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Abstract

Algorithms for Robust and Memory-Efficient Learning

By

Fred Zhang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jelani Nelson, Chair

Modern machine learning (ML) processes massive data. The thesis tackles two algorith-
mic challenges arising from large-scale ML—robustness to noisy training data and memory-
efficiency of the learning algorithms. Motivated by the first, I propose (i) the fastest al-
gorithm for learning the mean of high-dimensional heavy-tailed distribution, (ii) a unified
analysis framework for robust estimation, and (iii) efficient and robust algorithm for privately
estimating high dimensional Gaussian. For memory-efficiency, I give the first sub-linear space
algorithm for online prediction, the most classic problem in sequential learning.
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Chapter 1

Introduction

Modern machine learning (ML) practice turns vast amounts of data into large models. This
thesis addresses two central challenges in this pipeline. First, the massive, high-dimensional
datasets pivotal to ML’s success often contain noise or are susceptible to malicious tampering.
Learning from such data efficiently and reliably presents a major computational challenge.
Second, modern ML requires processing massive, Internet-scale data and training multi-
billion parameter models. Both present challenges to the memory efficiency of the learning
algorithms.

This thesis studies fundamental questions motivated by the challenges. I give an informal
overview of the results as follows.

1.1 Algorithmic robust statistics

Recent progress in AI, especially language models, relies on noisy datasets sourced from
across the Internet. These datasets, susceptible to outlying or even malicious samples, pose
a serious challenge to the robustness of the training procedures. However, this concern is not
novel; robust statistics—learning in presence of outliers—has been a central field in statistics
since the 1960s.

New algorithms and unified analysis My work in the area is driven by the quest for
computational efficiency. This has led to several contributions to the algorithmic guarantees
in robust statistics.

In Chapter 2, I study mean estimation from high-dimensional heavy-tailed distributions,
where outliers are a natural occurrence. I design the fastest known algorithm that achieves
the optimal statistical accuracy. All prior works were based on semi-definite programming
(SDP) and thus had prohibitive runtimes. In contrast, our algorithm is fully spectral and
only requires eigenvector computations, resulting in better computational efficiency.

Taking this step further in Chapter 3, I show that essentially the same algorithm is
robust against adversarial corruptions. This directly leads to a novel analysis of the fastest
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algorithms of this setting as well. A central innovation of this work is to recast most existing
procedures for robust estimation under regret minimization, providing a unified view through
the lens of online optimization.

Connections to other fields The research in algorithmic robust statistics has also led to
new developments in adjacent fields, including privacy and mechanism design.

In Chapter 4, I give the first polynomial-time algorithms for learning a high-dimensional
Gaussian subject to pure differential privacy (DP).

Finally, I mention that beyond this thesis, my work [159] applies high-dimensional me-
dian constructions from robust statistics to strategy-proof facility location, a classic problem
in mechanism design and social choice theory. With this tool, the work derives new compu-
tational and game-theoretic guarantees for the problem in a Bayesian setting.

1.2 Memory-efficient online learning

As present-day deep learning produces massive billion-parameter models, memory constraint
has become a severe hurdle to both their training and serving. Motivated by this challenge, I
design the first online learning algorithm in sub-linear space in Chapter 5. Traditional meth-
ods, such as multiplicative weights update, require memory proportional to the dimension of
the problem. Our work sidesteps this limitation. I introduce a novel framework for selecting
a competitive subset of experts and a recursive scheme for boosting their performance. Both
techniques have since sparked several follow-up works.

My later research [158] initiates the study of robust algorithms for online learning, where
the adversary generates inputs adaptively based on the past decisions of the algorithm. Cap-
italizing on connections with differential privacy, I give the first robust and memory-efficient
algorithm for this problem, as well as tight space bound against deterministic schemes.
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Chapter 2

Fast Algorithm for Heavy-Tailed
Mean Estimation

In this chapter, we study the algorithmic problem of estimating the mean of a heavy-tailed
random vector in Rd, given n i.i.d. samples. The goal is to design an efficient estimator
that attains the optimal sub-gaussian error bound, only assuming that the random vector
has bounded mean and covariance. Polynomial-time solutions to this problem are known
but have high runtime due to their use of semi-definite programming (SDP). Moreover,
conceptually, it remains open whether convex relaxation is truly necessary for this problem.

We show that it is possible to go beyond SDP and achieve better computational efficiency.
In particular, we provide a spectral algorithm that achieves the optimal statistical perfor-
mance and runs in time Õ (n2d), improving upon the previous fastest runtime Õ (n3.5 + n2d)
by Cherapanamjeri et al. (COLT ’19). Our algorithm is spectral in that it only requires
(approximate) eigenvector computations, which can be implemented very efficiently by, for
example, power iteration or the Lanczos method.

At the core of our algorithm is a novel connection between the furthest hyperplane
problem introduced by Karnin et al. (COLT ’12) and a structural lemma on heavy-tailed
distributions by Lugosi and Mendelson (Ann. Stat. ’19). This allows us to iteratively reduce
the estimation error at a geometric rate using only the information derived from the top
singular vector of the data matrix, leading to a significantly faster running time.

2.1 Introduction

Estimating the mean of a multivariate distribution from samples is among the most funda-
mental statistical problems. Surprisingly, it was only recently that a line of works in the
statistics literature culminated in an estimator achieving the optimal statistical error under
minimal assumptions ([125]). However, from an algorithmic point of view, computation of
this estimator appears to be intractable. On the other hand, fast estimators, such as the em-
pirical average, tend to achieve sub-optimal statistical performance. The following question



CHAPTER 2. FAST ALGORITHM FOR HEAVY-TAILED MEAN ESTIMATION 4

remains open:

Can we provide simple, fast algorithm that computes a statistically optimal mean estimator
in high dimensions, under minimal assumptions?

In this chapter, we make progress towards this goal, under the classic setting where only
finite mean and covariance are assumed. Formally, our problem is defined as follows. Given
n i.i.d. copies X1, . . . ,Xn of a random vector X ∈ Rd with bounded mean µ = EX and
covariance Σ = E(X −µ)(X −µ)T , compute an estimate µ̂ = µ̂(X1, . . . ,Xn) of the mean
µ. Our goal is to show that for any failure probability δ ∈ (0, 1],

Pr (∥µ̂− µ∥ > rδ) ≤ δ,

for as small a radius rδ as possible. Moreover, we would like to compute µ̂ efficiently. The
näıve estimator is simply the empirical mean µ = 1

n

∑n
i=1 Xi. It is well known that among

all estimators, the empirical mean minimizes mean squared error. However, if we instead
use the size of the deviations to quantify the quality of the estimator, the empirical mean is
only optimal for sub-gaussian random variables ([31]). When X ∼ N (µ,Σ) we have with
probability at least 1− δ,

∥µ− µ∥ ≤
√

Tr(Σ)

n
+

√
2∥Σ∥ log(1/δ)

n
(2.1.1)

An estimator that achieves above is said to have sub-gaussian performance or sub-gaussian
rate.

In practical settings, assuming that the samples obey a Gaussian distribution may be
unrealistic. In an effort to design robust estimators, it is natural to study the mean estimation
problem under very weak assumptions on the data. A recent line of works ([31, 132, 52, 94,
124, 125, 113]) study the mean estimation problem when the samples obey a heavy-tailed
distribution.

For heavy-tailed distributions the performance of the empirical mean is abysmal. If we
only assume that X has finite mean µ and covariance Σ, then by Chebyshev’s inequality,
the empirical mean only achieves error of order

√
Tr(Σ)/δn, which is worse than the sub-

gaussian rate in two ways. First, its dependence on 1
δ
is exponentially worse. Second, the

Tr(Σ) term, which may grow with the dimension d, is multiplied the dimension-independent
term

√
1/δn, whereas in the Gaussian case, the two are separate.

Median-of-means paradigm Surprisingly, recent work has shown that it is possible to
improve on the performance of the empirical mean using the median-of-means approach.
For d = 1, the following construction, originally due to [134, 92, 9], achieves sub-gaussian
performance:

(i) First, bucket the data into k = ⌈10 log(1/δ)⌉ disjoint groups and compute their means
Z1, Z2, · · · , Zk.
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(ii) Then, output the median µ̂ of Z1, Z2, · · · , Zk.

A long line of work has followed this paradigm and generalized it to higher dimen-
sions ([31, 52, 94, 124, 125]). The key challenge is to correctly define a notion of median for
a collection of points in Rd. [132] considered µ̂GM defined to be the geometric median of the
bucket means Z1, . . . ,Zk. For some constant cGM , with probability at least 1− δ, it satisfies

∥µ̂GM − µ∥ ≤ cGM

√
TrΣ · log(1/δ)

n
. (2.1.2)

This achieves the correct dependence on δ, but the dimension dependent and independent
terms are still not separated. Following this work, [124] described a tournament-based es-
timator, which finally achieved the optimal sub-gaussian radius. The idea behind their
construction is to consider all 1-dimensional projections of the bucket means and try to find
an estimate that is close to the median of the means of all projections. This construction has
been further simplified by [86]. Formally, it was shown that the following estimator achieves
the optimal, sub-gaussian error:

µ̂LM = argmin
x∈Rd

max
u∈Sd−1

∣∣∣median {⟨Zi,u⟩}ki=1 − ⟨x,u⟩
∣∣∣ . (2.1.3)

Clearly, searching over all directions in Sd−1 requires exponential time. The key question,
therefore, is whether one can achieve both computational and statistical efficiency simuta-
neously.

Computational considerations A priori, it is unclear that the Lugosi-Mendelson estima-
tor can be computed in polynomial time as a direct approach involves solving an intractable
optimization problem. Moreover, the Lugosi-Mendelson analysis seems to suggest that esti-
mation in the heavy-tailed model is conceptually harder than under (adversarial) corruptions.
In the latter, each sample can be classified as either an inlier or an outlier. In the heavy-tailed
setting, Lugosi-Mendelson shows that there is a majority of the bucket means that cluster
around the true mean along any projection. However, a given sample may be an inlier by
being close to the mean when projected onto one direction, but an outlier when projected
onto another. In other words, the set of inliers may change from one direction to another.

Surprisingly, a recent line of works have established the polynomial-time computability of
Lugosi-Mendelson estimator. [86] formulates µ̂LM as the solution of a low-degree polynomial
optimization problem and showed that using the Sum-of-Squares SDP hierarchy to relax this
problem yields a sub-gaussian estimator. While the run-time of this algorithm is polynomial,
it involves solving a large SDP. Soon after, [42] provided an iterative method in which each

iteration involves solving a smaller, explicit SDP, leading to a run-time of Õ (n3.5 + n2d)1.
Even more recently, a concurrent and independent work by [110] gave an estimator with sub-

gaussian performance that can be computed in time Õ(n2d). The construction is inspired by

1Throughout we use Õ(·) to hide polylogarithmic factors (in n, d and log(1/δ)).
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a near-linear time algorithm for robust mean estimation under adversarial corruptions due
to [38]. The algorithm requires solving (covering) SDPs.

We note, however, that a common technique in these algorithms is SDP, which tends
to be impractical for large sample sizes and in high dimensions. In contrast, our algorithm
only requires approximate eigenvector computations. For a problem as fundamental as mean
estimation, it is desirable to obtain simple and ideally practical solutions. A key conceptual
message of this chapter is that SDP is indeed unnecessary and can be replaced by simple
spectral techniques.

Our result In this chapter, we demonstrate for the first time that mean estimation with
sub-gaussian rates can be achieved efficiently without SDP. The runtime of the algorithm
matches the independent work of [110]. In addition, our algorithm enjoys robustness against
(additive) corruptions, where the number of adversarial points is a small fraction of k.

It is known that there exists an information-theoretic requirement for achieving such
rates—that is, δ ≥ 2−O(n) ([52]). Under this assumption, we give an efficient spectral algo-
rithm.

Theorem 2.1.1. Let δ ≥ Ae−n for a constant A and k = ⌈3600 log(1/δ)⌉. Given n points
G ∪B, where G are i.i.d. samples from a distribution over Rd with mean µ and covariance Σ
and B a set of arbitrary points with |B| ≤ k/200, there is an efficient algorithm that outputs
an estimate µ̂ ∈ Rd such that with probability at least 1− δ,

∥µ− µ̂∥ ≤ C

(√
Tr(Σ)

n
+

√
∥Σ∥ log(1/δ)

n

)
,

for a constant C. Furthermore, the algorithm runs in time O (nd+ k2d polylog(k, d)).

The algorithm is iterative. Each iteration only requires an (approximate) eigenvector
computation, which can be implemented in nearly linear time by power iteration or the
Lanczos algorithm. We believe that our algorithm can be fairly practical.

Other related works Recently, [138] established a formal connection between the Huber
contamination model and the heavy-tailed model we study in this chapter. They leverage
this connection to use an existing Õ(nd2)-time mean estimation algorithm of [59] to design
estimators for the heavy-tailed model. Under moment assumptions, their estimator achieves
performance better than geometric median (2.1.2), yet worse than sub-gaussian.

In addition, algorithmic robust statistics has gained much attention in the theoretical
computer science community in recent years. A large body of works have studied the mean
estimation problem with adversarially corrupted samples, with the focus on providing effi-
cient algorithms ([59, 108, 38, 64]). For a more complete survey, see [56]

Going beyond mean estimation, there has been a recent spate of works on other statistical
problems under heavy-tailed distributions. We refer the readers to [123] for a survey.
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Technical overview Our main algorithm builds upon the iterative approach of [42]. For
simplicity, assume there is no adversarial point. At a high level, for each iteration t, the
algorithm will maintain a current guess xt of the true mean. To update, Cherapanamjeri et
al. study the inner maximization of µ̂LM (2.1.3) with x = xt. They showed that under
Lugosi-Mendelson structral condition, the problem is essentially equivalent of following pro-
gram, which we callM(xt,Z):

max θ

subject to bi ⟨Zi − xt,u⟩ ≥ biθ for i = 1, . . . , k

k∑
i=1

bi ≥ 0.95k

b ∈ {0, 1}k,u ∈ Sd−1.

It can be shown that an optimal solution u ∈ Sd−1 will align with the unit vector in the
direction of µ − xt, and θ approximates ∥µ − xt∥. Hence, one can perform the update
xt+1 ← xt+ γθu, for some appropriate constant γ, to geometrically decrease the distance of
xt to µ.

In this chapter, we start by drawing a connection between the above program and the
furthest hyperplane problem (FHP) of [101]. This allows us to avoid the SDP approach in
[42]. The problem can be formulated as the following:

max θ (FHP)

subject to | ⟨Zi − xt,u⟩ | ≥ θ for i = 1, . . . , k (2.1.4)

u ∈ Sd−1.

In the original formulation due to Karnin et al., the goal is to find a maximum margin
linear classifier for a collection of points, where the margin is two-sided. Notice that any
feasible solution to M(xt,Z) satisfies at least 0, 95k constraints of FHP as well. For an
arbitrary dataset, the two-sided margin requirement indeed provides a relaxation. One
technical observation of this chapter is that it is not a significant one, for the random data
we care about—if a major fraction of the constraint (2.1.4) are satisfied, then most constraints
ofM(xt,Z) are satisfied as well.

Unfortunately, the algorithm of Karnin et al. cannot directly apply, as it only works
under a strong promise that there exists a feasible solution that satisfies all of the con-
straints (2.1.4). In our setting, there may not be such a feasible solution; we can only
guarantee that there exists a unit vector (namely, the one in the direction of µ − xt) that
satisfies most of constraints with large margin.

Our main contribution is to provide an algorithm that works even under this weak
promise. We now briefly review the algorithm of Karnin et al., show why it fails for our
purpose, and explain how we address the issues that arise. Suppose that there exists a unit
vector u∗ and θ∗ which are feasible for the FHP problem. Then, averaging the constraints
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tells us that
1

k

k∑
i=1

⟨Zi,u
∗⟩2 ≥ θ∗2.

Hence, if we define u to be the top right singular vector of the matrix A whose rows are Zi,
then

∥Au∥22 =
k∑

i=1

⟨Zi,u⟩2 ≥
k∑

i=1

⟨Zi,u
∗⟩2 ≥ kθ∗2,

so u satisfies the constraints in (FHP) on average. However, the distribution of the quantities
⟨Zi,u⟩2 may be extremely skewed, so that u only satisfies a few of the constraints with
large margin. If this happens, however, we can downweight those constraints which are
satisfied by u with large slack to encourage it to satisfy more constraints. This reweighting
procedure is repeated several times, and at the end we use a simple rounding scheme to yield
a single output vector with the desired properties from all the repetitions. In particular, this
weighting scheme is essentially the same as the classic multiplicative weights update (MWU)
method ([13]) for regret minimization, as we show in Appendix A.8.

If we are only guaranteed that u∗ satisfies most, but not all, of the constraints, then the
inequality

∑k
i=1 ⟨Zi,u

∗⟩2 ≥ kθ∗2 may no longer hold when the points Zi get re-weighted and
the algorithm of Karnin et al. cannot be guaranteed to converge. To illustrate this point,
consider the following extreme case. Suppose that after the first iteration, the algorithm
finds the vector u∗ as the top right singular vector of A. In the re-weighting procedure,
the constraints i for which ⟨Zi,u

∗⟩2 ≥ θ∗2 may be down-weighted significantly, whereas
the remaining constraints may be unaffected. This may result in most of the weight being
concentrated on the constraints i where ⟨Zi,u

∗⟩2 ≪ θ∗2. In the second iteration, we have
no guarantee of the behavior of the top singular vector of the re-weighted matrix because all
the weight is concentrated on a small set consisting of these “bad” constraints.

To address this scenario, our key technical idea is to project the weights onto the set of
smooth distributions after each update. Informally, the notion of smooth distribution enforces
that no point can take too much probability mass—say, more than 4/k. This prevents the
weights from ever being concentrated on too small a subset and allows us to guarantee
that

∑k
i=1 ⟨Zi,u

∗⟩2 ≥ kθ∗2 still holds approximately. Moreover, the appropriate notion of
projection here is that of a Bregman projection. Leveraging our earlier MWU interpretation
of the algorithm (Section A.8), we apply a classic regret bound for MWU under Bregman
projection ([13]), and this yields the same guarantee of the original algorithm. Finally, we
remark that the projection can be computed quickly. Combining all these ideas together, we
manage to bypass the barrier of having bad points, under the much weaker assumption on
u∗.

Organization The remainder of this article is organized as follows. In Section 2.2, we set
up the notations and specify assumptions on the data. In Section 2.3, we explain the high
level approach based on an iterative descent procedure from [42]. The procedure requires us
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to approximately maximize a (non-convex) objective, and we discuss its properties in Sec-
tion 2.4. Section 2.5 contains the main technical innovations of this chapter, where we design
and analyze a faster algorithm for the aforementioned optimization problem.

2.2 Preliminaries and Assumptions

In the following, we use rδ =
√
Tr(Σ)/n +

√
∥Σ∥ log(1/δ)/n to denote the optimal, sub-

gaussian error rate and k = ⌈3200 log(8/δ)⌉. The input data {Xi}ni=1 consist of G, a set of
i.i.d. points, and B, a set of adversarial points, with |B| ≤ k/200. Our algorithm preprocesses
the data Xi into the bucket means Z1,Z2, · · · ,Z2k ∈ Rd.2 Let Bj be the set of Xi in bucket
j. We say that a bucket mean Zj is contaminated if Bj contains an adversarial Xi ∈ B and
uncontaminated otherwise. Note that the number of contaminated bucket means is at most
k/200.

Our argument is built on the Lugosi-Mendelson condition. It states that under any one-
dimensional projection, most of the (uncontaminated) bucket means are close to the true
mean, by an additive factor of O(rδ). Throughout, we pessimistically assume all contam-
inated bucket means do not satisfy this property (under any projection) and condition on
the following event.

Assumption 2.2.1 (Lugosi-Mendelson condition). Under the setting above, for all unit v,
we have

|{i : ⟨v,Zi⟩ − ⟨v,µ⟩ ≥ 600rδ}| ≤ 0.05k.

Lemma 2.2.1 ([125]). Assumption 2.2.1 holds with probability at least 1− δ/8.

2.3 Descent Procedure

At a high level, our algorithm builds upon the iterative descent paradigm of [42]. It maintains
a sequence of estimates and updates via distance and gradient estimate.

Definition 2.3.1 (distance estimate). We say that dt is a distance estimate (with respect to
xt) if

(i) when ∥µ− xt∥ ≤ 14000rδ, we have dt ≤ 28000rδ; and

(ii) when ∥µ− xt∥ > 14000rδ, we have

1

21
∥µ− xt∥ ≤ dt ≤ 2∥µ− xt∥ (2.3.1)

2We assume δ is such that k ≤ n/2; as we mentioned in the introduction, this is information-theoretically
necessary, up to a constant ([52]).
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Definition 2.3.2 (gradient estimate). We say that gt is a gradient estimate (with respect
to xt) if 〈

gt,
µ− xt

∥µ− xt∥

〉
≥ 1

200
(2.3.2)

whenever ∥µ− xt∥ > 14000rδ.

1. Input: Buckets means Z1, . . . ,Zk ∈ Rd, initial estimate x0, iteration
count Tdes, and step size η.

2. For t = 1, . . . , Tdes:

a) Compute dt = DistEst(Z ′,xt).

b) Compute gt = GradEst(Z ′,xt).

c) Update xt+1 = xt + ηdtgt.

3. Output: xt∗ , where t∗ = argmint dt.

Figure 2.1: Main algorithm—Descent

Suppose we initialize the estimate with coordinate-wise median-of-means which achieves
an error rate

√
∥Σ∥kd/n (lemma A.2.2). The following lemma states that if DistEst and

GradEst provide distance and gradient estimate, then the algorithm Descent succeeds
in logarithmic iterations. The lemma has essentially appeared in [42], albeit with a gen-
eral initialization and a different set of constants. We give a proof in Appendix A.3 for
completeness.

Lemma 2.3.1 (convergence rate; see [42]). Assume that for all t ≤ Tdes, dt is a distance esti-

mate and gt is a gradient estimate (with respect to xt). Suppose ∥µ−x0∥ ≤ O
(√
∥Σ∥kd/n

)
.

Then the output of Algorithm 2.1 Descent instantiated with Tdes = Θ(log d) and η = 1/8000
satisfies ∥xt∗ − µ∥ ≤ O (rδ).
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2.4 Inner Maximization and its Two-Sided Relaxation

[42] obtains gradient and distance estimates by solving the inner maximization problem of
the Lugosi-Mendelson estimator, denoted byM(x,Z):

max θ

subject to bi ⟨Zi − x,w⟩ ≥ biθ for i = 1, . . . , k

k∑
i=1

bi ≥ 0.95k

b ∈ {0, 1}k,w ∈ Sd−1.

We also denote its feasibility version for a fixed θ byM(θ,x,Z). Note that the constraint
of M(x,Z) dictates that 0.95 fraction of the data must lie on one side of the hyperplane
w with a margin θ. As discussed in the introduction, we relax it by allowing a two-sided
margin: M2(x,Z).

max θ

subject to bi| ⟨Zi − x,w⟩ | ≥ biθ for i = 1, . . . , k

k∑
i=1

bi ≥ 0.95k

b ∈ {0, 1}k,w ∈ SD−1.

One technical observation here is that under the Lugosi-Mendelson condition, this relaxation
is insignificant. Indeed, approximately solving the problem suffices for gradient and distance
estimates.

Lemma 2.4.1. Let θ∗ be the optimal value ofM(x,Z) and w be a unit vector such that for
at least k/8 of the Zi, we have | ⟨w,Zi − x⟩ | ≥ θ, where θ = 0.1θ∗. We have that (i) θ is a
distance estimate and (ii) either w or −w is a gradient estimate.

We give a proof in Appendix A.4. The intuition here is simple. If ∥x − µ∥ ≪ rδ, then
the Lugosi-Mendelson condition ensures at most 0.05k points are far from x by O(rδ) (under
any projection), so θ = O(rδ). On the other hand, if ∥x − µ∥ ≫ rδ, along the gradient
direction, a majority of data lie only on one side of the hyperplane, the side that contains
the true mean, so the two-sided constraint does not make a difference.

2.5 Approximating the Inner Maximization

We now give an algorithm that efficiently computes a approximate solution to the relax-
ation of the inner maximization. This will provide gradient and distance estimates for each
iteration of the main Descent algorithm (Algorithm 2.1).
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The run-time of the algorithm is proportional 1/θ2. For technical reasons, we need to
ensure that ∥Zi − x∥ ≤ 1 for all i. However, näıvely scaling all the data would decrease θ,
thereby blowing up the running time. Hence, as a preprocessing step, we prune out a small
fraction of points Zi − x with large norm before scaling.

Pruning and scaling

The preprocessing step (Algorithm 2.2) will be executed only once in the algorithm. After
the pruning step and an appropriate scaling, we may assume the following structures on the
data.

Assumption 2.5.1. Given a current estimate x, the pruned dataset Z ∈ Rk′×d of size k′,
let Z ′

i =
1
B
(Zi − x), where B = maxi ∥Z ′

i − x∥. We assume (i) ∥Z ′
i∥ ≤ 1; (ii) k′ ≥ 0.9k;

and (iii) there exists θ = Ω(1/
√
d) and a unit vector w such that for at least 0.8k points

| ⟨Z ′
i,w⟩ | ≥ θ.

We analyze the subroutine and prove the following lemma in Appendix A.5.

Lemma 2.5.1. With probability at least 1−δ/8, Assumption 2.5.1 holds for any x such that

∥x− µ∥ ≤ O
(√
∥Σ∥kd/n

)
and ∥x− µ∥ ≥ Ω(rδ).

1. Input: Dataset Z1,Z2, · · · ,Zk ∈ Rd, initial estimate x0

2. Compute the distances di = ∥Zi − x0∥.

3. Sort the points by di in decreasing order.

4. Remove the top 1/10 fraction of them. Let Z1, · · · ,Zk′ be the remaining
data.

5. Output: Z1, · · · ,Zk′

Figure 2.2: Prune

In the remainder of the section, given a current estimate x, we work with the pruned
and scaled data, centered at x, which we call Z ′ ∈ Rk′×d.

We will aim at proving the following lemma, under Assumption 2.5.1.

Lemma 2.5.2 (key lemma). Assume Assumption 2.5.1. Let δ ∈ (0, 1) and Tdes = Θ(log d).
Suppose that there exists w∗ ∈ Sd−1 which satisfies | ⟨Z ′

i,w
∗⟩ | ≥ θ∗ for 0.8k points in {Z ′

i}.
Then there is an algorithm ApproxBregman which, with probability at least 1 − δ/4Tdes,
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outputs w ∈ Sd−1 such that for at least 0.45 fraction of the points Z ′
i, it holds that | ⟨Z ′

i,w⟩ | ≥
0.1θ∗.

Further, ApproxBregman runs in time Õ (k2d).

Approximation via Bregman Projection

In this section, we give the main algorithm for approximating M2. Suppose (by binary
search) that we know the optimal margin θ in Lemma 2.5.2. The goal is to find a unit vector
w such that a constant fraction of Z ′

i has margin | ⟨Z ′
i,w⟩ | ≥ θ. The intuition is that we

can start by computing the top singular vector of Z ′. Then the margin would be large on
average: certain points may overly satisfy the margin demand while other may under-satisfy
it. Hence, we would downweight those data poitns that achieve large margin and compute
the top singular vector of the weighted matrix again.

However, it may stop making progress if it puts too much weight on the points that do
not satisfy the margin bound. In this section, we show how to prevent this scenario from
occurring. The key idea is that at every iteration, we “smooth” the weight vector τt so that
we can guarantee progress is being made. We will formulate our algorithm in the well-studied
regret-minimization framework and appeal to existing machinery ([13]) to derive the desired
approximation guarantees.

First, we define what type of distribution we would like τt to be.

Definition 2.5.1 (Smooth distributions). The set of smooth distributions on [k′] is defined
to be

K =

{
p ∈ ∆k′ : p(i) ≤

4

k′ for every i ∈ [k′]

}
,

where ∆k′ is the set of probability distributions on [k′],

∆k′ =

p : [k′]→ [0, 1] :
∑
i∈[k′]

p(i) = 1

 .

In the course of the algorithm, after updating τt as in the previous section, it may no
longer be smooth. Hence, we will replace it by the closest smooth weight vector (under KL
divergence). The following fact confirms that finding this closest smooth weight vector can
be done quickly.

Fact 2.5.1 ([18]). For any p ∈ ∆k with support size at least k′/2, computing

ΠK(p) = argmin
q∈K

KL(p||q)

can be done in Õ(k′) time, where KL(·||·) denotes the Kullback-Leibler divergence.
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1. Input: Buckets means Z ′ ∈ Rk′×d, margin θ, iteration count T ∈ N

2. Initialize weights: τ1 =
1
k′
(1, . . . , 1) ∈ Rk′ .

3. For t = 1, . . . , T , repeat:

a) Let At be the k
′× d matrix whose ith row is

√
τt(i)(Z

′
i) and wt be

its approximate top right singular vector .

b) Set σt(i) = | ⟨Z ′
i,wt⟩ |.

c) Reweight: If ∥Atwt∥22 ≥ θ2

10
, then τt+1(i) = τt(i) (1− σt(i)

2/2) for
i ∈ [k′]. Otherwise, do not change the weights.

d) Normalize: Let Z =
∑

i∈[k′] τt+1(i) and redefine τt+1 ← 1
Z
τt+1.

e) Compute the Bregman projection: τt+1 ← ΠK(τt+1).

4. Output: w ←Round
(
Z ′, {wj}Tt=1, θ

)
(or report Fail if Round fails).

Figure 2.3: Approximate inner maximization via Bregman projection—ApproxBregman

Remark 2.5.1. In our algorithm, we will only compute Bregman projections of distributions
of support size at least k′/2. This is because neither our reweighting procedure nor the actual
projection algorithm of [18] sets any coordinates to 0 and the initial weight is uniform.

Since Algorithm 2.3 is the MWU method with Bregman projections onto the set K, we
will apply the following regret guarantee.3

Theorem 2.5.1 (Theorem 2.4 of [13]). Suppose that for σ2
t (i) ∈ [0, 1] for all i ∈ [k′] and

t ∈ [T ]. Then after T iterations of Algorithm 2.3, for any p ∈ K, it holds that:

T∑
t=1

〈
τt,σ

2
t

〉
≤ 3

2

T∑
t=1

〈
p,σ2

t

〉
+ 2KL(p||τ1).

Finally, we comment that we cannot näıvely apply the power method for the singular
vector computation. The power method has failure probability of 1

10
, whereas our algorithm

should fail with probability at most δ = O(exp(−k)) that is exponentially low. However,
we note that the algorithm computes the top singular vectors of a sequence of matrices
A1,A2, . . . ,AT . Observe that as long as T = Ω(log(1/δ)) = Ω(k), with probability at least

3To be more precise, the iterations t in which ∥Atwt∥22 ≥ θ2

10 behave according to the MWU method.

Whenever ∥Atwt∥22 < θ2

10 , the algorithm does not update the weights, which has no effect on the other
iterations.
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1 − δ/8, the power method will succeed for 0.9T of the matrices. We will show that this
many successes suffice to guarantee correctness of our algorithm.

We first prove the following lemma, a requirement for the rounding algorithm to succeed.

Lemma 2.5.3 (regret analysis). After T = O
(
max

(
log k′

θ2
, log(Tdes/δ)

))
iterations of Algo-

rithm 2.3, for all but a 1/4 fraction of i ∈ [k′]:

T∑
t=1

⟨Z ′
i,wt⟩2 ≥ 100 log k′.

Proof. Let S = {i ∈ [k′] : | ⟨Z ′
i,w

∗⟩ | ≥ θ} be the set of constraints satisfied by the unit
vector w∗ whose existence is guaranteed in the hypothesis of Lemma 2.5.2. By assumption,
we have that |S| ≥ 0.8k′. We simply calculate each of the terms in Theorem 2.5.1.

First, let I = {t ∈ [T ] : wt is a 1/2-approximate top singular vector of At}. Then we
have for any t ∈ I:

〈
τt,σ

2
t

〉
=

k′∑
i=1

τt(i) ⟨Z ′
i,wt⟩2 (by definition)

≥ 1

2

k′∑
i=1

τt(i) ⟨Z ′
i,w

∗⟩2 (because wt is an approximate top eigenvector)

≥ 1

2

∑
i∈S

τt(i) ⟨Z ′
i,w

∗⟩2

≥ 1

2

∑
i∈S

τt(i)θ
2 (by definition of S)

≥ 1

2
· 1
5
θ2 =

θ2

10
(because |S| ≥ 0.8k′ and τt ∈ K).

Summing this inequality over t ∈ [T ], we have that

T∑
t=1

〈
τt,σ

2
t

〉
≥
∑
t∈I

〈
τt,σ

2
t

〉
≥ |I|

10
θ2.

By Chernoff-Hoeffding bound combined with the guarantee of power iteration (Fact A.2.1),
as long as T = Ω(log(Tdes/δ)), then with probability at least 1 − δ

8Tdes
, for at least 4

5
T

iterations, it will be the case that wt is an approximate top singular vector. In other words,
|I| ≥ 4

5
T , so that we have:

T∑
t=1

〈
τt,σ

2
t

〉
≥ 2T

25
θ2.
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Next, note that if we choose p = ei, then

T∑
t=1

〈
p,σ2

t

〉
=

T∑
t=1

⟨Z ′
i,wt⟩2 .

Because τ1 is uniform, the relative entropy term in Theorem 2.5.1 is at most log k′. Let’s
pretend for a moment that ei ∈ K (it is not). Then after plugging in the above calculations
to Theorem 2.5.1 and rearranging, we have that for every i ∈ [k′]

T∑
t=1

⟨Z ′
i,wt⟩2 ≥

2T

25
θ2 − 2 log k′ ≥ 100 log k′,

by setting T ≥ 105 log k′

θ2
. This gives the bound claimed in the statement of the lemma, but

it remains to fix the invalid assumption that ei ∈ K. To do so, we will construct, for most
i ∈ [k′], another distribution p′ ∈ K such that

T∑
t=1

〈
ei,σ

2
t

〉
≥

T∑
t=1

〈
p′,σ2

t

〉
.

Combining this with
∑T

t=1 ⟨p′,σ2
t ⟩ ≥ 100 log k′ gives the desired lower bound, for most i.

Write α =
∑T

t=1 σ
2
t , and without loss of generality assume that

α1 ≥ α2 ≥ . . . ≥ αk′ .

For i = 1, . . . , 4k′/5, take p′ to be uniform on those j ∈ [k′] such that αi ≥ αj (there are
at least k′/5 such i). By construction, we have that ⟨α, ei⟩ ≥ ⟨α,p′⟩. Finally, observe that
p′ ∈ K because p′ is uniform on a set of size at least k′/5.

Observe that the ApproxBregman produces a sequence of vectors by the end. [101]
provides a rounding algorithm that combines them into one with the desired margin bound.
We describe the algorithm and prove the following lemma in Appendix A.6.

Lemma 2.5.4. The algorithm Round (Algorithm A.4) outputs w that satisfies | ⟨Z ′
i,w⟩ | ≥

0.1θ for 0.45k of the points, with probability at least 1− δ/4Tdes.

Finally, we are now ready to prove the key lemma using ApproxBregman.

Proof of Lemma 2.5.2. The correctness follows from Lemma 2.5.4. We focus on run-time.
By Assumption 2.5.1, we have that 1/θ2 = O(d). By projecting onto the subspace spanned
by the bucket means, we can assume d ≤ k. Hence, Lemma 2.5.3 implies that the iteration
count is Õ(k′). The runtime of each iteration is bounded by the cost of computing an

approximate top singular vector of a k′ by d matrix via the power method, which is Õ(k′d)

by Fact A.2.1. Finally, each repetition of the rounding algorithm Round takes time Õ(k′d),
and the number of trials is at most O(log(1/δ′)) by definition. Thus, the runtime of the

rounding algorithm is Õ(k2d) .
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Putting it Together

Our main algorithm begins with the initial guess as the coordinate-wise median-of-means of
{Zi}2ki=k+1. Then it proceeds via the Descent procedure, where the gradient and distance
estimates are given by ApproxBregman. To ensure independence, we only use the {Zi}k+1

i=1

for the descent part. We provide the full description in Appendix A.1.
We now give a proof sketch our main theorem. The formal proof is found in Appendix

A.7.

Proof sketch of Theorem 2.1.1. Our argument is conditioned on (i) that the Lugosi-Mendelson
condition holds, (ii) that the initial guess x0 satisfies an error bound

√
kd∥Σ∥/n, and (iii)

that the Prune procedure succeeds. Each fails with probability at most δ/8.
The guarantee of ApproxBregman, along with Lemma 2.4.1, implies that GradEst

andDistEst succeed with probability at least 1−δ/4Tdes each iteration. Taking union bound
over all above events, the failure probability of the final algorithm is at most δ. Applying
the guarantee of the Descent procedure and error bound of the initial guess finishes the
proof.

2.6 Conclusion and Discussion

In this paper, we provided a faster algorithm for estimating the mean of a heavy-tailed
random vector that achieves subgaussian performance. Unlike previous algorithms, our faster
running time is achieved by the use of a simple spectral method that iteratively updates the
current estimate of the mean until it is sufficiently close to the true mean.

Our work suggests two natural directions for future research. First, is it possible to
achieve subgaussian performance for heavy-tailed covariance estimation in polynomial time?
Currently, the best polynomial-time covariance estimators do not achieve the optimal statis-
tical rate (see [123, 43]), while a natural generalization of the (computationally intractable)
Lugosi-Mendelson estimator is known to achieve subgaussian performance. One approach
would be to build on our framework; the key technical challenge is to design an efficient
subroutine for producing bi-criteria approximate solutions to the natural generalization of
the inner maximization problem to the covariance setting.

Another direction is to achieve a truly linear-time algorithm for the mean estimation
problem. Our iterative procedure for solving the inner maximization problem take Õ(k)
iterations; is it possible to reduce this to a constant?
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Chapter 3

Unifying Robust and Heavy-Tailed
Mean Estimation

In this chapter, we study the problem of estimating the mean of a distribution in high
dimensions when either the samples are adversarially corrupted or the distribution is heavy-
tailed. Recent developments in robust statistics have established efficient and (near) optimal
procedures for both settings. However, the algorithms developed on each side tend to be
sophisticated and do not directly transfer to the other, with many of them having ad-hoc or
complicated analyses.

We provide a meta-problem and a duality theorem that lead to a new unified view on ro-
bust and heavy-tailed mean estimation in high dimensions. We show that the meta-problem
can be solved either by a variant of the Filter algorithm from the recent literature on robust
estimation or by the quantum entropy scoring scheme (QUE), due to Dong, Hopkins and Li
(NeurIPS ’19). By leveraging our duality theorem, these results translate into simple and
efficient algorithms for both robust and heavy-tailed settings. Furthermore, the QUE-based
procedure has run-time that matches the fastest known algorithms on both fronts.

