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Abstract

Understanding, Building, and Evaluating Models for Context Aware Conditional Natural
Language Generation

by

David McCloud Chan

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor John Canny, Chair

If you ask a human to describe an image, they might do so in a thousand different ways.
Each of these descriptions depends not only on the image but also on a rich tapestry of
contextual hints and clues surrounding the image (up to and including the person doing the
describing themselves). Until now, the field of conditional natural language generation has
focused almost solely on the perception component of the task: how do we perceive what is
in the stimulus – be it audio, visual, or textual – and relay it to the user? In this dissertation,
we argue that models that focus solely on the stimulus (and not the associated context) suffer
significant shortcomings in their ability to generate language that aligns well with human
judgments of quality and content while decreasing their overall utility for downstream tasks.
This dissertation focuses on three core objectives in the pursuit of building a context-aware
conditional natural language generation (CNLG) model: (1) capturing and understanding
the information within, among, and between generated conditional texts, (2) developing
multimodal models that better integrate contextual information, and (3) designing CNLG
evaluation methodologies that better align with human judgment. Through these objectives,
we demonstrate the power of context in natural language generation and help to answer the
question: “How can we understand, build, and evaluate context-aware models for conditional
natural language generation?”
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Chapter 1

Introduction

Figure 1.1: A picture of a dress. Photo by
Cecilia Bleasdale.

In late February 2015, an image of a dress
was posted on the internet. This, in and of
itself is not surprising; according to some es-
timates, over three billion images are posted
to the internet every day (Thomson et al.,
2022). But what made this particular image
special? Why did this image inspire 840,000
views and 11,000 tweets per minute, while
helping to set a new record for concurrent
users at BuzzFeed (673,000)? Well, let me
ask you a simple question: “What color is
the dress?” If you said blue and black, well,
you would agree with me (and according to
Lafer-Sousa et al. (2015), 57% of people).
But if you didn’t, that’s not surprising either
- you might have seen white and gold, or blue
and brown, or agree with the 2% of people
who said something else entirely. This dis-
agreement was one of the largest questions
the internet faced in 2015, all caused by a
surprising phenomenon: every person sees
color differently. While the exact reason is
still debated, according to Wallisch (2017),
the potential difference can be ascribed to
assumptions that each person viewing the
image makes about the illumination of the
image; people who assumed the illumination
was in natural light were more likely to see the dress as white and gold, while those who
assumed the illumination was artificial were more likely to describe it as blue and black.
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So, if we were to ask an artificial agent to describe the image, what would it say? Asking
a state-of-the-art image description model (Li et al., 2023b) gives the result “A blue and
black dress on a mannequin.” This description is great for 57% percent of the people who
naturally agree with the system, but for the other 43%, the description model fails to generate
an answer that they would agree with (is it a coincidence that the model agrees with the
majority? See chapter 6). This result belies a greater problem in image description, and in
fact, in conditional language generation as a whole: traditional approaches for conditional
natural language generation largely ignore the greater contexts that they lie within. Indeed,
it is clear that language never exists in a vacuum: surrounding each generated utterance is a
rich tapestry of contextual clues, hints, and conditions that impact the final result for the
generative model.

Figure 1.2: A quaint European street.
Photo by Zhang Kaiyv.

One might argue that this is only an is-
sue with subjective images, such as the im-
age of the dress above, but that’s hardly
the case. Take for instance the image in
Figure 1.2. If the image here is used in an
article about a public bicycle hire scheme
named Hire-a-bike, then the bike is the fo-
cus, and a good caption/description of the
image could be “A woman rides a Hire-a-
bike along a city road”. However, if it’s
used in an article about a dispute between
the café and the restaurant, a better de-
scription might be “The storefronts of the
‘Café Bar Hotel’ and ‘Alpen Hotel Restau-
rant” ’1

Until now, the field of conditional natural language generation has focused almost solely
on the perception component: how do we perceive what is in the stimulus (be it audio, visual,
or textual), and relay that to the user? In the case of image description, this has meant a
focus on understanding what is in the image, and largely ignoring any contextual clues. In
the case of automatic speech recognition, this means focusing on the audio itself and ignoring
the context in which that audio occurs. In many cases, however, such a context is either
helpful or necessary, for the output of the model. Thus, to address these challenges, we must
pivot towards a more nuanced understanding of conditional natural language generation by
recognizing that effective communication and information exchange hinge not solely on the
literal interpretation of the stimulus but additionally on an intricate web of contextual cues
and environmental factors.

In this dissertation, we ask the overall question: How can we understand, build, and
1Thanks to Jake Archibald, and his amazing blog post on alt-text, for this example: https://

jakearchibald.com/2021/great-alt-text/.

https://jakearchibald.com/2021/great-alt-text/
https://jakearchibald.com/2021/great-alt-text/
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evaluate context-aware models for conditional natural language generation? To explore this
problem we delve into several domains (see section 1.1), to explore ways in which the context
surrounding a piece of text can influence its generation, and how we can leverage contextual
clues (from some surprising sources) to understand, evaluate, and build more powerful
multimodal models. Overall, this dissertation is broadly organized into three core sections,
each treating some aspect of the context-aware conditional natural language generation
(CNLG) problem:

• Understanding information within, among, and between generated samples:
First, we dive deeply into understanding joint distributions of images/video and text,
and information that can be captured within the generated texts (i.e. the distribution
of language in a dataset) and among/between the generated texts (among, referring
to the the information present in multiple samples for a single image, and between,
referring to the larger distribution of language that can be imputed from the sample
set). In chapter 3, we look at the behavior of image/text joint distributions and uncover
interesting details about how the datasets we use for images and videos are structured,
and in chapter 4, we explore how such implicit characteristics in the dataset can be
used to select a small/efficient set of samples during training.

• Building multimodal models for CNLG: Next, we introduce several methods for
building models for CNLG across several domains. In the image captioning domain, we
discuss in chapter 6 how the full distribution learned by CNLG models can be leveraged
effectively to produce single high-quality captions. In the ASR domain, we explore
how different types of context including videos (chapter 7), text catalogs (chapter 8)
and dialogues (chapter 9) can be leveraged to improve the quality of generated natural
language.

• Evaluating CNLG models: Finally, we introduce two new methodologies for evalu-
ating models that are capable of CNLG. The first, introduced in chapter 11, evaluates
models by looking at the full learned distribution, instead of only a single best sample
for the model. The second, introduced in chapter 12, leverages the implicit distribution
of human preference learned by large language models to improve the evaluation of
generated text.

1.1 Application Domains
Conditional natural language generation is a broad field, encompassing many different

domains and applications. In this dissertation, we focus on two application domains: Im-
age/Video description and Automatic Speech Recognition. Here, we broadly define the task
domains.
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1.1.1 Visual (Image/Video) Description

Visual description is the task of translating an input image/video into a natural language
description of that image/video. Here, the key stimulus is the image/video, and the resulting
generated text is a description of what is present in the video. Such a task has several key
applications including:

Figure 1.3: Helen Keller stands in the right
two-thirds of a vertical frame. She is wearing
a loose, satin-like white robe with a dusky
gray border that wraps around her neck and
downward. Her dark brown hair is parted in
the center and gathered neatly, billowing in
tight curls above her ears. She stares intently
at the camera, her thin lips flat, expressionless.
Her hands come together at her waist as she
gently holds a white rose whose long stem
starts out of frame, proceeds upwards as deep
green leaves spread forth, and ends in a trio of
white roses by her sternum. In the foreground,
is a white rose bush occupying the left third
of the frame, deep green leaves below, and
delicate white flowers above. A gradient grey
background completes the intense, solemn
portrait. Photo by alperyesiltas.

(1) Alt-Text Generation / Ac-
cessibility: One of the most impor-
tant applications of visual description
is the automated generation of alt-text
(Yoon et al., 2019). “alt-text”, short
for “alternative text” is a short, con-
cise description of the input visual me-
dia designed to replace the media for
people who cannot see the image (ei-
ther because they are visually impaired
or using a screen reader, or because
the image does not load on a web-
page).

(2) Summarization: Another excit-
ing application of visual description is video
and image summarization (Zhang et al.,
2016). Short natural language summaries
of what is happening in a visual scene
may be more time-efficient for a user to
consume, rather than watching the full
video.

(3) Indexing: Following summarization,
another application of visual descriptions is
for indexing and search. While methods do
exist for text-image search/recall (Radford
et al., 2021a; Miech et al., 2019), many search
engines are optimized for performing text-
text queries, a process which is enabled for
images by hand-written metadata or image
descriptions. Instead of relying on metadata,
images/videos can alternatively be encoded
using a visual description, which serves as a
proxy during the search process.

An example of a good visual description
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is shown in Figure 1.3. Here, the visual de-
scription goes into detail about the image,
focusing on the foreground, and background, and a detailed discussion of the feeling and
emotion conveyed in the work. Unfortunately, such “good” descriptions are relatively uncom-
mon. Examples of more common descriptions, along with some of the nuances of existing
image description tasks, are discussed in chapter 3, where we delve into how the actual data
distribution impacts image/text models.

In this work, we use the terms “description” and “captioning” interchangeably, however, it
is worth noting that there is a fine-grained distinction between the two in practice. Visual
“description” is the process of describing what’s in the image/video for somebody who can’t
see the image (i.e. as a natural language substitute for the image). Image “captions” on the
the other hand may not closely mirror what the image shows (for example, the caption might
include the date the photo was taken, who took the photo, where the photo was taken, etc.).

1.1.2 Automatic Speech Recognition (ASR)

The second domain that we explore in detail in this dissertation is automatic speech
recognition (ASR). This is the task of taking a spoken utterance and converting that utterance
into a natural language rendering of that utterance. There are several common applications
for ASR tools including:

1. Live captioning and transcription: ASR is used to automatically transcribe audio
and video content into text, allowing for the creation of subtitles, meeting minutes,
transcriptions of lectures/interviews, and other applications.

2. Virtual assistants, chatbots, and smart speakers: Devices such as the Amazon
Echo, Google Home, and Apple’s Siri use ASR tooling to interpret voice commands and
provide responses, control smart devices, and more. In this dissertation, many of our
experiments are performed in the context of virtual assistant dialogues (with Amazon’s
Alexa assistant, see chapters 7,8, and 9).

3. Voice commands, dictation, and accessibility: Many ASR tools are used for
assisting users with disabilities by converting speech into text or commands enabling
easier/hands-free interaction with devices and software.

Beyond such applications, ASR tools can be used in domains such as automotive systems,
healthcare, language learning, customer service/call centers, security and authentication,
journalism, and law (among others).

While ASR applications are conditional natural language generation, it may not be
immediately obvious that they suffer from the same contextual problems that image description
suffers from: the language that is spoken is not dependent on each person, is it? It turns out
that in many cases, particularly in other languages, the transcription of an utterance heavily
depends on contextual hints. Those hints may come from other parts of the conversation,
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or they may have to be inferred from the visual clues. One example is in Japanese, where
the utterance あつい (atsui) could be transcribed as 熱い, 厚い, 篤い, 暑い, depending on if
the user meant that something was hot (in a temperature sense), thick (as in a thick book),
warm (in terms of hospitality), or hot (for the weather). We explore these ideas more in part
II, where we explore ways to integrate context clues into ASR models, drawing context from
several different sources.
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Chapter 2

Statement of Prior Publications and
Authorship

This dissertation is composed of several projects, each of which contains core ideas and
research previously published at various venues, listed in Table 2.1. I am the first author in
these papers, but this research would not have been possible without the assistance of my
collaborators, including David Ross, Austin Myers, Sudheendra Vijayanarasimhan and Bryan
Seybold at Google, Shalini Ghosh, Hitesh Tulsiani, Debmalya Chakrabarty, Ariya Rastrow
and Björn Hoffmeister at Amazon, and Suzanne Petryk, Yiming Ni, Joseph E Gonzalez,
Trevor Darrell and John Canny at UC Berkeley. In chapters 3, 4, 6, 7, 8, 9, 11, and 12, I
reflect their support by using ‘we’. While all of this work is my own, this dissertation makes
no novel claims to the intellectual property contained within.
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Table 2.1: List of prior work included in this dissertation, along with publication venues,
coauthors, and in which chapter they appear in this dissertation.

Title Author List Venue Chapter

Task Oriented Dialogue as a
Catalyst for Self-Supervised
Automatic Speech Recogni-
tion

David M Chan, Shalini
Ghosh, Hitesh Tulsiani, Ariya
Rastrow, Björn Hoffmeister

2024 IEEE International Con-
ference on Acoustics, Speech
and Signal Processing

chapter 9

CLAIR: Evaluating image
captions with large language
models

David M Chan, Suzanne
Petryk, Joseph E Gonzalez,
Trevor Darrell, John Canny

Proceedings of the 2023 Con-
ference on Empirical Methods
in Natural Language Process-
ing

chapter 12

IC3: Image Captioning by
Committee Consensus

David M Chan, Austin
Myers, Sudheendra Vijaya-
narasimhan, David A Ross,
John Canny

Proceedings of the 2023 Con-
ference on Empirical Methods
in Natural Language Process-
ing

chapter 6

Domain Adaptation with Ex-
ternal Off-Policy Acoustic
Catalogs for Scalable Contex-
tual End-to-End Automated
Speech Recognition

David M Chan, Shalini
Ghosh, Ariya Rastrow, Björn
Hoffmeister

2023 IEEE International Con-
ference on Acoustics, Speech
and Signal Processing

chapter 8

Distribution Aware Metrics
for Conditional Natural Lan-
guage Generation

David M Chan, Yiming
Ni, David A Ross, Sud-
heendra Vijayanarasimhan,
Austin Myers, John Canny

Proceedings of the 2024
Joint International Confer-
ence on Computational Lin-
guistics, Language Resources
and Evaluation

chapter 11

Multi-modal pre-training for
automated speech recogni-
tion

David M Chan, Shalini
Ghosh, Debmalya
Chakrabarty, Björn Hoffmeis-
ter

2022 IEEE International Con-
ference on Acoustics, Speech
and Signal Processing

chapter 7

What’s in a Caption?
Dataset-Specific Linguistic
Diversity and Its Effect on
Visual Description Models
and Metrics

David M Chan, Austin
Myers, Sudheendra Vijaya-
narasimhan, David A Ross,
Bryan Seybold, John F
Canny

Proceedings of the
IEEE/CVF Conference
on Computer Vision and
Pattern Recognition (2022)

chapter 3

Active learning for video
description with cluster-
regularized ensemble ranking

David M Chan, Sudheendra
Vijayanarasimhan, David A
Ross, John F Canny

Proceedings of the Asian Con-
ference on Computer Vision
(2020)

chapter 4
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Part I

Understanding
On two occasions I have been asked, "Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come out?" ... I am not able rightly to
apprehend the kind of confusion of ideas that could provoke such a question.

Charles Babbage

When building models for conditional generation, it is important to understand the data
upon which the model is built. Unfortunately, it has been shown repeatedly that models are
willing to exploit patterns that are implicit in the data to achieve strong metric performance
on benchmark tasks, without actually solving the target problem (for a good discussion
of this, see Skalse et al. (2022)). Indeed, models trained with one dataset often fail in a
new dataset or scenario. Thus, it makes sense to begin our investigation by looking closely
at the data itself: what patterns are present in the data? Can we take lessons from these
patterns during our modeling process? Can we exploit or correct those patterns efficiently
and effectively?

In this section of the dissertation, we focus on several aspects of the data distribution
unique to conditional natural language generation: the distribution of information within
the generated texts, and the distribution of information among and between the generated
texts. Information within the generated texts is what we consider our standard language
distribution: looking at all of the generated texts in a dataset, how do they behave regardless
of the implicit partitioning ascribed by the stimulus. More interesting (and less explored),
however, is the information among samples generated given a single condition. Multiple
samples given the same image can capture further information than a single sample on it’s
own. Even further, it is interesting to understand the information found “between” these
samples. Given that we have a sample set, we can impute a larger conditional distribution of
text given the image – what can we learn from the imputed distribution? and how can we
exploit this distribution to build better models?

To explore these directions, in chapter 3 we look at how linguistic diversity present in the
dataset itself can impact models for conditional natural language generation in the image
and video description domains. We examine several popular visual description datasets, and
capture, analyze, and understand the dataset-specific linguistic patterns that models exploit
to achieve strong performance. For example, at the token level, sample level, and dataset level,
we find that caption diversity is a major driving factor behind the generation of generic and
uninformative image and video descriptions. We further show that state-of-the-art models
even outperform held-out ground truth captions on modern metrics and that this effect is an
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artifact of linguistic diversity in datasets. Understanding that this linguistic diversity is key
to building strong captioning models, we recommend several methods and approaches for
maintaining diversity in the collection of new data and dealing with the consequences of
limited diversity when using current models and metrics.

Next, in chapter 4, we turn our attention to the collection of data for the video captioning
task: how can we exploit the inherent structure in the visual-linguistic data to reduce the
amount of training data we need to collect. Here, we explore various active learning approaches
for automatic video captioning and show that a novel method based on cluster-regularized
ensembling of models provides the best active learning approach to efficiently gather training
sets for video captioning. We evaluate our approaches on the MSR-VTT and LSMDC datasets
using both transformer and LSTM-based captioning models and show that our novel strategy
can achieve high performance while using up to 60% fewer training data than the strong
state-of-the-art baselines.

The lessons that we learn in this section are crucial for understanding the failure cases of
our models, and to understanding how we can build models that are robust to the artificial
domain shift introduced by a shifting underlying dataset. We can see the impact of the work
from this chapter in later sections, perhaps most notably chapter 6, where we directly exploit
the lessons learned in chapter 3 to produce high-quality caption models without additional
training, and chapter 11, where we develop improved measures to test the deficiencies found
in this chapter. Ultimately, it is necessary to focus first on the data, as without a strong
grasp of the choices made in the underlying distributions, it is impossible to design models
that effectively and efficiently transfer to interactive and intelligent systems.

Previously Published Works Appearing In This Section:

1. Chan, David M., et al. "What’s in a Caption? Dataset-Specific Linguistic Diversity and
Its Effect on Visual Description Models and Metrics." Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022.

2. Chan, David M., et al. "Active learning for video description with cluster-regularized
ensemble ranking." Proceedings of the Asian Conference on Computer Vision. 2020.



11

Chapter 3

Dataset-Specific Linguistic Diversity and
Its Effect on Visual Description Models
and Metrics

As discussed in chapter 1, automated visual description is an emergent field in computer
vision, aiming to generate natural language descriptions of visual information. Unfortunately,
despite recent improvements in model architectures (Liu et al., 2021a; Perez-Martin et al.,
2021), metrics (Jiang et al., 2019; Wang et al., 2021b), and datasets (Monfort et al., 2021; Wang
et al., 2019), automated visual description has been plagued by issues of poor generalization
and description quality (Stefanini et al., 2021; Aafaq et al., 2019; Smeaton et al., 2019;
Yang et al., 2020a). Models consistently perform poorly on novel data, generate nonsense
descriptions, or produce descriptions that are too vague to be of use to visually impaired
users (MacLeod et al., 2017). It remains an open question in visual description to understand
the source of these generalization issues.

This work is motivated by both the fact that often state-of-the-art methods outperform
leave-one-out experiments with ground truth sample data (explored in 3.2) as well as re-
sults demonstrating poor cross-dataset generalization in video captioning from Smeaton
et al.(Smeaton et al., 2019) and Yang et al.(Yang et al., 2021b). We find that one major
issue in current datasets—description linguistic diversity—explains a great deal about model
evaluations.

Our work, consisting of analyses on several popular visual description datasets, contains
several primary contributions:

1. We demonstrate that a lack of linguistic diversity at a token and n-gram level can bias
models to generate descriptions lacking in semantic detail (section 3.3).

2. We show that diversity among ground truths for a single visual context presents a
catch-22: low within-sample linguistic diversity leads to generic captions, as information
is repetitive; on the other hand, high within-sample diversity leads to a breakdown
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of single-sample metrics, causing inconsistencies in model evaluation and inaccurate
understanding of model performance (section 3.4).

3. We detail how a lack of semantic diversity at the dataset level can encourage models to
generate generic descriptions through classification, instead of learning to understand
and relay visual phenomena at various levels of detail (section 3.5).

4. We discuss our findings demonstrating the need for future research in visual description
datasets, methods, and metrics, present recommendations on possible solutions to
current linguistic diversity, and introduce a new toolkit for dataset evaluation and split
generation focused on linguistic diversity (section 3.6).

3.1 Experimental Design
In this work, we explore the field of visual description data through the lens of some of the

most popular visual description datasets. While there are a large number of visual description
datasets to choose from, we decided to focus on some of the most common datasets for video
description, and an additional dataset for image description: 1 MSR-VTT (Xu et al., 2016),
VATEX (Wang et al., 2019), MSVD (Chen and Dolan, 2011) and MS-COCO (Lin et al.,
2014) (for full details, see Appendix A).

All of these datasets collect multiple ground truth descriptions per visual context, and
the ground truth descriptions that they do collect are generated by human annotators
(via Amazon Mechanical Turk for these datasets). Unfortunately, very large benchmark
datasets such as Conceptual Captions (Sharma et al., 2018) and HowTo-100M (Miech et al.,
2019) often contain only a single description per image/video, of questionable quality as the
datasets are not annotated by hand. While datasets like S-MiT (Monfort et al., 2021) contain
human-annotated ground truths, they post-process spoken language with automated speech
recognition tools, making the dataset difficult to analyze from an n-gram metric angle. Both
ActivityNet Captions (Krishna et al., 2017) and YouCook (Zhou et al., 2018a) are dense
video description datasets that contain high-quality descriptions, however only contain a
single ground truth per video.

Given the datasets, we will contextualize our experiments through the lens of several
standard metrics for visual description. The BLEU (or BLEU@N) (Papineni et al., 2002)
score is a measure of n-gram precision, the ROUGE-L (Lin, 2004) score is a measure of
longest common sub-sequence recall, the METEOR (Banerjee and Lavie, 2005) score is a
F1-oriented alignment-based metric, and the CIDEr (Vedantam et al., 2015) score is a TF-IDF
weighted similarity metric. For more details of the individual metrics, see Aafaq et al. (2019).
Recently, metrics which focus more on including visual content directly such as TIGEr (Jiang
et al., 2019) and FAIEr (Wang et al., 2021b) have shown improvements in human-judgement

1As described in section 3.6, we make the tools available for this analysis public, so any additional datasets
can be analyzed.
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correlation and scores such as CLIP-score (Radford et al., 2021b), BERT-score (Zhang et al.,
2020d), and SMURF (Feinglass and Yang, 2021) have been shown to closer approximate
semantic content. While improving the metrics is an extremely important area of research,
we also believe that analyzing both why current metrics are failing and what patterns models
exploit to optimize these metrics, can give essential insight into model improvements.

We selected a set of recent works from the field as representing the state of the art. For
visual description on MSR-VTT and MSVD, we refer to SemSynAN (Perez-Martin et al.,
2021), a recent work that uses semantic embeddings based on POS tagging to achieve strong
results. SemSynAN was not evaluated on the VATEX dataset, so for VATEX, we refer to
the performance of MGRMP (Motion Guided Region Message Passing) (Chen and Jiang,
2021), a recent method for visual description which leverages message passing between object
regions. For MS-COCO, we refer specifically to Vin-VL (Zhang et al., 2021b), a method that
uses object-level attention and vision and language pre-training for visual description.

3.2 How Can Models Outperform Humans?
Recently, there has been a strong contrast between the metrics-based evaluation of methods

for generating visual descriptions on data sets and whether those methods generalize to real-
world use cases (Stefanini et al., 2021). The goal of our analysis is thus to understand some
of the core reasons why models are failing to generalize and to make recommendations for the
future design of datasets, models, and metrics, in an attempt to avoid further generalization
shortcomings.

A core indicator of the difficulty of using standard metrics to improve generalization
is that the “leave-one-out" performance of the ground truths for each dataset is typically
poor. Because we investigate datasets that have more than a single ground truth sample per
visual context, we can measure the metric scores between a randomly sampled ground truth,
and the remaining ground truths for that visual context. When averaged over many trials,
this stochastic approach generates an estimate of human performance on the dataset (see
Appendix A for details).

Our results are summarized in Figure 3.1. We can see that SOTA methods significantly
outperform this estimate of human performance on the MSVD, MSR-VTT, and MS-COCO
datasets. This result is not only counter-intuitive, but detrimental to progress in the field of
video description, as it draws into question the usefulness of standard metrics as an indicator
of model performance and generalization. These results motivate questions of understanding:
“Why, and how, do models exploit the current metrics to achieve strong performance?” and
“How can we limit the the exploitation of N-Gram centric metrics”. The goal of the next
several sections is to explore these questions through the lens of data diversity. Through
analysis of single-token, n-gram, within-sample, and cross-sample diversities, we demonstrate
how linguistic patterns affect models and metrics and explore how we can mitigate these
effects.
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Figure 3.1: Captions generated by state-of-the-art (SOTA) models outperform held-out
ground truth captions written by humans on common visual description datasets and metrics.
Despite being far from human-level, SOTA models appear to outperform humans on most
datasets and metrics, with the exception of VATEX, a relatively new dataset (and not even
on all metrics). This discrepancy begs the question, “What causes these effects?" and “Are
these effects indicative of a more serious issue with visual description datasets or model
evaluation methods?" The figure above shows metric performance normalized to a recent
SOTA model across several visual description datasets.
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Dataset Unique BS-Unique WS-Unique Head

MSVD 9455 1.21% 11.8% 944
MSR-VTT 22780 0.76% 21.55% 1636
VATEX 31364 0.33 % 24.87% 1363
MS-COCO 35341 0.22% 33.76% 824

Table 3.1: Vocabulary metrics for each of the datasets. Unique: The number of unique tokens.
BS-Unique: Average percent of tokens per description that are unique. WS-Unique: Average
percent of of tokens that are unique within a sample. Head: The number of unique tokens
comprising 90% of the total tokens.

3.3 Single Sample Diversity

3.3.1 Token-Level Diversity

Table 3.1 provides a token-level analysis of each of the datasets. In addition to reporting
the number of unique tokens in the dataset, we also introduce three new measures of diversity.
Why are such measures necessary? It is well known that text follows a power-law distribution
(Zipf, 2016) in their vocabulary size, thus, the entropy of the dataset is approximated by the
natural log of the vocabulary size. While measuring the entropy of the dataset is important,
that only provides a general idea of the potential spread of the data, it doesn’t say much
at all about how easy the dataset is to solve with simple captioning model, capable only
of classification. Ideally, in addition to the entropy of the data, we would also like to
measure something like the mutual information between captions of the same image, and
more generally, the conditional mutual information between captions across multiple images
in the dataset (i.e. how easy it is to disambiguate the captions, given the image). To address
this, we introduce the following measures:

• “Between-Sample Uniqueness” measures the percentage of tokens in each caption
that are unique in the dataset. Between-Sample Uniqueness assesses the proportion
of tokens in each caption that are unique across the dataset. This measure directly
relates to the concept of conditional entropy, which quantifies the amount of information
needed to describe the outcome of a random variable given that the outcome of another
variable is known. In the context of image captioning, conditional entropy can be
thought of as the amount of information required to predict the caption of an image,
given the dataset. High Between-Sample Uniqueness suggests that many tokens used in
captions are unique to specific images or contexts within the dataset, thereby increasing
the conditional entropy. This indicates that predicting a caption based on the dataset’s
distribution requires more information, highlighting the diversity and specificity of the
dataset. It challenges models to learn fine-grained distinctions between samples, as
a large number of unique tokens implies that simple classification strategies may not
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suffice for accurate caption generation.

• “Within-Sample uniqueness” measures the percentage of tokens that are unique
within a particular image/video. This measure provides insight into the internal diversity
of captions, reflecting the variability of language used to describe a single image or
video. High Within-Sample Uniqueness indicates that captions contain a wide variety
of tokens even within a single description, suggesting that the language used is rich and
varied. This directly impacts the model’s need to understand and generate nuanced,
detailed descriptions, as opposed to relying on repetitive or generic language. In terms
of the Zipf distribution, where a small number of words are extremely common while
the majority are rare, this measure suggests an encouragement of utilizing the “long
tail” of the vocabulary, thus enriching the model’s capacity for detailed and specific
caption generation.

• “Vocab-Head” measures the number of tokens making up 90% of the tokens in the
dataset. The vocab-head provides a direct link to the Zipf distribution by highlighting
the concentration of vocabulary usage within the dataset, indicating how reliant the
dataset is on a core vocabulary. In datasets where the Vocab-Head is small, a significant
portion of the content can be described using a limited vocabulary, which might simplify
the task for models but also limit their ability to deal with rare or unique descriptions.
This measure inversely relates to the concept of entropy, as a smaller Vocab-Head implies
lower entropy and potentially lower conditional entropy, making the task of caption
prediction more about recognizing common patterns than understanding nuanced or
diverse descriptions. It encourages models to learn beyond the most frequent tokens to
improve their performance on more complex, diverse datasets.

Together, these measures encourage a deeper examination of datasets beyond simple
entropy calculations, and optimizing these measures compels models to engage with the
data’s complexity, diversity, and specificity, aligning with the goal of enhancing the mutual
information between captions and images. This aligns with the broader objective of improving
model performance on tasks that require nuanced understanding and generation of language.

From Table 3.1, we can see that while the number of tokens in the dataset can be diverse,
the captions themselves are relatively lacking in diversity. Between sample diversity is
relatively low, meaning that tokens are often re-used, suggesting a lack of unique vocabulary
(which can often benefit models). Within-sample diversity ranges between 11% and 35%,
suggesting that within samples, the descriptions are relatively varied. We discuss the impact
of within-sample diversity in section 3.4. Particularly surprising is the size of the head of the
token distribution for each of the datasets. As expected, a small fraction of tokens represent
90% of the occurrence in most of the datasets. In MS-COCO, 2% of the tokens represent
90% of the occurrences, while at the other extreme 10% of the tokens are required for MSVD.
This begs the question: how does the effective vocab size impact performance?

To validate how effective vocab size impacts performance, we used the same setup as in
section 3.2 to compute the performance of the ground truths, however, replaced tokens in the
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Table 3.2: Effective vocab size (EVS), number of tokens per caption (TPC) and Effective
Decision (ED@N). The EVS-n is the percentage of n-grams that do not act like 1-grams
in the dataset. A large EVS-n means that language is more diverse, while a small EVS-n
means that there are very few combinations of possible n-grams. The ED@N is the expected
number of decision that a model has to make when generating captions of length N. WT-103
is WikiText-103 (Merity et al., 2017), a common natural language dataset.

Dataset TPC EVS-2 EVS-3 EVS-4 ED@10

MSVD 7.03 47.83% 25.29% 14.67% 2.90
MSR-VTT 9.32 52.96% 26.44% 13.68% 2.88
VATEX 15.29 54.84% 32.60% 18.86% 3.38
MS-COCO 11.33 53.91 % 32.59% 20.56% 3.51
WT-103 87.04 95.19 % 34.49% 17.81% 3.72

tail of the token distribution with unique “UNK” tokens. Performance dropped significantly in
all cases, with the most dramatic drop for MSVD (drop of 63.87%) and the least for MS-COCO
(drop of 51.23%). MSR-VTT experienced a decrease of 58.66% and VATEX experienced a
decrease of 56.20%). Counter-intuitively, the longer the tail, the less performance decreased.
This result, confirmed in classification by Tang et al. (2020), implies that models which
generate from a limited vocabulary are advantaged (in terms of n-gram performance) when
the head is relatively small, leading to undesirable generation behavior.

Following Wang et al. (2019), we analyze the datasets at the level of the parts of speech
in the dataset (See Appendix A for details). VATEX has more than 2 verbs per caption on
average (by design, see (Wang et al., 2019)) while the other datasets have at most 1.3 verbs.
While VATEX is the most linguistically complex, the distribution has significantly different
base statistics, likely explaining poor cross-dataset generalization to VATEX from MSR-VTT
and MSVD trained models. MSR-VTT is the most diverse from an object perspective
(1512 nouns representing 90% of the noun mass), which lends additional support to the
observations by Zhang et al. (2020g), who find that a strong object detector and good object
features are necessary for strong MSR-VTT performance. Notably, MS-COCO has a very
high within-sample noun diversity, suggesting that many of the captions in MS-COCO focus
on different objects in each sample, and supporting hypotheses introduced in Anderson et al.
(2018) based on multiple-object attention for this dataset.

3.3.2 N-Gram-Level Diversity

From tokens, we can move on to exploring how the tokens fit together. One of the major
issues in overall dataset diversity is a tendency for language models to accentuate a lack
of n-gram diversity, leading to domination of common n-grams over visually likely n-grams
(Hendricks et al., 2018). A standard metric reported by Wang et al. (2019) in VATEX is the



18

number of unique n-grams in the dataset, however, we find that alone, the number of unique
n-grams does not allow for strong comparison between datasets, both because the number is
not normalized, and the number of n-grams says little about the overall distribution of those
n-grams.

Instead of only looking at the number of n-grams, in order to measure the amount of
n-gram diversity that is introduced into a dataset, we introduce the N-Gram Effective Vocab
Size metric (EVS-N), which measures the percentage of n-grams that do not act like 1-grams
in practice. Formally, EVS-N is the percentage of tokens for which an N-gram language model
has zero conditional variance (i.e. the percentage of tokens for which an n-gram language
model does not assign 100% probability to a single next token). This metric can be thought
of as a language-generation complexity metric — a higher EVS means that it will be more
difficult for a model to memorize captions, while a low EVS suggests that models need only
determine the first few words in order to generate a high-quality caption. Table 3.2 shows
EVS-N performance, and a shocking result. The EVS-2 is approximately 50% for all datasets,
suggesting that in the majority of cases, the model is able to make only one decision to
generate two tokens, contrasting with WikiText-103 (Merity et al., 2017), where the EVS-2 is
95.19%.

In addition to just understanding the EVS, we can combine the EVS scores with the
average number of tokens in the dataset to compute the average number of “decisions” that a
model has to make during generation. The ED@N, or expected number of decisions made
in a description of length N is also given in Table 3.2. Formally, the ED@N is the expected
number of tokens in a description of length N for which an n-gram language model of the
dataset has non-zero variance conditioned on the sentence so far. Surprisingly, most of the
datasets have very similar ED scores (despite their differing average token lengths), and the
number is low: only 3-3.5 decisions have to be made on average to get the desired caption.
This low number has major implications in the quality of the captions: the fewer the number
of decisions that need to be made at training, the less diverse the captions will be during
test time, and the less likely models trained on the low-ED data will be able to generalize to
fine-grained differences between samples. Further, this means that the number of captions
models will be able to generate is restricted to V ED, where V is the size of the vocab, a
notably smaller number than expected with large vocab sizes, and long captions. We believe
that this is one of the reasons that non-auto-regressive approaches such as those in Liu et al.
(2021a) and Yang et al. (2021a) are able to perform so well on these datasets: they can focus
on the visual information, and don’t have to worry about the syntactic structure as it is
similar for all descriptions.

3.4 Within Sample Diversity
While we have seen that token-level diversity is important for the generation of high

quality captions, we also want to understand how within-sample diversity (i.e. diversity
within a collection of ground truths for a single visual context) impacts the performance of
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visual description models.
To define how much within sample diversity there is in a dataset, there are several methods

that we can use. One metric, common to many papers, is an analysis of how many captions
in each sample are novel. VATEX (100%) and MS-COCO (99.9%) have high caption novelty,
while MSR-VTT (92.66%) and MSVD (85.3%) contain somewhat less exact novelty. Further,
we could look at within-sample token diversity (shown in Table 3.1), which suggests that
within a sample, diversity is actually relatively high, with 11% to 33% of tokens being unique
within a sample. Further, the within sample verb (15% to 56%) and noun (13% to 35%)
uniqueness is relatively high as well, suggesting that individually, captions discuss unique
parts of a visual context (Full results are given in Appendix A). This is demonstrated
qualitatively in Figure 3.4.

The issue with these measures of novelty is that they account only for novelty at the
caption or token level by exact matching, but do not directly target the semantic novelty
of the captions. In order to look closer at within-sample diversity, we compute the pairwise
semantic distance between each description and all other unique descriptions in the sample
using the cosine distance between MP-Net embeddings (Song et al., 2020) trained for sentence
similarity. Figure 3.2 shows the minimum of the inter-sample cosine distances, a metric we
call sample redundancy. Notably, almost 10% of the samples in MSVD have a very close
semantic match, suggesting that MSVD has more semantically redundant information than
other description datasets.

Sample redundancy is both a blessing and a curse. Datasets that have very high sample
redundancy will tend to have high performance on leave-one-out ground truth metrics, as
most of the ground truth captions will share large amounts of information. This means
that pair-wise metrics such as the standard n-gram metrics will often perform well, as any
generated sample should also lie close to at least one ground truth sample. Unfortunately, as
we increase the number of diverse ground truths (increase the sample variance), the minimum
distance between samples increases (See Appendix A for a figure). Because of this increase in
distance, the leave-one-out performance of ground truths decreases, as shown in Figure 3.3,
leading to a breakdown of the n-gram metrics (and all metrics that rely on a single-sample
pairwise comparison to the set of ground truths). This effect is what causes SOTA models
to outperform leave-one-out samples as demonstrated in section 3.2. While ideally, metrics
should be independent of the variance in the ground truth data, for the datasets we analyze
in the paper it is clear the sample variance is sufficient that this is not the case. Interestingly,
the leave-one-out fall-off occurs at different rates for the different datasets, suggesting that
some datasets are more-redundant to semantic variance than others: while we hypothesize
that this is due to the choice of tokens and distribution of semantic structure, it is interesting
future work to confirm this hypothesis.

Why are SOTA models immune to the effects of sample variance? It’s important to note
that when evaluating models, we only look at a single sample from the model distribution.
We hypothesize that instead of attempting to approximate the full distribution of captions,
models are picking up on trends between samples in the data, such as a wealth of descriptions
that contain simple semantic structures (as described in section 3.3) or individually strong
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Figure 3.2: Histogram of within-sample minimum distances under the MP-Net (Song et al.,
2020) BERT-style embeddings. MSVD and MSR-VTT both have a high number of descriptions
which have zero within-sample minimum distance, while MS-COCO and VATEX have a
higher within-sample diversity.

training descriptions (which we will discuss in section 3.5) which allow the model to reduce
the effective variance of the ground truth dataset during the evaluation phase by ignoring
most of the ground truth captions, and only focusing on a specific subset of descriptions.
While these trends are likely model-specific, we believe it is important future work to quantify
and understand the kinds of descriptions that models learn to approximate, and more closely
monitor the effects of over-fitting to a small subset of captions to reduce the effects of
ground-truth sample variance.

The effect of reducing semantic variance appears in practice via a training trick exploited
by both Perez-Martin et al. (2021) and Liu et al. (2021a) who find that decreasing the number
of reference captions during training leads to improved evaluation performance on n-gram
metrics. By artificially restricting the semantic variance of the training dataset, models are
able to over-fit to a smaller subset of semantically redundant captions, and exploit current
pairwise metrics.
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Figure 3.3: Plot showing the relationship between semantic variance and the performance of
leave-one-out ground truth estimates of human performance on the BLEU@4 metrics. As we
increase semantic variance, the average minimum distance between ground truth samples
increases, and metric performance falls.

Thus, we are stuck in a catch-22 when it comes to adding more captions per sample. If
we increase the number of captions, we decrease our metrics’ ability to accurately discern
caption quality, however if we reduce the number of captions, we can improve the accuracy
of current metrics, and obtain models that achieve higher metric scores, at the cost of bland
and generic captions.

3.5 Dataset Level Diversity
Not only do sample level diversity and within-sample diversity have important impacts

on models and metrics, but dataset-level conceptual diversity matters as well. A common
criticism of captioning models is that they are not generative, but instead, reproduce captions
from the training set based on a set of global criteria. In general, we hypothesize that a
lack of diversity in the dataset, both in the lack of overall visual concept diversity, and the
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Figure 3.4: A qualitative example from MSR-VTT demonstrating several diversity effects.
The blue description is a description with the minimum distance from the sentence embedding
mean, while the red description maximizes the mean BLEU@4 score to all other captions in
the sample. Notably, both captions are much more generic than the other captions in the
data, a trend which is consistent across all samples. We can see that the variance within this
sample is high, however the tokens themselves are similar (annotators select similar tokens
for the same sample). Captions are ordered from top to bottom by similarity to the mean
caption embedding (See section 3.4).

exact distribution of that diversity in the dataset itself leaves models vulnerable to choosing
classification over generation. We further hypothesize that a lack of conceptual diversity
leads models to produce a few generic captions based on high-level visual features, instead of
generating semantically detailed captions. In order to support this hypothesis, we attempt to
answer two questions: “how much performance can we achieve with classification alone?" and
“how much does the explicit selection of visual samples encourage models towards classification
over generation?"

3.5.1 How many captions make up a dataset?

One interesting question to ask is, how many captions do you reasonably need to use
in order to solve a dataset to a particular score? This metric is a reasonable proxy for
concept-level diversity, and can more globally measure the performance of a model. To
answer this question, we used a greedy approximation algorithm for optimal set cover to
approximate the minimum number of captions from the training set that need to be chosen for
MSR-VTT and MSVD in order to achieve a particular BLEU@4 score on the validation set.
We don’t compute this number for VATEX/MSCOCO or metrics beyond BLEU due to the
computational cost of computing a full matrix of caption distances. Figure 3.5 demonstrates
the results of this experiment. We can see here that to achieve SOTA BLEU@4 performance,
we need only to select optimally from a set of 43 captions in the case of MSVD, and 156
captions in the case of MSR-VTT. Even further, it’s interesting to see that with only 58
captions in MSVD and 289 captions in MSR-VTT, we can achieve almost optimal BLEU
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(a) MSVD Dataset (b) MSR-VTT Dataset (c) MS-COCO Dataset

Figure 3.5: For several datasets, how many captions from the training dataset are required
to achieve a particular BLEU@4 score on the test set. We can see that in the optimal case,
only a few (58 for MSVD, 197 for MSR-VTT, 1578 for MS-COCO) captions are required to
achieve SOTA performance on the dataset. Notably, MS-COCO uniquely requires a unique
description for each image.

Table 3.3: Percentage of samples in the visual description datasets which contain at least one
description that has a sub-string matching a label from the pre-training dataset.

Dataset ImageNet Kinetics COCO Places

MSVD 98.27% 38.88% 89.03% 55.68%
MSR-VTT 68.88% 23.51% 59.82% 46.44%
VATEX 98.60% 40.12% 76.86% 60.55%
MS-COCO 93.22% 8.83% 91.70% 60.49%

scores.
This particular result, combined with the fact that models only need to make a few

token-level decisions when generating language (See subsection 3.3.2) appears to be a real
cause for models producing generic captions. Not only do models not have to make many
decisions, but overall, they don’t have to select from many visual concepts either.

