes 𝐶 (𝑥,𝑤) = 1, without revealing the witness 𝑤 to the verifier. We require the standard notions
of completeness, soundness, and zero knowledge [66, 208]. Throughout the chapter, we will refer to
this type of argument system as a “zero-knowledge proof.”

We use the ZKBoo protocol [106,200,268] for proving statements about computations expressed
as Boolean circuits. Our system could also be instantiated with succinct non-interactive arguments of
knowledge, which would decrease proof size and verification time, but at the cost of increasing proving
time and requiring large parameters generated via a separate setup algorithm [65, 196, 217, 400].
Threshold signatures. A two-party threshold signature scheme [154, 155] is a set of protocols
that allow two parties to jointly generate a single public key along with two shares of the
corresponding secret key and then jointly sign messages using their secret key shares such that
the signature verifies under the joint public key. Informally, no malicious party should be able to
subvert the protocols to extract another party’s share of the secret key or forge a signature on a
message other than the honest party’s message. We would ideally instantiate our system using BLS
multisignatures [67]. Unfortunately, the predominant signing algorithms for FIDO2 are ECDSA and
RSASSA [4, 12, 368]. For backwards-compatibility, we present a construction for two-party ECDSA
signing with preprocessing tailored to our setting in Section 6.3.3.

6.3.2 Split-secret authentication
We now describe our split-secret authentication protocol for FIDO2 where the authentication secret
is split between the larch client software and the log service. The key challenge is achieving log
enforcement and log privacy simultaneously: every successful authentication should result in a valid
log entry encrypting the identity of the relying party, but the log should not learn the identity of the
relying party.

We use threshold signing to ensure that both the client and log participate in every successful
authentication. A natural way to use threshold signing would be to have the client and log each
generate a new threshold signing keypair at every registration. Unfortunately, if the log service used
a different key share for each relying party, it would know which authentication requests correspond
to the same relying party, violating Goal 2 (privacy against a malicious log). Instead, we have the log
use the same signing-key share for all relying parties. The client still uses a different signing-key
share per party, ensuring the public keys are unlinkable across relying parties. To authenticate to a
relying party with identifier id and challenge chal, the client computes a digest digest =Hash(id,chal)
that hides id. The client and log then jointly sign digest.

We also need to ensure that the log service obtains a correct record of every authentication. In
particular, the log should only participate in threshold signing if it obtains a valid encryption ct of
the relying-party identifier id [466].
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To be valid, a ciphertext ct must (1) decrypt to id under the archive key 𝑘 established for that
client, and (2) be correctly related to the digest digest that the log will sign (i.e., Dec(𝑘,ct) = id and
digest = Hash(id,chal)). To allow the log service to check that the client is using the right archive
key without learning the key, we use a commitment scheme. During enrollment, the client generates
a commitment cm to the archive key 𝑘 using random nonce 𝑟 and sends cm to the log service.
During authentication, the client uses a zero-knowledge proof to prove to the log that it knows a key
𝑘 , randomness 𝑟, relying-party identifier id, and authentication challenge chal such that ciphertext
ct, digest digest, and commitment cm from enrollment meet the following conditions:
(a) cm = Commit(𝑘,𝑟),
(b) id = Dec(𝑘,ct), and
(c) digest = Hash(id,chal).
The public inputs are the ciphertext ct, digest digest, and commitment cm (known to the client and
log); the witness is the archive key 𝑘 (known only to the client), commitment opening 𝑟 , relying-party
identifier id, and challenge chal.
Final protocol. We now outline our final protocol.
Enrollment. During enrollment, the client samples a symmetric encryption key 𝑘 as the archive
key and commits to it with some random nonce 𝑟. The client sends the commitment cm to the
log, and the log generates a signing-key share for the user. The log sends the client the public key
corresponding to its signing-key share to allow the client to derive future keypairs for relying parties.
Registration. At registration, the client generates a new signing-key share for that relying party. The
client then aggregates the log’s public key with its new signing-key share and sends the resulting
public key to the relying party. No interaction with the log service is required.
Authentication. To authenticate to id with challenge chal, the client computes digest←Hash(id,chal)
and ct← Enc(𝑘, id). The client then generates a zero-knowledge proof 𝜋 that it knows an archive
key 𝑘 , commitment nonce 𝑟, relying-party identifier id, and authentication challenge chal such
that digest and ct are correctly related relative to the commitment cm that the client generated at
enrollment. The client sends digest, ct, and 𝜋 to the log service. The log service checks the proof
and, if it verifies, runs its part of the threshold signing protocol. The log service stores ct and returns
its signature share to the client. The log service also stores the current time and client IP address
with ct, allowing the user to obtain additional metadata by auditing. Finally, the client completes the
threshold signature and sends it to the relying party.
Auditing. To audit the log, the client requests the list of ciphertexts and metadata from the log service
and decrypts all of the relying-party identifiers.

6.3.3 Two-party ECDSA with preprocessing
Section 6.3.2 shows how to implement larch for any two-of-two threshold signing scheme that
cryptographically hashes input messages. However, FIDO2 compatibility forces us to use ECDSA,
which is more cumbersome than BLS to threshold. We present a concretely efficient protocol for
ECDSA signing between the client and log.
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There is a large body of prior work on multi-party ECDSA signing [18, 90, 92, 131, 132, 160,
197, 198, 220, 325]. However, existing protocols are orders of magnitude more costly than the one
we present here [90, 92, 197, 198, 325]. The efficiency gain for us comes from the fact that we may
assume that the client is honest at enrollment time and only later compromised. In contrast, standard
schemes for two-party ECDSA signing must protect against the compromise of either party at any
time. Prior protocols provide this stronger security property at a computational and communication
cost. In our setting, we need only ensure that an honest client can run an enrollment procedure with
the log service such that if the client is later compromised, the attacker cannot subvert the signing
protocol.

We leverage the client to split signing into two phases:
1. During an offline phase, which takes place during enrollment, the client performs some

preprocessing to produce a “presignature.” Security only holds if the client is honest during the
offline phase.

2. During an online phase, which takes place during authentication, the client and log service
use the presignature to perform a lightweight, message-dependent computation to produce an
ECDSA signature. Security holds if either the client or log service is compromised during the
online phase.

Prior work also splits two-party signing into an offline and online phase. However, prior work
performs this partitioning to reduce the online time at the expense of a more costly offline
phase [90,131,132,521]. (The offline phase in these schemes is expensive since the protocols do not
assume that both parties are honest during the offline phase.) We split the signing scheme into an
offline and online phase to take advantage of the fact that we may assume that the client is honest in
the offline phase and so can reduce the total computation time this way.

An additional requirement in our setting is that the log should not learn the public key that
the signature is generated under. Because the public key is specific to a relying party, hiding
the public key is necessary for ensuring that the log cannot distinguish between relying parties.
The signing algorithm can take as input a relying-party-specific key share from the client and a
relying-party-independent key share from the log.
Background: ECDSA. For a group G of prime order 𝑞 with generator 𝑔, fixed in the ECDSA
standard, an ECDSA secret key is of the form sk ∈ Z𝑞, where Z𝑞 denotes the ring of integers
modulo 𝑞. The corresponding ECDSA public key is pk = 𝑔sk ∈ G. ECDSA uses a hash function
Hash : {0,1}∗→ Z𝑞 and a “conversion” function 𝑓 : G→ Z𝑞. To generate an ECDSA signature
on a message 𝑚 ∈ {0,1}∗ with secret key sk ∈ Z𝑞, the signer samples a signing nonce 𝑟←R Z𝑞 and
computes

𝑟−1 · (Hash(𝑚) + 𝑓 (𝑔𝑟) · sk) ∈ Z𝑞 .
Our construction. We now describe our construction for a two-party ECDSA signing protocol with
presignatures. (See Section 6.12 for technical details.) To generate the log keypair, the log samples
𝑥←R Z𝑞, sets its secret key to 𝑥 ∈ Z𝑞, and sets its public key to 𝑋 = 𝑔𝑥 ∈G. Then to generate a keypair
from the log public key, the client samples 𝑦←R Z𝑞 and sets the relying-party-specific public key to
pk = 𝑋 · 𝑔𝑦 ∈ G. For each public key of the form 𝑔𝑥+𝑦 ∈ G, the log has one share 𝑥 ∈ Z𝑞 of the secret
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key that is the same for all public keys and the client has the other share 𝑦 ∈ Z𝑞 of the secret key that
is different for each public key.

We split the signature-generation process into two parts:
1. Offline phase: a message-independent, key-independent “presignature” algorithm that the client

runs, and
2. Online phase: a message-dependent, key-dependent signing protocol that the log and client run

jointly.
To generate the presignature in the offline phase, the client samples a signing nonce 𝑟←R Z𝑞, computes
𝑅← 𝑔𝑟 ∈ G, and splits 𝑟−1 into additive secret shares: 𝑟−1 = 𝑟0 + 𝑟1 ∈ Z𝑞. The log’s portion of
the presignature is ( 𝑓 (𝑅), 𝑟0) ∈ Z2

𝑞, and the client’s portion is ( 𝑓 (𝑅), 𝑟1) ∈ Z2
𝑞. Then, to produce

a signature on a message in the online phase, the client and log simply perform a single secure
multiplication to compute

𝑟−1 · (Hash(𝑚) + 𝑓 (𝑅) · sk) ∈ Z𝑞
where 𝑟−1 ∈ Z𝑞 (signing nonce) and sk ∈ Z𝑞 (signing key) are secret-shared between the client and

log.
To perform this multiplication over secret-shared values, we use Beaver triples [48]. A Beaver

triple is a set of one-time-use shares of values that the log and client can use to efficiently perform
a two-party multiplication on secret-shared values. Traditionally, generating Beaver triples is one
of the expensive portions of multiparty computation protocols (e.g., in prior work on threshold
ECDSA [131]). In our setting, the client at enrollment time can generate a Beaver triple as part of
the presignature. Note that the client and log can use each signing nonce and Beaver triple exactly
once. That is, the client and log must use a fresh presignature to generate each signature.
Malicious security. By deviating from the protocol, neither the client nor the log should be able
to learn secret information (i.e., the other party’s share of the secret key or signing nonce) or
produce a signature for any message apart from the one that the protocol fixes. We describe how to
accomplish this using traditional tools for malicious security (e.g. information-theoretic MACs [133])
in Section 6.12.
Formalizing and proving security. We define and prove security in Section 6.11 and Section 6.12.
Implications for system design. Our preprocessing approach increases the client’s work at
enrollment: the client generates some number of presignatures (e.g., 10K) and sends the log’s
presignature shares to the log. To reduce storage burden on the log, the client can store encryptions
of the log’s presignature shares.