Our analysis of Filter is through the classic regret bound of the multiplicative weights
update method. This connection allows us to avoid the technical complications in previous
works and improve upon the run-time analysis of a gradient-descent-based algorithm for
robust mean estimation by Cheng, Diakonikolas, Ge and Soltanolkotabi (ICML ’20).

3.1 Introduction

Learning from high-dimensional data in the presence of outliers is a central task in modern
statistics and machine learning. Outliers have many sources. Modern data sets can be
exposed to random corruptions or even malicious tampering, as in data poison attacks. Data
drawn from heavy-tailed distributions can naturally contain outlying samples—heavy-tailed
data are found often in network science, biology, and beyond [69, 114, 17, 6]. Minimizing
the effect of outliers on the performance of learning algorithms is therefore a key challenge
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for statistics and computer science.
Robust statistics—that is, statistics in the presence of outliers—has been studied formally

since at least the 1960s, and informally since long before [91, 154]. However, handling outliers
in high dimensions presents significant computational challenges. Classical robust estimators
(such as the Tukey median) suffer from worst-case computational hardness, while näıve
computationally-efficient algorithms (e.g., throwing out atypical-looking samples) have far-
from-optimal rates of error. In the last five years, however, numerous works have developed
sophisticated, efficient algorithms with optimal error rates for a variety of problems in high-
dimensional robust statistics. Despite significant recent progress, many basic algorithmic
questions remain unanswered, and many algorithms and rigorous approaches to analyzing
them remain complex and ad hoc.

In this work, we revisit the most fundamental high-dimensional estimation problem,
estimating the mean of a distribution from samples, in the following two basic and widely-
studied robust settings. In each case, X1, . . . , Xn ∈ Rd are independent samples from an
unknown d-dimensional distribution D with mean µ ∈ Rd and (finite) covariance Σ ∈ Rd×d.

• Robust mean estimation: Given Y1, . . . , Yn ∈ Rd such that Yi = Xi except for εn
choices of i, estimate the mean µ. We interpret the εn contaminated samples Yi ̸= Xi

as corruptions introduced by a malicious adversary. Näıve estimators such as the
empirical mean can suffer arbitrarily-high inaccuracy as a result of these malicious
samples.

• Heavy-tailed mean estimation: Given X1, . . . , Xn, estimate µ by an estimator µ̂ such
that ∥µ − µ̂∥ is small with high probability (or equivalently, estimate µ with optimal
confidence intervals). Since our only assumption aboutD is that it has finite covariance,
D may have heavy tails. Standard estimators such as the empirical mean can therefore
be poorly concentrated.

A significant amount of recent work in statistics and computer science has led to an array
of algorithms for both problems with provably-optimal rates of error and increasingly-fast
running times, both in theory and experiments [108, 60, 64, 39, 89, 42, 110, 112]. However,
several questions remain, which we address in this work.

First, the relationship between heavy-tailed and robust mean estimation is still murky:
while algorithms are known which simultaneously solve both problems to information-theoretic
optimality [110], we lack general conditions under which algorithms for one problem also solve
the other. This suggests:

Question 1: Is there a formal connection between robust mean estimation and
heavy-tailed mean estimation which can be exploited by efficient algorithms?

Second, iterated sample downweighting (or pruning) is arguably the most natural ap-
proach to statistics with outliers—indeed, the filter, one of the first computationally efficient
algorithms for optimal robust mean estimation [60]) takes this approach—but rigorous anal-
yses of filter-style algorithms remain ad hoc. Other iterative methods, such as gradient
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descent, suffer the same fate: they are simple-to-describe algorithms which require signifi-
cant creativity to analyze [41]. We ask:

Question 2: Is there a simple and principled approach to rigorously analyze iter-
ative algorithms for robust and heavy-tailed mean estimation?

Our Results

Our main contribution in this work is a simple and unified treatment of iterative methods
for robust and heavy-tailed mean estimation.

Addressing Question 1, we begin by distilling a simple meta-problem, which we call
spectral sample reweighing. While several variants of spectral sample reweighing are implicit
in recent algorithmic robust statistics literature, our work is the first to separate the problem
from the context of robust mean estimation and show the reduction from heavy-tailed mean
estimation. The goal in spectral sample reweighing is to take a dataset {xi}i∈[n] ⊆ Rd,
reweigh the vectors xi according to some weights wi ∈ [0, 1], and find a center ν ∈ Rd such
that after reweighing the maximum eigenvalue of the covariance

∑
i≤nwi(xi− ν)(xi− ν)⊤ is

as small as possible.

Definition 3.1.1 ((α, ε) spectral sample reweighing, informal, see Definition 3.3.1). For
ε ∈ (0, 1/2), let Wn,ε = {w ∈ ∆n : ∥w∥∞ ≤ 1

(1−ε)n
} be the set of probability distributions

on [n] with bounded ℓ∞ norm. Let α ≥ 1. Given {xi}ni=1 in Rd, an α-approximate spectral
sample reweighing algorithm returns a probability distribution w ∈ Wn,3ε and a spectral
center ν ∈ Rd such that∥∥∥∥∥∑

i≤n

wi(xi − ν)(xi − ν)⊤

∥∥∥∥∥ ≤ α · min
w′∈Wn,ε,ν′∈Rd

∥∥∥∥∥∑
i≤n

w′
i(xi − ν ′)(xi − ν ′)⊤

∥∥∥∥∥ ,

where ∥ · ∥ denotes the spectral norm, or maximum eigenvalue.

Note that that spectral sample reweighing is a worst-case computational problem. The
basic optimization task underlying spectral sample reweighing is to find weights w ∈ Wn,ε

minimizing the spectral norm of the weighted second moment of {xi − ν}i∈[n]. An α-
approximation is allowed to output instead w in the slightly larger set Wn,3ε and may only
minimize the spectral norm up to a multiplicative factor α. The parameter ε should be
interpreted as the degree to which w ∈ Wn,ε may deviate from the uniform distribution.

Our first result shows that robust and heavy-tailed mean estimation both reduce to
spectral sample reweighing.

Theorem 3.1.1 (Informal, see Theorem 3.4.1, Theorem 3.6.1). Robust and heavy-tailed
mean estimation can both be solved with information-theoretically optimal error rates (up to
constant factors) by algorithms which make one call to an oracle providing a constant-factor
approximation to spectral sample reweighing (with ε = ε0 a small universal constant) and

run in additional time Õ(nd).
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For robust mean estimation this reduction is implicit in [60] and others (see e.g. [64]).
For heavy-tailed mean estimation the reduction was not previously known: we analyze it by
a simple convex duality argument (borrowing techniques from [39, 110]). Our argument gives
a new equivalence between two notions of a center for a set of high-dimensional vectors—the
spectral center considered in spectral sample reweighing and a more combinatorial notion
developed by Lugosi and Mendelson in the context of heavy-tailed mean estimation [126].
We believe this equivalence is of interest in its own right—see Proposition 3.5.1 and Propo-
sition 3.5.2.

We now turn our attention to Question 2. We offer a unified approach to rigorously ana-
lyzing several well-studied algorithms by observing that each in fact instantiates a common
strategy for online convex optimization, and hence can be analyzed by applying a standard
regret bound. This leads to the following three theorems. We first demonstrate that the
filter, one of the first algorithms proposed for efficient robust mean estimation [60, 117, 58,
53], can be analyzed in this framework. Specifically, we show:

Theorem 3.1.2 ([60], Informal, see Theorem 3.3.1). There is an algorithm, filter, based
on multiplicative weights, which gives a constant-factor approximation to spectral sample
reweighing for sufficiently small ε, in time Õ(nd2)1.

Previous approaches to analyzing the filter required by-hand construction of potential
functions to track the progress of the algorithm. Our novel strategy to prove Theorem 3.1.2
demystifies the analysis of the filter by applying an out-of-the-box regret bound: the result
is a significantly simpler proof than in prior work. It allows us to capture robust mean
estimation in both bounded covariance and sub-gaussian setting.

Moving on, we also analyze gradient descent, giving the following new result, which we
also prove by applying an out-of-the-box regret bound. Although it gives weaker running-
time bound than we prove for filter, the advantage is that the algorithm is vanilla gradient
descent. (By comparison, the multiplicative weights algorithm of Theorem 3.1.2 can be
viewed as a more exotic mirror-descent method.)

Theorem 3.1.3 (Informal, see Theorem B.4.1). There is a gradient-descent based algorithm
for spectral sample reweighing which gives a constant-factor approximation to spectral sample
reweighing in O(nd2/ε2) iterations and Õ(n2d3/ε2) time.

Prior work analyzing gradient descent for robust mean estimation required sophisticated
tools for studying non-convex iterative methods [41]. Our regret-bound strategy shows for
the first time that gradient descent solves heavy-tailed mean estimation, and that it solves
robust mean estimation in significantly fewer iterations than previously known (prior work

shows a bound of Õ(n2d4) iterations in the robust mean estimation setting, where our bound
gives O(nd2) iterations [41]).

1We use Õ, Ω̃ notation to hide polylogarithmic factors. Also, we remark that a variant of our main
algorithm achieves the optimal breakdown point of 1/2; see Section B.5.
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Finally, we demonstrate that the nearly-linear time algorithm for robust mean estima-
tion in [64] fits into this framework as well. Thus, this framework captures state-of-the-art
algorithms for robust mean estimation.

Theorem 3.1.4 ([64], Informal, see Theorem B.3.1). There is an algorithm based on ma-
trix multiplicative weights which gives a constant-factor approximation to spectral sample
reweighing for sufficiently small ε, in time Õ(nd log(1/ε)).

Related work

For robust mean estimation, [60, 108] give the first polynomial-time algorithm with optimal
(dimension-independent) error rates. Their results have been further improved and general-
ized by a number of works [16, 58, 61, 55, 88, 148, 64, 62, 40, 57]. See [53] for a complete
survey.

The first (computationally inefficient) estimator to obtain optimal confidence intervals
for heavy-tailed distributions in high dimensions is given by [126]; this construction was first
made algorithmic by [89], using the Sum-of-Squares method. Later works [42, 110, 112]

significantly improve the run-time: the fastest known algorithm runs in time Õ(n2d).
Analyses of the Filter algorithm are scattered around the literature [60, 117, 58, 53].

The variant of Filter we present here is based on a soft downweighting procedure first
proposed by [147]. However, no prior work analyzes Filter through the lens of regret
minimization or points out a connection with the heavy-tailed setting.

Prior works [110, 138, 122] have proposed unified approaches to heavy-tailed and robust
mean estimation. In particular, [110] observes a robustness guarantee of [126], originally
designed for the heavy-tailed setting. However, these works do not distill a meta-problem or
obtain the analysis via duality. In addition, although it matches the fastest-known running
time in theory, the algorithm of [110] is based on semidefinite programming, rendering it rel-
atively impractical. Some constructions from [138, 122] are not known to be computationally
tractable.

In a concurrent and independent work, [160] also studies the spectral sample reweighing
problem (in the context of robust mean estimation), and provides an analysis of filter-
type algorithms based on a regret bounds. The argument of [160] relies on a technical
optimization landscape analysis, which our arguments avoid. The framework of [160] can be
extended to robust linear regression and covariance estimation; it is unclear our techniques
extend similarly. Their work also proves an optimal breakdown point analysis of filter-type
algorithm for robust mean estimation. We obtain the same result (see Section B.5) with an
arguably less sophisticated proof. Lastly, [160] does not discuss the heavy-tailed setting.

Another concurrent and independent work, [54], also shows that the filter and non-
convex gradient descent obtain optimal rates in the robust and heavy-tailed settings. The
authors also identify a general stability-based condition under which robust mean estimation
algorithms achieve optimal rates in the heavy-tailed setting.
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Organization

We formally introduce the spectral sample reweighing problem and analyze an algorithm
based on the Filter algorithm in Section 3.3. We show how this primitive can be immedi-
ately used to solve the robust mean estimation problem in Section 3.4. Then in Section 3.5
we introduce the duality theorem that connect two notions of centrality. The result is used
further in Section 3.6, where we show how to leverage the duality for heavy-tailed mean
estimation.

3.2 Preliminaries

For a set of n real values αi, we let median ({αi}ni=1) to denote its median. For a matrix A,
we use ∥A∥, ∥A∥2 to denote the spectral norm of A and Tr(A) its trace. For a vector v, ∥v∥p
denotes the ℓp norm. We denote the all-one vector of dimension k by 1k. For vectors u, v,
we denote the entrywise product by u⊙v; that is, the vector such that wi = ui ·vi for each i.
For PSD matrices A,B, we write A ⪯ B if B−A is PSD. Density matrices refer to the set of
PSD matrices with unit trace. For any symmetric matrix A ∈ Rd×d, let exp(A) denote the
matrix exponential of A. For a weight vector w such that 0 ≤ wi ≤ 1 and point set {xi}ni=1,
we define µ(w) =

∑n
i=1wixi and M(w) = Σw =

∑n
i=1 wi(xi − µ(w))(x− µ(w))⊤.

Definition 3.2.1 (approximate top eigenvector). For any PSD matrix M and c ∈ (0, 1), we
say that a unit vector v is a c-approximate largest eigenvector of M if vTMv ≥ c∥M∥2.

For a PSD matrix M , we let ApproxTopEigenvector(M, c, α) to denote an approx-
imation scheme that outputs a (unit-norm) c-approximate largest eigenvector of M with a
failure probability of at most α. The classic power method achieves such guarantee with
a run-time of O

(
1

1−c
nd log(1/α)

)
, when M is given in a factored form M = X⊤X, for

X ∈ Rn×d.

Definition 3.2.2 (Kullback–Leibler divergence). For probability distributions p, q over [n],

the KL divergence from q to p is defined as KL(p||q) =
∑n

i=1 p(i) log
p(i)
q(i)

.

Definition 3.2.3 (total variation distance). For probability distributions p, q, the total vari-
ation distance is defined as TV(p, q) = supE |p(E)− q(E)| = 1

2
∥p− q∥1, where the supremum

is over the set of measurable events.

We use ∆n to denote the set of probability distributions over [n] and write Un for the
uniform distribution over [n]. We use i ∼ I to denote i drawn uniformly from an index
set I ⊆ [n]. Throughout, we define Wn,ε = {w ∈ ∆n : wi ≤ 1

(1−ε)n
} to be the discrete

distributions over [n] with bounded ℓ∞ norm; we call the set good weights.



CHAPTER 3. UNIFYING ROBUST AND HEAVY-TAILED MEAN ESTIMATION 24

3.3 The Meta-Problem and a Meta-Algorithm

We now define the meta-problem, which we call spectral sample reweighing, that underlies
both the adversarial and heavy-tailed models. We put it as a promise problem.

Definition 3.3.1 ((α, ε)-spectral sample reweighing). Let ε ∈ (0, 1/2). The spectral sample
reweighing problem is specified by the following.

• Input: n points {xi}ni=1 in Rd and λ ∈ R.

• Promise: There exists a ν ∈ Rd and a set of good weights w ∈ Wn,ε such that

n∑
i=1

wi (xi − ν) (xi − ν)⊤ ⪯ λI. (†)

• Output: A set of good weights w′ ∈ Wn,3ε and ν ′ ∈ Rd that satisfies the condition above,
up to the factor of α ≥ 1:

n∑
i=1

w′
i (xi − ν ′) (xi − ν ′)

⊤ ⪯ αλI. (3.3.1)

To provide some intuition, the goal here is to find a set of weights {wi}ni=1, close to the
uniform distribution on [n], and a center ν such that by weighting by w and centering by ν,
the covariance is bounded, under the promise that such a set of weights exists. We will refer
to our promise (†) as a spectral centrality assumption.

Solving spectral sample reweighing The main result of this section is an efficient
algorithm that achieves a constant factor approximation for the spectral sample reweighing
problem.

Theorem 3.3.1 ([60] spectral sample reweighing via filter). Let {xi}ni=1 be n points in Rd

and ε ∈ (0, 1/10]. Suppose there exists ν ∈ Rd and w ∈ Wn,ε such that

n∑
i=1

wi (xi − ν) (xi − ν)⊤ ⪯ λI

for some λ > 0. Then, given {xi}ni=1, λ, ε and a failure rate δ, there is an algorithm that
finds w′ ∈ Wn,3ε and ν ′ ∈ Rd such that

n∑
i=1

w′
i (xi − ν ′) (xi − ν ′)

⊤ ⪯ 60λI,

with probability at least 1− δ.
The algorithm runs in O(d) iterations and Õ (nd2 log(1/δ)) time in total.
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Our algorithm is a a multiplicative weights-style procedure. In particular, the output cen-
ter ν ′ will be a weighted average of the points {xi}ni=1. The algorithm starts with the uniform
weighting and iteratively downweights points which are causing the empirical covariance to
have a large eigenvalue. To ensure that we always maintain a set of good weights, we project
the weights onto the set Wn,ε at the end of each iteration, according to KL divergence. For
technical reasons, the algorithm also requires a width parameter ρ. It suffices to set it as
the squared diameter of the input points {xi}ni=1, and it can be bounded by O(dλ/ε) by a
simple pruning argument (Lemma 3.3.2 and Lemma 3.3.3).

The algorithm should be seen as a variant of the Filter algorithm, due to Diakonikolas,
Kamath, Kane, Li, Moitra, and Stewart [60]. The procedure we present here most resembles
a more streamlined version later by Steinhart [147]. However, neither formulated the problem
quite this way or gave this analysis. Instead, we will re-analyze the algorithm for the purpose
of spectral sample reweighing and in a different manner than previously done in the literature.

Algorithm 1: Multiplicative weights for spectral sample reweighing (Defini-
tion 3.3.1)

Input: A set of points {xi}ni=1, an iteration count T , and parameter ρ, δ
Output: A point ν ∈ Rd and weights w ∈ Wn,ε.

1 Let w(1) = 1
n
1n and η = 1/2.

2 For t from 1 to T

3 Let ν(t) =
∑

i w
(t)
i xi, M

(t) =
∑

i w
(t)
i (xi − ν(t))(xi − ν(t))T .

4 Compute v(t) = ApproxTopEigenvector(M (t), 7/8, δ/T ).

5 Compute τ
(t)
i =

〈
v(t), xi − ν(t)

〉2
for each i.

6 Set w
(t+1)
i ← w

(t)
i

(
1− ητ

(t)
i /ρ

)
for each i.

7 Project w(t+1) onto the set of good weights Wn,ε (under KL divergence):

w(t+1) ← argmin
w∈Wn,ε

KL
(
w||w(t)

)
.

8 Return ν(t∗), w(t∗), where t∗ = argmint ∥M (t)∥.

Lemma 3.3.1 (analysis of filter). Let ε ∈ (0, 1/10] and {xi}ni=1 be n points in Rd. Suppose
there exists ν ∈ Rd and w ∈ Wn,ε such that

n∑
i=1

wi (xi − ν) (xi − ν)⊤ ⪯ λI

for some λ > 0. Then, given {xi}ni=1, a failure rate δ and ρ such that ρ ≥ τ
(t)
i for all i and
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t, Algorithm 1 finds w′ ∈ Wn,ε and ν ′ ∈ Rd such that

n∑
i=1

w′
i (xi − ν ′) (xi − ν ′)

⊤ ⪯ 60λI, (3.3.2)

with probability at least 1− δ.
The algorithm terminates in T = O(ρε/λ) iterations. Further, if T = O(poly(n, d)), then

each iteration takes Õ(nd log(1/δ)) time.

We first see how to prove Theorem 3.3.1 via Lemma 3.3.1. Note that it requires to bound
the width parameter ρ. To ensure the condition ρ ≥ τ

(t)
i for all i and t, observe that as

∥v(t)∥ = 1, we have

τ
(t)
i =

〈
v(t), xi − ν(t)

〉2 ≤ ∥xi − ν(t)∥2.

Also, since ν(t) is a convex combination of {xi}ni=1, we can set ρ to be the squared diameter
of the input data {xi}ni=1. As the first step, we show that a (1 − 2ε) fraction of the points
lie within a ball of radius

√
dλ/ε under the spectral centrality condition. Then a (folklore)

pruning procedure can be used to extract such set.

Lemma 3.3.2 (diameter bound). Let {xi}ni=1 be n points in Rd. Suppose there exists ν ∈ Rd

and w ∈ Wn,ε such that
∑n

i=1 wi (xi − ν) (xi − ν)⊤ ⪯ λI for some λ > 0 and ε ∈ (0, 1/2).

Then there exists a ball of radius
√
dλ/ε that contains at least r = (1−2ε)n points of {xi}ni=1.

The proof of the lemma can be found in Appendix B.1

Lemma 3.3.3 (folklore; see [64]). Let ε < 1/2 and δ > 0. Let S ⊂ Rd be a set of n points.
Assume there exists a ball B of radius r and a subset S ′ ⊆ S such that |S ′| ≥ (1− ε)n and
S ′ ⊂ B. Then there is an algorithm Prune(S, r, δ) that runs in time O(nd log 1/δ) and with
probability 1− δ outputs a set R ⊆ S so that S ′ ⊆ R, and R is contained in a ball of radius
4r.

Using the lemmas above, we can immediately prove the main theorem.

Proof of Theorem 3.3.1. Given S = {xi}ni=1, λ and ε, we first run the Prune(S, r, δ/2) algo-
rithm, with r =

√
dλ/ε. By Lemma 3.3.2, the spectral centrality condition (†) implies there

exists a ball of radius r containing at least (1 − 2ε)n points of S. Therefore, Lemma 3.3.3
guarantees that it will return a set R ⊆ S of at least (1− 2ε)n points contained in a ball of
radius 4r. Hence by Lemma 3.3.1, given R, ρ = 16dλ/ε and failure rate δ/2, Algorithm 1
finds w′ ∈ W|R|,ε and ν ′ ∈ Rd such that∑

i∈R

w′
i (xi − ν ′) (xi − ν ′)

⊤ ⪯ 60λI,

with probability at least 1 − δ/2. Let w′′
i = w′

i if i ∈ R and w′′
i = 0 otherwise. since

1
(1−ε)(1−2ε)

≤ 1
1−3ε

for ε < 1/3, we have w′′ ∈ Wn,3ε Moreover,
∑n

i=1w
′′
i (xi − ν ′) (xi − ν ′)⊤ ⪯

60λI, as desired.
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The overall procedure succeeds with probability at least 1 − δ by a union bound, since
Algorithm 1 and Prune are both set up to have a failure rate at most δ/2. Now for the
run-time, Prune(S, r, δ) takes O(nd log(1/δ)) by Lemma 3.3.3. Moreover, by Lemma 3.3.1,

Algorithm 1 runs in time Õ(nd log(1/δ)·T ) time, with T = O(ρε/λ) being the iteration count.
Since ρ = 16dλ/ε, we have T = O(d), and this immediately yields the desired runtime.

Analysis via regret minimization Now it remains to analyze Algorithm 1 (Lemma 3.3.1).
We will cast the algorithm under the framework of regret minimization using multiplicative
weights update (MWU). To see that, we consider {xi}ni=1 as the set of actions, w(t) as our
probability distribution over the actions at time t, and we receive a loss vector τ (t) each
round. The weights are updated in a standard fashion. Then, to ensure that the weights
lie in the constraint set Wn,ε, we perform a projection step. (Note that the algorithm is
implementing both the player and the adversary.) The following is a classic regret bound of
MWU for the online linear optimization problem.

Lemma 3.3.4 (regret bound [13]). Suppose ρ ≥ τ
(t)
i for every t and i. Then for any weight

w ∈ Wn,ε, Algorithm 1 satisfies that

1

T

T∑
t=1

〈
w(t), τ (t)

〉
≤ 1

T
(1 + η)

T∑
t=1

〈
w, τ (t)

〉
+

ρ ·KL(w||w(1))

Tη
, (3.3.3)

for any choice of step size η ≤ 1/2.

In addition, we claim the following lemma and delay its proof to the appendix (Lemma B.1.1).

Lemma 3.3.5. Under the centrality promise (†), for any w′ ∈ Wn,ε,

∥ν − ν(w′)∥ ≤ 1

1−
√
2ε

(√
2λ+

√
2ε∥M(w′)∥

)
, (3.3.4)

where ν(w′) =
∑

i w
′
ixi and M(w′) =

∑
i w

′
i(xi − ν(w′))(xi − ν(w′))⊤.

This type of inequality is generally known as the spectral signature lemma from the recent
algorithmic robust statistics literature; see [117, 53].

With these technical ingredients, we are now ready to analyze the algorithm.

Proof of Lemma 3.3.1. Notice first that since v(t) is a 7/8-approximate largest eigenvector

of M (t) =
∑

i w
(t)
i (xi − ν(t))(xi − ν(t))T , then for all t,∑
i

w
(t)
i τ

(t)
i =

∑
i

wi

〈
v(t), xi − ν(t)

〉2
= v(t)⊤M (t)v(t) ≥ 7

8

∥∥M (t)
∥∥
2
. (3.3.5)
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Let w be the good weights that satisfies our centrality promise (†). Summing over the T
rounds and applying the the regret bound (Lemma 3.3.4), we obtain that

7

8T

T∑
t=1

∥∥M (t)
∥∥
2
≤ 1

T

T∑
t=1

〈
w(t), τ (t)

〉
≤ (1 + η)

1

T

T∑
t=1

〈
w, τ (t)

〉
+

ρ ·KL(w||w(1))

Tη
.

The KL term can be bounded because w and w(1) are both close to uniform. Indeed, it
is a simple calculation to verify that KL(w||w(1)) ≤ 5ε, using the fact wi ≤ 1/(1 − ε)n
(Lemma B.1.3). Plugging in η = 1/2, we get

7

8T

T∑
t=1

∥∥M (t)
∥∥
2
≤ 3

2T

T∑
t=1

〈
w, τ (t)

〉
+

10ερ

T
. (3.3.6)

Our eventual goal is to bound this by O(λ). Note that the second term is easy to control—
just set T = Ω(ρε/λ), and this will determine the iteration count and thus the runtime.

The remaining is mostly tedious calculations to bound the first term. The reader can
simply skip forward to (3.3.12). For those interested: we proceed by expanding the first
term on the right-hand side,

3

2T

T∑
t=1

〈
w, τ (t)

〉
=

3

2T

T∑
t=1

n∑
i=1

wi

〈
xi − ν(t), v(t)

〉2
(3.3.7)

=
3

2T

T∑
t=1

n∑
i=1

wi

(〈
xi − ν, v(t)

〉2
+
〈
ν − ν(t), v(t)

〉2)
(3.3.8)

≤ 3

2
λ+

3

2T

T∑
t=1

〈
ν − ν(t), v(t)

〉2
(3.3.9)

≤ 3

2
λ+

3

2T

T∑
t=1

∥∥ν − ν(t)
∥∥2
2
, (3.3.10)

where (3.3.7) is by the definition that τ
(t)
i =

〈
v(t), xi − ν(t)

〉2
, (3.3.8) uses the definition of

ν(t), (3.3.9) follows from the spectral centrality assumption (†), and (3.3.10) is by the fact

that ∥v(t)∥ = 1. Since ν(t) =
∑n

i=1w
(t)
i xi, we can apply Lemma 3.3.5 to bound ∥ν−ν(t)∥ and

it follows that

3

2T

T∑
t=1

∥∥ν − ν(t)
∥∥2
2
≤ 3

2T

(
T∑
t=1

25

2
λ+

1

3

∥∥M (t)
∥∥
2

)
,

for ε ≤ 1/10. Plugging the bound into (3.3.10), we obtain

3

2T

T∑
t=1

⟨w, τ (t)⟩ ≤ 3

2
λ+

3

2T

(
T∑
t=1

25

2
λ+

1

3

∥∥M (t)
∥∥
2

)
=

81

4
λ+

1

2T

T∑
t=1

∥∥M (t)
∥∥
2
. (3.3.11)
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Finally, substituting this back into (3.3.6), we see that

7

8T

T∑
t=1

∥∥M (t)
∥∥
2
≤ 81

4
λ+

1

2T

T∑
t=1

∥∥M (t)
∥∥
2
+

10ερ

T
. (3.3.12)

Now if we set T = 10ρε/λ, then the last term is λ. Rearranging yields that 1
T

∑T
t=1

∥∥M (t)
∥∥
2
≤

60λ. This shows that within T = O(ρε/λ) iterations we have achieved our goal (3.3.2).
Now it remain to argue the cost of each iteration. For approximating the largest eigen-

vector, the well-known power method computes a constant-approximation in O(nd log(1/α))
time with a failure probability at most α [107]. We set α = δ/T , and an application of union
bound implies that all the T calls to the power method jointly succeed with probability at
least 1 − δ. This gives a total run-time of Õ(nd log(1/δ)), since T = O(poly(n, d)), and
bounds the overall failure probability of the algorithm by δ. Finally, we remark that the KL
projection ontoWn,ε can be computed exactly in O(n) time, by the deterministic procedures
in [84, 157]. This completes the run-time analysis.

Faster algorithm Under the same assumptions, the spectral sample reweighing problem
can be solved in Õ(nd log(1/δ)) time, by adapting a matrix multiplicative weight scheme,
due to Dong, Hopkins and Li [64]. The algorithm and its analysis generally follow from the
proofs therein. The details can be found in Appendix B.3.

As we will see soon, applying this procedure directly match the fastest known algorithms
for both robust and heavy-tailed settings.

Gradient descent analysis As we argued, Algorithm 1 is essentially an online linear
optimization scheme, with the objective of minimizing

∑T
t=1⟨w(t), τ t⟩. It is known that

the multiplicative weights rule employed here can be seen an entropic mirror descent up-
date [150]. Therefore, it is natural to ask whether an additive update/gradient descent
procedure would solve the problem as well. In Appendix B.4, we provide such an analy-
sis (Theorem B.4.1). More importantly, the resulting scheme is equivalent of the gradient
descent algorithm analyzed by [41]. Our analysis improves upon the iteration complexity
from their work (in the concrete settings of robust mean estimation, under bounded second
moment and sub-gaussian distributions).

3.4 Estimation under Corruptions

We now apply Algorithm 1 for the robust mean estimation problem. We focus on the
bounded second moment distributions, where Algorithm 1 can be invoked in a black-box
fashion. A slight variant of it can be used for the sub-gaussian setting, where we achieve a
more refined analysis; see Appendix B.2.

The problem is formally defined below.
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Definition 3.4.1 (robust mean estimation). Given a distribution D over Rd with bounded
covariance and a parameter 0 ≤ ε < 1/2, the adversary draws n i.i.d. samples D, inspects
the samples, then removes at most εn points and replaces them with arbitrary points. We
call the resulting dataset ε-corrupted (by an adaptive adversary).

The goal is to estimate the mean of D only given the ε-corrupted set of samples.

Using a meta-algorithm for approximating the spectral sample reweighing problem, we
will show the following. In particular, using Algorithm 1 matches the run-time and statistical
guarantee of the original Filter algorithm.

Theorem 3.4.1 (robust mean estimation via sample reweighing). Let D be a distribution
over Rd with mean µ and covariance Σ ⪯ σ2I and ε ≤ 1/10. Given an ε-corrupted set of

n = Ω(d log d/ε) samples, there is an algorithm that runs in time Õ(nd2) that with constant
probability outputs an estimate µ̂ such that ∥µ̂− µ∥ ≤ O(σ

√
ε).

Further, the algorithm is via a black-box application of Algorithm 1, which can be re-
placed by any constant approximation algorithm for the spectral sample reweighing problem
(Definition 3.3.1).

Information-theoretically, Theorem 3.4.1 is near optimal. It is known that the sample
complexity of d log d/ε is tight, only up to the log factor. The estimation error O(

√
ε) is

tight up to constant factor.
Our analysis requires a set of deterministic conditions to hold for the input, which follow

from Lemma A.18 of [58]. This is meant to obtain the desired spectral centrality condition
and to bound the final estimation error.

Lemma 3.4.1 (deterministic conditions [58]). Let S be an ε-corrupted set of Ω(d log d/ε)
samples from D with mean µ and covariance Σ ⪯ I. With high constant probability, S
contains a subset G of size at least (1− ε)n such that

∥µ− µG∥ ≤ O(
√
ε) (3.4.1)∥∥∥∥∥ 1

|G|
∑
i∈G

(xi − µG) (xi − µG)
⊤

∥∥∥∥∥
2

≤ O(1), (3.4.2)

where µG = 1
|G|
∑

i∈G xi.

We now prove the main result of this section—using the meta-algorithm to solve the
robust mean estimation problem. Observe that it suffices to prove the theorem with σ2 = 1.
Without loss of generality, we can first divide every input sample by σ, execute the algorithm
and then multiply the output by σ.

Proof of Theorem 3.4.1. First, we check that the centrality promise (†) is satisfied. This
would ensure that we are in the setting of the spectral sample reweighing problem so that
the meta-algorithm applies. Assume the conditions from Lemma 3.4.1. Then suppose we
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let wi = 1/|G| if xi ∈ G and wi = 0 otherwise, so we have that w ∈ Wn,ε, and let ν = µG

and λ = O(1). Observe that (3.4.2) is exactly the spectral centrality condition (†) . Then
we can apply Theorem 3.3.1 and obtain that the algorithm will find ν ′ ∈ Rd and w′ ∈ Wn,3ε

such that

M(w′) :=
n∑

i=1

w′
i (xi − ν ′) (xi − ν ′)

⊤ ⪯ O(1) · I

Furthermore, by definition of the algorithm, ν ′ is a weighted average of the points {xi}ni=1;
that is, ν ′ = ν(w′) =

∑n
i=1w

′
ixi. This allows us again to apply the spectral signature lemma.

In particular, Lemma B.1.2 implies

∥µG − ν ′∥ ≤ 1

1− 6ε

(√
6ελ+

√
3ε∥M(w′)∥

)
= O

(√
ε
)

since λ = O(1) and ∥M(w′)∥ = O(1). Finally, by triangle inequality and (3.4.1),

∥µ− ν ′∥ ≤ ∥µG − ν ′∥+ ∥µ− µG∥ ≤ O(
√
ε).

Therefore, the output ν ′ estimates the true mean up to an error of O(
√
ε), as desired.

Finally, the run-time guarantee follows directly from the statement of Theorem 3.3.1,
since we apply the meta-algorithm in a black-box fashion. This completes the proof.

Optimal breakdown point In Section B.5, we show that a variant of the filter algorithm
can be used to achieve the optimal breakdown point of 1/2. The result also appeared in a
concurrent work [160], with an argubly more sophisticated proof.

Other algorithms To improve the computational efficiency, applying the same argument
and using the matrix multiplicative weight algorithm (Theorem B.3.1), we can obtain a
near linear time algorithm, which matches the fastest known algorithm for robust mean
estimation [64, 40].

Corollary 3.4.1 (faster robust mean estimation [64]). Let D be a distribution over Rd with
mean µ and covariance Σ ⪯ σ2I and ε be a sufficiently small constant. Given an ε-corrupted
set of n = Ω(d log d/ε) samples, there is a matrix multiplicative update algorithm that runs

in time Õ(nd) and with constant probability computes an estimate of error O(σ
√
ε).

Since λ = O(1) in the robust mean estimation problem under bounded covariance
(Lemma 3.4.1), our analysis of the gradient descent algorithm (Theorem B.4.1) implies the
following.

Corollary 3.4.2 (robust mean estimation via gradient descent). Let D be a distribution over
Rd with mean µ and covariance Σ ⪯ σ2I and ε be a sufficiently small constant. Given an
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ε-corrupted set of n = Ω(d log d/ε) samples, there is a gradient-descent based algorithm that

computes an estimate of error O(σ
√
ε) with constant probability in Õ(nd2/ε2) iterations.2

A variant of the gradient descent-based algorithm can be used for robust mean estimation
in the sub-gaussian setting as well; see Appendix 8.

3.5 Equivalent Notions of Centrality

In this section, we prove a duality statement that connects the setting of heavy-tailed and
robust estimation. In particular, we will show that the following two (deterministic) no-
tions of a center ν for points {xi}ki=1 are essentially equivalent. We call them spectral and
combinatorial center. The former is the requirement that showed up first in the original
formulation of the spectral sample reweighing problem (Definition 3.3.1) and then in deal-
ing with adversarial corruptions. The latter will yield the right notion of high-dimensional
median for estimating the mean of heavy tailed data, now known as the Lugosi-Mendelson
estimator, due to [126].

In the following, let {xi}ki=1 be a set of k points in Rd.

Spectral center Recall that our meta-problem of spectral sample reweighing (Defini-
tion 3.3.1) requires the assumption:

min
w∈Wk,ε

∥∥∥∥∥
k∑

i=1

wi (xi − ν) (xi − ν)⊤

∥∥∥∥∥ ≤ λ. (3.5.1)

Intuitively, this says that the data are roughly clustered around ν and no bad point signifi-
cantly corrupts its shape. Note that by linearity, the objective can be rewritten as a minimax
one, and this leads to the following definition

Definition 3.5.1 ((ε, λ)-spectral center). A point ν ∈ Rd is a (ε, λ)-spectral center of {xi}ki=1

if

min
w∈Wk,ε

max
M⪰0,Tr(M)=1

k∑
i=1

wi

〈
(xi − ν)(xi − ν)⊤,M

〉
≤ λ. (spectral center)

In the robust mean estimation setting, the deterministic conditions (Lemma 3.4.1) imply
that the true mean is a (ε,O(1))-spectral center.

2The 1/ε dependence in the run-time can be removed by a simple bucketing trick due to [110]; also see
Lemma B.1 of [64].
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Combinatorial center On other hand, there is another natural way of saying that the
data are centered around ν, which proves to be more useful in the heavy-tailed setting. We
call it combinatorial centrality condition. It roughly says that when we project the data onto
any one-dimensional direction, a majority of them will be close to ν.

Definition 3.5.2 ((ε, λ)-combinatorial center). A point ν is a (ε, λ)-combinatorial center of
{xi}ki=1 if for all unit v ∈ Rd.

k∑
i=1

1

{
⟨xi − ν, v⟩ ≥

√
λ
}
≤ εk, (combinatorial center)

Lugosi and Mendelson [126] show that optimal confidence intervals for mean estimation
can be obtained in the heavy-tailed model by finding combinatorial centers. (We elaborate
in the next section.)

Duality It turns out that for constant ε these two conditions are equivalent (up to some
minor gaps in constants). To pave way for the proofs, a key observation, first made by [39],
is that the left-side of (spectral center) is an SDP objective. (This is because it is simply
minimizing the maximum eigenvalue of

∑
i wi(xi − ν)(xi − ν)⊤.) And strong duality allows

us to swap the min and max, so

min
w∈Wk,ε

max
M

k∑
i=1

wi

〈
(xi − ν)(xi − ν)⊤,M

〉
= max

M
min

w∈Wk,ε

k∑
i=1

wi

〈
(xi − ν)(xi − ν)⊤,M

〉
,

(3.5.2)

where the maximization is over the set of density matrices. Using this, we prove the following
two propositions, showing (by contrapositives) that the two notions of centrality are equiv-
alent. The constants in the statements are chosen only to serve the purpose of heavy-tailed
mean estimation, and they can be tweaked easily by the same arguments.