3.5.2 Does the feature set matter?

Caption models are limited not only by a classification effect but also by the concept-level
diversity of the feature extractors that they use. When models rely on particular feature
extraction methods, we expect pre-initialized features to bias models towards classification
over generation, particularly classification among the concepts present in the pre-training
data. Recently, Srinivasan and Bisk (2022) showed that these biases can compound - so
it seems natural to ask the question: how much do we expect biases in our datasets to
compound with feature extractor bias?
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Table 3.4: Performance on BLEU@4 score when using the best core-set ground truth from
overlapping categories. Performance remains surprisingly high when using shared captions,
implying that models are able to leverage template captions instead of scene understanding.
GT: random within-sample leave-one-out ground truth performance.

Dataset GT ImageNet Kinetics COCO Places

MSVD 0.453 0.652 0.442 0.634 0.470
MSR-VTT 0.210 0.678 0.467 0.650 0.521
VATEX 0.234 0.576 0.460 0.547 0.485
COCO 0.152 0.680 0.515 0.704 0.292

In order to measure how much particular datasets are biased towards particular feature
extractors, we compute a concept-level “overlap” between several popular feature datasets
(Deng et al., 2009; Carreira et al., 2018; Lin et al., 2014; Zhou et al., 2017), and the
visual description datasets. Table 3.3 demonstrates the percentage of samples in the visual
description datasets which contain at least one description that has a sub-string matching
a label from the pre-training dataset. While exact overlap from labels to descriptions may
exclude some cases (for example the label "playing baseball" does not overlap with any
description which has only the word “baseball"), we found that fuzzy matching induced
significant numbers of false-positives. This metric thus, represents a lower-bound on the
overlap (as can be seen in the case of MS-COCO, where only 91% of the descriptions contain
an object from the official label set).

We can see that in datasets except for MSR-VTT, the dataset overlap with ImageNet
is relatively high, likely leading to models which achieve performance based solely on the
use of ImageNet features, as the classification effect detailed in both subsection 3.5.1 and
subsection 3.3.2 can be exaggerated. Similarly, for datasets besides MSR-VTT, adding
object detection features is likely to exaggerate the classification effect, as the model will be
pre-disposed to split samples into object-category bins.

To explore exactly how much classification performance can be achieved splitting only
along feature extractor boundaries, we generate sets of captions that match (using exact
matching) a particular label in the feature extractor pre-training dataset. For each sample,
we generate a hypothesis using a randomly sampled caption from the union of the matching
concepts and compute the metric score of that hypothesis (See Appendix A for a detailed
discussion). The results of this experiment are given in Table 3.4, and we can see that without
sufficient conceptual diversity, models can achieve strong performance by segmenting samples
among higher-order labels instead of leveraging visual understanding.
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3.6 Recommendations & Limitations
Our aim in this work is to demonstrate that there are three unique levels of diversity

that need to be maintained when collecting a dataset: Token-level diversity, within-sample
diversity, and dataset conceptual diversity.

In section 3.3 we showed that a lack of token diversity diversity can lead to simple captions
from a core data level: few decisions need to be made to generate captions, and a large
number of the tokens responsible for this generation are relatively common, opening the door
for potential limits to model diversity. Token-level diversity is primarily controlled during
the labeling phase of dataset collection, so we believe that both when researchers collect
novel data, and when they are building splits for current datasets, they should focus on
token diversity. Primarily, to encourage models to generate from a diverse set of captions,
we recommend maximizing the ED@N score from section 3.3, along with increasing token
EVS by improving the diversity of collected captions. Prompts encouraging crowd-source
workers to include higher semantic detail and limits on sentence complexity (such as those
introduced in VATEX (Wang et al., 2019) and Barbosa and Chen (2019)) could help prevent
token-diversity effects from appearing in downstream models.

On the other hand, collecting too many ground truths, as discussed in section 3.4 presents
a model training issue. Currently, models are trained to reduce semantic variance, which can
lead to captions which are less complex than we expect. We believe that it is essential future
research to explore how to account for the fact that variance in ground truth video descriptions
is signal and not noise. Methods for managing multi-modal conditional distributions such
as Slade and Gedeon (1993) or multi-label learning such as Tsoumakas and Zhang (2009)
may represent step towards such methods. Further, metrics that we use reinforce semantic
variance effects by computing maximums with single samples. We believe that investigating
metrics which focus on comparing multiple model samples to the full set of ground truth
samples represents a possible solution. By forcing models to approximate the entire ground
truth distribution we may avoid creating models which optimize away variance in the data.

Finally in section 3.5, we discussed how a lack of diversity at a concept level can impact the
performance of models. When metrics have fewer global concepts, or high overlap with feature
extraction methods, they are more likely to trend towards classification over generation.
In order to remedy this effect, we recommend the creation of datasets through sampling
independent from the label sets of feature models. We additionally recommend that when
creating training, validation, and testing splits in the dataset, the concept-level diversity is
monitored to avoid introducing potential feature or concept biases with respect to popular
feature extraction methods.

Visual Description Toolkit Alongside this work, we released a new toolkit2 for visual
description dataset evaluation, which is designed to analyze the performance of models (or
ground truths) across the axes explored in this work. We hope that by making tools for

2Toolkit available at https://github.com/CannyLab/vdtk

https://github.com/CannyLab/vdtk
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evaluating visual description datasets easily accessible, we can encourage the field to deeply
investigate the sample diversity in their data and predictions. We hope that such methods
for evaluation can help uncover the deviations of the model from the ground truth data, and
paint a more complete picture of our descriptive models beyond n-gram scores.

Limitations While we have demonstrated how diversity at several levels directly impacts
the performance of downstream models, we believe that additional research is required to
further understand how the problem of visual description differs from classification and
natural language processing. In section 3.4, we use several proxies for caption complexity,
however it is not immediately clear that such proxies are good measures for the semantic
complexity of a caption. As far as we are aware, no such measure of the “usefulness" of a
caption to a visually impaired user exists, that we can use to evaluate our current caption
data. Figure 3.4 and the additional qualitative examples in Appendix A) demonstrate some
correlations between caption complexity, and the mean caption, however we believe that
deeper analysis is necessary.

Our methods are also limited by the choice of metrics used in this work. Explorations of
recent metrics such as FAIer (Wang et al., 2021b) may indicate that they alleviate diversity
effects by focusing on visual information over textual information, and leveraging pre-trained
grounding models. While novel metrics may solve some of the problems, the training effects
observed in section 3.4 remain common between all models, and the diversity in section 3.3
and section 3.5 are local to the datasets, and will remain regardless of the metric used.

3.7 Related Work
This is not the first work to analyze video description data from a dataset and metric

perspective, however, we believe that it is the first to focus on how dataset diversity and
metric choices directly affect caption generalization. Hendricks et al. (2018), Bhargava and
Forsyth (2019), Tang et al. (2021) and Zhao et al. (2021) have all demonstrated that visual
description data is often biased with respect to protected attributes (such as race, gender or
religion), and introduced new methods for handling specific biases - however, they do not
discuss the impact of general biases on model performance. Both Smeaton et al. (2019) and
Yang et al. (2021b) demonstrate poor cross-dataset generalization in visual description, and
demonstrate that the choice of dataset directly affects model generalization ability, as well
as introduce additional model-centric methods for mitigating the impact of dataset effects.
These works complement our own, and they support our core hypotheses that we discuss in
section 3.6.

Outside of visual description, the evaluation of how linguistic data and metrics affects the
performance of downstream vision and language models is prevalent. Cadène et al. (2019)
demonstrate unimodal language biases in visual question answering and Choi et al. (2019) do
the same for action recognition. While many papers (Yang et al., 2020a; Shah et al., 2020; Li
and Vasconcelos, 2019; Singh et al., 2020; Clark et al., 2020; Joo and Kärkkäinen, 2020) make
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recommendations for reducing linguistic bias based on the modeling framework, these works
do not focus on the quality of generation, and instead, focus on the equally important trend of
models relying heavily on language priors to solve tasks. Barbosa and Chen (2019) introduce
methods for dataset collection which attempt to reduce linguistic bias, which represents a
great leap forward from standard Amazon Mechanical Turk (AMT) collection methods, but
does not discuss how the diversity impacts the performance of downstream models beyond
balancing language priors.

3.8 Conclusion
In this work we have taken a close look at linguistic diversity in common visual description

datasets, and detailed how diversity can impact models and metrics. At the token level,
we showed that a lack of diversity impacts the ability of metrics to assess the quality of
captions, and the ability of models to generate diverse descriptions. At the sample level, we
demonstrated that high within-sample diversity is both a blessing and a curse, leaving us
with either a failure of metrics to correctly measure performance, or leaving us with correct
metrics, but bland and generic captions. Finally, at the dataset level, we demonstrated that
even when single sample and within-sample diversity is maintained, a lack of conceptual
diversity at the dataset level can bias models towards visual classification over language
generation, opening the door for models which can use a few, generic, samples to solve the
visual description task instead of generating captions which are rich in semantics.

While this work demonstrates the potential pitfalls of a lack of diversity in visual de-
scription datasets, we believe that by introducing new tools for analysis, and additional
recommendations for data collection and model evaluation, the field will be able to investigate
the sources of poor model generalization more closely, and build models which are both
robust to visual diversity and can generate diverse, high quality, and semantically meaningful
captions.



28

Chapter 4

Active learning for video description with
cluster-regularized ensemble ranking

As discussed in chapter 1, automatic video description is an emerging area in computer
vision research that aims to generate textual descriptions of the visual components of a
video. Unfortunately, training models to do video captioning requires manual descriptions of
every second of the video from a large corpus of representative videos. One of the largest
current single-clip video captioning datasets, MSR-VTT, has only tens of thousands of unique
uncorrelated videos whereas solving video captioning will likely require several orders of
magnitude more to express the wide diversity of subjects, situations, and relationships possible
in video data.

Active learning is a valuable approach in domains where unlabeled and partially labeled
examples are readily available but obtaining manual annotations is expensive, such as is the
case with automatic video captioning. However, while there has been significant investigation
of active learning for computer vision tasks such as object recognition (Collins et al., 2008),
object detection (Vijayanarasimhan and Grauman, 2011), video classification (Yan et al.,
2003) and video segmentation (Vijayanarasimhan and Grauman, 2012), video captioning has
received comparatively little attention. The reason for this is likely rooted in the complexity
of the label space. Video captioning requires both sequential input and output, dramatically
increasing the complexity of traditional active learning frameworks. To our knowledge, this
is one of the first works to define active learning strategies for efficiently collecting training
sets for automatic video captioning.

In this work we explore several active learning strategies for sequence to sequence active
learning in video captioning, including uncertainty sampling based on label confidence,
sequence entropy and query by committee methods. There are several unique challenges
to active learning for deep sequence to sequence models: While traditional active learning
methods (Settles, 2009) select one example at a time to label, retraining the model in its
entirety after each new example selection, this strategy is impractical for training models
such as transformer networks and LSTMs (Zhou et al., 2018b; Venugopalan et al., 2015),
due to increased training time (hours vs. minutes) and increased inference time (seconds
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vs. milliseconds). Thus, it is far more efficient to select a large batch of examples at a
time to label when using a crowd-sourced collection process (Xu et al., 2016; Deng et al.,
2009). Traditional batch-active learning often uses ranking functions which are intractable in
deep sequence to sequence learning (Hoi et al., 2009; Brinker, 2003; Vijayanarasimhan et al.,
2010), making active learning for video description a challenging problem, with no tractable
solutions for deep neural networks.

We conduct a thorough empirical analysis of various active learning strategies on two recent
and standard video captioning datasets, MSR-VTT and LSMDC, using both transformer
based and LSTM based captioning models, and describe a novel cluster-regularized method
which is both tractable to compute, and provides strong performance in our test scenario.
Our key contributions are:

1. Demonstrating that traditional uncertainty sampling techniques do not significantly
outperform random sampling, likely because of the difficulty of estimating the sequence
entropy.

2. A novel ensemble based ranking method (Cluster-Regularized Ensemble Divergence
Active Learning, Section 4.2.1) specifically designed for video description active learning
which outperform random sampling by a significant margin.

3. A clustering-based active learning regularization method which can help to increase
sample diversity, and when combined with our query-by-committee methods can save
as much as 60% of the manual annotation effort while maintaining high performance
(Section 4.2.2).

4.1 Related Work
In order to reduce human effort when constructing training sets, various active learning

strategies have been proposed for computer vision tasks such as object recognition (Collins
et al., 2008; Vijayanarasimhan and Grauman, 2009), detection (Vijayanarasimhan and Grau-
man, 2011), video classification (Yan et al., 2003) and video segmentation (Vijayanarasimhan
and Grauman, 2012). These methods typically select the next example to query for a label
based on uncertainty sampling, entropy, or predicting reductions in risk to the underlying
model (see (Settles, 2009) for a comprehensive review). However, active learning for sequence
labeling tasks such as automatic video captioning has received litle attention.

In the natural language processing literature, active learning methods have been proposed
for actively selecting examples based on uncertainty sampling (Culotta and McCallum, 2005;
Scheffer et al., 2001) or query by committee approaches (Dagan and Engelson, 1995). In
(Settles and Craven, 2008), the authors provide a thorough analysis of various active learning
methods for sequence labeling tasks using conditional random field (CRF) models. Current
state-of-the-art video captioning models, however, typically utilize neural network based
architectures such as transformer networks (Zhou et al., 2018b) or LSTMs (Venugopalan
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et al., 2015) and very little research exists on how to successfully apply active learning for
complex models — Transformer networks and LSTMs are expensive to train, taking hours to
days to converge, compared to shallow linear models or CRFs employed in previous active
learning studies (taking only minutes). Therefore querying a single example at a time is
inefficient. It is far more efficient to select a large batch of examples at a time to label
when using a crowd-sourced collection process as is typically the case (Vijayanarasimhan and
Grauman, 2011).

Batch-mode active learning methods have been proposed for vision and other tasks in (Hoi
et al., 2009; Brinker, 2003; Vijayanarasimhan et al., 2010). Batch selection requires more than
selecting the N -best queries at a given iteration because such a strategy does not account for
possible overlap in information. Therefore, the selection functions typically try to balance
informativeness with a diversity term to avoid querying overlapping examples (Brinker, 2003).
In this work, we take cues from (Brinker, 2003), and develop a batch active-learning method
for sequence learning, that is regularized using a measure of information diversity (an idea
from (Brinker, 2003)), but is tuned to be computed efficiently over sequence learning tasks,
such as those in (Settles, 2009).

In addition to moving to batch sampling, automated video description is unique in that it
has multiple possible correct sequence labels. Recent methods are usually based on expected
gradient updates (Huang et al., 2016a) or the entropy of a sample distribution (Settles and
Craven, 2008), and are unable to account for scenarios where there are multiple correct
labels, or there is dynamic underlying label entropy. In addition, these methods often require
computing an estimate of expected model updates over the space of possible labels. This
estimate can be extremely expensive for sequence learning (which has exponential label space
growth), and there’s no clear way of sampling from caption spaces without learning a complex
language model.

Among recent methods, Coreset active learning (Sener and Savarese, 2018), uses an integer
linear program (or a greedy optimization) to find a lambda-cover over the feature set. By
operating at a feature level, Coreset takes advantage of the semantic compression of the
model to find sets of unlabeled samples that are useful to the model’s prediction. We discuss
our method compared to Coreset in Section 4.2.3.

Some recent methods including VAAL (Sinha et al., 2019) and ALISE (Deng et al., 2018)
have approached active learning from an adversarial perspective. These methods train a
discriminator which attempts to determine which samples are labeled and unlabeled, then
select the likely unlabeled samples for training. However, they typically require large number
of samples to reliably train the discriminator which is unavailable in the beginning of the
active learning process. Nonetheless, it would be an interesting future direction to explore
adversarial models for active learning on complex latent spaces. Deep Bayesian active learning
(Gal et al., 2017) shows some promise, however strong Bayesian networks for multi-modal
vision and language problems are still out out of reach for large scale complex datasets.
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4.2 Query By Committee Ensemble Active Learning
In this work we introduce a new method for sequence active learning for video description,

Query By Committee Ensemble Active Learning, and compare against several baseline algo-
rithms (Those listed below, along with Coreset (Sener and Savarese, 2018) active learning and
ALISE (Deng et al., 2018)). Throughout this section, we refer to a video vi, and its associated
set of descriptions D = {c1(vi) . . . cn(vi)}. A set of descriptions generated by a model mj is
referred to by {cmj ,1(vi) . . . cmj ,n(vi)}. Videos may have multiple descriptions either through
multiple-sampling of the model generative distribution, or through multiple ground-truth
labels of the same video. The probability distribution Pmj

(ci) is the likelihood of a description
ci under the model mj, and the distribution Pcond(mj, c

k
i ) = Pmj

(cki (vi)|ck−1
i (vi), . . . , c

0
i (vi))

is the conditional distribution of the next word k under the model given the previous words
in the description.

4.2.1 Active Learning Methods

Random Selection Baseline: Our baseline method is to sample new data points from
the training set uniformly at random. Random selection is a strong baseline. It directly
models the data distribution through sampling, placing emphasis on representative data, but
not “novel" data. Trying to sample outside the random distribution is more likely to cause
over-sampling of parts of the data (demonstrated in Figures 4.3), leading to poorer overall
validation performance.

Maximum Entropy Active Learning: Traditional methods for active learning (Settles,
2009) are often entropy based. As a second strong baseline, we present a maximum entropy
active learning method in which we rank samples based on a sample of the entropy of the
dataset. Unfortunately, given the exponential number of computations that have to be made
in the sequence length, the entropy of the entire output distribution is intractable to compute
directly. Thus, to approximate the entropy of the description distribution we compute the
mean entropy of the word output distributions at each new word along the generation process
of a new description of a sample using our current model. Thus, using a candidate model m,
we sample K candidate sentences for each video, and we select samples which maximize the
ranking function:

R(vi) =
1

K

K∑
k=1

|cm,k(vi)|∑
w=1

−Pm(c
w
m,k(i)) logPm(c

w
m,k(vi)) (4.1)

where R(vi) is our approximate estimate of the entropy of any given sample’s distribution.

Minimum Likelihood Active Learning: In the minimum likelihood active learning
scenario, we select samples where the descriptions that the model generates have the lowest
log likelihood under the model distribution. Thus, using a candidate model m, we sample
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K candidate sentences for each video, and then choose samples which minimize the ranking
function:

R(vi) =
1

K

K∑
k=1

|cm,k(vi)|∑
w=1

logPm(c
w
m,k(vi)|cw−1

m,k (vi) . . . c
0
m,k(vi)) (4.2)

Empirically, we find that the minimum likelihood active learning method is a stronger method
than the entropy for use in video captioning (See Figure 4.2), however this measure of
uncertainty suffers from the fact that the model may be very confident about its wrong
answers, and will be unable to learn effectively when this is the case. Because these very
confident wrong answers are never sampled (or are sampled later in the training process), the
model is unable to correct for the initially introduced bias.

Query By Committee Ensemble Agreement Active Learning: To help alleviate the
issues with single model uncertainty, we introduce the notion of an ensemble agreement
active learning ranking based on query by committee methods for traditional active learning
(Dagan and Engelson, 1995). With this method, we sample a set of likely captions from
each member of an ensemble of models (using beam search), and compute the mean pairwise
likelihood. For an ensemble of L models {m1, . . . ,mL}, from each model ml we sample
captions {cmi,1...cmi,K} for each available unlabeled video. Our ranking criterion is then to
minimize:

R(vi) =
1

L(L− 1)

L∑
p=1

L∑
q=1
q ̸=p

K∑
k=1

|cmp,k(vi)|∑
w=1

logPcond(mq, c
w
mp,k

(i))

K|cmp,k(vi)|
(4.3)

The idea here is to select samples for labeling which have low agreement, as these are the
samples have higher uncertainty under our model/training process. In this scenario, we
alleviate many of the concerns with models having high confidence in wrong answers, as this
phenomenon tends to be local to particular models, and these highly incorrect answers will
have low likelihood under the learned distributions of the other members of the ensemble.

Query By Committee Ensemble Divergence Active Learning (Proposed Method):
While entropy/perplexity measures for active learning have been well explored in the literature
(Settles, 2009), it is unclear if these measures are correct for the captioning task. Even if
the caption distribution for a video has high entropy, meaning there are many possible likely
captions (or even many possible correct captions), this high entropy does not mean that
the model is unsure of the outcome. Samples that have many possible captions will thus be
over-sampled, since any of the generated captions will have fundamentally lower likelihood
than a sample with fewer possible captions. In order to avoid this, we present a method, which
computes the KL-divergence between the conditional distributions of the ensemble members.
Thus, if the models would choose similar words, given similar inputs - we consider the models
to be in agreement. Similarly to the above, for an ensemble of L models {m1...mL}, from
each model ml we sample captions {cmi,1...cmi,K} for each available unlabeled video. We then
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choose samples which maximize:

R(vi) =
1

L(L− 1)zhou

L∑
p=1

L∑
q=1
q ̸=p

K∑
k=1

DKL

(
Pmp(cmp,k(vi))||Pmq(cmp,k(vi))

)
K

(4.4)

Unfortunately, computing the full joint distribution is prohibitively expensive. Thus, instead
we restrict the computation of the divergence to the sum of per-word divergences:

R(vi) =
1

L(L− 1)

L∑
p=1

L∑
q=1
q ̸=p

K∑
k=1

D(mp,mq, cmp,k(vi))

K
(4.5)

where

D(mp,mq, cmp,k(vi)) =

|cmp,k(i)|∑
w=1

DKL

(
Pcond(mp, c

w
mp,k

(vi))||Pcond(mq, c
w
mp,k

(vi)
)

|cmp,k(vi)|
(4.6)

is the per-word KL-divergence along the generation of the description cmp,k(vi) in each of
the models. Compared to the likelihood method, this model gives a better estimate of the
divergence of the distributions learned by the models of the ensemble. This measure is also
independent of the sample length, and distribution perplexity, confounding factors when
looking only at the likelihood of the samples.

4.2.2 Improving Diversity With Clustering

During the training of the initial active learning models, we noticed through a qualitative
investigation that models seemed to be over-sampling parts of the training feature space.
This was confirmed by running the experiments shown in Figure 4.3. To help combat this,
we enforced a clustering-based diversity criterion. We first performed a k-means clustering of
the training data using the mean (across the temporal dimension) of our visual features. We
chose K = N/20 clusters, where N is the number of training samples in the dataset. See
section 4.3 for a justification for this number of clusters. We then force the active learning
algorithm to select at most ϕ samples from each cluster, which notably increases diversity.
For the experiments in this work, we found ϕ = 3 to be the best hyper-parameter value, out
of ϕ = 1, 2, 3, . . . 10.

4.2.3 Comparison with Coreset Active Learning

While our method shares some significant similarities at a glance to Coreset (Sener and
Savarese, 2018) (i.e. we both use delta-covers of a space to regularize the sampling), they
have some notable differences. The Coreset method uses the distribution of the feature space,
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combined with k-centers over the unlabeled data to select a set of samples which should be
annotated. This is equivalent to finding a delta cover over the distribution of the data in the
unlabeled space. Our proposed method (Ensemble Divergence + Cluster Regularization) uses
the uncertainty of the underlying model to compute a score, and then attempts to regularize
this score across the data space by enforcing that no two samples are too close together. Our
method not only achieves better performance on our sequence learning tasks, but also runs
notably quicker than Coreset, which can fail to solve the Integer Linear Program efficiently.
It is interesting future work to explore selecting among Coresets using our uncertainty metric.
Figure 4.1 directly compares Coreset and Greedy Coreset with our proposed model on the
video description problem.

4.2.4 Models

The goal of this work is to explore active learning methods across multiple different
model structures. In our experiments we use both a transformer-based model based on Zhou
et al. (2018c), and the popular S2VT RNN architecture (Venugopalan et al., 2015) (See
supplementary materials for details). Our models are able to achieve performance comparable
to state-of-the-art models using vision-only features and without using policy gradients to
optimize a downstream metric (Venugopalan et al., 2015; Aafaq et al., 2019). By adding
multi-modal features, and direct REINFORCE optimization, you can gain 7-10 CIDEr points
over our implementations (Aafaq et al., 2019). However, while there are more complex model
pipelines, we chose two very simple architectures to demonstrate the efficacy of active learning,
improve iteration time, and decrease the chance of confounding visual effects. We expect
the presented methods to transfer to more complex optimization schemes, and powerful
architectures given the flexibility of the formulation and our ablation results.

4.2.5 Datasets

We demonstrate the performance of our model on two common video description datasets,
MSR-VTT (Xu et al., 2016) and the LSMDC (Rohrbach et al., 2017). While these methods
may apply to video datasets generated using Automated Speech Recognition (HowTo-100M
(Miech et al., 2019)) or dense captioning tasks (ActivityNet Captions (Krishna et al., 2017)),
we focus on pre-clipped videos with high quality descriptive annotations. We refer the reader
to the supplementary materials for a description of the datasets in use.

4.2.6 Experimental Setup

4.2.6.1 Feature Extraction and Pre-processing:

To avoid conflating the visual representations of the data with the performance of the
captioning model, we follow video-captioning convention and pre-extract features from the
videos using a Distill-3D (D3D) (Stroud et al., 2020) model pre-trained on the Kinetics-600
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dataset for activity recognition. The videos are resized on the short-edge to 256px, then
center-cropped to 256x256. They are down-sampled to 64 frames at 3 frames per second
(with cyclic repetition for videos that are too short), and then passed through the D3D model
to generate a 7x1024 representational tensor for the video which is used in the captioning
process. The text data is tokenized using a sub-word encoding (Kudo and Richardson, 2018)
with a vocabulary size of 8192.

4.2.6.2 Training:

Each model is trained in PyTorch (Paszke et al., 2017) with a batch-size of 512 for 80
epochs. We use the ADAM (Kingma and Ba, 2015) optimizer with a warm-up learning rate
schedule with 1000 steps of warm-up, ranging from 1e−6 to 1e−3, then decaying over 250,000
steps to 0. We run our experiments using 8 Tesla T4 accelerators on Google Cloud Platform,
making use of NVIDIA Apex1 for mixed-precision fp-16 training.

4.2.7 Evaluation:

In all active learning methods, we begin by seeding the method with 5% of the data,
chosen randomly. For a fair comparison, this random slice is shared across each of the active
learning methods. We then train an initial classifier for use with our active learning method.
When the classifier has converged (achieved minimum loss on a validation dataset, or trained
for 80 epochs, whichever comes first), we use the classifier, and the proposed ranking methods
(Using a cluster-limit ϕ = 3, and a set of 8 sampled captions) to select an additional 5% of
the training data. This happens 19 additional times (20 total evaluation points), until all
of the training data has been selected. At each step, we run an evaluation of the model to
determine the performance. Exploring the active learning process when using larger and
smaller batches is interesting future work — when selecting very few examples, there is
more potential benefit, but more computation required, selecting more samples requires less
computation, but can be a more difficult task. Exploring ideas in continual learning, where
the classifiers are re-initialized with weights from the previous active learning step is also
interesting future work, however we found in practice that this does not heavily influence the
training process.

During evaluation, we sample 8 candidate sentences with a temperature of 0.8, which
are then evaluated using the COCO Captions Evaluation Tools (Chen et al., 2015). For
tuning, we use a validation dataset sub-sampled from the training dataset, and we report the
results on the official validation dataset (unseen during training/tuning) below. For ensemble-
based metrics, we use the mean performance of the ensemble members. For non-ensemble
based metrics, we perform multiple runs of active learning, and report the error as a 95%
bootstrapped confidence interval. While the 95% is somewhat arbitrary, we present the full
trajectories, for readers to explore.

1https://github.com/NVIDIA/apex

https://github.com/NVIDIA/apex
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Figure 4.1: Validation performance of active learning methods on the MSR-VTT dataset
using the CIDEr metric (Vedantam et al., 2015). Each run represents the mean of a bootstrap
sample of ten runs. Our proposed method significantly outperforms all other methods,
achieving 95% of the max performance while using only 25% of the data. This figure is
measured 10 intervals instead of 20, due to the cost of Coreset’s ILP solver.

4.3 Results & Discussion
Our key results using the transformer architecture on the MSR-VTT dataset are presented

in Figure 4.1. Clearly, we can see that the clustered-divergence outperforms the benchmark
models by a wide margin, using about 25% of the data to achieve a CIDEr score of 0.38 (95%
of max). A full set of results is shown in Figure 4.2 for the methods from Section 4.2.1. Some
additional qualitative results are presented in the supplementary materials.

Our method is highly prone to over-sampling parts of the distribution. To demonstrate
over-sampling by examining the performance of our models across multiple clusters. Figure
4.3 shows that enforcing diversity is key to our approach: If we use no clustering, we actually
fail to outperform random performance while adding a few clusters allows us to mitigate
this effect and adding sufficient clustering allows for significant performance benefits. We
can also see the effect of clustering by examining the mean distance to the validation set
over the active learning iterations. We can also see from Figure 4.3 that the agreement
method alone is unable to efficiently distribute across the validation set, however random
and clustered methods achieve similar distribution effects. It’s interesting to note, however,
that even without the cluster enforcement the agreement metrics select from more visual
diversity than the entropy/likelihood methods - leading to better performance (Table 4.1).
The results for a cluster-regularized random selection method are given in Figure 4.2, however
it is not significantly different from random alone, since the random method already samples
uniformly from the set of input samples. Figure 4.4 shows that as we increase the number of
ensemble members, the performance increased, however there are diminishing returns, as the
models begin to capture the same data.
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Figure 4.2: Validation performance across many potential active learning methods on the
MSR-VTT dataset using the transformer model structure with respect to CIDEr Score
(Vedantam et al., 2015), METEOR Score (Agarwal and Lavie, 2008), BLEU Score (Papineni
et al., 2002) and ROUGE-L Score (Lin and Hovy, 2002). The curves presented are the means
of 3 individual experiments using each method. Error bars are omitted for clarity. ALISE and
Coreset are omitted due to computation time costs (However see Figure 4.1 for a comparison
on CIDEr).
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Table 4.1: Average number of clusters selected per iteration. The random and cluster-
normalized methods select from a wider visual variety of samples, while the non-normalized
samples select very few clusters on average.

Method Mean Number of Clusters Selected/Iteration

Random Selection 195.47± 21.2
Cluster-Regularized Divergence 212.5± 14.4
Cluster-Regularized Agreement 202.3± 17.6
Cluster-Regularized Entropy 215.7± 12.8
Agreement Only 181.00± 16.9
Entropy 160.31± 16.4
Likelihood 169.25± 13.7

We can also see from Figure 4.2 that the ordering of methods can be dependent on the
metrics chosen. While our proposed method outperforms all of the baseline methods, it is
most helpful under the CIDEr and ROUGE metrics which prefer higher-level descriptions of
the scenes. The method helps less for improving metrics that depend on lower-level semantics,
such as BLEU and METEOR. We suspect that this is due to the influence of the active
learning method on sampling a diverse set of samples - as increasing the sample diversity
can help to improve high-level understanding of a scene, while perhaps having detrimental
impacts on the language modeling process.

While we have made the case that a strong diversity of samples is required, it is also
interesting to look at exactly which samples were selected. Figure 4.5 demonstrates some of
the diversity of samples selected by our methods in comparison to the samples selected by
the random method. We can see that the active learning method is sampling from a diverse
set of elements from each cluster, while the random method is sampling a representative
sample, but not necessarily the most relevant or useful videos.

One important thing to note is that because we are sampling from data that is in the
initial training data for the two datasets, the results presented in this work may be an
optimistic upper bound for the performance of an active learning tool. There is a significant
amount of cleaning and curating that goes into these datasets which may or may not impact
the final results of the classification, and the effort may be higher when annotating video
in the wild. Future techniques may need to be developed for efficiently cleaning data, or
curating samples that are relevant to captioning as a whole.

One downside to our experimental method is that our models do not achieve optimal
performance in each training step, as the optimal hyper-parameters of the model change as
more data is added. To ease this issue we use an adaptive training scheme which trains for
more iterations than necessary with early stopping, however it is an interesting direction of
future work to explore auto-tuning during the learning process to improve performance.

Our proposed method is not limited to the dataset or model. Figure 4.7 demonstrates the
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Figure 4.3: (Left) Average distance of validation samples to the nearest training sample over
the active learning process. Models with improved diversity improve the distance to the
training set more rapidly. We suspect this diversity is why random methods work well vs.
non-diversity enforced methods as random methods contain a built-in coverage of the dataset.
(Right) Performance of the cluster-divergence active learning method across different numbers
of clusters. Performance is greater with greater numbers of clusters, until saturation, where
performance regresses to random.

performance of our best method, clustered divergence, on the LSMDC dataset. We can see
here that we achieve a CIDEr score of 0.121 (95% of max) with only 50% of data required by
random sampling. Thus, we can see that the performance of the active learning method is
not just limited to the MSR-VTT dataset. In addition, Figure 4.6 demonstrates that the
performance is not limited only to our transformer based model. The S2VT model also
improves, achieving a CIDEr score of 0.3219 with only 60% of data required by random
selection.

In addition to requiring fewer data, our method can be significantly more efficient than
the current state of the art methods. On our test-bench machine, we saw the following
ranking times using the MSR-VTT dataset (Samples / Sec): Random: 2012.04, Entropy:
12.41, Cluster-Regularized Ensemble Ranking: 11.08, ALISE: 6.89, Coreset-Optimal: 0.11,
and Coreset-Greedy: 11.89.

4.4 Conclusion
In this work, we have presented an initial set of methods aiming to tackle the active

learning problem for video description, a challenging task requiring complex modeling where
due to the complexity of the output distribution, many active learning methods are unable to
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Figure 4.4: Validation performance with differing numbers of ensemble members on the MSR-
VTT dataset. We see increasing the number of ensemble members leads to increased performance.
We speculate that the diminishing returns are caused by independent models capturing similar
information.

function efficiently, or at all. We have shown that we can achieve 95% of the full performance
of a trained model with between 25% and 60% of the training data (and thus, manual labeling
effort), across varying models and datasets.

While pairwise measures among ensemble members may be a good model of uncertainty,
there are many such measures. Expected gradient variance methods such as (Huang et al.,
2016a; Settles and Craven, 2008) are good candidates for future exploration. While such
methods now do not account for the complexity of multiple correct labels, and dynamic
entropy distributions, we may be able to compute high quality estimates. Such gradient
methods may work in scenarios where the KL divergence between the final distributions of
the models may be relatively low, but the evaluated sample has useful second-order gradient
information.

It is also interesting, and likely fruitful, future work to explore different methods for
clustering the elements of the training dataset. In many cases, we would like to enforce a
subject-level diversity among the different inputs (as show by Figure 4.5), however visual
similarity may not necessarily be the best metric to use for clustering. Using additional
features to rank the diversity of the samples may provide better results, by increasing the
individual diversity of each cohort more than k-means clustering in the visual space.

By exploring the applications of our work in practice, we can build robust active learning
methods and collect large and effective datasets for video description. We hope these datasets
will be used to improve the performance of downstream description tools in this complex and
challenging labeling domain.
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Figure 4.5: Visualization of four clusters of videos from the training dataset. Highlighted
elements were selected by the cluster-divergence learning method (red), or the random method
(yellow) in the first two iterations. In clusters with low visual diversity active learning selects
fewer samples (top-left, bottom-left, bottom-right), while selecting more samples in clusters
with high visual diversity (top-right), suggesting that the active method is choosing more
informative samples.
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Figure 4.6: Performance using the LSTM model. While overall performance is lower, the
clustered-divergence learning method can save more than 20% percent of the data.
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Figure 4.7: Validation performance for the LSMDC dataset. We achieve strong performance
using almost 35% less data. We do not include Coreset, as it took > 24 hours per active-
learning step to compute.
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Chapter 5

Discussion

This section of the dissertation has provided a comprehensive analysis of two crucial
elements in the development of conditional natural language generation models for visual
descriptions. Initially, we explored the impact of linguistic diversity within datasets on
the performance of these models. Through an in-depth examination of popular visual
description datasets, we uncovered that the diversity of captions at various levels significantly
influences the quality of generated descriptions, often leading to generic outputs. This finding
underscores the importance of maintaining linguistic diversity in dataset collection to foster
models capable of generating more informative and specific descriptions. Following this,
our discussion on active learning strategies for video captioning highlighted an innovative
approach to reducing the volume of training data required without compromising the model’s
performance. The cluster-regularized ensemble strategy, in particular, emerged as a highly
effective method for assembling training sets, demonstrating the potential to enhance efficiency
in model training processes significantly. Together, these insights not only illuminate the
challenges and opportunities in improving natural language generation models but also
propose actionable strategies for future research and development in the field, emphasizing
the need for thoughtful dataset curation and innovative training methodologies to advance
the capabilities of these models.

Emerging from both of these works is a key theme: it is important to focus on the diversity
of the underlying data. In the work on linguistic diversity, we can see that models that are
trained on more diverse datasets can lead to models that are more capable of downstream
generalization. In hindsight, such a thought may seem obvious – of course training on more
diverse data is important! However, it is important to understand what kinds of diversity
are effective. From this work, we realize that we need to focus on not just “more” samples,
but samples that cover a wider range of topics, and samples that require more decisions. I
strongly believe that by increasing the required number of grounding choices (i.e. increasing
the ED@N of the dataset), we can build models that generalize better to downstream tasks.
We can already see this in practice in some recent work. The DALL-E 3 training procedure
(Betker et al., 2023) works to generate better images by leveraging more complete captions
(almost certainly requiring a higher ED@N), leading to better grounding in the model. Similar
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work by Zhu et al. (2023b) has shown similar results, and even in our work (Lialin et al., 2023)
we have seen that increasing the caption ED@N has led to more grounded, less hallucinatory
models.

It further seems that beyond just increasing diversity, increasing diversity in a targeted
way is important. In chapter 4, we saw that retaining only one video from a particular cluster
is important, as well as only retaining samples that lead to highly diverse outputs (i.e. have
large QBC disagreement). This further supports the idea that not just arbitrary diversity,
but some notion of “correct” or “useful” diversity is required. It remains interesting for future
work to further look into the sources of diversity in captioning data, and determine what
kinds of diversity are “useful” for models, and what kinds of diversity lead only to noise and
inefficiency in the training procedure.

Going beyond diversity, many other questions remain unanswered about data context in
the captioning and ASR domains. One that I find particularly interesting is: What kinds of
data lead to what downstream capabilities in the models? Recent work has begun to show that
certain types of data lead to particular downstream behaviors, for example, code pre-training
in LLMs leads to better performance on arithmetic tasks or conversational ability is largely
driven by Reddit data (Touvron et al., 2023; Zhou et al., 2024). Diving into this question has
the ability to impact how we train our models, and how we collect the data that drives our
LLM alignment.

Such a deeper focus on data not only impacts how we train the models, but it also has the
ability to start uncovering the sources of hallucination: why do models assign a high probability
to things that aren’t present in the context? Hallucination is one of the biggest challenges
driving LLM adoption and one of the most mystifying issues: if there’s no particular stimulus
for an output, why are such outputs naturally generated? Diving deeper into the datasets
will help us to understand this. Perhaps hallucinations are an artifact of spurious correlations
in the data, or perhaps they are caused by the outsize influence of language priors. Perhaps
they are caused by a lack of data coverage. Without a deep understanding of the connection
between datasets, data distributions, and model performance, we will likely never know.

As we navigate the complex landscape of conditional natural language generation models,
the critical role of data diversity and innovative training methodologies remains at the forefront
of advancing the field. By embracing a nuanced understanding of dataset composition and
leveraging strategic data curation, we can pave the way for models that not only generate
more accurate and grounded descriptions but also exhibit a deeper understanding of the
nuances of human language. This journey towards refining natural language generation
models underscores a broader commitment to pushing the boundaries of AI research, fostering
models that can interact with the world in increasingly sophisticated and meaningful ways.
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Part II

Building
To know an object is here to lead to it through a context which the world supplies.

William James

As we discussed in chapter 1, no task exists in a vacuum. There are always task-specific
and even human factors that impact the text that our models generate. In the last section, we
discussed the most important contextual clue, the underlying dataset, and the task, however,
there are many different kinds of context that can impact the downstream results! Take,
for example, the automatic speech recognition task. Many people may argue that all that
is necessary for ASR is the waveform itself. But it is clear that when deciphering what
audio has been uttered, the probabilities for any particular word depend not only on the
waveform itself but the context surrounding that waveform. What did the person say right
before they made this utterance? What is on-screen (if the audio is tied to a video)? What
does the user’s contact list look like? What is the user trying to accomplish? All of these
implicit signals can impact the likelihood of an output. Not only this but in some languages,
such context is necessary for disambiguation. For example, in Japanese, the utterance あか
(AH-kah) can be transcribed as 赤, 紅, 朱, or 緋 depending on the specific shade of red that
the person is referring to. Disambiguating this utterance requires additional context: perhaps
the person was talking about the color of a pink rose or the color of blood. Not only does
the world-state around the user matter, but the user themselves matters. If given the image
in Figure 1.2, depending on who it is, a person might describe that image in a thousand
different ways, each way capturing a different aspect of interest, or of focus to that person.
In this section of the dissertation, we describe several technical approaches for incorporating
these kinds of context directly into models, focusing on the domains of interest in automatic
speech recognition and image/video description.

First, in chapter 6, we discuss how if you ask a human to describe an image, they might
do so in a thousand different ways but image captioning models, on the other hand, are
traditionally trained to generate a single “best” (most like a reference) caption. Unfortunately,
this process encourages captions that are informationally impoverished: Such captions
often focus on only a subset of possible details, while ignoring other potentially useful
information in the scene. We then introduce a simple, yet novel, method: “Image Captioning
by Committee Consensus" (IC3), designed to generate a single caption that captures details
from multiple viewpoints by sampling from the learned semantic space of a base captioning
model, and carefully leveraging a large language model to synthesize these samples into a
single comprehensive caption. Our evaluations show that humans rate captions produced by
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IC3 more helpful than those produced by SOTA models more than two-thirds of the time, and
IC3 improves the performance of SOTA automated recall systems by up to 84%, outperforming
single human-generated reference captions and indicating significant improvements over SOTA
approaches for visual description.

Next, we turn our attention to automatic speech recognition (ASR). In chapter 7, we
first look at how we can learn to perform ASR tasks leveraging context drawn from video
data. While traditionally, research in automated speech recognition has focused on local-first
encoding of audio representations to predict the spoken phonemes in an utterance, such
approaches relying on such hyper-local information tend to be vulnerable to both local-
level corruption (such as audio-frame drops, or loud noises) and global-level noise (such as
environmental noise, or background noise) that has not been seen during training. In this
chapter, we introduce a novel approach that leverages a self-supervised learning technique
based on masked language modeling to compute a global, multi-modal encoding of the
environment in which the utterance occurs. Then, using a new deep-fusion framework to
integrate this global context into a traditional ASR method, we demonstrate that the resulting
method can outperform baseline methods by up to 7% on Librispeech; gains on internal
datasets range from 6% (on larger models) to 45% (on smaller models).

Beyond video, we can also learn from other forms of external context to efficiently build
ASR models. In chapter 8, we investigate the potential of leveraging external knowledge
through off-policy generated text-to-speech key-value stores, to allow for flexible post-training
adaptation to new data distributions. In our approach, audio embeddings captured from
text-to-speech are used, along with semantic text embeddings, to bias ASR via an approximate
k-nearest-neighbor (KNN) based attentive fusion step. Our experiments on LibiriSpeech and
Amazon Alexa voice assistant/search datasets show that the proposed approach can reduce
domain adaptation time by up to 1K GPU-hours while providing up to 3% WER improvement
compared to a fine-tuning baseline, suggesting a promising approach for adapting production
ASR systems in challenging zero and few-shot scenarios.