When the client is close to running out of presignatures, it can authenticate with the log, generate
more presignatures, and send the log’s presignature shares to the log service. If the log service does
not receive an objection after some period of time, it will start using the new presignatures. An
honest client periodically checks the log to see whether any unexpected presignatures (created by an
attacker) appear in its log. If the client learns that a new batch of presignatures was generated that
the client did not authorize, the client authenticates to the log service and objects. This approach
provides security as long as an honest client can detect client compromise and object to any
adversarially generated presignatures during the objection period. (If a user is concerned about
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recovering authentication logs from a long period of undetected compromise, the client can set a very
long objection period, or generate enough presignatures at enrollment that, with high probability, it
will not need to generate more.)

If the client runs out of presignatures and the log service rejects the client’s presignatures, the
client and the log can temporarily use a more expensive signing protocol that does not require
presignatures [160, 198, 325, 521]. The client could run out of presignatures and be forced to use the
slow multisignature protocol in the following cases:

1. The attacker compromised the user’s credentials with the log service, allowing the attacker to
object to the new presignatures. In this case, the attacker could change the user’s credentials
and permanently lock the user out of her account.

2. The honest client was close to running out of presignatures, generated new presignatures, and
then ran out of presignatures while waiting for a possible objection. This scenario only occurs
when the honest client makes an unexpectedly large number of authentications in a short period
of time. The client only needs to pay the cost of the slow multisignature protocol for a short
period of time.

An attacker that has compromised the log service can also deny service, as we discussed in
Section 6.2.4.
Benefits of future support for Schnorr-based signing. The FIDO2 standard recommends support
for EdDSA, which, if widely supported in the future, could simplify the two-party signing protocol and
avoid preprocessing altogether. Adapting a Schnorr-based threshold signing protocol [182, 351, 379]
to the setting where only the client knows the message and public key could potentially improve
performance.

6.4 Logging for time-based one-time passwords
We now show how larch can support time-based one-time passwords (TOTP).

6.4.1 Background: TOTP
TOTP is a popular form of second-factor authentication that authenticator apps (Authy, Google
Authenticator, and others [369]) implement. When a client registers for TOTP with a relying party,
the relying party sends the client a secret cryptographic key. Then, to authenticate, the client and the
relying party both compute a MAC on the current time using the secret key from registration. The
client sends the resulting MAC tag to the server. If the client’s submitted tag matches the one that the
server computes, the relying party authorizes the client. TOTP uses a hash-based MAC (HMAC).

6.4.2 Split-secret authentication for TOTP
At a high level, in our split-secret authentication protocol for TOTP, both the client and log service
have as private input additive secret shares of the TOTP secret key. At the conclusion of the
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split-secret authentication, the client holds a TOTP code and the log service holds a ciphertext. We
now give the details of our protocol.
Enrollment. At enrollment, just as with FIDO2, the client generates and stores a long-term
symmetric-encryption archive key 𝑘 and random nonce 𝑟. Then, the client sends the commitment
cm = Commit(𝑘,𝑟) to the log service.
Registration. To register a client, a relying party generates and sends the client a secret MAC key
kid for TOTP. The client samples a random identifier id for the relying party and then splits the
TOTP secret key kid into additive secret shares klogid and kclientid. The client sends (id,klogid) to
the log service and locally stores (id,kclientid) alongside a name identifying the relying party (e.g.,
user@amazon.com).
Authentication. In order to authenticate to the relying party id at time 𝑡, the client needs to compute
HMAC(kid, 𝑡) with the help of the log service. Let 𝑛 be the number of relying parties with which the
client has registered. To authenticate, the client and log service run a secure two-party computation
where:
• The client’s input is its long-term symmetric archive key 𝑘 and commitment opening 𝑟 from

enrollment, the relying-party identifier id, and the client’s share of the TOTP key kclientid.
• The log service’s input is the commitment cm from enrollment, the list of relying-party

identifiers that the client has registered with (id1, . . . , id𝑛), and the log service’s TOTP key
shares (klogid1

, . . . ,klogid𝑛)—one per relying party.
• The client outputs the TOTP code HMAC(kid, 𝑡).
• The log outputs an encrypted log record: an encryption of the relying-party identifier id under

the archive key 𝑘 .
We execute this two-party computation using an off-the-shelf garbled-circuit-based multiparty
computation protocol. Garbled circuits allow two parties to jointly execute any Boolean circuit on
private inputs, where neither party learns information about the other’s input beyond what they can
infer from the circuit’s output [525]. We use the protocol from Wang et al. [511], which provides
malicious security, meaning that the protocol remains secure even if one corrupted party deviates
arbitrarily from the protocol. As long as either the client or the log service is honest, the log service
does not learn any information about the client’s authentication secrets, and the client learn no
information about the TOTP secret, apart from the single TOTP code that the protocol outputs.
Because we use an off-the-shelf garbled-circuit protocol, the communication overhead is much
higher than in the special-purpose protocols we design for FIDO2 and passwords (Section 6.8).
TOTP is challenging to design a special-purpose protocol for because the authentication credential
must be generated via the SHA hash function which, unlike the authentication credentials for FIDO2
and passwords, does not have structure we can exploit. Clients can ask the log service to delete
registrations for unused accounts to speed up the two-party computation.
Auditing. To audit the log, the client simply requests the list of ciphertexts from the log service. The
client decrypts each ciphertext with its archive key 𝑘 and then, using its mapping of id values to
relying party names, outputs the resulting list of relying party names.
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6.5 Logging for passwords
We now describe how larch can support passwords.

6.5.1 Protocol overview
We construct a split-secret authentication protocol that takes place between the client and the log
service. In particular, we show how the client can compute the password to authenticate to a relying
party in such a way that (a) the log service does not learn the relying party’s identity and (b) the
client’s authentication attempt is logged. At the start of the authentication protocol run:
• the client holds a secret key, the log service’s public key, and the identity id∗ of the relying party

it wants to authenticate to, and
• the log service holds its own secret key, the client’s public key, and a list of relying-party

identities (id1, . . . , id𝑛) at which the client has registered.
At the end of the authentication protocol run:
• the client holds a password derived as a pseudorandom function of the client’s secret, the log’s

secret, and the relying party identity id∗, and
• the log service holds a ciphertext encrypting the relying party’s identity id∗ under the client’s

public key.
Limitations inherent to passwords. As we discussed in Section 6.2.4, larch for passwords does not
protect against credential breaches, but does defend against device compromise.

6.5.2 Split-secret authentication for passwords
The larch scheme for password-based authentication uses a cyclic group G of prime order 𝑞 with a
fixed generator 𝑔 ∈ G. Our implementation uses the NIST P-256 elliptic-curve group.

When using password-based authentication in larch, the client and log service after registration
each hold a secret share of the password for each relying party. In particular, the password for a
relying party with identity id ∈ {0,1}∗ is the string pwid = 𝑘 id ·Hash(id)𝑘 ∈ G, where:
• 𝑘 id ∈ Z𝑞 is a per-relying-party secret share held by the client,
• Hash : {0,1}∗→G is a hash function, and
• 𝑘 ∈ Z𝑞 is a per-client secret key held by the log service.

Thus, computing pwid requires both the client’s per-site key 𝑘 id and the log’s secret key 𝑘 .
The technical challenge is to construct a protocol that allows the client to compute the password

pwid while (a) hiding id from the log service and (b) ensuring that the log service completes the
interaction holding an encryption of id under the client’s public key.
Protocol. We describe the protocol steps:
Enrollment. The client samples an ElGamal secret key 𝑥 ∈ Z𝑞 as the archive key and sends the
corresponding public key 𝑋 = 𝑔𝑥 ∈ G to the log service. The log service samples a Diffie-Hellman
secret key 𝑘 ∈ Z𝑞 and sends its public key 𝐾 = 𝑔𝑘 ∈ G to the client.
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Registration. The client samples a per-relying-party random identifier id←R {0,1}128, saves id locally
alongside the name of the relying party (e.g., user@amazon.com), and sends id to the log service.
The log service saves the string Hash(id) and replies with Hash(id)𝑘 ∈ G. To generate a new strong
password pwid (the recommended use), the client samples and saves a random key share 𝑘 id←R G and
sets pwid← 𝑘 id ·Hash(id)𝑘 ∈G. To import a legacy password pwid (less secure), the client computes
and stores 𝑘 id← pwid ·

(
Hash(id)𝑘 ))−1 ∈ G. The client then deletes Hash(id)𝑘 and pwid. Note that

the log server can discard id, which it only uses to avoid providing ℎ𝑘 for arbitrary ℎ. When the
client samples id and 𝑘 id randomly in the recommended usage, the password pwid for each relying
party is random and distinct.
Authentication. During authentication, the client must recompute the password pwid. To do so, the
client first sends the log service an encryption of Hash(id) under the public ElGamal archive key
𝑔𝑥: the client samples 𝑟←R Z∗𝑞 and computes the ciphertext (𝑐1, 𝑐2) = (𝑔𝑟 ,Hash(id) · 𝑔𝑥𝑟) ∈ G2. In
addition, the client sends a zero-knowledge proof to the log service attesting to the fact that (𝑐1, 𝑐2)
is an encryption under the client’s public key 𝑋 of Hash(id) for id ∈ {id1, id2, . . . , id𝑛}—the set of
relying-party identifiers that the client sent to the log service during each of its registrations so far.
The client executes this proof using the technique from Groth and Kohlweiss [218]. The proof size
is 𝑂 (log𝑛) and the prover and verifier time are both 𝑂 (𝑛). (See Section 6.13 for implementation
details.)

The log service saves the ciphertext as a log entry, checks the zero-knowledge proof, and returns
the value ℎ = 𝑐𝑘2 = Hash(id)𝑘 · 𝑔𝑥𝑟𝑘 ∈ G to the client. The client can then compute

pwid = 𝑘 id · ℎ ·𝐾−𝑥𝑟 = 𝑘 id ·Hash(id)𝑘 ∈ G.

