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Abstract

Compressive Deconvolution Methods of Higher-Order-Aberrated Optical Systems

by

Saketh Malyala

Master of Science in Electrical Engineering and Computer Sciences in Mathematics

University of California, Berkeley

Professor Brian Barsky, Chair

A vast number of people around the world are a↵ected by optical aberrations and require
corrective lenses to see properly. Computational vision correction is an emerging solution
to this problem. Vision correcting displays compute and display an image on a screen, such
that a user can look at the screen unaided and see a focused picture. This work extends
existing frameworks for compressive deconvolution based approaches to the vision correction
problem, in order to accommodate higher order aberrations that are not correctable by tra-
ditional glasses or lenses. We explored a wavefront based approach for modeling generally
aberrated optical systems and how the presence of higher order aberrations a↵ects existing
solutions. We modified the compressive deconvolution algorithm to accommodate the most
common higher order aberrations. We examined tradeo↵s between performance and algo-
rithmic e�ciency for these techniques. The results show that the forms of blurring caused by
higher order aberrations require more expensive corrections to achieve satisfactory output
quality.



i

To my family and friends

Thank you for challenging me, supporting me, and encouraging me to be my best.



ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Background 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Eye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 4
2.1 VCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Light Field Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Light Field Display Algorithms for Vision Correction . . . . . . . . . . . . . 5

3 Compressed Sensing Approaches to Image Construction 8
3.1 Sampling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Compressive Deconvolution Objective . . . . . . . . . . . . . . . . . . . . . . 10

4 Simulating Higher Order Aberrations 11
4.1 Ray-Tracing Model for Unaberrated Systems . . . . . . . . . . . . . . . . . . 11
4.2 Zernike Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Evaluation and Results 16
5.1 Display, User, and Model Parameters . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Aberration Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Selected Images for Vertically Oriented Zernike Modes of Aberration . . . . . 17
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Future Work 29



iii

7 Conclusion 30

Bibliography 31



iv

List of Figures

1.1 The eye focuses light through the cornea and lens onto the retina. The retinal
image is transmitted to the brain through the optic nerve. . . . . . . . . . . . . 2

1.2 Multiple light rays originate from each point on the tree, are refracted by the
lens, and converge on the retina. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Pinhole arrays placed over pixel screens allow narrow, directional light rays to
pass through. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Light field displays can be used to create 3D e↵ects by using directional light rays
that simulate depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Zernike polynomials form a set of orthonormal waveforms that are useful for
describing visual aberrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 The wavefront aberration polynomial describes the optical path di↵erence be-
tween the wavefront and an unaberrated, reference spherical wave front. . . . . 15

5.1 Graphs comparing root-mean-square coma aberration and PSNR/SSIM quality
metrics for corrected and uncorrected simulated retinal images. . . . . . . . . . 20

5.2 Graphs comparing root-mean-square trefoil aberration and PSNR/SSIM quality
metrics for corrected and uncorrected simulated retinal images. . . . . . . . . . 23

5.3 Graphs comparing root-mean-square spherical aberration and PSNR/SSIM qual-
ity metrics for corrected and uncorrected simulated retinal images. . . . . . . . . 26



v

List of Tables

5.1 Settings used for model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Bunny images for varying coe�cients of the vertical coma aberration . . . . . . 19
5.3 Bunny images for varying coe�cients of the oblique trefoil aberration . . . . . . 22
5.4 Bunny images for varying coe�cients of the spherical aberration . . . . . . . . . 25



vi

Acknowledgments

I would like to thank Professor Barsky for mentoring me through my four semesters in this
group and encouraging me to explore uncharted territory. I am indebted to Joshua Chen,
who has guided me through our research group’s advances in compressive deconvolution.
I would further like to acknowledge Matthew Fogel for assisting with data collection and
debugging, as well as providing much needed documentation in our repositories to facilitate
future research. I’d also like to mention, Siyu Zhang, who led me during my first semester on
the vision correcting display project. Finally, I am extremely grateful to Professor Roorda
for reviewing this work as a second reader.



1

Chapter 1

Background

1.1 Introduction

Over 1 billion people wear eyeglasses globally, [1] including the majority of adults in the
United States [2]. These eyeglasses are vital in allowing them to see clearly, but there are
several cases in which alternatives are preferable, such as contact lenses. Sometimes it is
physically or aesthetically inconvenient to wear glasses [3]. Vision correcting displays do not
require the user to wear anything; this device technology would allow users to see clearly
in situations where glasses are not preferable: for example, while wearing virtual reality
headsets; they are also adjustable per user, while modern corrective technology is prescribed
for each user. This work delves into potential modifications for the vision correcting display
for specific optical conditions and evaluates their e↵ectiveness. This work builds upon the
work and foundations of compressive deconvolution for the vision correcting display by Anmol
Parande [4], further bridging the e�ciency and quality trade-o↵.

1.2 The Eye

The anatomy of the eye is shown in Figure 1.1, taken from [5]. When light rays enter the eye,
they are refracted by the cornea (the outermost layer of the eye). The cornea provides most
of the refraction and has a fixed focusing power of 42 - 45 diopters. The light rays are then
refracted further by the lens of the eye, which can vary in thickness and refractive power
as the ciliary muscle contracts. They then pass through the vitreous cavity and activate
photoreceptors that transmit electrical impulses to the brain. The layer of rod and cone
photoreceptors comprising the retina resemble a matrix, and can be represented as an array
in our simulation.