Even though in chapter 8, we use a large catalog of text, it’s also possible to just use
a small set of local recent history to learn context hints. In chapter 9, we introduce CLC:
Contrastive Learning for Conversations, a family of methods for contrastive fine-tuning of
models in a self-supervised fashion, making use of easily detectable artifacts in unsuccessful
conversations with assistants. We demonstrate that our CLC family of approaches can
improve the performance of ASR models on OD3, a new public large-scale semi-synthetic
meta-dataset of audio task-oriented dialogues, by up to 19.2%. These gains transfer to
real-world systems as well, where we show that CLC can help to improve performance by up
to 6.7% over baselines.

In summary, this section begins a conversation regarding how context, both external
and intrinsic to the user, can significantly enhance the capabilities of computational models
across a range of tasks, including automatic speech recognition and image/video description.
Here, we aim to demonstrate the critical role context plays in improving model performance,
making models more adaptable, accurate, and reflective of the complex nuances of real-world
interactions and through these demonstrations, we aim to not only push the boundaries
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of current state-of-the-art models but to deepen our understanding of how context can be
effectively integrated into computational systems for natural language generation.

Previously Published Works Appearing In This Section:

1. Chan, David M., et al. "IC3: Image Captioning by Committee Consensus" Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing. 2023.
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ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2022.

3. Chan, David M., et al. "Using External Off-Policy Speech-To-Text Mappings in
Contextual End-To-End Automated Speech Recognition." ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2023.

4. Chan, David M., et al. "Task Oriented Dialogue as a Catalyst for Self-Supervised
Automatic Speech Recognition." ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024.
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Chapter 6

IC3: Image Captioning by Committee
Consensus

Generating a high-quality description of an image is not only an open research problem,
but it is also a challenging task for humans (Lin et al., 2014; Sharma et al., 2018; Young
et al., 2014). Image captioning datasets usually acknowledge this fact; rather than providing
a single gold standard caption for each image, they instead rely on several human annotators,
each with their own personal biases and contexts, to provide multiple captions for each image,
hoping that the set of collected captions collectively captures all of the relevant semantic
information.

While a set of image captions can be useful, many applications, such as alt-text generation,
demand a single succinct sentence that summarizes the information present in the image.
This “summarized" caption usually takes a different structural form compared to the “single-
viewpoint" captions sourced from crowd workers that make up the datasets. While single-
viewpoint captions may contain a subset of the relevant information in an image, it is unlikely
that they contain everything (MacLeod et al., 2017; Stangl et al., 2020).

Unfortunately, while the development of large vision and language models (VLMs) has led
to progress on a variety of tasks including image captioning, models are trained to produce
samples from the reference distribution of a captioning dataset such as MS-COCO (Li et al.,
2022; Wang et al., 2022b; Alayrac et al., 2022; Yu et al., 2022; Chen et al., 2022). While not
inherently flawed, this approach reproduces the dataset’s single annotator viewpoint captions,
containing some, but not all, of the semantic information present in the image. Thus we
seek to answer the question: “How can we combine many single-viewpoint captions into a
collective summary of the image containing the relevant semantic information?"

One way to obtain a more comprehensive caption, given a set of single-viewpoint captions
from annotators, would be to have another human expert consider the set of captions from the
committee of individual annotators, and create a new caption that combines complementary
information while filtering out any syntactic or semantic errors. Motivated by this idea, we
propose the Image Captioning by Committee Consensus (IC3) approach, which utilizes off-
the-shelf VLMs in conjunction with large language models (LLMs) to generate higher quality
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Step 1: Describe

“A policeman riding a horse 
next to a man with a  bicycle”

“A police o�cer is riding on 
the back of a brown horse” 

“A man is riding a
horse down a city street”

“People in front of a
 health store”

Step 2: Summarize

“A police o�cer riding on the
back of a brown horse down a city street
in front of a store, next to a man with a 

bicycle.”

Figure 6.1: In the IC3 (Image Captioning by Committee Consensus) method, we first leverage
standard image captioning models to generate descriptions covering a range of content within
the image, similar to how human raters describe the image from independent and unique
points of view. We then summarize the group of captions using a vision-free summarization
model into a single, high-quality description of the image, suitable for use in visual description
applications.

captions than would be possible with VLMs alone. Our key contributions are summarized as
follows:

1. We introduce IC3, a simple, yet novel, approach leveraging pre-trained image captioning
models and large language models to generate semantically complete image captions
from a collection of “single-viewpoint" captions.

2. We perform an extensive human evaluation of our method which demonstrates that
human raters rate image captions generated by IC3 higher in both helpfulness and
correctness.

3. We demonstrate through several automated measures that captions generated using
IC3 contain significantly more semantic information than baseline captions. Notably,
CLIP-recall with IC3 captions can be improved by 22-84%, with improved coverage of
objects and actions in the image.
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OFA/BLIP Seed Model
(Generates a semantic caption manifold)

Noisy Caption Samples
(Representative samples from  semantic distribution)

Large Language Model + Summary Prompt
This is a hard problem. Carefully summarize in ONE detailed 
sentence the following captions by different (possibly 
incorrect) people describing the same thing. Be sure to 
describe everything, and  identify when you're not sure.
For example:
Captions: {formatted_captions}.
Summary:  I'm not sure, but the image is likely of...

Output Caption:
A group of people gathered in a 

park admiring the cherry
blossoms and taking photos of them.

Temperature-Based

      
   S

ampling

A group of people standing next to a tree.

People marvel at the beautiful weeping
  cherry trees in portland

A gathering place under a tree full of pink 
  flowers.

People enjoy the cherry blossoms in the 
  us national arboretum in washington dc.

People watch the cherry blossoms at the 
  japanese friendship garden in philadelphia 
 on saturday.

People pose for a photo while watching 
  cherry trees blossoms.

People are shown standing in a park under
 a canopy of cherry trees.

LLM Decoding
(Beam Search)

Figure 6.2: The IC3 approach. Every captioning model defines a distribution across a
caption semantic space. This distribution is unlikely to be unimodal, thus, while maximum
likelihood decoding approaches such as beam search will capture a local maximum, this
point is not likely to be representative of the full distribution of captions. Instead, IC3 first
generates a representative sample of captions from the semantic manifold using temperature-
based sampling. This set naturally captures any means as well as the variance of semantic
information in the image. Because this group of captions can be large, hard to parse, noisy,
or incorrect, we use a large-scale language model, such as GPT-3, paired with prompt
engineering, to summarize and filter the noisy group of captions. The resulting captions are
more detailed and often more useful than captions generated by beam search alone.

6.1 Related Work
The idea that captioning models tend to produce single-viewpoint captions has been

prevalent in the image captioning community for many years under several names (Wang and
Chan, 2019). Notably, research has focused on quantifying and improving the “diversity" of
output captions, including specific methods (Klein et al., 2022; Aneja et al., 2019; Dai et al.,
2017; Mahajan et al., 2020; Mahajan and Roth, 2020; Wang et al., 2017, 2016) and metrics
(Holtzman et al., 2020; Zhu et al., 2018; Wang et al., 2020; Shetty et al., 2017; Deshpande
et al., 2019; Chan et al., 2022d; van Miltenburg et al., 2018; Wang and Chan, 2019). As an
alternate approach to increasing and quantifying diversity, some methods (Gan et al., 2017;
Yang et al., 2020b; Zha et al., 2019; Fang et al., 2022) have focused on explicitly modeling
the variance in the caption space, and introduced human, or statistical controls to reduce
the variance, turning the multi-modal problem into several uni-modal problems. While these
methods are effective at describing the same image multiple times from multiple perspectives,
they have not demonstrated an effective approach that generates a single caption covering all
of the information in each of the diverse captions.
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Dense captioning methods (Johnson et al., 2016; Yang et al., 2017; Li et al., 2019b; Yin
et al., 2019; Kim et al., 2019) attempt to generate a full description of all of the objects in the
image, however, dense image captions are long and unwieldy, and often contain redundant
or repetitive information. Similar long-form captions have been explored in the form of
paragraph captioning (Zha et al., 2019; Krause et al., 2017; Liang et al., 2017; Mao et al., 2018;
Chatterjee and Schwing, 2018; Luo et al., 2019), however in all cases, no efforts have explored
using additional post-processing or models to distill the relevant information for alt-text or
for downstream applications. In this work, we explore beyond single-view captioning and
move towards captions that are short, succinct summaries of the full visual context.

A natural way of summarizing and filtering a dense caption, paragraph caption, or set
of captions, is with a pre-trained model for summarization. While end-to-end methods for
abstractive and extractive text summarization exist (Allahyari et al., 2017), recently, large
language models (LLMs) such as GPT-3 (Brown et al., 2020), LAMDA (Thoppilan et al.,
2022) and PALM (Narang and Chowdhery, 2022) have demonstrated remarkable zero-shot
performance when performing language-only summarization tasks (Brown et al., 2020; Liu
et al., 2021b; Goyal et al., 2022b; Chintagunta et al., 2021; Kieuvongngam et al., 2020), so it is
natural that they would be capable of summarizing multimodal information in a zero-shot way.
Indeed, recently, large-scale vision and language models (VLMs) and large-scale language-only
models (LLMs) have revolutionized a number of sub-fields in AI, including in the image
captioning space. Models such as BLIP (Li et al., 2022), OFA (Wang et al., 2022b) and
Flamingo (Alayrac et al., 2022) have all demonstrated strong performance in single-view
image captioning tasks, and indeed, many of these approaches are rated as good or better
than human users in some evaluations.

Surprisingly, vision-blind LLMs have also become particularly prevalent in multimodal
image/language spaces, primarily using a language-only prefix generated by a set of pre-
trained tools. Mokady et al. (2021) explores using a continuous embedding as a prompt
for a GPT-style language model and demonstrate strong single-viewpoint image captioning
performance, while Hu et al. (2022) and Tiong et al. (2022) leverage natural language prompts
along with GPT to achieve SOTA performance on visual question answering.

Closest to our approach are (Zhu et al., 2023a) (developed concurrently with the proposed
work) and Zeng et al. (2022). Zeng et al. (2022) leverages a CLIP-based model to extract key
tags from the image, and then uses GPT-3 along with a specialized prompt to generate a
stylized image caption, in an attempt to emulate the Socratic method. Zhu et al. (2023a)
further employs the Socratic method by employing Chat-GPT and BLIP-2 (Li et al., 2023b)
to ask and answer questions about the image, respectively. Finally, Chat-GPT summarizes
the QA transcript into the image description. Our proposed approach primarily differs from
Zhu et al. (2023a) and Zeng et al. (2022) in the method of visual data extraction. Instead of
using the Socratic method, which requires repeated high-quality questioning and high-quality
VQA models to elicit data, or imprecise image tagging models, our approach relies on existing
image-captioning models augmented with temperature based sampling, which are able to
generate a diverse set of (possibly noisy) information about the image from multiple sampled
viewpoints. This avoids a repetitive (and computationally expensive) QA loop, which with
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imperfect models can not only introduce significant noise, but also can fail to uncover detail
outside the questioning distribution. Also related to our work is Xie et al. (2022), which uses
similar tags to generate a paragraph-caption, but does not explore filtering the image, or
using existing caption distributions.

6.2 IC3: Image Captioning by Committee Consensus
In this work, we introduce a simple framework for visual description, based on a committee

generation then summarization process, which we call “Image Captioning by Committee
Consensus" (IC3). The approach consists of two stages. In the first stage, we leverage a stan-
dard pre-trained image captioning model to sample several (potentially noisy) captions using
temperature-based sampling from the caption distribution. This generates a representative
samples from the caption distribution, each possibly describing different parts of the image.
In the second stage, we leverage a summarization model to summarize the information in
each of the captions in a short and succinct way that can be presented to a user. An overview
of our method is given in Figure 6.2.

The goal of IC3 is to generate an output caption from a given image, by first sampling
from a frozen image captioning model, and then summarizing these generated captions into a
single “summary caption". More formally, given an image I, we aim to produce a sequence
of m tokens x1 . . . xm describing the image. Formally, an image captioning model can be
described as a function M which takes I and a set of tokens a1 . . . ak−1 in some vocabulary
V , and produces a probability distribution P (ak ∈ V |I, a1 . . . ak−1), the probability of the
next token in the sentence given all previous tokens and the image.

Traditionally, image captioning models generate a caption C, where:

C = argmax
a1...ak≤N

k∏
i=1

P (ai|a1 . . . ai−1, I) (6.1)

Finding the argmax is particularly challenging, as it is an optimization over all possible
sequences. Usually, to avoid these challenges, a technique such as beam search (Li et al., 2016;
Shen et al., 2017) is used to reduce the number of possible candidates. Recently, however, it
has been shown by several papers, including Chan et al. (2022c) and Caglayan et al. (2020)
that captions generated using beam search contain only the mutual information between
the references, and that such captions are often bland, and uninteresting. To avoid this,
we instead take a different approach. Instead of maximizing the likelihood, we generate a
set of samples, K = {k1 . . . ki}, from the model using temperature-based sampling of the
distribution:

ki = a1 . . . ami
∝ exp

(
logP (a1 . . . ami

|I)
T

)
(6.2)

where T is a temperature parameter. At temperature 1, the resulting samples K = k1 . . . ki
are an unbiased estimate of the distribution of reference captions. This means that, unlike
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the maximum likelihood estimate caption, the sampled captions will contain variance in
information commensurate with the variance of human descriptions.

Unfortunately, while the caption set K is a good description of all of the details that we
might care about in the image, a set of captions can be hard to parse for a downstream user.
Thus, we would like to summarize the set K as a single caption, by removing any redundant
(or incorrect) information, and combining any details mentioned in one description, and not
in one of the others. To do this, we leverage a summarization model S, which maps the
set of captions K to our final single output caption C. In IC3, the summarization model is
visually blind - that is, the image is not taken into account at all during the summarization
phase. We discuss our choice of summarization model in subsection 6.2.2. In our work, C is
generated using beam-search from the summarization model, giving us a maximum likelihood
estimate of the best summary of the input captions.

6.2.1 Image Captioning Models

The first stage of the method is to sample a set K of candidate captions from an underlying
pre-trained image captioning model, M. In this work, we explore two underlying image
captioning engines, the BLIP model (Li et al., 2022), and the OFA model (Wang et al.,
2022b), which both represent high-quality image-captioning models pre-trained on large-scale
image and language data, then fine-tuned for captioning on the MS-COCO dataset (Lin et al.,
2014). More details on the specific image captioning models can be found in Appendix B.3.1.

Temperature Selection: We want to generate a sample of captions that lies as close to
the reference distribution as possible. For most models, this will be at or close to temperature
1. To validate this, we use the TRM-CIDEr metric introduced in Chan et al. (2022d) to
measure the distance between the reference distribution and the generated captions at a set of
temperatures between 0 and 2. We found that for the BLIP model, the optimal temperature
was 1.15, and for the OFA model, the optimal temperature was 0.95.

Selecting size of K: To select the number of captions that are generated, we used a
small validation set and found that 10 captions represented a good trade-off between the
length of the prompt, and the quality of the model. Sampling larger numbers of candidate
captions can improve the total captured information but can decrease the performance of the
summarization model, and be more costly to evaluate (See Appendix B.2.3 for an ablation).

6.2.2 Summarization Models

The choice of the summarization model S is a key decision when implementing IC3,
as the model should be capable of high-quality zero-shot abstractive summarization. We
found that using a large language model (LLM) for zero-shot summarization is effective
in generating high-quality output summaries of the input captions (See Appendix B.2.1).
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For the results in section 6.3, we use GPT-3 (Brown et al., 2020), as it produced strong
abstractive summaries of the candidate captions, however we discuss (and explore) in detail
the choice of summarization model Appendix B.2.1.

6.2.3 Prompt Selection

To use a large-scale language model for summarization, we follow the techniques in Brown
et al. (2020), and design an input text prompt passed to the language model, to encourage
the generation of a correct output. The choice of prompt is defined by several motivations,
including encouraging the model to summarize the information in the sampled captions,
particularly the uncertainty of the captions, encouraging the model to convey this uncertainty
in a natural manner (if the model is unsure about what is in the scene, it should identify
when this is the case) and making sure that the generated caption is comprehensive, and
contains all of the unique viewpoints presented in each of the sampled descriptions. Our final
prompt used for experiments with GPT-3 was:

This is a hard problem. Carefully summarize in ONE detailed sentence the
following captions by different (possibly incorrect) people describing the same
scene. Be sure to describe everything, and identify when you’re not sure. For
example: Captions: {formatted captions}. Summary: I’m not sure, but the image
is likely of...

Encouraging and surfacing uncertainty: In our prompt design, we aim to encourage
the model to account for potential uncertainty/noise in the sampled captions. In many cases,
high disagreement among the captions can indicate uncertainty in the language distribution,
so we encourage the model to identify when the individual captions differ using language
such as possibly incorrect, is likely of and I'm not sure in the prompt. The effect of
encouraging and surfacing uncertainty is demonstrated in Table B.2 in the appendix. This
shows that choosing this language significantly increases the likelihood that models generate
uncertain language, and that such captions are rated as more correct on average by human
raters.

This is a hard problem: Following Kojima et al. (2022), who showed that adding short
interrogative/instructive sentences to the beginning of a prompt can improve zero-shot
performance, we also add the short sentence “this is a hard problem". We found that this
generally improved the quality of the model by a small amount, with diminishing returns as
the quality of the candidate captions improved as seen in the ablation in Table B.3.

Use of capitalization: In our exploration of the prompt space, we found that in some
cases, the models choose to generate long concatenations of the input captions instead of
generating a single short and concise sentence. Thus, to help alleviate this issue, we found that
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capitalizing the “ONE" when asking for sentences encouraged the GPT models to produce
shortened captions, usually consisting of a single sentence (reducing the average caption
length from 120.03 to 107.89 characters).

Style Transfer and Contextual Captions: In addition to the above goals, it is interesting
future work to explore how the prompt can be used to shape the generated output caption,
either for zero-shot transfer to other languages, or to guide the generation of the text to
pay attention to specific details in the image. While we do a cursory exploration of such an
approach in Appendix B.7 and Appendix B.8, future work in this area is essential.

6.2.4 Evaluation

N-gram matching scores such as CIDEr (Vedantam et al., 2015) do a poor job at comparing
distributions of texts. An example of this is a single caption which is the concatenation
of two non-overlapping references. Because for each reference, there exist n-grams in the
candidate that do not overlap with that reference, the candidate will score poorly. However
the candidate has the same (or more) information than either of the two original reference
sentences alone. Thus, along with extensive human evaluation, we introduce two novel
automated measures of caption quality, which directly address information retrieval.

CLIP Recall: One measure of the quality of a caption is its ability to distinguish between
images in a dataset (Hessel et al., 2021a; Wang et al., 2022a). In this work, we leverage
CLIP (Radford et al., 2021b) as a recall model, and use it to estimate an approximate
specificity of each of the captions generated by our approach. Specifically, for each image i,
we compute the CLIP embeddings Ii and the corresponding caption Ci. We then compute
the CLIP-Score (Hessel et al., 2021a) between Ii, and every other generated caption Cj, and
from this, compute the mean reciprocal rank (MRR) of the caption Ci, and the recall at 1, 5
and 10. High values of MRR suggest that the captions are more discriminative within the
test set (and thus, are often more detailed in nature).

Content Coverage: In addition to the specificity of the individual caption, we also would
like to measure how much of the total information provided by all of the references is included
in the summarized caption. To do this, we first compute the caption Ci for each image and
fetch the references Rj

i , 1 ≤ j ≤ N for each image. Let N (Ci) be the set of nouns in a caption,
Ci, and V(Ci) be the set of verbs. Let

IN ,i(n) =

{
1, if n ∈ ∪N

j=1N (Rj
i )

0, otherwise
(6.3)

We compute exact noun overlap for Ci as:

Noun Overlap =
1

| ∪N
j=1 N (Rj

i )|

∑
n∈N (C⟩)

IN ,i(n) (6.4)
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Verb overlap is defined analogously for V . We compute fuzzy overlap similar to exact overlap,
however instead of Equation 6.3, we use:

IN ,i(n) =

{
1, if ||E(n)−E(x)||22 ≤ ϕ,x∈∪N

j=1N (Rj
i )

0, otherwise
(6.5)

where E is a word-embedding function (we use embeddings from the Spacy package (Honnibal
et al., 2020)), and ϕ = 0.1 is a threshold.

Human Evaluation: To test the performance of our model in real-world conditions, we
leverage human evaluations on the Amazon Mechanical Turk platform. We perform two styles
of human evaluation. In “context-free" evaluation, raters are asked to rate two components:
The “Helpfulness" of the caption to somebody who cannot see the image (on a scale of 0
to 4), and the factual “Correctness" of the caption (on a scale of 0 to 5). In “head-to-head"
evaluation, raters are presented with two captions and asked which is more “helpful" for
somebody who cannot see the image, as well as which is more factually “correct". Full details
on the exact questions asked and the experimental design are given in Appendix B.5.

Reference Baseline: Because IC3 can be used to augment any existing captioning method,
we also explore augmenting the human reference captions with IC3. To do this, we use the
reference captions (ref) as candidates for the summary pipeline, which are then summarized
by the LLM to generate the ref+ic3 caption. Such an approach removes the additional
variance introduced by the candidate captioning model and demonstrates the potential of
IC3 applied to a near-perfect captioning approach.

6.3 Results & Discussion
In this section, we compare captions generated using our baseline seed image captioning

models, BLIP (Li et al., 2022), BLIP-2 (Li et al., 2023b), and OFA (Wang et al., 2022b), to
captions generated using IC3. We leverage two image captioning datasets for evaluation: MS-
COCO (Lin et al., 2014) and the Flickr-30K dataset (Young et al., 2014) (see Appendix B.3.2).

Figure 6.3 and Appendix B.6 give some qualitative examples of our method compared to
several baseline methods. We can see that descriptions using IC3 are often longer, and contain
more detail than their counterpart baseline models. Further, most display uncertainty about
the content of the image in a natural way, which the baselines are not able to accomplish
(see Appendix B.2.2).

6.3.1 Human Evaluation

Recent works (Chan et al., 2022d; Caglayan et al., 2020) have confirmed that human
evaluation remains the gold standard for visual description evaluation, despite progress in
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OFA: A cake sitting on top of a red plate.
Socratic Models: A variety of sweet treats on display
  at a deli.
Human: A plate that has a dessert on it.

OFA + IC3: A young man wearing an orange jacket 
  and hat  performing tricks on a skateboard at a skate
  park or enclosed pool at night.
OFA: A man riding a skateboard up the side of a ramp.
Socratic Models: A peaceful scene of a skate park in 
  the city.
Human: A person doing a skateboard trick up a bowl

COCO Image ID: 387463 COCO Image ID: 295767 

OFA + IC3: Two small figurines, possibly Star Wars
  related, sitting at table in getting ready to eat a pizza.
OFA: A couple of figurines sitting on top of a table next
  to a pizza.
Socratic Models: A group of people enjoying a delicious
  pizza at a local pizzeria.
Human: Two toys are sitting with a toy cup and real
  pizza.

OFA + IC3: A layered cake with chocolate and cream 
  on top, sitting on a red plate, possibly with a knife
  sticking out of it, although it could also be an ice
  cream cake, a pancake, a crepe cake,  or a stack of
  pancakes.

COCO Image ID: 453926

Figure 6.3: Some qualitative examples of IC3 paired with the OFA model. We can see in all
of these cases that ofa + ic3 surfaces significantly more detail about the image, including
both foreground and background details, as well as maintains the syntactic quality, relevant
world-knowledge, and high-level details of the maximum-likelihood caption.

automated evaluation of image captioning. As discussed in subsection 6.2.4, we perform
two experiments: head-to-head experiments and mean opinion score evaluation. The results
of the head-to-head experiments on MS-COCO are shown in Table 6.1, where we can see
that IC3 augmented models significantly outperform the baselines on both helpfulness and
correctness (Helpfulness: ofa + ic3 vs. ofa, p = 0.0008; blip + ic3 vs. blip, p = 0.008;
blip2 + ic3 vs. blip2, p = 0.003; ref + ic3 vs. ref, p = 1.73e−5. Correctness: ofa + ic3

vs. ofa p = 0.0428; blip + ic3 vs. blip, p = 0.0280; blip2 + ic3 vs. blip2, p = 0.898;
ref + ic3 vs. ref, p = 0.0019; n = 89).

Table 6.2 shows the performance of IC3 in terms of mean opinion score, and demonstrates
that even in a calibration-free setup, where no extra evidence is presented, IC3 methods
significantly outperform their baseline counterparts when rated for helpfulness (Helpfulness:
ofa + ic3, p = 0.0237; blip + ic3, p = 0.0419; ref + ic3, p = 0.0293; n = 121).
Numerically, IC3 outperforms baselines on the correctness measure, however we found in all
three cases that the difference was not statistically significant. We believe the the reduction
in margin is caused by several effects: (1) without a point of reference for the potential quality
of the captions, AMT workers cannot tell which captions are deserving of high scores and (2)
both OFA and BLIP are strong captioning models, so a random sample of MS-COCO images
may not contain difficult images that separate the two methods.

To investigate this hypothesis, we ran several additional human studies on a set of
challenging examples, which we call the Hard MRR splits (see Appendix B.3.2), which contain
the 200 most challenging images for CLIP to recall. We show the head-to-head experiments in
Table 6.3, and see that once again, in head-to-head experiments, IC3 significantly outperforms
baseline methods (ofa + ic3, p = 0.0225, n = 28, blip + ic3, p = 0.0074, n = 52). In
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Table 6.1: Head-To-Head human evaluation performance of models augmented with ic3 on
the MS-COCO dataset. Table shows % of instances preferred by users.

Model Helpfulness ↑ Correctness ↑

Blip-2 + ic3 51.97% 44.10%
Blip-2 37.49% 42.67%
Tie 9.78% 11.6%

Blip + ic3 52.05% 42.90%
Blip 33.44% 36.28%
Tie 14.51% 20.82%

Ofa + ic3 52.91% 48.93%
Ofa 32.72% 33.94%
Tie 14.37% 17.12%

Ref + ic3 55.79% 48.80%
Ref 36.65% 36.27%
Tie 7.46% 13.97%

Table 6.2: Human rater mean opinion score for ic3 on MS-COCO. Helpfulness (H, 0-4),
Correctness (C, 0-5).

Candidate Generator
Baseline + ic3

H ↑ C ↑ H ↑ C ↑

Ofa 2.876 3.891 2.965 4.010
Blip 2.901 3.951 2.921 3.881
References 2.932 3.966 2.985 3.985

MOS experiments (Table 6.4), IC3 augmented OFA and Reference captions both significantly
outperform their baselines (p < 0.05, n = 41) on both BLIP and OFA Hard MRR sets, but
the experiments with BLIP on the BLIP Hard MRR set are inconclusive (p = 0.682, n = 41),
suggesting that in some cases, IC3 is unable to overcome all of the challenges with the seed
captioning model. The fact that the head-to-head performance on the BLIP Hard MRR split
in Table 6.3 is stronger for IC3, coupled with the fact that reference captions augmented with
IC3 perform better on this set suggests that IC3 can manage some of the underlying noise,
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Table 6.3: Head-To-Head human evaluation performance of ic3 on the hard MRR MS-COCO
splits.

Model Helpfulness ↑ Correctness ↑

Blip + ic3 48.06% 41.78%
Blip 28.50% 30.43%
Tie 21.01% 25.60%

Ofa + ic3 51.10% 48.90%
Ofa 32.04% 29.52%
Tie 15.06% 19.78%

Table 6.4: Human rater mean opinion score for ic3 on Hard-MRR subsets. Helpfulness (H,
0-4), Correctness (C, 0-5).

Candidate Generator
Baseline + ic3

H ↑ C ↑ H ↑ C ↑

OFA Hard Subset

Ofa 2.452 3.651 2.713 3.713
References 2.649 3.675 2.728 3.902

BLIP Hard Subset

BLIP 2.708 3.827 2.648 3.704
References 2.887 3.887 2.934 3.918

does not fully compensate for a lack of calibration.

6.3.2 Automated Evaluation

As discussed in subsection 6.2.4, we also perform automated evaluations of the method on
both the MS-COCO and Flickr-30K datasets. The performance of IC3 in CLIP recall is first
demonstrated in Table 6.5, where for MS-COCO, CLIP recall MRR is improved by 27.6%
under OFA, and by 46.5% under BLIP, suggesting that IC3 augmented captions significantly
outperform SOTA captions in indexing scenarios. Similar improvements exist in Table 6.6,
where IC3 improves CLIP MRR by 22.49% for OFA and up to 84.46% for BLIP. These results
suggest that IC3 surfaces significant additional detail compared to individual baseline and
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Table 6.5: CLIP Recall for ic3 augmented captions in the MS-COCO Dataset (Karpathy
Test Split). MRR: Mean Reciprocal Recall, R@K: Recall @ K.

Model MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑

Ref + ic3 0.776 0.691 0.883 0.930
Ref 0.593 0.480 0.724 0.808

Ofa + ic3 0.748 0.656 0.857 0.914
Blip + ic3 0.734 0.639 0.848 0.908
Blip2 + ic3 0.746 0.652 0.863 0.921
Ofa 0.586 0.472 0.717 0.798
Blip 0.501 0.382 0.634 0.736
Blip2 0.589 0.473 0.725 0.811

Table 6.6: CLIP Recall for ic3 captions in the Flickr-30K test set. MRR: Mean Reciprocal
Recall, R@K: Recall @ K.

Model MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑

Ref + ic3 0.856 0.836 0.836 0.938
Ref 0.708 0.679 0.679 0.798

Ofa + ic3 0.806 0.782 0.782 0.889
Blip + ic3 0.736 0.707 0.707 0.829
Ofa 0.658 0.629 0.629 0.745
Blip 0.499 0.463 0.463 0.581

reference sentences, leading to strong recall performance, and suggesting that IC3 augmented
captions can lead to benefits when applied to indexing and search. On all datasets, IC3

outperforms single human reference captions, suggesting that summarizing multiple
viewpoints is essential for strong automated recall performance.

Table 6.7 and Table 6.8 both demonstrate the summarization ability of IC3 augmented
methods, as IC3 outperforms all baseline methods in recalling content from the dataset, often
by relatively large margins. The verb recall is often lower (though still improved) across all
approaches, suggesting that IC3 focuses recalling content over action in an image. We further
quantify IC3’s summarization capability in Appendix B.2.5 where we find that increasing the
diversity of the input candidates can improve noun/verb recall, however has little impact on
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Table 6.7: Content coverage performance on ic3 augmented captions in the MS-COCO
Dataset (Karpathy Test Split). N: Noun Recall, V: Verb Recall

Exact Fuzzy
Model N ↑ V ↑ N ↑ V ↑

Ref + ic3 0.552 0.354 0.767 0.616
Ref 0.255 0.137 0.567 0.398

Blip2 + ic3 0.364 0.229 0.667 0.529
Blip + ic3 0.353 0.223 0.663 0.534
ofa + ic3 0.351 0.211 0.656 0.498
Blip2 0.277 0.185 0.582 0.442
Blip 0.266 0.196 0.573 0.486
ofa 0.275 0.171 0.583 0.412

Table 6.8: Content coverage performance on ic3 augmented captions in the Flickr-30K Test
Dataset.

Exact Fuzzy
Model Noun ↑ Verb ↑ Noun ↑ Verb ↑

Ref + ic3 0.548 0.350 0.763 0.684
Ref 0.246 0.147 0.543 0.490

Blip + ic3 0.283 0.200 0.604 0.585
ofa + ic3 0.296 0.195 0.607 0.571
Blip 0.205 0.134 0.505 0.507
ofa 0.230 0.147 0.533 0.495

MRR. These results suggest that IC3 summarizes any salient information as required.
While Appendix B.3.3 discusses the performance of our methods on N-Gram measures,

such measures are relatively misleading, as we generate captions that differ significantly from
reference captions, thus, the N-Gram metrics are naturally lower compared to maximum-
likelihood baselines.
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6.4 Limitations
While IC3 significantly outperforms baseline captioning approaches, as well can outperform

single human image captioning references, it also suffers from several distinct limitations.

Hallucination: While IC3 often produces high-quality summaries of the associated captions,
it has several distinct failure modes, mostly coming down to hallucinations induced by the
underlying captioning model. In some cases, objects that are hallucinated by the model can
propagate to the summary, even if they are internally inconsistent with other captions in the
candidate set K. Another distinct failure mode of the captions is when uncertainty in the
samples is interpreted as two distinct parts of the image. For example, if 50% of the captions
refer to a dog, and 50% of the captions refer to a cat, the model may infer that both a dog
and a cat are present in the image, even though only a single, unknown, animal is there.
Examples of these failure cases are shown in Appendix B.8. We believe that such failure
cases can largely be solved by introducing a visually aware summarization model, however,
as of writing, no sufficiently large-scale general-purpose multi-modal model exists which is
capable of serving this purpose.

Controllability: One of the key applications of image captioning systems is alt-text
generation. As discussed in recent work (Archibald, 2023), alt-text generation is largely
contextual, which means that for each image, the alt-text of the image should depend on
the context that such an image is included in. While IC3 introduces a natural pathway for
including context through the summarization model, we have found (see Appendix B.8.2),
that IC3 is somewhat resistant to prompts that encourage surfacing background information.
Exploring how to make IC3 surface arbitrary information in the image instead of focusing
primarily on foreground information is key direction for future work.

The Cost of using LLMs: The use of many closed source large language models can
represent a significant financial, human, and environmental cost (Bender et al., 2021). We
recognize that for some researchers and students, the financial cost of using a large zero-shot
model such as GPT-3 can be prohibitive, making IC3 difficult to compare against, especially
for large-scale experiments such as the Karpathy test set for MS-COCO and the Flicker-30K
datasets (which consists of 5K images each). Using GPT-3, IC3 costs about $0.0109/Image,
and with GPT-3.5, that cost falls to $0.001/Image. Notably, this is significantly less than
Chat Captioner (Zhu et al., 2023a), which can cost as much as $0.27/Image, which made
it infeasible to run large-scale experiments. The experiments/ablations/all GPT-3 tuning
in this paper was performed for $250 (USD). Our approach, while not necessarily cheap, is
several orders of magnitude less expensive than training/evaluating fine-tuned vision and
language models such as Flamingo (1536 TPUs/15 days, roughly $1,780,531 using on-demand
TPU pricing) or BLIP-2 (16 A100 GPUs, 6 days, $11,796 using AWS on-demand pricing).
Furthermore, we hope that this cost will not be prohibitive long-term. GPT-3.5 is an order
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of magnitude cheaper, and has similar performance to GPT-3, and open-weight models such
as Koala and Vicuna, seem promising for the future of affordable LLMs (see Appendix B.2.1),
making IC3 even more accessible to students and researchers.

6.5 Conclusion
In this work, we introduced IC3, a method for image captioning that first samples

captions from multiple viewpoints and then summarizes and filters them to create high-
fidelity descriptions. As far as we are aware, IC3 is the first work to demonstrate a pipeline
for generating a single caption by integrating distributionally-faithful candidate captions, and
does so without changing model architecture or retraining by leveraging summarization to
produce a single omnibus caption capturing the full distribution of information. Further, IC3

is the first work for paragraph captioning or image captioning that uses summarization of
distributionally-faithful caption samples and the first to demonstrate in human experiments
that long-form captions encoding this distribution are preferable to single reference captions.
Human users rate IC3 captions at least as helpful as baseline captions up to 80% of the time,
and such IC3 captions are capable of inducing up to 84% relative improvements in recall
approaches over baseline captioning methods. While our implementation of IC3 is relatively
simple, it demonstrates significant gains over traditional paradigms, suggesting that this is
only the beginning for caption sampling and summary methods.
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Chapter 7

Multi-modal pre-training for automated
speech recognition

As discussed in the introduction to this section, despite considerable research, automated
speech recognition (ASR) remains an extremely challenging task, especially in noisy envi-
ronments. Correctly understanding spoken phonemes requires an understanding of speech
patterns, as well as an understanding of myriad varieties of background noise, much of
which may never have been encountered by a model during the training process. Many
traditional ASR methods focus on a local understanding of phonemes, predicted from small
10-30ms segments on audio. Unfortunately, such local representations may leave ASR models
vulnerable to extreme noise such as frame drops or sudden loud noises at the local level. Not
only are such models vulnerable to local disruptions, but these models can be affected by
global-level noise that has not been seen during the training process.

In this chapter, we target the problem of such global-level noise in utterances. Many
ASR datasets such as Librispeech (Panayotov et al., 2015) are collected in lab-specific
environments, and even a number of large corporate datasets are collected from a canonical
set of situations which leaves a long tailed distribution of noisy environments uncovered.
While local level disruptions can in part be solved by introducing semantic-level language
modeling (Gulati et al., 2020), the global out-of-distribution noise problem has no such simple
solution. Recently, the vision and NLP communities have introduced several methods based
on self-supervised representation learning, which make use of large amounts of unlabeled data
to build representations which can augment low-data downstream tasks. Such representations
can provide exposure to the long-tailed data distribution, and have been shown to reduce the
amount of data required to learn robust representations for downstream vision and language
tasks (Sun et al., 2019).

We hypothesize that by leveraging self-supervised learning to learn representations of the
global environment, we can improve the performance of ASR models. If we allow the model
to additionally condition the phoneme output on a robust representation of the environment,
models should be able to respond correctly in a wider variety of global noise environments
(as the model has some environmental experience, even though it may be outside of the ASR
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Figure 7.1: An overview of our proposed approach to the ASR training process using deep-
fusion with environmental embeddings. Our audio is fed to the pre-trained environmental
representation model, trained on large-scale multimodal data. We then use a stack of L
deep-fusion cross-attention layers in the base conformer architecture to deeply fuse the
environmental representations with a standard conformer model. The RNN-T and joint
model loss remain unchanged from (Gulati et al., 2020).
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domain). In this work we provide evidence to support this hypothesis, by demonstrating the
following:

1. We develop a pre-training scheme, AV-BERT, based on masked language modeling, for
learning robust environmental representations (subsection 7.2.1).

2. We introduce a novel deep-fusion scheme for training on joint local/global representations
in the ASR domain (subsection 7.2.2).

3. We demonstrate the benefits of generating robust environmental representations with
additional modalities such as visual information (even when such visual information is
not present at test time) (section 7.3).

4. We discuss directions for further improvement of ASR techniques leveraging global
multimodal representations (section 7.4).

7.1 Related Work
Traditional ASR methods such as the RNN-T (Graves et al., 2013) have two main

components, an audio encoder and a joint transducer model. In this framework, the audio
encoder is largely responsible for generating the local probabilities of any particular phoneme,
while the joint transducer model introduces language/semantic level information. Recent
evolution in the audio encoder space focus primarily on improving the performance of the
local level representations. The Transformer-T (Zhang et al., 2020c) and Conformer (Gulati
et al., 2020) are both methods which introduce self-attention into the computation of the local
embeddings. Because of the transducer-level loss, methods are still primarily local-first, with
each token representation focusing on predicting the phoneme present in the given 10-30ms
audio frame (Hsu et al., 2021). The local-level dependence can introduce a vulnerability to
global out of domain data, as demonstrated by Chiu et al. (Chiu et al., 2021).

Instead of focusing on building global audio representations directly, many methods
leverage self-supervised learning to build additional exposure to the long-tail of the ASR
distribution. Self-supervised learning has been used to great effect in the ASR community,
primarily in the context of student teacher models such as those in Watanabe et al., Zhang
et al., Manohar et al. and Movsner et al. (Watanabe et al., 2017; Zhang et al., 2020f;
Manohar et al., 2018; Mosner et al., 2019). These methods have the remarkable property
of both distilling the representations learned by a large/slow teacher model trained on seed
data to a smaller representation, as well as improving the overall performance of the model.
We speculate (and believe that it is important future work to confirm) that the additional
performance gained by student teachers is a direct response to exposure to a large tail of
environmental effects, regardless of the ASR content.

While student-teacher models make up the majority of self-supervised learning in ASR,
recent techniques such as HuBERT (Hsu et al., 2021) and COLA (Saeed et al., 2021) have
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demonstrated that learning general representations of audio can be useful for ASR pre-training.
Our proposed method could be considered a natural extension of the ideas in HuBERT, as we
extend the ideas of building a speech-only general representation to building a multi-modal
environment-level representation of the audio. Since our proposed method expands the scope
of the environmental representation with not only environmental audio, but also visual data,
we believe that our models capture even more robust distributional information than is
possible using speech-data alone.

Outside of automated speech recognition, building an environment-level multi-modal
representations have consistently been shown to be effective methods for instilling global
domain knowledge. Akbari et al. (Akbari et al., 2021) recently demonstrated that building
representations in a contrastive learning framework by ingesting video, audio and text
information can lead to state of the art performance on the Kinetics (Carreira et al., 2018)
classification dataset, and Alayrac et al. (Alayrac et al., 2020) demonstrated that self-
supervision over the video, audio and language streams simultaneously can often lead to
representations that perform better on global classification tasks in both the vision and audio
domains. Perhaps most importantly, Wang et al. (Wang et al., 2021a) recently confirmed that
even in the absence of the video representation at test time, audio-video self-supervised model
representations outperform audio-only self-supervised models on audio only downstream tasks.

The finding by Wang et al. (Wang et al., 2021a) is somewhat unintuitive - as it suggests
that video information during pre-training can help to organize the audio representations in
such a way that the models perform better at test time on audio-only problems. In designing
our proposed method, we exploit the same effect, which we hypothesize (and will have to
confirm), is due to the videos acting as pseudo-semantic labels over the unsupervised audio
data. Unlike the model proposed by Wang et al.(Wang et al., 2021a), our proposed method
makes direct use of this hypothesis by using masked language modeling as a joint training
objective, as opposed to contrastive representation learning. In contrastive representation
learning, samples from the audio and video domains are pushed into a joint latent space,
traditionally at a global level. This mode of training inherently suggests that the models
should lie in the same latent space, which we believe to be suboptimal for automated speech
recognition, where we want to focus on globally aware local-first representations. To help
avoid this, our proposed method focuses on masked language modeling objectives, in a
framework first explored in BERT (Devlin et al., 2019), and further extended to multiple
modalities in methods such as VideoBERT (Sun et al., 2019), UniT (Hu and Singh, 2021),
and Multi (Tsai et al., 2019).

In the context of automated speech recognition, the exploration of global multimodal
representations has been largely unexplored. Our proposed method seeks to close a gap in
the research: exploring if multimodal representations can be used to improve automated
speech recognition tools even when the video information is not present at test time. We
frame our multimodal representations in the context of larger goal of building environmental
representations, as demonstrated in section 7.3, which shows that even building audio-only
global representations from out of domain data can lead to improved ASR performance, and
that augmenting with multiple modalities only improves this performance benchmark.
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7.2 AV-BERT: Multimodal Pre-Training for ASR
Our method consists of a two-stage approach (an overview is given in Figure 7.1) inspired

by ideas from VideoBERT (Sun et al., 2019), HuBERT (Hsu et al., 2021) and Alayrac et al.
(Alayrac et al., 2020). In the first stage we build a video-augmented audio representation using
a pre-training task based on masked language modeling. In the second stage, we use these
video-augmented audio representations to provide additional context to a conformer-based
ASR model.