Crucially, the client deletes pwid after authentication to ensure that future authentications must again
interact with the log service.
Auditing. To audit the log, the client downloads the ElGamal ciphertexts and can decrypt each
ciphertext to recover a list of hashed identities: (Hash(id1),Hash(id2), . . . ). The client uses its stored
mapping of ids to relying-party identifiers to recover the plaintext names of the relying parties in the
log.

6.6 Protecting against log misbehavior
The larch log service must participate in each of the user’s authentication attempts. If the log service
goes offline, the user will not be able to authenticate to any of her larch-enabled relying parties. In a
real-world deployment, the log service could consist of multiple servers replicated using standard
state-machine replication techniques to tolerate benign failures [306, 384]. However, users might
also worry about intentional denial-of-service attacks on the part of the log.

To defend against availability attacks, a user can split trust across multiple logs. At enrollment
time, the user can enroll with 𝑛 logs. Then at registration, the user can set a threshold 𝑡 of logs that
must participate in authentication. Thus, the user can authenticate to her accounts so long as 𝑡 logs
are online, and she can audit activity so long as 𝑛− 𝑡 +1 logs are available. We need 𝑛− 𝑡 +1 logs
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to be available for auditing in order to guarantee that at least one of the 𝑡 logs that participated in
authentication is online. To ensure that colluding logs cannot authenticate on behalf of a client,
the user’s client can run 𝑛+1 logical parties, and 𝑛+ 𝑡 +1 parties can generate an authentication
credential. In the setting with multiple log services, we need to adapt our two-party protocols to
threshold multi-party protocols. Although we present our techniques for two parties (the client and a
single log), our techniques generalize to multiple parties in a straightforward way.

For FIDO2 and passwords, the client now sends a zero-knowledge proof to each of the 𝑛 logs. In
the password case, the client can then retrieve (𝑡, 𝑛) Shamir shares of the password [453], and in the
FIDO2 case, the client can run any existing multi-party threshold signing protocol that does not take
the public key as input [131, 457]. For TOTP, the client and the 𝑛 logs can execute the same circuit
using any malicious-secure threshold multi-party computation protocol [55].

Note that for relying parties that support FIDO2, users can optionally register a backup hardware
FIDO2 device to allow them to bypass the log. In this case, the user can authenticate either via
larch or via her backup FIDO2 key. While registering a backup hardware device protects against
availability attacks, if an attacker obtains this hardware device, they can authenticate as the user
without interacting with the log.

6.7 Implementation
We implemented larch for FIDO2, TOTP, and passwords with a single log service. We use C/C++
with gRPC and OpenSSL with the P256 curve (required by the FIDO2 standard). We wrote
approximately 5,700 lines of C/C++ and 50 lines of Javascript (excluding tests and benchmarks).
Our implementation is available at https://github.com/edauterman/larch.

For our FIDO2 implementation, we implemented a ZKBoo [200] library for arbitrary Boolean
circuits. Our ZKBoo implementation (with optimizations from ZKB++ [106]) uses emp-toolkit
to support arbitrary Boolean circuits in Bristol Fashion [510]. To support the parallel repetitions
required for soundness error < 2−80, we use SIMD instructions with a bitwidth of 32 and run 5
threads in parallel. For the proof circuit, we use AES in counter mode for encryption and SHA-256
for commitments (SHA-256 is necessary for backwards compatability with FIDO2). We built a
log service and client that invoke the ZKBoo library, as well as a Chrome browser extension that
interfaces with our client application and is compatible with existing FIDO2 relying parties. We
built our browser extension on top of an existing extension [297].

Our TOTP implementation uses a maliciously secure garbled-circuit construction [511] imple-
mented in emp-toolkit [510]. We generated our circuit using the CBMC-GC compiler [184] with
ChaCha20 for encryption and SHA-256 for commitments.

For our passwords implementation, we implemented Groth and Kohlweiss’s proof system [218].
Our implementation uses a single log server for the log service, does not encrypt communication

between the client and the log service, and does not require the client to authenticate with the log
service. A real-world deployment would use multiple servers for replication, use TLS between the
client and the log service, and authenticate the client before performing any operations.

https://github.com/edauterman/larch
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Optimizations. We use pseudorandom generators (PRGs) to compress presignatures: the log stores 6
elements in Z𝑞 and the client stores 1 element. Also, instead of running an authenticated encryption
scheme (e.g. AES-GCM) inside the circuit for FIDO2 or TOTP, we run an encryption scheme
without authentication (e.g. AES in counter mode) inside the circuit and then sign the ciphertext
(client has the signing key, log has the verification key). The log can check the integrity of the
ciphertext by verifying the signature, which is much faster than checking in a zero-knowledge proof
or computing the ciphertext tag jointly in a two-party computation.

6.8 Evaluation
In this section, we evaluate the cost of larch to end users and the cost of running a larch log service.
Experiment setup. We run our benchmarks on Amazon AWS EC2 instances. Unless otherwise
specified, we run the log service on a c5.4xlarge instance with 8 cores and 32GiB of memory and,
for latency benchmarks, the client on a c5.2xlarge instance with 4 cores and 16GiB of memory,
comparable to a commodity laptop (2 hyperthreads per core throughout). We configure the network
connection between the client and log service to have a 20ms RTT and a bandwidth of 100 Mbps.

6.8.1 End-user cost
We show larch authentication latency and communication costs for FIDO2, TOTP, and passwords.
FIDO2.
Latency. The client for our FIDO2 scheme can complete authentication in 303ms with a single CPU
core, or 117ms when using eight cores (Figure 3). Loading a webpage often takes a few seconds
because of network latency, so the client cost of larch authentication is minor by comparison. The
client’s running time during authentication is independent of the number of relying parties. The
heaviest part of the client’s computation is proving to the log service that its encrypted log entry is
well formed.

At enrollment, the client must generate many “presignatures,” which it later uses to run our
authentication protocol with the log. Generating 10,000 presignatures for 10,000 future FIDO2
authentications takes 885ms. When the client runs out of presignatures, it generates new presignatures
it can use after a waiting period (see Section 6.3.3).
Communication. During enrollment, the client must send the log 1.8MiB worth of presignatures.
Thereafter, each authentication attempt requires 1.73MiB worth of communication: the bulk of this
consists of the client’s zero-knowledge proof of correctness, and 352B of it comes from the signature
protocol. By using a different zero-knowledge proof system, we could reduce communication cost at
the expense of increasing client computation cost.
Comparison to existing two-party ECDSA. For comparison, a state-of-the-art two-party ECDSA
protocol [521] that does not require presignatures from the client and uses Paillier requires 226ms
of computation at signing time (the authors’ measurements exclude network latency, which we
estimate would add 60ms) and 6.3KiB of per-signature communication. Using a variant of the
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same protocol based on oblivious transfer [521] makes it possible to reduce computation to 2.8ms
(again, excluding network latency, which we estimate would add 60ms) at the cost of increasing
per-signature communication to 90.9KiB. In contrast, our signing protocol only requires 0.5KiB
per-signature communication (including the log presignature and the signing messages) and takes
61ms time at signing, almost all of which is due to network latency and can be run in parallel with
proving and verifying as the computational overhead is minimal (roughly 1ms).
TOTP.
Latency. In Figure 3 (right), we show how TOTP authentication latency increases with the number of
relying parties the user registered with. Because we implement TOTP authentication using garbled
circuits [511], we can split authentication into two phases: an “offline”, input-independent phase
and an “online”, input-dependent phase (the log service and client communicate in both phases).
Both phases are performed once per authentication. However, the offline phase can be performed in
advance of when the user needs to authenticate to their account, and so it does not affect the latency
that the user experiences. For 20 relying parties, the online time is 91ms and the offline time is 1.23s.
For 100 relying parties, the online time is 120ms and the offline time is 1.39s.
Communication. Communication costs for our TOTP authentication scheme are large: for 20 relying
parties, the total communication cost is 65MiB, and for 100 relying parties, the total communication
is 93MiB. The online communication costs are much smaller: for 20 relying parties, the online
communication is 202KiB and for 100 relying parties, the online communication is 908KiB. We
envision clients running the offline phase in the background while they have good connectivity. While
these communication costs are much higher than those associated with FIDO2 or passwords, we
expect users to authenticate with TOTP less frequently because TOTP is only used for second-factor
authentication.
Passwords.
Latency. In Figure 3 (center), we show how password authentication latency increases with the
number of registered relying parties. With 16 relying parties, authentication takes 28ms, and with
512 relying parties, it takes 245ms: the authentication time grows linearly with the number of relying
parties. The proof system we use requires padding the number of relying parties to the nearest
power of two, meaning that registering at additional relying parties does not affect the latency or
communication until the number of relying parties reaches the next power of two.
Communication. In Figure 5, we show how communication increases logarithmically with the
number of relying parties. This behavior is due to the fact that proof size is logarithmic in the number
of relying parties. With 16 relying parties, the communication is 1.47KiB, and with 512 relying
parties, it is 4.14KiB.

6.8.2 Cost to deploy a larch service
If successful, larch can become much simpler and more efficient with a little support from future
FIDO specifications (see Section 6.9). Nonetheless, we show larch is already practical by analyzing
the cost of deploying a larch service today (Table 6). We expect a larch log service to perform many
password-based authentications, some FIDO2 authentications, and a comparatively small number of
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Figure 3: On the left, larch FIDO2 latency decreases as the number of client cores increases (latency is
independent of the number of relying parties). In the center, larch password latency grows with the number of
relying parties, with the majority of the time spent on client proof generation. On the right, larch TOTP latency
grows with the number of relying parties, with the majority of the time spent in an input-independent “offline”
phase as opposed to the input-dependent “online” phase (both phases require network communication).

TOTP authentications. This is because the majority of relying parties only support passwords, and
relying parties typically require second-factor authentication only from time to time.