We consider the easy direction first.

Proposition 3.5.1 (spectral center =⇒ combinatorial center). If for some unit v ∈ Rd

k∑
i=1

1

{
|⟨xi − ν, v⟩| ≥ 10

√
λ
}
≥ 0.4k, (3.5.3)

then we have that for ε = 0.3,

min
w∈Wk,ε

max
M⪰0,Tr(M)=1

k∑
i=1

wi

〈
(xi − ν)(xi − ν)⊤,M

〉
≥ λ.
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Proof. The assumption (3.5.3) immediately implies that

k∑
i=1

1
{
⟨xi − ν, v⟩2 ≥ 100λ

}
≥ 0.4k

This means that there are (at least) 0.4k points in {xi}ki=1 such that

ti :=
〈
(xi − ν)(xi − ν)⊤,M

〉
≥ 100λ

, where M = vv⊤. We call them outliers.
Now by the SDP duality (3.5.2), we only need to show that for any feasible w the objective

is at least λ. Observe first that for a fixed M , the optimal w∗ for the max-min objective is
to put weight 1/(1− ε)k on the (1− ε)k points with the smallest ti. Recall we set ε = 0.3.
Hence, by pigeonhole principle, the support of w∗ must have an overlap of size 0.1k with the
outliers. It follows that

k∑
i=1

w∗
i

〈
(xi − ν)(xi − ν)⊤,M

〉
≥ 0.1k · 1

(1− 0.3)k
· 100λ ≥ 10λ.

Since w∗ is the optimal choice, this completes the proof.

The other direction is a bit more involved. The key idea is to round the maximizing PSD
matrix M into a single vector v, via gaussian sampling, and this part of the argument is due
to [110].

Proposition 3.5.2 (combinatorial center =⇒ spectral center). Let ε = 0.1. If for some
ν ∈ Rd

min
w∈Wk,ε

max
M⪰0,Tr(M)=1

k∑
i=1

wi

〈
(xi − ν)(xi − ν)⊤,M

〉
≥ λ

then we have for some unit v,

k∑
i=1

1

{
|⟨xi − ν, v⟩| ≥ 0.1

√
λ
}
≥ 0.01k.

Proof. Strong duality (3.5.2) implies that there exists PSD M of unit trace such that

k∑
i=1

wi

〈
(xi − ν)(xi − ν)⊤,M

〉
≥ λ

for all w ∈ Wk,ε. As we observed, the optimal w∗ for a fixed M would put weights on the
points with smallest value of ti =

〈
(xi − ν)(xi − ν)⊤,M

〉
. The fact that the objective is
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large implies that there must be more than εk = 0.1k points with ti ≥ λ. Let B be this set
of points such that ti ≥ λ.

It remains to demonstrate a vector v such that

k∑
i=1

1

{
|⟨xi − ν, v⟩| ≥ 0.1

√
λ
}
≥ 0.01k. (3.5.4)

The idea is to round the PSD matrix M to a single vector v that achieves this inequality.
The right rounding method is simply gaussian sampling. Namely, if we draw vM ∼ N (0,M),
then it can be shown that with constant probability v = vM/∥vM∥ satisfies the property
above.

For that, we apply the argument from [110]. First let gi = ⟨xi − ν, vM⟩ for each i ∈ [k].
Note that gi is a mean-zero Gaussian random variable with variance σ2

i = ti. A standard
anti-concentration calculation shows that for any i ∈ B, Pr(|gi| ≥ 0.5

√
λ) ≥ 1/2. Therefore,

if we define

Y =
k∑

i=1

1

{
|⟨xi − ν, v⟩| ≥ 0.5

√
λ
}
,

then by linearity of expectations we have EY ≥ 0.05k. It follows from the Payley-Zigmund
inequality that Pr(Y ≥ 0.01k) ≥ 0.0018. Moreover, by Borell-TIS inequality (Theorem 7.1
of [111]), we can bound that with probability at least 0.999,

∥vM∥ ≤ E ∥vM∥+ 4
√
∥M∥ ≤

√
Tr(M) + 4

√
Tr(M) ≤ 5,

since Tr(M) = 1. Combining these facts immediately proves (3.5.4).

3.6 Estimation under Heavy-Tails

We now come to the heavy-tailed mean estimation problem and show how to solve it using
the machinery developed in the last sections. The setting is very simple

Definition 3.6.1 (heavy-tailed mean estimation with optimal rates). Given n random vec-
tors {Xi}ni=1 drawn i.i.d. from a distribution D over Rd with mean µ and (finite) covariance
Σ and a desired confidence 2−O(n) ≤ δ < 1, compute an estimate µ̂ such that with probability
at least 1− δ,

∥µ̂− µ∥ ≲ rδ
def
=

√
Tr(Σ)

n
+

√
∥Σ∥ log(1/δ)

n
. (3.6.1)

We note that the error rate (3.6.1) is information-theoretically optimal, up to a constant.
The bound is known as sub-gaussian error, since when D is sub-gaussian, the empirical
average obtains the guarantee. Moreover, in general, the estimator needs to depend on the
parameter δ, and the requirement that δ ≥ 2−O(n) is necessary [32, 52]. In the following,
we will aim only at a computationally efficient, δ-dependent construction that attains the
optimal error rδ.
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Lugosi-Mendelson Estimator. In one dimension, the well-known median-of-means con-
struction, due to [134, 92, 9], provides such strong guarantee:

(i) Bucket the data into k = ⌈8 log(1/δ)⌉ disjoint groups and compute their means Zi.

(ii) Output the median µ̂ of {Z1, Z2, · · · , Zk}.

In high dimensions, however, the question is a lot more subtle, with the correct notion of
median being elusive. A long line of work culminated in the celebrated work of Lugosi and
Mendelson [126]. The estimator follows the median-of-means paradigm by first bucketing the
data into k groups and taking the means {Zi}ki=1. The key structural lemma of their work
is that the true mean is a (0.01, O (r2δ))-combinatorial center of the bucket means, where rδ
is the sub-gaussian error rate (3.6.1). Recall that it means that if we consider projecting the
bucket means to a one-dimensional direction, a majority of them are close to the true mean.

Lemma 3.6.1 (Lugosi-Mendelson structural lemma [126]). Consider the setting of heavy-
tailed mean estimation (Definition 3.6.1). Let {Zi}ki=1 be the k bucket means with k =
⌈800 log(1/δ)⌉. Then with probability at least 1− δ, for all unit v ∈ Rd,

|⟨Zi − µ, v⟩| ≤ 3000

(√
Tr(Σ)

n
+

√
∥Σ∥ log(1/δ)

n

)
, (Ev)

for 0.99k of the bucket means {Zi}ki=1.

This is exactly the combinatorial centrality condition (Definition 3.5.2) we introduced in
Section 3.5. To build more intuition, we should visualize it as a clustering property. That
is, under any one-dimensional projection, the bucket means are clustered around the true
mean, and the width of the cluster is precisely the optimal sub-gaussian error O(rδ).

This enables a natural estimator/algorithm—we can search for a point µ̂ that is a
(0.01, r2δ)-combinatorial center for {Zi}ki=1. Of course, such µ̂ exists, since Lugosi-Mendelson
(Lemma 3.6.1) showed that µ itself satisfies the condition (with probability at least 1 − δ).
Furthermore, one can check any valid (ε,O(r2δ))-combinatorial center (Definition 3.5.2) µ̂
with ε < 1/2 is indeed an estimator with sub-gaussian error rate O(rδ), by a simple “pigeon-
hole + triangle inequality” argument.

Lemma 3.6.2 (combinatorial center has sub-gaussian rate). Let {Zi}ki=1 be defined as
above and ε < 1/2. Suppose that the condition in the Lugosi-Mendelson structural lemma
(Lemma 3.6.1) holds. Then any (ε,O (r2δ))-combinatorial center µ̂ of {Zi}ki=1 attains the
sub-gaussian error (3.6.1) (up to constant).

Proof. Let v be the unit vector in the direction of µ − µ̂. Then since µ̂ is an (ε,O(r2δ))-
combinatorial center with ε < 1/2, we have |⟨Zi−µ̂, v⟩| ≤ rδ for most Zi. Also, |⟨Zi−µ, v⟩| ≤
O(rδ) for most {Zi}ki=1 by our assumption from Lugosi-Mendelson lemma. By the pigeonhole
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principle, there must be a Zj such that |⟨Zj − µ̂, v⟩| ≤ O(rδ) and |⟨Zj − µ, v⟩| ≤ O(rδ). By
triangle inequality,

∥µ̂− µ∥ = ⟨µ− µ̂, v⟩ ≤ |⟨Zi − µ, v⟩|+ |⟨Zi − µ̂, v⟩| ≤ O(rδ).

as desired, and this completes the proof.

However, the problem of efficiently finding a combinatorial center appears difficult. If
one sticks to its definition, it is required to ensure that for all unit vector v, the clustering
property (Ev) holds. It seems that even just certifying this condition would näıvely take
exponential time (say, by enumerating a 1/2-net of unit sphere). Yet, we can actually resort
to duality, to avoid the pain of designing a new algorithm from scratch. As we showed, a
combinatorial center is just a spectral center, which our meta-algorithm can find for us.

Theorem 3.6.1 (heavy-tailed mean estimation via spectral sample reweighing). Given
{Xi}ni=1 and δ, any constant-factor approximation algorithm for the spectral sample reweigh-
ing problem (Definition 3.3.1) can be used to compute an estimate µ̂ that obtains the sub-
gaussian error rate for heavy-tailed mean estimation (Definition 3.6.1), with probability at
least 1− δ.

Proof. Let {Zi}ki=1 be the bucket means with k = ⌈800 log(1/δ)⌉ and let λ = 3000rδ. We
assume that the true mean µ is a (0.01, λ2)-combinatorial center of {Zi}ki=1. Suppose that we
can obtain an α-factor approximation the spectral sample reweighing, with the input being
{Zi}ki=1.

• Promise: First let’s check the spectral centrality condition holds. Since, by assumption,
µ is a (0.01, λ2)-combinatorial center of {Zi}ki=1, we have that for all unit v

k∑
i=1

1 {|⟨xi − µ, v⟩| ≥ λ} ≤ 0.01k.

Thus, Proposition 3.5.2 (with ν = µ) implies that

min
w∈Wk,ε

max
M⪰0,Tr(M)=1

k∑
i=1

wi

〈
(xi − µ)(xi − µ)T ,M

〉
≤ 100λ2,

where ε = 0.1. This means that there exists w ∈ Wk,ε such that∥∥∥∥∥
n∑

i=1

wi (xi − µ) (xi − µ)T

∥∥∥∥∥ ≤ 100λ2.

• Output : Now the guarantee of an α-factor approximation for spectral sample reweigh-
ing (Definition 3.3.1) is that we have µ̂ ∈ Rd and w′ ∈ Wk,3ε such that∥∥∥∥∥

n∑
i=1

w′
i (xi − µ̂) (xi − µ̂)T

∥∥∥∥∥ ≤ 100αλ2.
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It immediately follows that

min
w∈Wk,3ε

max
M⪰0,Tr(M)=1

k∑
i=1

wi

〈
(xi − µ̂)(xi − µ̂)T ,M

〉
≤ 100αλ2.

Now we can apply Proposition 3.5.1. Since α is a constant by assumption, we obtain
that for all unit v,

k∑
i=1

1 {|⟨xi − µ̂, v⟩| ≥ C(α) · λ} ≤ 0.4k, (3.6.2)

for some constant C(α) = O(1) that depends on α. Therefore, we get that a majority
of the points cluster around µ̂, along any direction v, so it is a (0.4, O(λ))-combinatorial
center. It follows from Lemma 3.6.2 that ∥µ̂− µ∥ ≤ O(rδ), as λ = O(r2δ).

Finally, note that the only condition of the argument is that the true mean is a combinatorial
center, which occurs with probability at least 1− δ, by Lemma 3.6.1.

We remark that the exact constants we choose in the proof are immaterial, and no efforts
have been given in optimizing them.

The theorem implies that the filter algorithm (Algorithm 1) combined with a simple
pruning step from [112]) can be used for heavy-tailed mean estimation as well.

Corollary 3.6.1 (filter for heavy-tailed mean estimation). Given {Xi}ni=1 drawn i.i.d. from
a distribution with mean µ and covariance Σ and a failure probability 2−O(n) ≤ δ < 1, there is
an efficient algorithm that outputs µ̂ such that with probability at least 1−δ, ∥µ̂−µ∥ ≤ O(rδ).

Further, the algorithm is a black-box application of Algorithm 1 and runs in time O(k2d2+
nd).

Proof. Given the input, we first compute the bucket means {Zi}2ki=1, which takes O(nd) time.
Assume that the condition of the Lugosi-Mendelson structural lemma (Lemma 3.6.1) holds;
that is, µ is a (0.01, λ2)-combinatorial center of {Zi}ki=1, where λ = 3000rδ. We use the
filter algorithm (Algorithm 1) with the input being a pruned subset of {Zi}ki=1 and apply its
guarantees.

Here, we will not use the pruning step (Lemma 3.3.3), since it requires the knowledge of
λ. Instead, we first compute the coordinate-wise median-of-means µ̂0 of {Zi}2ki=k+1 and the
distances di = ∥Zi− µ̂0∥ for each i ∈ [k]. We then sort the points by di (in descending order)
and remove the top 0.01k points in {Zi}ki=1 with large di. It can be shown that the remaining
points has diameter at most O(

√
drδ); see Lemma E.1 of [112]. Let S the remaining points

in {Zi}ki=1.
For the run-time, we can apply the guarantee of the filter algorithm (Lemma 3.3.1), given

the input S and a failure probability δ/3. Since the squared diameter is ρ = O(dr2δ) and

λ = O(r2δ), this gives a run-time of Õ(k2d2), since k = O(log(1/δ)).
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We now have a constant-factor approximation for the spectral sample reweighing problem.
By Theorem 3.6.1, this gives an estimate with the sub-gaussian error (3.6.1). Finally, the
procedure’s success depends on the condition of Lugosi-Mendelson (Theorem 3.6.1), success
of the pruning procedure, and the guarantees of constant-approximation of spectral sample
reweighing (Theorem 3.3.1). The failure probability of each event can be bounded by δ/3.
Applying union bound completes the proof.

Other algorithms for heavy-tailed mean estimation This argument also enables us
to solve the heavy-tailed mean estimation problem using other approximation algorithms
for the spectral sample reweighing problem. Let λ = 3000rδ. Recall that the argument for
Theorem 3.6.1 shows that there is a (0.1, O(λ2))-spectral center (which is the true mean µ).
Moreover, the pruning step in the proof of Corollary 3.6.1 allows us to bound the squared
diameter of a large subset of {Zi}ki=1 by ρ = O(dλ2).

This implies that the gradient descent-based algorithm that we analyze in Appendix B.4
solves the heavy-tailed setting in O (kd2) iterations.

Corollary 3.6.2 (heavy-tailed mean estimation via gradient descent). Assume the setting of
Corollary 3.6.1. A black-box application of the gradient descent-based algorithm (Algorithm 9,
Appendix B.4) solves the heavy-tailed mean estimation problem with optimal error rate within

O(nd2) iterations and Õ(n2d3) time.

The quantum entropy scoring scheme (Appendix B.3), however, runs in Õ(log(ρ/λ))
number of iterations. Setting its failure probability to be δ/3, we obtain the following, which
matches the fastest-known algorithm for the problem [110, 112].

Corollary 3.6.3 (heavy-tailed mean estimation via quantum entropy scoring). Assume
the setting of Corollary 3.6.1. A black-box application of the matrix multiplicative update
algorithm (Algorithm 8, Appendix B.3) solves the heavy-tailed mean estimation problem with

optimal error rate, in Õ(1) iterations and Õ(k2d) total run-time.

3.7 Discussion

Estimating the mean of a distribution is arguably the most fundamental problem in statistics.
We showed that in robust and heavy-tailed settings, the problem can be approached by
techniques from regret minimization and online learning. We believe the ideas we present
here may be more broadly applicable to other problems in high-dimensional robust statistics,
such regression and covariance estimation.
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Chapter 4

Robust and Private Estimation of
Gaussian

In this chapter, we give computationally-efficient algorithms for privately estimating a Gaus-
sian distribution with optimal dependence on the dimension in the sample complexity.

In the pure DP setting, we give a polynomial-time algorithm that estimates an un-
known d-dimensional Gaussian distribution up to an arbitrary tiny total variation error
using Õ(d2 log κ) samples while tolerating a constant fraction of adversarial outliers. Here,
κ is the condition number of the target covariance matrix. The sample bound matches best
non-private estimators in the dependence on the dimension (up to a polylogarithmic factor).
Prior to this work, only identifiability results (yielding inefficient super-polynomial time al-
gorithms) were known for the problem. We prove a new lower bound on differentially private
covariance estimation to show that the dependence on the condition number κ in the above
sample bound is also tight.

4.1 Introduction

Learning a high-dimensional Gaussian distribution is arguably the most basic task in statis-
tical estimation. A long line of work has focused on finding algorithms for this fundamental
problem that satisfy additional constraints such as robustness to adversarial outliers [108,
61, 60, 53, 106] and differential privacy [103, 99, 97, 27, 121, 30, 2, 153, 105, 120, 14, 98]. An
overarching goal in this line of work is to investigate the cost of privacy—the overhead in
sample complexity and running time that one must incur over and above the setting without
the privacy constraints. Minimizing the cost of differential privacy—and ideally, achieving
the same asymptotic dependence on the underlying dimension in sample complexity—is a
challenging goal.

To appreciate this goal, note that differentially private algorithms must necessarily have
low sensitivity. That is, switching a single sample point in the input should lead to a small
change to the estimate output by the algorithm. Importantly, this is a worst-case guarantee:
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it must hold regardless of whether the input data satisfies the modeling assumption of being
independent Gaussian samples. Natural and simple estimators such as the empirical mean
and covariance of the input data have an unbounded sensitivity and result in no privacy
guarantees.

Without privacy constraints, standard concentration inequalities imply that the mean
of an unknown Gaussian distribution can be estimated up to an ℓ2 error (more stringently,
the “Mahalanobis” error) of ∼ d/n with n ≫ d samples. For covariance estimation, a
similar analysis yields an error rate of ∼ d2/n for n ≫ d2.1 The last few years have seen
remarkable progress in finding private estimators that come close to the above benchmarks.
A recent work [87] provides an optimal estimator in ℓ2 norm for the mean of a distribution
with covariance bounded in spectral norm while satisfying pure differential privacy—the
strongest guarantee investigated in this setting. On the other hand, in the less stringent
model of approximate differential privacy, an essentially optimal algorithm for estimating a
Gaussian distribution was recently found in [14].

This chapter The main contribution of this chapter is the first polynomial-time sample-
optimal algorithms for estimating a Gaussian distribution in pure approximate differential
privacy model. For pure differential privacy, the main challenge is the task of covariance
estimation for which no computationally efficient algorithm was known. We resolve this
challenge with dimension-dependence that asymptotically matches the optimal non-private
bounds above. Our algorithms incur a logarithmic dependence on κ, the condition number of
the unknown covariance. We improve prior lower bounds for the problem to show that such a
dependence is in fact necessary for any pure differentially private algorithm thus concluding
that our guarantees are asymptotically optimal.

For the algorithms in the pure differential privacy model, the main technique is a pre-
conditioning scheme for covariance estimation that iteratively constructs a rough estimate of
the large eigenvalues of the unknown covariance. Previously, such a subroutine was proposed
in [99] with the weaker guarantees of approximate differential privacy. Our subroutine relies
on the new sum-of-squares exponential mechanism introduced in the recent work of [87].

Our Results

We now describe our results in more detail. We start by formally defining differential privacy.

Definition 4.1.1 (Differential Privacy [67, 68]). For ε ≥ 0 and δ ∈ [0, 1], a (randomized)
algorithmM is (ε, δ)-differentially private if for all pairs of neighboring databases x, x′ that
differ in exactly one row, and for all output subsets S of the range ofM, the following holds:

P[M(x) ∈ S] ≤ eε · P[M(x′) ∈ S] + δ,

1Note that for obtaining vanishing total variation error guarantees, we need to estimate the covariance
of the unknown Gaussian in the relative Frobenius distance.
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Reference Sample Complexity Privacy Robustness

Näıve estimator d2

α2 +
κd2

αε
(ε, δ) Not robust

[99] d2

α2 +
d2

αε
+ d3/2 log1/2 κ

ε
(ε, δ) Not robust

[98] d2

α2 +
d2

αε
+ d5/2

ε
(ε, δ) Not robust

[14] and [153] d2

α2 +
d2

αε
(ε, δ) Not robust

[14] d3.5

α3ε
(ε, δ) η

[105] d8

α4ε8
(ε, δ) η

Our result (Theorem 4.1.1) d2 log κ
ε

+ d2

α2ε
(ε, 0)

√
η

Table 4.1: Computationally-efficient sample complexity upper bounds for DP covariance

estimators of N (0,Σ), with the utility guarantee
∥∥∥Σ̂− Σ

∥∥∥
Σ
≤ α. Robustness refers to

additional error when the sample is η-corrupted. Here, d is the dimension, κ is an a priori
bound such that I ⪯ Σ ⪯ κI. The bounds suppress polylogarithmic factors in d, 1

η
, 1
α
, and 1

δ
.

where the probability is over the coin flips of the algorithm M. We say that an algorithm
satisfies ε-pure DP if it satisfies (ε, δ)-DP with δ = 0.

Our main contribution is finding sample-optimal private and outlier-robust algorithms
for estimating a high-dimensional Gaussian distribution. In Table 4.1, we summarize the
sample complexity, privacy, and robustness guarantees of our algorithms in relation to prior
work.

Specifically, in the setting of pure DP, we prove:

Theorem 4.1.1 (Pure DP Gaussian estimation; see Theorem 4.4.3 and Theorem 4.4.5).
Fix α, ε, η > 0. Let I ⪯ Σ∗ ⪯ κI and ∥µ∗∥2 ≤ R. There is a polynomial-time ε-pure
DP algorithm that takes input an η-corrupted sample of size n from N (µ∗,Σ∗) and with
probability at least 0.99 over the draw of the sample and the randomness of the algorithm,
outputs estimates µ̂, Σ̂ such that TV (N (µ∗,Σ∗),N (µ̂, Σ̂)) ≤ α + O(

√
η) so long as n ≥

Õ (d2 log(κ)/ε+ d2/α2ε+ d logR/ε).

As discussed earlier, the case when Σ = I (i.e., mean estimation) was resolved in the

recent work of [87] with essentially optimal Õ(d) sample complexity. For high dimensional
covariance estimation all prior computationally efficient algorithms only satisfied an approx-
imate DP guarantee. We note that an identifiability argument was presented in [2, 30]. The
conceptual barrier here is that the exponential mechanism, a canonical mechanism for en-
suring pure DP, does not admit a straightforward computationally efficient implementation
for private estimation.
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Reference Sample Complexity Privacy

[99] d2

αε
(ε, 0)

[96] d2

αε
(ε, δ)

Our result (Theorem 4.1.2) d2 log(κ)
ε

+ d2

αε
(ε, 0)

Table 4.2: Sample complexity lower bounds for DP covariance estimators of N (0,Σ), with

the utility guarantee
∥∥∥Σ̂− Σ

∥∥∥
Σ
≤ α. Here, d is the dimension, κ is an a priori bound such

that I ⪯ Σ ⪯ κI. The bounds suppress polylogarithmic factors in d, 1
α
, and 1

δ
.

Our work provides the first computationally-efficient algorithm for covariance estimation
and achieves near optimal sample complexity as a function of the dimension. We note that
the dependence on η (the fraction of outliers) in our result above is likely suboptimal and may
be improvable to Õ(η). Our key idea is exploiting the pure DP mean estimation algorithm
of [87] to build a preconditioning scheme for covariances. Such a scheme was previously used
in [99] for covariance estimation with approximate DP.

Pure DP Lower Bound We complement our algorithmic result by proving a lower bound
on the sample complexity of pure DP covariance estimation that scales with log(κ), where κ
is the condition number of the unknown covariance. This matches our algorithmic guarantees
and improves on the Ω (d2/(αε)) sample lower bound for ε-pure DP covariance estimation
from prior work [99]. Our lower bound is based on a packing-type analysis building on [99,
30].

Theorem 4.1.2 (Pure DP lower bound for covariance estimation; see Theorem 4.5.1). Let
ε, α ∈ (0, 1), d ≥ 2. Any ε-DP algorithm that, given n i.i.d. samples X = {X1, . . . , Xn} from
N (0,Σ) for an unknown Σ ∈ Rd×d satisfying I ⪯ Σ ⪯ κI, outputs Σ̂ = Σ̂(X ) such that, with
probability 0.9,

TV
(
N (0,Σ),N

(
0, Σ̂

))
< O(α),

requires

n = Ω̃

(
d2 log(κ)

ε
+

d2

αε

)
.

Comparing this with our upper bound (Theorem 4.1.1) shows that our pure DP algorith-
mic result achieves nearly optimal sample complexity, only up to a 1/α factor in its second
term.
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Concurrent Work In a concurrent work, Hopkins, Kamath, Majid and Narayanan [90]
obtained near-optimal polynomial-time algorithms for learning a Gaussian subject to pure
and approximate DP and robustness constraints.

Additional Related Work

Private Estimation Assuming the data is drawn from a one-dimensional normal distri-
bution, Karwa and Vadhan [103] obtain the first (finite-sample) guarantees for confidence
interval estimation of the mean—whether or not the variance of the population is known.
Their bounds are tight up to logarithmic factors. In the high-dimensional cases, Kamath,
Li, Singhal, and Ullman [99] give the first (ε, δ)-DP algorithm for learning a Gaussian. Their
sample complexity has a logarithmic dependence on the condition number of the unknown
covariance. This result has since been improved and refined by multiple follow-up papers,
including [21, 27, 14, 98, 105], with a focus on removing the dependence on conditioning.
We summarize these upper bounds in Table 4.1. We stress that all of them study (ε, δ)-DP.
In fact, our work is the first sample- and computationally-efficient algorithm for learning a
multivariate Gaussian under the stronger ε-DP.

For pure DP, the most relevant work to us is Hopkins, Kamath and Majid [87], which
gives a computationally efficient pure DP procedure for mean estimation of bounded second
moment distributions. Our pure DP algorithm builds upon their main result. In addition,
Bun et al. [30] gives a general (computationally inefficient) cover-based approach to pure
DP estimation.

Robust Statistics and Connections with Privacy We refer the reader to [53] for a
survey. For robustly learning the mean of a Gaussian distribution subject to privacy, Liu,
Kong, Kakade, and Oh provide polynomial-time algorithms with sub-optimal sample com-
plexity [121]. However, with optimal sample complexity, they only provide an exponential-
time algorithm. For robustly learning a general Gaussian distribution subject to DP, Kothari,
Manurangsi, and Velingker provide a polynomial-time approximate DP algorithm with sam-
ple complexity Õ(d8) [105]. On the other hand, Ashtiani and Liaw obtain polynomial-time
private and robust algorithms with sample complexity Õ(d3.5) [14]. Liu, Kong, and Oh [120]
rely on the observation that one-dimensional robust statistical estimators have low sensitivity
on resilient datasets. Resilience, defined by Steinhardt, Charikar, and Valiant [149], mea-
sures how stable the empirical mean is to deletion of a constant fraction of a dataset. This
definition is, intuitively, similar in spirit, but not equivalent to DP guarantees. Using this
framework and the exponential mechanism, Liu, Kong, and Oh [120] design computationally
inefficient algorithms for DP statistical estimation.

More relevant to us, Kothari, Manurangsi and Velingker [105] showed how to transform
robust algorithms into private ones. Finally, a very recent work by Georgiev and Hopkins
[76] provides a generic meta-theorem for obtaining robustness from DP.
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Lower Bounds for DP In the pure DP case, geometric packing-style arguments are
often used to prove lower bounds [131, 19, 80]. Our pure DP lower bound arguments build
upon previous works [99, 30]. For the approximate DP case, the lower bounds are based
on fingerprinting codes, introduced by Boneh and Shaw [25]. The existence of such codes
imply lower bounds for approximate DP [29]. The technique can be applied to prove sample
complexity lower bounds for Gaussian estimation under approximate DP [96].

4.2 Techniques

We will focus on private covariance estimation where we are given samples from N (0,Σ)
with I ⪯ Σ ⪯ κI. The sensitivity of the naive empirical covariance is clearly unbounded but
can be fixed (see [99]) by first removing input points with ∥yi∥22 > κd (“clamping”). This
yields a private covariance estimator with sample complexity growing linearly in κ.

To improve the dependence on κ, [99] proposes a natural iterative private conditioning
scheme:

(i) By applying Gaussian mechanism to clamped samples, obtain a rough estimate of the
covariance with quadratic forms along large eigenvectors preserved multiplicatively and
a subset of these can also be identified from the estimate.

(ii) Via a linear transformation, shrink the covariance in the above large directions and
repeat.

This scheme uses the Gaussian mechanism so only satisfies approximate (and concentrated)
DP guarantees. We obtain a pure DP version of this scheme by replacing the first step with
the pure DPmean estimation algorithm of [87] (on bounded second moment distributions) —
let {xi}ni=1 be the i.i.d. samples from N (0,Σ). If we form the samples Y =

{
x⊗2
i /κ : i ∈ [n]

}
for n ≫ d2/ε, then [87] guarantees that we can get Σ̂ such that

∥∥∥Σ̂− Σ
∥∥∥
F
≤ 0.01κ. This

estimate already allows an approximation of quadratic forms up to an additive 0.01κ. This
means that the large quadratic forms (i.e., ≥ κ/2) are well preserved multiplicatively. This
allows building an iterative preconditioning scheme as above that allows reducing to the case
when the unknown covariance as O(1) condition number.

At that point, we can reduce to mean estimation rather naturally: when Σ has largest
eigenvalue κ, for a Gaussian random variable x ∼ N (0,Σ) x⊗2 has covariance with spectral
norm at most 2κ2. Thus, we can apply the pure DP algorithm of [87] we can obtain an
estimate with a small relative Frobenius error. This algorithm also inherits handling outliers
from [87].
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4.3 Preliminaries

Notation Throughout this chapter, we will use X to denote an i.i.d. (uncorrupted) sample
of n points in Rd and Y to denote its (1 − α)-corruption. For any finite set S of points,
we will use Es∼S f(s) to denote the empirical average of f(s) as s varies uniformly over
S. We denote the d-by-d identity matrix by Id. Let Sd

+ denote the set of d-by-d positive
semidefinite (PSD) matrices. For a matrix A, we use ∥A∥, ∥A∥2 to denote the spectral norm
of A and ∥A∥F denotes its Frobenius norm. For PSD matrices A,B, we write A ⪯ B if
B − A is PSD. For a PSD matrix Σ and vector x, define ∥x∥Σ =

∥∥Σ−1/2x
∥∥
2
. For a matrix

X, define ∥X∥Σ =
∥∥Σ−1/2XΣ−1/2

∥∥
F
. For M ∈ Rm×n and N ∈ Rm′×n′

, we define M ⊗ N
to be the standard mm′ × nn′ matrix given by the Kronecker product of M and N . Let

∆d =
{
p ∈ Rd

+,
∑d

i=1 pi = 1
}
denote the probability simplex in Rd. Let 1n denote the all-one

vector of n dimensions.

Differential Privacy

Theorem 4.3.1 (Basic Composition [67]). For every ε, δ ≥ 0 and k ∈ N, the class of
(ε, δ)-DP mechanisms is (kε, kδ)-DP under k-fold adaptive compositions.

Theorem 4.3.2 (A variant of Parallel Composition [130]). LetM : O×Y → O be an ε-DP
mechanism that takes as input some parameters w ∈ O and a dataset Y ∈ Y and outputs
M(w, Y ) ∈ O. For any k ∈ N, let Mk : O × Yk → Ok+1 be a mechanism that takes as
input parameters w0 ∈ O and a dataset Y = (Y1, . . . , Yk) ∈ Yk partitioned into k disjoint
components where k does not depend on Y .

Given w0 ∈ O, the mechanism Mk (adaptively) computes wi = M(wi−1, Yi) for each
i ∈ [k], and outputs (w0, w1, . . . , wk). ThenMk satisfies ε-DP.

Proof. Fix any sequence w = (w0, w1, . . . , wk) ∈ Ok+1 and let Y = (Y1, . . . , Yk) and Y ′ =

(Y ′
1 , . . . , Y

′
k) be neighboring datasets in Yk. We need to show that the ratio Pr[Mk(w0,Y )=w]

Pr[Mk(w0,Y ′)=w]

lies between e−ε and eε.
Since k does not depend on any dataset and Y is partitioned into disjoint subsets, there

must exist at most one partition that is neighboring. To this end and without loss of
generality, let j ∈ [k] be an index such that Yj, Y

′
j ∈ Y are neighboring datasets and Yi = Y ′

i

for all i ̸= j. Therefore, by independence,

Pr[Mk(w0, Y ) = w]

Pr[Mk(w0, Y ′) = w]
=

k∏
i=1

Pr[M(wi−1, Yi) = wi]

Pr[M(wi−1, Y ′
i ) = wi]

.

Thus, in the rightmost product above, only the jth of the k factors may differ from 1. Since
M is ε-DP, this jth factor lies between e−ε and eε. Thus,Mk is also ε-DP.

One of the most generic mechanisms used to satisfy pure differential privacy is the Ex-
ponential Mechanism:
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Theorem 4.3.3 (Exponential Mechanism [131]). Let X ∼ X ′ ∈ Ok denote two neighboring
datasets. Consider any arbitrary utility function u : Ok × R → R with global sensitivity
∆u = maxX∼X ′,r |u(X , r)−u(X ′, r)|. For any dataset X , the exponential mechanism outputs

r ∈ R with probability ∝ exp
(

ε·u(X ,r)
2∆u

)
.

Furthermore, the exponential mechanism satisfies ε-DP.

In general, the exponential mechanism is not computationally efficient to implement.
We cite a recent result on pure DP mean estimation (on bounded second moment distribu-
tions), due to [87], that presents computationally efficient implementations of the exponential
mechanism via a Sum-of-Squares approach. Their main procedure is outlier-robust with a
corruption level of η, at the cost of increasing the estimation error by an additive O(

√
η).

Theorem 4.3.4 (Pure DP mean estimation, Theorem 1.2 of [87]). For every n, d ∈ N and
R,α, ε, β > 0 there is a polynomial-time ε-DP algorithm PureDPMean such that for every
distribution D on Rd such that ∥EX∼D X∥2 ≤ R and CovX∼D(X) ⪯ Id, given X1, . . . , Xn ∼
D, with probability at least 1− β the algorithm outputs µ̂ such that ∥µ̂− EX∼D X∥2 ≤ α so
long as

n ≥ Õ

(
d+ log(1/β)

α2ε
+

d log(R) + min(d, log(R)) · log(1/β)
ε

)
.

Furthermore, if an η-fraction of the samples are adversarially corrupted, the algorithm main-
tains the same guarantee, at the cost now that ∥µ̂− EX∼D X∥ ≤ α +O(

√
η).

Basic Tools from Probability Theory

Definition 4.3.1 (Total Variation Distance). For any two distributions P,Q over Rd, the
total variation distance TV is defined as

TV(P,Q) = sup
S⊆Rd

|P (S)−Q(S)|.

Moreover, it can be verified that

TV(P,Q) =
1

2

∫
Rd

|p(x)− q(x)|dx.

The following lemma shows how to convert parameter estimation to distribution estima-
tion (in total variation distance), for the multidimensional Gaussian distribution.

Lemma 4.3.1 (Parameter closeness implies distribution closeness; see Lemma 2.9 of [99]).

Let α ≥ 0, µ, µ̂ ∈ Rd and Σ, Σ̂ ∈ Rd×d be PSD. Suppose that∥∥Σ−1/2(µ− µ̂)
∥∥
2
≤ α and

∥∥∥Σ−1/2Σ̂Σ−1/2 − I
∥∥∥
F
≤ α.

Then TV
(
N (µ,Σ),N

(
µ̂, Σ̂

))
≤ O(α).
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The fact below follows from Theorem 4.12 of [60].

Fact 4.3.1. Let X ∼ N (0,Σ) and Y = XXT . Then Cov(Y ) ⪯ 3Σ⊗ Σ.

4.4 Pure DP Covariance Estimation

In this section, we give an efficient algorithm for Gaussian covariance estimation under pure
differential privacy.

High-level overview First, we iteratively use the mean estimation algorithm of [87] ap-
plied to the 2nd-tensor powers precondition the unknown covariance matrix to reduce the
condition number of the unknown Σ by a constant factor and thus after O(log κ) steps as-
sume WLOG that we have a well-conditioned covariance. We can now appeal to pure DP
mean estimation algorithm applied to the 2nd-tensor powers of the input points to obtain
the desired estimate of the covariance. Our estimator works even under η-fraction outliers
(since the mean estimation procedure of [87] does) and obtains an additional TV error of
O(
√
η).

Weak Private Preconditioning

Given the samples, our goal is to output a preconditioning matrix A such that I ⪯ AΣA ⪯
0.99κI, where κ is the condition number of the known covariance Σ — improving the condi-
tion number of AΣA improves over that of Σ by a constant factor. This guarantee is similar
to what appears in the previous literature on private covariance estimation and subspace
recovery [99, 144, 98]. However, the algorithms from prior work crucially rely upon the
Gaussian mechanism, which only ensure approximate (or concentrated) DP.

In this section, we describe and analyze a weak pure DP algorithm for preconditioning the
covariance. The procedure reduces the condition number of the covariance (multiplicatively)
by a constant factor. Towards this goal, a simple observation is that the algorithm for pure
DP mean estimation from [87], applied näıvely, can be used for covariance estimation with
an absolute Frobenius norm error guarantee.

Theorem 4.4.1 (Pure DP covariance estimation in absolute Frobenius norm). Let α > 0
be an error parameter, ε > 0 be a privacy parameter and d ∈ N. There is a polynomial-time
ε-DP algorithm PureDPMatrixMean that, given ε, α and

n ≥ Õ

(
d2 + log(1/β)

α2ε

)
i.i.d. samples X = {X1, X2, . . . , Xn} from N (0,Σ) for an unknown Σ ∈ Rd×d satisfying

Σ ⪯ κI, outputs Σ̂ = Σ̂(X ) satisfying ∥∥∥Σ̂− Σ
∥∥∥
F
≤ ακ
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1. Input: Samples X = {X1, . . . , Xn} ⊂ Rd, condition number κ ≥ 1,
accuracy parameter α > 0, failure probability β > 0, privacy parameter
ε > 0.