7.2.1 Multimodal Pre-Training

While many methods for learning multimodal representations focus on self-supervised
learning with a contrastive objective, our proposed method, AV-BERT, differs in that
it uses a masked language modeling objective. Our pre-training encoder model, shown in
Figure 7.2, takes inspiration from the UniT (Hu and Singh, 2021) model for unified transformer
architectures, however instead of using multiple encoders, we use a single unified encoder
layer. We take further inspiration from ViViT (Arnab et al., 2021) and use a video-patch
based encoding to the transformer, while taking inspiration from HuBERT’s (Manohar et al.,
2018) iterated quantization training method for masked-language modeling from raw signals.
In this section, we dive deeper into each of the components, and discuss our modeling choices
from the perspective of an ASR-first multimodal pre-training model.

To build a multimodal representation learning method based on masked language mod-
eling principles, we first consider a token-based representation of modalities. We draw the
representation from a discrete quantization of both the video and audio domains.

For the video modality, we extract non-overlapping patches of the input data, which are
further quantized. Audio data is batched and quantized in a similar way. While we could
use the quantized tokens directly as input to the masked language model as was done in
VideoBERT (Sun et al., 2019), similar to HuBERT (Hsu et al., 2021) and ViViT (Arnab et al.,
2021) we use the pixel/waveform patches directly on the input layer (while still classifying
based on the quantization). This allows the model to see the full input audio/video, while
gaining the benefits of a masked language model. In addition, this allows the model to
respond to subtle changes in the input which cannot be captured by our audiovisual language
(which only consists of a total of 12288 tokens). It is possible to use a larger audiovisual
language, however doing so leads to an increase in computational complexity that can be
detrimental to training speed (and thus, training performance).

Thus, to form the input to our masked language model, we first use a set of modality-
specific convolutions to embed both the video and audio in the model dimension. We then
apply a modality-specific learned embedding, as well as learned position embedding (Devlin
et al., 2019). For the audio, we use the frame index as the position. For the video, we apply
a pair of position embeddings – one across the flattened spatial dimension, and one across
the temporal dimension (the same as in the Timesformer (Bertasius et al., 2021)). We then
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Figure 7.2: An overview of our pre-training model. First, a set of patches are extracted from
the multimodal inputs. Next, these patches are quantized using k-means and embedded
directly using convolutional layers, modality encodings, and positional encodings. The
embedded patches form the input sequence, which is passed to a standard BERT masked-
language model. The quantized token labels are used along with the output of the masked
BERT model to perform masked-language prediction.

flatten the spatial dimensions, and concatenate the video and audio sequences, to form the
input to the model.

To perform masked language modeling, we use an architecture similar to BERT (Devlin
et al., 2019), which allows for full cross-attention between all points (both in the audio and
video modalities, as well as spatiotemporally). This can lead to very long sequence lengths, so
we compensate by reducing the per-node batch size, and distributing the model across several
GPUs. Because of the distribution across many GPUs, we do not use batch normalization,
and instead use instance normalization to help handle the inputs. This replacement could
potentially lead to a degradation in accuracy over the original model presented by (Devlin
et al., 2019) (which we will verify empirically), however it significantly increases training
speed.

The training of the AV-BERT model is heavily dependent on the choice of masking
technique. If we mask tokens uniformly with some rate, it is unlikely that the model will
learn cross-model representations, as both audio and video are highly local representations
(information in one location tends to share a large amount of mutual information with other
neighbors). A natural solution to this approach would be to mask entire modalities at a time.
This approach. however, can be too broad, as often the modalities are not heavily correlated



70

enough to reconstruct a quantized representation of the other.
To combat this breakdown in representation, we apply a progressive masking technique,

where we begin the training by masking local information to encourage local-level representa-
tions, and progressively increase the size of the masks during training. This encourages the
model to first learn local representations, and then eventually learn more global representations
as the training process continues.

We perform our pre-training using the publicly available splits of the Kinetics-600 dataset
(Carreira et al., 2018). The Kinetics-600 dataset consists of 366K 10 second videos, each with
a corresponding audio track and an associated action label (from 600 classes). For video, we
reduce the frame-rate to 6FPS and resize the short side of the video to 256 pixels, and take
a 256x256 center crop of the resulting resized video. For the audio, we resample the raw
input audio to 16KHz, and stack 3 adjacent LBFE64 features from the resulting audio frames.
The features are whitened using a global-norm, then clipped to lie between (−1.2, 1.2) for
numerical stability.

In our pre-training experiments, we use a model dimension of 128, with six BERT encoder
blocks. The model is implemented in Tensorflow (Abadi et al., 2016), and is trained using
32 Nvidia-V100 GPUs, each with a batch size of 8, for 100 epochs (or until the validation
perplexity converges, whichever comes first). To perform the optimization, we use an Adam
(Kingma and Ba, 2015) optimizer with a fixed learning rate of 3e−4, and β1 = 0.9, β2 = 0.99.

7.2.2 Automated Speech Recognition Downstream Task

For the downstream automated speech recognition task, we have two goals: (a) maintain
the performance of current state of the art machine learning techniques, and (b) augment
the current models with additional global-level environment context to improve phoneme
recognition. In order to accomplish these goals, we modify the conformer architecture (as
shown in Figure 7.1) to include additional cross-attention layers, which attend across the
vector-level representations generated by our pre-trained AV-BERT model. This method
allows the model to selectively pay attention to global context information learned by our
model, while preserving the local-first approach favored by ASR techniques. This helps resolve
one of the major challenges faced by HuBERT (Hsu et al., 2021) in the ASR domain: when
you focus on learning global representations, you can fail to encode the information necessary
for local-first tasks such as phoneme detection. During the training of the downstream
model, we freeze the representations learned by AV-BERT, to both reduce the computational
complexity and to maintain a more global representation level even after significant training.

We evaluate the proposed model on the LibriSpeech (Panayotov et al., 2015) dataset,
which consists of 970 hours of labeled speech. Because our audio embedding method is frozen
during the training process, to ensure that there is no domain shift, we follow the same
audio preprocessing technique as in subsection 7.2.1 with additional SpecAugment (Park
et al., 2019). In addition to Librispeech, we present results on several internal datasets:
“Base" representing general speech, “Query", representing standard speech queries, “Rare"
representing the long-tailed distribution of rare words, and “Messages" representing longer
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Table 7.1: Results summary of word error rate for the Librispeech dataset with no additional
language model. The baseline model replaces the cross-attentions with self-attention (to
closely preserve parameters) using the same training profile (See section 7.2). “A" is the
audio-only model, and “A/V" is the full Audio/Video BERT.

Method Params (M) test-clean test-other

LAS
Transformer (Synnaeve et al., 2019) 370 2.89 6.98
Transformer (Karita et al., 2019) - 2.2 5.6
LSTM (Gulati et al., 2020) 360 2.6 6.0

Transducer
Transformer (Zhang et al., 2020c) 139 2.4 5.6
ContextNet (M) (Han et al., 2020) 31.4 2.4 5.4
ContextNet (L) (Han et al., 2020) 112.7 2.1 4.6

Conformer
Conformer (M) (Gulati et al., 2020) 30.7 2.3 5.0
Conformer (L) (Gulati et al., 2020) 118.8 2.1 4.3

Ours
Conf. (M, base) 79 2.21 4.85
Conf. (L, base) 122 2.11 4.29
A + Conf. (M) 79 2.15 (+2.7%) 4.82 (+0.6%)
A/V + Conf. (M) 79 2.10 (+4.8%) 4.72 (+2.7%)
A/V + Conf. (L) 122 1.98 (+7.0%) 4.10 (+4.4%)

message-based utterances. All customer-specific data has been de-identified from these
internal datasets. For these results, we use the same model architecture, however train on a
corpus consisting of 120K hours of labeled speech, and 180K hours of unsupervised speech
using in-house teacher distillation.

For our ASR model we use a model dimension of 512 with a feed-forward dimension of
1024. Our model consists of 24 self-attention/cross-attention blocks, and has a convolutional
downsampling on the input with a kernel size of 3 and a stride of 2. We use a standard joint
model similar to RNN-T (Graves et al., 2013) based joint model with a graph-based ASR
decoding framework. The optimization process is shared with AV-BERT, and described in
subsection 7.2.1, with the exception that we use a per-node batch size of 28.

7.3 Results & Discussion
Our main results are presented in Table 7.1. We report results on two models, a model

using AV-BERT trained with both the video and audio components of the Kinetics dataset,
as well as a model trained with only the audio from Kinetics. The Baseline model is
identical to the proposed model except all multi-modal cross-attention layers are replaced
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Reference: should i buy from the princess starfrost set royale high
Base (M): should i buy from the princess stare froset in we’re all rawhide
Ours (M): should i buy from the princess star frost set royale high

Reference: read all of lisa left eye lopes songs including the thirteen more
Base (M): read all of lisa **** *** loeb songs including the thirteen horn
Ours (M): read all of lisa left eye lopez songs including the thirteen more

Reference: ... signalman he lead tenor for telephone wires so soldiers ...
Base (M): ... signal map he’d late tenoff telephone wise ** soldiers ...
Ours (M): ... signalman he lead teno for telephone wires so soldiers...

Figure 7.3: Qualitative examples showing improvements on utterances in our model, vs the
baseline model. Blue indicates a deletion, pink indicates a substitution and yellow indicates
an insertion. The first example demonstrates an additional robustness to unfamiliar terms,
which our proposed model has additional exposure to through out of domain pre-training. In
the second example, a local noise event causes the baseline model to suffer, however our model
is able to compensate with it’s global-first representations. In the third example, global noise
is present in the sample, however our model with audio/video pre-training can compensate
for this global noise distribution due to its exposure to out of domain data.

with self-attention layers to preserve the parameter count, and the representational capacity.
The results show that both models — one trained on audio only and another with audio

+ video embeddings — outperform the baseline model. As has been previously shown, larger
models are able to outperform smaller models, with the large model achieving larger gains
over the smaller medium model. Training with audio-generated embeddings alone induces
a performance jump over the baseline. By allowing the model to generate context-level
embeddings on out of domain data, the audio-only models are able to gain pseudo-exposure
to a longer tail of possible noise scenarios. Surprisingly, the model achieves better relative
performance gains on the test-clean dataset, which should have much cleaner audio than the
test-other dataset. We hypothesize that this is caused by the relatively high variance in the
test-clean dataset. Improving the performance on a small number of samples in test-clean
can lead to higher percentage gains. Because the test-other dataset is larger, the effect is less
pronounced.

We further validate the method with experiments on internal Alexa AI datasets in Table 7.2.
We can see that while the method produces very large performance gains over baselines
with the smaller models, the effect in larger models is less pronounced. This demonstrates
the power of context-level embeddings to help with models that have less representation
power. By providing access to a self-supervised embedding, the model is able to compensate
for a large amount of the lost representational power of the network. In the larger models,
using contextual embeddings is less powerful, since the models both have access to a larger
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Table 7.2: Relative improvement over baseline WER for Alexa-AI datasets methods without
a language model. We can see that adding contextual embeddings can significantly improve
performance.

Method Base Rare Query Messages

Conformer (M) 0 0 0 0
+ Audio (M) +30.1% +17.9% +26.7% +20.1%
+ Audio/Video (M) +45.6% +31.2% +38.7% +17.2%

Conformer (L) 0 0 0 0
+ Audio/Video (L) +5.1% +5.4% +4.2% +5.9%

representation space and more data to train on. We still, however, see the benefit of adding
out of domain data, as we can see that the test set sees much better performance. In our
experiments, we found that the training accuracies remained unchanged in all of these models,
which suggests somewhat that the models are limited by the input data and model capacity,
rather than model architecture. Our audio/visual embeddings compensate for both of these
issues by training on large-scale out of domain data, and leveraging additional capacity from
the pre-training models.

In Table 7.2, we can see that the performance of the large model is most dramatic in
both the messages and rare words datasets. These datasets are dominated by complex terms,
and longer utterances which are unlikely to appear in the in-domain training data, the same
place where our model is expected to demonstrate the best performance. The gains in the
smaller model are less pronounced in both of these datasets. We believe that in the smaller
datasets, the models do not have sufficient internal complexity to leverage the embeddings to
their fullest extent, and while the embeddings do improve the performance, they are not able
to capture the subtle connections between the global context and the local speech phonemes
that models with more parameters are able to capture.

Table 7.3 demonstrates the relative performance of our large A/V model vs the baseline
model when evaluated on the Alexa AI base dataset. We can see here that the model primarily
reduces the word error rate by fixing insertions in deletions at the cost of substitutions. This
is intuitive: the model is able to account for additional noise in the dataset more effectively,
and thus can reduce deletions and insertions caused by noise, however the model is less
effective at handling issues caused by incorrect phoneme recognition, leading to substitutions.
In addition, we can see that the model performs better on areas where there are very few
samples, validating the hypothesis that the model improves performance on the long-tail of
the distribution of audio categories.
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Category NUM ∆WER (%) ∆SUB (%) ∆INS (%) ∆DEL (%)
System 4972 0 -12.12 -1.83 22.86
Global 3887 -0.25 -0.51 -20 10.14
Music 2809 6.58 5.65 9.26 7.32
Home Automation 2453 4.96 4.69 20.29 -12.07
Notifications 1244 1.33 5.22 -4.92 0
Knowledge 779 -0.93 -5.41 -8.33 11.07
Weather 408 0 8.51 8.51 -225
Calling And Messaging 182 -5.54 -6.35 0 -7.3
Video 104 20.48 20.74 39.79 0
Household Lists 86 11.25 0 32.08 100
App 86 -28.62 -41.4 0 11.11
Shopping 46 -10.53 22.25 0 -44.5
Original Content 41 22.3 28.4 0 0
Daily Briefing 34 0 -49.62 0 50.38
Books 28 16.84 0 0 100
Sports 25 33.4 37.35 0 0
Recipes 23 0 0 0 0
System Settings 19 16.67 25 0 0
User Profile 14 100 100 100 0
None 14 8.59 25.1 0 50.21
Translation 12 0 0 0 0
Gallery 10 -24.95 -33.58 0 0
Local Search 9 80.05 66.73 100 0
Game 8 100 100 100 0

Table 7.3: Table demonstrating the performance split across different domains in the Alexa
AI base dataset. Negative numbers represent worse performance by the A/V Conformer L
model over the baseline, while positive numbers represent performance gains. We notice
that in many cases, the largest gains come in the long tail of the categories, where fewer
utterances are available. In the more global categories, the performance remains similar, or
can improve if the model is more likely to encounter rare words, such as in the notifications
class, or the model encounters noise (such as is often the case in the music class).

7.4 Conclusion
While this model represents an initial step towards using multi-modal embeddings in

automated speech recognition, there is still a long way to go. In many ASR applications,
multi-modal inputs are available, which means that we have the capacity and ability to
leverage both modalities at test time. This would strengthen the connection between the
audio and visual data, and allow for more information to be leveraged during test-time for
disambiguation, further improving performance. While in some cases the visual data may be
present, it is not always the case that visual and auditory data are correlated. While in this
paper we rely on the law of large data to compensate for uncorrelated inputs, it is perfectly
reasonable to expect that even in the infinite data scenario, the portion of uncorrelated audio
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and video present in collected videos from YouTube is non-zero. Dealing with uncorrelated
semantic inputs remains important, and interesting, future work.

In addition to exploring uncorrelated inputs, it is also interesting to improve the contextual
embedding model. In this work, we use a simple vision + audio model inspired by videoBERT
and HuBERT, however recently models such as VATT (Akbari et al., 2021) expand the
context to include not only audio and video, but language as well. Further augmenting the
context is likely to exaggerate the performance gains, as the model is able to even more
efficiently represent the context of a scenario, and compensate for even longer tail elements
of the ASR distribution.

In conclusion, with this paper, we have introduced an initial approach for exploring
global-level contextual embeddings for the automated speech recognition pipeline. We build
a novel self-supervised vision + audio encoder, and demonstrate the performance of this
method by using deep-fusion to directly connect the contextual embeddings with the local-first
conformer model. Our model demonstrates strong performance on Librispeech, and presents
a new direction for exploration into multi-modal ASR.
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Chapter 8

Domain Adaptation with External
Off-Policy Acoustic Catalogs for Scalable
Contextual End-to-End Automated
Speech Recognition

One of the most challenging problems in automated speech recognition (ASR) is specializing
large-scale models, particularly speech encoders, for downstream applications that often (a)
have fewer labeled training examples, and (b) rapidly evolving distributions of speech data.
The traditional approach to this problem is to frequently collect fresh data, which can be
used to re-train and specialize models, leveraging tools such as domain-prompts (Dingliwa
et al., 2022), incremental-learning (Baby et al., 2022), knowledge distillation (Zhao et al.,
2022), or hand-written grammars (Gandhe et al., 2018) to reduce the impact of re-training
the model for the downstream application. Unfortunately, for data that changes on a rapid
basis, such as product listings or applications requiring per-customer specialization, such
methods, while effective, are either inherently slow or remain computationally infeasible.

In this chapter, we propose a method that leverages context from external text data
catalogs – large lists that can contain as much as 10 million specialized words or phrases
– to improve the performance of models during both the fine-tuning process, and when
specializing an already fine-tuned model to a new dataset. Here are the key highlights of
our approach: first, we generate a key-value external knowledge store that maps an audio
representation of each text element of the catalog (usually consisting of 1M-10M examples)
to a semantic representation of the text. Next, we train a model that leverages this external
store by attending over retrieved key/value pairs, which we retrieve through approximate
k-nearest neighbors. The external, constant, and off-policy key-value store can be updated
during specialization, requiring only an updated list of phrases for each new model instead of
additional fine-tuning.

Leveraging external text data to improve the performance of audio encoders in ASR
models has been studied for a long time. Perhaps the closest work to our proposed model
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Figure 8.1: An overview of our method leveraging text-to-speech mappings for contextual
ASR. Using data from a text catalog, we generate audio and text representations to generate
mappings from audio key to text value. To leverage these mappings for ASR, we implement
a K-Nearest Neighbors attention in the speech encoder during the fine-tuning (or training)
phase.

was presented by Chen et al. (2019), who used attention over a local set of LSTM-based
grapheme/phoneme embeddings to augment the audio encoder. They found that biasing the
encoder with only 40 contextual text entities per utterance leads to improvements of up to
75% on specialized test datasets. Similarly, Sathyendra et al. (2022) and Chang et al. (2021)
demonstrate WER reductions when small (<100) contexts are fused with an RNN-T in a
multi-head attention-based process. Our method differs in that it is designed primarily for
domain specialization, whereas existing biasing methods are focused on personalization. This
is shown foremost in the scale of the catalogs – while in prior work, each utterance may have
at most 100 utterances in their context, we leverage catalogs with up to 10M samples. Thus,
our approach is designed to compensate for general domain shift, rather than supplementing
ASR performance through limited personalization. Further, while current biasing approaches
focus on late-stage fusion, we use deep fusion in the model network, which we demonstrate
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Figure 8.2: Overview of K-NN fusion layer. For each audio frame embedding, we extract
approx KNNs using audio keys from our catalog, which form a context key/value store for a
standard cross-attention layer (Vaswani et al., 2017), where queries are incoming audio frame
embeddings.



79

(Table 8.2) is more effective. While biasing the speech encoder has been under-explored, many
works (Novotney et al., 2022; Shenoy et al., 2021; Zhao et al., 2019; Liu and Lane, 2017;
Jaech and Ostendorf, 2018; Kim and Metze, 2018; Lin et al., 2015; Williams et al., 2018;
Munkhdalai et al., 2022) have shown the importance of biasing the language model in the
ASR stack.

Outside of ASR, it has been shown that models augmented with external memory generated
from large-scale text data have the potential to outperform similarly sized models without
external knowledge. Borgeaud et al. (2022) recently demonstrated that leveraging external-
knowledge lookup for natural language models can lead to efficiency improvements of up to
25x, and Wu et al. (2022) showed that expanding the context of standard text transformers
through external cached key-value pairs can lead to significant perplexity improvements
on the standard language modeling task. General memory augmentations have also been
shown to be useful in translation (Khandelwal et al., 2021), RL (Goyal et al., 2022a), and
image generation (Tang et al., 2022). This domain adaptation approach can combined
with multi-modal learning (Chan et al., 2022a) and context-content factorization (Chan
and Ghosh, 2022a) for better audio representation learning; it can also be used for metric
learning (Mahadevan et al., 2018), continuous learning (Zhang et al., 2020a), or incremental
learning (Li et al., 2019a; Zhang et al., 2020b).

Inspired by Borgeaud et al. (2022) and Wu et al. (2022), we apply a context embedding
approach with a focus on ASR, leveraging TTS-generated audio data and semantic text
embeddings to bias the speech encoder of a conformer model. To the best of our knowl-
edge, using TTS to encode textual context has not been explored in prior work. Our key
contributions are three-fold. (1) We outline the first method (to our knowledge) to leverage
large-scale text data for contextual biasing of the speech encoder. (2) We show that our
approach combined with an approximate K-NN lookup yields improved WER on ASR models,
particularly when encoded catalogs match the target domain. (3) We show that our approach
provides accurate solutions under the constraint of quick reactions to distribution changes
(e.g., fast catalog updates for sporting events, changes in personal catalogs), without model
retraining.

8.1 Learning from External Catalog Contexts
An overview of our method is given in Figure 8.1. Our approach consists of two key

components: (1) A method for generating key-value mappings between the audible speech
and a text representation of the catalog, which we call an “external memory" and (2) An
attention-based module for fusing the “external memory" with the existing speech encoder.
The external memory must be capable of offline and off-policy updates to enable memory
alteration without incurring re-training costs.
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Figure 8.3: Overview of our text-catalog encoding process. For each catalog entry, we generate
TTS-based audio encoding that forms the “key" vector in the key-value pair. The value is
a semantic text-embedding of the entry. Key/value pairs are assembled into the external
memory, referenced in Figure 8.2.

8.1.1 Generating the External Memory

An overview of the external-memory generation process is shown in Figure 8.3. Our
approach generates the external memory consisting of audio-embedding key/text-embedding
value pairs from a text-only catalog. To generate the audio-embedding key, we use text-
to-speech (TTS) to generate waveform representations of the audio data, and then embed
these waveform representations using the pre-trained speech encoder model. To generate the
text-embedding values, we leverage off-the-shelf semantic text embedding methods, including
1-hot, GLoVE (Pennington et al., 2014) and BERT-style embedding (Devlin et al., 2019)
approaches.

TTS: We explore two TTS modules to generate audio for the audio-embeddings: the Amazon
Polly TTS service1, and an Alexa-AI Internal text to speech (TTS) library optimized for
synthetic ASR data, Multivoice-TTS (Vallés-Pérez et al., 2021). For both TTS methods we
use ten voices drawn from en-US and en-GB locales. Silence (0.1s) is inserted before and
after each utterance.

Audio Embedding: While audio embeddings for the external catalog could be constructed
in several ways, similar to Wu et al. (2022), we aim to make audio-embeddings as close to
on-policy self-attention embeddings as possible. Thus, we use the mean of the self-attention
representations of the baseline model (no fine-tuning) at an intermediate layer, as audio
embeddings. In this work, we always assume the existence of a suitable seed model from which
the catalog audio embeddings, ai, can be generated, and they are generated offline prior to

1https://aws.amazon.com/polly/
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training the model described in subsection 8.1.2. While training the model and catalog jointly
would eliminate off-policy speech embeddings, such a method presents technical challenges.

Text Embedding: We explore several methods of generating the text embeddings (the
“value" in the catalog K-V pairs). Initially, for small catalogs, we explored learned one-hot
embeddings, however, while one-hot embeddings can lead to better performance (Table 8.1),
they are not scalable – as they cannot be computed offline (and thus, cannot be inserted
during test time). To generate scalable text embeddings, we explore two semantic text-
embedding approaches: GLoVE embeddings (Pennington et al., 2014), which are built using
word co-occurrence probabilities, and BERT-style embeddings (Devlin et al., 2019), which are
learned from large statistical models. GLoVE embeddings are 300 dimensional, and computed
using the publicly available vectors, and our BERT-style embeddings are computed using the
all-MiniLM-L6-v2 model in the sentence-transformers package (Thakur et al., 2021).

8.1.2 External Memory Fusion

An overview of the external memory fusion process is given in Figure 8.2. The speech
encoder in our proposed work is based on the Conformer encoder (Gulati et al., 2020),
augmented with additional K-Nearest-Neighbor (KNN) fusion layers. In each KNN fusion
layer, for each audio frame embedding ai of the utterance A, we query the external memory
E = (ki, vi), 1 ≤ i ≤ |E| for a set of m nearest neighbors:

Nai = argmin
N⊂E,|N |=m

∑
(kj ,vj)∈N

||kj − ai||22 (8.1)

We then construct the context for the layer as C = ∪ai∈ANai . From C we can construct two
matrices, Kc ∈ Rm|A|,dkey and Vc ∈ Rm|A|,dvalue , consisting of the keys and values respectively.
The output of our K-NN fusion layer is then:

F (A,E) = A+ LN
(

ReLU
(

softmax
(
(AWq)K

′
c√

d

)
(VcWv)

))
(8.2)

where LN is LayerNorm. Unfortunately, because we are working with large catalogs, the
computation of Equation 8.1 can be very expensive. Thus, instead of computing the exact
nearest neighbors, we rely on approximate nearest neighbors, which can be computed much
more efficiently. To efficiently extract approximate nearest neighbors from our large-scale
catalogs, we leverage the FAISS (Johnson et al., 2019) library to generate Optimized Product-
Quantization-transformed keys (64 dimensions) (Ge et al., 2013), which are searched using
a Hierarchial Naviagable Small Worlds (HNSW) index with 2048 centroids encoded with
product-quantized fast-scan (Malkov and Yashunin, 2018). Such an approach leads to only
a 15% increase in forward-pass latency, even when running with catalogs with over 7M
key/value pairs.
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8.1.3 Experimental Design

Catalog Data Sources: In our work we explore several different catalog data sources. For
Librispeech, we build a simulated catalog using the 2500 rarest tokens present in either the
training or test datasets. Our internal Alexa catalog focuses on assistant queries in a media
domain, and consists of 15K movie titles. In both cases, we build a unique catalog for training
and testing, allowing us to explore how well the model performs under distribution shift of
the catalog at test time.

ASR Base Model: Although in practice our method could be applied to many different
speech encoders, we use the Conformer encoder (Gulati et al., 2020). For the decoder, we use
a 1-layer LSTM decoder with 320 hidden dimensions. While we explore several encoder sizes,
we primarily follow Gulati et al. (2020) for Librispeech and use a 16-layer encoder with a
hidden dimension of 144 (10.3M Params). For Alexa data, we use a conformer model with
208.37M parameters.

8.2 Results & Discussion
Librispeech: Our key results are shown for Librispeech in Table 8.1 for several choices of
TTS, Text Embeddings, and NNs/Frame (K). We can see that overall, augmenting models
with additional data leads to stronger performance than models without external data. For
Librispeech, when training with the train catalog and testing with the test catalog, we get
strong transfer performance, exceeding that of when we use the training catalog for both
training and testing, suggesting additional zero-shot specialization. While 1-hot vectors
outperform BERT vectors, we must train these vectors for each catalog, leading to an inability
to do test-time specialization. BERT outperforms GLoVE in all cases (with GLoVE causing
regressions on test-time specialization). Figure 8.4 demonstrates that our method can capture
and apply domain data from the catalogs. In this experiment, the model is trained with
a catalog containing 300K training-set unique bigrams, and we show the performance of
this model using ten test catalogs, each consisting of 30K bigrams, taken either from the
test set or dev set. As the fraction of bigrams in the test data that are available in the test
catalog increases, the performance of the model improves – showing our approach can use
the information in test catalogs effectively in a zero-shot learning setup.

We also run several ablations with Multivoice-TTS, BERT Embeddings and 8 NNs/Frame.
Table 8.2 explores the performance of our approach when placing the external knowledge
augmentation at different layers of the network. While using external knowledge in all layers
is the most effective approach, we find that such an approach is latency-prohibitive, as it
increases the latency of a forward pass of the model by ≈85%. Using a single layer increases
latency by only ≈15%, while two layers increase latency by ≈23%. Table 8.3 explores the
performance of the method on Librispeech for differing model sizes. As the number of
parameters increases, the gains provided by external memory decrease.
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Table 8.1: Word Error Rate on Librispeech data with a small (10.3M param) model. MV-TTS
refers to Multivoice-TTS.

Catalog TTS Text K test-clean test-other

Baseline 5.77 13.34

Train Polly 1-Hot 4 5.75 (0.34%) 13.30 (0.29%)

Polly 1-Hot 8 5.72 (0.86%) 13.19 (1.10%)

Polly 1-Hot 16 5.71 (1.03%) 13.15 (1.42%)

Polly BERT 8 5.74 (0.52%) 13.26 (0.60%)

MV-TTS 1-Hot 8 5.52 (4.33%) 12.96 (2.84%)

MV-TTS BERT 8 5.68 (1.63%) 13.05 (2.18%)

Test Polly GLoVE 8 6.33 (-8.84%) 14.56 (-9.15%)

Polly BERT 8 5.71 (1.03%) 13.24 (0.75%)

MV-TTS GLoVE 8 6.15 (-6.17%) 14.32 (-6.84%)

MV-TTS BERT 8 5.34 (8.05%) 12.84 (3.86%)

Table 8.2: Librispeech test-set Relative WER improvement for models augmented with
catalog data in different layers.

Dataset 1 3 12 16 3,12 all

clean 1.02% 3.65% 6.65% 2.63% 7.79% 8.05%
other 0.71% 2.88% 2.97% 1.08% 3.41% 3.86%

Table 8.3: Librispeech test-set Relative WER improvement over baseline fine-tuning using
differing model sizes (M: Millions of params).

Dataset 5M 10M 50M 100M 300M

clean 28.9% 8.05% 4.28% 1.66% 0.08%
other 19.3% 3.86% 2.65% -0.07% 0.01%
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Figure 8.4: Librispeech test-clean WER vs. test catalog/data overlap.
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Alexa: To further validate our method, we additionally explore a real-world simulation of
our model’s ability to generalize to test data. We started with a seed model B, and trained
two derived models: BFT, fine-tuned on both the TTS Catalog for Alexa (C, section 8.1) and
an additional 120K hours of de-identified Alexa data, D, and Bcat, which trains the proposed
method on D, with catalog C. In both cases, the full model (the speech encoder, and if
applicable, the fusion model) are fine-tuned. The results (Table 8.4, rows 1/2) demonstrate
that even with significantly fewer GPU hours, our approach achieves similar WER. We then
transfer both models to the test dataset (consisting of real speech) without additional tuning.
We see in Table 8.4 (rows 3/4) that our trained model achieves better performance, suggesting
that the model has learned to generalize better than the model trained with fine-tuning alone.

Finally, we update our fine-tuned and catalog models to include the test data, T . Test data
is incorporated into the fine-tuned model through GPU-based training, while the test data is
incorporated into the catalog model through catalog generation/concatenation. Table 8.4
(rows 5/6) demonstrates that even with no additional GPU training our approach (Bcat+T )
achieves similar performance to fine-tuning (BFT+T ).

8.3 Conclusion
This chapter introduces the first approach for large-scale contextualization of speech-

encoder representations using text-only catalog data. We strongly believe that our method
represents a promising step forward for ensuring the recognition of rare words and efficient
transfer novel test-time distributions. While this chapter is a first step towards contextualized
speech encoders, many directions for future work remain including investigating embeddings
for the catalogs (such as grapheme/phoneme embeddings), exploring other languages and
word pronunciations, and understanding the performance in larger-scale rapidly changing
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Table 8.4: Performance on Alexa data. T-C: Time for Catalog Generation. T-FT: Time for
fine-tuning. WER-I: Relative word-error rate improvement. Multivoice-TTS, BERT, and 8
NNs/Frame.

Model/Test Data T-C (min) T-FT (GPU-Hours) rel. WER-I

BFT/Test-TTS 0 2048 7.1%
Bcat/Test-TTS 33 1600 6.8%

BFT/Alexa Test - - 0.52%
Bcat/Alexa Test - - 4.12%

BFT+T/Alexa Test 0 1024 19.66%
Bcat+T/Alexa Test 28 0 21.27%

real-world distributions.
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Chapter 9

Task Oriented Dialogue as a Catalyst for
Self-Supervised Automatic Speech
Recognition

When users interact with assistant systems in task oriented ways, they build rich con-
versational contexts, which contain information that may be relevant to future requests
along with feedback on the performance of the system. When users are dissatisfied, they
express that intent in many ways, from direct corrections of the system response, to repeating
and rephrasing the original question (Kwan et al., 2023). This discourse provides a source
of contextual user interaction signals that are relatively untapped in Automatic Speech
Recognition (ASR).

Indeed, traditional systems for ASR have primarily focused on single-utterances (Radford
et al., 2023; Baevski et al., 2020; Hsu et al., 2021; Chan et al., 2022b, 2023a; Mitra et al.,
2023), which, although flexible, overlook the wealth of contextual cues available in task
directed dialogues. While work has been done in natural language understanding (NLU) to
exploit these cues (Min et al., 2021), their potential in ASR has remained largely unexplored,
primarily due to the limited availability of task-driven dialogue datasets in the audio domain
(Chang et al., 2023; Si et al., 2023). Current efforts to integrate context from non-dialogue
sources into ASR often involve training models explicitly with external per-turn contextual
inputs, often leveraging context attention mechanisms (Chang et al., 2023; Kim and Metze,
2018; Chan et al., 2023a; Chang et al., 2021; Chen et al., 2019; Sathyendra et al., 2022; Wei
et al., 2021; Yang et al., 2023; Chan et al., 2023b; Mahadevan et al., 2019). While per-turn
context is important for the ASR task, these methods do not draw from dialogue structures,
nor do they account for interactive feedback present in labeled dialogues.

Instead of directly training on per-sample or per-turn context (e.g., contact names (Chen
et al., 2019; Sathyendra et al., 2022), or external dictionaries (Chan et al., 2023a)), we
explore the potential of learning implicit contextual signals of user interactions, which remains
relatively untapped in ASR-based dialog systems. Following work demonstrating the benefits
of contrastive learning in ASR (Chan and Ghosh, 2022b), closest to our work may be Chang
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Alexa What time does the grocery store open?

Do they sell apples?

It looks like it opens at 11 AM

No, do they sell apples?

No, they do not sell cattle.

Yes! They sell apples.

User

Assistant

Assistant

Assistant

User

User

Repeat/Rephrase of 
Previous Intent

Incorrect
Response

Utterance contains
semantically 

linked keywords

Figure 9.1: Task oriented dialogues can contain a multitude of relevant information for
performing automated speech recognition. In this work, we explore how we can learn from
both semantically linked keywords within dialogues, and failed dialogue turns.

et al. (Chang et al., 2023) who propose reducing ASR errors with contrastive learning between
noisy and clean audio transcripts from task-oriented dialogues – however, their work focuses
only on single turns of dialogues, not contextual dialogue cues. Our primary contributions
are:

• We propose a new family of self-supervised fine-tuning losses, CLC, which incorporate
self-supervised information from task oriented dialogues (TODs), and show that learning
from TODs, even those with errors, provides benefits over fine-tuning.

• We introduce a new semi-synthetic benchmark meta-dataset, the Open Directed
Dialogue Dataset (OD3), designed to enable further research in conversational in-
teractions for ASR.
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9.1 Contrastive Learning for Conversations
In this chapter, we introduce two novel auxiliary losses, termed “Contrastive Learning for

Conversations” (CLC), designed to enable learning from both successful and unsuccessful
task-directed conversations with assistants (section 9.1), as well as a new synthetic dataset for
the evaluation of contextual automated speech recognition models in task directed domains
(subsection 9.1.1).

Learning from Past and Future Dialogues: As shown in Figure 9.1, utterances in a
dialogue can contain important contextual hints useful for recognizing low-frequency words
in the sentence. While we may not have access to past or future utterances at inference, we
can often learn from these hints during training. The first auxiliary loss we introduce follows
this key motivation; auditory information within a dialogue should share more semantic and
representational overlap than auditory information from a second, unrelated dialogue.

This insight induces a natural contrastive loss: the speech encoder representations of audio
within a session should be closer in the latent space (on average) than the representations
between sessions. To implement a “Past-Future" contrastive loss, we consider the utterances
u1, . . . , uN in a dialogue. Let the speech encoder be defined as ei = ϵ(ui) ∈ RT×k, where k
is the dimension of the speech encoder embedding, and T is the number of frames of audio
in the dialogue. We further introduce three “head" encoders, ξpast(ei) ∈ Rd, ξcurrent(ei) ∈
Rd, ξfuture(ei) ∈ Rd, which embed the sequential embeddings from the encoder ϵ of the current,
past, and future frames into single vectors (of dimension d) representing the current, past,
and future contexts. These head encoders take the form of global pooling followed by two
layers of a shallow MLP with ReLU activations, LayerNorm, and Dropout. We can then
compute the following contrastive loss terms (similar to (Khosla et al., 2020)) for a batch of
1 ≤ i, j ≤ N samples (where embeddings are L2-normalized):

Li,j
future = − log

[
exp(ξcurrent(ei) · ξfuture(ej)/τ)∑N
k=1 exp(ξcurrent(ei) · ξfuture(ek)/τ)

]

Li,j
past = − log

[
exp(ξcurrent(ei) · ξpast(ej)/τ)∑N
k=1 exp(ξcurrent(ei) · ξpast(ek)/τ)

]
The “Past-Future” auxiliary loss is then a weighted sum:

Lpf =
1

N

[
α

N∑
i=1

Li,i
future + β

N∑
i=1

Li,i
past

]
(9.1)

Here, we choose cosine distance (the dot-product) as the similarity function. The result
of the loss function is that we aim to maximize the mutual information between the encoding
of the current, future and past frames within a dialogue, while minimizing the mutual
information between the current frames and frames from other dialogues. Note here that
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No, do they sell apples?Do they sell apples? No, they do not sell cattle.
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Figure 9.2: Overview of CLC approaches. The Past-Future loss maximizes agreement between
current, past, and future embeddings. The N-best loss minimizes agreement between current
embeddings and top predictions of rephrases, while maximizing agreement otherwise.
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it’s important that ei ̸= ej, that is, the embedding of the past should not be identical to the
embedding of the future (as they have different ASR content). Instead, we encourage high
mutual information between the different segments, by leveraging contrastive learning on
projection heads stemming from the shared representation. α and β are hyper-parameters
which control the strength of the binding in the loss function, and τ is a temperature parameter.
In our experiments, we found through grid hyper-parameter search of α, β ∈ [0.0001, 100]
(logarithmic sweep) and τ ∈ [0.1, 1] (linear sweep) that α = 1.0, β = 0.7, τ = 0.1 is the most
effective.

Learning from Failures: We can extract valuable semantic information from conversa-
tions, even those that don’t proceed smoothly. It is often possible to detect dialogues where
unsuccessful ASR has triggered repeats and rephrases of previous content by understanding
when subsequent user turns have high semantic overlap, or tracking NLU failures in down-
stream systems. In these cases, we can further leverage contrastive learning to improve the
performance of the model. Ideally, when there is a repeat or rephrase in a dialogue, we want
to reduce the mutual information between the conformer encoder embedding of the initial
turn triggering the repeat or rephrase, and the answer produced by the model in that dialogue.
While we could use reinforcement learning to optimize for this signal (and it is interesting
future work to do so), we often train models offline, and as the model trains, its decisions
deviate from the original policy, leading to a breakdown in the learning process. Instead, as
we know the “bad" solution, we can use supervised contrastive learning (Khosla et al., 2020)
to improve the model. When there is no rephrase, we want to increase the mutual information
between the semantics of the top-1 prediction of the model and the current frames. When
there is a rephrase, we want to decrease the mutual information between the semantics of the
top-1 prediction, and instead encourage the model to produce a different output from the
top-k. While it is possible that worse hypotheses with high similarity exist in the hypothesis
set (leading to incorrect labels), we observe empirically that our models have high oracle
WER, allowing this method to achieve a weak approximation to oracle re-ranking of the
candidate set, which improves overall performance when smoothed over a large training set.

An overview of our n-best approach is given in Figure 9.2. For each sample ui, let
ϕ1(ui) . . . ϕK(ui) be the semantic embeddings of the top-k predictions of the i’th utterance
(using beam-search decoding) and ξcurrent(ei) be an embedding of ei for ui. Using a similar
set of heads to the network above, we compute positive and negative losses:

Li
pos = −log

[
exp(ξcurrent(ei) · ϕ1(ui)/τ)∑K
k=1 exp(ξcurrent(ei) · ϕk(uj)/τ)

]

Li
neg = −log

[
maxj ̸=i [exp(ξcurrent(ei) · ϕj(ui)/τ)]∑K

k=1 exp(ξcurrent(ei) · ϕk(ui)/τ)

]
Let R be the set of utterances which trigger a repeat/rephrase, and S be the set of utterances
which are considered successful. We can then combine the positive and negative losses as
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follows:

Lnbest =
γ

|R|
∑
i∈R

Li
neg +

κ

|S|
∑
i∈S

Li
posz (9.2)

where γ and κ are hyper-parameters controlling the trade-off between negative and positive
reinforcement. Discovering the sets S and R can be challenging, however, we can detect
repeats and rephrases with relatively high accuracy using semantic vector matching (such
as matching BERT embeddings). Using grid search with γ, κ ∈ [0.0001, 100] (logarithmic
sweep), we found γ = 0.1, κ = 1.0 was most effective.

9.1.1 Data

While a predominant portion of interactions with assistant systems revolves around
task-directed dialogues, the availability of datasets (Table 9.4) encompassing task-directed
audio interactions remains quite limited. Moreover, even within datasets that do incorporate
such interactions, a conscious effort has been exerted to remove flawed turns (turns in
which a dialogue assistant responds incorrectly, and must be corrected by the user). To
evaluate our CLC methods for self-supervised fine-tuning, we use two datasets: a private
collection of de-identified real-world conversations with a conversational assistant, and a
new semi-synthetic meta-dataset, OD3, replicating flawed conversations often seen in real-
world assistant interactions. The OD3 dataset is released as part of this work under the
CC-BY-NC-SA (4.0) license.

9.1.1.1 Real-World (Alexa) Data

To demonstrate the performance of our method, we train and evaluate our models on 130K
hours of de-identified agent-centric task-directed dialogues constructed from independent
interactions with Amazon Alexa. These dialogues have a maximum of five utterances each
(with an average of 1.2 turns per goal). Dialogues are constructed around a seed utterance
by collecting interactions within ρ = 90 seconds on each size of the utterance. This process is
repeated recursively until there are no more interactions. In the case that there are more than
five utterances, we halve ρ, and repeat the process. This continues until either we have less
than 5 utterances in the final set or we hit a minimum time gap of 15 seconds. During testing,
only the past and current context is available to the model (the future remains hidden).