Throughout this section, we consider password-based authentication with 128 relying parties
(based on the fact that the average user has roughly 100 passwords [439]) and TOTP-based
authentication with 20 relying parties (based on the fact that Yubikey’s maximum number of TOTP
registrations is 32 [13]). The authentication overhead of FIDO2 in larch is independent of the number
of relying parties the user has registered with.
Storage. For each of the three protocols, the log service must store authentication records (timestamp,
ciphertext, and signature). Authentication records are 104B for FIDO2, 88B for TOTP, and 138B for
passwords (differences are due to ciphertext size). The FIDO2 protocol additionally requires the
client to generate presignatures for the log, each of which is 192B. For 10K presignatures, the log
service must store 1.83MiB. In Figure 4 (left), we show how per-client log storage actually decreases
as presignatures are consumed and replaced by authentication records. To minimize storage costs,
the log service can encrypt its presignatures and store them at the client. The log service then simply
needs to keep a counter to prevent presignature re-use.
Throughput. In Table 6, we show the number of auths/s a single log service core can support
assuming 128 passwords and 20 TOTP accounts. We achieve the highest throughput for passwords
(47.62 auths/cores/s), which are the most common authentication mechanism. For FIDO2, which
can be used as either a first or second authentication factor and is supported by fewer relying parties
than passwords, we achieve 6.18 auths/core/s. Finally, for TOTP, which is only used as a second
factor, we achieve 0.73 auths/core/s.

Our FIDO2 protocol can be instantiated with any NIZK proof system to achieve a different
tradeoff between authentication latency and log service throughput. For example, we instantiate our
system with ZKBoo, but could also use Groth16 [217] to reduce communication and verifier time
(increasing log throughput). We measure the performance of Groth16 on our larch FIDO2 circuit on
the BN-128 curve using ZoKrates [539] with libsnark [304] with a single core (we only measure
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Figure 4: On the left, per-client storage overhead at the log decreases as presignatures are replaced with
authentication records (client enrolls with 10K presignatures). On the right, minimum cost of supporting
more authentications with passwords, (128 relying parties), FIDO2, and TOTP (20 relying parties). Both axes
use a logarithmic scale.

the overhead of SHA-256, which dominates circuit cost, to provide a performance lower bound).
While the verifier time is much lower (8ms) and the proof is much smaller (4.26KiB), (1) the trusted
setup requires the client to store 19.86MiB and the log service to store 9.2MiB per client, and (2)
the proving time is 4.07s, meaning that authentication latency is much higher.
Cost. We now quantify the cost of running a larch log service. The cost of one core on a c5 instance
is $0.0425-$0.085/hour depending on instance size [2]. Data transfer to AWS instances is free,
and data transfer from AWS instances costs $0.05-$0.09/GB depending on the amount of data
transferred per month [2]. In Table 6, we show the cost of supporting 10M authentications for each
authentication method with larch.

Supporting 10M authentications requires 450 log core hours for FIDO2, 3,832 log core hours for
TOTP, and 59 log core hours for passwords. Compute for 10M authentications costs $19.13-$38.25
for FIDO2, $162.86-$325.72 for TOTP, and $2.51-$5.02 for passwords. Communication for 10M
authentications costs $0.10-$0.19 for FIDO2, $17,923-$32,262 for TOTP, and $0.015-$0.027 for
passwords. The high cost for TOTP is due to the large amount of communication required at
authentication: the log service must send the client 36.8MiB for every authentication. In both the
FIDO2 and password protocols, the vast majority of the communication overhead is due to the proof
sent from the client to the log service, which incurs no monetary cost. We show how cost increases
with the number of authentications for each of the the authentication methods in Figure 4 (right).

TOTP is substantially more expensive than FIDO2 or passwords. However, we expect a relatively
small fraction of authentication requests to be for TOTP.

6.9 Discussion
Deployment strategy. Because larch supports passwords, TOTP, and FIDO2, people can use it with
the vast majority of web services. In addition, larch offers users many of the benefits of FIDO2
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Figure 5: Communication for larch with passwords increases logarithmically with the number of relying
parties (both axes use a logarithmic scale).

FIDO2 TOTP Password
Online auth time 150 ms 91 ms 74 ms
Total auth time 150 ms 1.32 s 74 ms

Online auth comm. 1.73 MiB 201 KiB 3.25 KiB
Total auth comm. 1.73 MiB 65 MiB 3.25 KiB

Auth record 104 B 88 B 138 B
Log presignature 192 B ∅ ∅
Log auths/core/s 6.18 0.73 47.62

10M auths min cost $19.19 $18,086 $2.48
10M auths max cost $38.37 $32,588 $4.96

Table 6: Costs for larch with FIDO2, TOTP (20 relying parties), and passwords (128 relying parties). We
take the cost of one core on a c5 instance to be $0.0425-$0.085/hour (depending on instance size) and data
transfer out of AWS to cost $0.05-$0.09/GB (depending on amount of data transferred) [2]. For comparison,
the Argon2 password hash function should take 0.5s using 2 cores.

without a dedicated hardware security token, particularly FIDO2’s protection against phishing. The
flexibility for users to choose log services can foster an ecosystem of new security products, such as
log services that request login confirmation via a mobile phone app, apps that monitor the log to
notify users of anomalous behavior, or enterprise security products that monitor access to arbitrary
third-party services that a company could contract with.
FIDO improvements. Larch can benefit from enhancements we hope to see considered for future
versions of the FIDO specification. One simple improvement would be to support BLS signatures,
which are easier to threshold and so eliminate larch’s need for presignatures [67].

Future versions of FIDO could also directly support secure client-side logging by allowing the
relying party to compute the encrypted log record itself. The relying party could then ensure that the
log service receives the correct encrypted log record by checking for the log record in the signing
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payload. Specifically, the signature payload could have the form:

Hash(log-record-ciphertext,Hash(remaining-FIDO-data)) .
The log server can then take the outer hash preimage as input without needing to verify anything

else about the log record.
We want to allow the relying party to generate the encrypted log record without making it

possible to link users across relying parties. Instead of giving the relying party the user’s public key
directly at registration, which would link a user’s identity across relying parties, we instead give
the relying party a key-private, re-randomizable encryption of the relying party’s identifier (we can
achieve this using ElGamal encryption). At authentication, the relying party can re-randomize the
ciphertext to generate the encrypted log record.

We also hope that future FIDO revisions standardize and promote authentication metadata as
part of the challenge and hypothetical log record field. For users with multiple accounts at one
relying party, it would be useful to include account names as well as relying party names in signed
payloads. It would furthermore improve security to allow distinct types of authentication log records
for different security-sensitive operations such as authorizing payments and changing or removing
2FA on an account. An app monitoring a user’s log can then immediately notify the user of such
operations.
Multiple devices. Clients need to authenticate to their accounts across multiple devices, which
requires synchronizing a small amount of dynamic, secret state across devices. Cross-device
state could be stored encrypted at the log, or could be disseminated through existing profile
synchronization mechanisms in browsers. There is a danger of the synchronization mechanism
maliciously convincing two devices to use the same presignature. Therefore, presignatures should
be partitioned between devices in advance, and devices should employ techniques such as fork
consistency [353] to detect and deter any rollback attacks. Existing tools can help a user recover if
she loses all of her devices [137, 296, 337, 507].
Enforcing client-specific policies. We can extend larch in a straightforward way to allow the log to
enforce more complex policies on authentications. The client could submit a policy at enrollment
time, and the log service could then enforce this policy for subsequent authentications. If the
policy decision is based on public information, the log service can apply the policy directly (e.g.,
rate-limiting, sending push notifications to a client’s mobile device). Other policies could be based
on private information. For example, if we used larch for cryptocurrency wallets, the log could
enforce a policy such as “deny transactions sending more than $10K to addresses that are not on
the allowlist.” For policies based on private information, the client could send the log service a
commitment to the policy at enrollment, and the log service could then enforce the policy by running
a two-party computation or checking a zero-knowledge proof.
Revocation and migration. If a user loses her device or wants to migrate her authentication secrets
from an old device to a new device, she needs a way to easily and remotely invalidate the secrets on
the old device. Larch allows her to do this. To migrate credentials to a new device, the client and log
simply re-share the authentication secrets. To invalidate the secrets on the old device, the client asks
the log to delete the old secret shares (client must authenticate with the log first).
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Account recovery. In the event that a client loses all of her devices, she needs some way to recover
her larch account. To ensure that she can later recover her account, the client can encrypt her larch
client state under a key derived from her password and store the ciphertext with the larch service.
The security of the backup is only as good as the security of the client’s password. Alternatively, the
client could choose a random key to encrypt her client state and then back up this key using her
password and secure hardware in order to defend against password-guessing attacks [137].
Limitations. If an attacker compromises the client’s account with the log, the attacker can access the
client’s entire authentication history. To mitigate this damage, the log could delete old authentication
records (e.g., records older than one week) or re-encrypt them under a key that the user keeps offline.

6.10 Related work
We now describe related work since the time of publication of the original paper [141] (Section 6.10.1)
and subsequent (or concurrent) related work (Section 6.10.2).

6.10.1 Related work at the time of publication
Privacy-preserving single sign-on. Prior work has explored how to protect user privacy in
single sign-on systems. BrowserID [176] (previously implemented in Mozilla Persona and Firefox
Accounts), SPRESSO [177], EL PASSO [535], UnlimitID [265], UPPRESSO [235], PseudoID [156],
and Hammann et al. [243] all aim to hide user login patterns from the single sign-on server. Several
of these systems [156, 243, 265, 535] are compatible with existing single sign-on protocols for
incremental deployment. However, with the exception of UnlimitID [265], these systems do not
protect user accounts from a malicious attacker that compromises the single sign-on server. None of
these systems privately log the identity of the relying party.