2. Form the set of samples Y =
{
Yi =

Xi⊗Xi√
3κ

: i ∈ [n]
}
.

3. Run the algorithm PureDPMean in Theorem 4.3.4 (the main result of [87])
on input Y with R =

√
d/3 and α/

√
3, β, ε > 0 to obtain an estimate Σ̃.

4. Output: Covariance matrix estimate Σ̂ =
√
3κΣ̃.

Figure 4.1: PureDPMatrixMean (based on PureDPMean in Theorem 4.3.4)

with probability at least 1− β.

Proof. Observe that

∥EYi∥F ≤
1√
3κ
∥Σ∥F ≤

√
d

3
= R

by the definition of Yi, and

Cov(Yi) ⪯
1

κ2
Σ⊗ Σ ⪯ I

by Fact 4.3.1. By the choice of n and the error guarantee of PureDPMean, we have that

the matrix Σ̂ output by Algorithm 4.1 (PureDPMatrixMean) satisfies
∥∥∥Σ̂− Σ

∥∥∥
F
≤ ακ with

probability at least 1−β. Finally, the algorithm runs in polynomial time, since PureDPMean
is in polynomial time and it takes linear time to form and rescale the samples.

We leverage the above observation to design a weak preconditioning algorithm (Algorithm
4.2) that reduces the condition number of Σ by a constant factor. Algorithm 4.2 first runs
Algorithm 4.1 with an error parameter α = 0.01. Then from the error guarantee of Theorem
4.4.1, we can privately estimate all eigenvalues of Σ up to an additive factor of 0.01κ. Finally,
we run a partial projection step, a technique from [99]. Informally speaking, the algorithm
partially projects out the eigenvectors associated with large eigenvalues. Intuitively, this
shrinks the directions of large variance more so than those of small variance, and thus
reduces conditioning number.

The algorithm is formally described by Algorithm 4.2 and its guarantees given below.

Lemma 4.4.1 (Private preconditioning, one round). Let ε > 0 be a privacy parameter,
d ∈ N, κ ≥ 20, and β > 0 be a failure probability. There is a polynomial-time ε-DP
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1. Input: Samples X = {X1, . . . , Xn} ⊂ Rd, condition number κ ≥ 1,
accuracy parameter α > 0, failure probability β > 0, privacy parameter
ε > 0.

2. Run Algorithm 4.1 PureDPMatrixMean on input X and with parameters
(α = 0.01, β, ε, κ) to obtain an estimate Σ̂ of the covariance matrix.

3. Let V be the span of all eigenvectors of Σ̂ attaining eigenvalue at least
κ/2, Π be the projector onto V and Π⊥ be the projector onto the orthog-
onal complement of V .

4. Output: Weak preconditioner A = 1.19 · (0.9Π + Π⊥).

Figure 4.2: One round, weak private preconditioning algorithm

algorithm that, given ε, β and

n ≥ Õ

(
d2 + log(1/β)

ε

)
i.i.d. samples X = {X1, X2, . . . , Xn} from N (0,Σ) for an unknown Σ ∈ Rd×d satisfying
I ⪯ Σ ⪯ κI, outputs A ∈ Rd×d such that

I ⪯ AΣAT ⪯ 0.99κI

with probability at least 1− β.

Proof. We will show that Algorithm 4.2 satisfies the claims. First, note that it is ε-DP
because the algorithm, based on PureDPMean, in Theorem 4.4.1 is ε-DP and Algorithm 4.2
post-preprocesses its output. By our distributional assumptions, with probability 1 − β it
holds that Σ̂, computed in the second step of Algorithm 4.2, satisfies∥∥∥Σ̂− Σ

∥∥∥
F
≤ 0.01κ. (4.4.1)

This implies that, for any unit vectors u, v it holds that
∣∣∣uT Σ̂v − uTΣv

∣∣∣ ≤ 0.01κ. Let V be

the subspace spanned by all eigenvectors of Σ̂ with corresponding eigenvalue at least κ/2,
Π be the projector onto V and Π⊥ be the projector onto V ⊥, the orthogonal complement
of V . We will now show that the matrix A = γΠ + Π⊥ satisfies 0.85I ⪯ AΣA ⪯ 0.83κI for
γ = 0.9. Then rescaling A by 1.19 ensures that the conclusion of the lemma holds.
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For the upper bound, we have that

∥AΣA∥2 ≤
∥∥∥AΣ̂A∥∥∥

2
+
∥∥∥A(Σ− Σ̂

)
A
∥∥∥
2
≤
∥∥∥AΣ̂A∥∥∥

2
+
∥∥∥Σ− Σ̂

∥∥∥
2
∥A∥22

≤ max
(
κ/2, γ2 ·

∥∥∥Σ̂∥∥∥
2

)
+
∥∥∥Σ− Σ̂

∥∥∥
2
∥A∥22

≤ max
(
κ/2, γ2 · 1.01κ

)
+ 0.01κ

≤
(
1.01γ2 + 0.01

)
κ ≤ 0.83κ,

where the first line involves an application of the triangle inequality, the second follows since
the spectral norm is sub-multiplicative, the third is by the choice of A, the fourth line by the
error guarantee of Σ̂ (Equation 4.4.1) and ∥A∥2 ≤ 1, and the last inequality uses γ = 0.9.

For the lower bound, consider any unit vector u ∈ Rd. We will lower bound uTAΣAu in
two different ways and maximize over the two. First, because Σ ⪰ I, we have that

uTAΣAu ≥ uTA2u = γ2 ∥Πu∥22 + ∥Π⊥u∥22 ≥ ∥Π⊥u∥22 .

For the second lower bound, we have

uTAΣAu ≥ γ2uTΠΣΠu+ γuTΠ⊥ΣΠu+ γuTΠΣΠ⊥u.

Since Πu ∈ V , the first term is lower bounded by .49γ2κ ∥Πu∥22. For the second (and similarly
for the third) term, we have that∣∣γuTΠ⊥ΣΠu

∣∣ ≤ 0.01γκ ∥Πu∥2 ∥Π⊥u∥2 ≤ 0.01γκ ∥Πu∥2 .

Aggregating these bounds, we have that for any unit vector u ∈ Rd, it holds that

uTAΣAu ≥ max
(
∥Π⊥u∥22 ,

(
0.49γ2 ∥Πu∥22 − 0.02γ ∥Πu∥2

)
κ
)
.

Using the facts that κ ≥ 20 and ∥Πu∥22 + ∥Π⊥u∥22 = 1, it is straightforward to verify that
this lower bound is always at least 0.85. This completes the proof.

Recursive Private Preconditioning

Given the weak conditioning algorithm, the natural next step is to recurse. Applying the
weak preconditioner for O(log κ) times suffices to put the covariance nearly into identity.

Specifically, we show that Algorithm 4.3 satisfies the following guarantees.

Theorem 4.4.2 (Private preconditioning, recursive). Let ε > 0 be a privacy parameter and
d ∈ N. There is a polynomial-time ε-DP algorithm that, given

n ≥ Õ

(
d2 log(κ)

ε

)
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1. Input: Samples X = {X1, X2, . . . , Xn} ⊂ Rd, condition number κ ≥ 1,
privacy parameter ε > 0.

2. Set L = O(log κ) and partition X = X1 ⊔ · · · ⊔ XL into L subsets of size
n/L each.

3. Set A0 = Id and κ1 = κ.

4. For each j ∈ [L]:

a) Set A<j =
∏j−1

k=0Ak.

b) Run Algorithm 4.2 on samples {A<jX : X ∈ Xj} with parameters
(ε, β = 1/1000L, κj) to obtain a matrix Aj ∈ Rd×d.

c) Set κj+1 = 0.99κj.

5. Let A =
∏L

i=j Ai

6. Output: the preconditioning matrix A.

Figure 4.3: Recursive private preconditioning algorithm

i.i.d. samples X = {X1, . . . , Xn} from N (0,Σ) for an unknown Σ ∈ Rd×d satisfying I ⪯ Σ ⪯
κI, outputs a matrix A ∈ Rd×d such that

I ⪯ AΣA ⪯ 20I

with probability at least 0.99.

Proof. We will show that Algorithm 4.3 satisfies the claims. It follows from parallel com-
position (Theorem 4.3.2) and the privacy of the weak preconditioner (Lemma 4.4.1) that
the algorithm is ε-DP. Assume without loss of generality that κ ≥ 20. By the choice of
L = O(log(κ)) and β = 1/1000L and an application of union bound, with probability as
least 0.999, all L invocations of Algorithm 4.2, in step 4(b), succeed. We now condition on
this success event.

Let Σ1 = Σ and Σj = A<jΣjA<j for every j ≤ L. By the guarantee of Algorithm 4.2, in
the j-th iteration we get a preconditioning matrix Aj such that

I ⪯ AjΣjAj ⪯ 0.99κjI. (4.4.2)

By induction on j and the choice of L, we have that A satisfies I ⪯ AΣA ⪯ 20I.
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Putting it Together

We can now put everything together and prove one of our primary results, the main statement
of Theorem 4.1.1. For convenience, we restate it below as Theorem 4.4.3.

1. Input: Samples X = {X1, . . . , Xn} ⊂ Rd, condition number κ ≥ 1,
privacy parameter ε > 0.

2. Compute the preconditioning matrix A ∈ Rd×d using {X1, . . . , Xn/2} as
input to Algorithm 4.3 and privacy parameter ε/2.

3. Run Algorithm 4.1 PureDPMatrixMean on samples {AXn/2+1, . . . , AXn}
with privacy parameter ε/2 and error parameter α/20 to obtain a covari-
ance matrix Σ1 ∈ Rd×d.

4. Output: Covariance estimate Σ̂ = A−1Σ1A
−1.

Figure 4.4: Private covariance estimation algorithm

Theorem 4.4.3 (Pure DP covariance estimation). Let α > 0 be an error parameter, ε > 0
be a privacy parameter, and d ∈ N. There is a polynomial-time ε-DP algorithm that, given
ε and

n ≥ Õ

(
d2 log(κ)

ε
+

d2

α2ε
+

d log(R)

ε

)
i.i.d. samples X = {X1, . . . , Xn} from N (0,Σ) for an unknown Σ ∈ Rd×d satisfying I ⪯ Σ ⪯
κI, outputs Σ̂ = Σ̂(X ) satisfying ∥∥∥Σ−1/2Σ̂Σ−1/2 − I

∥∥∥
F
≤ α

with probability at least 0.99.

Proof. We will show that Algorithm 4.4 satisfies the claims. First, note that the algo-
rithm is ε-DP by applying basic composition (Theorem 4.3.1) to the privacy guarantees of
Theorem 4.4.2 and Theorem 4.4.1. Moreover, the algorithm is in polynomial time, since
Algorithms 4.1 and 4.3 both run in polynomial time.

It now suffices to prove the utility guarantees. Let X consist of n i.i.d. samples from
N (0,Σ), for an unknown Σ satisfying I ⪯ Σ ⪯ κI. By Theorem 4.4.2, if

n ≥ Õ

(
d2 log(κ)

ε

)
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the preconditioner A computed in step 2 of Algorithm 4.4 satisfies I ⪯ AΣA ⪯ 20I with prob-
ability 0.99. Conditioned on this event, the samples {AXn/2+1, . . . , AXn} are i.i.d. according
to N (0, AΣA). Since AΣA ⪯ 20I and n ≥ Õ

(
d2

α2ε

)
, Algorithm 4.1 will return a covariance

matrix Σ1 satisfying
∥Σ1 − AΣA∥F ≤ α,

with probability at least 0.99. We translate this into a relative Frobenius distance guarantee
as follows. Notice that

α ≥ ∥Σ1 − AΣA∥F =
∥∥AΣ1/2

(
Σ−1/2A−1Σ1A

−1Σ−1/2 − I
)
Σ1/2A

∥∥
F

≥ λmin (AΣA)
∥∥Σ−1/2A−1Σ1A

−1Σ−1/2 − I
∥∥
F
,

where the last step uses the sub-multiplicativity of the Frobenius norm. By definition of the
algorithm, the final estimate of Σ is Σ̂ = A−1Σ1A

−1. Plugging this into the inequality above,
we have

α ≥ ∥Σ1 − AΣA∥F ≥ λmin (AΣA)
∥∥∥Σ−1/2Σ̂Σ−1/2 − I

∥∥∥
F
. (4.4.3)

Observe that λmin (AΣA) ≥ 1, since I ⪯ AΣA. Applying this fact and rearranging the
inequality 4.4.3, we get that ∥∥∥Σ−1/2Σ̂Σ−1/2 − I

∥∥∥
F
≤ α, (4.4.4)

completing the proof.

Application: General Pure DP Gaussian Estimation

We now show how to estimate a high-dimensional Gaussian with unknown mean and co-
variance in statistical distance, under pure DP. This is by combining our result on private
covaraince estimation and the prior work on mean estimation [87]. The argument is stan-
dard: we simply estimate the mean and covariance separately and apply Lemma 4.3.1 that
converts closeness in parameters to closeness in distribution.

Pure DP mean estimation The first step of the algorithm is to privately estimate
the mean. The idea is simple and similar to [99]. If Σ were known, then we can apply
Σ−1/2 to the samples and run the mean estimation algorithm (PureDPMean) of [87] on input{
Σ−1/2Xi

}n
i=1

. For Xi ∼ N (µ,Σ), we have Σ−1/2Xi ∼ N
(
Σ−1/2µ, I

)
. Thus, the output µ̂

of PureDPMean satisfies that
∥∥Σ−1/2(µ− µ̂)

∥∥
2
≤ α, which is what we need for distribution

estimation (Lemma 4.3.1).
In the setting when Σ is unknown, we apply our our preconditioning algorithm to privately

learn a matrix A that is spectrally close to Σ−1/2. This effectively sets the samples to have
near identity covariance. We show it suffices for our purpose.

Specifically, our private mean estimation procedure is described by Algorithm 4.5 and its
guarantees given below.
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1. Input: Samples X = {X1, X2, . . . , X3n} ⊂ Rd, privacy parameter ε > 0.

2. For each i = 1, 2, . . . , n, let Yi =
1√
2
(X2i −X2i−1).

3. Compute the preconditioning matrix A ∈ Rd×d using {Y1, . . . , Yn} as
input to Algorithm 4.3 and privacy parameter ε/2.

4. Run the algorithm PureDPMean in Theorem 4.3.4 [87] on samples{
AX2n+1/

√
20, . . . , AX3n/

√
20
}

with privacy parameter ε/2, error pa-

rameter α/
√
20, and failure rate β = 0.01 to obtain a mean estimate

µ̃ ∈ Rd.

5. Output: Mean estimate µ̂ =
√
20A−1µ̃.

Figure 4.5: Private mean estimation algorithm

Lemma 4.4.2 (Pure DP Gaussian mean estimation). Let α > 0 be an error parameter,
ε > 0 be a privacy parameter, R ∈ R and d ∈ N. There is a polynomial-time ε-DP algorithm
that, given ε and

n ≥ Õ

(
d2 log(κ)

ε
+

d

α2ε
+

d log(R)

ε

)
i.i.d. samples X = {X1, . . . , Xn} from N (µ,Σ) for an unknown µ satisfying ∥µ∥2 ≤ R and
an unknown Σ ∈ Rd×d satisfying I ⪯ Σ ⪯ κI, outputs µ̂ satisfying∥∥Σ−1/2(µ− µ̂)

∥∥
2
≤ α

with probability at least 0.9.

Proof. The privacy follows from basic composition of the privacy property of Algorithm 4.3
and PureDPMean. We focus on the utility analysis proving that

∥∥Σ−1/2(µ− µ̂)
∥∥
2
≤ α.

Since input samples {X1, X2, . . . , X2n} are i.i.d. from N (µ,Σ), the random vectors Yi are
i.i.d. according to N (0,Σ). By Theorem 4.4.2, the choice of n and our assumption on Σ, step
2 of Algorithm 4.5 outputs a preconditioning matrix A ∈ Rd×d such that

I ⪯ AΣA ⪯ 20I (4.4.5)

with probability at least 0.99. Since I ⪯ Σ and AΣA ⪯ 20I, we have ∥A∥2 ≤
√
20. Since

{X2n+1, . . . , X3n} are i.i.d. from N (µ,Σ), then in step 3, {AX2n+1/
√
20, . . . , AX3n/

√
20}

are i.i.d. according to N (Aµ/
√
20, AΣA/20). Recall that the guarantee from A ensures

AΣA/20 ⪯ I. Moreover, ∥Aµ/
√
20∥2 ≤ ∥A∥2∥µ∥2/

√
20 ≤ R, since ∥A∥2 ≤

√
20.

Therefore, conditioned on these events, Theorem 4.3.4 implies that the mean estimate µ̃
in step 3 satisfies that ∥Aµ/

√
20−µ̃∥2 ≤ α/

√
20, and hence ∥A(µ−µ̂)∥2 ≤ α, with probability
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at least 0.99. Now since I ⪯ AΣA, we have ∥Σ−1/2A−1∥2 ≤ 1. Hence,
∥∥Σ−1/2(µ− µ̂)

∥∥
2
≤

∥Σ−1/2A−1∥2 · ∥A(µ− µ̂)∥2 ≤ α, with probability at least 0.99. The proof follows by applying
a union bound over the failure probability of step 2 and 3 of Algorithm 4.5.

Putting it Together We now put together Lemma 4.4.2 on mean estimation and Theorem
4.4.3 on covariance estimation to show:

Theorem 4.4.4 (Pure DP Gaussian estimation). Let α > 0 be an error parameter, ε > 0
be a privacy parameter, R ∈ R and d ∈ N. There is a polynomial-time ε-DP algorithm that,
given ε and

n ≥ Õ

(
d2 log(κ)

ε
+

d2

α2ε
+

d log(R)

ε

)
i.i.d. samples X = {X1, . . . , Xn} from N (µ,Σ) for an unknown µ satisfying ∥µ∥2 ≤ R and

an unknown Σ ∈ Rd×d satisfying I ⪯ Σ ⪯ κI, outputs µ̂, Σ̂ such that

TV
(
N (µ,Σ),N

(
µ̂, Σ̂

))
≤ O(α) (4.4.6)

with probability at least 0.8.

Proof. For simplicity, assume that n is even. We use n/2 samples as input to the private mean
estimation algorithm (Algorithm 4.5) and another n/2 samples for covariance estimation
(Algorithm 4.4), both with a privacy parameter ε/2. Privacy follows from basic composition
(Theorem 4.3.1). For utility, by our choice of n, Lemma 4.4.2 implies that

∥∥Σ−1/2(µ− µ̂)
∥∥
2
≤

α with probability 0.9, and Theorem 4.4.3 implies that
∥∥∥Σ−1/2Σ̂Σ−1/2 − I

∥∥∥
F
≤ α with

probability 0.9. By union bound with probability 0.8, both steps succeed and thus Lemma
4.3.1 yields (4.4.6).

Robustness

We now argue that our algorithms are robust to adversarial corruptions, with the cost that
estimation error generally is worsened to α + O(

√
η), where η is the fraction of corrupted

samples. As we discussed, our algorithm for learning Gaussian under pure DP is by reducing
the problem to black-box applications of the main procedure from [87], namely, PureDPMean
in Theorem 4.3.4. We exploit the robustness property of PureDPMean to show:

Theorem 4.4.5 (Robust pure DP Gaussian estimation). Let α > 0 be an error parameter,
ε > 0 be a privacy parameter, R ∈ R and d ∈ N. For a sufficiently small constant η, there
is a polynomial-time ε-DP algorithm that, given ε and

n ≥ Õ

(
d2 log(κ)

ε
+

d2

α2ε
+

d log(R)

ε

)
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η-corrupted samples X = {X1, . . . , Xn} from N (µ,Σ) for an unknown µ satisfying ∥µ∥2 ≤ R

and an unknown Σ ∈ Rd×d satisfying I ⪯ Σ ⪯ κI, outputs µ̂ and Σ̂ such that

TV
(
N (µ,Σ),N

(
µ̂, Σ̂

))
≤ O(α +

√
η) (4.4.7)

with probability at least 0.8.

To give a proof sketch, the key step is to observe that our recursive preconditioning
algorithm (Algorithm 4.3) is robust. Recall that the algorithm simply calls our weak precon-
ditioning scheme (Algorithm 4.2) recursively (for log κ times). This weak scheme, in turn,
runs PureDPMean to roughly estimate Σ, up to an additive error of 0.01κ in the (absolute)
Frobenius norm. We observe that the robustness property of PureDPMean suffices to yield
the same error guarantee even under η-corruption. Hence, the recursive preconditioning
algorithm retains its performance under corruption. Finally, the remaining steps of our algo-
rithms for mean and covariance estimation simply calls PureDPMean on the preconditioned
samples. We lose the extra factor of

√
η from there.

We remark that in the analysis we make no attempt to optimize the breakdown point
of the algorithm. (In fact, it depends on the hidden constant in the O(

√
η) error term of

PureDPMean.)

Proof of Theorem 4.4.5. We start by modifying step 2 of Algorithm 4.2 to invoke Algorithm
4.1 with α = 0.0099 instead. By the choice of n, α and for a sufficiently small η, Theorem 4.3.4
implies that the rough estimate Σ̂, computed in the second step of Algorithm 4.2, satisfies∥∥∥Σ̂− Σ

∥∥∥
F
≤ 0.01κ (4.4.8)

with probability 1 − β. Observe that with the error bound above, the rest of the proof
of Lemma 4.4.1 remains valid. Inspecting the analysis of the recursively preconditioning
algorithm, we note that the error guarantee of Lemma 4.4.1 suffices to imply Theorem 4.4.2.

We now argue for the error rate on covariance and mean estimation, separately.

• For covariance estimation, consider Algorithm 4.4 and its guarantees Theorem 4.1.1.
Step 2, the preconditioning step, of Algorithm 4.4 retains its performance exactly. In

step 3, we instead get an estimate Σ̂ such that
∥∥∥Σ−1/2Σ̂Σ−1/2 − I

∥∥∥
F
≤ α+O(

√
η), due

to the robustness property of PureDPMean.

• For mean estimation, consider Algorithm 4.5 and its guarantees of Lemma 4.4.2. Sim-
ilarly, step 3 of the algorithm retains its performance exactly, and we lose an extra
O(
√
η) factor in step 4. Hence, the algorithm outputs an µ̂ such that ∥µ − µ̂∥ ≤

α +O(
√
η).

Applying the Lemma 4.3.1 converts the parameter closeness to distribution closeness.
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4.5 Lower Bounds Pure DP Covariance Estimate

In this section, we detail an information-theoretic lower bound for Gaussian covariance es-
timation under differential privacy constraints. Like our upper bound, our lower bound has
a logarithmic dependence on κ. Our proof builds on previous packing-style lower bound
arguments for pure DP estimation [80, 2, 30, 99].

High-level Overview For any integer d ≥ 2, given any covariance matrix Σ ∈ Rd×d that
satisfies I ⪯ Σ ⪯ κI, we show that to learn N (0,Σ) within total variation O(α), we must

require sample complexity Ω
(

d2

ε
log
(
dκ
α

)
+ d2

εα

)
. We proceed in two steps: first we show

a lower bound of Ω
(

d2

ε
log
(
dκ
α

))
which does not depend polynomially on 1/α. Then we

combine it with a previous lower bound of Ω
(

d2

εα

)
, due to [99]. Taken together, this gives

us a lower bound of Ω
(

d2

ε
log
(
dκ
α

)
+ d2

εα

)
:

Theorem 4.5.1. Let ε, α ∈ (0, 1), d ≥ 2. Any ε-DP algorithm that, given n i.i.d. samples
X = {X1, X2, . . . , Xn} from N (0,Σ) for an unknown Σ ∈ Rd×d satisfying I ⪯ Σ ⪯ κI,

outputs Σ̂ = Σ̂(X ) such that, with probability at least 0.9,

TV
(
N (0,Σ),N (0, Σ̂)

)
< O(α),

must require

n = Ω

(
d2

ε
log

(
dκ

α

)
+

d2

εα

)
.

Condition Number Lower Bound

We rely on previous work on differentially private hypothesis selection [30]: given samples
from some unknown distribution P (e.g., defined by N (0,Σ) for some Σ ∈ Rd×d), what is
the closest distribution to P in some set H?

Crucial to the derivation of the lower bound of Ω
(

d2

ε
log
(
dκ
α

))
is the notion of covers

and packings:

Definition 4.5.1 (γ-Cover). A γ-cover of a set of distributions H is a set of distributions Cγ,
such that for every H ∈ H there exists P ∈ Cγ with the following property: TV(P,H) ≤ γ.

Definition 4.5.2 (γ-Packing). A γ-packing of a set of distributions H is a set of distributions
Pγ ⊆ H, such that for every pair P,Q ∈ Pγ, TV(P,Q) > γ.

The following lemma states that, provided we can find an α-packing, we can get a sample
complexity lower bound for pure DP:



CHAPTER 4. ROBUST AND PRIVATE ESTIMATION OF GAUSSIAN 59

Lemma 4.5.1 (Lemma 5.1 in [30]). Let Pα be an α-packing of a set of distributions H. Then
for any P ∈ H, any ε-differentially private algorithm that takes sample X1, . . . , Xn ∼ P
produces, with probability at least 0.99, a distribution Ĥ such that TV(P, Ĥ) ≤ α/2 requires

n = Ω

(
log |Pα|

ε

)
.

Note that the sample complexity lower bound in Lemma 4.5.1 is not of the form Ω
(

log |Pα|
εα

)
since such a lower bound would contradict already-existing upper bounds.

Lemma 4.5.2 shows the existence of an α-cover of a set of d-dimensional Gaussian distri-
butions:

Lemma 4.5.2 (Lemma 6.8 in [30]). Let µ ∈ Rd,Σ ∈ Rd×d such that ∥µ∥2 ≤ R and I ⪯ Σ ⪯
κI. Then there exists an α-cover of the set of Gaussian distributions N (µ,Σ) of size

O

(
dR

α

)d

·O
(
dκ

α

)d(d+1)/2

.

To use the lower bound from Lemma 4.5.1, we need an α-packing and not an α-cover.
The following lemma relates the size of the largest α-packing to the smallest α-cover:

Lemma 4.5.3 (Lemma 5.2 in [30]). Let H be a set of distributions. If pα and cα are the
size of the largest α-packing and smallest α-cover of H, respectively, then

p2α ≤ cα ≤ pα.

We can now obtain the following corollary of a sample complexity lower bound that
depends on κ:

Corollary 4.5.1. Fix ε, α ∈ (0, 1). For any integer d ≥ 2 and covariance matrix Σ ∈ Rd×d

satisfying I ⪯ Σ ⪯ κI, let Σ̂ = Σ̂(X ) be any ε-DP algorithm such that with probability at
least 0.99, given n i.i.d. samples X = {X1, . . . , Xn} from N (0,Σ), the algorithm has the
following guarantee:

TV(N (0,Σ),N (0, Σ̂)) < α/2.

Then

n = Ω

(
d2

ε
log

(
dκ

α

))
.

Proof. Set R = O(α/d) since the mean of the Gaussian is a constant. By Lemma 4.5.3
and Lemma 4.5.2, there exists an α-packing of size O((dκ

α
)d

2
). And by Lemma 4.5.1, this

gives us a sample complexity lower bound of n = Ω(d
2

ε
log(dκ

α
)).
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Precision Matrix Lower Bound

We now proceed to show the lower bound of Ω( d
2

εα
). The proof of the theorem relies on the fol-

lowing technical lemma on the TV distance between two mean-zero Gaussians with different

covariance. By Theorem 4.5.4, it suffices to derive a lower bound on
∥∥∥Σ1/2

1 Σ−1
2 Σ

1/2
1 − Id

∥∥∥
F

where Σ1 and Σ2 are the unknown covariance matrix and the output from the ε-DP algo-
rithm, respectively.

Lemma 4.5.4 (Lemma 3.5 in [50], Theorem 1.1 in [51]). Let µ ∈ Rd and let Σ1,Σ2 be positive
definite symmetric d × d matrices. Use λ1, . . . , λd to denote the eigenvalues of Σ−1

1 Σ2 − Id.
Then,

0.01 ≤ TV(N (µ,Σ1),N (µ,Σ2))

min

{
1,
√∑d

i=1 λ
2
i

} ≤ 1.5.

Also,

TV(N (0,Σ1),N (0,Σ2)) ≥
1

100
min

{
1,
∥∥∥Σ1/2

1 Σ−1
2 Σ

1/2
1 − Id

∥∥∥
F

}
.

For two Gaussians with the same mean, [51] gives closed-form lower and upper bounds
in TV distance. The upper and lower bounds are within (small) constants of each other.

Note that since Σ−1
1 Σ2 and Σ

−1/2
1 Σ2Σ

−1/2
1 have the same spectrum, we have

d∑
i=1

λ2
i =

∥∥∥Σ−1/2
1 Σ2Σ

−1/2
1 − Id

∥∥∥2
F
.

The following statement, although not explicitly stated in [99], can be inferred from [99].
We combine the statement with cleaner versions of [50] to derive our lower bound.

Proposition 4.5.1 (see also [99]). Let d ≥ 2. Let Σ̂ be an ε-DP algorithm that outputs an
approximation of the covariance matrix Σ, where 1

2
I ⪯ Σ ⪯ 2I, such that

E
X∼N (0,Σ)⊗n

[∥∥∥∥[Σ̂(X)
]−1

− Σ−1

∥∥∥∥2
F

]
≤ α2

64
.

Then n = Ω
(

d2

εα

)
.

Proof. We can equivalently prove that EX∼N (0,Σ)⊗n

[∥∥∥Σ̂(X)− Σ
∥∥∥2
F

]
≤ α2

64
. We assume that

n = O( d
2

εα
) and will reach a contradiction. LetMd denote the set of d-by-d real symmetric

matrices. Consider

Sn =
{
S ∈Md : S has diagonal entries 0 and non-diagonals either − α

2d
or +

α

2d

}
.
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Clearly,
|Sn| = 2(d

2−d)/2.

Let U ∼ Unif(Sn) be the uniform distribution over Sn. For any V ∈ Sn, define Σ = Σ(V ) =

I + V . The ε-DP algorithm Σ̂ aims to output a matrix as close to Σ as possible.
Define Z and Z ′ such that

Z =
〈
Σ̂(X), V

〉
= 2

∑
i<j

Σ̂(X)ij · Vij, (4.5.1)

and
Z ′ =

〈
Σ̂(X ′), V

〉
= 2

∑
i<j

Σ̂(X ′)ij · Vij. (4.5.2)

Let V, V ′ be independent samples from Unif(Sn). Then sample X ∼ N (0,Σ(V ))⊗n and

X ′ ∼ N (0,Σ(V ′))⊗n. Also, note that
∥∥∥Σ̂(X)− Σ(V )

∥∥∥2
F
=
∑

i<j 2(Σ̂ij(X)− Σij(V ))2.

Then, by Lemma 4.5.5, E[Z] ≥ α2

16
− 1

2

∥∥∥Σ̂(X)− Σ(V )
∥∥∥2
F
≥ 7α2

128
.

Finally, observe that by Lemma 4.5.6 and Lemma 4.5.5, P[Z > α2/32] = Ω(1) and
P[Z ′ > α2/32] ≤ exp(−Ω(d2)) but Lemma 4.5.6 leads to Ω(1) ≤ exp(4αεn) − Ω(d2) which
would require n = Ω( d

2

εα
).

The following lemma is used to lower bound the expected value of Z =
〈
Σ̂(X), V

〉
in

terms of
∥∥∥Σ̂(X)− Σ(V )

∥∥∥2
F
:

Lemma 4.5.5 (Claim 6.12 of [99]). For any d ≥ 2,

E[Z] ≥ α2

16
− 1

2

∥∥∥Σ̂(X)− Σ(V )
∥∥∥2
F
≥ 7α2

128
.

The following lemma relates Z to Z ′:

Lemma 4.5.6 (Claim 6.13 and 6.14 of [99]). For Z,Z ′ as defined in Equations (4.5.1) and
(4.5.2), we have:

1. P[Z > α2/32] ≤ exp(4(αεn)) · P[Z ′ > α2/32].

2. P[Z ′ > α2/32] ≤ exp(−Ω(d2)).
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Putting it Together

We now prove Theorem 4.5.1:

Proof of Theorem 4.5.1. By Lemma 4.5.4, to prove Theorem 4.1.2, it suffices to show that

it is impossible to have both
∥∥∥Σ1/2Σ̂−1Σ1/2 − I

∥∥∥
F
≤ α and n = O

(
d2

εα

)
using an ε-DP

algorithm to compute Σ̂ = Σ̂(X ).
First note that ∥∥∥Σ1/2Σ̂−1Σ1/2 − I

∥∥∥
F
=
∥∥∥Σ1/2(Σ̂−1 − Σ−1)Σ1/2

∥∥∥
F

(4.5.3)

≥ σd(Σ
1/2)2

∥∥∥Σ̂−1 − Σ−1
∥∥∥
F
, (4.5.4)

where σd(Σ
1/2) denotes the smallest singular value of Σ1/2. Because Σ1/2 is symmetric

and positive definite, we know that eigenvalues coincide with its singular values. Also,
the eigenvalues of Σ1/2 are larger than 1/

√
2 so that∥∥∥Σ1/2Σ̂−1Σ1/2 − I
∥∥∥
F
≥ 1

2

∥∥∥Σ̂−1 − Σ−1
∥∥∥
F
.

By Proposition 4.5.1,
∥∥∥Σ̂−1 − Σ−1

∥∥∥2
F
≥ α2

64
. As a result,

∥∥∥Σ1/2Σ̂−1Σ1/2 − I
∥∥∥
F
≥ α/16, con-

tradicting the assumption that

TV
(
N (0,Σ),N (0, Σ̂)

)
< α/1600.

Thus, n = Ω
(

d2

εα

)
. By Corollary 4.5.1, we obtain a lower bound of n = Ω(d

2

ε
log(dκ

α
)).

As a result, the lower bound is a max of n = Ω
(

d2

εα

)
and n = Ω

(
d2

ε
log(dκ/α)

)
which

asymptotically is

n = Ω

(
d2

ε
log

(
dκ

α

)
+

d2

εα

)
.

This completes the proof.
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Chapter 5

Memory-Efficient Online Learning

We provide the first sub-linear space and sub-linear regret algorithm for online learning with
expert advice (against an oblivious adversary), addressing an open question raised recently by
Srinivas, Woodruff, Xu and Zhou (STOC 2022). We also demonstrate a separation between
oblivious and (strong) adaptive adversaries by proving a linear memory lower bound of any
sub-linear regret algorithm against an adaptive adversary.

Our algorithm is based on a novel pool selection procedure that bypasses the traditional
wisdom of leader selection for online learning, and a generic reduction that transforms any
weakly sub-linear regret o(T ) algorithm to T 1−α regret algorithm, which may be of indepen-
dent interest. Our lower bound utilizes the connection of no-regret learning and equilibrium
computation in zero-sum games, leading to a proof of a strong lower bound against an
adaptive adversary.

5.1 Introduction

Online prediction with expert advice is a fundamental task in sequential decision making and
is the backbone of optimization [81], bandit learning [109], control theory [65], among many
other fields. The problem is usually formulated as an online forecasting process that repeats
for T days. On each day, the algorithm is asked to provide a prediction of an outcome,
given the advice from n experts on the current day and all the previous information. After
announcing a decision, it then receives feedback on the outcome and the loss of the expert
predictions, normalized to [0, 1]n. The objective in online learning is typically to compete
against the best expert in hindsight, and the performance of an algorithm is measured in
terms of regret, which is defined as the additional cost of the algorithm over the best expert.

The celebrated Multiplicative Weights Update (MWU) method solves this online pre-
diction problem with an optimal O

(√
T log n

)
regret [13]. Similar regret bounds have also

been attained by weighted majority vote [119], follow-the-perturbed-leader (FTPL) scheme
[95] and online mirror descent (OMD) [81]. Besides the original motivation of online predic-
tion, MWU and the follow-up variants find broader applications in algorithmic design, game
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theory and machine learning, with notable examples including efficient algorithms for linear
programming and semi-definite programming [73], approximate solution for max flow [44],
equilibrium computation [33, 72] and boosting [71].

Despite a long history of research since 80’s, the question of space complexity has been
little explored in the online learning literature. All existing approaches explicitly track the
cumulative cost of every expert and follow the advice of a (regularized or perturbed) leading
expert, thus requiring a memory of size Ω(n). Motivated by this lack of understanding, a
very recent work by Srinivas, Woodruff, Xu and Zhou [146] initiates the study of memory
complexity of expert learning. They prove a lower bound of Ω(

√
nT/S) regret for any

algorithm using O(S) memory, even when the loss sequence are i.i.d distributed. This implies
that Ω(n) space is necessary to get the optimal

√
T regret bound. On the positive side,

they show that sub-linear regret is achievable in sub-linear space, but only in random-order
streams or when the best expert itself incurs sub-linear loss. These structural assumptions
are arguably rather strong. This leaves open the general question of attaining sub-linear
regret in a memory-efficient fashion.

In this work, we revisit the classic online learning problem with an eye towards an better
understanding its space complexity. On the algorithmic front, we ask, for constant α, β ∈
(0, 1):

Can we achieve sub-linear O(T 1−α) regret in online learning, using sub-linear O(nβ) space?

We resolve this open question by designing the first sub-linear space online learning algo-
rithm, in general worst-case settings. The algorithm assumes an oblivious adversary that
fixes the loss sequence in advance. To complement this, we prove a lower bound show-
ing that against an (strong) adaptive adversary, no sub-linear space algorithm can achieve
sub-linear regret.

Our results

To introduce the results, we specify our problem setting (see section 2.2 for a formal descrip-
tion). We consider a general setup of the expert problem with T days and n experts. On
each day t ∈ [T ], the algorithm decides to play one of the experts it ∈ [n]. Subsequently,
nature reveals the loss ℓt(i) for all i ∈ [n] and the algorithm incurs a loss of ℓt(it). We assume
that ℓt(i) ∈ [0, 1] for all t ∈ [T ] and i ∈ [n]. The goal is to design an algorithm such that
the (total) regret Regret(T ) = E[

∑
t∈[T ] ℓt(it)] −mini∗∈[n]

∑
t∈[T ] ℓt(i

∗) is sub-linear in T .1

An oblivious adversary (randomly) chooses the loss vectors independent of the algorithm’s
decisions.

Our main result is the following.

1We call T 1−α sub-linear regret (for constant α), and o(T ) weakly sub-linear. We use Õ(·) to hide
polylogarithmic factors in n, T and On(·) to hide polynomial dependence on n. High probability refers to
probability at least 1− 1/ poly(T ).
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Theorem 5.1.1 (Informal, see Theorem 5.4.1). Let n, T ≥ 1, δ ∈ (0, 1]. There exists

an online learning algorithm that achieves a total regret of On

(
T

2
2+δ

)
with high probability

against an oblivious adversary, using Õ(nδ) memory.