9.1.1.2 OD3: A new dataset for conversational learning

In addition to the results on real-world interactions in this chapter, we further introduce a
new semi-synthetic meta-dataset, OD3 (Open Directed Dialogue Dataset), which is designed
to allow the community to explore further research into leveraging flawed conversational
interactions to improve model performance. OD3 is a collection of 63K conversations (600K
turns, 1,172 hours of audio) drawn from existing natural language task-oriented dialog datasets,
and augmented with synthetic audio. OD3 is further augmented with turns containing repeats
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and rephrases of previous failed utterances. We compare our dataset with some others in the
field in Table 9.1.

Constructing OD3: To construct OD3, we start with several seed datasets of natural
language task oriented dialog data: KVRET (Eric et al., 2017), Multi-Woz (Budzianowski
et al., 2018), DSTC11 (Track 5) (Zhao et al., 2023), NOESIS-II (Gunasekara et al., 2020)
and SIMMC-2.1 (Kottur et al., 2021). Here we focus on multi-turn dialogue, (as opposed to
single-turn datasets such as those for question-answering like NMSQA (Lin et al., 2022)),
as they contain the most relevant contextual information. This gives us a pool of ≈ 63K
unique dialogues (≈ 597K turns) containing no explicitly labeled errors or flaws. Because
these datasets are not augmented with audio for each of the conversational turns, we leverage
the NeMo Text Normalizer (Kuchaiev et al., 2019) and the YourTTS method (Casanova
et al., 2022) (voice cloning) to generate audio for each of the conversations. In all of the
conversations, we hold the voice for the agent constant, and each voice used in voice cloning
is randomly selected from the English subset of Common Voice (Ardila et al., 2020) (which is
CC0 licensed). We found that in some cases, the TTS induces errors in the generated speech,
which we found correlated with a high number of deletions in the resulting ASR models. To
clean the dataset, we filter out ≈4K utterances inducing a significant number of deletions in
both our tested and third party ASR models. While we run our experiments in this chapter
on the clean data, we additionally release the noisy versions of the data as they could be
useful for investigation into alternate directions of research.

We synthetically introduce errors and noisy conversations into the data. For that, we
first compute ASR for each dialog turn using OpenAI’s Whisper Large (v2) model (Radford
et al., 2023). We consider conversational turns with WER higher than 15% candidates for
the injection of either a repeat, or a rephrase of the intent. We then insert repeats and
rephrases into 20% of the possible candidate conversations. To insert a repeat, we introduce
two conversational turns: a response for the agent which is a non-specific error response
(such as “I’m sorry, I don’t understand"), and a repeat of the phrase which triggered the ASR
errors (re-sampled from the original TTS model). Inserting a rephrase, on the other hand,
is much more complicated. Similar to the case of repeats, we first introduce a non-specific
agent error message. We then generate a rephrase of the original triggering utterance using
in-context learning with the MPT-30B language model (Team, 2023), combined with the
prompt: Our automated speech recognition model found "<input string>" hard to
parse, so we rephrased it to use easier to understand words as "...

We found that this prompt generated reasonable rephrases of the candidate sentences.
For example, “Are there noisy neighbors?" was rephrased as “Is the place quiet enough?".
This gives us a total of ≈ 625K turns of dialogue in ≈ 62K sessions, and 1,172 hours of audio.

9.1.2 Models

For the speech encoder ϵ, we use a conformer architecture (Gulati et al., 2020), with 17
layers, latent dimension of 1024, and two stride-two convolutional sub-sampling layers (≈
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Table 9.1: Statistics for OD3. OD3 is much larger than existing TOD datasets, while including
both audio and noisy conversations.

Dataset Dialogues Turns Audio Errors

DSTC-2 (Henderson et al., 2014) 1,612 23,354 ✓
KVRET (Eric et al., 2017) 2,425 12,732
MultiWOZ (Budzianowski et al., 2018) 8,438 115,424
DSTC-10 (Kim et al., 2021) 107 2,292
SpokenWOZ (Si et al., 2023) 5,700 203,074 ✓
OD3 (Ours) 62,974 623,145 ✓ ✓

200M parameters). We use a 1-layer LSTM decoder with latent dimension of 320, and a 4K
token vocabulary. The encoder/decoder are initialized with a model pre-trained on 120K
hours of de-identified Alexa seed data. During training, we apply both kernel regularization
and bias regularization with weight 1e−6, and dropout with weight 1.0. We optimize the
overall loss:

Loverall = Lasr + λLpf + δLnbest (9.3)

The models are trained for at most 120 epochs with the Adam optimizer, following a linear
increase, hold, exponential decay learning rate schedule starting at 1e−8, increasing linearly
over 50K steps to hold at 4e−5 for 250K steps, and then decay back to 1e−6 over a further
300K steps. We use gradient clipping with limit 0.3, and a dynamic batch size (depending on
input feature length) ranging between 128 and 1024. As contrastive learning cannot naively
be scaled across GPUs, we leverage techniques similar to BASIC (Pham et al., 2023) and
perform memory efficient contrastive mini-batching.

9.2 Results & Discussion
We first demonstrate the performance of our method on the Alexa session data. From the

results in Table 9.2, we can see that all three settings of CLC improve the overall WER/SER
of the model, particularly over zero-shot models. We notice that setting λ = 1 is the most
effective at reducing overall WER, as in most situations, contextual information from previous
(and future) turns can provide more powerful hints to the content of an utterance. While δ is
helpful as well, it is less important to overall WER.

Table 9.3 shows the performance of CLC across different values of α and β for Lpf . We can
see that taking into account both past and future information is important. Unsurprisingly,
past information is a more powerful indicator of the current ASR context; however it’s
important to note that pre-training with the information from the future allows the model
to improve the predictive ability of the audio representations, leading to improvements
(particularly in SER). Table 9.3 also shows the performance for values of γ and κ in the Lnbest

loss. We can see here that placing too much weight on the γ term leads to a destabilization of
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Table 9.2: Results on Alexa data, both overall and only on turns inducing repeats or
rephrases. WERR (↑): Percent relative WER Improvement. SERR (↑): Percent relative SER
improvement.

Model Overall Repeats/Rephrase
WERR SERR WERR SERR

Zero-Shot (No Fine Tuning) -23.02% -17.46% -4.65% -5.75%
Baseline (Fine Tuned) - - - -

CLC (λ = 1, δ = 0) 2.75% 2.88% 3.0% 3.39%
CLC (λ = 0, δ = 1) 2.60% 2.39% 3.75% 3.87%
CLC (λ = 1, δ = 1) 4.31% 3.88% 5.07% 5.31%

Table 9.3: Results on Alexa data for different values of α and β (τ = 0.1) in Lpf , as well as
γ and κ in Lnbest for small scale (batch size 128) experiments. WERR (↑): Relative WER
Improvement. SERR (↑): Relative SER improvement.

Model WERR SERR

Baseline (CLC, λ = 0, δ = 0) - -

CLC (α = 1, β = 0,γ = 0, κ = 0) 3.28% 2.26%
CLC (α = 0, β = 1,γ = 0, κ = 0) 2.74% 3.68%
CLC (α = 1, β = 1,γ = 0, κ = 0) 4.50% 5.34%
CLC (α = 1, β = 0.7,γ = 0, κ = 0) 5.17% 4.67%

CLC (α = 0, β = 0,γ = 1, κ = 0) -11.81% -10.43%
CLC (α = 0, β = 0,γ = 1, κ = 1) -1.88% -2.21%
CLC α = 0, β = 0,γ = 0, κ = 1) 6.23% 5.59%
CLC (α = 0, β = 0,γ = 0.1, κ = 1.0) 6.77% 6.25%
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Table 9.4: Results on the OD3 dataset (overall and repeat/rephrase inducing). WER (↓):
Word Error Rate, BERT-S (↑): Bert Score.

Model Overall Repeat/Rephrases
WER BERT-S WER BERT-S

Baseline (206M) 11.13 0.9762 16.17 0.9690

CLC (λ = 1, δ = 0) 9.57 0.9801 14.12 0.9702
CLC (λ = 0, δ = 1) 9.38 0.9803 13.94 0.9721
CLC (λ = 1, δ = 1) 8.99 0.9812 13.81 0.9737

Table 9.5: Zero-shot results on OD3 for several open-source models. Models in this table are
not directly comparable (trained on differing data, setups, hyperparameters, optimizers etc.),
but serve as a benchmark for performance on OD3 under several varying setups. WER (↓):
Word Error Rate, BERT-S (↑): Bert Score.

Model Overall Repeat/Rephrases
WER BERT-S WER BERT-S

CLC best model 8.99 0.9812 13.81 0.9737
Whisper S (200M) (Radford et al., 2023) 11.24 0.9775 14.17 0.9727
Whisper L (1.3B) (Radford et al., 2023) 8.51 0.9852 12.37 0.9792
Conformer (100M, Librispeech) (Gulati et al., 2020) 19.26 0.9612 22.19 0.9571
Wav2Vec 2 (433M, Librispeech) (Baevski et al., 2020) 19.41 0.9582 22.03 0.9544
Streaming Conformer (45M) (Tsunoo et al., 2021) 14.38 0.9701 16.70 0.9665

the loss, however small magnitude γ values can help with overall performance. We believe that
this destabilization is caused by the high variance of the maxj ̸=i [exp(ξcurrent(ei) · ϕj(ui)/τ)]
term, and it is future work to explore how functional implementations such as a soft-max
could reduce the gradient variance stemming from this loss term.

Table 9.2 also shows the performance of our method when restricted to only defective
utterances: utterances triggering repeats and rephrases in the dataset. We can see that
setting δ = 1 is helpful, since the additional losses nudge the model away from high-confidence
decisions in detected repeats/rephrases and makes an impact on the model’s ability to
correctly recognize challenging samples. Note that WERR/SERR gains are statistically
significant over the large-scale test set (≈ 1K hours of test audio).

On OD3, our approach produces even more defined results, demonstrated in Table 9.4,
where our model produces a 19.22% improvement over baselines, clearly showing how learning
from additional contextual clues can benefit ASR models. Interestingly, despite a high word
error rate, the semantic similarity, as indicated by the BERTScore (Zhang et al., 2020e)
remains high — this suggests that ASR errors, while numerous, do not significantly impact the
semantic meaning. Several major questions remain unanswered for future work, for example,
it remains an open question how the approaches scale with model parameters, as well as
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understanding to what extent different mixes of pre-training data alter the performance of
the model.

Even for models with strong language models, large vocabularies, and training data
focused on open-domain conversational language, Table 9.5 shows that OD3 is challenging.
Models demonstrated increased insertions and substitutions, as there are a large number of
challenging low-frequency words that must be recognized accurately. It’s interesting to see
that the streaming conformer (Tsunoo et al., 2021) (trained on Gigaspeech) outperforms some
of the larger models. This is likely due to the training data mix: training smaller models on
more robust datasets is more effective than training larger models on sparse or biased data.

9.3 Conclusion
This chapter introduces CLC, a self-supervised fine-tuning approach for enhancing contex-

tual automated speech recognition (ASR) in task-oriented dialog systems. We also introduced
OD3, the largest-ever dataset for task-oriented automated speech recognition. By leverag-
ing both successful and unsuccessful conversational interactions, our method enhances the
underlying ASR model’s ability to handle challenging and contextually rich utterances. In
real-world data, we demonstrate as much as 6.77% improvement over baselines. Further, for
OD3 we show up to a 19.22% improvement over baselines. We hope that our approaches and
datasets will help address ASR challenges within intricate and error-prone dialog settings,
elevating user experiences and enabling more effective interactions between humans and AI
agents.
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Chapter 10

Discussion

In this section, we looked at how context (both external and intrinsic) can be used to
enhance the capabilities of CNLG models. chapter 6 demonstrated that understanding the
users themselves, and how to combine users can lead to strong models for visual description.
chapter 7 showed that we can use video context during training to improve ASR performance
(even if that video isn’t present at test time). chapter 8 showed that not only can we use
video, but we can use text as well. chapter 9 showed that there is an implicit signal that we
can extract from conversations.

In general, while this section demonstrated that context, both internal and external can
be useful in improving model performance, there is still significant work to be done in the
areas of integrating contextual signals with CNLG models. Several key areas stand out to
me:

1. Grounded Context Models: Currently, the models that we have introduced take the
context as input, but they are not able to directly ground the output to the sources of
context. I.e. models are incapable of directly citing their sources beyond a prompt-based
request to do so. Developing methods such as Grad-cam (Selvaraju et al., 2017), which
can directly visualize how tokens in the output are related to tokens in the context may
help build more explainable models, and models that are more trustworthy to users.

2. Increasing the size, and scope, of contexts: In this work, we explored contexts
of several sizes, ranging from only a single video source to hundreds of thousands of
catalogue entries. I believe that one of the most interesting directions for future work
is how we build retrieval-augmented models to build the contexts that they operate on.
Some questions include How do we build models that are query aware, and efficient,
while retrieving the relevant context with high recall? and How do we encode context in
such a way that is token efficient? (to avoid constraints with model context length).
Further, recent work has shown that not all context tokens are created equal: Liu et al.
(2023), Li et al. (2023a) and Sun et al. (2021) have all shown that not every token is
considered equally by an LLM, and it remains an open question to understand what
causes these attentional blindnesses and to correct for them in model performance.
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3. Multi-source context models: In the work so far, we have focused on including only
a single source of context at any time. In practice, however, it would make sense to
combine all of these sources of context to build models that are capable of contextual
learning from multiple different sources, and multiple different inputs. It remains to be
seen how such a model would work – are the contexts multiplicative? Do they include
redundant information? Such questions require significant additional research to fully
understand.

4. How much does context learning help in the absence of context? Context is
not always available to a model. Perhaps it is because the context was never collected
by the UI, or perhaps it is because the model doesn’t have all sources of information
available at every time. It remains a very interesting question to understand how our
context models function in the absence of context. In chapter 7, we showed that by
pre-training with context, even in the absence of context during test time, we saw
increased performance. Such performance also held in the experiments in chapter 9,
suggesting that learning with context seems to help models, even when that context isn’t
present. Why is this the case? And what can we do to leverage this effect efficiently?
Some initial exploration is provided in our work on hallucination (Jhamb et al., 2022),
but this question remains open, and of great interest.

This section only provides a glimpse of what is possible for contextually aware models
for conditional natural language generation. In chapter 14, we discuss even more visions for
contextually aware models, as I strongly believe the potential is endless, and we have only
begun to scratch the surface of the problem.
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Part III

Evaluating
I often say that when you can measure what you are speaking about, and express it
in numbers, you know something about it; but when you cannot measure it when you
cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind;
it may be the beginning of knowledge, but you have scarcely, in your thoughts,
advanced to the stage of science, whatever the matter may be.

William Thomson (Lord Kelvin)

Evaluating models for conditional natural language generation (CNLG) is not only crucial
for measuring their performance and utility to downstream users, but also for understanding
their limitations, biases, and ethical implications of their deployment in real-world applications.
Usually, when we evaluate our CNLG models, we make use of (1) A large dataset of human-
annotated context/response samples and (2) a natural language distance that determines the
distance between the model-generated output and the reference responses for that context.
But as we have discussed in earlier sections, in many cases CNLG is not a classification
problem: i.e. there are many possible valid outputs, with the particular outputs in the
reference set largely depending on the human who generated that reference, and the context
in which the references were collected. Unfortunately, traditional automated metrics for
evaluating conditional natural language generation rely on pairwise comparisons between a
single generated text and the best-matching gold-standard reference. This method is effective
when ground truth data diversity can be attributed to noise, however, it falls short when
diversity in references holds valuable contextual information, as in visual description or
summarization, as it does not evaluate the ability of a model to generate text matching
the diversity of the ground truth samples. Thus, we have to ask the question: how can we
evaluate conditional NLG models when our datasets have only a small sample of the possible
outputs (sometimes even just one human reference)? In this section of the dissertation, we
investigate two novel methods for evaluation in such scenarios.

First, in chapter 11, we challenge the adequacy of existing metrics in semantically diverse
contexts and introduce a novel approach for evaluating conditional language generation models,
leveraging a family of meta-metrics that build on existing pairwise distance functions. These
meta-metrics assess not just single samples, but distributions of reference and model-generated
captions using small sample sets. We demonstrate our approach through a case study of visual
description which reveals not only how current models prioritize single-description quality
over diversity, but further sheds light on the impact of sampling methods and temperature
settings on description quality and diversity.
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Next, in chapter 12, we explore how we can leverage the latest advances in large language
models to judge the distance between captions while accounting for the variance that is
generated by user contexts. In our evaluations, CLAIR, our novel method that leverages the
zero-shot language modeling capabilities of large language models (LLMs), demonstrates a
stronger correlation with human judgments of caption quality compared to existing measures.
Notably, on Flickr8K-Expert, CLAIR achieves relative correlation improvements over SPICE
of 39.6% and over image-augmented methods such as RefCLIP-S of 18.3%. Moreover, CLAIR
provides noisily interpretable results by allowing the language model to identify the underlying
reasoning behind its assigned score.

Underlying both of these approaches is a key idea: conditional natural language generation
is not a classification problem. In this section, we show that instead of treating it as such, by
treating CNLG as a problem with several correct answers we can more closely align model
evaluation with the multifaceted nature of human communication, thereby enhancing the
utility, fairness, and transparency of CNLG models in serving diverse human needs.

Previously Published Works Appearing In This Section:

1. Chan, David M., et al. "Distribution Aware Measures for Conditional Natural Language
Generation." Proceedings of the 2024 Joint International Conference on Computational
Linguistics, Language Resources and Evaluation. 2024.

2. Chan, David, et al. "CLAIR: Evaluating Image Captions with Large Language Mod-
els." Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing. 2023.
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Chapter 11

Triangle-Rank Metrics for Distribution
Aware Conditional Natural Language
Generation

Recent models for conditional language generation, particularly in the field of visual
description, have shown dramatic improvements in both fluency and the ability to ground
generated language in context (Liu et al., 2021a; Zhou et al., 2020; Mokady et al., 2021;
Chen et al., 2018). Standard metrics for these tasks such as BLEU, ROUGE, METEOR, and
CIDEr, compare a generated text with a reference set of texts and compute some measure of
quality for the generated text. By construction of these metrics, a model will achieve the best
performance by generating a single high-scoring text. In contrast, it has been widely observed
that large language models such as GPT-3 (Brown et al., 2020) or LAMDA (Thoppilan
et al., 2022) generate the most realistic texts at temperatures close to one, where the set of
potential texts generated is often very diverse. More significantly, if we look at an example of
an image from MS-COCO and its set of reference captions (Figure 11.1), we notice that each
(human-generated) reference contains a unique subset of the overall information in the image:

“A woman in a red robe is sitting at a dining table."
“A woman in a red flowered shawl sits at a table while a man
wearing jeans is in the kitchen looking at her."
“A person sits at a table and another person stands in the kitchen."
“A woman is sitting at a table wearing a robe while a man is cooking."
“Man and woman in a kitchen looking in the same direction."

Important features like the red robe, the man, the gaze of the two people etc, are mentioned
only in one or a few captions. Metrics that encourage generating information from only one of
these captions will generally fail to capture much of the important detail in the image. This
holds for more than just image description. For many conditional language generation tasks
such as video captioning, abstractive summarization, translation, and open-ended question-
answering, it is often beneficial to be able to sample from a diverse distribution of generated
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Figure 11.1: Samples from these two models achieve similar BLEU scores, however, the samples
from a SOTA model (VLP) lie near a center of the distribution, and fail to capture the dispersion
of natural language in the ground truths, while the samples from an ideal model better match the
ground truth distribution. In this work, we introduce metrics which better measure deviations
between samples from candidate and reference distributions, compared to single-sample pairwise
metrics.

outputs. If we compute a maximum-likelihood generated caption from a state-of-the-art
model (Zhou et al., 2020) we get:

"A woman sitting in a kitchen next to a man."

In this description, we see that only information common to most or all of the reference
captions is preserved. This is intuitive, since including more information runs the risk that
no reference caption contains that information, leading to a low score. It seems the designers
of metrics such as BLEU are already aware that direct use of shortest distance to a reference
caption favors generated captions which are even shorter and more impoverished, and thus,
the BLEU score, and many others, also include a term encouraging longer texts. However, the
(log-) text length heuristic in standard metrics is intuitively a poor proxy for actual diversity.
Thus, since models optimize for standard measures, drawing multiple maximum-likelihood
samples using beam search from SOTA models only produce repetitions, or slight variations
of the above caption.

Thus, we encounter an issue in the evaluation of conditional text generation models with
multiple available references. With multiple references, typically the metric score is based
on the maximum score over a set of ground truths (e.g. max pairwise score for a particular
n-gram as in BLEU), leading measures to erroneously incentivize the production of text
minimizing the expected pairwise distance to the reference set, i.e. near a strong mode
in the training text distribution, causing the issues discussed above. Changing the metric
aggregation method (e.g. sum as in ROUGE) does not substantially alter this situation, as
the model still strives to produce a high-scoring output that is close to nearby references
which will be maximized at a smoothed mode in the training text distribution (Caglayan
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et al., 2020; Yeh et al., 2021).
An over-reliance on simple aggregations for multiple candidates and references has, over

time, compounded into several issues: The first, discussed further in section 11.2, is that, as
observed in visual description by Chan et al. (2022c) and dialog generation by Caglayan et al.
(2020), human-generated captions tend to receive lower scores than model-generated captions
using automated measures, even though they actually receive higher scores under human
evaluation. The second, discussed in section 11.1, is that diversity of candidate texts is largely
relegated to reference-unaware measures, encouraging models to diverge from ground truth
distributions to hit diversity targets.

In this chapter, we aim to solve these problems by introducing several novel automated
ways of measuring the performance of conditional text generation models. Our measures
encourages models to not only to generate samples at the locus of a distribution but also with
sufficient variance, since they are designed computing the divergence between candidate and
reference distributions. While some recent methods have been designed to closely measure
the divergence between full distributions of text data in the unconditional case (Pillutla et al.,
2021), no such methods exist for conditional generation, which often operates on the level of
10s of reference samples and candidates. Our contributions are summarized as follows:

1. We demonstrate that existing automatic metrics that use simple aggregations of candi-
date and reference distributions are insufficient, and we introduce a new paradigm that
instead involves sampling from these distributions, and comparing the samples.

2. We introduce two new families of metrics which extend existing semantic distances:
triangle-rank metrics, and kernel-based metrics, designed to measure the divergence
between small text samples from candidate and reference distributions.

3. We explore how our new metrics behave in the context of visual description (both
image and video description) and show that by measuring distributional effects, we can
capture nuances in the data that existing metrics cannot explore.

11.1 Related Work
This work is not the first to notice the shortcomings of traditional metrics for the

automated evaluation of conditional language generation models. In visual dialog, Caglayan
et al. (2020) find that a number of the automated metrics proposed for visual dialog do not
match well with human judgment, while in visual description, Chan et al. (2022c) find that
current automated metrics do not assign high scores to human-generated descriptions. This
work not only quantifies such issues but proposes a method for addressing these cases without
developing novel metrics for measuring text semantic distance. In this section, we review
related works, roughly divided into three groups; methods for evaluating text quality, text
diversity and distribution aware metrics.
Measuring the Quality of Generated Text The evaluation of machine-generated text
has long been an active area of research, which has continuously evolved to keep pace with
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accelerating advances in text generation. As a consequence of the tools available and the state
of early text generation approaches, classical measures have primarily focused on evaluating
the quality of generated text with respect to ground truth references using surface-level text
statistics. Most notably, these include n-gram matching based metrics like BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005), ROUGE (Lin, 2004), and CIDEr (Vedan-
tam et al., 2015). More recently, the rapid progress enabled by large-scale language models
has motivated new evaluation techniques which go beyond superficial n-gram statistics and
toward measures that aim to capture the underlying semantics of language (Shimanaka et al.,
2018; Clark et al., 2019; Zhang et al., 2020d; Sellam et al., 2020). These approaches leverage
high dimensional representations of generated and reference text provided by a state-of-the-art
language model, such as BERT (Devlin et al., 2019) in the case of BERTScore (Zhang et al.,
2020d) and BLEURT (Sellam et al., 2020). While such methods are focused on measuring
the semantic distance between two pairs of natural language texts, the evaluation of the
diversity of the generated captions has largely been done independently of quality.

Measuring the Diversity of Generated Text Until recently, measures of diversity
for generated text have been largely secondary to measures of quality, since the pursuit of
human-like generated text has been the primary focus of the field. In fact, many diversity
measures quantify surface-level statistics of the generated text (van Miltenburg et al., 2018),
such as metrics based on the number of unique tokens, unique sentences, or unigram frequency
statistics, such as Zipf coefficients (Holtzman et al., 2020). Similarly, n-gram-based diversity
measures such as self-BLEU (Zhu et al., 2018), compute scores between samples from a
model. Unfortunately, these approaches do not consider the diversity of a model’s outputs
with respect to the diversity of human references, and are primarily focused on the diversity
of the vocabulary, rather than the aggregate semantic diversity, factors that our proposed
work aims to address.

Distribution Aware Measures of Generated Text MAUVE, proposed by Pillutla
et al. (2021), measures the divergence between multi-candidate samples and multiple ground
truths using density estimates in a text embedding space. This approach measures both text
dispersion and quality simultaneously, however, MAUVE is designed for unconditional text
generation with many thousands of candidate and ground truth samples available. While
MAUVE works well in these scenarios, it does not work well when only a few references are
available (due to the K-means approximation) (see appendix C.2.4). Such a low-reference
scenario is common in conditional NLG, making MAUVE unsuitable for many potential
applications, and motivating the need for more sensitive measures.
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11.2 Distribution Aware Measures for Conditional NLG
In this section, we introduce our two primary contributions. First, we introduce and

demonstrate the need for a paradigm for multiple candidate evaluation for conditional
language generation, and second, we introduce several simple augmentations to existing
pairwise metrics, designed to alleviate the sensitivity issues induced by evaluating conditional
language generation models with only a single candidate text. Our family of augmented
metrics, which we call Triangle-Rank Metrics (TRMs), represents the first step towards
optimizing metrics that force models not only to generate samples at the locus of a distribution
but also with sufficient variance, hopefully alleviating the field-wide issues that optimizing
standard pairwise-metrics can induce.

11.2.1 Multi Candidate/Reference Evaluation

Traditionally, most methods for conditional language generation have been designed to
sample a single candidate example using beam search, designed to be a maximum likelihood
sample of the data. This single candidate is compared against the reference data. Unfortu-
nately, as discussed earlier, models can easily exploit such aggregations. For example, when
the best score amongst the ground truths is chosen (the “min-distance" aggregate), models
generate texts optimizing the expected minimum distance to the reference distribution. Such a
text is, by definition, the mode of the distribution. This mode likely represents some amount
of central tendency, as we observe such captions to be bland and uninformative (See C.2.5,
(Chan et al., 2022c; Yang et al., 2019)).

Thus, a single candidate may not be sufficient to understand if the model has learned to
approximate the reference distribution. Consequently, we aim to develop methods that can
sample several suitable candidate texts, each with high accuracy, while matching the diversity
of the ground truth distribution. In this work, to extend methods to multiple candidate
generation, we leverage temperature-based sampling or nucleus sampling (as indicated) to
produce multiple candidates from each model’s distribution. While beam search can generate
multiple candidates, Vijayakumar et al. (2016) showed diversity among beams is relatively
poor, leading to samples that diverge from the model distribution. This gives us a model
which generates multiple candidate samples, and requires an evaluation metric which compares
multiple candidate samples to multiple reference samples.

Extending Existing Metrics for Multi-Candidate Evaluation Currently, no stan-
dard pairwise metrics (Papineni et al., 2002; Agarwal and Lavie, 2008; Lin, 2004; Vedantam
et al., 2015; Zhang et al., 2020d) support a comparison between multiple candidates and
multiple references, and the most efficient extension of existing metrics to multi-candidate,
multi-reference situations is a non-trivial task. In this work, we naively extend the exist-
ing pairwise metrics to multiple candidates through the use of mean aggregation. Thus,
for a standard pairwise score S, set of candidates (c1, . . . , cn) = C and a set of references
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Figure 11.2: Intuition for TRMs. For samples from different distributions (left), in-distribution
edges will often be short, but for identical distributions (right), edge rank-distributions will
be more uniform.

(r1, . . . , rm) = R, we assign the output score Sagg as:

Sagg =
1

N

N∑
i=1

S(ci, R) (11.1)

11.2.2 Triangle-Rank Metrics (TRMs)

While existing metrics for semantic similarity are powerful for determining the pairwise
semantic distances between two utterances (Papineni et al., 2002; Agarwal and Lavie, 2008;
Lin, 2004; Vedantam et al., 2015; Anderson et al., 2016), these measures cannot accurately
measure the distance between distributions. How, then, can we leverage already strong
pairwise tools in a multiple candidate scenario? Unfortunately, many statistical techniques
for measuring the distances between samples require points to lie in a metric space (Basseville,
2013) - however, most text distances neither respect symmetry nor triangle inequality.

We propose a novel answer based on an application of the triangle-rank statistic for
statistical testing proposed by Liu and Modarres (2011). The triangle-rank statistic has
several promising properties: it neither requires symmetry nor the triangle inequality in the
metric space (it only requires d(x, x) = 0), and it is computed using only pairwise distances,
meaning that we can easily reuse existing text semantic distance functions when computing
the statistic.

For the purpose of explanation, it can be helpful to think of texts as points on an arbitrary
manifold (based on the selected text distance function). To compute the triangle-rank
statistic for a given distance S, a set of candidates (c1, . . . , cn) = C and a set of references
(r1, . . . , rm) = R, we first extract all directed triangles (t1, . . . ) = T , such that one point lies
in C and two points lie in R. We refer to the edge between points from the same distribution
as eIN

ti
and the other two edges as eE0

ti and eE1
ti . We then compute the score for each of the

edges. For (a, b) = e...ti , let
d(e...ti ) = S(a, b) (11.2)

We then compute indicators I0, I1, I2 for each triangle ti as follows:

I0(ti) =1 if d(eIN
ti
) ≤ d(eE0

ti ), d(e
E1
ti ) else 0

I1(ti) =1 if d(eE0
ti ) ≤ d(eIN

ti
) ≤ d(eE1

ti ) or d(eE1
ti ) ≤ d(eIN

ti
) ≤ d(eE0

ti ) else 0

I2(ti) =1 if d(eE0
ti ), d(e

E1
ti ) ≤ d(eIN

ti
) else 0

(11.3)
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These indicators represent the rank of the same-sample edge (if it is the smallest, largest, or
middle-sized edge). The directed statistic for the sample (C,R), Q(C,R) is then computed
as:

Q(C,R) =

∣∣∣∣
∑

ti∈T I0(ti)

|T |
− 1

3

∣∣∣∣+ ∣∣∣∣
∑

ti∈T I1(ti)

|T |
− 1

3

∣∣∣∣+ ∣∣∣∣
∑

ti∈T I2(ti)

|T |
− 1

3

∣∣∣∣ (11.4)

For the experiments in this paper, we use an extension of the directed statistic, the
undirected statistic, TRM(C,R) = Q(C,R) +Q(R,C), which increases the sensitivity of the
metric by taking into account rank statistics of both within-candidate and within-reference
edges.

An intuition for how this statistic measures divergence between distributions is given in
Figure 11.2. If the in-distribution edges are always short compared to the cross-distribution
edges, this suggests that either the distance between the candidate and reference distributions
is high (different locus), or the spread of the candidates in the semantic space is significantly
less than that of the references (different spread). If the in-distribution edge is always the
longest edge, it suggests that the spread or dispersion of the candidate samples is higher
than the dispersion of the reference samples. Because this statistic takes into account the full
distribution through triplets of samples, it does not suffer from the issues with aggregation
discussed earlier. Not only does it solve these issues, but TRMs build on existing pairwise
metrics, allowing us to increase sensitivity while retaining existing semantic distance measure
and intuitions.

Notably, Q(C,R) does not distinguish between situations where I0 = 1 and I2 = 1.
Intuitively, a model that can generate a candidate that is closer to two references than the
references are to each other (I0 = 1) seems be better than another model where the candidate
is far apart from one (or both) of the references (I2 = 1), however this is not always a desirable
situation (in fact, it is often a situation we wish to avoid). Consider the situation where
the “mean" of all reference captions is generated by the candidate set. This caption is closer
to any individual caption than any reference caption may be to other reference captions,
however as seen in Figure 11.1, and discussed in prior work (Caglayan et al., 2020; Yeh et al.,
2021; Chan et al., 2022c), such captions capture only mutual information in the references,
and fail to match the full distribution.

11.2.3 Kernel-Based Metrics

While TRMs represent one method of augmenting existing pairwise metrics, a second
possible approach relies on representing utterances as points in the embedding space of a model,
particularly a large pre-trained model such as BERT (Devlin et al., 2019) or GPT (Brown
et al., 2020). Evaluating the distance between two distributions based on representative
samples on a Euclidean manifold is relatively well studied in GAN literature. One option,
MAUVE, introduced by Pillutla et al. (2021), uses a K-Means density estimator to estimate
the distribution of the points on this manifold and then computes a fixed divergence (such
as Kullbeck-Libeller) between the two density estimates. Unfortuantely, MAUVE cannot
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correctly estimate the density when there are few samples, such as in the case of conditional
language generation, as the K-means density estimator requires at least K (usually at least 50)
samples. In this work, we introduce several possible extensions to MAUVE as an alternative
family of distribution-aware metrics, which we dub “Kernel-Based Metrics" (KBMs):

• FID-BERT (C.1.6): The Frechet Inception Distance (Salimans et al., 2016) represents
the squared Wasserstein distance between multidimensional Gaussian distributions
fitted to the components of the input. In the FID-BERT metric, we replace Inception
embeddings with those from a pre-trained BERT model (Devlin et al., 2019).

• MMD-BERT (C.1.7): A related metric is the maximum mean discrepancy distance
function (Li et al., 2017), which leverages a density estimate of the data, and computes
the maximum mean discrepancy between the density estimates for each sample. In
our case, we leverage a Gaussian kernel estimate over the embeddings generated by a
pre-trained BERT model (Devlin et al., 2019).

While we primarily explore BERT-based embeddings for KBMs, we explore additional
text embedding methods in Appendix C.2.1.

11.3 Case Study: Visual Description
Visual description is a challenging task where a model must generate natural language

descriptions of visual scenes. Datasets for visual description often set themselves apart from
other datasets for conditional natural language generation (such as those for translation and
summarization), as they contain more than one ground truth sample, making it possible to
evaluate multi-reference measures. In this set of experiments, we look at two datasets for
visual description: MSCOCO (image description) (Lin et al., 2014) and MSR-VTT (Xu et al.,
2016) (video-description) (full dataset details in appendix C.1.2). We demonstrate first that
current metrics are not sensitive enough to evaluate the performance of existing approaches,
and then show quantitatively how a multi-candidate evaluation paradigm can close this gap,
and how a distributionally sensitive metric, such as TRMs, can provide new insights.

Single caption evaluation is insufficient A natural first question to ask when evaluating
the performance of a metric is, “given the data, is the metric sensitive enough to distinguish
between captions from a model and caption from a reference distribution?" To answer
this question, we evaluated the p-values using a permutation-test for each measure under
the null hypothesis that the candidate and reference samples come from the same caption
distribution. The p-values represent the probability of obtaining the observed result under the
null hypothesis: a higher p-value means that it is immanently possible the results obtained
are due to chance rather than any signal in the underlying experiment. It is important to
highlight that in this paper, when we compare p-values, we are evaluating the sensitivity of
the measures on a single experiment and not comparing p-values between experiments. It
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Table 11.1: The p-value (lower is better) produced by measuring standard metrics under the
null hypothesis that the candidate distribution is the same as the reference distribution (using
single-image/video tests aggregated with HMP (Wilson, 2019)). With a single candidate
text, the metrics are unable to make a statistically significant distinction (p < 0.05) between
ground truth and candidate samples, motivating the need for multi-candidate evaluation.
BERT refers to the BERT-Score (Zhang et al., 2020d). Additional experimental detail in
C.1.5.

Model BERT CIDEr BLEU METEOR ROUGE

(Video) MSR-VTT Test Set p-values

TVT 0.658 0.409 0.781 0.457 0.477
O2NA 0.645 0.457 0.795 0.564 0.593
Human 0.515 0.531 0.829 0.530 0.566

(Images) MS-COCO Karpathy Test Set p-values

CLIPCap 0.558 0.822 0.878 0.748 0.798
VLP 0.592 0.742 0.859 0.664 0.770
Human 0.640 0.668 0.874 0.635 0.684

is generally not the case that lower p-values correspond to better captions, rather, lower
p-values when comparing two differing distributions indicate a more sensitive measure.

The results, shown in Table 11.1 demonstrate that under all existing measures, using a
single description for the candidate dataset does not have sufficient sensitivity (p < 0.05) to
tell different distributions apart, motivating a transition to a paradigm with significantly more
sensitivity. This result confirms observations made in Yeh et al. (2021) and Liu et al. (2016):
most metrics are unable to produce statistically significant results. Thus, even for standard
metrics, it makes sense to sample more than one ideal candidate description and aggregate
the metric score across these candidate descriptions. Such a sampling approach for evaluation
does not preclude efforts toward generating single “omnibus” captions capturing details from
several diverse captions. However, such captions will be much longer than typical human
captions, and will score poorly under the standard metrics, as they would differ greatly from
individual reference captions.

TRM and KBM metrics are more sensitive than naive aggregation In section 11.2,
we proposed several new metrics which can be leveraged by switching to multi-candidate
evaluation. Figure 11.3 shows the sensitivity of both the newly introduced metrics and existing
metrics using the naive aggregation schemes discussed in section 11.2, as we increase the
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Figure 11.3: Plots showing the log p-values for the existing and proposed metrics as we increase
the number of sampled candidate descriptions from the models. TRMMETEOR achieves a
162% increase in sensitivity over METEOR, while TRMCIDEr represents a 49.3% increase over
CIDEr-D for O2NA evaluated on the MSR-VTT dataset. Additional experimental details
are given in C.1.5.

number of candidate samples from the model. While the sensitivity increases for all models to
significance, our proposed metrics are much more sensitive with fewer candidate and reference
descriptions. As an additional check, when tested on human captions, our metrics do not
consider the two distributions significantly different (p > 0.05, see C.2.3). Our proposed
metrics do not alter the manifold: so, for example, TRMMETEOR and METEOR measure
the same underlying intuitive divergences (n-gram recall with some additional synonym
matching), however, our TRM method increases the sensitivity of the test, allowing us to
measure the full distribution divergence, instead of using naive aggregates. For a practitioner,
computing the full p-value of the data is unnecessary; we need only sample enough candidates
to be sure of the statistical significance.

Multi-candidate evaluation illustrates a diversity vs. likelihood trade-off A
metric’s sensitivity to the full distribution can give us novel insights into the visual description
task. Consider the two models, VLP (Zhou et al., 2020), a standard transformer-based
model pre-trained on large-scale vision and language data, and CLIPCap (Mokady et al.,
2021), a transformer-based model which is initialized with a large language model, and uses
prefix-tuning with CLIP (Radford et al., 2021c) embeddings (Additional details in C.1.3).
Figure 11.5 illustrates that TRMMETEOR captures a subtlety in the model comparisons
that METEOR does not capture alone: while VLP produces better descriptions at low
temperatures, it becomes less fluent (likelihood) on average as we introduce diversity, leading
to worse captions when sampling at high diversities. CLIPcap retains better fluency at high
sampling temperatures, leading to improved performance in diverse captioning tasks. While
TRMMETEOR demonstrates this, METEOR monotonically decreases, giving little insight into
this problem. The sensitivity of the TRM measure is also visible in qualitative samples, given



111

The cows are grazing in a field.
The cows are grazing in a field.
The cows are grazing in a field.
The cows are grazing in a field.
…

Animals grazing on grass in an enclosed area.
Several cows grazing in a field with trees in the background.
Cows grazing in a large green pasture in a distant scene.
A grassy field overlooking cows in a pasture.
…
Cows grazing in a pasture ringed with trees.
Polaroid-looking photograph of cows in a green pasture.
A herd of animals grazing on a lush green field.
The cows are grazing in a field.

Candidate Set 1
METEOR (↑): 1.0

TRM-METEOR (↓): 0.574

METEOR (↑): 0.393
TRM-METEOR (↓): 0.069

References

Candidate Set 2

MSCOCO Image 134074

Figure 11.4: A qualitative sample from CLIPcap. Candidate set one uses beam search (8
beams), while candidate set two uses nucleus sampling (with temperature one, top-k of 20 and
top-p of 0.9). As the diversity increases, the TRMMETEOR divergence decreases, but METEOR
fails to correctly capture the diversity/correctness trade-off, leading to decreased scores for
more complete caption sets that are still relatively high quality. Additional qualitative
examples are provided in C.2.6.
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Figure 11.5: Plots indicating the impact of temperature on the metric scores. Left: TRMMETEOR
(↓) for CLIPcap and VLP. Right: Standard METEOR Score (↑) for CLIPcap and VLP.

in Figure 11.4, where we see TRM metrics are sensitive to both diversity and likelihood.
These results confirm observations made by Zhang et al. (2021a) for open-ended language
generation tasks such as storytelling and dialogue: a fair comparison of approaches must not
only compare at the same level of entropy but at a range of entropy levels.

Sampling algorithms matter Not only does the temperature of the generation process
matter when correctly trading off between diversity and description correctness (as seen in
the previous discussion), but the sampling process itself matters. Figure 11.6 shows the
performance at different temperatures of the Nucleus sampling method (Holtzman et al., 2020)
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Figure 11.6: Plots indicating the impact of search technique on divergences. Left: TRMMETEOR
(↓) for TVT on MSR-VTT. Right: METEOR Score (↑). See C.1.8 for experimental details.

Table 11.2: Method evaluation efficiency on the MS-COCO dataset with 5 references and 10
candidates.

METEOR TRMMETEOR CIDEr TRMCIDEr MMD-BERT FID-BERT MAUVE

Samples/Sec 298.4 ± 18.3 161.18 ± 21.2 131.23 ± 12.6 97.54 ± 9.1 53.76 ± 38.7 17.45 ± 4.6 2.29 ± 0.78
Wall Time (Min) 2.26 4.18 5.14 6.92 12.55 38.68 294.78

vs. standard sampling, beam search, and greedy, approaches. While maximum-likelihood
methods achieve the best METEOR scores, they have relatively high divergence, as they
sample only a single description. Further, Figure 11.6 shows that TRMMETEOR illustrates
how Nucleus sampling allows models to achieve higher temperatures than standard sampling
without diverging significantly from the distribution. METEOR alone does not indicate such
an effect and only monotonically decreases.

TRM Measures correlate with human judgements It has long been known that
humans are relatively poor at measuring the semantic distance between two sets of objects,
particularly in the presence of distractors (Durga, 1980). While this is the case, we still find
that proposed measures correlate with human judgement significantly more than existing
measures, which we show in Table 11.3. To demonstrate the correlation of distributional
measures with human judgement of distributional distance, humans were presented with two
candidate caption sets (two image captioning models, OFA (Wang et al., 2022b) and BLIP (Li
et al., 2022) using different temperatures), and asked which candidate caption set correlated
better with a reference caption set on two measures: how much they overlapped factually
(correctness), and how much information they provided about the references (coverage).
Additional experimental details are available in C.1.9.