Separately, Privacy Pass allows a user to obtain anonymous tokens for completing CAPTCHAs,
which she can then spend at different relying parties without allowing them to link her across
sites [143]. Like larch, Privacy Pass does not link users across accounts, but unlike larch, Privacy
Pass does not provide a mechanism for logging authentications.
Threshold signing. Our two-party ECDSA with preprocessing protocol builds on prior work
on threshold ECDSA. MacKenzie and Reiter proposed the first threshold ECDSA protocol for a
dishonest majority specific to the two-party setting [340]. Genarro et al. [198] and Lindell [325]
subsequently improved on this protocol. Doerner et al. show how to achieve two-party threshold
ECDSA without additional assumptions [160]. Another line of work supports threshold ECDSA
using generic multi-party computation over finite fields [131, 457]. A number of works show how to
split ECDSA signature generation into online and offline phases [18, 90, 92, 132, 191, 219, 220, 521];
in many, the offline phase is signing-key-specific, allowing for a non-interactive online signing phase,
whereas we need an offline phase that is signing-key-independent. Abram et al. show how to reduce
the bandwidth of the offline phase via pseudorandom correlation generators [18]. Aumasson et al.
provide a survey of prior work on threshold ECDSA [37]. Arora et al. show how to split trust across a
group of FIDO authenticators to enable account recovery using a new group signature scheme [33].
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Proving properties of encrypted data. Larch’s split-secret authentication protocol for FIDO2 and
passwords relies on proving properties of encrypted data, which is also explored in prior work.
Verifiable encryption was first proposed by Stadler [466], and Camenisch and Damgard introduced
it as a well-defined primitive [87]. Subsequent work has designed verifiable encryption schemes for
limited classes of relations (e.g. discrete logarithms) [35,88,338,380,523]. Takahashi and Zaverucha
introduced a generic compiler for MPC-in-the-head-based verifiable encryption [477]. Lee et
al. [314] contribute a SNARK-based verifiable encryption scheme that decouples the encryption
function from the circuit by using a commit-and-prove SNARK [89]. This approach does not work
for us for FIDO2 authentication because the ciphertext must be connected to a SHA-256 digest.

Grubbs et al. introduce zero-knowledge middleboxes, which enforce properties on encrypted
data using SNARKs [221]. Wang et al. show how to build blind certificate authorities, enabling
a certificate authority to validate an identity and generate a certificate for it without learning the
identity [509]. DECO allows users to prove that a piece of data accessed via TLS came from a
particular website and, optionally, prove statements about the data in zero-knowledge [532].
Transparency logs. Like larch, transparency logs detect attacks rather than prevent them, and they
achieve this by maintaining a log recording sensitive actions [9,28,107,137,257,309,355]. However,
transparency logs traditionally maintain public, global state. For example, the certificate transparency
log records what certificates were issued and by whom in order to track when certificates were
issued incorrectly [309]. In contrast, the larch log service maintains encrypted, per-user state about
individual users’ authentication history.

6.10.2 Subsequent related work
Hanzlik, Loss, and Wagner formalize the notion of privacy for WebAuthn (part of FIDO2) and
propose a solution for FIDO2 revocation that is inspired by BIP32 from cryptocurrency wallets [245].
FIDO-AC shows a mechanism for integrating FIDO2 with anonymous credentials in order to allow
relying parties to verify client attributes as needed [527]. Zombie reduces the costs associated
with zero-knowledge middleboxes, which requires techniques for reducing the cost of proving that
encrypted data complies with middlebox policies [531].

6.11 ECDSA with additive key derivation and presignatures
We now define security for a variant of ECDSA where (1) the adversary can choose “tweaks” to
the signing key, and (2) the adversary can request presignatures that are later used to generate
presignatures. In the rest of this section, we will show that the advantage of the adversary in this
modified version of ECDSA is negligible. In Section 6.12, we will argue that a two-party protocol
that achieves the ideal functionality of this modified version of ECDSA is secure.

Throughout all algorithms implicitly run in time polynomial in the security parameter.
We define a security experiment for ECDSA with preprocessing and additive key derivation in

Experiment 1 in Figure 7. The security experiment models the fact that the client’s and log’s secret
key shares are not authenticated, and so the adversary can query for signatures under a signing key
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with adversarially chosen “tweaks”. However, the final signature must verify under a fixed set of
tweaks (in our setting, these correspond to public keys that the client generated at registration). The
presignature queries allow us to capture the client preprocessing that we take advantage of.

Theorem 27. Let ECDSAAdv[A,G, ℓ, 𝑁] denote the adversary A’s advantage in Experiment 1 with
group G of prime order 𝑞, ℓ Gen queries, and 𝑁 total PreSign and Sign queries. Then

ECDSAAdv[A,G, ℓ, 𝑁] ≤ 𝑂 (𝑁 · ((ℓ +𝑁)/𝑞 +1/√𝑞)) .

Proof. In order to prove the above theorem, we use an additional experiment, Experiment 2 in
Figure 8. Let GSECDSAAdv[B,G, 𝑁,E] denote the advantage of adversary B in Experiment 2 with
a set of tweaks E of size ℓ. By Lemma 28,

GSECDSAAdv[A,G, 𝑁,E] ≤ 𝑂 (𝑁 · (( |E | +𝑁)/𝑞 +1/√𝑞)) ,

and by Lemma 29,

ECDSAAdv[A,G, ℓ, 𝑁] ≤ GSECDSAAdv[B,G, 𝑁,E] ,

and because |E | = ℓ,

ECDSAAdv[A,G, ℓ, 𝑁] ≤ 𝑂 (𝑁 · ((ℓ +𝑁)/𝑞 +1/√𝑞)) .

□

For the intermediate security experiment, we use the security game from Groth and Shoup,
which we include for reference as Experiment 2 in Figure 8. The intermediate security experiment
allows us to leverage Groth and Shoup’s security analysis for ECDSA with additive key derivation
and presignatures [220]. They define a security game that is similar to but slightly different from
Experiment 1 that we define to match our setting. Experiment 2 models the variant of additive key
derivation where the signing tweak is not constrained to lie in the set of tweaks that the adversary
must produce a forgery for (only the forging tweak is constrained; see Note 1 in Section 6 of Groth
and Shoup [220]).

At a high level, the differences between Experiment 1 and Experiment 2 are:
• In Experiment 1, the adversary makes Gen queries to receive public keys corresponding to the

set of tweaks, whereas in Experiment 2, the adversary simply receives the set of tweaks directly
at the beginning of the experiment (these are an experiment parameter).
• Signing queries in Experiment 1 take as input a share of the tweak rather than the entire signing

tweak.
• The Experiment 1 challenger enforces an order on Gen, PreSign, and Sign queries. The

Experiment 2 challenger does not enforce an order.

Lemma 28. Let GSECDSAAdv[A,G, 𝑁,E] denote adversary A’s advantage in Experiment 2 with
group G of prime order 𝑞, number of presignature and signing queries 𝑁 ∈ N, and a set of tweaks E
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of size polynomial in the security parameter. Then if Hash is collision resistant and G is a random
oracle,

GSECDSAAdv[A,G, 𝑁,E] ≤ 𝑂 (𝑁 · (( |E | +𝑁)/𝑞 +1/√𝑞)) .

We refer the reader to Groth and Shoup’s Theorem 4 for the analysis proving Lemma 28 in the
generic group model. In our setting, the number of public keys and therefore size of E is polynomial.

All that remains is to prove that the the adversary in the modified Experiment 1 does not have a
greater advantage than the adversary in the original Experiment 2.

Lemma 29. Let ECDSAAdv[A,G, ℓ, 𝑁] denote the adversary A’s advantage in Experiment 1
with group G and ℓ, 𝑁 ∈ N. Let GSECDSAAdv[B,G, 𝑁,E] denote the adversary B’s advantage in
Experiment 2 with a set of tweaks E of size ℓ. Then given an adversary A in Experiment 1, we
construct an adversary B for Experiment 2 that runs in time linear in A such that for all groups G,
𝑁 ∈ N, and randomly sampled set of tweaks E of size ℓ,

ECDSAAdv[A,G, ℓ, 𝑁] ≤ GSECDSAAdv[B,G, 𝑁,E] .

Proof. We prove the above theorem by using an adversary A in Experiment 1 to construct an
adversary B in Experiment 2. We then show that the adversary B has an advantage greater than or
equal to the adversary A.

We construct B in the following way:
• Rather than sending A the set of tweaks E immediately, B keeps the set of tweaks to use to

respond to Gen queries. On the 𝑖th invocation of Gen, B sends 𝐷 · 𝑔𝜔𝑖 where 𝜔𝑖 ∈ E .
• B simply forwards presignature requests from A to the Experiment 2 challenger and sends the

responses back to A.
• B takes signing requests from A with an index 𝑗 and a tweak 𝜔. B then computes 𝜔 𝑗 +𝜔 = 𝜔′

where 𝜔 𝑗 was the value returned by the 𝑗 th call to Gen (if A has not made 𝑗 calls to Gen, B
outputs ⊥). B then forwards the signing request with 𝜔′ to the Experiment 2 challenger.
• B additionally enforces that all presignature queries must be made before signing queries and

that presignatures must be used in order. If A sends queries that do not meet these requirements,
B outputs ⊥.

The adversary A cannot distinguish between interactions with B and the Experiment 1 challenger,
and so the advantage of A is less than or equal to that of B, completing the proof.

□

Zero-knowledge proof of preimage In larch, the log takes as input a hash of the message rather
than the message itself. It is important for security that the log has a zero-knowledge proof of
the preimage of the signing digest, as ECDSA with presignatures is completely insecure if the
signing oracle signs arbitrary digests directly instead of messages [220]. Because the log checks a
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Experiment 1: ECDSA with presignatures and additive key derivation. The experiment is
parameterized by a number of Gen queries ℓ ∈ N, a number of PreSign and Sign queries 𝑁 ∈ N, a
group G of prime order 𝑞 with generator 𝑔, message space M, a hash function Hash : M→ Z𝑞,
a conversion function 𝑓 : G→ Z𝑞.
• The challenger initializes state initdone = 0, presigdone = 0.
• The adversary can make ℓ Gen queries and 𝑁 PreSign and Sign queries.
• Gen() → pk:

– If initdone = 0, 𝑘 = 1; otherwise 𝑘← 𝑘 +1.
– Sample sk𝑘←R Z𝑞.
– Set ctrpresig,ctrauth← 0.
– Set initdone← 1, presigdone← 0.
– Output 𝑔sk𝑘 .

• PreSign() → 𝑅:
– If initdone = 0 or presigdone = 1, output ⊥.
– Sample 𝑟ctrpresig←R Z∗𝑞.
– Output 𝑔𝑟ctrpresig and set ctrpresig← ctrpresig +1.

• Sign(𝑚,𝜔, 𝑗) → 𝜎:
– If initdone = 0, ctrpresig < ctrauth, or 𝑗 > 𝑘 or 𝑗 < 1, output ⊥.
– Let 𝑅← 𝑔𝑟ctrauth

– Let 𝑠← 𝑟−1
ctrauth

· (Hash(𝑚) + (sk 𝑗 +𝜔) · 𝑓 (𝑅)).
– Set presigdone← 1, ctrauth← ctrauth +1.
– Output (𝑠, 𝑓 (𝑅)).