The theorem provides a general memory-regret trade-off. To give some concrete examples:

• We can get On

(
T 4/5

)
regret in Õ (

√
n) memory (by setting δ = 0.5).

• We can get On(T
0.67) regret in Õ (n0.99) memory (by setting δ = 0.99).

On a conceptual level, our algorithm breaks the following traditional wisdom in online
prediction. We recall that the classic regret-minimization algorithms, such as MWU and
FTPL, all track the loss of all experts and follow a (regularized or perturbed) leader. Al-
ternatively, one may assume an oracle that outputs the leading expert (a.k.a. oracle-efficient
online learning [82, 66]). Therefore, the task of identifying a leading expert is usually be-
lieved to be a necessary sub-routine of regret minimization. Indeed, with Ω(n) memory,
identifying a leader and maintaining its cumulative loss is trivial, while in principle online
prediction is a much harder task. Perhaps surprisingly, in the sub-linear space regime, our
results suggest the opposite. It is known that under space constraint, one cannot identify
a leader, or even constant approximate its loss [146]. On the other hand, theorem 5.1.1
implies that achieving sub-linear regret is possible with arbitrarily small polynomial space.
Therefore, conceptually this work shows that online prediction is easier than and does not
require tracking the leader, in the low space regime.

In the case that only polylogarithmic space is allowed, we also give a weakly sub-linear
regret algorithm. In particular, by setting ε = 1/ poly log(nT ) in the following theorem, the

algorithm achieves o(T ) regret in Õ(1) memory (for sufficiently large T ).

Theorem 5.1.2 (Informal, see theorem 5.3.1). Let n ≥ 1, ε ∈ (1/
√
n, 1/2) and T ≥ Ω(ε2n).

There exists an online learning algorithm that achieves a total regret of Õ
(
εT + T 2/3 (ε2n)

1/3
)

with high probability against an oblivious adversary, using Õ(ε−2) memory.

Our algorithms assume an oblivious adversary, a standard model in online learning as
well as its cousin fields like online, streaming and dynamic algorithms [102, 10]. In a variety
of applications, however, algorithms are required to work against adaptive adversaries [133,
145, 155, 20, 11].

To complement our algorithmic results, we consider a strong adaptive adversary model,
where the costs may be chosen adversarially that depend on the algorithm’s prior randomness
and decisions; see definition 5.2.2 for a formal definition. In this setting, MWU still achieves
Õ(
√
T ) regret but uses linear memory. We prove that Ω(n) memory is indeed necessary to

obtain any sub-linear regret at all:
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Theorem 5.1.3 (Informal, see theorem 5.5.1). Let 0 < ε < 1/40. Any algorithm that
achieves εT total regret against a strong adaptive adversary requires at least

Ω
(
min

{
ε−1 log2 n, n

})
bits of memory.

The theorem states that Ω(n) memory is necessary even to get any sub-linear, say,
O (T 0.99) regret, for sufficiently large T = Ω(n100). In contrast, under the oblivious ad-
versary model, our upper bound (theorem 5.1.1) can attain such regret guarantee in o(n)
space. Therefore, this exhibits a separation between oblivious and adaptive adversary model
in the low space regime.

Technical overview

We provide a streamlined overview of our approach. For notational convenience, we omit
polylogarithmic factors and one should think of T = poly(n).

A baseline algorithm for weakly sub-linear regret

We first present an algorithm that achieves weakly sub-linear regret O(εT ) using space
O(ε−2), then provide a novel width reduction procedure to make it sub-linear in section 5.1.

A natural idea is to carefully maintain a small pool of experts and run MWU over them.
To begin with, we divide the T days into T/B epochs with B contiguous days in each epoch.
At the beginning of each epoch, we sample a random set of new experts and add them into the
pool, then executing MWU over the pool (starting from uniform weight). MWU guarantees
that the algorithm is always competitive with the best expert(s) in the pool, and this turns
online prediction into the task of maintaining a good pool of experts. The immediate hurdle
is that, due to space constraint, the pool must be kept small and hence the best expert is
likely to be outside of the pool. Therefore, we need to maintain the pool so that it consists
of good experts with respect to each particular epoch, but without knowing the performance
of the experts outside the pool.

Maintaining the pool The algorithm samples a small number of experts into its pool at
the beginning of each epoch. After a few epochs, the pool size would grow and exceed the
memory budget. The key algorithmic task is to design a rule of evicting experts.

The first and natural idea is track the cumulative loss of each expert in the pool, and
intuitively, only an expert with low average loss should be reserved. However, it is easy
to come up with instances, where (1) the best expert i∗ has low error in every epoch; but
(2) random new experts have even lower error in 1/3 epochs (though higher in the rest).
If these 1/3 epochs are evenly spaced, then i∗ can be easily kicked out by the new expert.
Subsequently, it would take a long time to get back, since our sampling rate has to be low
to respect the space constraint. This is clearly undesirable.
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Intuitively, consider two experts in the pool with equally low average loss since their
joining. The one that has stayed longer should be treated differently from the other, since
the former is more stable against further loss. Hence, the second idea is to keep experts that
have lived a long time in the pool. In other words, an expert has no reason to be evicted
if it is “Pareto-optimal”: it has either stayed long or achieved little loss. Formally, we say
an expert j dominates another expert i, if j joins the pool earlier than i and has achieved
at most ε more average loss than i since expert i joins. At the end of every epoch, our
algorithm evaluates all experts. Any expert i being dominated by another is evicted.

Bounding memory Notice that the algorithm does not dictate any explicit bound on the
pool size, let alone memory. This is the challenge that we now resolve.

For that, the key observation is the following. Consider any surviving expert i that joins
the pool later than some other j. It has much smaller, in fact at least ε, loss on its interval
than j, by our eviction rule. Then, we claim that either (1) expert j has ε/2 larger average
loss than expert i, or (2) j lives (1 + ε/2) longer than i. The reason is that j has loss at
least 0 everywhere, so if (1) doesn’t hold, then it takes extra length to catch up with the loss
difference. A straightforward proof would bound the pool size by O(1/ε2) as both events
can happen for at most O(1/ε) times consecutively. We derive a refined one of O(1/ε) via a
potential function argument. This leads to a memory bound of O(1/ε2) because we need to
track the performance of each expert over every interval.

Bounding regret To bound the regret, our plan is to show that there exist experts in
pool that are competitive to i∗ (even if i∗ may not be in the pool), except for at most O(n)
unlucky epochs. For simplicity, assume the algorithm only samples and adds one new expert
per epoch. For an epoch t, imagine i∗ gets sampled, and it remains alive until the end of
epoch t ≤ t′ ≤ T/B. To this end, there must exist an expert i(t) that already lies in the
pool, stays alive during [t, t′] and outperforms i∗. The reason is that the expert i∗ can only
be evicted by an older expert, and the eviction time is independent of future randomness
(again, we assume the loss sequence is fixed in advance). Hence, i(t) is competitive with i∗

during the epochs [t, t′] (note this is independent of whether i∗ is actually sampled or not).
Then we can proceed to (t′+1)-th epoch. There is one exception: if i∗ is sampled and would
not be evicted by the end, then i(t) simply does not exist. On one hand, with probability
1/n, we would sample i∗ and it stays until the end. Otherwise, with probability 1− 1/n, we
just lose this epoch and proceed to the next. The latter event should not happen for more
than O(n) times with high probability.

In summary, the baseline algorithm is always competitive with best expert in pool, up to

a total regret of T/B ·O
(√

B
)
, by MWU. Moreover, there is always some expert in the pool

competitive with the best expert i∗ up to an O(εT ) regret, except in those unlucky epochs
which incur O(nB) regret. To further optimize the algorithm, we sample 1/ε2 new experts
instead of 1. It turns out that allows us to bound the total regret over the unlucky epochs
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by O(ε2nB). Putting everything together, the total regret is O
(
εT + T/

√
B + ε2nB

)
≈

O(εT ).

Bootstrap the baseline and width reduction

The above baseline algorithm has a total regret of O(εT ), and the bottleneck lies in the
following. First, the eviction rule essentially discretizes the loss into multiples of ε and
we need to perform more refined division to reduce the loss. On the other hand, one can
construct examples showing the pool size grows at least O(1/ε), since the loss takes range
from [0, 1]. The idea is to bootstrap the baseline algorithm and to reduce the width of
experts.2

Precondition the experts The idea is fairly simple: we just run MWU over the original
expert i and the baseline algorithm, and take its output prediction as the new expert ei.
Let ∆ denote the loss of the baseline algorithm. Roughly speaking, it is guaranteed that
the performance of ei is at least as good as i and the baseline, and since the baseline has
average regret of at most ε, ei takes loss in [∆ − ε,∆].3 Therefore, the width of the loss is
significantly reduced—from [0, 1] to [0, ε]. This allows us to discretize with an additive factor
ε2 instead of ε. The idea of preconditioning is ubiquitous and powerful in modern algorithm
design, but as far as we know, it is the first time applied to online prediction.

Putting things together The above bootstrapping procedure reduces the regret from
O(εT ) to O(ε2T ), up to some lower order terms. There is no reason to stop here, and in
fact we repeatedly perform the bootstrapping for roughly log T

logn
times. Carefully balancing

with the lower order terms yields a final regret bound of On

(
T

2
2+δ

)
. At the end, the scheme

would maintain a hierarchical pool of experts. The algorithm plays a mixed strategy over
them, instead of simply applying MWU. Our approach of transforming a weakly sub-linear
regret O(εT ) algorithm to a sub-linear regret O(T 1−α) algorithm is general. We believe it
could have broad applications in the area of online prediction.

Lower bound via learning in games

Our lower bound draws close connection with learning in games. It is well known that one
can use no-regret learning algorithm to compute Nash equilibria of a zero-sum game [72],
via the following template: Alice follows a no-regret algorithm with each of her action as
an expert, and Bob (the adversary) best responds to it. We construct a family of zero-sum
games whose equilibrium (or minmax) strategies are far apart, and any single strategy can
only achieve ε-approximate minmax value for a few of them. The construction is by randomly

2An expert with loss in [a, b] is said to have width (b− a), see [13] for formal definition.
3For technical reasons, we also need to truncate the loss because it is possible that ei performs much

better than i and the baseline.
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embedding a generalized matching penny game. Via a counting argument, one can prove
that algorithms using sub-linear space simply cannot achieve ε-approximate minmax in all
its states for most of the games in the family. This contradicts with the fact that no-regret
dynamics achieve minmax value and therefore establishes the lower bound.

Compared with Srinivas, Woodruff, Xu & Zhou

Before we survey other related work, [146] is the most relevant to us. We discuss our findings
in light of the main results therein.

Lower bound On the hardness side, [146] shows that Ω(S) memory is necessary for achiev-
ing O(

√
nT/S) regret even for i.i.d. loss sequence, whereas our lower bound indicates that

Ω(S) is necessary for O(T/S) regret against an adaptive adversary. These two results are
incomparable in general, since our lower bound is quantitatively stronger but under a much
stronger adversary model. On the technical side, the lower bounds of [146] leverage communi-
cation complexity techniques, whereas ours (theorem 5.1.3) exploits the connection between
no-regret learning and zero-sum games.

Upper bound [146] gives an O(S)-space algorithm that obtains Õ(
√

nT/S) regret assum-
ing that the loss sequence arrives in random order. This matches their aforementioned lower
bound. Unsurprisingly, the design and analysis of the algorithm hinges heavily upon the
random order assumption and does not have any implication for the (standard) worst-case
loss.

For worst-case loss sequence, [146] gives an O( n
δT
)-space algorithm with δT regret (for any

δT = Ω̃(
√
T )), assuming that the best expert receives a total loss of at most M = O

(
δ2T
log2 n

)
.

The assumption on the best expert is rather strong: for their result to be meaningful,
one needs δ < 1 and so the best expert already has sub-linear loss. As explained earlier,
our theorem 5.1.1 does not require any such condition. In fact, under the assumption, the
algorithmic design is conceptually simple. A näıve algorithm is to follow the advice of a single
expert until its cumulative loss exceeds M , then switches to a new one, and repeats. This
procedure uses O(1) memory and is worse than the best expert in total loss by at most an
O(n) multiplicative factor. Instead of tracking a single expert, [146] designs a more general
scheme by sampling a pool of experts and running majority vote. Improving upon the näıve
idea, their algorithm achieves a performance of O(δ−1 log2 n) multiplicatively worse than the
best expert (in terms of total loss). We stress again that our algorithm works beyond this
low mistake regime.

Related work

Identifying best expert is hard We first mention that identifying even an approximately
best expert requires Ω(n) memory in stream. This is matched by the trivial algorithm of
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tracking the cumulative loss of all experts. The proof is by a simple reduction from the
well-studied Set-Disjointness problem; see the survey [143] and references therein. We
refer interested reader to the prior work [146] for a detailed argument.

Prior work on expert learning Forms of the classic MWU algorithm for online learning
can be dated back to 1950’s [28]. The algorithm has been analyzed in a variety of settings
and shown to achieve (nearly) optimal regret [119, 137]. The algorithm also finds a wide
range of applications in algorithm design and optimization [33, 71, 44, 73, 104, 85, 4]. See
the survey [13] for a complete treatment.

There are other online learning algorithm that are less computationally expensive than
MWU. In particular, a line of work initiated by [95, 82] equips an online learner with an
(offline) optimization oracle. The goal is to minimize oracle calls, a proxy for time complexity.
Strong regret and oracle complexity guarantees can be achieved under this framework [66,
79, 22, 47]. Moreover, under various structural assumptions, one can improve upon the
time complexity of MWU [83, 127, 152, 95]. These lines of work, however, generally do not
consider space bounds. Finally, in terms of technique, the algorithm of [82] also uses the
idea of random sub-sampling of the experts.

Memory-efficient online learning There has been a recent spate of work on memory-
bounded online learning, mostly in (stochastic) multi-arm bandit settings. This includes
the study of both regret minimization and pure exploration [118, 35, 15, 93, 128]. We
mention that a recent work [3] considers a multi-pass setting, where the algorithm may take
several passes over the data. They show that the regret-memory trade-off can be significantly
improved when this is allowed. This chapter is focused on single-pass algorithm. Space usage
is also considered by [100] in the analysis of pairwise losses in online learning, but under a
restricted memory model.

A related line of work is on the memory-sample lower bounds for statistical and com-
putational learning problems [151, 140, 141, 74, 142, 77, 75, 129], such as learning sparse
parities and linear regression. Our problem is not statistical in nature, since we assume a
worst-case loss sequence, and therefore does not lie in their setting. Other lines of work also
study learning problems in data streams, including continual learning [36], entropy estima-
tion [1, 7], detecting correlations [46], robust estimation [63], learning simple classifiers [26]
and matrix rank estimation [45].

Adversary models Our algorithm assumes an oblivious adversary, which is standard in
the literature. We remark that our lower bound considers a notion of adaptivity stronger than
the typical ones in the literature, where the adversary cannot access the internal randomness
of the algorithm; see, e.g., [49, 34]. Finally, several recent works show that certain lower
bounds under adaptive adversary can be circumvented by smoothed analysis [139, 22, 78,
79].
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5.2 Preliminaries

Notations Throughout the paper, we use T to denote the number of rounds and n to
denote the number of experts. We write [n] := {1, . . . , n} and [n1, n2] := {n1, . . . , n2}. Let
∆n denote the collection of probability distributions over [n]. Unless specified otherwise, all
logarithms are base e. We refer to a word of memory as O(log(nT )) bits.

Online learning with expert advice

We study the classic online prediction with expert problem under the (standard) oblivious
adversary model. In this problem, an algorithm makes prediction every round with the
advice from experts and with the goal of minimizing its regret with respect to the best
expert in hindsight. Formally,

Definition 5.2.1 (Online learning with oblivious adversary). An algorithm is initiated with
memory M1 and makes prediction for T rounds. At the t-th iteration (t ∈ [T ]),

• The algorithm chooses an expert it ∈ [n] based on its memory Mt

• The nature reveals the loss vector ℓt ∈ [0, 1]n ,

• The algorithm receives loss ℓt(it) ∈ [0, 1] and updates its memory state Mt+1.

An adversary is said to be oblivious if the sequence of loss vectors ℓ1, . . . , ℓT ∈ [0, 1]n are
chosen independent of the algorithm’s decision. Equivalently, the nature fixes the loss vectors
in advance (possibly randomly) and they are unknown to the algorithm. An algorithm is said
to use up to M bits of space if maxt∈[T ] |Mt| ≤M .

Remark 5.2.1. Strictly speaking, the algorithm can not store the loss vector ℓt into its
memory in the second step, as it already takes Ω(n) bits. Instead, we allow the algorithm to
query the entry of the loss vector ℓt.

The goal of the algorithm is to minimize the total regret over T rounds, defined as

R(T ) := E

∑
t∈[T ]

ℓt(it)

− min
i∗∈[n]

∑
t∈[T ]

ℓt(i
∗), (5.2.1)

where the expectation is taken over the randomness of the algorithm. We also consider the
average regret, defined as R(T )/T .

We also consider the adaptive adversary model and prove a linear memory lower bound.

Definition 5.2.2 (Online learning with strong adaptive adversary). An algorithm is initiated
with memory M1 and makes prediction for T rounds. At the t-th iteration (for t ∈ [T ]),
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• The algorithm commits a distribution pt ∈ ∆n over the experts [n] based on its memory
state Mt;

• The adversary reveals the loss vector ℓt ∈ [0, 1]n after observing the distribution pt;

• The algorithm receives loss ⟨pt, ℓt⟩ and updates its memory state Mt+1.

Note we assume the algorithm commits a probability distribution over the experts [n]
(instead of a single expert) but the realization is unknown to the adversary. Equivalently,
it can be seen that the adversary can choose loss vector ℓt based on the decisions as well as
the internal randomness of the algorithm up to round t− 1.

This notion of adaptivity here is stronger than the traditional one in the online learn-
ing literature, where the adversary does not have access to the algorithm’s internal states.
Rather, definition 5.2.2 closely resembles white-box adversary for adversarially robust stream-
ing algorithm, proposed recently by [5]. We remark that the standard implementation of

MWU takes Õ(n) space and achieves O
(√

T log n
)
regret against strong adaptive adversary.

Algorithmic and mathematical tools

Multiplicative weights update Our algorithm will use the classic MWU scheme as a
subroutine. We state its update and decision rule, and the formal regret guarantees. See
[13] for a standard exposition.

Algorithm 2: Multiplicative weight update (MWU)

Input: Learning rate η, expert [n]
1 Initialize pt ∈ ∆n to be the uniform distribution over [n], the set of experts.
2 For t from 1 to T

3 Compute pt ∈ ∆n over experts such that pt(i) ∝ exp
(
−η
∑t−1

τ=1 ℓτ (i)
)

4 Sample an expert it ∼ pt and observe the loss vector ℓt ∈ [0, 1]n

Lemma 5.2.1 (MWU regret, [13]). Suppose n, T, η > 0 and the loss ℓt ∈ [0, 1]n (t ∈ [T ]),
then the multiplicative weight update algorithm satisfies

T∑
t=1

⟨pt, ℓt⟩ − min
i∗∈[n]

ℓt(i
∗) ≤ log n

η
+ ηT,

and with probability at least 1− δ,

T∑
t=1

ℓt(it)− min
i∗∈[n]

ℓt(i
∗) ≤ log n

η
+ ηT +O

(√
T log(n/δ)

)
.

Taking η =
√

logn
T

, the MWU algorithm has a total regret of O
(√

T log(nT )
)
with probability

at least 1− 1/ poly(T ) and a standard implementation takes O(n log T ) bits of memory.
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Probability and concentration inequalities We state the standard concentration in-
equality.

Lemma 5.2.2 (Azuma-Hoeffding bound). Let X0, . . . , Xn be a martingale with respect to
the filter F0 ⊆ F1 · · · ⊆ Fn such that for Yi = Xi − Xi−1, i ∈ [n], we have that |Yi| =
|Xi −Xi−1| ≤ ci. Then

Pr[|Xt − Y0| ≥ t] ≤ 2 exp

(
− t2

2
∑n

i=1 c
2
i

)
.

Minmax theorem It is well known that the equilibrium value of a zero sum game is
unique, and it equals to the minmax or maxmin value.

Lemma 5.2.3 (Minmax Theorem [135]). For any A ∈ Rn×n, the minmax theorem guarantees
that

min
x∈∆n

max
y∈∆n

x⊤Ay = max
x∈∆n

min
y∈∆n

x⊤Ay.

5.3 The building block

We first give an online learning algorithm that achieves Õ(εT +TB−1/2+ ε2nB) total regret

over T days in S = Õ (ε−2) space, where B ≪ T is a parameter specified later. This
procedure apparently does not achieve our end goal, but instead it will serve as a building
block for the our full algorithm in section 5.4.

Theorem 5.3.1. Let T, n,B be positive integer, ε ∈ (0, 1/2), there exists an online learning

algorithm that achieves O
(
εT + TB−1/2 log1/2(nT ) + ε2nB log T

)
regret with probability at

least 1− 1/ poly(T ) and uses O(ε−2 log3(nT )) bits of memory.

For the sake of simplicity, we assume ε−1 and T/B are integers in the rest of section.

Baseline algorithm

Algorithm description The Baseline (Algorithm 3) maintains a pool of experts P at
every step. It divides the whole sequence into T/B epochs, where each epoch consists of B
(contiguous) days. Baseline proceeds epoch by epoch. A random set of experts Rt of size
ε−2 is sampled uniformly without replacement from [n] and enters the pool at the beginning
of each epoch. For now, assume an expert’s cumulative loss within each epoch is tracked and
stored, ever since it joins the pool. Within an epoch, we maintain the same pool of experts
and run the MWU algorithm only on them, starting with the uniform weights, and produces
a (random) decision every round. Näıvely, the pool size grows by one every epoch, which is
unacceptable for large T . To address the issue and bound the pool size, we evict experts at
the very end of each epoch by comparing their average losses.
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Intuition Intuitively, if any expert performs poorly relative to the others in the pool, it
makes sense to evict it. However, care needs to be taken when comparing a long-surviving
expert with a recently joined one. Due to the worst-case nature of the input, a new expert
may start off by receiving significantly less loss than an old one. Nevertheless, it is yet
unclear that it will continue to excel in the long run. Therefore, we design the algorithm so
that an expert cannot be deleted simply because it is outperformed by a newer expert. It
turns out that this rule is crucial in proving our memory bounds as well.

Eviction rule More formally, for any epoch t ∈ [T/B], let Pt ⊆ [n] be the pool of experts
at the beginning of t-th epoch (after adding Rt). The pool remains unchanged throughout
the t-th epoch, and the algorithm considers removing certain experts from the pool at the
end of the epoch. For experts in Rt, the rule is simple and we just keep the best expert.
For each remaining expert i (including the one that survives in Rt), let α(t, i) ≤ t be the
epoch when expert i enters the pool. Let Γt,i := [α(t, i) : t] be the period of time from the
α(t, i)-th epoch to the t-th epoch. For simplicity we assume that Baseline explicitly tracks
and updates the total loss value of all experts i ∈ Pt, over each epoch since their entrance.
(We will discuss later how to optimize the space usage.)

Let Lt(i) = 1
B

∑B
b=1 ℓ(t−1)B+b(i) be the average loss for expert i in epoch t. For any

time interval I ⊆ Γt,i, let LI(i) =
1
|I|
∑

t∈I Lt(i) be the average loss of expert i over I. The
algorithm compares i with every other expert j ∈ Pt. The expert i is evicted at the end of
epoch t if and only if

(i) The expert j entered the pool Pt before the expert i; and

(ii) The average loss LΓt,i
(i) of i over Γt,i is at least that of expert j up to an additive

factor of ε:
LΓt,i

(i) ≥ LΓt,i
(j)− ε. (5.3.1)

Simply put, condition (i) ensures that an older expert in the pool cannot be kicked out due
to a younger one. Notice that (ii) effectively requires (i), since our algorithm only keeps
track of the loss of the experts within the pool. If j entered the pool later than i, we cannot
even compute the right-hand side of (5.3.1).

We run the comparison-based pruning procedure at the very end of each epoch and use
P̃t to denote the set of experts that survive pruning. We will argue that (1) the size of the
pool is bounded and (2) overall the pool contains good experts such that our algorithm is
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competitive against the best expert, albeit it can easily be outside the pool.

Algorithm 3: Baseline expert learning algorithm (Baseline)

Input: Parameter T,B and ε, experts [n]
1 For each epoch t = 1, 2, . . . , T/B
2 Sample a random set R of ε−2 experts without replacement from [n] and add

them to P
3 Initialize MWU (with uniform weights) over experts in P
4 For each day b = 1, 2, . . . , B
5 Sample and play the MWU decision over experts in P

/* Evict expert */

6 Remove all except the best expert from R
7 For every pair {i, j} ∈ P
8 Remove i from P if j entered P before i and condition (5.3.1) holds

Implementation details Näıvely, the algorithm stores the cumulative loss of each expert
in the pool, over every epoch since it entered. This may cause large memory usage. However,
observe that, to execute the eviction rule, it is only required that for each j, we have the data
LΓi,t

(j) for all i that entered later than j, in addition to its own cumulative loss. Therefore,
the algorithm can explicitly track these values only; and if the pool size is S, then this takes
O(S2) words of memory. See fig. 5.1 for an illustration.

1

2

3

4
I4

I3

I2

Figure 5.1: Pool at the end of an epoch. If expert 3 is removed, then we no longer store
LI3(1),LI3(2).

Analysis of the Baseline Algorithm

We now provide a formal analysis of Baseline and argue its memory and regret guarantees.

Memory bound

The algorithm does not dictate an explicit bound on the memory, and in particular, on the
size of pool. First, we present a key technical lemma that insists a loss vs. length structure
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on the surviving experts P̃t. For a fixed t and any i, j ∈ P̃t, write i ≺ j if α(t, i) > α(t, j)—
namely, i joined the pool later than j, so j is older—and i ≻ j otherwise. Note that expert
i and j must join the pool at different time due to our eviction rule. Roughly speaking, the
lemma states that if i survives the pruning (after Line 10 of ?? 3), then for any j ≻ i, one
of the following must happen:

(i) expert j suffers significantly more average loss over Γt,j than i suffers overs its interval
Γt,i; or

(ii) expert j has resided in the pool significantly longer than i.

For notational convenience, for any i, j ∈ P̃t such that j ≻ i, define Li,i = LΓt,i
(i), Li,j =

LΓt,i
(j) and accordingly Lj,j = LΓt,j

(j). Then we have

Lemma 5.3.1 (loss vs. length). For any epoch t ∈ [T/B], suppose experts i, j ∈ P̃t and
j ≻ i. Let α ∈ (0, 1), then at least one of the following must hold:

(i) Lj,j ≥ Li,i + ε− α;

(ii) |Γt,j| ≥
(
1 + α

1−α

)
|Γt,i|.

The underlying intuition is simple: Since i survives the pruning and j joins the pool
earlier than i, we know that j achieves ε worse average performance than i over i’s own
interval. Now consider the opposite of condition (i)—it asks j to be at most ε − α worse
average loss overall than i. For that to happen, j needs to have low error on the days before
i enters the pool. However, even if j gets 0 loss over this prior period, it still requires time
to bring the average loss down by at least ε. Therefore, j must have entered the pool quite
earlier than i, which is condition (ii).

Proof of lemma 5.3.1. By definition of the algorithm, any such expert i must have survived
the comparison-based pruning against j ≻ i. Therefore, the condition (5.3.1) must fail for
i, j, and so we have

Li,j > Li,i + ε. (5.3.2)

Now fix α ∈ (0, 1) and let’s assume that Lj,j < Li,i + ε − α. It suffices to show that
|Γt,j| ≥ (1 + α

1−α
)|Γt,i|. Let T1 = |Γt,j| − |Γt,i| > 0 be the number of extra days j lies in the

pool than i, and T2 = |Γt,i|. Also let L1 = LΓt,j\Γt,i
(j) be the average loss of j over the T1

days. Simply rewriting the assumption that Lj,j < Li,i + ε− α:

Lj,j =
L1T1 + Li,jT2

T1 + T2

< Li,i + ε− α. (5.3.3)

Since L1 ≥ 0, we get
Li,jT2

T1 + T2

< Li,i + ε− α. (5.3.4)



CHAPTER 5. MEMORY-EFFICIENT ONLINE LEARNING 77

Substituting the inequality Li,i < Li,j − ε (5.3.2) to the right-side:

Li,jT2

T1 + T2

< Li,j − α (5.3.5)

Rearranging, we get

T1 >

(
Li,j

Li,j − α
− 1

)
T2 =

α

Li,j − α
T2 >

α

1− α
T2, (5.3.6)

where the last inequality follows since Li,j ≤ 1. Equivalently, we have that |Γt,j| − |Γt,i| >
α

1−α
|Γt,i|, and this completes the proof.

Using the above lemma, we can bound the size of the pool via a potential function
argument. The potential takes both situations of lemma 5.3.1 into account, where either
length or loss gets larger.

Lemma 5.3.2 (pool size). For any epoch t ∈ [T/B], the size of the pool P̃t is at most
S = 4

ε
log T .

Proof. Fix t and let S be the size of the pool. We sort the experts in the pool in ascending
order of their entering times: i1 ≺ i2 ≺ · · · ≺ iS. Define the potential function Φ : [S]→ R≥0,
where

Φ(τ) = 2 log |Γt,iτ |+ Liτ ,iτ , τ ∈ [S]. (5.3.7)

We note that Φ(1) ≥ 0 and Φ(S) ≤ 2 log T + 1. The goal is to prove

Φ(τ + 1)− Φ(τ) ≥ ε, ∀τ ∈ [S − 1]. (5.3.8)

This would imply the pool size S ≤ 4ε−1 log T .
We observe that eq. (5.3.8) is simply true whenever Liτ+1,iτ+1 ≥ Liτ ,iτ +ε since iτ+1 enters

the pool before iτ by our assumption. Now, it is safe to write Liτ+1,iτ+1 = Liτ ,iτ + ε− α, for
some α ∈ (0, 1) (α would not exceed 1 as one can easily show Liτ ,iτ + ε < 1, i.e., iτ survives

at P̃t). Then we have

Φ(τ + 1)− Φ(τ) = 2 log(|Γt,iτ+1|/|Γt,iτ |) + Liτ+1,iτ+1 − Liτ ,iτ

= 2 log

(
1 +

α

1− α

)
+ ε− α

≥ min

{
α

1− α
, 2 log 2

}
+ ε− α ≥ ε,

where the second step follows from lemma 5.3.1, the third step follows from log(1 + x) ≥ x
2

whenever x < 1 and the last step holds since α ∈ (0, 1). We have proven eq. (5.3.8) and
completed the proof.
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We can now wrap up with a memory bound.

Proposition 5.3.1 (memory bound). At any time during the execution of Baseline, the
memory usage is at most O

(
ε−2 log3(nT )

)
bits.

Proof. Fix an epoch t, as we observed earlier, for each expert j ∈ P̃t−1, the algorithm
only needs to keep track of their loss over the intervals Γt−1,i for all i ∈ Pt−1 such that
i ≺ j. In particular, for each j ∈ Pt−1, the algorithm stores LΓt−1,i

(j) for all i ≺ j.
This is sufficient for executing the eviction rule (eq. (5.3.1)). Storing each LΓt−1,i

(j) takes
O(log nT ) bits. By lemma 5.3.2, there are at most S = 4

ε
log T experts in Pt. This leads

to S2 · O(log nT ) = O(ε−2 log3(nT )) bits of memory usage. We sample |Rt| = ε−2 new
experts at the beginning of t-th epoch and keep track of them within the epoch, these takes
O(ε−2 log nT ) extra bits.

Regret bound

We now prove a regret bound of Baseline. On a high level, the MWU procedure only
guarantees that Baseline is always competitive with the best expert in the pool. The key
challenge here therefore is to argue that our pool is competitive against even the best expert
among [n], which may lie outside the pool. Indeed, next we will prove that the the experts

in the pool is nearly competitive against the best expert, except in Õ(ε2n) epochs. Formally,
we show:

Proposition 5.3.2 (regret bound). Given the parameter ε ∈ (0, 1/2) and positive integer

B ≪ T , Baseline achieves a total regret of O
(
εT + TB−1/2 log1/2(nT ) + ε2nB log T

)
with

probability at least 1− 1/ poly(T ).

Let i∗ denote the best expert in hindsight. Since the adversary is oblivious to the al-
gorithm’s decision, it suffices to fix a loss sequence ℓ1, ℓ2, . . . , ℓT ∈ [0, 1]n and prove the
algorithm achieves low regret on it. Let ξt denote the random bits used by Baseline during
the t-th epoch, which includes both the randomness of sampling Rt and the random bits
used by MWU within the epoch.

Initialize B = ∅ and i(t) = nil for each t ∈ [T/B]. We will build up the set B ⊆ [T/B]
over time. Intuitively, it contains “unlucky” epochs that we have no control over the regret.
On the other hand, for any lucky epoch t ∈ [T/B]\B, we would associate the t-th epoch with
an expert i(t) ∈ [n] that (1) is competitive with i∗, and (2) lies in the pool Pt. Formally, the
value of B and {i(t)}t∈[T/B] are assigned by the following stochastic process.

Stochastic process Starting with β(1) = 1 and τ = 1, define a (discrete) stochastic pro-
cess by realizing the randomness ξ1, . . . , ξT/B epoch by epoch. Suppose the process proceeds
to step τ and the randomness ξ1, . . . , ξβ(τ)−1 are realized up to the (β(τ)−1)-th epoch. Then

the pool P̃β(τ)−1 is also fixed by definition. Let t(i∗, τ) denote the epoch when i∗ gets evicted,
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conditioned on i∗ ∈ Rβ(τ) due to the randomness ξβ(τ) and that it survives the competition
among Rβ(τ) (Line 7 of ?? 3). (If i∗ never gets evicted, then we set t(i∗, τ) =∞.) The (con-

ditional) eviction time t(i∗, τ) of expert i∗ is determined by the fixed pool P̃β(τ)−1 and the
loss sequence ℓ1, . . . , ℓT . In other words, we observe that t(i∗, τ) ∈ [T/B] is only a function

of ℓ1, . . . , ℓT and P̃β(τ)−1: it is independent of ξβ(τ)+1, . . . , ξT/B because i∗ enters at epoch

β(τ) and can only be kicked out by experts joining before it, i.e., the experts in P̃β(τ)−1; and
it is independent of ξβ(τ) because we already condition on the event of i∗ surviving among
Rβ(τ).

We now continue to define the stochastic process and consider the following cases.

• Case 1. Suppose t(i∗, τ) ̸= ∞, i.e., expert i∗ would be evicted at the end of epoch
t(i∗, τ) ∈ [β(τ), T/B]. Suppose it is removed by expert i∗τ . Then we set β(τ + 1) =
t(i∗, τ) + 1 and assign i(β(τ)) = · · · = i(β(τ + 1) − 1) = i∗τ . We then realize the
randomness ξβ(τ), . . . , ξβ(τ+1)−1 and proceed to step τ + 1.

• Case 2. Suppose t(i∗, τ) =∞, i.e., expert i∗ would not be kicked out of the pool once
it is sampled in Rβ(τ) and survives the competition among Rβ(τ). We then realize the
randomness of ξβ(τ) and further divide into two cases based on it.

– Case 2-1. If Rβ(τ) contains an expert i∗τ ∈ [n] that receives less loss than i∗ during
epoch β(τ), then we set β(τ +1) = β(τ) + 1 and assign i(β(τ)) = i∗τ . We proceed
to step τ + 1.

– Case 2-2. Suppose Rβ(τ) does not contain any expert that gets less loss than i∗

during epoch β(τ), then

∗ Case 2-2-1. If expert i∗ has been sampled, i.e., i∗ ∈ Rβ(τ), then assign
i(β(τ)) = · · · = i(T/B) = i∗ and terminate the process. We note that
by the definition of t(i∗, τ) and the condition, i∗ will survive till the end.

∗ Case 2-2-2. If expert i∗ has not been sampled, i.e., i∗ /∈ Rβ(τ), then add β(τ)
into B and set β(τ + 1) = β(τ) + 1. We proceed to step τ + 1.

Having defined the stochastic process, we proceed with our regret analysis. The follow-
ing two lemmas are critical to the proof. First, we show the size of B is small with high
probability:

Lemma 5.3.3 (unlucky epoch). With probability at least 1 − 1/ poly(T ), the stochastic
process ends with |B| ≤ O(ε2n log T ).

Proof. We count the total number of steps that the stochastic process come with Case 2-2.
Whenever the process falls into Case 2-2, i.e., at some step τ , Rβ(τ) does not contain any
expert better than i∗ during epoch β(τ), we know that

Pr
[
i∗ ∈ Rβ(τ)|Rβ(τ) has no expert better than i∗ during epoch β(τ)

]
≥ 1

n
· ε−2, (5.3.9)
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since there are ε−2 experts sampled without replacement from [n]. Consider the following
two cases: (1) if i∗ ∈ Rβ(τ), then the process would terminate immediately and there will
be no more Case 2-2 in the future. This situation happens with probability at least 1

n
· ε−2

by eq. (5.3.9); and (2) if i∗ /∈ Rβ(τ), then the process would still continue. Since we do not
augment B in Case 1 and Case 2-1, the size of B is bounded by total number of steps of Case
2-2, and we have,

Pr
[
|B| ≥ cε2n log T

]
≤
(
1− 1/ε2n

)cε2n log T ≤ T−c.

This concludes the proof.

We then prove for epoch t ∈ [T ], the expert i(t) resides in pool Pt and is competitive
with i∗ (over certain time period).

Lemma 5.3.4 (cover). For any epoch t ∈ [T/B]\B, suppose β(τ) ≤ t < β(τ + 1), then we
have

(i) i(β(τ)) = · · · = i(t) = · · · = i(β(τ + 1)− 1) = i∗τ ̸= nil;

(ii) i∗τ ∈ Pν for any ν ∈ [β(τ) : β(τ + 1)− 1];

(iii)
∑β(τ+1)−1

ν=β(τ) Lν(i(t)) <
∑β(τ+1)−1

ν=β(τ) Lν(i
∗) + ε(β(τ + 1)− β(τ)).

Proof. The first claim is straightforward from the assignment process. Since t ∈ [β(τ) :
β(τ + 1) − 1] and t /∈ B, we note in the β(τ)-th epoch, the process falls into Case 1, Case
2-1 or Case 2-2-1.

In Case 1. If i∗ is sampled in the Rβ(τ) and happens to survive the comparison among Rt,
then i∗ wound be evicted at the end of (β(τ +1)− 1)-th epoch when comparing with expert
i∗τ . First of all, this indicates that i

∗
τ enters the pool before epoch β(τ) (an expert can only

be evicted by older expert), and therefore, the eviction time of i∗τ is already determined given
ξ1, . . . , ξβ(τ)−1 and ℓ1, . . . , ℓT/B and it is no earlier than β(τ+1)−1 because otherwise, it could
not kick i∗ out. The third claims follows directly from the eviction rule (see eq. (5.3.1)).