Clearly, distributional measures correlate more, and with significantly less information
than existing measures aggregated using the max function. Notably, despite evidence that
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Table 11.3: Pearson Correlation with human judgement, N = 794.

Method Coverage Correctness

Human 0.2247 (p < 0.001) 0.2247 (p < 0.001)

TRM-Meteor 0.1278 (p < 0.001) 0.1082 (p < 0.001)
TRM-BLEU 0.1271 (p < 0.001) 0.1510 (p < 0.001)
MMD-BERT 0.1288 (p < 0.001) 0.1243 (p < 0.001)
FID-BERT 0.0807 (p = 0.011) 0.0978 (p < 0.001)

METEOR 0.0162 (p = 0.3978) 0.0057 (p = 0.7650)
BLEU-4 0.0044 (p = 0.8157) 0.0026 (p = 0.8884)
ROUGE 0.0110 (p = 0.5631) 0.0381 (p = 0.1845)
CIDEr 0.0037 (p = 0.8445) 0.0261 (p = 0.1725)

existing decoding methods optimize for fooling humans over correctness (Ippolito et al., 2020),
our method is the only approach which correlates at all with human judgement, suggesting
that we have accomplished our goals of being distribution aware, improving the sensitivity of
the base measures to human preferences.

11.4 Discussion and Limitations
Kernel-Based Metrics (KBMs) vs. Triangle-Rank Metrics (TRMs) A natural
question to ask is: "which metric should practitioners choose when evaluating conditional
language models?" KBMs have one major, distinct, advantage over the TRMs in that they
are naturally differentiable, yet KBMs also have downsides. The first is that, unlike the
TRMs, they require both a pre-trained BERT model and a kernel-density estimator which
both have complex behavior affecting the performance of the model. The TRMs, however,
can be specified on top of existing natural language distance functions, improving the ability
of the user to intuit the model performance. Additionally, TRMs are bounded and have
p-values that can be computed analytically. Finally, because the TRMs do not need a density
estimate, they can be more sensitive with small sample sizes (see Figure 11.3), which is
essential for conditional language generation where we have only a few gold-standard samples.
Table 11.2 demonstrates another key benefit of TRMs: efficiency. The time per sample to
compute TRMs, while higher than single metric standards, is lower than KBMs on average.

Perplexity We acknowledge that perplexity (likelihood of the test distribution) is another
alternative metric to proposed methods. While methods should report the perplexity of
their models, it is not standard practice, and it has been shown by Theis et al. (2016) that
perplexity suffers from several major issues when evaluating generative models. For example,
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a lookup table storing sufficiently many training examples will produce convincing results
but have poor perplexity on the test data. On the other hand, van den Oord and Dambre
(2015) demonstrate that even when perplexity is low, models may not generate high-quality
test samples.

Reference-Free Metrics Some metrics, such as CLIP-score (Hessel et al., 2021b) for
visual description, are immune to ground truth aggregation effects as they are computed in a
reference-free way, and focus on pre-trained models’ ability to ground vision and language
information. Unfortunately, such large, black-box, models represent a liability as a metric as
their capabilities are largely unknown, and untested (Floridi and Chiriatti, 2020; Caglayan
et al., 2020). Further, the metric is only as good as the model, and CLIP has been known to
suffer from numerous issues including counting, attribute-association, and spatial reasoning
(Blattmann et al., 2022; Ramesh et al., 2022).

11.5 Conclusion
In this chapter, we introduce a robust framework for multi-candidate evaluation of

conditional language generation models, show that existing metrics for semantic similarity can
be seamlessly extended to this framework, and demonstrate that multi-candidate evaluation
paired with more sensitive distribution-aware metrics can provide novel insights into existing
models and methods. This work is only the beginning. It is necessary for future work to
explore how a wider range of existing generation techniques and models perform under this
new paradigm, and to understand the implications of distribution-aware evaluation in fields
beyond visual description.
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Chapter 12

CLAIR: Evaluating Image Captions with
Large Language Models

As we have already seen so far in this thesis, automatically evaluating the quality of image
captions is challenging. There are many dimensions to consider, such as grammatical quality,
semantic relevance, correctness, and specificity, among others. To ensure fair evaluations,
most image captioning works employ a suite of measures, each capturing different aspects.
For instance, n-gram-based measures like BLEU (Papineni et al., 2002) or CIDEr (Vedantam
et al., 2015) broadly measure content overlap, SPICE (Anderson et al., 2016) compares scene
graph structures, and CLIPScore, TIFA, SeeTrue and VPEval (Hessel et al., 2021b; Hu
et al., 2023; Yarom et al., 2023; Cho et al., 2023) directly incorporate visual information.
Unfortunately, while significant strides have been made in automated evaluation, human
preference studies remain the most reliable (yet costly) source of caption evaluation.

Fortunately, recent advances in large language models (LLMs) have opened new avenues
for automatic evaluation. Models trained with reinforcement learning from human feedback
(RLHF, Christiano et al. (2017)) or similar methods are particularly useful for open-ended
evaluation tasks, including image captioning, due to their explicit training to align with
human preferences.

In our work, paralleling several recent works which find that LLMs can act as effective
“judges” for selecting the better answer from two candidates (Bubeck et al., 2023; Dettmers
et al., 2023; Chiang et al., 2023), we explore the ability of LLMs to evaluate caption quality in
the multimodal setting. We introduce CLAIR (Criterion using LAnguage models for Image
caption Rating), a measure which scores a candidate caption based on the likelihood that
it describes the same image as a set of references by directly asking an LLM to produce a
numeric rating. We further query the LLM to provide a reason for its score, providing a level
of interpretability to the scalar rating. As far as we are aware, this is the first work to explore
replacing measures of semantic text quality with directly obtained LLM judgments, however
concurrently, Zheng et al. (2023) have shown that directly providing an answer rating can
align highly with human preferences on a range of standard language-based tasks, such as
conversational instruction following.
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You are trying to tell if a candidate set of captions is describing
the same image as a reference set of captions.
Candidate set:
{candidate captions}
Reference set:
{reference captions}
On a precise scale from 0 to 100, how likely is it that the candidate
set is describing the same image as the reference set? (JSON format,
with a key “score", value between 0 and 100, and a key “reason"
with a string value.)

Figure 12.1: CLAIR: a (surprisingly simple) large language model-based measure for image
caption evaluation. We find that CLAIR not only correlates strongly with human judgments
of caption quality but can also generate interpretable reasons for the generated scores.

Through several experiments on captioning datasets such as MS-COCO (Xu et al., 2016),
Flickr8k (Mao et al., 2014), and PASCAL-50S (Vedantam et al., 2015), we find that CLAIR
correlates surprisingly well with human preferences, outperforming prior captioning measures.
We additionally propose CLAIRE, where we Ensemble the outputs of several LLMs by taking
the average score, leading to further improvements.

Despite a simple pipeline using an LLM prompt with minimal output parsing, CLAIR’s
strong correlation with human preferences suggests that it captures multiple dimensions of
caption similarity at once – a feature that prior measures struggle to achieve alone. More
generally, CLAIR demonstrates how language-only models can evaluate vision-language tasks.
We show LLMs can provide not only reliable scalar ratings but also corresponding reasoning
for a given rating, offering a valuable combination of accuracy and interpretability.

12.1 CLAIR: LLMs for Caption Evaluation
In CLAIR, we adapt the zero-shot in-context learning approach described in Brown

et al. (2020) to score candidate captions with large language models (LLMs). This involves
converting the caption evaluation problem into a human-readable text completion task which
is solved by the LLM. Using the prompt in Figure 12.1, CLAIR first generates completions
from the LLM and then parses those completions into both candidate scores and an explainable
reason for the score. We use a greedy sampling method (t = 0) to encourage reproducibility
in the results, while acknowledging the inherent nondeterminism in LLMs (see section 12.3).
CLAIR’s experimental implementation is surprisingly simple: it uses no in-context examples
(is entirely zero-shot), and default inference parameters for the APIs. See Appendix D.1 for
further implementation details.

The choice of language model directly affects the quality of the CLAIR measure – more
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accurate models should produce evaluations that align better with human judgment. We
explore three language models: GPT-3.5 (ChatGPT) (OpenAI, 2022a), Claude (Instant)
(Bai et al., 2022), and PaLM (Chowdhery et al., 2022). Unfortunately, we found for several
open-weight language models including Koala (Geng et al., 2023) and Vicuna (Chiang et al.,
2023) that CLAIR aligned poorly with human judgment.

As CLAIR is language model-agnostic, we can leverage the different distributions learned
by each model and combine their decisions in an ensemble approach we term CLAIRE. We
calculate individual CLAIR scores for each model and compute an unweighted average to
obtain the ensemble score.

Benchmark measures: We benchmark against several existing measure of caption simi-
larity. BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), METEOR (Agarwal and Lavie,
2008) and CIDEr (Vedantam et al., 2015) all primarily measure n-gram overlap (however
have different weighting schemes between n-grams, and across precision/recall). We also
compare against SPICE (Anderson et al., 2016), which compares caption parse trees and
focuses on matching perceived action and object relationships in addition to n-grams. While
the aforementioned measures are commonly reported in image captioning works, we also
compare against several modern measures, including CLIP-Score (Hessel et al., 2021b) which
uses the recent CLIP (Radford et al., 2021c) model for reference-free evaluation.

12.2 Evaluation & Discussion
To evaluate the quality of the measure, we run several evaluations that compare scores

generated by CLAIR to both human judgments of caption quality and other image captioning
evaluation measures. We additionally provide several qualitative examples in Figure 12.2. A
unique benefit of CLAIR is that it provides not only numeric scores but is also introspectable,
as it can identify which details in the candidate caption set match the reference set.

Sample-level human correlation: We first ask the question, how well does CLAIR
correlate with human judgments of caption quality at a sample level? We do so by exploring
the performance on three datasets, COMPOSITE, Flickr8K-Expert, and MS-COCO (See
Appendix D.1 for details).

The results of our sample-level correlation experiments are shown in Table 12.1. We can
see that CLAIR outperforms language-only measures (e.g., 0.604 to 0.403 for SPICE), and in
most cases, outperforms vision-augmented measures. CLAIRE achieves strong sample-level
correlation on all datasets; for instance, CLAIRE closes the gap to inter-human agreement by
0.097 over vision-based measures and 0.132 over language-based measures. The improvements
of CLAIRE over CLAIR suggest that each language model may have some bias (similar to
each human), yet the ensemble of models correlates more strongly with human judgments. A
reasonable concern might be that the models underlying existing approaches are significantly
smaller than those in CLAIR, and trained on less data. To address this, we introduce
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Person snowboarding at a ski slope.

The candidate caption mentions only 
one person snowboarding, while all the

reference captions mention multiple 
people skiing or climbing a mountain. 

Additionally, the candidate caption does 
not mention any details about the 

mountain or the surroundings, which are 
present in the reference captions.

Candidate

CLAIR Reason

2/5
Human

0.4
CLAIR

0.0
BLEU4

0.00
CIDEr

0.14
ROUGE

The candidate set only mentions a cyclist in a 
helmet and yellow jersey, while the reference set
 describes a man in a green shirt carrying a drink 
while riding a bicycle. Although there are some 

similarities, such as the fact that both sets mention 
a person riding a bike, the differences in the details 

make it uncertain whether they are describing 
the same image or not.

A cyclist in a helmet and yellow jersey.
Candidate

CLAIR Reason

2.7/5
Human

0.5
CLAIR

0.0
BLEU4

0.01
CIDEr

0.43
ROUGE

A boy jumps into the blue pool water.

The candidate set and reference set both 
mention a boy jumping into water, but the 
candidate set does not provide as much 
detail about the boy's appearance or the 

location of the pool. Additionally, the
reference set includes captions about diving
off a pier and holding one's nose, which are

not mentioned in the candidate set.

Candidate

CLAIR Reason

3/5
Human

0.7
CLAIR

0.0
BLEU4

0.55
CIDEr

0.61
ROUGE

"A blonde boy wearing a blue life vest and camo shorts 
jumps off a diveboard into a blue lake."

"A boy diving backward off a pier in a large lake."
"A boy in a blue life jacket jumps into the water."

"A boy in a blue life jacket jumps off a board into the lake."
"A boy is holding his nose and jumping off a diving board 

backwards into a lake."

References
"A biker enjoys a coffee."

"A man in a bright green shirt and sunglasses is riding a bicycle through 
the streets whilst drinking a latte."

"A man in a bright green shirt riding a bicycle in a paved courtyard , cary-
ing a drink."

"A man rides on his bike with one hand and holds a drink with the other."
"A man riding a bike wearing a green shirt with a drink in his hand ."

References
"a group of skiers going up a mountain."
"Four cross-country skiers climb uphill."
"Four people climbing a hill in the snow."

"Four skiers walking up a snow covered hill."
"four skiers climbing snow drapped mountain."

References

Figure 12.2: Several qualitative examples of CLAIR from the Flickr8K-Expert dataset.
CLAIR not only correlates better with human judgments of caption quality but also provides
detailed explanations for its score. CLAIR scores normalized by 100.

and compare against RefCLIP-X, which replaces the CLIP model in RefCLIP with a CLIP
ViT-bigG/14 model trained on LAION 2B (Ilharco et al., 2021). Even in this case, CLAIR
demonstrates significantly improved performance. Note that in Table 12.1, we use τb, instead
of the form τc, due to the ties generated by the CLAIR model.

System-level human correlation: In addition to computing the sample-level correla-
tion on the MS-COCO dataset, we use the annotations from the five models considered by
Rohrbach et al. (2018) to compute the system-level correlation. For each of the methods,
we compute the mean human score on the test samples, and mean metric score on the test
samples, followed by the Kendall’s rank correlation coefficient (Kendall’s tau, strength of
ordinal association) between these values (the set of five mean human scores, and the set
of five metric scores). Our results, given in Table 12.2, demonstrate that CLAIR ranks the
five methods in a novel way that is more accordant with human rankings of the methods.
These results further suggest that CLAIR has the potential to redefine which methods are
preferable to humans compared to existing n-gram approaches.
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Table 12.1: Sample-level correlation (Kendall’s τb) with human judgments. All p-values
< 0.001. *: Model has access to additional visual context.

Dataset

Measure COMPOSITE Flickr8K MS-COCO

BLEU@1 0.313 0.323 0.265
BLEU@4 0.306 0.308 0.215
ROUGE-L 0.324 0.323 0.221
BERT-S 0.301 0.392 0.163
METEOR 0.389 0.418 0.239
CIDEr 0.377 0.439 0.262
SPICE 0.403 0.449 0.257

CLIP-S* 0.498 0.511 -
RefCLIP-S* 0.512 0.526 -
RefCLIP-X* 0.523 0.549 0.274

CLAIR
+ GPT3.5 0.604 0.616 0.296
+ Claude 0.542 0.563 0.320
+ PaLM 0.580 0.546 0.355

CLAIRE 0.592 0.627 0.374

Inter-Human - 0.736 -

Decision Making: In addition to evaluating the correlation with human judgments, we
also evaluate the capability of the measure to perform discriminative analysis. The PASCAL-
50S dataset (Vedantam et al., 2015) contains a set of 4000 human-annotated caption pairs.
For each pair of captions, humans label which caption in the pair is closest to the reference
set for the image. The caption pairs fall into four groups: “HC:" two human-written captions
matching the image, “HI:" one human caption, and one machine-generated caption, with only
one matching the image, “HM:" a matching human caption and a matching machine-generated
caption and “MM:" two matching machine-generated captions. See Appendix D.1 for more
dataset information.

The performance on PASCAL-50S is given in Table 12.3. We can see that CLAIRE

outperforms all existing text-only measures (e.g., by 5.18% overall score over CIDEr), and in
many cases, even outperforms measures that have access to the image at test time. Note that
it is relatively weaker than image-augmented models in the HC setting; however, since both
captions are correct, the model often cannot judge which is better purely the text. Models
such as RefCLIP-S that have access to the image are naturally better discriminators in this
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Table 12.2: System-level correlation between the average CLAIR score and human model
evaluation for 5 models trained and evaluated on MS-COCO. All p-values < 0.05.

Measure Kendall’s τb Spearman’s ρ Pearson r

BLEU@1 0.399 0.600 0.706
BLEU@4 0.799 0.899 0.910
ROUGE-L 0.600 0.700 0.792
METEOR 0.600 0.700 0.666
CIDEr 0.399 0.600 0.856
SPICE 0.399 0.600 0.690

CLAIR
+ GPT3.5 0.799 0.899 0.869
+ Claude 1.000 1.000 0.868
+ PaLM 1.000 1.000 0.954

CLAIRE 1.000 1.000 0.903

case. We suspect that CLAIR’s discriminative performance could be further improved by
giving the LLM a choice between the two captions; however, we leave this optimization to
future work.

Groups of Captions: While CLAIR is capable of comparing a single candidate caption
to a set of reference captions, it is also capable of comparing sets of candidate captions to
sets of reference captions. This task is necessary when evaluating the ability of a model to
generate captions that are diverse and that fully describe the conditional text distribution.
We evaluate on the COCO-Sets dataset (Chan et al., 2022d), 794 caption sets rated by AMT
workers on two scales: how closely a candidate set matches the reference set in terms of
both correctness and content coverage (See Appendix D.1 for details). The results of this
experiment are given in Table 12.4. We can see that CLAIR outperforms well when measuring
the quality of a group of captions, and approaches the inter-human correlation on the (very)
challenging task. CLAIR also outperforms TRM-METEOR and TRM-BLEU (Chan et al.,
2022d), suggesting that LLMs can judge both the content and diversity of the caption sets.

12.3 Limitations
While CLAIR correlates well with human judgments of caption quality, it has several

limitations:
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Table 12.3: Accuracy of measures when matching human decisions for PASCAL-50S (5
reference captions). *: Model has access to additional visual context.

Measure HC HI HM MM All

BLEU@1 51.20 95.70 91.20 58.20 74.08
BLEU@4 53.00 92.40 86.70 59.40 72.88
ROUGE-L 51.50 94.50 92.50 57.70 74.05
METEOR 56.70 97.60 94.20 63.40 77.98
CIDEr 53.00 98.00 91.50 64.50 76.75
SPICE 52.60 93.90 83.60 48.10 69.55

TIGEr* 56.00 99.80 92.80 74.20 80.70
CLIP-S* 56.50 99.30 96.40 70.40 80.70
RefCLIP-S* 64.50 99.60 95.40 72.80 83.10

CLAIR
+ GPT3.5 52.40 99.50 89.80 73.00 78.67
+ Claude 57.90 98.50 91.30 62.90 77.65
+ PaLM 54.70 98.30 87.30 64.00 76.08

CLAIRE 57.70 99.80 94.60 75.60 81.93

Non-Determinism and Parsing Errors: Because CLAIR depends on the output of
a language model, the measure can be non-deterministic and noisy. For instance, it may
fail to elicit a judgment (e.g., “As an AI language model, I cannot see, and thus, cannot
determine if the image captions match the references”), or rarely, generate malformed JSON
output. To address these issues, we perform multiple queries to the LLM, sometimes at higher
temperatures if necessary. As a consequence, the measure may differ between runs, although
we found the variance to be relatively insignificant (< 0.01 in many of the experiments).
Additionally, since the language models used are not open-source, the models are subject
to arbitrary change, replacement, or removal, which limits the efficacy of the measure as a
long-term comparable measurement. We hope that increasing open access to language models
with efforts such as Koala (Geng et al., 2023) and Vicuna (Chiang et al., 2023), will help to
alleviate these challenges in the future.

Increased Cost: CLAIR relies on language models which contain many billions of parame-
ters. These language models have not only monetary cost but also human and environmental
costs (Bender et al., 2021) which can reduce its utility as a target during training, such
as for self-critical sequence training (Rennie et al., 2017). While API-based LLMs may be
considered costly, even open-source LLMs have a cost (which can often be hard to quantify).
CLAIR on the MS-COCO dataset uses an average of 226.148 tokens per sample (on OpenAI’s
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Table 12.4: Pearson correlation with human judgments when evaluating sets of captions on
MS-COCO (N = 794).

Measure Coveragep-value Correctnessp-value

BLEU@4 0.004 0.816 0.003 0.888

ROUGE-L 0.011 0.563 0.038 0.184

METEOR 0.016 0.398 0.006 0.765

CIDEr 0.004 0.844 0.026 0.173

TRM-METEOR 0.128<0.001 0.108<0.001

TRM-BLEU 0.127<0.001 0.151<0.001

MMD-BERT 0.129<0.001 0.124<0.001

FID-BERT 0.081 0.011 0.098<0.001

CLAIR
+ GPT3.5 0.195 0.011 0.187 0.014

+ Claude 0.110 0.099 0.124 0.145

+ PaLM 0.129 0.081 0.085 0.172

CLAIRE 0.183 0.027 0.156 0.018

Inter-Human 0.225<0.001 0.274<0.001

API), representing a cost of $0.0067 per sample (GPT-4), or $0.00033 per sample (GPT
3.5). For PALM, this drops to $0.000113 per sample. We hope that over time, advances
in LLM inference (such as quantization and distillation), coupled with improvements in
architecture will continue to yield lower-cost alternatives with strong performance on the
caption evaluation task.

Hallucination: While CLAIR does suffer from potential hallucination, we strongly believe
that this weakness does not diminish the fact that CLAIR still correlates strongly with
human judgment. In CLAIR, hallucinations in the score manifest as “incorrect” judgements of
similarity, while hallucinations in the explanations manifest as poorly grounded explanations
of the score/quality. Hallucinations in the score should be considered false negatives (blind
spots instead of hallucinations). In the case of hallucinations in the explanations, such
hallucinations may lead to misinterpretation, but arguably less misinterpretation than a
black box method, and may even indicate misunderstandings in the model. Hallucination
is a well-known challenge of current LLMs and is the subject of a great amount of research
on instruction-tuning, RLHF, RLAIF, and other methods. As hallucination and instruction-
following performance of the base models improves, CLAIR inherit similar improvements.
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Explainability: While CLAIR generates explanations for each rating, CLAIR has no strict
scoring rubric. Much like human judgments, there is no direct way of attributing changes in
score to changes in caption quality. For similar reasons, it is difficult to evaluate the quality
of the generated explanations. Qualitatively, the explanations are generally reasonable and
consider multiple axes of judgment.

12.4 Conclusion
This work introduces CLAIR, an LLM-based evaluation measure for image captioning.

CLAIR’s superior performance compared to highly-engineered measures indicates a remarkable
fact: LLMs are well aligned with human judgments of caption quality, even more so than
some measures designed specifically for semantic similarity. CLAIR is only a glimpse into
how LLMs can be used for evaluation tasks, and image captioning is only the beginning. We
hope that our work will inspire further exploration of similar measures in other vision and
language domains, such as visual storytelling (Huang et al., 2016b), where human evaluation
of generated text remains a challenging task.
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Chapter 13

Discussion

As we build more contextual models, we need to continue to develop evaluation measures
that are capable of closely matching human judgments and measurements of quality. In this
section, we explored two aspects of this evaluation framework. We first introduced triangle
rank measures, focusing on a new paradigm of evaluating not only the single best-generated
sample but the diversity of multiple generated candidates simultaneously. Such an approach
allows us to understand not only when models are correct, but when they closely match a
human distribution of generated text. Going beyond using explicit measures to perform such
matching, we further introduced CLAIR, which replaces a fixed distance metric between
texts with an LLM-based distance measure that implicitly captures semantic distance. Doing
so, we found that LLMs correlate strongly with human judgments of performance, enabling a
wide range of possible directions for automated evaluation in underspecified tasks.

The measures introduced in this section are only the beginning of a new era of natural
language evaluation tools based on statistical methods and distribution alignment, rather
than direct n-gram comparison. There are many possible directions for further research in
this space:

1. Development of More Granular Meta-metrics: Building upon the foundation
laid by TRMs, future research could focus on developing more granular meta-metrics
that can assess specific aspects of diversity and quality in the generated text. Currently,
TRMs are based on n-gram or global text similarity measures, but this need not be
the case, as the distance measures can be anything (within reason). Extending the
distance measure could help disentangle different dimensions of performance, such as
novelty, relevance, and coherence, providing a more nuanced understanding of model
capabilities.

2. Leveraging Multimodal Large Language Models: With the advancement of
multimodal large language models such as GPT4-V and LLaVA (Liu et al., 2024b),
there’s a significant opportunity to explore how these models can be utilized in evaluating
CNLG, especially in contexts where understanding requires integrating information
across text, image, and possibly audio or video modalities. Measures such as CLAIR
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may be more effective when paired with a large multimodal model, rather than a
language model alone (though doing so raises some questions about correlation, and
what using a large multimodal model for evaluation means for out-of-distribution
inputs).

3. Bias and Fairness in CNLG Evaluation: Investigating the potential biases in
current evaluation methods remains a challenging problem. It is important to explore
how both TRMs and CLAIR introduce novel evaluation biases and to correct and
mitigate these biases. Such directions are not only limited to the analysis of existing
measures, or the creation of new measures but could include tasks such as creating more
diverse datasets for evaluation or creating evaluation protocols that involve diverse
groups of human judges.

4. Interpretability and Explainability in Evaluation: CLAIR is one of the few
“explainable” measures for NLG evaluation, in that it naturally responds as to why
it generated a particular score. That being said, the reasons generated by CLAIR
are unverified, and it remains to be seen if (and if so, in what ways) such reasoning
or explanations correlate with human judgment. This is a challenging task, however
uncovering and understanding explanations, and determining if such explanations are
grounded is a question that I would desperately like answered.

5. Cross-Lingual and Cross-Cultural Evaluation: Expanding evaluation methods
to be more inclusive of different languages and cultures, addressing the challenge
of evaluating CNLG models in a globally diverse context. This involves developing
evaluation metrics that can operate across languages and cultural contexts, possibly
leveraging multilingual large language models and culturally diverse datasets.

Exploring these directions for future work promises to significantly enhance the evaluation,
fairness, and effectiveness of conditional natural language generation models, ensuring they
are more closely aligned with the diverse and nuanced needs of users worldwide. By tackling
these challenges, we can pave the way for advancements that not only push the boundaries of
AI capabilities but also ensure these technologies serve society in more ethical, inclusive, and
meaningful ways.
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Part IV

Discussion & Conclusion
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Chapter 14

Discussion and Future Research
Opportunities

In this dissertation, we comprehensively investigate ways in which we can understand the
data distributions of our multi-modal problems, build models accounting for context, both
intrinsic and extrinsic, and evaluate the resulting contextually aware models in a human-
centric way. Returning to the key question of the dissertation, How can we understand,
build, and evaluate models for contextual natural language generation? We can see that
indeed, it is clear that the language that we generate, how we generate that language, and
how we evaluate that generated language is all a product of the context within which that
language was created. While we have, in this dissertation, delved deeply into all three
questions, there remains considerable work required to understand how context fits into the
language generation picture, particularly in our application domains, and how we can build
and evaluate models that are aware of this context. In this section, I want to discuss several
key directions for future research overall, beyond those that we have already discussed in
chapter 5, chapter 10 and chapter 13.

14.1 Exploring New Applications
To start with the most direct area for future research, while this dissertation was limited

to two application domains (visual description and ASR), I believe that the lessons learned are
widely applicable across a wide range of conditional natural language generation tasks. One
of the most interesting application tasks would be in abstractive text summarization, which
suffers from many of the same ambiguity issues that image captioning does. Applying the
metrics from chapter 11 to the summarization task was effective in some of our preliminary
experiments (which never made it into either the paper or this dissertation). Beyond
summarization, several potential applications stand out as interesting for future work including
digital storytelling, interactive media (such as games), and image/video generation.
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14.2 Finding New Sources of Context
Going beyond new applications, in part II of this dissertation, we discussed including

context from several key sources including co-occurring media (such as video and audio in
chapter 7), text catalogs (in chapter 8), conversations (in chapter 9), and user identity in
chapter 6). One of the key areas for future work is to uncover and utilize new areas of context
that can be applied to both improve our models and to better align models with human
preferences and goals.

One interesting possible area of context to explore in future work is socio-cultural sources
of context: the social and cultural elements that influence a person’s behavior, beliefs,
experiences, and interactions within their community. Elements such as historical references,
cultural practices, and societal norms can all influence how systems interpret the world. For
ASR, this might be instantiated as being able to recognize specific cultural references, names
of festivals, rituals, or historical events, while in visual description, it involves (but is not
limited to) understanding the cultural significance of gestures, attire, or symbols. In addition
to the culture that somebody is raised in, there may be other factors influencing how they see
the world including socio-economic factors. For instance, certain brands, products, or lifestyle
choices can convey different meanings depending on the socio-economic background of the
audience. To generate good descriptions of an image, for example, a model may need to
understand who took that image, and what they are trying to convey to generate a meaningful
description. Beyond just cultural and socio-economic contexts, another interesting source of
socio-cultural context is non-verbal cues. In visual description, recognizing non-verbal cues
such as facial expressions, gestures, and body language, are not only important for visual
understanding of the context but also differ between cultures and scenarios: for example, in
many cultures, a shake of the head means “no”, while a node of the head means yes, however
in some parts of Bulgaria, Southern Italy, Greece and Turkey, the opposite is true. Building
models which can understand these non-verbal cues, and the social contexts within which
they occur will be a challenging, yet fruitful task. Overall, understanding cultural nuances
can enable models to adjust their tone, style, and content to better align with the cultural
background and expectations of the target audience, and it seems like a strong direction to
explore when discovering new sources of context that impact our models.

Beyond socio-cultural factors, another source of context that I believe to be particularly
interesting is emotional context. Models that are capable of detecting and responding to
emotional cues can offer responses that are not just contextually relevant, but also emotionally
intelligent. Wouldn’t it be nice if your voice assistant realized that you were angry after
repeating yourself for the thousandth time, and adjusted its handling of a situation based on
that understanding? Beyond such superficial effects, emotional awareness is likely necessary
in models designed for applications in mental health and customer service, as we have already
seen evidence for in some of our group’s work in health applications chat-bots (Figueroa
et al., 2021). Beyond emotional context, general situational awareness could also provide
an interesting source of potential context. Models that can adapt to and understand the
immediate context of an interaction can enable responses that are aligned with a user’s
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current needs/circumstances. Take for example, a voice assistant that upon receiving an
order for shampoo, realized that you had already ordered shampoo last week, and was able
to adjust its response to confirm that such an action was desired automatically. In general, a
level of sensitivity to emotion and situations has the potential to dramatically improve the
effectiveness of models designed for automated customer service systems, educational content,
global communication platforms, and more.

These two (or three) sources of context are only a potential set of possible sources that
may be interesting. It remains useful and important for future work to continue uncovering
and leveraging new sources of context in our models and designing models that are aware of
these sources of context. Such an effort requires not only the pursuit of new data but also
new techniques for integrating context into models – what is the most effective way to make
models pay attention to socioeconomics? How can we represent user preferences? How can
we tune models independently for each user? Such questions will undoubtedly be the goal of
many future research projects.

14.3 Improving Grounding of Context-Aware Models
Once we have collected the context, it is a different matter to be certain that the model

pays attention and leverages such context effectively. Building models that can strongly
condition their output on contextual inputs is a challenging problem. This is already an issue
we face in the form of hallucination in vision and language models (Liu et al., 2024a), and
will only get worse as we introduce more complex and nuanced contexts and stimuli. Several
key directions for future research in grounding stand out to me:

1. Going Beyond Feature Concatenation: Traditionally, models incorporate context
through simple means: concatenating the latent spaces of the context or performing
a simple cross-attention against the context to extract the most “relevant” features.
While this does work, I believe it is an open question as to whether latent spaces are
naturally additive/multiplicative, particularly across different modalities. Recent work
from Nguyen et al. (2022) has shown that learning cross-modal manifolds which can be
then aligned into a common latent space can improve overall model performance on
specific multi-modal domains, and I wonder if such approaches will naturally be more
effective in the long run.

2. Understanding (and building better) pre-trained features: Pre-trained features
in vision/language and ASR models represent a challenging trade-off: in exchange for
using less compute and fewer data, we force the model to take as input the pre-trained
representations from a pre-existing model. Unfortunately, these pre-existing models
have their own biases and training goals – information that may be required for a
downstream task may not even be preserved in a particular feature set if that doesn’t
matter to the task (for example, localization information is often not preserved in
classification models, as it doesn’t matter where a pattern occurs, just “if” that pattern
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occurs). We currently have a very weak understanding of how our visual features
function. We know that they aren’t the most effective (see https://oatml.cs.ox.
ac.uk/blog/2021/06/27/web-scraped-harmful.html for an interesting discussion of
this), but we don’t yet know how to build robust feature sets that generalize to wide
ranges of tasks. Perhaps this is even impossible (as there is no free lunch when it comes
to representation learning). It remains interesting and challenging for future work to
explore this.

3. Building more interpretable models: Beyond improving data integration techniques,
enhancing the grounding of context-aware models also requires advancements in model
interpretability. The word “interpretable” is a challenging one: what do we mean by
“interpretable”? Here, I believe that “interpretable” means building models that can
assign conditional probabilities in a factorizable way, where the factors are the context
variables. Such a definition implies models which can “cite” their contextual sources,
and generate reasonable explanations for their output in the language of a combination
of reasoning over the context variables. As contexts grow, it will be more and more
important for model designers to be able to get meaningful debugging output as to
how their models are operating over the context space. One particularly interesting
direction for exploration revolves around retrieval augmented generation (RAG, see
Gao et al. (2023) for a survey), as such methods naturally have a two-stage process in
which the applicable context is discovered (the data is grounded), and then a response
is generated. Leveraging RAG techniques for more general-purpose grounding and
interpretability represents, to me, another interesting direction for further exploration
in the grounding space.

Again, such directions only represent a small segment of the possible problems in grounding,
yet each is an eminently useful and challenging task that could be the subject of several PhD
theses.

14.4 Learning to Understand What’s Important
Beyond paying attention to the context, it is also important to pay attention to the right

context and to relate the right information to a user. Determining which information in an
image, video, or audio source is relevant (and which information is irrelevant) is an extremely
challenging problem, and without a model that has a strong understanding of context, is a
deeply under-specified one as well. As models are asked to consume and analyze increasing
amounts of data, understanding what to relate, and how to relate the important details

One of the most interesting works that I have seen is work from MacLeod et al. (2017),
which looks closely at what visually impaired users wish to know from an alt-text generating
algorithm. This is a deeply insightful study that reveals a worrying trend: the field of visual
description is generally departing from the field of alt-text generation in how images are
described, and what information should be present in those images. Further, this study reveals

https://oatml.cs.ox.ac.uk/blog/2021/06/27/web-scraped-harmful.html
https://oatml.cs.ox.ac.uk/blog/2021/06/27/web-scraped-harmful.html
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an insidious challenge: what is important to every person is different. Thus, determining the
correct content will require a leap in models’ ability to assess contextual cues, such as the
focus of attention, emotional tone, or historical significance, to prioritize information that
users desire (and deem relevant). Such models currently are far from a reality, and designing
models and systems that are capable of such understanding will require research not only in
model design and tuning, but also further studies of what humans find important in images,
and how humans interact with model-generated descriptions.

Beyond vision and language tasks, it is also important for audio models to understand
and relate important auditory clues. This involves not just accurately transcribing speech
but understanding the intent behind words, the priority of tasks being communicated, and
the emotional or situational context that surrounds the speech. Future advancements could
include models that are capable of identifying the most critical parts of a conversation or
instruction, based on the urgency, the speaker’s emotional state, or the context in which
the speech occurs. Imagine, for example, a model that can capitalize and underline stressed
points in transcriptions, or produce translator/annotator notes (when such notes are required
to augment the underlying transcription). Such models may require the integration of many
different audio technologies and context clues including voice tone analysis, linguistic content
evaluation, and contextual understanding to ensure that ASR systems can respond to or act
upon what truly matters to the user.

This is not just an AI task, but one that spans several disciplines from AI and cognitive
science to psychology and linguistics. By understanding how humans prioritize information,
the subtle cues used to indicate importance, and how context influences perception and
communication, future work may be able to design models that more closely mirror human
processes of information selection and emphasis, leading to approaches which not only
improve the efficiency and relevance of generated content but also enhance the naturalness
and intuitiveness of human-model interactions.

14.5 Understanding and Evaluating how Models Interact
with Humans

More generally than understanding what kinds of information are important to present to
users of contextually aware systems/models, it is also interesting to understand how users
interact with these systems as a whole. Further, it is important to not just understand but
to evaluate the overall quality of these interactions. As these models become increasingly
integrated into our daily lives, through devices, applications, and services, understanding
and evaluating how they interact with humans becomes not just a technical challenge but a
societal imperative.

While we introduce two new measures for the general evaluation of CNLG systems in this
work, there is still more to be done. One particular area of improvement (which we touched
on in chapter 13 is the introduction of new evaluation measures designed not just to evaluate
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the accuracy, fluency, and speed of methods, but which take a multidisciplinary approach
encompassing fields such as linguistics, psychology, cognitive science, and computer science
to assess to what extent models are capable of nuanced interactions. Such measures could
include those which measure how effectively a model can recognize and respond to the user’s
emotional state, or if a model can maintain a user’s interest and adapt to their changing
needs over time.

Beyond just simple evaluation measures, it will be important to understand the effects
of human-model interactions on human behavior, cognition, and perception. Such a field is
likely to offer a fertile ground for research, raising questions about dependency and trust,
particularly important for contextually aware models that are integrating large datasets that
humans can never hope to verify by hand. Moreover, the ethical dimensions of human-model
interactions will require rigorous investigation, particularly as these technologies shift from
human-in-the-loop to autonomous systems. Indeed, the design and deployment of language
generation models must be guided by principles that prioritize user well-being, privacy,
and autonomy, ensuring that these tools serve to enhance human capabilities rather than
undermine them. It remains a challenging and open question to understand what principles
are necessary, and how to develop systems to follow those principles as required.



133

Chapter 15

Conclusion

In this dissertation, we explored the question: how can we understand, build, and evaluate
models for contextual natural language generation, in the context of several domains, including
image and video description, and automatic speech recognition.

First, in chapter 3 we first looked at how linguistic diversity present in the dataset itself can
impact models for conditional natural language generation in the image and video description
domains. We examined several popular visual description datasets, demonstrating several
dataset-specific linguistic patterns that models exploit to achieve strong performance. For
example, at the token level, sample level, and dataset level, we found that caption diversity
is a major driving factor behind the generation of generic and uninformative image and video
descriptions. We further showed that state-of-the-art models even outperform held-out ground
truth captions on modern metrics and that this effect is an artifact of linguistic diversity in
datasets. Understanding that this linguistic diversity is key to building strong captioning
models, we recommended several methods and approaches for maintaining diversity in the
collection of new data and dealing with the consequences of limited diversity when using
current models and metrics.

In chapter 4, we turned our attention to the collection of data for the video captioning
task by asking: how can we exploit the inherent structure in the visual-linguistic data to
reduce the amount of training data we need to collect. Here, we explored various active
learning approaches for automatic video captioning and showed that a novel method based
on cluster-regularized ensembling of models provides the best active learning approach to
efficiently gather training sets for video captioning. We evaluated our approaches on the
MSR-VTT and LSMDC datasets using both transformer and LSTM-based captioning models
and showed that our strategy achieves high performance while using up to 60% fewer training
data than the strong state-of-the-art baselines.

Then in chapter 6, we discussed how if you asked a human to describe an image, they
might have done so in a thousand different ways, but image captioning models, on the other
hand, were traditionally trained to generate a single “best” (most like a reference) caption.
Unfortunately, this process encouraged captions that were informationally impoverished: Such
captions often focused on only a subset of possible details, while ignoring other potentially
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useful information in the scene. We then introduced a simple, yet novel, method: “Image
Captioning by Committee Consensus" (IC3), designed to generate a single caption that
captures details from multiple viewpoints by sampling from the learned semantic space of a
base captioning model, and carefully leveraging a large language model to synthesize these
samples into a single comprehensive caption. Our evaluations showed that humans rated
captions produced by IC3 more helpful than those produced by SOTA models more than
two-thirds of the time, and IC3 improved the performance of SOTA automated recall systems
by up to 84%, outperforming single human-generated reference captions and indicating
significant improvements over SOTA approaches for visual description.

Turning our attention to automatic speech recognition (ASR), in chapter 7, we first looked
at how we could learn to perform ASR tasks leveraging context drawn from video data. While
traditionally, research in automated speech recognition had focused on local-first encoding
of audio representations to predict the spoken phonemes in an utterance, such approaches
relying on such hyper-local information tended to be vulnerable to both local-level corruption
(such as audio-frame drops, or loud noises) and global-level noise (such as environmental
noise, or background noise) that had not been seen during training. In this chapter, we
introduced a novel approach that leveraged a self-supervised learning technique based on
masked language modeling to compute a global, multi-modal encoding of the environment in
which the utterance occurred. Then, using a new deep-fusion framework to integrate this
global context into a traditional ASR method, we demonstrated that the resulting method
could outperform baseline methods by up to 7% on Librispeech; gains on internal datasets
ranged from 6% (on larger models) to 45% (on smaller models).

Next, in chapter 8, we investigated the potential of leveraging external knowledge through
off-policy generated text-to-speech key-value stores, to allow for flexible post-training adapta-
tion to new data distributions. In our approach, audio embeddings captured from text-to-
speech were used, along with semantic text embeddings, to bias ASR via an approximate
k-nearest-neighbor (KNN) based attentive fusion step. Our experiments on LibiriSpeech
and Amazon Alexa voice assistant/search datasets showed that the proposed approach could
reduce domain adaptation time by up to 1K GPU-hours while providing up to 3% WER im-
provement compared to a fine-tuning baseline, suggesting a promising approach for adapting
production ASR systems in challenging zero and few-shot scenarios.

To wrap up our discussion on building models, in chapter 9, we introduced CLC: Con-
trastive Learning for Conversations, a family of methods for contrastive fine-tuning of models
in a self-supervised fashion, making use of easily detectable artifacts in unsuccessful conversa-
tions with assistants. We demonstrated that our CLC family of approaches could improve the
performance of ASR models on OD3, a new public large-scale semi-synthetic meta-dataset of
audio task-oriented dialogues, by up to 19.2%. These gains transferred to real-world systems
as well, where we showed that CLC could help to improve performance by up to 6.7% over
baselines.

Turning our attention to evaluation, in chapter 11, we challenged the adequacy of existing
metrics in semantically diverse contexts and introduced a novel approach for evaluating
conditional language generation models, leveraging a family of meta-metrics that built on
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existing pairwise distance functions. These meta-metrics assessed not just single samples,
but distributions of reference and model-generated captions using small sample sets. We
demonstrated our approach through a case study of visual description which revealed not
only how current models prioritized single-description quality over diversity but also shed
light on the impact of sampling methods and temperature settings on description quality and
diversity.