The output of the experiment is “1” if:
• the signature 𝜎∗ on 𝑚∗ verifies under pk,
• 𝑚∗ was not an input to Sign, and
• pk was an output of Gen.

The output is“0” otherwise.

Figure 7: Our experiment for security of ECDSA with additive key derivation and presignatures.
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Experiment 2: Groth-Shoup ECDSA with presignatures and additive key derivation [220].
We recall the security experiment from Groth and Shoup [220] in Figure 4 for ECDSA with
presignatures with the modifications described for additive key derivation.
The experiment is parameterized by the number of total queries the adversary can make 𝑁 ∈ N, a
group G of prime order 𝑞 with generator 𝑔, message space M, a hash function Hash : M→ Z𝑞,
a conversion function 𝑓 : G→ Z𝑞, and a set of tweaks E ⊆ Z𝑞.
• The challenger initializes state:

– 𝑘← 0, 𝐾← ∅
– 𝑑←R Z𝑞, 𝐷← 𝑔𝑑 ∈ G.

• The adversary can make 𝑁 total queries (presign or sign).
• Presignature query:

– 𝑘← 𝑘 +1, 𝑟𝑘←R Z∗𝑞
– 𝑅𝑘 ← 𝑔𝑟𝑘 ∈ G
– 𝑡𝑘 ← 𝑓 (𝑅𝑘 ) ∈ Z𝑞. If 𝑡𝑘 = 0, output ⊥
– Return 𝑅𝑘

• Signing request for message 𝑚 with presignature 𝑘 ∈ 𝐾 and tweak 𝜔 ∈ Z𝑞:
– 𝐾← 𝐾\{𝑘}
– ℎ𝑘 ← Hash(𝑚) ∈ Z𝑞
– If ℎ𝑘 + 𝑡𝑘𝑑 + 𝑡𝑘𝜔 = 0, output ⊥
– 𝑠𝑘 ← 𝑟−1

𝑘 (ℎ𝑘 + 𝑡𝑘𝑑 + 𝑡𝑘𝜔) ∈ Z𝑞
– Return (𝑠𝑘 , 𝑡𝑘 , 𝑅𝑘 )

• After making 𝑁 queries, the adversary must output (𝑚∗,𝜎∗,𝜔∗).
The output of the experiment is “1” if:
• the signature 𝜎∗ on 𝑚∗ verifies under 𝐷 · 𝑔𝜔∗ ,
• 𝑚∗ was not an input to a previous signing query, and
• 𝜔∗ ∈ E .

The output is “0” otherwise.

Figure 8: Security experiment for ECDSA with additive key derivation and presignatures from Groth and
Shoup [220].

zero-knowledge proof certifying that the digest preimage is correctly encrypted before signing, it
will not sign arbitrary purported hashes generated by a malicious client (the party submitting the
hash must know the preimage for the proof to verify).
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6.12 Two-party ECDSA with preprocessing
In this section, we describe the construction of our two-party ECDSA with preprocessing protocol
and argue its security. In Section 6.12.1, we describe the syntax and construction of our protocol. In
Section 6.12.2, we explain a sub-protocol and argue that it is secure. Finally in Section 6.12.3, we
prove that our overall protocol is secure by showing that the protocol achieves the ideal functionality
captured by the challenger in Experiment 1 from Section 6.11.

6.12.1 Syntax and construction
For our purposes, a two-party ECDSA signature scheme consists of the following algorithms:
• LogKeyGen() → (sk0,pk0): Generate a log secret key sk0 ∈ Z𝑞 and corresponding public key
pk0 ∈ G. The log runs this routine at enrollment.
• PreSign() → (presig0,presig1): Generate presignature (presig0,presig1)where each presignature

should be used to sign exactly once. The client runs this routine many times at enrollment to
generate a batch of presignatures.
• ClientKeyGen(pk0) → (sk1,pk): Given the log public key pk0 ∈ G, output a secret key share
sk1 ∈ Z𝑞 and corresponding public key pk ∈ G. The client runs this routine during registration
with each relying party.

We additionally define the following signing protocol:
• ΠSign: Both parties take as input the message𝑚 ∈M, the log takes as input log secret key sk0 and

presignature presig0, and the client takes as input a secret-key share sk1 and presignature presig1.
The joint output is a signature 𝜎 on message 𝑚 or ⊥ (if either misbehaved).

The signing protocol outputs ECDSA signatures that verify under pk output by ClientKeyGen, and
so the signature-verification algorithm is exactly as in ECDSA.

We include the constructions for the above algorithms and signing protocols in Figure 9. The
construction for the ΠHalfMul is in Section 6.12.2 and the opening protocol ΠOpen is the same opening
protocol used in SPDZ [133].

6.12.2 Malicious security with half-authenticated secure multiplication
As part of our signing protocol, we use a half-authenticated secure multiplication sub-protocol. We
describe the protocol in Figure 10.

We need to ensure that by deviating from the protocol, neither the client nor the log can learn
secret information (i.e. the other party’s share of the secret key or signing nonce) or produce a
signature for a different message. To use tools for malicious security (e.g. information-theoretic
MACs [133]) in a black-box way, we need authenticated shares of the signing nonce and the secret
key. We can easily generate authenticated shares of the signing nonce as part of the presignature,
but generating authenticated shares of the secret key poses several problems: (1) presignatures
are generated at enrollment (before the client has secret-key shares), and (2) we don’t want which
presignature the client uses to leak which relying party the client is authenticating to.
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The ECDSA signature scheme for message space M uses a group G of prime order 𝑞 and is
parameterized by a hash function Hash : M→ Z𝑞 and a conversion function 𝑓 : G→ Z𝑞. An
ECDSA keypair is a pair (𝑦, 𝑔𝑦) ∈ Z𝑞 ×G for 𝑦←R Z𝑞. We use a secure multiplication protocol
ΠHalfMul (Figure 10 in Section 6.12.2) and a secure opening protocol ΠOpen that returns the
result or ⊥ (“output” step in Figure 1 of SPDZ [133]).

LogKeyGen() → (sk0,pk0):
• Sample 𝑥←R Z𝑞 and output (𝑥, 𝑔𝑥).

PreSign() → (presig0,presig1):
• Sample 𝑟←R Z∗𝑞 and compute 𝑅← 𝑓 (𝑔𝑟).
• Sample 𝛼←R Z𝑞 and compute 𝑟← 𝛼 · 𝑟−1.
• Split 𝑟−1 into secret shares 𝑟0, 𝑟1; 𝑟 into 𝑟0, 𝑟1; 𝛼 into 𝛼0, 𝛼1;
• Output (𝑅,𝑟0, 𝑟0, 𝛼0), (𝑅,𝑟1, 𝑟1, 𝛼1).

ClientKeyGen(pk0) → (sk1,pk):
• Sample 𝑦←R Z𝑞.
• Output (𝑦,pk0 · 𝑔𝑦).

ΠSign:
We refer to the log as party 0 and the client as party 1. The input of party 𝑖 ∈ {0,1} is
(𝑚, sk𝑖,presig𝑖), and the output is a signature 𝜎 on 𝑚 or ⊥.
For each party 𝑖 ∈ {0,1}:
• Party 𝑖 parses presig𝑖 as (𝑅,𝑟𝑖, 𝑟𝑖, 𝛼𝑖).
• Given input (𝑟𝑖, 𝑟𝑖, sk𝑖, 𝛼𝑖) for party 𝑖, run ΠHalfMul to compute shares (𝑥𝑖, 𝑥𝑖, 𝑣𝑖, 𝑣𝑖) where 𝑣𝑖

authenticates any intermediate values.
• Party 𝑖 computes 𝑠𝑖← 𝑟𝑖 ·Hash(𝑚) + 𝑥𝑖 · 𝑅.
• Party 𝑖 computes 𝑠𝑖← 𝑟𝑖 ·Hash(𝑚) + 𝑥𝑖 · 𝑅.
• Parties run ΠOpen with party 𝑖 input 𝛼𝑖, 𝑠𝑖, 𝑠𝑖, 𝑣𝑖, 𝑣𝑖 to get 𝑠 or ⊥ (if returns ⊥, output ⊥).
• Output (𝑅, 𝑠).

Figure 9: Two-party ECDSA signing protocol with preprocessing.

Ideal functionality. At a very high level, the ideal functionality takes as input additive shares of
𝑥, 𝑦 and outputs shares of 𝑥 · 𝑦. In order to perform the multiplication, we use Beaver triples. To
authenticate 𝑥, we use information-theoretic MAC tags (because there is no MAC tag for 𝑦, each
party can adjust its share by an arbitrary additive shift without detection). More precisely then, the
ideal functionality takes as inputs additive shares of (𝑎, 𝑏, 𝑐), ( 𝑓 , 𝑔, ℎ), (𝑥, 𝑥, 𝑦), and 𝛼 such that
𝑎 · 𝑏 = 𝑐, 𝑓 ·𝑔 = ℎ, ( 𝑓 , 𝑔, ℎ) = 𝛼 · (𝑎, 𝑏, 𝑐), and 𝑥 = 𝛼 · 𝑥. Each party outputs intermediate value 𝑑 and
additive shares of 𝑑, 𝑧, 𝑧 where 𝑥 · 𝑦 = 𝑧 and 𝑑 = 𝛼 · 𝑑.
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ΠHalfMul:
The protocol is parameterized by a prime 𝑞.
Inputs: Party 𝑖 ∈ {0,1} takes as input an additive share of each of the Z𝑞 values: (𝑎, 𝑏, 𝑐),
( 𝑓 , 𝑔, ℎ), (𝑥, 𝑥, 𝑦), and 𝛼, such that:

𝑎 · 𝑏 = 𝑐 ∈ Z𝑞
𝑓 · 𝑔 = ℎ ∈ Z𝑞

( 𝑓 , 𝑔, ℎ) = 𝛼 · (𝑎, 𝑏, 𝑐) ∈ Z3
𝑞

𝑥 = 𝛼 · 𝑥 ∈ Z𝑞

Outputs: Each party outputs intermediate value 𝑑 ∈ Z𝑞 and additive shares of 𝑑, 𝑧, and 𝑧, where:

𝑥 · 𝑦 = 𝑧 ∈ Z𝑞
𝑑 = 𝛼 · 𝑑 ∈ Z𝑞.