In Case 2-1, we know that β(τ) = t, β(τ + 1) = t + 1 and i∗τ ∈ Rt is an expert that has
better performance than i∗. The second and last claims are then straightforward.

Finally, in Case 2-2-1, we note that i∗τ = i∗ and i∗ survives till the end. The last two
claims are straightforward and we finish the proof.

Now we can finish the proof of proposition 5.3.2.
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Proof of proposition 5.3.2. Conditioned on the high probability event of lemma 5.3.3, the
total regret of Baseline is controlled as follows:

T/B∑
t=1

B∑
b=1

ℓ(t−1)B+b

(
i(t−1)B+b

)
− ℓ(t−1)B+b(i

∗)

=
∑

t∈[T/B]\B

B∑
b=1

(
ℓ(t−1)B+b

(
i(t−1)B+b

)
− ℓ(t−1)B+b(i

∗)
)

+
∑
t∈B

B∑
b=1

ℓ(t−1)B+b

(
i(t−1)B+b

)
− ℓ(t−1)B+b(i

∗)

≤
∑

t∈[T/B]\B

B∑
b=1

(ℓ(t−1)B+b(i(t−1)B+b)− ℓ(t−1)B+b(i
∗)) +O(ε2n log T ) ·B

≤
∑

t∈[T/B]\B

B(Lt(i(t))− Lt(i
∗)) +

T

B
·O
(√

B log(nT )
)
+O

(
ε2nB log T

)
=
∑
τ

∑
t∈[β(τ):β(τ+1)−1],t/∈B

B(Lt(i(t))− Lt(i
∗)) +O

(
TB−1/2 log1/2(nT )

)
+O

(
ε2nB log T

)
≤
∑
τ

εB(β(τ + 1)− β(τ)) +O
(
TB−1/2 log1/2(nT )

)
+O

(
ε2nB log T

)
= O

(
εT + TB−1/2 log1/2(nT ) + ε2nB log T

)
.

We split the regret based on whether t belongs to B in the first step. The second step follows
from |B| ≤ O(ε2n log T ) (lemma 5.3.3) and ℓt ∈ [0, 1]n. The third step follows from the
guarantee of MWU (lemma 5.2.1) and the fact that the expert i(t) is contained in the pool
Pt (second claim of lemma 5.3.4). We split [T/B] according to β(τ) in the fourth step and
make use of the first claim of lemma 5.3.4. The fifth step follows from the third claim of
lemma 5.3.4. We conclude the regret analysis.

Combining proposition 5.3.1 and proposition 5.3.2, we conclude the proof of theorem 5.3.1.

Moreover, balancing the last two regret terms by taking B = (T/ε2n)
2/3

, we get:

Corollary 5.3.1. Let T, n be positive integer, ε ∈ (0, 1/2), T = Ω(ε2n), there exists an

online learning algorithm that achieves Õ(εT + T 2/3(ε2n)1/3) regret with probability at least
1− 1/ poly(T ) and uses O(ε−2 log3(nT )) bits of memory.

5.4 Full algorithm and analysis

Building upon Baseline, we can state our main result.
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Theorem 5.4.1 (Main algorithmic result). Let T, n be positive integers and δ ∈ (0, 1]. There

exists an online learning algorithm that achieves a total regret of Õ
(
n2T

2
2+δ

)
with probability

at least 1− poly(T ) and uses O
(
nδ log4(nT )

)
bits of memory.

Full Algorithm

Parameters Let ε = n−δ/2 and T = n(n/ε)K . For simplicity, we assume ε−1, εn and K
are positive integers for now. Define Tk = n(n/ε)k for each k ∈ [K], and the epoch length is
fixed as B = 1/ε2.

Algorithm description The FullAlgo (pseudocode in ?? 6) aggregates Baseline+

(?? 4) by levels. We first describe the algorithm Baseline+, which takes in a level parameter
k. At the bottom level (k = 1), the algorithm repeatedly runs Baseline for T/T1 =
(n/ε)K−1 episodes. Within each episode, the algorithm starts with a fresh run of Baseline
and continues for T1 = n2/ε days. The T1 days are split into εn2 epochs, and each epoch
contains B = 1/ε2 days. We will later see that this guarantees that each n2/ε days, the
algorithm gets a total regret of O(n2 log(nT )) compared with the best expert.

Baseline+ differs significantly from Baseline starting from the second level (k ≥ 2).
Instead of potentially playing a different decision every day, Baseline+ joins every Tk−1 =
n(n/ε)k−1 consecutive days as one decision day and plays the same decision on all of them.
There are T/Tk episodes and n/ε decision days within each episode. Again, they are divided
into εn epochs with 1/ε2 days each epoch. The algorithm restarts every episode.

The key point is that instead of directly following the advice of expert i, the algorithm
follows from the combination of expert i and Baseline+(k− 1). In particular, MergeExp
(pseudocode in ?? 5) takes an expert i and Baseline+(k − 1) and runs MWU over them.
We take it as the new expert ek,i for level k. The advantage is that the loss of ek,i is roughly
the minimum of Baseline+(k − 1) and i (by the regret guarantee of MWU) and thus has
small width. This motivates the modified eviction rule.

Eviction rule We reload the notations from section 5.3 and introduce a few more. For
any level k ∈ [K], episode r ∈ [T/Tk], epoch t ∈ [εn], let Pk,r,t ⊆ {ek,i}i∈[n] be the pool of
experts at the beginning of t-th epoch (after adding Rk,r,t) and the pool remains unchanged
during the t-th epoch. Let Tk,r,t,b = (r−1)Tk+(t−1)BTk−1+(b−1)Tk−1. For each decision
day b ∈ [B], we update the MWU and the cumulative loss according to the truncated loss

L̂k,r,t,b(ek,i) = max
{
Lk,r,t,b(ek,i)− Lk,r,t,b (Baseline+(k − 1)) ,−εk−1 log2k−1(nT )

}
(5.4.1)

where

Lk,r,t,b(ek,i) =
1

Tk−1

Tk−1∑
τ=1

ℓTk,r,t,b+τ (ek,i) (5.4.2)
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is the average loss on the b-th decision day, Note that without the truncation, L̂k,r,t,b would
simply be a shift of Lk,r,t,b ∈ [0, 1]n. Looking ahead, the truncation guarantees the width of

L̂k,r,t,b to be 2εk−1 log2k−1(nT ), since it is possible that ek,i performs much better than expert
i and Baseline+(k − 1).

Now we can state the eviction rule as follows. For experts in Rk,r,t, we just keep the
best expert. For each remaining expert ek,i (include the one that survives in Rk,r,t), let
Γk,r,t,i be the period of time that ek,i resides in the pool. For any time interval I ⊆ Γk,r,t,i,

recall that LI(ek,i) =
1
|I|
∑

t∈I Lt(ek,i) is the average loss of expert j over I. Let L̂I(ek,i) =
1
|I|
∑

t∈I L̂t(ek,i) be the cumulative truncated loss defined similarly. The algorithm compares
ek,i with every other expert ek,j ∈ Pk,r,t, and the expert ek,i is evicted at the end of epoch t
if and only if

(i) The expert ek,j entered the pool Pk,r,t before the expert ek,i; and

(ii) The average loss L̂Γk,r,t,i
(ek,i) of ek,i over Γk,r,t,i is at least that of expert ek,j up to an

additive factor of εk log2k−1(nT ):

L̂Γk,r,t,i
(ek,i) ≥ L̂Γk,r,t,i

(ek,j)− εk log2k−1(nT ). (5.4.3)

In summary, Baseline+(k) (for k ∈ [K]) differs from Baseline in three ways:

• Baseline+(k) restarts every Tk days, and within each episode, it regards Tk−1 days
as one decision day;

• Baseline+(k) follows the decision of MergeExp instead of directly using the original
experts [n], and crucially it considers the truncated loss for eviction and MWU update;

• The eviction threshold changes from ε to εk log2k−1(nT ).

Finally, we note that FullAlgo outputs the decision of Baseline+(K). The pseu-
docode of these procedures are given below.
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Algorithm 4: Baseline+

Input: Parameter k
1 For each episode r = 1, 2, . . . , T/Tk

/* if k = 1, then loop from 1 to εn2 */

2 For each epoch t = 1, 2, . . . , εn
3 For all i ∈ [n], let ek,i = MergeExp(k, i).
4 Sample a random set R of ε−2 experts without replacement from {ek,i}i∈[n],

add them to P .
5 For each decision day b = 1, 2, . . . , B

6 Compute p ∝ exp
(
−η
∑b−1

τ=1 L̂k,r,t,τ (ek,i)
)
for ek,i ∈ P

7 Sample an expert ik,r,t,b ∼ p and follow ek,ik,r,t,b for Tk−1 days

8 Remove all except the best expert from R
9 For every pair {ek,i, ek,j} ∈ P

10 Remove ek,i from P if ek,j entered P before ek,i and condition (5.4.3) holds

11 Clear the pool P and restart

Algorithm 5: Merge expert (MergeExp)

Input: Parameter k, expert i
Output: Expert ek,i

1 For each episode r = 1, 2, . . . , T/Tk−1

2 Initiate with uniform weight over expert i and Baseline+(k − 1)
3 For t = 1, 2, . . . , Tk−1

4 Run MWU over expert i and Baseline+(k − 1), and play the decision

Algorithm 6: Full expert learning algorithm (FullAlgo)

Input: Parameter T , ε, experts [n]
Maintain Baseline+(k) (for each k ∈ [K]) and play the decision of Baseline+(K)

Analysis of FullAlgo

We provide a formal analysis of FullAlgo and prove its memory and regret guarantees.

Regret analysis

We start with the regret analysis first, since the memory analysis depends on it. Formally,
we aim to show:

Proposition 5.4.1 (regret bound). For any level k ∈ [K] and episode r ∈ [T/Tk], the
Baseline+(k) has a total regret of O

(
nk+1 log2k(nT )

)
with probability at least 1−1/ poly(T ).

We prove the claim by an induction on k. The case k = 1 follows directly from proposi-
tion 5.3.2 by taking T = T1 = n2/ε and B = 1/ε2. Suppose the induction holds up to level
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k − 1 (k ≥ 2), i.e.,

Lr,k,t,b(Baseline+(k − 1))− Lr,k,t,b(i) ≤ εk−1 log2k−2(nT ). (5.4.4)

We proceed for level k and prove the claim for any episode r ∈ [T/Tk].

We first state some basic properties on Lk,r,t,b(ek,i) and L̂k,r,t,b(ek,i). The first claim
states ek,i is relatively good on each decision day (since it runs MWU over expert i and

Baseline+(k − 1)), and the second claim states L̂k,r,t,b(ek,i) has small width.

Lemma 5.4.1. For epoch t ∈ [εn] and decision day b ∈ [B], with probability at least 1 −
1/ poly(T ), one has

• Lk,r,t,b(ek,i) ≤ min {Lk,r,t,b(i),Lk,r,t,b(Baseline+(k − 1))}+O
(√

log(nT )/Tk−1

)
; and

• L̂k,r,t,b(ek,i) ∈
[
−εk−1 log2k−1(nT ), εk−1 log2k−1(nT )

]
.

Proof. The first claim follows directly from the MWU guarantee of MergeExpert, in
particular, with probability at least 1− 1/ poly(T ),

Lk,r,t,b(ek,i) ≤ min {Lk,r,t,b(i),Lk,r,t,b (Baseline+(k − 1))}+O
(√

log(nT )/Tk−1

)
. (5.4.5)

For the second claim, we have

Lk,r,t,b(ek,i)− Lk,r,t,b(Baseline+(k − 1)) ≤ Lk,r,t,b(i)− Lk,r,t,b(Baseline+(k − 1))

+O
(√

log(nT )/Tk−1

)
≤ 2εk−1 log2k−2(nT ).

where the first step follows from eq. (5.4.5), the second step holds due to induction hypothesis
(eq. (5.4.4)) and Tk−1 = n(n/ε)k−1. Therefore,

L̂k,r,t,b(ek,i) = max
{
Lk,r,t,b(ek,i)− Lk,r,t,b(Baseline+(k − 1)),−εk−1 log2k−1(nT )

}
∈
[
−εk−1 log2k−1(nT )), εk−1 log2k−1(nT )

]
.

We finish the proof here.

Next we show that even though we update MWU in Baseline+(k) using the truncated
loss, the regret with respect to the original expert [n] can be still be bounded.

Lemma 5.4.2. For any epoch t ∈ [εn], suppose ek,i ∈ Pk,r,t, then with probability at least
1− 1/ poly(T ),

B∑
b=1

Lk,r,t,b(ek,ik,r,t,b) ≤
B∑
b=1

L̂k,r,t,b(ek,i) + Lk,r,t,b(Baseline+(k − 1)) +
1

4
εk−2 log2k(nT ).
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Proof. By lemma 5.4.1, we note that L̂k,r,t(ek,j) ∈ [−εk−1 log2k−1(nT )), εk−1 log2k−1(nT )] for
any j ∈ [n]. Recall that Baseline+(k) runs MWU in epoch t with B = 1/ε2 decision days,
hence, with probability at least 1− poly(T ),

B∑
b=1

L̂k,r,t,b(ek,ik,r,t,b) ≤
B∑
b=1

L̂k,r,t,b(ek,i) + εk−1 log2k−1(nT ) ·O
(√

log(nT )/ε
)

≤
B∑
b=1

L̂k,r,t,b(ek,i) +
1

4
εk−2 log2k(nT ). (5.4.6)

The LHS satisfies

B∑
b=1

L̂k,r,t,b(ek,ik,r,t,b) =
B∑
b=1

max
{
Lk,r,t,b(ek,ik,r,t,b)− Lk,r,t,b(Baseline+(k − 1)),−εk−1 log2k−1(nT )

}
≥ Lk,r,t,b(ek,ik,r,t,b) (5.4.7)

− Lk,r,t,b(Baseline+(k − 1)). (5.4.8)

Combining eq. (5.4.6) and eq. (5.4.8), we conclude the proof.

Lemma 5.4.3. For any i ∈ [n] and epoch t ∈ [εn], with probability at least 1− 1/ poly(T ),

B∑
b=1

Lk,r,t,b(ek,ik,r,t,b) ≤
B∑
b=1

Lk,r,t,b(i) +O
(
εk−3 log2k−2(nT )

)
.

Proof. For any expert ek,i, any decision day b ∈ [B], since MergeExp runs MWU over
Baseline+(k − 1) and expert i, then with probability at least 1− 1/ poly(T ),

Lk,r,t,b(ek,i) ≤ Lk,r,t,b(Baseline+(k − 1)) +O
(√

log(nT )/Tk−1

)
≤ Lk,r,t,b(i) + εk−1 log2k−2(nT ) +O

(√
log(nT )/Tk−1

)
≤ Lk,r,t,b(i) +O

(
εk−1 log2k−2(nT )

)
.

The first step follows from the guarantee of MWU, the second step follows from induction
hypothesis (eq. (5.4.4)) and the last step follows from the choice of Tk−1. Summing over
b ∈ [B], we get the desired bound.

Let i∗k,r ∈ [n] be the optimal expert in the r-th episode. We use the same stochastic
process of section 5.3 to define the unlucky epoch Bk,r ⊆ [εn] and assign i(t) ∈ [n] ∪ {nil}
(t ∈ [εn]). Note that we fix all the randomness used at level 1, 2, . . . , k − 1 and episode
1, 2, . . . , r − 1 in advance, and so the stochastic process depends only on the randomness of
Baseline+(k) inside episode r.

We can similarly bound the number of unlucky epochs.
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Lemma 5.4.4 (unlucky epoch). With probability at least 1− 1/ poly(T ),

(i) |Bk,r| ≤ O(ε2n log T ) and

(ii)
∑B

b=1 Lk,r,t,b(ek,ik,r,t,b)−
∑B

b=1 Lk,r,t,b(i
∗
k,r) ≤ O

(
εk−3 log2k−2(nT )

)
for any t ∈ Bk,r.

Proof. The first claim follows directly from lemma 5.3.3, the second claim follows from
lemma 5.4.3.

The covering property holds similarly:

Lemma 5.4.5 (cover). For any epoch t ∈ [εn]\Bk,r, suppose β(τ) ≤ t < β(τ + 1), then with
probability at least 1− 1/ poly(T ), we have

(i) i(β(τ)) = · · · = i(t) = · · · = i(β(τ + 1)− 1) = i∗k,r,τ ̸= nil;

(ii) i∗k,r,τ ∈ Pk,r,ν for any ν ∈ [β(τ) : β(τ + 1)− 1]; and

(iii)

β(τ+1)−1∑
ν=β(τ)

B∑
b=1

L̂k,r,t,b(ek,i(t)) + Lk,r,t,b(Baseline+(k − 1))

<

β(τ+1)−1∑
ν=β(τ)

B∑
b=1

Lk,r,t,b(i
∗
k,r) + 2εk−2 log2k−1(nT )(β(τ + 1)− β(τ)).

Proof. The first two claims follow exactly from lemma 5.3.4. For the last claim, first we have

β(τ+1)−1∑
ν=β(τ)

B∑
b=1

L̂k,r,t,b(ek,i(t)) <

β(τ+1)−1∑
ν=β(τ)

B∑
b=1

L̂k,r,t,b(ek,i∗k,r) + εk log2k−1(nT )B(β(τ + 1)− β(τ))

=

β(τ+1)−1∑
ν=β(τ)

B∑
b=1

L̂k,r,t,b(ek,i∗k,r) + εk−2 log2k−1(nT )(β(τ + 1)− β(τ)),

(5.4.9)

where the first step follows from the third claim of lemma 5.4.5 by replacing ε with

εk log2k−1(nT ),

and the second step comes from the choice of B = 1/ε2.
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With probability at least 1− 1/ poly(T ), we have

B∑
b=1

L̂k,r,t,b(ek,i∗k,r)

=
B∑
b=1

max{Lk,r,t,b(ek,i∗k,r)− Lk,r,t,b(Baseline+(k − 1)),−εk−1 log2k−1(nT )}

≤
B∑
b=1

max{Lk,r,t,b(i
∗
k,r)− Lk,r,t,b(Baseline+(k − 1)) (5.4.10)

+O
(√

log(nT )/Tk−1

)
,−εk−1 log2k−1(nT )}

≤
B∑
b=1

Lk,r,t,b(i
∗
k,r)− Lk,r,t,b(Baseline+(k − 1)) +O(

√
log(nT )/Tk−1) · (1/ε2)

≤
B∑
b=1

Lk,r,t,b(i
∗
k,r)− Lk,r,t,b(Baseline+(k − 1)) + εk−2 log2k−1(nT ). (5.4.11)

The first step follows from the definition, the second step follows from the first claim in
lemma 5.4.1, the third step holds due to the induction hypothesis (eq. (5.4.4)), the last step
follows from the choice of Tk−1.

Combining eq. (5.4.9) and eq. (5.4.11), we complete the proof.

We can now wrap up the proof of the regret guarantee (proposition 5.4.1):
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Proof of proposition 5.4.1. With probability at least 1− 1/ poly(T ), we have

εn∑
t=1

B∑
b=1

Lk,r,t,b

(
ek,ik,r,t,b

)
− Lk,r,t,b(i

∗
k,r)

=
∑

t∈[εn]\Bk,r

B∑
b=1

(
Lk,r,t,b

(
ek,ik,r,t,b

)
− Lk,r,t,b(i

∗
k,r)
)
+
∑
t∈Bk,r

B∑
b=1

(
Lk,r,t,b

(
ek,ik,r,t,b

)
− Lk,r,t,b(i

∗
k,r)
)

≤
∑

t∈[εn]\Bk,r

B∑
b=1

(
Lk,r,t,b

(
ek,ik,r,t,b

)
− Lk,r,t,b(i

∗
k,r)
)
+O(ε2n log T ) ·O(εk−3 log2k−2(nT ))

≤
∑

t∈[εn]\Bk,r

B∑
b=1

(
L̂k,r,t,b(ek,i(t)) + Lk,r,t,b(Baseline+(k − 1))− Lk,r,t,b(i

∗
k,r)
)

+
1

4
εk−2 log2k(nT ) · εn+O(εk−1n log2k−1(nT ))

=
∑
τ

∑
t∈[β(τ):β(τ+1)−1],t/∈B

B∑
b=1

(
L̂k,r,t,b(ek,i(t)) + Lk,r,t,b(Baseline+(k − 1))− Lk,r,t,b(i

∗
k,r)
)

+
1

2
εk−1n log2k(nT )

≤
∑
τ

2εk−2 log2k−1(nT )(β(τ + 1)− β(τ)) +
1

2
εk−1n log2k(nT ) ≤ εk−1n log2k(nT ).

The second step follows from lemma 5.4.4, the third step is via lemma 5.4.2 and the fact
that i(t) ∈ Pk,r,t for any t ∈ [εn]\Bk,r (see the second claim of lemma 5.4.5), the fourth step
follows from lemma 5.4.5, and the fifth step from the third claim of lemma 5.4.5.

Hence, the average regret of the r-th episode equals εk−1n log2k(nT )/(εnB) = εkn log2k(nT ).
We finish the induction and complete the proof here.

Memory

We bound the memory requirement of Baseline+(k) (for each k ∈ [K]). The proof essen-
tially inherits from section 5.3, with the key observation that

L̂k,r,t,b ∈ [−εk−1 log2k−1(nT ), εk−1 log2k−1(nT )]

instead of [0, 1]n. This allows one to perform a fine-grained division like eq. (5.4.3). In the
remaining of this section, we always condition on the high probability event of the previous
section.

The following lemma is similar to lemma 5.3.1.

Lemma 5.4.6. For any level k ∈ [2 : K], episode r ∈ Tk and epoch t ∈ [εn], suppose experts

ek,i, ek,j ∈ P̃k,r,t and ek,j ≻ ek,i. Let α ∈ (0, 1), then at least one of the following must hold:
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(i) L̂j,j ≥ L̂i,i + 2εk−1 log2k−1(nT )(ε/2− α);

(ii) |Γk,r,t,j| ≥
(
1 + α

1−α

)
|Γk,r,t,i|.

Here L̂i,i = L̂Γk,r,t,i
(ek,i), L̂i,j = LΓk,r,t,i

(ek,j) and accordingly L̂j,j = LΓk,r,t,j
(ek,j)

Proof. Normalizing L̂k,r,t,b by a factor of 2εk−1 log2k−1(nT ), by lemma 5.4.1, we know that the

truncated loss L̂k,r,t,b/2ε
k−1 log2k−1(nT ) ∈ [−1/2, 1/2]n. The new eviction rule (eq. (5.4.3))

reduces to the old one (eq. (5.3.1)) with ε replaced by ε/2. Then we can apply lemma 5.3.1
and get the desired.

Similar to lemma 5.3.2, it follows that the pool size is small. The proof is analogous to
lemma 5.3.2, by applying the same potential function using the conditions from lemma 5.4.6.

Lemma 5.4.7 (pool size). For any level k ∈ [K], episode r ∈ Tk and epoch t ∈ [εn], the size

of the pool P̃k,r,t is at most Sk = O(ε−1 log T ).

Now we can wrap up the memory requirement.

Proposition 5.4.2 (memory bound). At any time during the execution of FullAlgo, the
memory usage is at most O

(
1
ε2
log4(nT )

)
bits.

Proof. At any time step, FullAlgo maintains Baseline+(k) for each k ∈ K and experts
{ek,i}k∈[K],i∈[n]. For Baseline+(k), by lemma 5.4.7, the size of the pool never exceeds
O(ε−1 log T ) and therefore it takes O(ε−2 log3 nT ) · K = O(ε−2 log4 nT ) bits of memory
in total. Note that Baseline+(k) tracks {ek,i}i∈[n] instead of the original expert. This does
not take extra memory, since we always maintain Baseline+(k− 1) and perform MWU on
Baseline+(k − 1) and expert i does not take extra memory.

Combining proposition 5.4.1 and proposition 5.4.2, we can prove theorem 5.4.1.

Proof of theorem 5.4.1. Taking ε−1 = n−δ/2, by proposition 5.4.1, the memory never exceeds
O(nδ log4(nT )). For regret analysis, suppose n(n/ε)K ≤ T < n(n/ε)K+1 for some integer
K ≥ 0. The proposition 5.4.1 states that within n(n/ε)K+1 days, the total regret is at most

O
(
nK+2 log2K+2(nT )

)
≤ Õ

(
n2T

2
2+δ

)
. We conclude the proof here.

Remark 5.4.1. Our results extend easily to the case that T is unknown in advance: One
can apply the common doubling trick and obtain the same result.
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5.5 Lower bound against adaptive adversary

We prove no algorithm can achieve sub-linear regret using sub-linear space when facing an
adaptive adversary (see definition 5.2.2).

Theorem 5.5.1 (Lower bound against adaptive adversary). Let n, T > 0 be sufficiently
large, 0 < ε < 1/40. Any algorithm that achieves O(εT ) regret against an adaptive adversary
requires at least Ω(min{ε−1 log2 n, n}) bits of memory.

Our lower bound construction utilizes the well-established connection of no-regret learn-
ing and zero-sum games. We first construct a family of zero-sum games whose equilibria are
far apart (lemma 5.5.1 and lemma 5.5.2). We then prove it serves as a hard distribution for
the online learning task. Throughout the proof, we assume ε−1 ≤ n

20 log2 n
and k = 1/(2ε) is

an integer.

Hard distribution We construct a family of zero-sum games. For any set S ⊆ [n] of size
k, the game matrix AS ∈ [0, 4]n×n determines the loss of the first player (Alice):

AS[i, j] =


4 i /∈ S
0 i ∈ S, i ̸= j
1 i ∈ S, i = j.

To summarize, Alice receives loss 4 if she plays any action outside of the support of S, and
they are strictly dominated by actions in S. For any action pair (i, j) ∈ S × S, the game
is constructed as a generalized matching penny game: Alice receives loss 1 if her action is
matched by Bob, and she receives loss 0 otherwise. The (hard) distribution Dk is defined as
the uniform distribution over the above family of zero-sum games {AS}S⊆[n],|S|=k.

We first make a simple observation about the equilibrium strategy.

Lemma 5.5.1. For any S ⊆ [n] of size k, the minmax value of game AS equals 1/k.
Furthermore, Alice’s equilibrium strategy is 1

k
· 1S, where 1S is the indicator vector whose

i-th entry equals 1{i ∈ S}.

Proof. It is easy to verify that (1S,1S) is the unique equilibrium of the game, and by defi-
nition, Alice receives 1

k
loss in the equilibrium.

We then prove that no single strategy can (approximately) cover the minmax strategy of
a large number of games. For any strategy p ∈ ∆n and game AS, define ℓ(p, S) as the worst
case loss received by Alice when playing p in game AS, i.e., ℓ(p, S) = maxi∈[n] p

⊤AS1i.

Lemma 5.5.2. For any fixed strategy p ∈ ∆n, there are at most
(

n
3k/4

)
number of sets S ⊆ [n]

(|S| = k) such that ℓ(p, S) < 2/k.
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Proof. Without loss of generality, we assume p1 ≥ p2 ≥ · · · ≥ pn.
Case 1. Suppose p1 ≥ 2/k. Then for any set S ⊆ [n] (|S| = k), there are two cases:

either (1) if 1 ∈ S, then Bob plays action 1 and Alice receives at least p1 ≥ 2/k loss; or (2)
if 1 /∈ S, then Alice receives at least 4p1 ≥ 8/k loss. Therefore, in this case, there is no S
satisfies ℓ(p, S) ≤ 2/k.

Case 2. Suppose p1 < 2/k. Let i∗ ∈ [n] be the largest integer such that pi∗ ≥ 1/2k and
let I = [i∗]. Note if p1 < 1/2k, we simply take I = ∅.

For any S satisfies ℓ(p, S) < 2/k, we first prove I ⊆ S. Otherwise, suppose that there
exists an index i ∈ I such that i /∈ S, then by having Bob play action i, Alice receives at
least 4pi ≥ 2/k loss.

Case 2-1. Suppose |I| < k/4, then we claim that there is no set S satisfies ℓ(p, S) < 2/k.
To see this, for any set S ⊆ [n] of size k, we note that∑

i∈S

pi =
∑
i∈I

pi +
∑
i∈S\I

pi ≤
k

4
· 2
k
+

3k

4
· 1
2k

=
7

8
,

where the second step holds as |I| < k/4, and for i ∈ I, pi < p1 = 2/k, for i ∈ S\I, pi < 1/2k.
Hence, we have

∑
i/∈S pi ≥ 1/8 and Alice receives at least 1/8 · 4 = 1/2 loss.

Case 2-2. Suppose |I| > 1/4k. We have already proved I ⊆ S, and therefore, there are
at most 3k/4 indices in S\I and they can be chosen from [n]\I, which can be upper bounded
by
(

n
3k/4

)
.

We conclude the lemma here.

Now we can prove the lower bound against adaptive adversary. The high-level idea is
that one can use a lower memory no-regret algorithm to approximate the minmax value of
a zero-sum game (where the opponent always plays the best response). Meanwhile, by a
counting argument, the number of different zero sum games constructed above are too large
and can not be “covered” by a low memory algorithm.

Proof of theorem 5.5.1. Let ALG be any algorithm with asymptotic regret of O(εT ) when
facing a strong adaptive adversary (definition 5.2.2). Suppose ALG uses M bits of memory
and we shall prove M ≥ Ω (ε−1 log2 n) (note we assume ε−1 ≤ n

log2 n
at the very beginning).

Consider the following scenario.

• A game AS is sampled from the distribution Dk.

• Alice and Bob play the game AS repeatedly for T rounds. In the t-th round (t ∈ [T ])

– Alice consults with ALG and commits a distribution pt ∈ ∆n over her n actions;

– Bob receives pt and best responds to Alice with yt = argmaxi∈[n]
(
p⊤t A

)
i
.
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Slightly abuse of notation, we would also use yt as an indicator vector. At the end, Alice
would achieve ε-approximate to its minmax value:

1

T

T∑
t=1

⟨pt, ASyt⟩ ≤
1

T
min
i∗

T∑
t=1

⟨i∗, ASyt⟩+ ε ≤ 1

k
+ ε ≤ 3

2k
. (5.5.1)

The first step follows from the regret guarantee of ALG, the second step follows from the min-
max Theorem (lemma 5.2.3) and the minmax value of AS always equals to 1/k (lemma 5.5.1),
the last step follows from the choice of k.

We prove by contradiction and assume that ALG uses at most M = 1
10
ε−1 log2 n bits of

memory. We aim to prove that Alice has loss at least 3/2k for every iteration with high
probability (over the choice of S). The proof is via the following counting argument.

As the algorithm uses at most 1
10
ε−1 log2 n bits of memory, there are 2M = nk/5 possible

memory states X in total. For each state x ∈ X, suppose that the algorithm outputs a
strategy px ∈ ∆n (note px could be a random variable). Define

Tx := {S : Pr[ℓ(px, S) < 2/k] ≥ 0.1, S ∈ [n], |S| = k} .

By lemma 5.5.2, we know that |Tx| ≤ 10 ·
(

n
3k/4

)
. Taking an union over all states x ∈ X,

one has ∣∣∣∣∣⋃
x∈X

Tx

∣∣∣∣∣ ≤ nk/5 · 10
(

n

3k/4

)
≤ 1

100

(
n

k

)
.

The last step follows from the choice of parameters.
Hence, we conclude that with probability at least 0.99, the nature draws a game AS

such that S /∈
⋃

x∈X Tx. This means that in each round of the game, the algorithm receives
at least 1

10
1
k
+ 9

10
2
k
= 19

10k
loss in expectation since Bob always plays best response. This

contradicts with eq. (5.5.1) and we conclude the proof.

5.6 Conclusion

In this paper, we provide the first sub-linear space online learning algorithm that achieves
sub-linear regret when facing an oblivious adversary. A separation has also been established
between oblivious and strong adaptive adversaries, where a linear memory lower bound is
shown to be necessary to achieve sub-linear regret.

Our work opens up a variety of exciting future research directions:

(i) First, an immediately interesting question is to close the gap between the space upper
and lower bound.

(ii) Second, the adaptive adversary model considered in the paper is relatively strong for
some applications, where the adversary only sees the prior decisions but not the mixed
strategy of current round. A natural open question is to investigate this model, often
called black-box adversary in the adversarially robust streaming literature.
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(iii) Third, other problem-specific notions of regret have been studied under different set-
tings, such as dynamic environments [70] and game theory [24, 37, 12]. A natural
follow-up question is whether sub-linear space is achievable there.

(iv) Finally, the MWU algorithm has numerous applications in game theory [72] and ma-
chine learning (including boosting [71] and reinforcement learning [48]). Our paper
opens up opportunities of deriving sub-linear space algorithms for these applications.
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[126] Gábor Lugosi and Shahar Mendelson. “Sub-gaussian estimators of the mean of a
random vector”. In: Annals of Statistics 47.2 (2019), pp. 783–794.

[127] Wolfgang Maass and Manfred K Warmuth. “Efficient learning with virtual threshold
gates”. In: Information and Computation 141.1 (1998), pp. 66–83.

[128] Arnab Maiti, Vishakha Patil, and Arindam Khan. “Multi-Armed Bandits with Bounded
Arm-Memory: Near-Optimal Guarantees for Best-Arm Identification and Regret Min-
imization”. In: Advances in Neural Information Processing Systems (NeurIPS) (2021).

[129] Annie Marsden et al. “Efficient Convex Optimization Requires Superlinear Memory”.
In: Conference on Learning Theory (COLT). 2022.

https://jerryzli.github.io/robust-ml-fall19/lec4.pdf
https://jerryzli.github.io/robust-ml-fall19/lec4.pdf
https://jerryzli.github.io/robust-ml-fall19/lec5.pdf
https://jerryzli.github.io/robust-ml-fall19/lec5.pdf
https://doi.org/10.1007/s10208-019-09427-x
https://doi.org/10.1007/s00440-019-00906-4
https://doi.org/10.1214/17-AOS1639


BIBLIOGRAPHY 104

[130] Frank McSherry. “Privacy integrated queries: an extensible platform for privacy-
preserving data analysis”. In: Commun. ACM 53.9 (2010), pp. 89–97. doi: 10.1145/
1810891.1810916. url: https://doi.org/10.1145/1810891.1810916.

[131] Frank McSherry and Kunal Talwar. “Mechanism Design via Differential Privacy”. In:
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS). 2007.

[132] Stanislav Minsker. “Geometric median and robust estimation in Banach spaces”. In:
Bernoulli 21.4 (2015), pp. 2308–2335. doi: 10.3150/14-BEJ645.

[133] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge Uni-
versity Press, 1995.

[134] A. S. Nemirovsky and D. B. and Yudin. Problem complexity and method efficiency
in optimization. A Wiley-Interscience Publication. Translated from the Russian and
with a preface by E. R. Dawson, Wiley-Interscience Series in Discrete Mathematics.
John Wiley & Sons, Inc., New York, 1983, pp. xv+388. isbn: 0-471-10345-4.

[135] J. v. Neumann. “Zur theorie der gesellschaftsspiele”. In: Mathematische Annalen
100.1 (1928), pp. 295–320.

[136] Masashi Okamoto. “Some inequalities relating to the partial sum of binomial prob-
abilities”. In: Annals of the institute of Statistical Mathematics 10.1 (1959), pp. 29–
35.

[137] Erik Ordentlich and Thomas M Cover. “The cost of achieving the best portfolio in
hindsight”. In: Mathematics of Operations Research 23.4 (1998), pp. 960–982.

[138] Adarsh Prasad, Sivaraman Balakrishnan, and Pradeep Ravikumar. “A Unified Ap-
proach to Robust Mean Estimation”. In: arXiv preprint arXiv:1907.00927 (2019).
url: https://arxiv.org/abs/1907.00927.

[139] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. “Online Learning: Stochas-
tic, Constrained, and Smoothed Adversaries”. In: Advances in Neural Information
Processing Systems (NIPS). 2011.

[140] Ran Raz. “A time-space lower bound for a large class of learning problems”. In: 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). 2017.

[141] Ran Raz. “Fast learning requires good memory: A time-space lower bound for parity
learning”. In: Journal of the ACM (JACM) 66.1 (2018), pp. 1–18.

[142] Vatsal Sharan, Aaron Sidford, and Gregory Valiant. “Memory-sample tradeoffs for
linear regression with small error”. In: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing (STOC). 2019.

[143] Alexander A Sherstov. “Communication complexity theory: Thirty-five years of set
disjointness”. In: International Symposium on Mathematical Foundations of Com-
puter Science (MFCS). 2014.

[144] Vikrant Singhal and Thomas Steinke. “Privately learning subspaces”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2021.

https://doi.org/10.1145/1810891.1810916
https://doi.org/10.1145/1810891.1810916
https://doi.org/10.1145/1810891.1810916
https://doi.org/10.3150/14-BEJ645
https://arxiv.org/abs/1907.00927


BIBLIOGRAPHY 105

[145] Aleksandrs Slivkins. “Introduction to multi-armed bandits”. In: Foundations and
Trends® in Machine Learning 12.1-2 (2019), pp. 1–286.

[146] Vaidehi Srinivas et al. “Memory Bounds for the Experts Problem”. In: Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC). 2022.

[147] Jacob Steinhardt. “Robust Learning: Information Theory and Algorithms”. PhD the-
sis. Stanford University, 2018.

[148] Jacob Steinhardt, Moses Charikar, and Gregory Valiant. “Resilience: A Criterion
for Learning in the Presence of Arbitrary Outliers”. In: Innovations in Theoretical
Computer Science Conference (ITCS ’18). 2018.

[149] Jacob Steinhardt, Moses Charikar, and Gregory Valiant. “Resilience: A Criterion for
Learning in the Presence of Arbitrary Outliers”. In: 9th Innovations in Theoretical
Computer Science Conference (ITCS). 2018.

[150] Jacob Steinhardt and Percy Liang. “Adaptivity and Optimism: An Improved Expo-
nentiated Gradient Algorithm”. In: International Conference on Machine Learning
(ICML ’14). 2014.

[151] Jacob Steinhardt, Gregory Valiant, and Stefan Wager. “Memory, communication, and
statistical queries”. In: Conference on Learning Theory (COLT). 2016.

[152] Eiji Takimoto, Akira Maruoka, and Volodya Vovk. “Predicting nearly as well as the
best pruning of a decision tree through dynamic programming scheme”. In: Theoretical
Computer Science 261.1 (2001), pp. 179–209.

[153] Eliad Tsfadia et al. “Friendlycore: Practical differentially private aggregation”. In:
International Conference on Machine Learning (ICML). 2022.

[154] John W. Tukey. “A survey of sampling from contaminated distributions”. In: Con-
tributions to probability and statistics 2 (1960), pp. 448–485.