To conclude the dissertation, in chapter 12, we explored how we could leverage the latest
advances in large language models to judge the distance between captions while accounting for
the variance that is generated by user contexts. In our evaluations, CLAIR, our novel method
that leveraged the zero-shot language modeling capabilities of large language models (LLMs),
demonstrated a stronger correlation with human judgments of caption quality compared
to existing measures. Notably, on Flickr8K-Expert, CLAIR achieved relative correlation
improvements over SPICE of 39.6% and over image-augmented methods such as RefCLIP-S
of 18.3%. Moreover, CLAIR provided noisily interpretable results by allowing the language
model to identify the underlying reasoning behind its assigned score.

From the inception of artificial intelligence, the ultimate objective has been to create
agents that can effectively interact with our world. I strongly believe that the work presented
here can provide a blueprint for building models that do not just process language as input
but can understand and engage with the nuanced contexts and situations in which language
occurs and generate responses to users that are both natural and relevant. Equipping such
models with the acumen to perceive the world beyond their inputs and respond accordingly
is a stride towards creating systems that understand the essence of human communication
and interaction, and will lead to a new era where artificial intelligence is capable of mirroring
the depth and complexity of human intellect and empathy.
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Appendix A

Appendix for Dataset-Specific Linguistic
Diversity and Its Effect on Visual
Description Models and Metrics

A.1 Datasets
We investigate four primary datasets for the work in chapter 3. An overview of the

datasets is given in Table A.1.

MSR-VTT The MSR-VTT (MSR Video to Text) (Xu et al., 2016) dataset is a medium-
scale open domain benchmark for visual description. It was originally collected using 257
YouTube search queries across 20 categories, with 118 videos collected for each query (41.2
Hours). The dataset is annotated with 20 captions per video by 1,327 Amazon Mechanical
Turk workers. Each video has a duration between 10 and 30 seconds, with an average of two
shots per clip.

VATEX The VATEX dataset (Wang et al., 2019) is a medium-scale open domain video
description benchmark, based on a subset of the Kinetics-600 dataset for action recognition.
VATEX consists of 41,269 video clips, and each clip is annotated with 10 unique descriptive
captions by 2,159 Amazon Mechanical Turk workers.

MSVD The MSVD (Microsoft Video Description) dataset (Chen and Dolan, 2011) is a
small-scale open domain benchmark for video description comprised of 1,970 YouTube clips
of 4-10 seconds each, collected by asking Amazon Mechanical Turk workers to link a video,
start time, and end time from YouTube that depicts a specific, short action. Each video is
then annotated with an average of 41 ground truth descriptions by 835 Amazon Mechanical
Turk workers.
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Dataset Domain Categories Videos Avg. Length Annotations/ Annotation
Length (hrs) Video Method

MSR-VTT open 20 10K 20s 41.2 20 AMT
VATEX open 600 42K - - 10 AMT
MSVD open 218 1970 10s 41 35.5 AMT

MS-COCO open - 120K - - 5 AMT

Table A.1: An overview of the datasets that we analyze in chapter 3. All of the datasets are
open-domain, with a focus on video description. Additionally, each of the datasets include
more than one ground truth description per video, which we use to validate the performance
of ground truth data, without collecting additional human results. Notably, all of these
methods use AMT as their annotation method.

MSCOCO The Microsoft Common Objects in Context (MS-COCO) (Lin et al., 2014)
dataset is a large-scale open-domain benchmark for image description. MS-COCO consists of
more than 120,000 images of complex scenes including people, animals, and common objects.
Each image is annotated with five ground truth descriptions.

A.2 Experimental Details
In this section, we present detailed experimental details corresponding to our experiments.

Along with these experimental details, we make the code for our work available at https:
//github.com/CannyLab/vdtk. Note that numbers may differ slightly between the released
code, and our presented experiments due to the tokenization scheme. For our released code,
we use the Spacy1 tokenizer to compute all metrics, as it is significantly more efficient in
practice than the Stanford tokenizer2, however for academic purposes, we compute the metrics
with the Stanford tokenizer to avoid tokenization shift. In most cases, the difference in the
metrics between tokenization methods is negligible (or very small).

A.2.1 Motivation: Leave One Out Ground Truth Performance

To generate an estimate of human performance on the selected datasets, we use a
procedure called “leave one out" performance. Let a dataset D be composed of N samples
S0 . . . SN . For each sample Si, there may be Ki possible reference captions, Ci

0 . . . C
i
Ki

. In
order to compute the leave one out performance of human samples for the dataset, we first
select a hypothesis caption Hi ∈ {Ci

0 . . . C
i
Ki
}. We then compute the updated reference set

Ri = {Ci
0 . . . C

i
Ki
}/{Hi}. In the case that Hi is duplicated within Ri, we allow the duplicate

1https://spacy.io/
2https://nlp.stanford.edu/software/tokenizer.html

https://github.com/CannyLab/vdtk
https://github.com/CannyLab/vdtk
https://spacy.io/
https://nlp.stanford.edu/software/tokenizer.html


172

Dataset BLEU@4 METEOR ROUGE CIDEr

MSVD 0.453 (0.644) 0.370 (0.419) 0.689 (0.795) 1.038 (1.115)
MSR-VTT 0.209 (0.472) 0.247 (0.312) 0.487 (0.648) 0.426 (0.600)
VATEX 0.234 (0.342) 0.249 (0.235) 0.478 (0.503) 0.611 (0.576)
MS-COCO 0.152 (0.410) 0.228 (0.311) 0.438 (0.609) 0.788 (1.409)

Table A.2: Raw leave-one-out score estimates for each of the datasets (SOTA in parentheses).

to remain to maximize the possible human score. In the case that there is only one (or fewer)
captions for a video, we drop those captions from the computation. We then use the reference
sets R0 . . . RN and hypotheses H0 . . . HN to compute the “leave-one-out" score for the dataset.
Clearly, this is an estimate of the ground truth performance, as it is a random sample of the
possible “leave-one-out" hypotheses sets.

Because some of the metrics (particularly CIDEr) are dataset dependent, it would be
intractable to compute all possible hypotheses sets. Instead of computing all possible
hypotheses sets, we perform 750 iterations of this sampling procedure and use the mean of
the iterations to achieve our final “leave-one-out" estimates presented in chapter 3. We found
empirically that 750 iterations were sufficient across all of the datasets to achieve a stable
mean. The raw values of the “leave-one-out" estimates are presented in Table A.2, alongside
the state of the art results.

A.2.2 Motivation: Semantically Masked Leave One Out
performance

To test the performance of ground truths without semantic information, we devised an
experiment based on the leave-one-out experiments above, however, focused on removing
semantic information. To compute this value, we select hypotheses as in Appendix A.2.1,
however for both the captions in the reference and the captions in the ground truth, we
replace any token identified by the Spacy part of speech analysis as a noun, proper noun, or
verb with a unique mask token. This means that this unique mask token will achieve a 0 in
any associated token-based metric, as it will not match any semantic token in the ground
truth. Table A.3 gives the full performance on each of the datasets in the masked setup.

A.2.3 Caption Diversity: Token Metrics

In this work, we compute several metrics based on token-level diversity, demonstrated
in Table 3.1 in chapter 3. The number of unique tokens is equal to the number of tokens
in the dataset as computed by the Stanford PTB tokenizer. This number does not do
any lemmatizing or stemming, thus, is an upper bound for the vocabulary complexity. We
then compute three additional metrics, the within-sample uniqueness, the between-sample
uniqueness, and the 90% head of the vocabulary. The within-sample uniqueness corresponds
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Dataset BLEU@4 METEOR ROUGE CIDEr

MSVD 0.289 (0.453) 0.097 (0.370) 0.442 (0.689) 0.502 (1.038)
MSR-VTT 0.123 (0.209) 0.085 (0.247) 0.387 (0.487) 0.327 (0.426)
VATEX 0.132 (0.234) 0.201 (0.249) 0.391 (0.478) 0.511 (0.611)
MS-COCO 0.079 (0.152) 0.198 (0.228) 0.396 (0.438) 0.684 (0.788)

Table A.3: Raw leave-one-out score estimates under semantic masking for each of the datasets
(Non-masked in parentheses).

Dataset Unique BS-Unique WS-Unique Head

MSVD 9455 1.21% 11.8% 944
MSR-VTT 22780 0.76% 21.55% 1636
VATEX 31364 0.33 % 24.87% 1363
MS-COCO 35341 0.22% 33.76% 824

Table A.4: Vocabulary metrics for each of the datasets. Unique: The number of unique
tokens. BS-Unique: Average percent of tokens per description that are unique. WS-Unique:
Average percent of of tokens that are unique within a sample. Head: The number of unique
tokens comprising 90% of the total tokens.

to the percentage of tokens that are unique within a sample - i.e. the percentage of tokens
that appear exactly once among the references for any particular image or video. We then
average this number over all of the samples to get the number presented in Table 3.1. The
between-sample uniqueness is a measure of the percentage of tokens in each sample that are
unique at the dataset level, i.e. the percentage of tokens among the tokens in the reference set
of a single sample that do not appear in any other caption in the dataset. These per-sample
numbers are then averaged across the dataset to get the number presented in Table A.4.
Finally, the 90% head corresponds to the number of tokens that make up 90% of the mass of
the total number of tokens in the dataset. This is an approximate measure of how long-tailed
the distribution is. The 90% number is selected empirically (further analysis could look at the
full cumulative distribution of the token counts). Table A.4 replicates Table 3.1 in chapter 3,
however includes between-sample token uniqueness.

We also compute many of the same metrics restricted to counting nouns and verbs (as
identified by the Spacy POS tagger). Each of the above metrics is computed the same way,
however instead of considering all tokens, we consider only tokens that are tagged as either
nouns or verbs during the computation of the metrics. Table A.5 demonstrates the full results
of this experiment, plus an additional metric: the average number of tokens per caption
which also appears in Table 3.2 in chapter 3.
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Dataset WSNU BSNU WSVU BSVU NC VC NH VH NPC VPC TPC

MSVD 12.6% 1.9% 14.8% 1.5% 4985 1773 755 229 2.39 1.10 7.03
MSR-
VTT

23.1% 1.2% 29.4% 0.8% 12697 3639 1512 293 3.28 1.32 9.32

VATEX 26.9% 0.67% 35.7% 0.3% 16670 4975 1161 338 4.37 2.10 15.29
MS-
COCO

34.9% 0.41% 55.8% 0.2% 20155 4200 723 184 3.71 1.02 11.33

Table A.5: Part of speech distributions for each of the datasets. DS: Dataset. WSNU: Within
sample noun uniqueness. BSNU: Between sample noun uniqueness. WSVU: Within sample
verb uniqueness. BSVU: Between sample verb uniqueness. NC: Unique noun count. VC:
Unique verb count. NH: Noun head (90% of mass). V: Verb Head (90% of mass). VPC:
Average number of verbs per caption. NPC: Average number of nouns per caption. TPC:
Average number of tokens per caption.

A.2.4 Caption Diversity: N-Gram Metrics

To explore the diversity of samples at an n-gram level, we introduce two novel metrics, the
Expected Vocab Size @ N (EVS@N), and the Expected Number of Decisions @ N (ED@N).
Both of these metrics measure the diversity of the language at an n-gram level by exploring
the properties of an n-gram language model trained on the dataset. In this section, we
discuss the explicit definition of these metrics. For all n-grams, we use an n-gram language
model based on tokens extracted with the Stanford PTB tokenizer. In all cases, we pad the
references with [BOS] and [EOS] tokens to allow the model to handle the beginning and
end of the sequences. For WikiText-103, we create individual reference sentences by splitting
on ‘.‘ tokens, and pad each of these references individually with [BOS] and [EOS] tokens.

A.2.4.1 Expected Vocab Size @ N

The EVS@N metric is a measure of how many n-grams do not act as 1-grams in practice
in the dataset. This measure is computed by looking at the entropy of the next-token
distribution of an n-gram language model. For a sequence of words w0, . . . wn−1, we first
compute the distribution P (wn|w0, . . . , wn−1). If this distribution has 0 entropy (i.e. it assigns
all of the probability mass to a single next token), then we consider this n-gram a “static
n-gram". If the entropy is non-zero, then we consider it a “dynamic n-gram". The EVS@N
can then be computed as the proportion of dynamic n-grams

EVS@N =
|dynamic n-grams|

|static n-grams|+ |dynamic n-grams|

This measures a set of effective n-grams in the data (i.e. the size of the n-gram vocab), as it
coalesces n-grams where no decisions are made into a single logical unit.
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A.2.4.2 Expected Decisions @ N

The ED@N metric is a measure of how many decisions an n-gram language model has to
make for a sequence of N tokens. ED@N is a counting measure of the EVS@N - i.e. how
many dynamic n-grams are expected in a sequence of length n. For a K − gram language
model, this measure is explicitly computed as:

ED@N = 1 +
N−1∑
i=1

(1− EV S@K)(0) + (EV S@K)(1)

In this work, for the first token we use a 2-gram language model (K = 2), for the second
token we use a 3-gram language model (K = 3), and for any additional tokens, we use a
4-gram language model (K = 4).

A.2.5 Sample Diversity: Within Sample Diversity

We use several techniques to measure the within-sample semantic diversity of the data.
In all of these cases, the notion of semantics is somewhat subjective. In this work, we
use a BERT-style embedding trained for sentence similarity, called MP-Net (Song et al.,
2020) to embed each reference description as a 384-dimensional vector. We leverage the
implementation in Sentence Transformers3, which is pre-trained on over 1 billion sentence
pairs.

Figure 3.2 measures the minimum within-sample distances, i.e. it looks for the closest
pair of references in each sample, and plots the distance between them. Thus, for a dataset
of length N with a set of samples S0 . . . SN and captions S0

i . . . S
Ki
i , this histogram plots the

distribution over all descriptions of

Hij = min
k ̸=n

||Sk
i − Sj

i ||

In order to avoid obvious issues with repetition in the semantics, we use only the unique set
of captions in a sample, as opposed to allowing for duplicates, which would force Hi to zero
for any sample with repeated captions (actually exaggerating the effect in Figure 3.2. We
don’t allow this in order to avoid biasing our experiments to datasets such as VATEX, which
explicitly remove exact duplicates. Close duplicates are not affected, as can clearly be seen
by MSVD, which contains a lot of semantic redundancy. Note that this is a distribution over
all references (as opposed to samples).

Another method of measuring semantic diversity is by looking at the spread of the
semantics in the sample. While we use the literal variance of the within-sample pairwise
distance distribution in Figure 3.3, we can also look at other measures of spread. Figure A.1
demonstrates the difference (as a percent of the mean) between the mean of the inter-sample
distances and the closest inter-sample distance. When this percentage is high, the descriptions

3https://huggingface.co/sentence-transformers/all-mpnet-base-v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Figure A.1: Plot demonstrates the difference between the closest semantic vector, and the
mean of the semantic vectors. In all cases, the mean will always be further than the closest
sample, however, a low delta suggests a more equal spread of references, while a high delta
represents highly redundant samples.

are relatively spread out for a sample, with clusters of descriptions that are close together in
semantic space. If the percentage is low, the descriptions for a sample are well-distributed
(mostly equidistant) in the semantic space.

Figure A.2 gives a general overview for the video description datasets of the exact-
duplicate distribution of the descriptions. While most of the samples have high within-sample
uniqueness, there are some samples that are highly redundant (and in the case of MSVD,
have exact-redundancy of as much as ∼ 50%.

A.2.6 Dataset Diversity: Number of Ground Truths

To investigate how the number of ground truth metrics impacts the computation of the
metrics, we performed several leave one out experiments as in Appendix A.2.1 where we
restricted the size of Ri for each sample to a certain number of references r by randomly
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Figure A.2: Violin plot demonstrating the distribution of caption novelty - i.e. how many
captions in each sample are not exact matches in the text space. As we can see, while the
vast majority of captions are novel in some datasets, in datasets like MSVD, there some
samples which have high exact redundancy.

sampling r elements without replacement from the original reference set. This allows us
to measure the approximate performance of the methods if the number of ground truths
was reduced. The results of this experiment are given in Figure A.3. We can see from
Figure A.3 that except for CIDEr, increasing the number of ground truths increases the leave
one out performance of the metrics. In fact, we can see that in most cases, the performance
is nowhere near saturated, and collecting more ground truths will allow metrics to better
capture the semantic variance of a scene. The standout among the group is CIDEr, in which
the score does not increase as we increase the number of ground truths. This is primarily
due to the IDF component of the CIDEr score, which penalizes increasing the number of
tokens harshly. We can see that here, as we increase the number of ground truths, the CIDEr
score decreases ! This suggests that CIDEr is relatively robust to adding more ground truth,
however cannot capture as much semantic variance as the other metrics, as the CIDEr score
does not materially account for new information from the ground truth samples.

A.2.7 Concept-Diversity: Captions Required for BLEU Score

One of the key experiments we perform is designed to measure the minimum number
of captions from the training set that are required to “solve" the test set of the dataset for
a particular BLEU score. We first compute a set of all hypothesis descriptions from the
training set. Then, for each sample in the test set, we compute the BLEU@4 score using that
hypothesis for every sample in the test set. In the case of large datasets such as MS-COCO,
which contains 591, 435 unique hypothesis captions, this can be time-consuming, even for
the (relatively quick) BLEU@4 metrics. Each hypothesis thus has a score for each sample
in the test dataset. Finding the minimal core-set of captions that covers this test dataset
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Figure A.3: Performance of different metrics with respect to the number of ground truths
considered in leave-one-out experiments. Raw scores are normalized to a maximum of 1, so
we can compare the different datasets on the same plot.

to a specified BLEU threshold is a weighted set-cover problem, which can be solved to an
O(logN) approximation with a randomized rounding algorithm (Vazirani, 2001), however,
we found that it was sufficient to use the greedy approximation algorithm for set cover, which
selects the caption which covers the largest number of new samples at each iteration. Thus,
the results in Figure 3.5 provide an upper bound on the possible number of captions required.

Figure 3.5 plots the required number of captions to achieve a BLEU@4 score of X (the
value on the X-axis) on every sample. Note that this requirement is more restrictive than the
plotted SOTA scores, which achieve a mean of X. Thus, the effect of this figure may be even
more dramatic than is pictured. The reason for this discrepancy is we compute the core-set
using a greedy set cover, and due to our implementation details, it is difficult to terminate
the cover efficiently when a mean score is reached.

While our work only computes the core-set for BLEU@4, we believe it would be interesting
to see the numbers for other metrics, however, with current implementations, it may be
intractable, as the computations require a full pairwise computation of the metrics between
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the hypotheses and the test-set samples. Additionally, metrics such as CIDEr which have
dataset-wide effects would have to be estimated, requiring several hundred iterations of this
experiment to achieve high-quality estimates of the performance. It thus remains interesting
(and important) future work to explore how many captions are required to perform well on
any given dataset for other metrics.

A.2.8 Concept-Diversity: Feature Sets

To measure the diversity of the datasets at a concept level, we look at how the ground
truth captions overlap with the label sets from common feature extractors. If we find
that this overlap is high, it suggests that features may have the ability to bias the model
along the classification lines of the feature-extractor label set (since a lot of the time, the
information extracted by the features is useful primarily for segmenting data along feature
class boundaries).

A.2.8.1 Computing Label-Set overlap

We discuss two methods for computing label-set overlap in chapter 3: exact match and
fuzzy matching. Exact match is implemented as a string substring: i.e. does the label string
appear as a direct substring of the caption. This method provides a lower bound on the true
conceptual overlap, as it does not account for misspellings (which are surprisingly common in
datasets such as MSR-VTT, and others collected using AMT without additional review steps),
and other close matches. While this is a lower bound, it has the benefit of not introducing
false-positive matches (as any match is guaranteed to be label overlap). We also discuss the
use of fuzzy matching, which we implement using the fuzzywuzzy4 library for approximate
string matching with a threshold of 90. This library uses Levenshtein distance to compute
approximate matching, however introduces false-positives which makes it difficult to analyze
the overlap. In all cases, the numbers in Table 3.3 represent the percentage of samples that
have at least one reference description that has exact overlap with a label from the dataset.

We explore overlap on four common datasets for feature extraction:

ImageNet-1K (Deng et al., 2009) is a popular image classification dataset consisting of
1K labels for object classification ranging across a very wide variety of objects. We can
see this from the overlap scores in Table 3.3, which are relatively high on almost all of the
datasets. MSR-VTT is relatively low, suggesting that it is one of the most open-domain
datasets among the datasets we explore.

4https://github.com/seatgeek/thefuzz

https://github.com/seatgeek/thefuzz


180

Kinetics-600 (Carreira et al., 2018) is a popular dataset for action recognition, which
contains 600 activities. We can see that the video datasets have a much higher overlap with
kinetics, but even though MS-COCO is an image dataset only, there is still some overlap,
suggesting that captions of static data still contain human inferences about motion and
activity.

MS-COCO (Lin et al., 2014) is a dataset for object detection (and also for visual de-
scription) containing object-detection labels over 80 object classes from everyday life. Even
though COCO has a relatively restricted object set, we can see that it consists of a set of very
popular objects, as the overlap is more than 50% for all captions. Additionally, it’s interesting
that the object labels for MS-COCO don’t always appear in the captions themselves (as the
self-overlap is only 92%).

Places-365 (Zhou et al., 2017) is a dataset for scene recognition, consisting of 365 labels of
scenes or settings for an image. We find empirically that the overlap for places is likely low,
not due to a lack of descriptions of setting, but rather a lack of wide coverage of the variance
of settings in Places.

A.2.8.2 Feature-Set Core-Sets and BLEU@4 performance

To directly measure how transferable descriptions are along feature-extractor label axes,
we explore the leave-one-out performance of captions sharing the same feature label, but
from different samples in the dataset. The results of this experiment using BLEU@4 scores
are given in Table 3.4. In order to compute the leave-one-out performance, we begin by
computing a set of reference captions Rc for each label in each feature-extractor label set,
drawing from the training dataset. These concept-level reference sets consist of all captions
containing that label as an exact sub-string. Then, for each sample Si with references Ri, we
compute the set of all concepts overlapping that sample’s references Ci. We then compute
the hypothesis set for sample Si as

Hi =

[⋃
c∈Ci

Rc

]/
{Ri}

Next, for each hypothesis in Hi, we compute the BLEU@4 score for that hypothesis using
ground truths Ri. Table 3.4 reports the mean over all samples of the maximum across Hi

for each sample in the test set. The results of this metric are clear - when you use the best
caption from another sample along feature boundaries, then these captions are relatively
transferable (and almost always outperform samples from even the same sample).
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A.2.9 Tools & Hardware

The experiments in chapter 3 are computed using the metric implementations provided
by the MSCOCO evaluation toolkit in order to compute numeric metric values that are
comparable with state of the art methods. In the experiments in chapter 3, we use the
Stanford PTB5 tokenizer provided as part of the toolkit for tokenization and standardization.
Unfortunately, because the MSCOCO toolkit does not explicitly specify a tokenization scheme
and most works in video description do not subscribe to a standard tokenization tool, we are
unable to be certain that the metric is consistent between our work, and the work presented
in the state of the art papers.

The experiments are run in parallel on a machine with 96 AMD EPYC 7B12 cores and
378 GB of RAM running on Google Cloud Platform. Notably, the caption concept-overlap
experiments require a very large amount of compute, with this machine requiring almost
10 hours to compute the BLEU score for the core-set concept overlap. We found scores
such as METEOR (Agarwal and Lavie, 2008) and SPICE (Anderson et al., 2016) to be
computationally prohibitive (requiring several months of sustained compute) for some of these
experiments, thus, we do not include those scores in this work. We also do not report several
modern metrics for this reason - as a major downside to many of the automated metrics
that have recently been developed is their forward inference speed (up to 1000s of times
slower than the computation of the BLEU score). A key area of future work is improving the
computational performance of metrics, as this will allow such metrics to not only be used for
more detailed analysis but will allow such metrics to be optimized directly using techniques
such as self-critical sequence training (Rennie et al., 2017).

5https://nlp.stanford.edu/software/tokenizer.html

https://nlp.stanford.edu/software/tokenizer.html
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A.3 Additional Qualitative Examples
Additional qualitative examples are selected at random from the datasets using a random number generator

over the length of each dataset. Some randomly selected samples are omitted due to explicit content in the
visual data or descriptions (which is an additional cause for concern, but out of scope of the current research).

Figure A.4: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).

Figure A.5: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).



183

Figure A.6: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).

Figure A.7: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).
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Figure A.8: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).

Figure A.9: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4). The visual content of this video is missing (as the video has become private
since the collection of the dataset), however we include the video as it is one of the randomly
sampled instances.
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Figure A.10: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).

Figure A.11: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).
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Figure A.12: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).

Figure A.13: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).
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Figure A.14: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).
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Figure A.15: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).

Figure A.16: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).



189

Figure A.17: Qualitative example of metrics presented in chapter 3. The blue description
is a description with the minimum distance from the sentence embedding mean, while the
red description maximizes the mean BLEU@4 score to all other captions in the sample.
Captions are ordered from top to bottom by similarity to the mean caption embedding (See
section 3.4).
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Appendix B

Appendix for IC3: Image Captioning by
Committee Consensus

Appendix B.1 describes the code release, and links to available released resources associated
with the chapter.

Appendix B.2 describes several explorations of the hyperparameters, including the language
model, number of candidate samples, and prompts.

Appendix B.3 describes additional expeirmental details including the image captioning
models and datasets.

Appendix B.4 describes an ELO scoring system which we use in some additional appendix
experiments.

Appendix B.5 describes the human studies, and analysis of the human studies in detail.

Appendix B.6 gives additional qualitative results for the method.

Appendix B.7 explores how IC3 can be used in zero-shot style and language transfer
situations.

Appendix B.8 describes some additional failure modes and limitations of IC3 in detail.

B.1 Code Release
Our code is available at https://github.com/davidmchan/caption-by-committee, and

is made publicly available on Github with an MIT license, and contains the implementation,
as well as the validation results for each of the models, the evaluation server/framework, and
other necessary artifacts, to encourage further research in the domain of diverse/summarized
image captioning.

https://github.com/davidmchan/caption-by-committee
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B.2 Hyperparameter Exploration
In this section, we provide additional experimental details regarding the choice of the

hyperparameters for our method discussed in section 6.2.

B.2.1 Choice of Summarization Model

The choice of the summarization model S is a key decision when implementing IC3.
Table B.1 demonstrates the performance of IC3 with several models, both using prompting
for large language models, and using summarization of the captions directly. Generally
we found that models from OpenAI (Such as GPT-3 and GPT-4) were strong performers,
however models from Anthropic (such as CLAUDE), have strong summarization performance
as well. The strongest open-source models are Koala and Vicuna, both Chat-style models,
with LLama and StableLM following. While Table B.1 seems to imply that T-5 is a strong
model (and it likely is in terms of content-coverage in recall), T-5 often copy-pastes several
of the candidate sentences instead of generating a strong abstractive summary, leading to
decreased fluency.

B.2.2 Prompts

In this section, we present several explorations of possible prompts. First, Table B.2, we
present an exploration of the prompt with and without language which encourages the model
to produce uncertainty-specific language (the green text in subsection 6.2.3). To evaluate
this, we use two approaches: a head-to-head experiment where captions generated by the two
prompts are evaluated directly by human raters for helpfulness and correctness (following
subsection 6.2.4), and an automated measure of “likely-language occurrence“, LLOP. To
compute LLOP, we compute the number of captions containing words that indicate some
uncertainty including “likely", “probably", “possibly" and others. We find that without
explicitly encouraging the model to produce uncertain language, the model seldom does so,
while doing so improves both the helpfulness and correctness when measured by human
raters.

In the second exploration in Table B.3, we explore the question of using a prefix similar
to one explored in Kojima et al. (2022). We find that while the prefix does help, it is not a
key component of our method, and increases automated measures by small, but perceivable,
levels.

B.2.3 Choosing the number of candidate samples

Choosing the number of captions to summarize is highly dependent on both the abilities of
the language model, and the tolerance for execution cost of the method. Adding more captions
can increase the amount of information discovered by the visual model, and generate better
representative samples of the input data distribution, however it can increase the context
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Table B.1: Exploration of the choice of language model, when holding the prompt and
candidate captions stable, using BLIP on a 200-element randomly sampled subset of the
MS-COCO dataset.

Exact Fuzzy CLIP Recall
Model Noun Verb Noun Verb MRR R@1 R@5 R@10

Language Models

ic3 + bloom (Scao et al., 2022) 0.248 0.16 0.551 0.402 0.834 0.725 0.98 0.995
ic3 + distilgpt2 (Sanh et al., 2019) 0.208 0.146 0.517 0.488 0.643 0.535 0.795 0.825
ic3 + gpt2 (Radford et al., 2019) 0.272 0.159 0.602 0.542 0.638 0.51 0.79 0.83
ic3 + gpt2 lg (Radford et al., 2019) 0.28 0.164 0.583 0.486 0.735 0.64 0.85 0.89
ic3 + gpt2 med (Radford et al., 2019) 0.299 0.187 0.606 0.531 0.79 0.705 0.9 0.935
ic3 + gpt2 xl (Radford et al., 2019) 0.28 0.18 0.58 0.473 0.849 0.755 0.975 0.99
ic3 + gpt3 (Brown et al., 2020)

+ ada 0.282 0.18 0.585 0.463 0.866 0.78 0.975 0.985
+ babbage 0.199 0.115 0.504 0.341 0.83 0.735 0.97 1.0
+ curie 0.218 0.111 0.519 0.319 0.827 0.71 0.975 0.995
+ davinci2 0.321 0.207 0.622 0.491 0.939 0.895 1.0 1.0
+ davinci3 0.381 0.251 0.675 0.547 0.958 0.925 1.0 1.0

ic3 + gptneo 125M (Black et al., 2021) 0.235 0.157 0.521 0.447 0.777 0.69 0.895 0.915
ic3 + gptneo 1B (Black et al., 2021) 0.253 0.155 0.546 0.403 0.844 0.75 0.985 0.995
ic3 + gptneo 2B (Black et al., 2021) 0.242 0.15 0.536 0.393 0.844 0.74 0.98 1.0
ic3 + llama7B (Touvron et al., 2023) 0.224 0.128 0.517 0.324 0.777 0.65 0.945 0.995
ic3 + llama13B (Touvron et al., 2023) 0.257 0.175 0.554 0.419 0.834 0.725 0.99 1.0
ic3 + stable lm 3B (StabilityAI, 2023) 0.247 0.184 0.552 0.454 0.873 0.785 0.985 0.995

Chat Models

ic3 + alpaca 7B (Taori et al., 2023) 0.324 0.216 0.63 0.503 0.912 0.85 1.0 1.0
ic3 + chatgpt (OpenAI, 2022b) 0.401 0.27 0.692 0.595 0.954 0.920 1.0 1.0
ic3 + claude (Bai et al., 2022) 0.38 0.262 0.677 0.583 0.962 0.935 1.0 1.0
ic3 + gpt4 (OpenAI, 2023) 0.42 0.29 0.713 0.609 0.96 0.925 1.0 1.0
ic3 + koala 7B (Geng et al., 2023) 0.284 0.178 0.586 0.455 0.899 0.825 0.99 1.0
ic3 + koala 13B v1 (Geng et al., 2023) 0.418 0.323 0.692 0.637 0.916 0.865 0.985 0.985
ic3 + koala 13B v2 (Geng et al., 2023) 0.376 0.264 0.67 0.592 0.923 0.87 0.995 0.995
ic3 + stable lm 3B (StabilityAI, 2023) 0.077 0.06 0.299 0.144 0.265 0.23 0.28 0.295
ic3 + stable lm 7B (StabilityAI, 2023) 0.263 0.197 0.564 0.489 0.873 0.785 0.995 1.0
ic3 + vicuna 7B (Chiang et al., 2023) 0.361 0.247 0.658 0.548 0.938 0.89 1.0 1.0
ic3 + vicuna 13B (Chiang et al., 2023) 0.384 0.272 0.676 0.584 0.927 0.87 0.995 0.995

Summary Models

ic3 + t5 base (Raffel et al., 2020) 0.353 0.25 0.646 0.587 0.903 0.845 0.98 0.99
ic3 + t5 small (Raffel et al., 2020) 0.402 0.289 0.681 0.609 0.944 0.9 0.995 1.0

Baselines

ic3 + references 0.434 0.305 0.684 0.564 0.939 0.895 0.995 1.0
blip baseline (Li et al., 2022) 0.266 0.196 0.567 0.491 0.865 0.77 0.995 1.0
Chat Captioner (t5-xxl + chatgpt) (Zhu
et al., 2023a)

0.361 0.207 0.669 0.564 0.947 0.905 1.0 1.0
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Table B.2: Exploration of “uncertainty-encouraging" language in the prompt, using BLIP
and GPT-3 on a 200 element randomly sampled subset of the MS-COCO dataset. See
Appendix B.2.2 for a discussion of LLOP, the “likely-language occurrence percentage". Help-
fulness and correctness are given as head-to-head win percentage following subsection 6.2.4.

Model LLOP Helpfulness Correctness

Candidates With 62.5% 52.01% 72.32%
Candidates Without 4.0% 43.63% 18.16%

References With 52.0% 34.65% 53.00%
References Without 0% 28.79% 26.20%

Table B.3: Content coverage and CLIP recall demonstrating the use of “This is a hard
problem" in the prompt, using BLIP on a 200 element randomly sampled subset of the
MS-COCO dataset.

Exact Fuzzy CLIP Recall
Model Noun Verb Noun Verb MRR R@1 R@5 R@10

Candidates
With

0.322 0.216 0.647 0.503 0.770 0.645 0.96 0.99

Candidates
Without

0.316 0.208 0.638 0.496 0.765 0.635 0.94 0.99

References
With

0.516 0.308 0.744 0.560 0.833 0.745 0.97 0.995

References
Without

0.518 0.305 0.745 0.558 0.830 0.745 0.97 0.99
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(a) K vs. CLIP MRR (b) K vs. Noun Recall

Figure B.1: Exploration of the number of candidate set captions vs CLIP MRR and Noun
Recall for the GPT-3 language model.

length passed to the large language model, straining the summarization capabilities of the
model, and leading to increased cost for the LLM. We ablate the choice in Figure B.1. Here,
we can see that increasing the number of captions can lead to increases in automated measure
performance (as more captions will capture more information), however more captions can
also increase execution time linearly with the number of candidate captions. We can see here
that much of the benefit is captured at 10 candidate captions, which we chose for this work,
since it represents a good trade-off between execution time, and caption quality.

Is performance just due to LLMs correcting caption errors? Table Table B.4
shows both the automated performance of the GPT-3 model, and the human performance of
the GPT-3 model for several values of K. We can see that while GPT can help to improve on
single captions through error correction (as evidenced by slightly higher scores for GPT-3
(K=1) vs. the baseline), the best scores are achieved with higher values of K.

B.2.4 Blip + OFA

Because the caption summarization process is independent of the caption generation
process, it is a natural question to ask if multiple different sources of caption generation
could be used during the generation phase. The results of combining the sampled candidates
from both blip and ofa are shown in Table B.5

B.2.5 How is caption diversity related to IC3 outputs?

One reasonable question to ask is: does the diversity of the input captions impact the
quality of the output summarized caption? In Figure B.2, we plot the Self-BLEU (Zhu et al.,
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Table B.4: Exploration of the choice of K for the GPT-3 language model and the BLIP-2
captioning engine on a randomly sampled 200 element MS-COCO subset. Human results are
given as Glicko-2 scores (See Appendix B.4).

Exact Fuzzy CLIP Recall Human
K Noun Verb Noun Verb MRR R@1 R@5 Glicko

Baseline 0.264 0.162 0.564 0.423 0.885 0.805 0.985 1367.28
1 0.258 0.161 0.562 0.456 0.872 0.790 0.985 1534.48
10 0.346 0.212 0.646 0.516 0.956 0.920 1.000 1674.51
100 0.368 0.223 0.665 0.526 0.948 0.905 1.000 1623.22

Table B.5: Content coverage and CLIP recall demonstrating the combination of caption
engines on a 200 element randomly sampled subset of the MS-COCO dataset.

Exact Fuzzy CLIP Recall
Model Noun Verb Noun Verb MRR R@1 R@5 R@10

ofa + blip + ic3 0.341 0.204 0.648 0.485 0.796 0.685 0.945 0.985
refs + ic3 0.517 0.308 0.744 0.561 0.833 0.745 0.970 0.995

Blip + ic3 0.313 0.206 0.637 0.493 0.770 0.645 0.960 0.99
Ofa + ic3 0.300 0.184 0.623 0.474 0.770 0.660 0.935 0.97
Blip 0.230 0.178 0.542 0.439 0.551 0.400 0.760 0.91
Ofa 0.212 0.150 0.531 0.387 0.341 0.115 0.630 0.89
refs 0.214 0.537 0.099 0.337 0.683 0.540 0.877 0.965

2018) of the candidate captions (a measure of caption-set diversity), against the automated
evaluation measures. We find that in general, there are very weak correlations between the
CLIP MRR and the diversity of the candidate set (OFA, r = 0.079, BLIP, r = 0.094, BLIP-2,
r = 0.059): when more diversity is needed to express the content to high specificity, the
model is including it. When less diversity is required, the model does not include it. We do
however see correlation between the content recall scores of the model, and the diversity of
the input candidates (Noun Recall: OFA, r = 0.233, BLIP r = 0.238, BLIP-2, r = 0.252,
Verb Recall: OFA, r = 0.199, BLIP r = 0.193, BLIP-2, r = 0.185). This suggests that
when the candidates are more diverse, this information is captured in the output summary
sentence.
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Figure B.2: Plots showing diversity of candidate captions plotted against automated evaluation
measures when using 10 candidate captions, and GPT-3 (Davinci v3) as a LM.

B.3 Additional Experimental Details

B.3.1 Image Captioning Methods

In this work, we explore two image captioning models as seed models for IC3: BLIP (Li
et al., 2022) and OFA (Wang et al., 2022b).

BLIP: BLIP (Li et al., 2022) is a vision-language pre-training framework designed to
effectively use noisy web data at scale for pre-training. The model operates by using a large
dataset of synthetic image-caption pairs, generated by a seed captioning model, and a filter to
remove low-quality synthetic captions. BLIP has demonstrated strong transfer performance
to many vision-language tasks, and performs particularly well when transferred to image
captioning in zero-shot and fine-tuning scenarios. The BLIP (Large) model that we use is
fine-tuned on MS-COCO for image captioning, and unless otherwise specified, we generate
baseline captions using beam search with 16 beams, and generate candidate captions for IC3
using temperature sampling as described in subsection 6.2.1.

OFA: OFA (Wang et al., 2022b) is a unified paradigm for multimodal pre-training, which
is both task and modality agnostic. For pre-training, OFA unifies several vision and language
tasks including image generation, visual grounding, image captioning, image classification and
language modeling among others, and is pre-trained using 20M publicly available image-text
pairs. The OFA (Huge) model that we use is fine-tuned on MS-COCO for image captioning,
and unless otherwise specified, we generate baseline captions using beam search with 16
beams, and generate candidate captions for IC3 using temperature sampling as described in
subsection 6.2.1.

B.3.2 Datasets

We explore image captioning across several datasets in chapter 6.
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MS-COCO Dataset: The MS-COCO dataset (Lin et al., 2014) is a dataset for image
description containing 328K images, each with 5 ground truth descriptions. MS-COCO is
licensed under a Creative Commons Attribution 4.0 license. All of the results in this work
are presented on the test-split of the Karpathy splits of the COCO-2014 dataset.

Flickr-30K Dataset: The Flickr-30K dataset (Young et al., 2014) is an image description
dataset containing 30K images and 150K captions (5 ground truth captions per image), and
is licensed under a custom non-commercial (for research use only) license. All of the results
are presented on the test-split of the Karpathy splits of the Flickr-30K dataset.

Hard MRR Splits: In some situations, we want to be able to explore the performance
of our model vs. baselines on the most challenging captions. We call these splits the “Hard
MRR" splits, and they consist of the set of 200 samples for which the MRR of the underlying
captioning model is lowest. Thus, Hard MRR - BLIP contains the 200 samples minimizing
MRR for the baseline BLIP model, with a caption generated using beam search (16 beams),
and similarly Hard MRR - OFA contains the 200 samples minimizing MRR for the baseline
OFA model with a caption generated using beam search (16 beams).

B.3.3 N-Gram Metric Scores

The performance of the model on traditional n-gram measures is demonstrated in Table B.6.
In this work, IC3 models are designed to produce captions which are the combination of all of
the viewpoints presented by each of the individual captions, suggesting that they contain more
information on average than any single reference sentence. Because of this, often the n-gram
performance of the model is significantly worse, as while the overlap of content n-grams
may be higher (suggested by Table 6.7 and Table 6.8 in chapter 6), there are a lot of extra
n-grams per caption, which will decrease metric scores. We explore four n-gram measure:
BLEU (Papineni et al., 2002), CIDEr: (Vedantam et al., 2015), METEOR (Agarwal and
Lavie, 2008) and ROUGE-L (Lin, 2004). We also compute the MAUVE (Pillutla et al., 2021)
score between all samples generated and the reference samples, which measures the deviation
in the language space, and notice that the MAUVE score is extremely low, suggesting that
we have succeeded in producing a language distribution which is significantly different from
the reference distribution.

B.4 ELO Scoring for Human Ratings
The results shown in subsection 6.3.1 indicate a challenging reality: humans can often find

it difficult to calibrate to the quality of image captions when viewing single image captions
alone, but can find it much easier to understand any differences in quality when presented
with two pairs of captions, in a head to head fashion. Unfortunately, since human caption
ratings can be expensive, it is tricky to perform all head to head caption evaluations across
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Table B.6: Performance of models augmented with IC3 on traditional N-gram measures.

Model BLEU@4 ↑ CIDER ↑ ROUGE-L ↑ MAUVE ↑

MS-COCO (Karpathy Split)

ofa + ic3 0.159 0.495 0.483 0.091
blip + ic3 0.118 0.325 0.445 0.074
ofa 0.292 1.323 0.598 0.254
blip 0.292 1.315 0.595 0.158

Flickr-30K (Test Split)

ofa + ic3 0.132 0.392 0.449 0.004
blip + ic3 0.092 0.277 0.401 0.004
ofa 0.212 0.872 0.541 0.004
blip 0.160 0.501 0.727 0.004

values of K, language models, captions, etc. In order to compensate for this, in some situations
instead of running the full head to head experiment, we instead use a tournament, which
measures the quality of a model through an Glicko-2 score-based rating system (Glickman,
1995). In some cases, we report the Glicko-2 scores of each of the models in our human-rating
tournament, as a proxy for the overall quality of the model.

B.5 Human Studies
In our work, we run two different human rating studies, a head-to-head comparison

between methods, and a context-free method which generates mean opinion scores. A
screenshot of our evaluation tool for mean opinion scores is given in Figure B.11, and a
screenshot of the evaluation tool for head-to-head rating is given in Figure B.12. Both of
these experiments have been approved as exempt under category 2 by the UC Berkeley IRB,
protocol ID 2022-11-15846. For any questions, contact ophs@berkeley.edu.