Protocol. Each party 𝑖 ∈ {0,1} computes:

𝑑𝑖← 𝑥𝑖 − 𝑎𝑖 ∈ Z𝑞
𝑒𝑖← 𝑦𝑖 − 𝑏𝑖 ∈ Z𝑞
𝑑𝑖← 𝑥𝑖 − 𝑓𝑖 ∈ Z𝑞

and sends 𝑑𝑖, 𝑒𝑖 to the other party. Each party 𝑖 then computes:

𝑑← 𝑑0 + 𝑑1 ∈ Z𝑞
𝑒← 𝑒0 + 𝑒1 ∈ Z𝑞
𝑧𝑖← 𝑑𝑒 + 𝑑𝑏𝑖 + 𝑒𝑎𝑖 + 𝑐𝑖 ∈ Z𝑞
𝑧𝑖← 𝑑𝑒 ·𝛼𝑖 + 𝑑𝑔𝑖 + 𝑒 𝑓𝑖 + ℎ𝑖 ∈ Z𝑞

and outputs 𝑑 ∈ Z𝑞 and shares 𝑑𝑖, 𝑧𝑖, 𝑧𝑖 ∈ Z𝑞.

Figure 10: ΠHalfMul protocol.

Protocol. Our protocol uses information-theoretic MACs for only one of the inputs (the signing
nonce). We call this protocol ΠHalfMul. Our construction uses authenticated Beaver triples and
follows naturally from the SPDZ protocol [133]. We also use a secure opening protocol ΠOpen for
checking MAC tags, which we can instantiate using the SPDZ protocol directly [133]. It is safe
to not authenticate one of the key shares due to the fact that the signature scheme is secure if the
adversary can request signatures for arbitrary “tweaks” of the secret key (Section 6.11).
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We present a slightly modified version of the SPDZ protocol [133] for multiplication on
authenticated secret-shared inputs in Figure 10. The only difference is that, in our protocol, only
one of the inputs is authenticated. This requirement means that we only authenticate one of the
intermediate values in the Beaver triple multiplication. We allow the attacker to add arbitrary shifts
to the unauthenticated input, but the attacker cannot shift the authenticated input without detection
(Claim 30).

The protocol ΠHalfMul allows us to model authenticating the signing nonce in ECDSA signing.
The signing key is unrestricted (we discuss why this is secure in Section 6.11).

We first show the security of our ΠHalfMul protocol for secure multiplication where only one of
the inputs is authenticated, which is very similar to the multiplication protocol in SPDZ [133]. This
allows us to ensure that both parties use the correct signing nonce from the presignature.

Claim 30. Let 𝑥, 𝑦,𝛼, 𝑥 ∈ Z𝑞 be inputs to ΠHalfMul secret-shared across the parties where 𝑥 = 𝛼𝑥.
Then, the probability that an adversary that has statically corrupted one of the parties can cause the
protocol ΠHalfMul to output shares of 𝑧, 𝑧, 𝑑 where 𝑧 = 𝛼 · 𝑧 and 𝑧 = (𝑥 +Δ)𝑦 for some Δ ≠ 0 is 1/𝑞.

Proof. Let the input Beaver triple be (𝑎, 𝑏, 𝑐) ∈ Z𝑞 such that 𝑎 · 𝑏 = 𝑐 where to multiply values 𝑥, 𝑦,
we use intermediate values 𝑑 = 𝑥− 𝑎 and 𝑒 = 𝑦− 𝑏, where 𝑑 is the MAC tag for 𝑑.

To avoid detection, the adversary needs to ensure that 𝑑 = 𝛼 · 𝑑, so the adversary needs to find
some Δ1,Δ2 ∈ Z𝑞 such that

𝛼(𝑥 +Δ1− 𝑎) = 𝑥 +Δ2−𝛼 · 𝑎 ∈ Z𝑞
which we can reduce to

𝛼(𝑥 +Δ1) = 𝑥 +Δ2 ∈ Z𝑞
The probability of the adversary choosing Δ1,Δ2 ∈ Z𝑞 that satisfies this equation is the probability
of guessing 𝛼, or 1/𝑞. The value 𝑒 does not depend on 𝑥. Therefore, since the remainder of the
operations are additions and multiplications by public values, the attacker can only shift the final
output by Δ3,Δ4 and needs to ensure the following:

𝛼(𝑥𝑦 +Δ3) = 𝛼𝑥𝑦 +Δ4 ∈ Z𝑞
The probability of finding such Δ3,Δ4 is the probability of guessing 𝛼, which is 1/𝑞. □

6.12.3 Security proof for our construction
Recall our construction of our two-party signing scheme in Figure 9.

As the construction in Figure 9 contains separate algorithms for key generation and generating
presignatures, we define ΠGen and ΠPreSign in terms of the algorithms in Figure 9 below:
• ΠGen:

– If pk0 is not initialized, the log runs (sk0,pk0) ← LogKeyGen() and sends pk0 to the client.
– If 𝑘 is not initialized, set to 1; otherwise 𝑘← 𝑘 +1.
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– The client runs (sk1,𝑘 ,pk𝑘 ) ← ClientKeyGen(pk0)
• ΠPreSign:

– Client runs (presig0,presig1) ← PreSign() and sends presig0 to the log.
Additive key derivation models the fact that the secret key shares are unauthenticated private

inputs to ΠHalfMul, and so the adversary can run the signing protocol with any secret key share as
input. However, to produce a forgery, the adversary must generate a signature that verifies under a
small, fixed set of public keys (corresponding to the public keys generated at registration before
compromise).

We define the ideal functionality FECDSA as simply the routines the challenger runs to respond
to Gen,PreSign, and Sign queries in Experiment 1.

We prove security using the ideal functionality FOpen for opening values and checking MAC
tags from SPDZ [133]. At a high level, FOpen takes as input the party’s output and intermediate
shares and MAC tags for output and intermediate shares and outputs the combined output or abort
if the MAC tags are not correct. The corresponding simulator SimOpen takes as input one party’s
shares of the output and intermediate values and their corresponding MAC tags, as well as the
combined output value.

Theorem 31. The two-party ECDSA signing protocol Π securely realizes (with abort) FECDSA in
the FOpen-hybrid model in the presence of a single statically corrupted malicious party (if the client
is the compromised party, it can only be compromised after presigning is complete). Specifically,
let ViewReal

Π denote the adversary A’s view in the real world. Then there exists a probabilistic
polynomial-time algorithm Sim where ViewIdeal

Sim denotes the view simulated by Sim given the outputs
of FECDSA where A can adaptively choose which procedures to run and the corresponding inputs
such that

ViewReal
Π ≈ ViewIdeal

Sim .

Proof. Our goal is to construct a simulator where the simulator takes as input the outputs of the
ideal functionality F (as well at the public input message for signing). The adversary A should then
not be able to distinguish between the real world (interaction with the protocol) and the ideal world
(interaction with the simulator where the simulator is given the compromised party’s inputs and the
outputs of FECDSA).

Let 𝑖 be the index of the compromised party (𝑖 = 0 for compromised client, 𝑖 = 1 for compromised
log). The simulator always generates the presignatures and outputs the presignature share to the
adversary, in order to model the fact that we only provide security if the client is malicious at signing
time. We construct the simulator as follows:
• Gen(pk):

– If 𝑖 = 0:
∗ If sk0 is not initialized, sample sk0←R Z𝑞 and send pk0← 𝑔sk0 to A.
∗ Otherwise, send nothing to A.

– Otherwise if 𝑖 = 1:
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∗ If pk0 is not initialized, receive pk0 from A.
∗ Output pk.
∗ Set initdone← 1, presigdone← 0.

– Set ctrpresig,ctrauth← 0.
– Set initdone← 1.

• PreSign(𝑅):
– If initdone = 0 or presigdone = 1, output ⊥.
– Sample 𝛼0, 𝛼1←R Z𝑞, 𝑟0, 𝑟1←R Z∗𝑞.
– Set 𝛼(ctrpresig)← 𝛼0 +𝛼1, 𝑟

(ctrpresig)← 𝑟0 + 𝑟1.
– Sample 𝑟0, 𝑟1 such that 𝛼(ctrpresig) · 𝑟 (ctrpresig) = 𝑟0 + 𝑟1.
– Sample shares of (𝑎, 𝑏, 𝑐),( 𝑓 , 𝑔, ℎ) ∈ Z3

𝑞 such that 𝑎 · 𝑏 = 𝑐, 𝑓 · 𝑔 = ℎ,
( 𝑓 , 𝑔, ℎ) = 𝛼(ctrpresig) (𝑎, 𝑏, 𝑐), 𝑥 = 𝛼 · 𝑥.

– Let 𝑇ctrpresig
𝑗 = (𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 , 𝑓 𝑗 , 𝑔 𝑗 , ℎ 𝑗 ) for 𝑗 ∈ {1,2}.

– Let presig(ctrpresig)0 = (𝑅,𝑟0, 𝑟0, 𝛼0,𝑇
(ctrpresig)
0 ) and presig

(ctrpresig)
1 = (𝑅,𝑟1, 𝑟1, 𝛼1,𝑇

(ctrpresig)
1 ).

– Send presig
(ctrpresig)
1−𝑖 to A.