[155] David Wajc. “Rounding dynamic matchings against an adaptive adversary”. In: Pro-
ceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
(STOC). 2020.

[156] Weiran Wang and Canyi Lu. “Projection onto the capped simplex”. In: arXiv preprint
arXiv:1503.01002 (2015).

[157] Manfred K Warmuth and Dima Kuzmin. “Randomized online PCA algorithms with
regret bounds that are logarithmic in the dimension”. In: Journal of Machine Learning
Research 9.Oct (2008), pp. 2287–2320.

[158] David Woodruff, Fred Zhang, and Samson Zhou. “On robust streaming for learning
with experts: algorithms and lower bounds”. In: Advances in Neural Information
Processing Systems (NeurIPS) (2023).

[159] Emmanouil Zampetakis and Fred Zhang. “Bayesian Strategy-Proof Facility Location
via Robust Estimation”. In: Proceedings of The 26th International Conference on
Artificial Intelligence and Statistics (AISTATS). 2023.



BIBLIOGRAPHY 106

[160] Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. “Robust estimation via generalized
quasi-gradients”. In: arXiv preprint arXiv:2005.14073 (2020).

[161] Martin Zinkevich. “Online convex programming and generalized infinitesimal gradient
ascent”. In: International Conference on Machine Learning (ICML ’03). 2003.



107

Appendix A

Technical details for Chapter 2

A.1 Main algorithm description

1. Input: Dataset Z ′ and current estimate xt

2. Z ′
i ← (Z ′

i − xt) /B by scaling each point by B = maxi ∥Z ′
i − xt∥.

3. θ ← the largest margin θ such that ApproxBregman(Z ′, θ, T ) does not
Fail, where T = O(log k/θ2).

4. Output: d̂ = B
10
θ.

Figure A.1: Distance estimation—DistEst

A.2 Technical facts

We formally state the statistical guarantee of empirical average and coordinate-wise median-
of-means. The former is an application of the Chebyshev’s inequality. The latter is folklore
but can follow easily from the Lugosi-Mendelson condition by considering the projections
onto standard basis vectors.

Lemma A.2.1 (empirical mean). Let δ ∈ (0, 1). Given n i.i.d. copies X1, . . . ,Xn of a
random vector X ∈ Rd with mean µ and covariance Σ, let µ = 1

n

∑n
i=1 Xi. Then with

probability at least 1− δ,

∥µ− µ∥ ≤
√

Tr(Σ)

δn
.
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1. Input: Dataset Z ′ and current estimate xt

2. Z ′
i ← (Z ′

i − xt) /B by scaling each point by B = maxi ∥Z ′
i − xt∥.

3. θ ← the largest margin θ such that ApproxBregman(Z ′, θ, T ) does not
Fail, where T = O (log k/θ2).

4. ĝ ← ApproxBregman (Z ′, θ, T )

5. If ⟨ĝ,Z ′
i⟩ ≥ 0.1θ for at least 0.5k of the Z ′

i, output ĝ; otherwise, output
−ĝ.

Figure A.2: Gradient estimation—GradEst

1. Input: Dataset X1,X2, · · · ,Xn ∈ Rd

2. Let k = 3600 log(1/δ). Divide the data into 2k groups.

3. Compute the bucket mean of each group: Z1,Z2, · · · ,Z2k ∈ Rd.

4. Compute the coordinate-wise median-of-means of the second half of
bucket means:

x0 ←MedianOfMeans({Zk+1, · · · ,Z2k}).

5. Prune the first half of bucket means, where Z is the data matrix of
{Zi}ki=17:

Z ′ ← Prune(Z,x0).

6. Tdes ← Θ(log d), η ← 1/8000

7. Run the main descent procedure: µ̂ ← Descent(Z ′,x0, Tdes, η), using
DistEst and GradEst as above.

8. Output: µ̂

Figure A.3: Final algorithm
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Lemma A.2.2 (coordinate-wise median-of-means). Assume the Lugosi-Mendelson condition
(Assumption 2.2.1). Let {Zi}ki=1 be the bucket means from n points (with at most k/200
contaminated) and µ̂ be their coordinate-wise median-of-means. Then with probability at
least 1− δ/8,

∥µ̂− µ∥ ≤ 600
√
drδ ≲

√
d∥Σ∥ log(1/δ)

n
.

Our algorithm requires computing an approximation of the top (right) singular vector of
a matrix A ∈ Rm×n. The classic power method is efficient for this task.

Fact A.2.1 (power iteration; see Theorem 3.1 of [23]). Let λ(A) = maxx∈Sn−1 ∥Ax∥22. With
probability at least 9/10, the power method (with random initialization) outputs a unit vector

w such that ∥Aw∥22 ≥
λ(A)
2

in O(log n) iterations. Moreover, each iteration can be performed
in O(mn) time.

The following is a standard bound on binomial tail.

Lemma A.2.3 ([136]). Let H(n, p) be a binomial random variable. Then

Pr (H(n, p) ≥ 2np) ≤ exp (−np/3) .

A.3 Omitted proofs from Section 2.3

Proof of Lemma 2.3.1. First, suppose that in some iteration t it holds that ∥µ − xt∥ ≤
14000rδ. Then

1

21
∥µ− xt∗∥ ≤ dt∗ ≤ dt ≤ 2∥µ− xt∥ ≤ 28000rδ,

so that we may conclude ∥µ − xt∗∥ ≤ 588000rδ. Second, suppose that in all iterations t it
holds that ∥µ− xt∥ > 14000rδ. Then by the update rule with η = 1/8000,

∥xt+1 − µ∥2 = ∥xt − µ∥2 + 2ηdt ⟨xt − µ, gt⟩+ η2d2t∥gt∥2

≤ ∥xt − µ∥2 − 1

800000
dt∥µ− xt∥+

1

16000000
∥xt − µ∥2

≤ ∥xt − µ∥2 − 1

1680000
∥µ− xt∥2 +

1

16000000
∥xt − µ∥2

=

(
1− 179

336000000

)
∥xt − µ∥2

Hence, the error bound drops at a geometric rate. The conclusion follows since ∥µ− x0∥ ≤
O(
√

kd∥Σ∥/n) ≤ O(
√
drδ).



APPENDIX A. TECHNICAL DETAILS FOR CHAPTER 2 110

A.4 Omitted proof from Section 2.4

First recall that [42] showed that the optimal solution toM(xt,Z) satisfies the property that
θ is a valid distance estimate (definition 2.3.1) and w a gradient estimate (definition 2.3.2).

Lemma A.4.1 (Lemma 1 of [42]). For all t = 1, 2, · · · , T , let dt = θ∗ be the optimal value
ofM(xt,Z). Then |dt − ∥µ− xt∥| ≤ 600rδ, so dt is a distance estimate with respect to xt.

Lemma A.4.2 (Lemma 2 of [42]). For all t = 1, 2, · · · , T , let (θ∗, b∗,w∗) be the optimal
solution ofM(xt,Z). Then gt is a distance estimate with respect to xt.

We now start by proving a generic claim that any reasonably good bicriteria approxima-
tion ofM(xt,Z) suffices to provide gradient and distance estimates.

Definition A.4.1 (bicriteria solution). Let θ∗ be the optimal value ofM(x,Z). We say that
(θ, b,w) is a (α, β)-bicriteria solution to M(x,Z) if

∑
i bi ≥ αk and bi ⟨Zi − x,w⟩ ≥ biθ

for all i, where θ = βθ∗.

Lemma A.4.3 (distance estimate). Let (θ, b,w) be a (1/10, 1/20)-bicriteria solution to
M(xt,Z). Then dt = θ is a distance estimate with respect to xt.

Proof of Lemma A.4.3. By Lemma A.4.1, the optimal value θ∗ lies in the range

[∥µ− xt∥ − 600rδ, ∥µ− xt∥+ 600rδ] .

Moreover, since θ∗/20 ≤ θ ≤ θ∗, we have that

∥µ− x∥
20

− 30rδ ≤ θ ≤ ∥µ− x∥
20

+ 30rδ. (A.4.1)

• When ∥µ− x∥ ≥ 14000rδ, we get from the inequality (A.4.1) that

∥µ− x∥
21

≤ θ ≤ ∥µ− x∥
19

.

• When ∥µ− x∥ ≤ 14000rδ, θ ≤ 730rδ < 28000rδ, again by (A.4.1).

Lemma A.4.4 (gradient estimate). Let (θ, b,w) be a (1/10, 1/20)-bicriteria solution to
M(xt,Z). Then gt = w is a gradient estimate with respect to xt.

Proof of Lemma A.4.4. Let g∗ = (µ− xt)/∥µ− xt∥ be the true gradient. We need to show
that ⟨g∗, gt⟩ ≥ 1/20. On the one hand, by Lemma A.4.1, we have

dt = θ ≥ 1

20
(∥u− xt∥ − 600rδ). (A.4.2)
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On the other hand, for at least k/10 points, we have ⟨Zi − xt, gt⟩ ≥ dt and for at least 0.95k
points, we have ⟨Zi − µ, gt⟩ ≤ 600rδ by Assumption 2.2.1. Hence, there must be a point Zj

that satisfies both inequalities, so it follows that

dt ≤ ⟨Zj − xt, gt⟩ = ⟨Zj − µ, gt⟩+ ⟨µ− xt, gt⟩ ≤ 600rδ + ∥µ− xt∥ ⟨g∗, gt⟩ . (A.4.3)

Using (A.4.2) and (A.4.3) and rearranging,

⟨g∗, gt⟩ ≥
1

20
− 630rδ
∥µ− xt∥

≥ 1

200
,

where we use ∥µ− xt∥ ≥ 14000rδ.

Now we show that the optimal solution to the two-sided relaxation give distance and
gradient estimate.

Lemma A.4.5. Let (θ′, b′,w′) be an optimal solution ofM2(x,Z). We have that

(i) the value θ′ lies in [∥µ− x∥ − 600rδ, ∥µ− x∥+ 600rδ]; and

(ii) one of the following two statements must hold, if ∥µ− x∥ ≥ 14000rδ:

• there is a set C of at least 0.9k points such that ⟨Zi − x,w′⟩ ≥ θ′ for all i ∈ C; or
• there is a set C of at least 0.9k points such that ⟨Zi − x,−w′⟩ ≥ θ′ for all i ∈ C.

Proof of Lemma A.4.5. Let θ be the optimal value of M(x,Z). To prove (i), first recall
that Lemma A.4.1 states that θ ≥ ∥µ − x∥ − 600rδ. Therefore, we get that θ′ ≥ ∥µ −
x∥ − 600rδ, as θ′ ≥ θ. For the upper bound, assume for the sake of a contradiction that
θ′ > ∥µ− x∥+ 600rδ. Then one side of the hyperplane defined by w′ must contain at least
19/40 fraction of points, so let’s suppose without loss of generality that

⟨Zi − x,w′⟩ ≥ θ′ > ∥µ− x∥+ 600rδ (A.4.4)

for at least 19k/40 Zi’s. Also, note that

⟨Zi − x,w′⟩ = ⟨Zi − µ,w′⟩+ ⟨µ− x,w′⟩ ≤ ∥µ− x∥+ ⟨Zi − µ,w′⟩ . (A.4.5)

Combining (A.4.4) and (A.4.5), it follows that for at least 19k/40 Zi’s we have

⟨Zi − µ,w′⟩ > 600rδ. (A.4.6)

On the other hand, consider projections of all bucket means Zi onto w′. Assumption 2.2.1
implies that

|{i : ⟨w′,Zi⟩ − ⟨w′,µ⟩ ≥ 600rδ)}| ≤ 0.05k.

This means that at most k/20 points satisfy ⟨Zi − µ,w′⟩ ≥ 600rδ, contradicting (A.4.6).
To prove (ii), let S+ = {i : ⟨Zi − x,w′⟩ ≥ θ′} and S− = {i : ⟨Zi − x,−w′⟩ ≥ θ′}.
Notice that since ∥µ− x∥ ≥ 14000rδ, S

+ and S− are disjoint. Now let

B = {i : | ⟨w′,Zi − µ⟩ | ≤ 600rδ} = {i : | ⟨w′,Zi − x⟩ − ⟨w′,µ− x⟩ | ≤ 600rδ} .

By Assumption 2.2.1, |B| ≥ 19k/20. Consider the two cases.
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• If ⟨w′,µ− x⟩ ≥ 0, observe that B must intersect S+ but not S−. This implies that
|S−| ≤ k/20, so |S+| ≥ 9k/10, since |S+|+ |S−| = 19k/20 and they are disjoint.

• If ⟨w′,µ− x⟩ < 0, by the same argument, we have |S−| ≥ 9k/10.

Next, we show that approximatingM2 in a bicriteria manner achieves a similar guarantee.

Lemma A.4.6. Let θ∗ be the optimal value ofM(x,Z) and w′ be a unit vector such that for
at least k/8 of the Zi, we have | ⟨w′,Zi − x⟩ | ≥ θ′, where θ′ = 0.1θ∗. One of the following
two statements must hold if ∥µ− x∥ ≥ 14000rδ.

• there is a set C of at least 0.95k points such that ⟨Zi − x,w′⟩ ≥ θ′−600rδ for all i ∈ C;

• there is a set C of at least 0.95k points such that ⟨Zi − x,−w′⟩ ≥ θ′ − 600rδ for all
i ∈ C.

Proof of Lemma A.4.6. Let C = {i : | ⟨w′,Zi − µ⟩ | ≤ 600rδ} be the set of “good” points
with respect to direction w′. By Assumption 2.2.1, |C| ≥ 19k/20. Further, let S =
{| ⟨w′,Zi − x⟩ | ≥ θ′}, which we assume has size at least k/8. Thus, by pigeonhole principle,
there must be a point, say Zj, that is in both sets. There are two cases.

• Suppose ⟨w′,µ− x⟩ ≥ 0. Since j ∈ S and θ∗ ≥ 13400rδ by Lemma A.4.5, we have
| ⟨w′,Zi − x⟩ | ≥ 1340rδ. On the other hand, since j ∈ C,

|⟨w′,Zj − µ⟩| = |⟨w′,Zj − x⟩ − ⟨w′,µ− x⟩| ≤ 600rδ. (A.4.7)

Hence, we observe that ⟨w′,Zj − x⟩ ≥ θ′ ≥ 1340rδ. By definition of C, all its points
cluster around Zj by an additive factor of 600rδ.

• Suppose ⟨w′,µ− x⟩ ≤ 0. We get the second case in the claim by the same argument.

Finally, we are ready to prove Lemma 2.4.1.

Proof of Lemma 2.4.1. Let’s first check the distance estimate (Definition 2.3.1) guarantee.

• If ∥µ− x∥ ≥ 14000rδ, we have

θ′ ≥ 1

10
∥µ− x∥ − 60rδ ≥

2

35
∥µ− x∥,

since θ′ = 0.1θ∗ and θ∗ ≥ ∥µ − x∥ − 600rδ. The upper bound of (2.3.1) obviously
holds.

• If ∥µ− x∥ ≤ 14000rδ, we have θ′ ≤ 1460rδ by Lemma A.4.5.
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For gradient estimate, we appeal to Lemma A.4.6 and get that if ∥µ − x∥ ≥ 14000rδ,
then either (θ′, b′,w′) or (θ′, b′,−w′) is a (19/20, 1/20)-bicriteria approximation ofM(x,Z),
where b′ is the indicator vector of C. Thus, we can apply Lemma A.4.4, and this completes
the proof.

A.5 Omitted proof from Section 2.5

We remark that under Lugosi-Mendelson condition, the assumption ∥µ−x0∥ ≲
√

kd∥Σ∥/n
can be easily achieved by initializing x0 to be the coordinate-wise median-of-means (with a
failure probability at most δ/8).

Lemma A.5.1 (pruning). Let β = 600
√

kd∥Σ∥/n, and suppose ∥µ − x0∥ ≤ β. Given the
bucket means Z ∈ Rk×d such that at most k/200 points are contaminated, the algorithm
Prune removes k/10 of the points and guarantees that with probability at least 1 − δ/8,
among the remaining data,

max
i
∥Zi − µ∥ ≤ O(β).

Further, Prune(Z,x0) can be implemented in Õ(kd) time.

Proof of Lemma A.5.1. For correctness, consider ∥Zi − µ∥, and by triangle inequality,

∥Zi − x0∥ − ∥µ− x0∥ ≤ ∥Zi − µ∥ ≤ ∥Zi − x0∥+ ∥µ− x0∥.

Since ∥µ− x0∥ ≤ β by our assumption,

∥Zi − x0∥ − β ≤ ∥Zi − µ∥ ≤ ∥Zi − x0∥+ β. (A.5.1)

Let Sgood = {i : ∥Zi − µ∥ ≤ β} and Sbad = {i : ∥Zi − µ∥ ≥ 20β}. It suffices to show that
with probability at least 1 − δ/8 all the points in Sbad are removed. We first lower bound
the number of good points. Each uncontaminated Zi is an average of ⌊n/k⌋ i.i.d. random
vectors. Applying Lemma A.2.1 on estimation error of empirical mean, we obtain that for
each uncontaminated i, with probability at least 1− 1/1000,

∥Zi − µ∥ ≤
√

1000 · Tr(Σ)k/n ≤ β.

Therefore, each uncontaminated Zi is in Sgood with probability at least 1−1/1000. Let H be
the number of uncontaminated points not in Sgood and p = 1/1000. Since there are at most
k/200 contaminated points and each uncontaminated point is independent, by a binomial
tail bound (Lemma A.2.3)

Pr (H ≤ 2p · (199/200)k) ≥ 1− exp (−p · (199/200)k/3)
≥ 1− exp (− log (8/δ))

= 1− δ/8,
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where we used k = ⌈3600 log(8/δ)⌉. Hence, with probability at least 1− δ/8, Sgood contains
at least (399/400)k (uncontaminated) points. We condition on this event for the rest of the
proof.

Now observe that

∥Zi − x0∥ < ∥Zj − x0∥ for each j ∈ Sbad and i ∈ Sgood (A.5.2)

by (A.5.1). Suppose for a contradiction that j ∈ Sbad is not removed by line 4. Then it
means that dj ≤ di for k/10 of the Z ′

i’s. By pigeonhole principle, this implies dj ≤ di for
some i ∈ Sgood, since |Sgood| ≥ (399/400)k. This contradicts condition (A.5.2).

Computing the distances takes O(kd) time and sorting takes O(k log k) time. Thus,
the algorithm Prune runs in time O(kd + k log k) and succeeds with probability at least
1− δ/8.

Pruning allows us to bound the norms of the points Zi − xt for each iteration t.

Corollary A.5.1 (scaling and margin). Suppose ∥µ−x∥ ≤ O
(√
∥Σ∥kd/n

)
and ∥µ−x∥ ≥

Ω (rδ). Let S be the pruned dataset of size k′ ≥ 9k/10 such that ∥Zi−µ∥ ≤ O
(√
∥Σ∥kd/n

)
for each i ∈ S. There exists a scaling factor B, θ > 0 and unit vector w such that for at
least 4k/5 points in S, ∣∣〈 1

B
(Zi − x),w

〉∣∣ ≥ θ.

Further, we have that 1/θ2 = O(d).

Proof of Corollary A.5.1. Let B = maxi∈S ∥Zi − x∥. Then B is bounded by

∥Zi − x∥ ≤ ∥Zi − µ∥+ ∥µ− x∥ ≤ O
(√
∥Σ∥kd/n

)
. (A.5.3)

By Lemma A.4.5, there exists a unit vector w such that for at least 0.8k points in S,
⟨Zi − x,w⟩ ≥ θ′ and θ′ = Ω(rδ). Hence, we get that

θ = Ω
(rδ
B

)
= Ω

(√
k∥Σ∥/n+

√
TrΣ/n√

∥Σ∥ · kd/n

)
= Ω

(
1/
√
d
)
.

Proof of Lemma 2.5.1. The lemma follows directly from Lemma A.5.1 and Corollary A.5.1.
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1. Input: Buckets means Z ′, unit vectors w1, . . . ,wT ∈ Rd, margin θ,

2. Round to a single vector: w = w′

∥w′∥ , where w′ =
∑T

t=1 gtwt and gt ∼
N (0, 1), for t = 1, . . . , T .

3. Repeat until | ⟨Z ′
i,w⟩ | ≥ 1

10
θ for at least 0.6k′ of Z ′

i:

a) Sample gt ∼ N (0, 1), for t = 1, . . . , T .

b) Recompute w = w′/∥w′∥, where w′ =
∑T

t=1 gtwt.

c) Report Fail if more than Ω (log (Tdes/δ)) trials have been performed.

4. Output: w

Figure A.4: Rounding algorithm—Round

A.6 Omitted proofs from Section 2.5

[101] provides a rounding scheme that combines the sequence of vectors produced by Ap-
proxBregman into one vector that satisfies the desired margin bound. The original routine
succeeds with constant probability. We simply perform independent trials to boost the rate.
We now analyze the algorithm. We cite the following lemma for the guarantee of the rounding
algorithm (Algorithm A.4).

Lemma A.6.1 (Lemma 6 of [101]). Suppose that for at least 3
4
fraction of i ∈ [k′], it holds

that
T∑
t=1

⟨Z ′
i,wt⟩2 ≥ log k′. (A.6.1)

Let w1, . . . ,wT be the unit vectors satisfying the above condition. Then with constant proba-
bility, the vector w in each repetition of the step 3 of the Round algorithm (Algorithm A.4)
satisfies | ⟨Zi,w⟩ | ≥ θ/10 for at least a 0.45 fraction of i ∈ [k′].

Now we prove the guarantee of Round.

Proof of Lemma 2.5.4. By Lemma A.6.1, it suffices to prove inequality (A.6.1) holds for
at least a 3/4 fraction of the points. By the regret analysis (Lemma 2.5.3), the vec-
tors w1, . . . ,wT produced during the iterations of Algorithm 2.3 satisfy the hypothesis of
Lemma A.6.1. Hence, the guarantee of Lemma A.6.1 holds with constant probability. More-
over, we can test that this guarantee holds in time O(Tk′d). To boost the success probability
to 1 − δ′ (with δ′ = δ/4Tdes), Round algorithm performs O(log(1/δ′)) independent trials.
Hence, it reports Fail with probably at most δ′. Otherwise, by its definition, the output w
satisfies desired bound | ⟨Z ′

i,w⟩ | ≥ 0.1θ for 0.45k of the points.
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A.7 Full proof of main theorem

Proof of Theorem 2.1.1. Our argument assumes the following global events.

(i) The Lugosi-Mendelson condition (Assumption 2.2.1) holds.

(ii) The initial estimate x0 satisfies ∥µ− x0∥ ≤ 600
√
∥Σ∥kd/n.

(iii) The pruning step succeeds: ∥Z ′
i − µ∥ ≤ O

(√
∥Σ∥kd/n

)
We consider our main algorithm (Algorithm A.3) and first prove the correctness of DistEst
and GradEst. Let Z ′ be defined as in line 2 of DistEst and GradEst. Lemma A.4.5
states that there exists a margin θ∗ in [∥µ− x∥ − 600rδ, ∥µ− x∥+ 600rδ]. When ∥µ −
xt∥ ≥ 14000rδ, we have that for at least 0.8k points Z ′

i it holds B · | ⟨Z ′
i,w

∗⟩ | ≥ θ∗ for
some unit vector w∗, since the data are scaled by B. Furthermore, when the pruning step
succeeds, Assumption 2.2.1 holds. This allows us to apply the key lemma (Lemma 2.5.2).

(i) For GradEst, we use binary search in line 3 to find θ = θ∗/B. By the guar-
antee of Lemma 2.5.2, | ⟨w,Z ′

i⟩ | ≥ θ
10

for at least k/8 of the Zi. It follows that
| ⟨w,Zi − xt⟩ | ≥ Bθ

10
for at least k/8 of the Zi. Thus, Lemma 2.4.1 implies that the

output gt is a gradient estimate.

(ii) By the same argument, we apply Lemma 2.4.1 and conclude that d̂t of DistEst is a
distance estimate.

Finally, we apply Lemma 2.3.1 for the guarantee of Descent.
Next we bound several failure probabilities of the algorithm. The first three correspond

to the global conditions.

• By Lemma 2.2.1, the Lugosi-Mendelson condition Assumption 2.2.1 fails with proba-
bility at most δ/8.

• By Lemma A.2.2, the coordinate-wise median-of-means error bound fails with proba-
bility at most δ/8

• By Lemma 2.5.1, the guarantee of our pruning and scaling procedure fails with prob-
ability at most δ/8.

• Conditioned on above, the ApproxBregman satisfies the guarantee of the key lemma
(Lemma 2.5.2). The failure probability is at most δ/4Tdes each iteration. We take union
bound over all these iterations.

Overall, the failure probability of the entire algorithm (Algorithm A.3) is bounded by δ via
union bound.

The runtime follows from Lemma 2.5.2 which claims each iteration takes time Õ(k2d)

and the fact that Tdes = Õ(1).
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A.8 Interpretation of FHP algorithm [101] as regret

minimization

Here, we review the bicriteria approximation algorithm of Karnin et al. [101] and show how
it can be interpreted in the multiplicative weights update (MWU) framework for regret
minimization. Given Z1, . . . ,Zk ∈ Rd such that ∥Zi∥ ≤ 1, we study the following furthest
hyperplane problem:

Find w ∈ Sd−1

subject to | ⟨Zi,w⟩ | ≥ r for i = 1, . . . , k,

where we are promised that there does indeed exist a feasible solution w∗. Since this prob-
lem is (provably) hard (even to approximate) we will settle for bicriteria approximate solu-
tions. By this, we simply mean that we require the algorithm to output some w such that
| ⟨Zi,w⟩ | ≥ r

10
for most of the i ∈ [k]. For our applications, the particular constants will not

matter much, as long as they are actually constants.
See Algorithm A.5 for a formal description. First we give some intuition and then we

sketch the important steps in the analysis.

1. Input: Z1, . . . ,Zk ∈ Rd and iteration count T ∈ N.

2. Initialize weights: τ1 =
1
k
(1, . . . , 1) ∈ Rk.

3. For t = 1, . . . , T , repeat:

a) Let At be the k × d matrix whose ith row is
√

τt(i)Zi and wt be
the top right unit singular vector of At.

b) Set σt(i) = | ⟨Zi,wt⟩ |.
c) Reweight: τt+1(i) = τt(i)η

−σ2
t (i) for i ∈ [k] for an appropriately

chosen constant η. In MWU language, σ2
t is the loss vector at time

t.

d) Normalize: Let Z =
∑

i∈[k] τt+1(i) and redefine τt+1 ← 1
Z
τt+1.

4. Output: w1, . . . ,wT ∈ Sd−1.

Figure A.5: Iterative MWU procedure
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Intuition

Because we are promised that w∗ exists, averaging the constraints yields:

1

k

k∑
i=1

⟨Zi,w
∗⟩2 ≥ r2.

Note that if we define A1 as in Algorithm A.5, then the definition of singular vector tells us
that:

max
w∈Sd−1

∥A1w∥2 =
1

k

k∑
i=1

⟨Zi,w⟩2 ≥
1

k

k∑
i=1

⟨Zi,w
∗⟩2 ≥ r2.

Thus, w1, the top singular vector as defined in Algorithm A.5, satisfies the constraints on
average. It could be the case that ⟨Z4,w1⟩2 ≫ r2 but ⟨Zi,w⟩2 ≪ r2 for all i ̸= 4. To fix this
issue, we would simply down-weight Z4 in the next iteration, so that w2 aligns more with
Zi for i ̸= 4. We repeat this several times, with each wt improving upon wt−1.

At the end, the algorithm produces a collection of vectors w1, . . . ,wT which each satisfy
a certain property. While it seems natural to just output wT as the final answer, it turns
out that this will not work. Instead, we need to apply a randomized rounding procedure to
extract a single vector w from w1, . . . ,wT .

Analysis

Lemma A.8.1. When Algorithm A.5 terminates after T = O( log k
r2

) iterations, for every
i ∈ [k] it holds that:

T∑
t=1

⟨Zi,wt⟩2 ≥
log k

log η
.

Proof. Algorithm A.5 is simply the MWU algorithm with the experts corresponding to the
k constraints and the loss of expert i at time t being σ2

t (i). Using the regret guarantee from
Theorem 2.1 in [13] with respect to the fixed expert ei and step size η:

T∑
t=1

〈
τt,σ

2
t

〉
− (1 + η)

T∑
t=1

〈
ei,σ

2
t

〉
≤ log k

η
. (A.8.1)

Note that
T∑
t=1

〈
ei,σ

2
t

〉
=

T∑
t=1

⟨Zi,wt⟩2
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and

T∑
t=1

〈
τt,σ

2
t

〉
=

T∑
t=1

k∑
i=1

τt(i)σ
2
t (i)

=
T∑
t=1

k∑
i=1

τt(i) ⟨Zi,wt⟩2 (by definition of the algorithm)

≥
T∑
t=1

k∑
i=1

τt(i) ⟨Zi,w
∗⟩2 (since w∗ is the top eigenvector)

≥
T∑
t=1

k∑
i=1

τt(i)r
2

= Tr2.

Substituting into and simplifying the regret formula and taking η = 1/3 gives the claim.

Given the previous lemma, we can just apply the rounding algorithm as a black-box to
the output of Algorithm A.5.

Lemma A.8.2 ([101]). Let α ∈ (0, 1) and w1, . . . ,wT be unit vectors satisfying the con-
clusion of the previous lemma. Then with probability at least 1/147, the output w of the
Rounding Algorithm A.4 satisfies | ⟨Zi,w⟩ | ≥ αr for at least a 1− 3α fraction of i ∈ [k].
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Appendix B

Technical details for Chapter 3

B.1 Technical Lemmas and Proofs

Spectral Signatures

Lemma B.1.1. Let {xi}ni=1 be n points in Rd. Suppose there exists ν ∈ Rd and a set of good
weights w ∈ Wn,ε such that

n∑
i=1

wi (xi − ν) (xi − ν)⊤ ⪯ λI. (B.1.1)

for some λ > 0. Then for any w′ ∈ Wn,ε,

∥ν − ν(w′)∥ ≤ 1

1−
√
2ε

(√
λ+
√
2ελ+

√
2ε∥M(w′)∥

)
, (B.1.2)

where ν(w′) =
∑

i w
′
ixi and M(w′) =

∑
i w

′
i(xi − ν(w′))(xi − ν(w′))⊤.

The lemma and its proof strategy is similar to the spectral signature lemma in robust
statistics and is now somewhat standard in the literature; see, e.g., [64, 117].

Proof. To bound ∥ν − ν(w′)∥, we note

∥ν(w′)− ν∥22 =
∑
i

w′
i ⟨ν(w′)− ν, xi − ν⟩ . (B.1.3)

In bounding this sum, we may assume without loss of generality that w′
i > 0 for all i. Now

observe that we can decompose the sum as∑
i

w′
i ⟨ν(w′)− ν, xi − ν⟩ =

∑
i

wi ⟨ν(w′)− ν, xi − ν⟩+
∑

i:wi>w′
i

(w′
i − wi) ⟨ν(w′)− ν, xi − ν⟩

+
∑

i:w′
i>wi

(w′
i − wi) ⟨ν(w′)− ν, xi − ν⟩ . (B.1.4)

We bound the three terms respectively as follows.
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(i) For the first term, by Cauchy-Schwarz,∑
i

wi ⟨ν(w′)− ν, xi − ν⟩ = ⟨ν(w′)− ν, ν(w)− ν⟩ ≤ ∥ν(w′)− ν∥ · ∥ν(w)− ν∥.

By Jensen’s inequality and the spectral centrality assumption, we have for all unit u,

⟨ν(w)− ν, u⟩2 =

〈∑
i

wixi − ν, u

〉2

≤
∑
i

wi⟨xi − ν, u⟩2 ≤ λ.

Thus, ∥ν(w)− ν∥ ≤
√
λ.

(ii) For the second term, let αi = w′
i − wi. Then note that if w′

i < wi,∣∣∣∣αi

wi

∣∣∣∣ = ∣∣∣∣w′
i

wi

− 1

∣∣∣∣ ≤ 1 (B.1.5)

Hence, ∑
i:wi>w′

i

αi ⟨ν(w′)− ν, xi − ν⟩

2

≤

 ∑
i:wi>w′

i

1

wi

α2
i

 · ∑
i:wi>w′

i

wi ⟨ν(w′)− ν, xi − ν⟩2

(B.1.6)

≤

 ∑
i:wi>w′

i

1

wi

α2
i

 · λ · ∥ν(w′)− ν∥22 (B.1.7)

≤

 ∑
i:wi>w′

i

|αi|

 · λ · ∥ν(w′)− ν∥22 (B.1.8)

≤ 2ελ∥ν(w′)− ν∥22 (B.1.9)

where (B.1.6) follows from Cauchy-Schwarz, (B.1.7) follows from the spectral centrality
assumption, and (B.1.8) follows from (B.1.5).

(iii) For the third term, again let αi = w′
i − wi. Similarly, if w′

i > wi,∣∣∣∣αi

w′
i

∣∣∣∣ = ∣∣∣∣wi

w′
i

− 1

∣∣∣∣ ≤ 1 (B.1.10)
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It follows that ∑
i:w′

i>wi

αi ⟨ν(w′)− ν, xi − ν⟩

2

≤

 ∑
i:w′

i>wi

1

w′
i

α2
i

 · ∑
i:w′

i>wi

w′
i ⟨ν(w′)− ν, xi − ν⟩2

(B.1.11)

≤

 ∑
i:w′

i>wi

1

w′
i

α2
i

 · ∑
i:w′

i>wi

w′
i ⟨ν(w′)− ν, xi − ν⟩2

(B.1.12)

≤

 ∑
i:w′

i>wi

|αi|

 · ∑
i:w′

i>wi

w′
i ⟨ν(w′)− ν, xi − ν⟩2

(B.1.13)

≤ 2ε ·
∑
i

w′
i ⟨ν(w′)− ν, xi − ν⟩2 (B.1.14)

For the sum, we have∑
i

w′
i ⟨ν(w′)− ν, xi − ν⟩2 =

∑
i

w′
i ⟨ν(w′)− ν, xi − ν(w′)⟩2 + ∥ν(w′)− ν∥4 (B.1.15)

≤ ∥M(w′)∥2 · ∥ν(w′)− ν∥2 + ∥ν(w′)− ν∥4. (B.1.16)

Putting everything together and rearranging finishes the proof.

Lemma B.1.2. Let {xi}ni=1 be n points. Suppose there exists a subset G ⊂ [n] of size (1−ε)
such that 1

|G|
∑

i∈G (xi − µG) (xi − µG)
⊤ ⪯ λI for some λ > 0, where µG = 1

|G|
∑

i∈G xi. Then
for any w ∈ Wn,ε,

∥µG − µ(w)∥ ≤ 1

1− 2ε

(√
2ελ+

√
ε∥M(w)∥

)
. (B.1.17)

Proof. The proof follows from the same argument of Lemma B.1.1, with ν = µG.

A KL Divergence Bound

Lemma B.1.3. Let p ∈ Wn,ε and q be the uniform distribution over n points. Then
KL(p||q) ≤ 5ε.
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Proof. The lemma follows from direct calculations. By definition of KL divergence,

KL(p||q) =
∑
i

pi log
pi
qi

=
∑
i

pi log(npi)

≤
∑
i

1

(1− ε)n
log

1

(1− ε)

=
1

1− ε
log

1

1− ε

≤ 5ε.

where the last inequality holds when 0 < ε ≤ 1/2.

Proof of Lemma 3.3.2

Proof of Lemma 3.3.2. We show that there exists a ball of radius
√

dλ/ε that contains at

least (1−3ε)n points. Note that the spectral centrality condition
∑n

i=1wi (xi − ν) (xi − ν)⊤ ⪯
λI implies that

n∑
i=1

Tr
(
wi(xi − ν)(xi − ν)⊤

)
≤ dλ.

By the cyclic property of trace, we get

n∑
i=1

wi∥xi − ν∥2 ≤ dλ.

Therefore, by Markov’s inequality,

Pr
i∼w

(
∥xi − ν∥2 ≥ dλ/ε

)
≤ ε, (B.1.18)

where i ∼ w denotes i drawn from the discrete distribution defined by w. Observe that
since Wn,ε is the convex hull of all uniform distributions over a subset of size (1 − ε)n, we
have ∥w − Un∥1 ≤ 2ε. Thus, TV(w,Un) ≤ ε. Hence, using the definition of total variation
distance, (B.1.18) implies that

Pr
i∼Un

(
∥xi − ν∥2 ≥ dλ/ε

)
≤ 2ε, (B.1.19)

as desired.



APPENDIX B. TECHNICAL DETAILS FOR CHAPTER 3 124

B.2 Extension to sub-gaussian distributions

We now consider a variant of the filter algorithm (Algorithm 1) analyzed in Section 3.3. The
difference is that instead of fixing the step size to be η = 1/2, we set it as ε. That is, we
will perform the multiplicative update less aggressively when there are few bad points. In
addition, we require a stronger approximation for the largest eigenvector computation. This
increases the the run-time by an O(poly(1/ε)) factor. For technical reasons, we also ask
the algorithm to stop early if the weighted covariance has been reduced to a desired value.
Formally, the algorithm is described by the pseudo-code below (Algorithm 7).

Algorithm 7: Multiplicative weights for sub-gaussian robust mean estimation

Input: A set of points {xi}ni=1, an iteration count T , and parameter ρ, δ
Output: A set of weights w ∈ Wn,ε.

1 Let w(1) = 1
n
1n.

2 For t from 1 to T

3 Let ν(t) =
∑

i w
(t)
i xi, M

(t) =
∑

i w
(t)
i (xi − ν(t))(xi − ν(t))T .

4 Compute v(t) = ApproxTopEigenvector(M (t), 1− ε2, δ/T ).

5 If λ(t) = v(t)⊤M (t)v(t) ≤ 1, return w(t).

6 Compute τ
(t)
i =

〈
v(t), xi − ν(t)

〉2
.

7 Set w
(t+1)
i ← w

(t)
i

(
1− ετ

(t)
i /ρ

)
for each i.

8 Project w(t+1) onto the set of good weights Wn,ε (under KL divergence).

9 Return w(t∗), where t∗ = argmint ∥M (t)∥.

First, we need a stronger spectral signature lemma.

Lemma B.2.1 ([64]). Let S = {xi}ni=1 be an ε-corrupted set of n samples from a sub-

gaussian distribution over Rd, with mean µ and identity covariance. Suppose n ≥ Ω̃(d/ε2).
If ∥M(w)∥ ≤ 1 + λ, for some λ ≥ 0, then for any w ∈ Wn,2ε,

∥µ− µ(w)∥ ≤ 1

1− ε

(√
ελ+ Cε

√
log(1/ε)

)
,

for some universal constant C > 0.