Significant prior work has explored the collection of human judgments of the quality of
visual descriptions. Human judgment is considered the gold standard for visual description
evaluation, and previous studies typically rely on human annotators to rate caption quality on
one or multiple axes (Levinboim et al., 2021; Kasai et al., 2022). While automated methods
exist for the evaluation of caption quality (Agarwal and Lavie, 2008; Vedantam et al., 2015;
Papineni et al., 2002), recent work including THUMB (Kasai et al., 2022), which has run
human evaluations on captions produced by models based on “Precision”, “Recall”, “Fluency”,
“Conciseness” and “Inclusive Language”, has shown that humans produce captions which score
significantly higher when judged by human raters, than when judged by existing measures
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(and further, that human judgments of quality correlate poorly with existing measures),
necessitating the need for human evaluation as opposed to evaluation of captioning methods
using automated measures for caption quality. Our model quality evaluation method is
closely aligned with the work in (Levinboim et al., 2021), where we use similar questions to
determine the “helpfulness” and “correctness” of visual descriptions. Our work differs in that
instead of collecting a set of human ratings of captions for the purpose of training statistical
models, we aim to evaluate the quality of both human and machine generated captions, in
an effort to determine if the machine generated captions from recently proposed methods in
our group outperform existing human and machine generated captions for the images.

In this study, subjects participate in sessions of reviewing visual media with corresponding
visual descriptions, e.g. pairs of images and captions. These sessions consist of sequences of
rating tasks, with a session consisting of not more than ten tasks. The types of tasks, which
we call activities, are as follows:

• Caption Rating - Viewing a given image and caption pair, and rating the quality of the
caption on several axes (described below).

• head-to-head Caption Rating - Viewing a given image, and a pair of captions, and
deciding which caption better describes the image.

While there are several possible activities, each session consists of sequences of the same
type of activity, and each task is presented in randomized order for each subject.

Subjects are linked to the data collection interface on our server developed by us in a
frame directly from an Amazon Mechanical Turk internal HIT using the ExternalQuestion
API which allows external web content to be displayed within the internal HIT. No third-
party software is used with the HITs and no reviewing data is collected by Amazon or any
third-parties with the use of this API.

The subjects are shown a consent form on the Amazon Mechanical Turk HIT prior to
entering our data collection interface. Subjects are then required to click the “I Accept”
button to confirm their agreement with the consent information of the study. They are
then redirected to the data collection interface. For each image, users are presented with an
image, and an associated image description. Images are drawn from the MSCOCO dataset
(Lin et al., 2014). Human generated captions are drawn from the references collected by the
authors of (Lin et al., 2014).

For task A (Caption Rating), users are first asked to rate the “helpfulness” of the caption,
with the prompt: “Does the caption provide useful information for a person who cannot see
the image (and who is trying to understand what is in the image)?”, among the options: Not
helpful at all”, “Slightly helpful”, “Moderately helpful”, “Helpful”, “Very helpful”.. The user
can also select the option “I can’t tell”. The user is then asked to rate the “Correctness” of
the caption with the prompt “How correct is the caption?”, among the options “Completely
wrong", "Mostly wrong" "Slightly wrong", "Slightly right", "Mostly right", "Completely
right". The user can also select the option “I can’t tell”.
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The user is then asked to select the “submit” button, to move to the next task in the
HIT, which is composed of 10 tasks. The user can also skip the task by selecting the
“Image/Caption not visible button”. If the user selects “I can’t tell” or “Image/Caption not
visible” for any option, the tasks remaining are not decreased, but if the user selects submit,
and passes a valid rating, then the number of tasks remaining are reduced by 1.

For task B (head-to-head Caption Rating), the user is presented with two image captions
instead of one image caption, and asked to select “Caption A better represents the content
in the image” or “Caption B better represents the image”. The user can also select “I can’t
tell”. The user is then asked to select the “submit” button, to move to the next task in
the HIT, which is composed of 10 tasks. The user can also skip the task by selecting the
“Image/Caption not visible button”. If the user selects “I can’t tell” or “Image/Caption not
visible” for any option, the tasks remaining is not decreased, but if the user selects submit,
and passes a valid rating, then the number of tasks remaining is reduced by 1.

After completing all of the tasks in the session, users are given a randomly generated code,
which is entered in the Amazon MTurk HIT page, and links the user’s survey results to the
Amazon worker ID. We collect these linkings to perform analysis on inter-rater agreement,
as while the session itself is anonymous, users may complete multiple sessions, and some
method is required to maintain identity between the sessions.

After each of these sessions, subjects are given a brief survey regarding the task difficulty
(Select from the options: “Very Easy”, “Easy”, “Normal”, “Hard”, “Very Hard”) and prompted
for any additional comments on the session in general for each session in an (optional) open-
response format. Users are also encouraged to protect their privacy with the prompt: "After
submitting your responses, you can protect your privacy by clearing your browser’s history,
cache, cookies, and other browsing data. (Warning: This will log you out of online services.)"
Subjects were compensated with $0.18 USD per session (based on the recommended Amazon
wage (federal minimum wage, $7.25/Hr), with an expected completion time of 1.5 minutes
per session), and should be able to complete the session in under one and half minutes (based
on several pilot examples). Subjects can participate in the task a maximum of 100 times.
The maximum time commitment for each subject over two months of our study is 2 hours.

To compute p-values, we first aggregate each users’ session scores for each model (in the
case of MOS, we take the mean for each model, and in the case of head-to-head, we assign a
+1 value for a win, and a −1 value for a loss, and take the mean). For MOS, we compute
a 1-sided t-test on the aggregated samples (which should be independent) to the baseline,
while for the head-to-head scores, we compute a 1-sided single-sample t-test against a mean
of zero.

B.6 Additional Qualitative Examples
Additional qualitative examples are given in Figure B.3, Figure B.4, Figure B.5, Figure B.6

and Figure B.7. From these examples, it is clear that IC3 outperforms the baseline in many
situations. Examples in this section are randomly selected from the test set when indicated.
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(a) blip+ic3: A plate with an
orange, crackers, lettuce, and
possibly other items such as
nuts or a book.
blip: A close up of a plate of
food on a table.

(b) blip+ic3: A man standing
on a tennis court holding a ten-
nis racquet, possibly wearing
an orange outfit or raincoat.
blip: A man standing on top
of a tennis court holding a rac-
quet.

(c) blip+ic3: A woman rid-
ing a brown horse and jumping
over hurdles in a competition,
with other people watching.
blip: A woman riding on the
back of a brown horse.

Figure B.3: Additional qualitative examples of blip + ic3 on the MS-COCO dataset.

(a) ofa+ic3: A woman in a
bikini jumping in the air to hit
a volleyball on a beach, pos-
sibly while playing a game of
beach volleyball.
ofa: A woman in a bikini is
jumping in the air to hit a vol-
leyball.

(b) ofa+ic3: Two women in
kimonos standing in front of
an information board with um-
brellas, possibly in the rain.
ofa: Two women with umbrel-
las standing in front of an in-
formation board.

(c) ofa+ic3: A lacrosse player
in a white jersey running down
the field with the ball during
a game or match.
ofa: A lacrosse player runs
with the ball.

Figure B.4: Randomly selected qualitative examples of ofa + ic3 on the Flickr30K dataset.
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(a) blip+ic3: A man in
striped trunks riding a surf-
board on a large wave near a
group of people.
blip: A man riding a wave on
top of a surfboard.

(b) blip+ic3: A young boy
standing outside of a build-
ing, possibly in front of a win-
dow or doorway, holding a cell
phone to his ear and wearing
a red shirt.
blip: A little boy standing
outside of a building talking
on a cell phone.

(c) blip+ic3: Two people,
possibly hikers, sitting on top
of a mountain, possibly icy or
rocky, overlooking a snowy val-
ley.
blip: A couple of people sit-
ting on top of a mountain.

Figure B.5: Randomly selected qualitative examples of blip + ic3 on the Flickr30K dataset.



203

(a) ofa+ic3: A group of peo-
ple sitting on a bench under
a tree, with four green street
signs hanging from it.
ofa: A group of people sitting
on a bench under a tree.

(b) ofa+ic3: A plate of food
on a table with rice, beans,
and possibly a meat dish, such
as chicken or mashed potatoes.
ofa: A plate of food on a ta-
ble.

(c) ofa+ic3: A plate with two
items of food on it, possibly a
sandwich and a burrito, or two
empanadas, sitting on a table
or counter.
ofa: A plate of food on a ta-
ble.

Figure B.6: Randomly selected qualitative examples of ofa + ic3 on the MS-COCO dataset.

(a) blip+ic3: A male tennis
player wearing all white, walk-
ing across a tennis court while
holding a racquet, possibly af-
ter losing a match.
blip: A man walking across a
tennis court holding a racquet.

(b) blip+ic3: A banana, bowl
of cereal, and cup of coffee sit-
ting on a table or counter.
blip: A banana sitting next
to a bowl of cereal and a cup
of coffee.

(c) blip+ic3: A man wearing
either red or green and white,
holding a tennis racquet and
swinging it at a tennis ball on
a tennis court.
blip: A man holding a tennis
racquet on a tennis court.

Figure B.7: Randomly selected qualitative examples of blip + ic3 on the MS-COCO dataset.
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B.7 Zero-Shot Style and Language Transfer
It is well known that models such as GPT 3 (Radford et al., 2021b) are capable of many

zero-shot tasks, such as language style transfer and translation. By modifying the prompt
in the summarization approach, IC3 can be used to generate captions in different styles
and languages. For example, we can modify the prompt to generate captions in different
languages, for example, to generate captions in Japanese, we could use the prompt:

This is a hard problem. Carefully summarize in Japanese in ONE detailed
sentence the following captions by different (possibly incorrect) people
describing the same scene. Be sure to describe everything, and identify when
you’re not sure. For example:
Captions: {formatted captions}.
Summary (in Japanese): 写真はおそらく

We can see the performance of the model for such prompts in Figure B.8. Such cap-
tions represent an easy way to transfer knowledge to different languages, however may not
outperform translating the English caption alone.

Figure B.8: Examples of the generated caption (blip + ic3) for different languages:
English: A woman riding a brown horse and jumping over hurdles in a com- petition, with other people watching.
Spanish: Una mujer montando a caballo un caballo marrón mientras salta un obstáculo en un campo verde,
posiblemente en una competición con espectadores mirando.
French: Quelqu’un qui monte à cheval sur le dos d’un cheval brun et saute par-dessus un obstacle dans un champ,
avec des gens en arrière-plan.
Japanese: 女性が茶色の馬の背中に乗って障害物を跳び越える様子を捉えたものであるが、確実ではない。
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(a) Generated blip+ic3 Cap-
tion: A man sitting at a
desk in front of at least one
computer, possibly two, with
other details such as cloth-
ing and accessories vary-
ing.

(b) Generated blip+ic3 Cap-
tion: A small bathroom with a
white toilet, sink, counter, and
possibly a marble tile floor,
and there may be a cat
present.

(c) Generated blip+ic3 Cap-
tion: A white plate topped
with a sandwich and a cup
of coffee, possibly accom-
panied by other food
items such as french toast
and/or meat.

Figure B.9: Examples of blip + ic3 failure modes (MS-COCO Dataset).

B.8 Failure modes & Limitations
In this section of the appendix, we explore some of the limitations of the method, and

provide some insight into how the model could be improved.

B.8.1 Hallucination

Some examples of failure cases are shown in Figure B.9. In Figure B.9a, we can see
the effect of “4th-wall breaking," one of the key failure modes of the method. Because the
prompt suggests that that the model should combine several underlying captions, the output
caption references the fact of this combination in a hidden way, when it says “other details
varying". In some cases, the model might produce captions that end with words such as “...
as stated by the captions" or “... but the captions differ." which both reference the prompt,
and interfere with the flow of the caption.

In Figure B.9b, we can see a situation where the model passes through a hallucination
from the underlying captioning model. Because 3 of the 10 captions in the candidate set K
mention a cat: “A cat in a bathroom staring into a sink", “A bathroom with a toilet and
sink and a cat", and “A cat walking around in a bathroom", and the LLM is not visually
aware, there is no reason to doubt the existence of the cat, and it is included in the caption.
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Luckily, in this failure case the model prefaces the existence of the cat with a “may", however
there are situations where this is not the case.

In Figure B.9c, we can see the third major failure case of the model: treating uncertainty
as multiple objects. Because the captioning model is not aware of the visual content of the
image, when there is a high amount of noise in the captions, such as here, where the actual
contents of the plate are unclear, the model often ascribes the noise to several objects in the
scene, instead of a single uncertain object. This can sometimes be automatically detected
by counting the number of commas in the caption, and we have found empirically that
re-generating any caption with more than 7 commas can reduce or eliminate these effects
(though we do not use this post-processing step in chapter 6).

B.8.2 Controllable Alt-Text Generation

While our model is capable of generating high-fidelity descriptions of the image, as
discussed in section 6.4, the model can struggle when asked to describe background and con-
textual details that differ significantly from the reference dataset distribution. To demonstrate
this, we perform a case study with the image in Figure B.10.

Figure B.10: Photo by Zhang Kaiyv1. Alt-text is often contextual. From the reference: “If
[the image] is used in an article about a public bicycle hire scheme named Hire-a-bike, then
the bike is the focus, and the alt text could be "A woman rides a Hire-a-bike along a city
road". However, if it’s used in an article about a dispute between the café and the restaurant,
the alt text might be "The storefronts of the ’Café Bar Hotel’ and ’Alpen Hotel Restaurant’".
Although if the dispute is about color of the buildings, the guttering, or the window frames,
then those details should be part of the alt text."

In the case study, we take the prompt:
This is a hard problem. Carefully summarize in ONE detailed sentence the

following captions by different (possibly incorrect) people describing the same
scene. Be sure to describe everything, and identify when you’re not sure. For
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example:
Captions: {formatted captions}.
Summary: I’m not sure, but the image is likely of...

and replace the colored prompt with a set of different prompts, to generate potential
alt-text for the image in Figure B.10. From these prompts, we can see that in many cases,
the model fails to be controllable, and only repeats the key information in the scene. While
in some cases the prompts can elicit additional information, we believe there is significant
work to be done to explore how we can sample enough relevant information from the base
captioning model (it seems that increasing the number of samples is not always sufficient),
and surface that information in the generated summary (simple modifications to the prompt
seem ineffective).
The results for BLIP are below:
Prompt: With original prompt
Result: A woman riding a bicycle past a building with a cafe, bar, hotel, and/or restau-
rant, possibly with a fence nearby.
Prompt: “Focus on describing what the person is doing”
Result: A person riding a bicycle past a building or establishment of some kind.
Prompt: “Focus on describing the buildings”
Result: A woman riding a bicycle past some buildings, possibly a hotel, with a gate in
the background.
Prompt: “Only describe the buildings”
Result: A person riding a bicycle past a tall building.
Prompt: “do not mention any people in the summary”
Result: A person riding a bicycle down a street past buildings.
Prompt: “Focus on describing the color and architecture of the buildings”
Result: A person riding a bike past a hotel with colorful wooden shutters and other build-
ings nearby.
Prompt: “Focus on describing what the woman is wearing”
Result: A woman wearing casual clothing riding a bike past two colorful buildings.
Prompt: “Make sure to describe the appearance of the buildings in detail”
Result: A person riding a bicycle in front of a building, which could be an old hotel, cafe,
apartment building, restaurant, or other type of building with many windows and possibly
a fence or gate.
Prompt: “Make sure to describe the person’s appearance in detail”
Result: A person, possibly a woman, riding a bicycle past buildings, a fence, a restaurant,
and a hotel.
Prompt: “Make sure to describe the person’s appearance in detail, such as what they are
wearing and doing”
Result: A woman in a floral dress riding a red bike past an old, historic building with
a restaurant across the street, while an older man is riding a bicycle past several other
older-fashioned buildings.



208

The results for OFA are below:
Prompt: With original prompt
Result: A woman riding a bicycle in front of a building, fence, or restaurant in a variety
of cities in Europe.
Prompt: “do not mention any people in the summary”
Result: A person riding a bicycle in front of a building, fence, or restaurant.
Prompt: “Focus on describing what the person is doing”
Result: A person riding a bicycle in front of a building, fence, or restaurant.
Prompt: “Focus on describing what the person is doing” + “I’m not sure, but the image
is likely of a person, who is”
Result: Possibly a woman, riding a bicycle on a street in front of a building, fence, metal
gate, restaurant, hotel, or other structures in various cities such as Tallinn, Vienna, Al-
bany, Alphen aan den Rijn, Berlin, Strasbourg, or Frankfurt am Main.
Prompt: “Make sure to include details about what the person is wearing and doing”
Result: A woman riding her bicycle past a tall fence, possibly with a restaurant behind
it, in front of a building or hotel in a city such as Kitzingen, Albéliyah, Breckenridge,
Frankfurt, Innbruck, or Bad Schwartau..
Prompt: “Make sure to only include details about what the person is wearing and doing”
Result: A woman riding a bicycle on a city street in front of a building, fence, or restau-
rant.
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Figure B.11: Description rating tool (Mean Opinion Scores).
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Figure B.12: Description rating tool (head-to-head).
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Appendix C

Appendix for Triangle-Rank Metrics for
Distribution Aware Conditional Natural
Language Generation
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Appendix

C.1 Additional Experimental Details
In this section, we discuss additional experimental details for interested readers.

C.1.1 Code

We make all code/data publicly available for use at https://github.com/CannyLab/vdtk.
We hope that releasing our code, along with the JSON files containing test-set predictions for
the models in question will help inspire further research and examination into the evaluation
of models for visual description.

C.1.2 Datasets

MSR-VTT Dataset: The MSR-VTT dataset (Xu et al., 2016) is a dataset for video
description consisting of 10,000 videos, with 20 reference ground truth descriptions for each
video. It was collected by downloading 118 videos for each of 257 queries from a popular
video sharing website. MSR-VTT contains 41.2 hours of video, with an average clip length
lying between 10 to 30 seconds. It has a vocabulary size of 21,913. For more details about
the diversity of the language present in the dataset, we refer readers to Chan et al. (2022c).

MS-COCO Dataset: The MS-COCO dataset (Lin et al., 2014) is a large-scale dataset
for image description, object detection and segmentation. MS-COCO contains 328K images,
each with 5 ground truth descriptions generated by human AMT workers. For more details
about the diversity of the language present in the dataset, we refer readers to Chan et al.
(2022c). MS-COCO is licensed under a Creative Commons Attribution 4.0 license.

C.1.3 Models

In chapter 11, we explore the performance of our metrics over several models: two video
captioning models, and two image captioning models.

TVT The Two-View Transformer (Chen et al., 2018) is a baseline method for video
description, which consists of a transformer encoder/decoder structure. While we did not
have access to the original code, we trained our own version of the model on the MSR-VTT
dataset (standard splits), leveraging features from Perez-Martin et al. (2021). The model was
trained for 300 epochs, with a batch size of 64, model hidden dimension of 512, 4 transformer
encoder and decoder layers with 8 heads each, and dropout of 0.5. For optimization, we

https://github.com/CannyLab/vdtk
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leveraged the Adam optimizer with a learning rate of 3e−4 and weight decay of 1e−5 with
exponential learning rate decay with gamma 0.99. This model achieves a CIDEr score of
56.39 on the test dataset. The model was trained using a Titan RTX-8000 GPU over the
course of several hours.

O2NA O2NA (Liu et al., 2021a) is a recent approach for non-auto-regressive generation
of video captions. While the method had available code and checkpoints which we used for
this experiment, the method is not designed to sample more than one candidate caption
at any given time. To adjust the model to sample multiple candidate captions, we made
several adjustments. First, the model was modified to sample a length according to a softmax
distribution over the length likelihoods (instead of using a greedy choice of length, or beam
search over lengths, as proposed in chapter 11). Second, the model was modified to sample
tokens at each non-autoregressive step from a temperature-adjusted softmax distribution
instead of greedily sampling tokens. We make our modified code available as a patch to the
original repository, in the hopes that other users will continue to build on these alterations.

CLIPCap CLIPCap (Mokady et al., 2021) is a recent model for image description based on
using the CLIP (Radford et al., 2021c) model for large vision and language pre-training as a
feature encoder, and GPT (Brown et al., 2020) as a natural language decoder. CLIPCap code
and MS-COCO trained model checkpoints are publicly available from the authors, however
we made some alterations to support temperature-based and nucleus sampling. We make our
modified code available as a patch to the original repository, in the hopes that other users
will continue to build on these alterations. CLIPCap is licensed under the MIT license.

VLP VLP (Zhou et al., 2020) is a unified vision and language pre-training model, designed
to perform both image captioning and visual question answering. The model is pre-trained
on the Conceptual Captions (Sharma et al., 2018) dataset, and fine-tuned on the MS-COCO
captions dataset for image description. The authors make code and pre-trained models
publicly available, however we modified the code somewhat to support additional sampling
methods. We make our modified code available as a patch to the original repository, in the
hopes that other users will continue to build on these alterations. VLP is licensed under the
Apache License 2.0.

C.1.4 Distance Metrics

In chapter 11, we explore three base semantic metrics as distance underlying our TRM
methods, CIDEr-D (Vedantam et al., 2015), METEOR (Agarwal and Lavie, 2008), and
BERT Distance (Zhang et al., 2020d).

CIDEr-D CIDEr-D (Vedantam et al., 2015) is a n-gram-based metric designed for visual
description, and based on the idea that common words are less useful in practice than
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uncommon words. In practice, this takes the form of a cosine similarity between TF-IDF
weighted vectors representing the sentences. Because CIDEr-D is a score, and not a distance,
we create a distance function: d(c, r) = 10− C(c, r), which works as CIDEr-D is bounded by
10. Note that because CIDEr-D is 10 if and only if and only if the two sentences are equal,
this fulfills the TRM requirements.

METEOR METEOR (Agarwal and Lavie, 2008) is a score which evaluates the semantic
distance between two text utterances based on one-to-one matches between tokens in the
candidate and reference text. The score first computes an alignment between the reference and
candidate, and computes a score based on the quality of the alignment. Because METEOR
is a score, and not a distance function, we use the distance d(c, r) = 1−M(c, r), where M
is the METEOR score of the reference. Because METEOR is bounded at 1 if and only if
the two utterances are identical, this simple transformation satisfies the requirements of the
TRM adjustment. While we could explore other ways of deriving a distance from METEOR,
we found that this simple approach was sufficient to demonstrate the performance of our
methods.

BERT Distance A recent method for determining the semantic distance between two
samples is to leverage a pre-trained BERT embedding model to create a semantic embedding
of the text, and computing the cosine distance between the test samples. In our work, we
leverage the MiniLM-L6-v2 model from the sentence-transformers package by Reimers and
Gurevych (2019) to embed our descriptions. Because cosine distance is already a distance
function, no additional transformation is necessary.

C.1.5 P-value Computations

For our experiments, our null hypothesis is that the candidate samples and the ground
truth samples are drawn from the same distribution. Because most of the methods do not
have an analytical way to compute the p-values (in fact, the TRMs are the only method
which has an analytic p-value computation given in Liu and Modarres (2011)), we instead
must compute the p-values though sampling. We thus enumerate the value of the statistic
across all of the possible candidate/reference partitions given the joint set of candidates and
references, and determine the probability of observing the sampled value, or some value more
extreme.

The values in Table 11.1 represent the p-value obtained with a single candidate sentence,
and 4 ground truth candidates for MS-COCO, or 19 ground truth candidates for MSR-VTT.
We reserve one gorund truth description in both datasets to serve as the “Human" performance
description. For TVT, CLIPCap and VLP, we sample the descriptions using beam search
with 16 beams. For O2NA, which is a non-autoregressive model, we sample according to the
method suggested in the original work (see Liu et al. (2021a)). Because there are several
thousand videos per dataset, computing all possible combinations across the dataset would



215

be far from tractable. Thus, the p-values were computed on a per-visual-input basis, and
then aggregated across videos using the harmonic mean, as suggested by Wilson (2019). Such
an aggregation method is valid when the experiments are not independent (which they are
not), unlike Fischer’s method (Fisher, 1992).

Figure 11.3 demonstrates the log p-values for the proposed methods across several
candidate samples. For MS-COCO, we use all five reference captions, and between one and
ten candidate captions sampled from CLIPCap using Nucleus Sampling (Holtzman et al.,
2020) with a temperature of 1.0, top-p of 0.9 and top-k of 20. The caption set is generated
once, meaning that the two-candidate set consists of the one-candidate set and one more
additional caption. For MSR-VTT, we use 10 reference captions, and between one and seven
candidate captions sampled from O2NA as described in appendix C.1.3 with a temperature
of 1.0 for both the length and token samples. We do not go to the full 10 candidate captions
for MSR-VTT due to tractability concerns, since adding an additional caption forces twice
the number of partitions to be evaluated when computing p-values.

The above experiments were performed on several n2d-standard-32 cloud GCP instances,
containing 32vCPUs and 128GB of RAM.

C.1.6 Frechet BERT Distance

The Frechet Inception Distance, originally proposed in Salimans et al. (2016), has often
been used for the evaluation of the distance between samples of images generated by GANs.
Images are first embedded in a latent space using a pre-trained inception network, and then
the Frechet distance between the generated samples and the reference samples is computed. In
our work, we replace the images with text, and the inception network with a pre-trained BERT
embedding network (Devlin et al., 2019). For a set of candidate samples (c1, . . . , cn) = C, a set
of reference samples (r1, . . . , rm) ∈ R, and a BERT embedding function ϕBERT : C ∪R → Rk,
we compute the Frechet BERT Distance as:

d2 =

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

ϕBERT (ci)−
1

m

n∑
i=1

ϕBERT (ri)

∣∣∣∣∣
∣∣∣∣∣

+ Tr
(
CC + CR − 2

√
CCCR

) (C.1)

where CC andCR are the covariance matrices of the C and R sets embedded with ϕBERT

respectively.
To get the BERT embedding, we leverage the CLS token of a large pre-trained model, in

this case, the MiniLM-L6-v2 model from the sentence-transformers package by Reimers and
Gurevych (2019).

The computation of p-values for the Frechet-BERT distance is largely bottle-necked by
the slow performance of the sqrtm function, which, because the matrices are not symmetric,
has no efficient algorithm for computation. Additionally, unlike the feature computation, this
operation must occur for every partition, leading to significantly reduced efficiency compared
to the other measures presented in chapter 11.
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C.1.7 MMD-BERT

Another common metric in the GAN literature is the computation of a maximum-mean
discrepancy between kernel-estimates of the samples introduced by Li et al. (2017). For a
set of candidate samples (c1, . . . , cn) = C, a set of reference samples (r1, . . . , rm) ∈ R, and a
BERT embedding function ϕBERT : C ∪R → Rk, we compute the MMD-BERT distance as:

ˆMMD =
N∑
i=1

N∑
j=1

K(ϕBERT(ci), ϕBERT(cj))

+
M∑
i=1

M∑
j=1

K(ϕBERT(ri), ϕBERT(rj))

+
N∑
i=1

M∑
j=1

K(ϕBERT(ci), ϕBERT(rj))

(C.2)

where K is a kernel function. In our experiments, we use an RBF kernel function with σ
equal to the median distance pairwise distance divided by two.

C.1.8 Search Techniques

In section 11.2, Figure 11.6, we explore the performance of several different search
techniques for our two-view transformer model on the MSR-VTT dataset. In this figure, we
explore four decoding search techniques: Greedy Search, Beam Search, Temperature-Based
Sampling, and Nucleus Sampling. For each method, and for each video in the test set, we
sample 10 descriptions. For Greedy Search, we sample 10 repeated sentences. For beam
search we sample the top beam search candidate, and repeat this ten times. While we did
explore using the top 10 results from a larger beam search, we found that a smaller beam
search and repeated values produced better METEOR scores, so we chose to compare against
this. Wider beam searches did produce higher TRMMETEOR scores, but because optimizing
for METEOR would be the current paradigm, we decided to include that in the referenced
figure. For standard temperature based sampling, we sampled 10 results at each temperature.
For Nucleus sampling, we sample 10 results at each temperature, however we freeze they
hyper-paramters of top-p at 0.9 and top-k at 20, as we found these values to generate the
best scores under the standard pairwise metrics. It remains relevant future work to perform
a deep-dive into the different generative methods with respect to TRMs, as there are likely
many interesting lessons that can be learned.

C.1.9 Correlation with Human Judgement

In our work, we run a human correlation experiment to determine how well human ratings
correlate with our metric’s judgements. A screenshot of our evaluation tool for mean opinion
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scores is given in Figure C.1. In each HIT, raters from Mechanical Turk were presented with
the reference captions, along with two sets of candidate captions. These candidate captions
were sampled from two models: OFA (Wang et al., 2022b) and BLIP (Li et al., 2022), at 11
different temperate settings: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. We then query the
subjects with two questions, both of which can be evaluated on a scale of {−2, 2}, with 0
indicating a tie:

• Which group of candidate captions (as a whole) provides more useful information about
the reference group for a person who cannot see the reference group?

• Which group of candidate captions (as a whole) matches best to the reference group
factually?

Subjects are linked to the data collection interface on our server developed by us in a
frame directly from an Amazon Mechanical Turk internal HIT using the ExternalQuestion
API which allows external web content to be displayed within the internal HIT. No third-
party software is used with the HITs and no reviewing data is collected by Amazon or
any third-parties with the use of this API. The subjects are shown a consent form on the
Amazon Mechanical Turk HIT prior to entering our data collection interface. Subjects are
then required to click the “I Accept” button to confirm their agreement with the consent
information of the study. They are then redirected to the data collection interface. For each
image, users are presented with an image, and an associated image description. Images are
drawn from the MSCOCO dataset (Lin et al., 2014). Human generated captions are drawn
from the references collected by the authors of (Lin et al., 2014).

After completing all of the tasks in the session, users are given a randomly generated code,
which is entered in the Amazon MTurk HIT page, and links the user’s survey results to the
Amazon worker ID. We collect these linkings to perform analysis on inter-rater agreement,
as while the session itself is anonymous, users may complete multiple sessions, and some
method is required to maintain identity between the sessions.

After each of these sessions, subjects will be given a brief survey regarding the task
difficulty (Select from the options: “Very Easy”, “Easy”, “Normal”, “Hard”, “Very Hard”)
and prompted for any additional comments on the session in general for each session in an
(optional) open-response format. Users are also encouraged to protect their privacy with
the prompt: "After submitting your responses, you can protect your privacy by clearing
your browser’s history, cache, cookies, and other browsing data. (Warning: This will log
you out of online services.)" Subjects were compensated with $0.18 USD per session (based
on the recommended Amazon wage (federal minimum wage, $7.25/Hr), with an expected
completion time of 1.5 minutes per session), and should be able to complete the session in
under one and half minutes (based on several pilot examples). Subjects can participate in
the task a maximum of 100 times. The maximum time commitment for each subject over
two months of our study is 2 hours.

We analyze the experiments by first collecting all human ratings, and taking the mean
of each score per image. We collect 5 ratings each for 794 images in the dataset, using 397
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unique Mechanical Turk workers. We then compute the Pearson correlation for the standard
max-aggregate scores, and for each of our methods against the mean of the human ratings.
To compute the human-human correlation, we compute first the leave-one-out mean for
each human rating, and compute the correlation of the leave-one-out mean with the existing
images.

C.2 Additional Results
In this section we present several additional interesting results to augment those in the

main discussion.

C.2.1 Embedding Methods for KBMs

In the main work, we primarily explore a BERT-based embedding method for the kernel-
based methods. Such an exploration does not preclude the use of other embedding methods,
each of which has different trade-offs, when looking at the quality of the resulting metric,
what the resulting metric measures, the time required to compute the embedding, and the
performance when the reference distribution is limited to small numbers of human samples
(such as happens in practice). Figure Figure C.2 shows a quick look at several possible choices
for embedding methods in the MMD-* family, including Bag of words (with a 5K vocab),
GLoVe (Pennington et al., 2014), FastText (Bojanowski et al., 2017), and CLIP (Radford
et al., 2021b).

While we can see that some of the methods are more sensitive to deviations in the image
distributions, such methods come with additional trade-offs. CLIP-style embeddings are
the most sensitive to human versus generated captions with fewer captions created, but are
significantly slower to evaluate at test time (almost 4x slower) than MMD-BERT, and also
produce a higher p-value when computing the leave-one scores on the human captions (which
is less desirable, as the human captions are drawn from the same distribution).

C.2.2 Unique vs. Correct Descriptions

In Figure C.3, we explicitly demonstrate how TRMs enable evaluation of both caption
diversity and quality. We artificially generate candidates for the MSR-VTT dataset by
mixing human-generated exact descriptions with human-generated descriptions from other
videos. On one axis we have the number of unique descriptions and on the other axis we
have the number of correct (exactly-matching) descriptions. Clearly, unlike METEOR alone,
TRMMETEOR scores are affected by both correctness and diversity.

Each experiment consisted of 10 candidate captions from the MSR-VTT dataset, and 10
reference captions from the MSR-VTT dataset. We first split the 20 MSR-VTT reference
captions into two sets of 10. One set of 10 captions formed the references. To select the
candidate captions, we first sampled k unique captions from the remaining reference set
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Figure C.1: A screenshot of our human rating interface.
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MMD-BERT -1.786 56.68
MMD-CLIP -1.887 14.41
MMD-GLoVe -1.952 54.8
MMD-FastText -1.954 57.45
MMD-BOW -2.022 49.41

Figure C.2: Performance of several different embedding functions for the MMD-* family
of metrics. Left: Sensitivity when evaluated on the MSR-VTT dataset with ten reference
captions and between one and seven candidate captions generated by O2NA. Right: Sensitivity
and speed when evaluated on human reference samples with 5 references and 5 candidates.

(which formed the “correct pool"), and k unique captions from other videos in the dataset
at random (forming the “incorrect pool"). We then selected m correct captions, from the
correct pool (at random) and 10−m captions from the incorrect pool (at random). This
was then plotted with m on the x-axis, and k on the y-axis, as a heat-map, where lighter
colors represent better scores (higher METEOR, or lower TRM-METEOR), and darker colors
represent poor scores.

We also explored the performance of the CIDEr metric across the same axes, the results
of which are shown in Figure C.4. We can see that they are largely similar to those from the
METEOR metric, suggesting that regardless of the underlying metric, we are still making
similar trade-offs between diversity and correctness.

C.2.3 Human p-values

Strong metrics for distributional comparison will have high sensitivity to samples coming
from distinct distributions, and will produce high p-values for samples which come from the
same distribution. To check that such a relationship holds, we also perform leave-one-out
experiments using human-generated captions from the reference set for both MSR-VTT and
MS-COCO. For MSR-VTT, we split the reference data into sets of 10 candidate samples and
10 reference samples, and compute the deviations using this partitioning. For MS-COCO,
we leverage the c40 split which has 40 reference descriptions for 5000 samples of the ground
truth. We partition the references for each video into groups of ten descriptions, and compute
the p-values from pairs of these partitions. Table C.1 gives the performance of the metrics
on this human data.
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Figure C.3: Plots showing how TRMs evaluate both diversity and quality. Left: TRMMETEOR,
Right: METEOR. Lighter colors represent better scores. While TRMMETEOR trades off
between diversity and quality, METEOR focuses only on quality not diversity.

Figure C.4: Plots showing diversity vs. quality tradeoffs. Left: TRMCIDEr, Right: CIDEr.
Lighter colors represent better scores. While TRMCIDEr trades off between diversity and
quality, CIDEr focuses only on quality not diversity.

C.2.4 MAUVE performance

In the main work, we found that MAUVE was prohibitively slow to use to compute p-
values for the training data. Because our p-values were computed with 10 reference sentences,
and up to 10 candidate sentences, at the existing rate, it could take several years to compute
the MAUVE p-values for the 50,000 sample MS-COCO dataset. In Table C.2, we present
several high-variance estimates of the MAUVE p-values (computed using only 100 samples).
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METEOR TRMMETEOR CIDEr TRMCIDEr BERT TRMBERT MMD-BERT
MSCOCO -0.6303 -0.5941 -0.5957 -0.4742 -0.6230 -0.5633 -0.6550
MSR-VTT -1.0046 -0.9613 -1.0224 -0.9777 -1.0172 -1.040 -1.0374

Table C.1: Log P-Values on human leave-one our samples. We can see that, surprisingly, none
of the methods (even the standard aggregations) produce statistically signficant differences.
That being said, TRMs often produce higher p-values, indicating that they may be more
robust to noise in human caption sets. We do not compute the Frechet-BERT values for
humans here, as it was prohibitively expensive.

Dataset MAUVE Log p-value METEOR Log p-value
MSR-VTT (O2NA) -0.4414 -1.7881
MSR-VTT (Human Captions) -0.1441 -0.6037
MS-COCO (CLIPCap) -0.3980 -2.5585
MS-COCO (VLP) -0.3234 -2.8609
MS-COCO (Human Captions) -0.2189 -0.7233

Table C.2: Log p-value estimates for MAUVE using five candidates, five references, and
100 samples (at nucleus sampling temperature 1.0 for O2NA, CLIPCap and VLP models).
We can see that Log p-values for MSR-VTT and MS-COCO are signficantly worse than
METEOR even with aggregation, likely due to the method using k-means to approximate
the text distributions with only 5 samples.

C.2.5 Visualizing Central Descriptions

We have found that descriptions which minimize the expected distance to the ground
truth distribution are relatively sparse in detail compared to other descriptions. Figures C.5,
C.6, C.7 and C.8 show qualitative examples of such descriptions for the MS-COCO dataset.
Each plot shows qualitative examples of “central" captions. The caption marked with arrows
is the ground truth caption which minimizes the expected METEOR distance to the other
reference captions, and the other captions are the additional references in the MS-COCO
dataset. Images are selected at random, and do not represent cherry-picked samples from
MS-COCO.

C.2.6 Additional Qualitative Samples
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Figure C.5: Qualitative example of “central" captions. The caption marked with arrows is
the ground truth caption which minimizes the expected METEOR distance to the other
reference captions.

Figure C.6: Qualitative example of “central" captions. The caption marked with arrows is
the ground truth caption which minimizes the expected METEOR distance to the other
reference captions.
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Figure C.7: Qualitative example of “central" captions. The caption marked with arrows is
the ground truth caption which minimizes the expected METEOR distance to the other
reference captions.
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Figure C.8: Qualitative example of “central" captions. The caption marked with arrows is
the ground truth caption which minimizes the expected METEOR distance to the other
reference captions.
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Figure C.9: A qualitative sample from CLIPcap. Candidate set one uses beam search (8
beams), while candidate set two uses nucleus sampling (with temperature one, top-k of 20
and top-p of 0.9).
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Appendix D

Appendix for CLAIR: Evaluating Image
Captions with Large Language Models

D.1 Additional Experimental Details
In this section, we provide several additional details for the experiments in section 12.2

run with the CLAIR measure.

D.1.1 Input Prompt Formatting

The CLAIR prompt is given in its entirety in Figure 12.1. During run-time, candidate
and reference captions are prefixed with a “- " and inserted into the prompt, one per line.
The resulting query is passed to the large language model. In addition, for models which
were not RLHF-tuned to perform conversation (such as PaLM), we found that it was helpful
to append an additional prefix {"score": to the beginning of the output, to encourage the
correct output formatting. CLAIR is surprisingly simple: it uses no in-context examples (is
entirely zero-shot), and default inference parameters for the APIs. The model checkpoint
metadata is generally unknown (as the APIs are somewhat fluid and evolving).

D.1.2 LLM Output Post-Processing

Because CLAIR relies on an LLM to produce output, there is no guarantee that the
output will be in the format we expect (i.e. valid, parsable JSON). To extract both the
score and the reason, we first extract the first set of paired braces from the output of the
LLM and attempt to parse the result as JSON. In most cases (99.997% for GPT-3, 99.991%
for Claude, and 99.94% for PaLM during the course of our experiments), this is successful,
and the score and reason are returned. In the case that the JSON output is malformed, we
attempt to extract any sequence of digits from the LLM to use as a score, and set the reason
to “Unknown.” When this fails, as can be the case when the models produce an output such
as “As an AI language model, I cannot see, and thus, cannot determine if the image captions
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match the references”, we retry the prompt at a higher temperature (t = 1.0) several times.
Failing this (which occurred only three times in the entire evaluation of this thesis, across
several hundred thousand calls), we set the score to 0 for the caption.

D.1.3 Datasets

In this section, we provide additional detail regarding the datasets used in the evaluations
in section 12.2.

COMPOSITE: The COMPOSITE dataset (Aditya et al., 2015) contains machine-generated
test captions for 3995 images spread across the MS-COCO (Xu et al., 2016), Flickr8K (Mao
et al., 2014) and Flickr30k (Young et al., 2014) datasets. Each image has three test captions,
one written by a human, and two that are model generated. The candidate captions are
graded by annotators on Amazon Mechanical Turk (AMT) on a scale of 1 (not relevant) to 5
(very relevant). Inter-human correlations are not available for this dataset.

Flickr8K-Expert: The Flickr8K-Expert dataset (Hodosh et al., 2013) contains 5822
captions associated with 1000 images. The dataset is annotated with expert human judgments
of quality, where images are rated from 1 (caption is unrelated to the image) to 4 (caption
describes the image without errors). Unlike the composite and MS-COCO datasets, the
captions here are selected using an image retrieval system, instead of generated using a
learned image captioning model. Following Jiang et al. (2019), we exclude any candidate
captions that overlap the reference set.

MS-COCO: Following experiments by Rohrbach et al. (2018), we compute the sample-level
correlation between our method and human ratings on a 500-image subset of the MS-COCO
Karpathy test set. Each image in the subset contains candidate captions generated by 5
models, and each caption is labeled with the average three human ratings generated by AMT
workers which range from 1 (very bad) to 5 (very good). Inter-human correlations are not
available for this dataset.

PASCAL-50S: PASCAL-50S contains 1000 images drawn from the PASCAL sentence
dataset. Each image is associated with at least 50 (and as many as 120) reference captions.
In addition to the reference captions, PASCAL-50S contains a set of 4000 human annotated
image/caption pairs containing an image, and two candidate captions. The caption pairs fall
into four groups:

1. HC: In the HC group, both captions in the pair are human written, and describe the
content of the target image correctly.
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2. HI: In the HI group, both captions in the pair are human written, but one caption
correctly describes the content of the image, and the other caption describes the content
of a different image.

3. HM: In the HM group, one caption is written by a human, and one caption is written
by a machine, but both correctly describe the content of the image.

4. MM: In the MM group, both captions are written by a machine, and both correctly
describe the image content.

In PASCAL-50S, the task is to decide which caption in the pair humans prefer more (a
subjective task, hopefully indicating caption quality). Following previous work (Jiang et al.,
2019; Hessel et al., 2021b), we limit the number of reference sentences to five during evaluation.

COCO-Sets: The COCO-Sets dataset (Chan et al., 2022d) is a set of samples that are
designed to evaluate the correlation of distribution-aware image captioning measures with
human judgments of distributional distance. In this dataset, humans were presented with two
candidate caption sets (two image captioning models, OFA (Wang et al., 2022b) and BLIP (Li
et al., 2022) using different temperatures), and asked which candidate caption set correlated
better with a reference caption set on two measures: how much they overlapped factually
(correctness), and how much information they provided about the references (coverage).
It consists of 794 AMT worker-generated judgments of caption quality for images in the
MS-COCO dataset.
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