– Set ctrpresig← ctrpresig +1.
• Sign(𝑚,𝜎):

– If initdone = 0 or ctrpresig < ctrauth, output ⊥.
– Parse 𝜎 as (𝑠,_).
– Parse presig(ctrauth)𝑖 as (𝑅,𝑟𝑖, 𝑟𝑖, 𝛼𝑖,𝑇𝑖).
– Parse 𝑇 (ctrauth)𝑖 as (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑓𝑖, 𝑔𝑖, ℎ𝑖).
– Let 𝑥← 𝑠−𝑟 (ctrauth ) ·Hash(𝑚)

𝑅

– Let sk𝑖← 𝑥/𝑟𝑖
– Let 𝑑𝑖 = 𝑟𝑖 − 𝑓𝑖.
– Send 𝑑𝑖 = 𝑟𝑖 − 𝑎𝑖 and 𝑒𝑖 = sk𝑖 − 𝑏𝑖 to A.
– Receive 𝑑1−𝑖 and 𝑒1−𝑖 from A and compute 𝑑 = 𝑑0 + 𝑑1 and 𝑒 = 𝑒0 + 𝑒1.
– Let 𝑥𝑖← 𝑑𝑒 + 𝑑𝑏𝑖 + 𝑒𝑎𝑖 + 𝑐𝑖
– Let 𝑥𝑖← 𝑑𝑒𝛼𝑖 + 𝑑𝑔𝑖 + 𝑒 𝑓𝑖 + ℎ𝑖
– Compute 𝑠′← 𝑟 (ctrpresig) ·Hash(𝑚) + 𝑥 · 𝑅
– Compute 𝑠𝑖← 𝑟𝑖 ·Hash(𝑚) + 𝑥𝑖 · 𝑅 + 𝑠− 𝑠′
– Compute 𝑠𝑖← 𝑟𝑖 ·Hash(𝑚) + 𝑥𝑖 · 𝑅 +𝛼(ctrauth) (𝑠− 𝑠′)
– Run SimOpen on (𝛼𝑖, 𝑠𝑖, 𝑠𝑖, 𝑑, 𝑑𝑖, 𝑠); if SimOpen aborts, also abort.
– Set presigdone← 1 and ctrauth← ctrauth +1.

We now prove that the view generated by Sim in the ideal world is indistinguishable from the real
world.
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We start with the real world (Figure 9). We then replace calls to ΠOpen with SimOpen. Because
we are in the FOpen-hybrid model, the adversary cannot distinguish between these.

Every other message sent to A is either (1) a value that is random or information theoretically
indistinguishable from random, or (2) a value generated by FECDSA (𝑅 in PreSign).

The last step is to show that if A deviates from the protocol when sending 𝑑1−𝑖 to the simulator,
the simulator can detect this and abort. By Claim 30 and the guarantees of FOpen, the adversary
cannot send an incorrect value for 𝑑1−𝑖 without detection except with probability 1/𝑞. The adversary
can send any value for 𝑒1−𝑖; this is equivalent to the adversary being allowed to choose any signing
tweak 𝜔, which the attacker can do in Experiment 1.

Therefore,A cannot distinguish between the real world and the ideal world except with probability
1/𝑞, completing the proof. □

6.13 Protocol details for password-based logging

6.13.1 Zero-knowledge proofs for discrete log relations
The protocol of Section 6.5 requires the client to prove to the log service that the ElGamal decryption
of a ciphertext decrypts to one of 𝑛 values in a set. To do so, the client uses a zero-knowledge proof
of discrete-log relations, whose syntax and construction we describe here. The proof system uses a
cyclic group G of prime order 𝑞.

The proof system consists of two algorithms:
• DLProof .Prove(idx, 𝑥, ℎ,cm1, . . . ,cm𝑛) → 𝜋:

Output a proof 𝜋 asserting that cmidx = ℎ𝑥 ∈ G for idx ∈ [𝑛]
• DLProof .Verify(𝜋, ℎ,cm1, . . . ,cm𝑛) → {0,1}:

Check the prover’s claim that it knows some 𝑥 ∈ Z𝑞 where cmidx = ℎ𝑥 ∈ G for idx ∈ [𝑛].
We require the standard notions of completeness, soundness (against computationally bounded
provers), and zero knowledge [66, 208] (in the random-oracle model [53]). We instantiate DLProof
using proof techniques from Groth and Kohlweiss [218].

6.13.2 Protocol for passwords
We now describe the syntax of our LarchPW scheme.
Step #1: Enrollment with log service. At enrollment, the client and log generate cryptographic keys
and exchange public keys.
LarchPW.ClientGen() → (𝑥, 𝑋): The client outputs a secret key 𝑥 ∈ Z𝑞 and a public key 𝑋 ∈ G.
LarchPW.LogGen() → (𝑘,𝐾): The log service outputs a secret key 𝑘 ∈ Z𝑞 and a public key 𝐾 ∈ G.
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Step #2: Registration with relying party. Once the client has enrolled with a log service, it can
register with a relying party by interacting with the log service.
LarchPW.ClientRegister() → (id, 𝑘 id): The client outputs an identifier id ∈ {0,1}𝜆 and a key 𝑘 id ∈G.
LarchPW.LogRegister(𝑘, id) → 𝑦: Given the log’s secret key 𝑘 and id produced by ClientRegister,

the log outputs 𝑦 ∈ G.
LarchPW.FinishRegister(𝑘 id, 𝑦) → pwid: Given the key 𝑘 id generated by ClientRegister and the

value 𝑦 generated by LogRegister, the client outputs the password pwid ∈ G.

Step #3: Authentication with relying party. After registration, the client and log service perform
authentication together.
LarchPW.ClientAuth(idx, 𝑥, id1, . . . , id𝑛) → (𝑟,ct, 𝜋1, 𝜋2): Given an index idx ∈ {1, . . . , 𝑛}, the client’s

secret key 𝑥 ∈ Z𝑞, and identifier values id1, . . . , id𝑛 output by ClientRegister, the client outputs
𝑟 ∈ Z∗𝑞, an ElGamal ciphertext ct ∈ G2, and proofs 𝜋1 and 𝜋2.

LarchPW.LogAuth(ct, 𝜋1, 𝜋2, id1, . . . , id𝑛) → 𝑦: Given a ciphertext ct ∈ G2, proofs 𝜋1 and 𝜋2, and
identifiers id1, . . . , id𝑛 output by ClientRegister, the log service outputs 𝑦 ∈ G.

LarchPW.FinishAuth(𝑥,𝐾,𝑟, 𝑘 id, 𝑦) → pwid: Given the client’s secret key 𝑥 ∈ Z𝑞, the log’s public
key𝐾 ∈G, the nonce 𝑟 ∈Z∗𝑞 generated byClientAuth, the key 𝑘 id ∈G generated byClientRegister,
and the value 𝑦 ∈ G from LogAuth, output the password pwid ∈ G.

Step #4: Auditing with log service. Given a ciphertext, the client runs ElGamal decryption to recover
the corresponding Hash(id) value.

We give a detailed description of the larch password-based authentication protocol in Figure 11.

6.14 Conclusion
Larch is an authentication manager that logs every successful authentication to any of a user’s accounts
on a third-party log service. It guarantees log integrity without trusting clients. It furthermore
guarantees account security and privacy without trusting the log service. Larch works with any
existing service supporting FIDO2, TOTP, or password-based login. Our evaluation shows the
implementation is practical and cost-effective.
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Larch password-based authentication scheme. The protocol is parameterized by: a cyclic
group G of prime order 𝑞 with generator 𝑔 ∈ G, a hash function Hash : {0,1}∗→ G, and a
zero-knowledge discrete-log proof system DLProof with syntax as in Section 6.13.1.

LarchPW.ClientGen() → (𝑥, 𝑋)
• Sample 𝑥←R Z𝑞.
• Output (𝑥, 𝑔𝑥).

LarchPW.LogGen() → (𝑘,𝐾):
• Sample 𝑘←R Z𝑞.
• Output (𝑘, 𝑔𝑘 ).

LarchPW.ClientRegister() → (id, 𝑘 id):
• Sample id←R {0,1}𝜆.
• Sample 𝑘 id←R G.
• Output (id, 𝑘 id).

LarchPW.LogRegister(𝑘, id) → 𝑦:
• Output Hash(id)𝑘 .

LarchPW.FinishRegister(𝑘 id, 𝑦) → pwid:
• Output 𝑘 id · 𝑦.

LarchPW.ClientAuth(idx, 𝑥, id1, . . . , id𝑛) → (𝑟,ct, 𝜋1, 𝜋2):
• Sample 𝑟←R Z∗𝑞
• Compute 𝑐1 = 𝑔𝑟 , 𝑐2 = Hash(ididx) · 𝑔𝑥𝑟 .
• Let ℎ𝑖 = 𝑐2/Hash(id𝑖) for 𝑖 ∈ {1, . . . , 𝑛}.
• Let 𝜋1← DLProof .Prove(idx, 𝑟, 𝑋, ℎ1, . . . , ℎ𝑛).
• Let 𝜋2← DLProof .Prove(idx, 𝑥, 𝑐1, ℎ1, . . . , ℎ𝑛).
• Let ct = (𝑐1, 𝑐2).
• Output (𝑟,ct, 𝜋1, 𝜋2).

LarchPW.LogAuth(ct, 𝜋1, 𝜋2, id1, . . . , id𝑛) → 𝑦:
• Parse ct as (𝑐1, 𝑐2).
• Let ℎ𝑖 = 𝑐2/Hash(id𝑖) for 𝑖 ∈ {1, . . . , 𝑛}.
• Let 𝑏1← DLProof .Verify(𝜋1, 𝑋, ℎ1, . . . , ℎ𝑛)
• Let 𝑏2← DLProof .Verify(𝜋2, 𝑐1, ℎ1, . . . , ℎ𝑛)
• If 𝑏1 ≠ 1 or 𝑏2 ≠ 1, output ⊥
• Output 𝑐𝑘2

LarchPW.FinishAuth(𝑥,𝐾,𝑟, 𝑘 id, 𝑦) → pwid:
• Output 𝑘 id · 𝑦 ·𝐾−𝑥𝑟 .

Figure 11: The details of the larch protocol for password-based authentication.
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Part III

Conclusion
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In this dissertation, we contributed five systems that provide strong security guarantees even if
some of the individual components are compromised. We showed how to hide queries to private
outsourced data for keyword search in DORY (Chapter 2), time-series analytics queries in Waldo
(Chapter 3), and object-store queries in Snoopy (Chapter 4). We also explored how to secure user
accounts by protecting user backups from compromised hardware security modules in SafetyPin
(Chapter 5) and hiding authentication logs from a logging service in larch (Chapter 6).

These systems all rely on a co-design of systems techniques and cryptography. While general-
purpose cryptographic techniques can achieve the properties we want in theory [205, 525], we need
to consider the specific system model and requirements of the application in order to minimize
overheads. To reduce friction, systems should respect the constraints of existing software systems,
the limitations of hardware, and the expectations of users. This is critical for easing the path to
adoption.
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