Moreover, we assume that for all w ∈ Wn,2ε we have∥∥∥∥∥∑
i∈G

wi(xi − µ)(xi − µ)⊤ − I

∥∥∥∥∥ ≤ λ = O(ε log(1/ε)). (B.2.1)

This condition holds with high probability over the draws of samples [60].
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Lemma B.2.2 (analysis of sub-gaussian filter). Let ε be a sufficiently small constant and
{xi}ni=1 be n points in Rd. Assume the following (deterministic) conditions hold.

(i) There exists ν ∈ Rd and w ∈ Wn,ε such that∥∥∥∥∥
n∑

i=1

wi (xi − ν) (xi − ν)⊤

∥∥∥∥∥ ≤ 1 +O (ε log (1/ε)) . (B.2.2)

(ii) If ∥M(w)∥ ≤ 1 + λ, for some λ ≥ 0, then for any w ∈ Wn,ε,

∥ν − µ(w)∥ ≤ 1

1− ε

(√
ελ+ Cε

√
log(1/ε)

)
, (B.2.3)

Then, given {xi}ni=1, a failure rate δ and ρ such that ρ ≥ τ
(t)
i for all i and t, Algorithm 7

finds w′ ∈ Wn,ε such that
∥M(w′)∥ ≤ 1 +O (ε log (1/ε)) , (B.2.4)

with probability at least 1− δ.
The algorithm terminates in T = O(ρ/ε) iterations. Further, if T = O(poly(n, d)), then

each iteration takes Õ(nd log (1/δ)/ε2) time.

Proof of Lemma B.2.2. If the algorithm gets stopped early (at Line 5), then it means that

∥M (t)∥ ≤ λ(t)/
(
1− ε2

)
≤ 1/

(
1− ε2

)
≤ 1 +O(ε2),

since v(t) is a (1− ε2) approximate largest eigenvector of M (t). Hence, in this case, we
immediately achieves the goal (B.2.4).

Now assume the algorithm did not stop early and so ∥M (t)∥ > 1 for all t. Then we have∑
i

w
(t)
i τ

(t)
i =

∑
i

w
(t)
i

〈
v(t), xi − ν(t)

〉2
= v(t)⊤M (t)v(t) ≥

(
1− ε2

) ∥∥M (t)
∥∥
2
, (B.2.5)

for all t. Since the step size ε < 1/2 and ρ ≥ τ
(t)
i for all i, t by assumption, we can apply

the regret bound of MWU (Lemma 3.3.4) and conclude that for w that satifies assump-
tion (B.2.2),

1− ε2

T

T∑
t=1

∥∥M (t)
∥∥
2
≤ 1

T

T∑
t=1

〈
w(t), τ (t)

〉
≤ (1 + ε)

1

T

T∑
t=1

〈
w, τ (t)

〉
+

ρ ·KL(w||w(1))

Tε
. (B.2.6)

We now focus on bounding 1
T

∑T
t=1

〈
w, τ (t)

〉
.

Claim B.2.1. In the setting above, we have

1

T

T∑
t=1

〈
w, τ (t)

〉
≤ 1 +O (ε log(1/ε)) +

2ε

(1− ε)2
1

T

T∑
t=1

∥∥M (t)
∥∥− 2ε

(1− ε)2
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Proof. Note that

1

T

T∑
t=1

〈
w, τ (t)

〉
=

1

T

T∑
t=1

n∑
i=1

wi

〈
xi − ν(t), v(t)

〉
=

1

T

T∑
t=1

n∑
i=1

wi

(〈
xi − ν, v(t)

〉2
+
〈
ν − ν(t), v(t)

〉2)
≤ 1 +O (ε log(1/ε)) +

1

T

T∑
t=1

〈
ν − ν(t), v(t)

〉2
(B.2.7)

≤ 1 +O (ε log(1/ε)) +
1

T

T∑
t=1

∥∥ν − ν(t)
∥∥2
2
, (B.2.8)

where (B.2.7) follows from the assumption (B.2.4). Now we apply assumption (B.2.3) to

bound
∥∥ν − ν(t)

∥∥2
2
. Since we may assume ∥M (t)∥ ≥ 1 by the early stopping of Line 5, we

have ∥∥ν − ν(t)
∥∥2 ≤ 2

(1− ε)2
(
ε
(∥∥M (t)

∥∥− 1
)
+ C2ε2log(1/ε)

)
=

2ε

(1− ε)2
∥∥M (t)

∥∥− 2ε

(1− ε)2
+O(ε2 log(1/ε)).

Substituting the bound back into (B.2.8) completes the proof.

Using Claim B.2.1, the KL bound (Lemma B.1.3) and (B.2.6), we have

1− ε2

T

T∑
t=1

∥∥M (t)
∥∥
2
≤ 2(1 + ε)ε

(1− ε)2
1

T

T∑
t=1

∥∥M (t)
∥∥+ 1− 2(1 + ε)ε

(1− ε)2
+O(ε log(1/ε)) +

5ρ

T
.

For sufficiently small ε, we rearrange and divide through to obtain

1

T

T∑
t=1

∥∥M (t)
∥∥
2
≤ 1 +O(ε log(1/ε)) +O(ε) +

O(ρ)

T
.

Setting T = O(ρ/ε) completes the correctness proof. Finally, the per-iteration cost follows
from the run-time of using power method to approximate the largest eigenvector.

Using the lemma we can prove our main theorem.

Theorem B.2.1 (sub-gaussian robust mean estimation, [60]). Let S = {xi}ni=1 be an ε-
corrupted set of n samples from a sub-gaussian distribution over Rd, with mean µ and identity
covariance. Suppose n ≥ Ω̃(d/ε2). Given S, there is an algorithm that outputs µ̂ such
that ∥µ̂ − µ∥ ≤ O (ε log (1/ε)) with high constant probability. The algorithm runs in time

Õ (nd2/ε3)
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Proof. Let δ = 0.01. We apply Algorithm 7 with a simple pruning procedure as a pre-
processing. By standard concentration of sub-gaussian random vectors, with high constant
probability, ∥xi − µ∥ ≤ r = O(

√
d log n) for all i ∈ G. Hence, we apply Prune(S, r, δ), and

by Lemma 3.3.3 it guarantees to terminate in O(nd) time and removes at most εn (bad)
points.

We feed the remaining (at least) (1 − ε)n points R ⊇ G into Algorithm 7 with ρ = r2.
Notice that 1

(1−ε)(1−ε)
≤ 1

1−2ε
for ε ≤ 1/2, so assumptions (i)-(ii) of Lemma B.2.2 are satisfied

by the claim of (B.2.1) and Lemma B.2.1, respectively.
It then follows from Lemma B.2.2 that Algorithm 7 outputs w′ ∈ W|R|,ε such that∥∥∥∥∥∑

i∈R

(xi − µ(w′))(xi − µ(w′))⊤

∥∥∥∥∥ ≤ 1 +O (ε log(1/ε)) ,

where µ(w′) =
∑

i∈R w′
ixi. Let w

′′
i = w′

i if i ∈ R and w′′
i = 0 otherwise. We obtain w′′ ∈ Wn,2ε

such that ∥M(w′′)∥ ≤ 1 + O (ε log (1/ε)). Applying the spectral signature (Lemma B.2.1)
proves that µ(w′′) attains the desired estimation error. Moreover, the run-time simply follows
from Lemma B.2.2.

B.3 Sample reweighing via Matrix Multiplicative

Update

We now show that the spectral sample reweighing problem (Definition 3.3.1) can be solved
in near linear time via a matrix multiplicative update scheme from the recent work of [64],
analyzed there for the robust mean estimation setting. Our analysis will closely resemble
the arguments therein.

Theorem B.3.1. Let {xi}ni=1 be n points in Rd. Suppose there exists ν ∈ Rd and w∗ ∈ Rn

such that |w∗| = 1 − ε, ∥w∗∥∞ ≤ 1/n and
∑n

i=1w
∗
i (xi − ν) (xi − ν)⊤ ⪯ λI for some λ > 0

and a sufficiently small ε. Then, given {xi}ni=1, λ, the squared diameter ρ of the points and
a failure rate δ, there is a matrix multiplicative weights-based algorithm (Algorithm 8) that,
with probability at least 1− δ, finds w ∈ Wn,ε and ν ′ ∈ Rd such that

n∑
i=1

wi (xi − ν ′) (xi − ν ′)
⊤ ⪯ O(λ)I.

Further, the algorithm terminates in O(log(ρ/λ)) iterations, where ρ is the squared diameter

of the input points {xi}ni=1, and each iteration can be implemented in Õ(nd log(1/δ)) time.

Remark B.3.1. In the following, we will consider an idealized version of the algorithm and
omit the detail of implementing the numerical linear algebra primitives in Õ(nd log(1/δ))
time each iteration. The exact details can be found in [64].
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The algorithm is based on the matrix multiplicative weights update. For a sequence
of PSD matrices M1 ⪰ M2 ⪰ · · · ⪰ Mt−1, we will apply the matrix multiplicative weight
(MMW) update, given by

MMW(M0,M1, · · · ,Mt−1) = exp

(
1

∥M0∥2

t−1∑
k=1

Mk

)
/ tr exp

(
1

∥M0∥2

t−1∑
k=1

Mk

)
. (B.3.1)

For technical reasons, we will not maintain a set of weights that is a probability distribution
throughout. Instead, we will initiate from uniform weights and monotonically downweight
each point. The key invariant we will maintain is the following, which is a weighted extension
of the notion of “mostly-good weights” from [64].

Definition B.3.1 (mostly-good weight). Suppose that w∗ ∈ [0, 1]n satisfies ∥w∗∥∞ ≤ 1/n.
The set of mostly-good weight vectors (with respect to w∗) is

C(w∗) =

{
w ∈ Rn : 0 ≤ wi ≤

1

n
and

n∑
i=1

w∗
i

(
1

n
− wi

)
≤

n∑
i=1

(
1

n
− w∗

i

)(
1

n
− wi

)}

Lemma B.3.1. Suppose that w∗ ∈ [0, 1]n satisfies ∥w∗∥∞ ≤ 1/n and |w∗| = 1− ε. Then for
any mostly-good weight w ∈ C(w∗) (with respect to w∗), we have that |w| ≥ 1− 2ε.

Proof. By rearranging the condition of mostly-good weight, we get that

1

n

n∑
i=1

1

n
− wi ≥ 2

n∑
i=1

w∗
i

(
1

n
− wi

)
.

Since
∑n

i=1w
∗
i = 1− ε, it follows that

1

n
− 1

n

n∑
i=1

wi ≥
2− 2ε

n
− 2

n∑
i=1

w∗
iwi.

By assumption, w∗
i ≤ 1

n
, so

1

n
− 1

n

n∑
i=1

wi ≥
2− 2ε

n
− 2

n

n∑
i=1

wi.

Multiplying n on both sides and rearranging we get
∑n

i=1wi ≥ 1− 2ε.

A crucial subroutine we use is a deterministic down-weighting scheme, from [64], that
maintains the mostly-good property of the input weights.
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Lemma B.3.2 (1D Filter [64]). Let η ∈ (0, 1/2), let b ≥ 2η, and let w1, . . . , wm and
τ1, . . . , τm be non-negative numbers so that

∑m
i=1 wi ≤ 1. Let τmax = maxi∈[m] τi. Suppose

there exists w∗ such that ∥w∥∞ ≤ 1
n

n∑
i=1

w∗
iwiτi ≤ ησ , where σ =

1

n

n∑
i=1

wiτi .

Then 1DFilter(w, τ, b) runs in time O((1 + log τmax

bσ
)m) and outputs 0 ≤ w′ ≤ w so that

•
∑

w∗
i (wi − w′

i) ≤
∑

(1/n− w∗
i )(wi − w′

i), and

• 1
n

∑n
i=1w

′
iτi ≤ bσ.

The algorithm is formally described in Algorithm 8. Throughout let M (s) = M(w(s))

and M
(s)
t = M(w

(s)
t ), where M(w) =

∑n
i=1wi(xi − µ(w))(xi − µ(w))⊤. The procedure runs

by epochs, where each epoch s reduces the largest eigenvalue of M (s) by a constant factor.
We will show that the inner loop achieves the reduction within O(log d) iterations while
maintaining the invariant that the weights are mostly-good (Definition B.3.1). Similar to

Algorithm 8: Matrix multiplicative update for spectral sample reweighing (Defi-
nition 3.3.1)

Input: A set of points x1, . . . , xn, λ, ρ and a failure rate δ
Output: A point ν ′ ∈ Rd and weights w′ ∈ Wn,ε that satisfy (3.3.1) up to a

constant factor.

1 Let w(0) = 1
n
(1, 1, · · · , 1).

2 For s from 0 to O(log ρ)
3 Compute λ(s) = ∥M (s)∥.
4 If λ(s) ≤ 300λ
5 Return w(s)/∥w(s)∥1, µ(w(s)).

6 For t from 0 to O(log d)

7 Compute λ
(s)
t = ∥M (s)

t ∥ and terminate epoch if λ
(s)
t ≤ 2

3
λ
(s)
0 .

8 Compute U
(s)
t = MMW(M

(s)
1 ,M

(s)
2 , · · · ,M (s)

t−1).
9 Compute

τ
(s)
t,i =

(
xi − µ

(
w

(s)
t

))⊤
U

(s)
t

(
xi − µ

(
w

(s)
t

))
(B.3.2)

10 Let w
(s)
t+1 = w

(s)
t if

∑
iw

(s)
t,i τ

(s)
t,i ≤ 1

4
λ
(s)
1 ; otherwise

w
(s)
t+1 = 1DFilter(w

(s)
t , τ

(s)
t ).

11 Let w(s+1) = w
(s)
t .

our MWU analysis, our argument relies on a spectral signature lemma.
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Lemma B.3.3 (spectral signature for mostly-good weights). Let {xi}ni=1 be n points in Rd.
Suppose there exists ν ∈ Rd and w∗ ∈ Rn such that |w∗| = 1 − ε for sufficiently small ε,
∥w∗∥∞ ≤ 1/n and

n∑
i=1

w∗
i (xi − ν) (xi − ν)⊤ ⪯ λI

for some λ > 0. Then for any w ∈ C(w∗),

∥ν − ν(w)∥ ≤ 1

1−
√
2ε

(
3
√
λ+ 2

√
ε∥M(w)∥

)
, (B.3.3)

where ν(w) =
∑

i wixi and M(w) =
∑

i wi(xi − ν(w))(xi − ν(w′))⊤.

Proof. This directly follows from Lemma B.1.1 and scaling.

Using this, we establish a key invariant of the inner loop of the algorithm.

Lemma B.3.4. Let w ∈ C(w∗) be such that β = ∥M(w)∥2 ≥ 300λ and U be a density
matrix. Let τi = (xi − µ (w))⊤ U (xi − µ (w)). If w′ = 1DFilter(w, τ, 1/4), then we have
w′ ∈ C(w∗) and ⟨M (w′) , U⟩ ≤ 1

4
⟨M(w), U⟩.

Proof. Let µ(w∗) =
∑

i w
∗
i xi. Then for any unit vector u, we have that by Jensen’s inequality

⟨µ(w∗)− ν, u⟩2 ≤

〈
n∑

i=1

w∗
i xi − ν, u

〉2

≤
n∑

i=1

w∗
i ⟨xi − ν, u⟩2 ≤ λ.

Thus, ∥µ(w∗)− ν∥22 ≤ λ. Expanding the definition of τi, we get

n∑
i=1

w∗
iwiτi =

〈
n∑

i=1

w∗
iwi (xi − µ(w)) (xi − µ(w))⊤ , U

〉

≤ 1

n

〈
n∑

i=1

w∗
i (xi − µ(w∗)) (xi − µ(w∗))⊤ , U

〉
+

1

n
∥w∗∥1 · (µ(w∗)− µ(w))⊤U(µ(w∗)− µ(w))

≤ 1

n
⟨M(w∗), U⟩+ 1

n
(1− ε)∥µ(w∗)− µ(w)∥22

≤ 1

n
λ+

2

n
∥µ(w∗)− ν∥22 +

6

n
∥µ(w)− ν∥22 (B.3.4)

≤ 1

n
λ+

(
4

n
λ+

2

n
ε∥M(w)∥)

)
(B.3.5)

≤ 1

30n
∥M(w)∥ = 1

30n

n∑
i=1

wiτi, (B.3.6)
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where (B.3.4) follows from the spectral centrality condition and triangle inequality, (B.3.5)
follows from Lemma B.3.3, and (B.3.6) uses our assumption that ∥M(w)∥ ≥ 300λ, the
definition of τi and ε is sufficiently small. This allows us to apply the guarantee of the 1D
filter procedure (Lemma B.3.2) and get that

⟨M (w′) , U⟩ =

〈
n∑

i=1

w′
i (Xi − µ(w′)) (Xi − µ(w′)) , U

〉
=

n∑
i=1

w′
iτi ≤

1

4

n∑
i=1

wiτi

=
1

4
⟨M(w), U⟩.

Furthermore, w′ ∈ C(w∗). This completes the proof.

We are now ready to prove the main theorem of this section.

Proof of Theorem B.3.1. Consider a fixed epoch and drop the super script for simplicity
of notation. It is not hard to observe that M(wt+1) ⪯ M(wt) (see Lemma 3.4 [64]). Let
α = 1/∥M(w0)∥. A regret bound for matrix multiplicative weights [8] implies that∥∥∥∥∥

T−1∑
t=0

M (wt+1)

∥∥∥∥∥
2

≤
T−1∑
t=0

⟨M (wt+1) , Ut⟩+ α
T−1∑
t=0

⟨Ut,M (wt+1)⟩ ∥M (wt+1)∥2 +
log d

α

≤ 2
T−1∑
t=0

⟨M (wt+1) , Ut⟩+ ∥M (w0)∥2 · log d

Now by definition of Line 10, we have ⟨M (wt+1) , Ut⟩ ≤ 1
4
∥M (w0)∥2. Hence,

T ∥M (wT )∥2 ≤

∥∥∥∥∥
T−1∑
t=0

M (wt)

∥∥∥∥∥
2

≤ T · 1
2
∥M (w0)∥2 + ∥M (w0)∥2 · log d.

Setting T ≫ log d shows that the inner loop terminates in O(log d) iterations and reduces
the largest eigenvalue of the covariance by, say, 4/5.

Finally, to bound the number of epochs, we simply note that ∥M (0)∥ ≤ ρ. Therefore,
O(log(ρ/λ)) epochs suffice drive the largest eigenvalue of ∥M (s)∥ down to O(λ), since it is
reduced geometrically each epoch.

B.4 Sample reweighing via Online Gradient Descent

Regret analysis of gradient descent

We now consider a gradient updated-based algorithm for solving the spectral sample reweigh-
ing problem (Definition 3.3.1). The analysis will be through the classic regret guarantee of
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online gradient descent for convex optimization [161]. Though the resulting run-time is
higher than the MWU scheme we analyzed in Section 3.3, it nonetheless betters the recent
work of [41], where essentially the same gradient descent-based algorithm is studied.

We will leverage the following regret guarantee of online gradient descent; the definition
of the algorithm in the general setting can be found in standard text [81].

Lemma B.4.1 (Theorem 3.1 [81], originally due to [161]). Let ft : K → R be the convex cost
function revealed at iteration t, where K is a convex feasible set. Suppose ft is L-Lipschitz
(in ℓ2 norm) and ∥x0 − x∗∥2 ≤ R for some x∗ ∈ argminx∈K

∑
t ft(x). The online gradient

descent algorithm with step sizes ηt =
R

L
√
t
achieves

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤
3

2
LR
√
T . (B.4.1)

Our algorithm implicitly defines the cost functions ft(w) =
〈
w, τ (t)

〉
, where the feasible set

is Wn,ε, and implements the online gradient descent algorithm for the linear objective. Note
that ∇ft(w) = τ (t), and the main difference of this algorithm from the MWU scheme (Al-
gorithm 1) is that we use an additive/gradient-descent update, in lieu of the multiplicative
update.

Algorithm 9: Gradient descent for spectral sample reweighing (Definition 3.3.1)

Input: A set of points {xi}ni=1, an iteration count T , and step sizes ηt
Output: A point ν ∈ Rd and weights w ∈ Wn,ε.

1 Let w(1) = 1
n
(1, 1, · · · , 1).

2 For t from 1 to T

3 Let ν(t) =
∑

i w
(t)
i xi, M

(t) =
∑

i w
(t)
i (xi − ν(t))(xi − ν(t))T .

4 Let v(t) be the top eigenvector of M (t) (with ∥v(t)∥ = 1).

5 Compute τ
(t)
i =

〈
v(t), xi − ν(t)

〉2
.

6 Set wi ← wi − ηtτ
(t).

7 Project w(t+1) onto the set of good weights Wn,ε (under ℓ2 distance).

8 Return ν(t∗), w(t∗), where t∗ = argmint ∥M (t)∥.

Lemma B.4.2. Let ρ be the squared diameter of the inputs points {xi}ni=1. The cost function
ft(·) is

√
nρ-Lipschitz (in ℓ2 norm), for all t.

Proof. Since ft is differentiable, we only need the bound ∥∇ft∥. We have that for all t and
i,

τ
(t)
i =

〈
v(t), xi − ν(t)

〉2 ≤ ∥xi − ν(t)∥22 ≤ ρ.

Therefore, ∥∇ft∥ = ∥τ (t)∥ ≤
√
nρ.
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Theorem B.4.1. Given {xi}ni=1 and ηt = R/L
√
t with L =

√
nρ,R =

√
2, the online

gradient descent algorithm (based on Algorithm 9) yields a constant-factor approximation
for the spectral sample reweighing problem (Definition 3.3.1) in O(nd2/ε2) iterations and
O(n2d3/ε2) total run-time.

Proof. We first apply the Prune procedure of Lemma 3.3.3 to bound the diameter.
By Lemma 3.3.2 and the guarantee of Prune, we can have ρ = 16dλ/ε. Then we apply

Algorithm 9.
We will use Lemma B.4.1 to analyze Algorithm 9. First, by Lemma B.4.2, we have

L =
√
nρ, and further, since the ℓ2 diameter of the probability simplex can be (trivially)

bounded by
√
2, R =

√
2. Moreover, observe for any t,

ft
(
w(t)
)
=
〈
w(t), τ (t)

〉
=
∑
i

w
(t)
i

〈
v(t), xi − ν(t)

〉2
= v(t)TM (t)v(t) =

∥∥M (t)
∥∥
2
.

Let w ∈ Wn,ε be a weight that satisfies the spectral centrality condition. Then, from the
regret guarantee (B.4.1),

1

T

T∑
t=1

∥∥M (t)
∥∥
2
≤ 1

T

T∑
t=1

〈
w, τ (t)

〉
+

3LR

2
√
T

(B.4.2)

We bound the two terms on the right side individually.

(i) A bound on the first term follows exactly from the calculations we did in the analysis
of MWU algorithm (Algorithm 1). In particular, from (3.3.11) we have

1

T

T∑
t=1

⟨w, τ (t)⟩ ≤ 15λ+
1

3T

T∑
t=1

∥∥M (t)
∥∥
2
.

(ii) Observe that it suffices to set T = 3L2R2/λ2 to bound the second term by λ.

Substituting the two bounds back into (B.4.2),

1

T

T∑
t=1

∥∥M (t)
∥∥
2
≤ 16λ+

1

3T

T∑
t=1

∥∥M (t)
∥∥
2
. (B.4.3)

Rearranging and dividing through immediately yields the desired guarantee.
Given that L =

√
nρ,R =

√
2, we have that the iteration count T = 6nρ2/λ2. Since

ρ = 16dλ/ε, T = O(nd2/ε2). For the run-time, note that instead of computing the exact
largest eigenvector, we can use power method to find an 7/8-approximate one. Observe that
this suffices for our analysis of the method above. Finally, the Euclidean projection onto
Wn,ε can be computed in O(n log n) time [156]. This yields the desired run-time.
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Extension to sub-gaussian setting

Theorem B.4.1 implies that a gradient descent-based algorithm (Algorithm 9) can be used
for robust mean estimation under bounded covariance. We now extend the result to the
sub-gaussian setting, showing that the same iteration and run-time complexity holds. The
optimal estimation error we will aim for is O(ε

√
log(1/ε)). We assume the spectral signa-

ture Lemma B.2.1 and the deterministic condition (B.2.1).

Algorithm 10: Gradient descent for sub-gaussian robust mean estimation

Input: A set of points {xi}ni=1, step sizes ηt, an iteration count T , and parameter ρ
Output: A set of weights w ∈ Wn,ε.

1 Let w(1) = 1
n
1n.

2 For t from 1 to T

3 Let ν(t) =
∑

i w
(t)
i xi, M

(t) =
∑

i w
(t)
i (xi − ν(t))(xi − ν(t))T .

4 Compute v(t) = ApproxTopEigenvector(M (t), 1− ε2, δ/T ).

5 If λ(t) = v(t)⊤M (t)v(t) ≤ 1, return w(t).

6 Compute τ
(t)
i =

〈
v(t), xi − ν(t)

〉2
.

7 Set wi ← wi − ηtτ
(t).

8 Project w(t+1) onto the set of good weights Wn,ε (under ℓ2 distance).

9 Return w(t∗), where t∗ = argmint ∥M (t)∥.

In particular, we will analyze Algorithm 10 and prove the following set of guarantees.

Lemma B.4.3. Let ε be a sufficiently small constant and {xi}ni=1 be n points in Rd. Assume
the following (deterministic) conditions hold.

(i) There exists ν ∈ Rd and w ∈ Wn,ε such that∥∥∥∥∥
n∑

i=1

wi (xi − ν) (xi − ν)⊤

∥∥∥∥∥ ≤ 1 +O (ε log (1/ε)) . (B.4.4)

(ii) If ∥M(w)∥ ≤ 1 + λ, for some λ ≥ 0, then for any w ∈ Wn,ε,

∥ν − µ(w)∥ ≤ 1

1− ε

(√
ελ+ Cε

√
log(1/ε)

)
, (B.4.5)

Then, given {xi}ni=1, a failure rate δ and ρ such that ρ ≥ τ
(t)
i for all i and t, Algorithm 10

finds w′ ∈ Wn,ε such that
∥M(w′)∥ ≤ 1 +O (ε log (1/ε)) , (B.4.6)

with probability at least 1− δ.
The algorithm terminates in T = O(nρ2/ε2) iterations. Further, if T = O(poly(n, d)),

then each iteration takes Õ(nd log (1/δ)/ε2) time.
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Proof. If the algorithm gets early stopped, then ∥M (t)∥ ≤ 1 + O(ε2), so assumption (B.4.4)
guarantees that µ(w(t)) achieves the desired bound (B.4.6). We now assume that ∥M (t)∥ > 1
for any t.

By the regret bound (Lemma B.4.1) and the inequality
〈
w(t), τ (t)

〉
≥ (1− ε2)

∥∥M (t)
∥∥
2
,

for a w that satisfies assumption (B.4.4)

1− ε2

T

T∑
t=1

∥∥M (t)
∥∥
2
≤ 1

T

T∑
t=1

〈
w, τ (t)

〉
+

3LR

2
√
T
, (B.4.7)

where L =
√
nρ and R =

√
2. For the first term, note that we may apply Claim B.2.1 and

obtain

1

T

T∑
t=1

〈
w, τ (t)

〉
≤ 1 +O (ε log(1/ε)) +

2ε

(1− ε)2
1

T

T∑
t=1

∥∥M (t)
∥∥− 2ε

(1− ε)2

By setting T = 3L2R2/ε2 = O(nρ2/ε2), we can bound the second term by O(ε)
Substituting the bounds back into (B.4.7), we obtain

1− ε2

T

T∑
t=1

∥∥M (t)
∥∥
2
≤ 1− 2ε

(1− ε)2
+O(ε log(1/ε)) +

1

T

T∑
t=1

2ε

(1− ε)2
∥∥M (t)

∥∥
For sufficiently small ε, we can move the last term to the left side and divide through. This
immediately yields that

1

T

T∑
t=1

∥∥M (t)
∥∥
2
≤ 1 +O(ε log(1/ε)).

The run-time follows from the cost of computing (1 − ε2)-approximate largest eigenvector
via power iteration.

Using the same argument for Theorem B.2.1, Lemma B.4.3 implies the following theorem.

Theorem B.4.2. Let S = {xi}ni=1 be an ε-corrupted set of n samples from a sub-gaussian

distribution over Rd, with mean µ and identity covariance. Suppose n ≥ Ω̃(d/ε2). Then given
S, there is an algorithm (based on Algorithm 10) that finds µ̂ such that with high constant

probability ∥µ̂− µ∥ ≤ O
(
ε
√
log(1/ε)

)
.

The algorithm runs in Õ(nd2/ε2) iterations and Õ(n2d3/ε2) total time.

Equivalence with [41]

The recent work of Cheng, Diakonikolas, Ge and Soltanolkotabi [41] studies a gradient-
descent-based algorithm for solving the following non-convex formulation of robust mean
estimation.

min ∥Σw∥ such that w ∈ Wn,ε.
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where Σw =
∑n

i=1wi(xi − µ(w))(x− µ(w))⊤. This is equivalent to

min
w

max
u∈Sd−1

F (w, u) = u⊤Σwu such that w ∈ Wn,ε.

The sub-gradient of F (w, u) with respect to w (for a fixed u) is given by

∇wF (w, u) = Xu⊙Xu− 2
(
w⊤Xu

)
Xu, (B.4.8)

where X ∈ Rn×d is the data matrix whose the ith row is xi.
Based on the observation, they consider and analyze an algorithm that computes a (ap-

proximately) maximizing u and performs a projected gradient descent on w each iteration.
Since Algorithm 9 can be directly applied to the same robust setting (Corollary 3.4.2), it

is natural to consider the relationships between the two algorithms. Indeed, one can argue
that they are essentially the same. First, we unpack our gradient update (i.e., the spectral
scores) of iteration t. Note that

∇ift(w
(t)) = τ

(t)
i =

〈
v(t), xi − ν(t)

〉2
=
〈
v(t), xi

〉2
+
〈
v(t), ν(t)

〉2 − 2
〈
v(t), xi

〉 〈
v(t), ν(t)

〉
=
(
Xv(t) ⊙Xv(t)

)
i
+
(
w(t)⊤Xv(t)

)2 − 2
(
w(t)⊤Xv(t)

) (
Xv(t)

)
i

since ν(t) =
∑

i w
(t)
i xi = XTw(t), where ⊙ denotes entrywise product of vectors.

Let Ct = w(t)⊤Xv(t). Therefore, we can rewrite the gradient as

∇ft(w(t)) = C2
t · 1n+Xv(t) ⊙Xv(t) − 2Ct ·Xv(t)

Note that the gradient (B.4.8) used in [41] is exactly the same as above, except without
the term of all-one vector C2

t · 1n. In the gradient update step, the additional term reduces
the weight of every point uniformly by the same quantity C2

t . However, observe that by
Pythagorean theorem, the (Euclidean) projection onto Wn,ε can be decomposed into two
(sequential) steps: (1) first an orthogonal projection onto the affine subspace containing
Wn,ε, and then (2) a projection onto Wn,ε itself. Note that reducing each coordinate by
the same quantity or not results in the same vector by the first step. Therefore, the two
algorithms yield the same sequence of iterates (w(t))t.

B.5 Optimal Breakdown Point Analysis

We now consider a slight variant of the filter algorithm and show that it achieves the optimal
breakdown point of ε = 1/2, for the robust mean estimation problem. Recall that both
the classic filter algorithm and our Algorithm 7 work with the spectral scores defined as

τi =
(〈
v(t), xi

〉
−
〈
v(t), ν(t)

〉)2
, where the second term is the (weighted) average of the first.

Instead, the following variant replaces that by the median.
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Algorithm 11: Optimal filter for spectral sample reweighing (Definition 3.3.1)

Input: A set of points {xi}ni=1, an iteration count T , and parameter δ
Output: A point ν ∈ Rd and weights w ∈ Cn,ε.

1 Let w(1) = 1
n
1n.

2 While ∥M (t)∥ ≥ 16
7
λ
(
1 + 1

1/2−ε

)
3 Compute v(t) = ApproxTopEigenvector(M (t), 7/8, δ/T ).

4 Compute α
(t)
i =

〈
v(t), xi

〉
for each i and let m(t) = median

(
{α(t)

i }ni=1

)
5 Compute τ

(t)
i =

(
α
(t)
i −m(t)

)2
for each i and τmax = maxi:wi>0 τ

(t)
i .

6 Set w
(t+1)
i ← w

(t)
i

(
1− τ

(t)
i /τmax

)
for each i, and t← t+ 1.

7 Return ν(t), w(t).

Throughout we let ν(t) =
∑

i w
(t)
i xi, M

(t) =
∑

i w
(t)
i (xi − ν(t))(xi − ν(t))T .

Our proof follows by tracing the argument of the soft down-weighting filter [116]. First,
we assume that there exists a good setG ⊆ [n] such that |G| ≥ (1− ε)n and

1

(1− ε)n

∑
i∈G

(xi − ν) (xi − ν)⊤ ⪯ λI. (B.5.1)

Let B = [n] \G, and we first establish a technical condition on m(t).

Lemma B.5.1. Let β(t) = 1
n

∑
i∈G α

(t)
i . Then we have |m(t) − β(t)|2 ≤ λ

1/2−ε
.

Proof. We fix one iteration and drop the superscript. let µG = 1
n

∑
i∈G xi. First, observe

that by (B.5.1), we have

1

(1− ε)n

∑
i∈G

(xi − µG) (xi − µG)
⊤ ⪯ λI. (B.5.2)

Therefore, Ei∼G [(αi − β)2] = Ei∼G⟨v, µG − xi⟩2 ≤ λ. By Chebyshev’s inequality,

Pr
i∼G

(
|αi − β| >

√
λ

1/2− ε

)
≤ 1

2
− ε. (B.5.3)

This means that we have |G| · (1/2 + ε) points i ∈ [n] that satisfy |αi − β|2 ≤ λ
1/2−ε

. Our

claim now follows since |G| ≥ (1− ε) and (1− ε)(1/2 + ε) > 1/2 for any ε ∈ (0, 1/2).

This allows us to establish the key invariant of the algorithm.
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Lemma B.5.2. Suppose at iteration s, we have that

∥∥M (s)
∥∥ ≥ 16

7
λ

(
1 +

1

1/2− ε

)
. (B.5.4)

and for t = s ∑
i∈G

1

n
− w

(t)
i <

∑
i∈B

1

n
− w

(t)
i (B.5.5)

Then the condition (B.5.5) continues to hold for t = s+ 1.

Proof. Observe that to prove the claim inductively, it suffices to show that for any s,∑
i∈G

w
(s)
i − w

(s+1)
i <

∑
i∈B

w
(s)
i − w

(s+1)
i . (B.5.6)

We now just focus on these two iterations, drop the superscript and denote w(s+1) by w′. By
definition of the update step (line 7 of Algorithm 11), we just need to prove that∑

i∈G

wiτi <
∑
i∈B

wiτi. (B.5.7)

Now note that since ν = µ(w) =
∑n

i=1 wixi, we have

n∑
i=1

wiτi =
n∑

i=1

wi(⟨v, xi⟩ −m)2

=
n∑

i=1

wi (⟨v, xi − ν⟩+ ⟨ν, v⟩ −m)2

=
n∑

i=1

wi

(
⟨v, xi − ν⟩2 + (m− ⟨v, ν⟩)2

)
≥

n∑
i=1

wi ⟨v, xi − ν⟩2

= v⊤Mv ≥ 7

8
∥M∥2.

Hence, to establish invariant (B.5.7), we proceed by showing that∑
i∈G

wiτi ≤
7

16
∥M∥2. (B.5.8)
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Since wi ≤ 1
n
, we have

∑
i∈Gwiτi ≤

∑
i∈G

1
n
(⟨v, xi⟩ − m)2. On the other hand, let µG =

1
n

∑
i∈G xi, and so by condition (B.5.1) and Lemma B.5.1,∑

i∈G

1

n
(⟨v, xi⟩ −m)2 =

1

n

∑
i∈G

⟨v, xi − µG⟩2 + |⟨µG, v⟩ −m|2

≤ λ+
λ

1/2− ε

≤ 7

16
∥M∥,

by our assumption (B.5.4). This completes the proof.

Theorem B.5.1. For any ε ∈ (0, 1/2), Algorithm 11 gives a constant approximation to
the spectral sample reweighting problem (Definition 3.3.1). The algorithm terminates in
T = O(n) iterations.

Proof. The run-time follows from the invariant Lemma B.5.2, which guarantees weights on
bad points are removed more than those on good points. Hence, after 2εn iterations, the
algorithm must terminate. Moreover, when the algorithm terminates, we have∥∥M (t)

∥∥ ≤ 16

7
λ

(
1 +

1

1/2− ε

)
. (B.5.9)

For any constant ε ≤ 1/2−O(1), the bound is O(λ).

Robust mean estimation. Our reduction from spectral sample reweighting to robust
mean estimation is not sufficiently tight for the purpose of attaining optimal breakdown
point. Instead, we need to appeal to the following more refined spectral signature.

Claim B.5.1 (refined spectral signature [115]). Let S = Sg ∪ Sb \ Sr be n points with
|Sb| = |Sr| = εn. Define µg = 1

n

∑
i∈Sg

xi and Σ = 1
n

∑
i∈Sg

(xi − µ)(xi − µ)⊤. Let w(S) be

the uniform distribution on S and Cn,ε = {w : ∥w − w(S)∥1 ≤ ε, 0 ≤ wi ≤ 1/n for i ∈ [n]}.
Then for any w ∈ Cn,ε, ∑

i∈S∩Sg

wi

 ∥µ− µ(w)∥ ≤
√

2ε∥Σ∥+
√

ε ∥Σ(w)∥.

Theorem B.5.2. For the problem of robust mean estimation (under bounded second mo-
ment), Algorithm 11 attains the optimal estimation error O(

√
ε) for any ε < 1/2.

Proof. By Lemma B.5.2, our algorithm always removes more weights from bad points than
from good points. Thus, w(t) ∈ Cn,2ε, as there are at most εn bad points. Moreover,∑

i∈S∩Sg
wi ≥ 1− 2ε.



APPENDIX B. TECHNICAL DETAILS FOR CHAPTER 3 140

For robust mean estimation, if we have n = Ω(d log d/ε) samples, then ∥µg−µ∥ ≤ O(
√
ε)

and λ = ∥Σ∥ ≤ 2 [60]. Hence, applying Claim B.5.1 and the guarantee that ∥M (t)∥ ≤
16
7
λ
(
1 + 1

1/2−ε

)
,

∥∥µg − ν(t)
∥∥ ≤ 1

1− 2ε

(
2
√

ε∥Σ∥+
√
2ε ∥M (t)∥

)
≤ O(

√
ε),

for any ε < 1/2. Finally, triangle inequality implies that ∥µ− ν(t)∥ = O(
√
ε).
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