In perfect vision, each pixel of a screen refracts through the cornea and lens, activating
corresponding photoreceptors so that the brain’s reconstructed image is a clear representation
of the screen. In Figure 1.2 taken from [6], the two light rays originating from the top of the
tree travel in di↵erent directions, but they converge at a point on the retina. The retina is
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Figure 1.1: The eye focuses light through the cornea and lens onto the retina. The retinal
image is transmitted to the brain through the optic nerve.

a certain distance from the lens, which is at the front of the eye. The relationship between
the distance at which the light rays converge and the distance of the screen is dictated by
the focal length, which is a function of the combined refractive power of the lens and cornea.
Two quantities defining the range of vision are the near point and far point. The near point
is the closest distance at which the eye can focus on an object, and is about 25 centimeters in
adults with normal vision. The far point is the furthest distance at which the eye can focus
on an object, and is usually infinite, as the ciliary muscle relaxes. Farsightedness occurs when
the near point is further than normal. This work is most applicable to far sighted users, as
they would benefit the most from vision correcting technology for hand held screens held
close to the eyes.

The most common optical aberrations that require correction are defocus and astigmatism
aberrations [7]. These are considered lower order aberrations of the eye and are rectifiable
with corrective lenses. Higher order aberrations, or HOAs, are not treatable through tradi-
tional eyeglasses or soft contact lenses, and often require surgery. They can be caused by
structural deformities, cataracts, or scarring, and tend to be too irregular for simple lenses
to counteract. Higher order aberrations are not as common as lower order aberrations, and
account for roughly 15% of all aberrations in the eye [8].
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Figure 1.2: Multiple light rays originate from each point on the tree, are refracted by the
lens, and converge on the retina.

1.3 Problem Statement

The problem guiding this research is the following:

Given the measurements and parameters of a user’s optical system, can an image
be displayed on some screen such that the user perceives a clear and in-focus
image without the need of additional corrective technology?

The solution involves both new screen technology and performant algorithms to e�ciently
compute the images to be displayed. This work focuses on improving results for users
with higher order aberrations. The experiments conducted to investigate these solutions
use simulated conditions of presbyopia or hyperopia, since the targeted use cases of vision
correcting displays are handheld devices, computers, and virtual reality headsets, all of which
are a↵ected by farsightedness.
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Chapter 2

Related Work

2.1 VCD

Conventional screens display two dimensional arrays of pixels. Each pixel projects several
light rays which refract through the cornea and lens of the eye and converge on the retina
in the back of the eye. In perfect vision, each pixel on the screen maps to a “pixel” on the
retina. However, in unfocused or misshapen eyes, the light rays emanating from a pixel do not
converge perfectly on the retina due to improper refraction, leading to a blurry perception.
This can be corrected through lenses that, along with the eye’s natural refractive capability,
redirect light rays to converge crisply on the retina. The vision correcting display (VCD),
takes a di↵erent approach to this problem. The VCD utilizes a parallax barrier to emit
directional rays. These rays are pointed in such a way they will form a clear picture on the
retina after refraction through the lens. In this work, the parallax barrier is implemented
with a pinhole array mask.

2.2 Light Field Displays

Light field displays utilize multiple layers in order to simulate directional pixels. The
first layer is a high-resolution 2D array of pixels, similar to a conventional screen. However,
another layer of microlenses or pinholes are placed over the screen and this creates a many-
to-one ratio of screen pixels to each pinhole, as seen in Figure 2.1 (taken from from [9]).
In this work, we use “screen” to refer to the high-resolution screen layer, “display” to refer
to the light field display, and “sensor” to refer to the reconstructed retinal image. Light
field displays already exist for simulating three dimensional space on a 2D screen as seen in
Figure 2.2 (taken from [10]), but in this work they are repurposed for their quality of having
directional rays, such that each display pixel has a di↵erent intensity in each direction.
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Figure 2.1: Pinhole arrays placed over pixel screens allow narrow, directional light rays to
pass through.

2.3 Light Field Display Algorithms for Vision
Correction

Ray Tracing Based Prefiltering Algorithms

A simpler method of reconstructing a screen image that will appear in-focus to the user
is ray tracing. This method generates and simulates the movement of light rays from
the screen, through the corresponding pinhole, through the cornea and lens, and onto the
retina (sensor). There is a one-to-one assumption that each screen pixel can only be seen
through one pinhole, which simplifies computation. The experiments in this work assume
that the display is su�ciently distant from the aperture plane (the eye lens). The conditions
for the one-to-one assumption are listed in [9]. The Ray tracing algorithms are generally not
as e↵ective as optimization based algorithms, but they are far faster, as there is no further
optimization after the first iteration.



CHAPTER 2. RELATED WORK 6

Figure 2.2: Light field displays can be used to create 3D e↵ects by using directional light
rays that simulate depth.

Point to Point, Many to Many, and Area to Area Algorithms

The point-to-point algorithm generates one ray from the center of each screen pixel to the
nearest pinhole. The color of the screen pixel is determined from a weighted sum of pixels
near where the ray intersects the retinal plane. That is, a screen pixel will be assigned to a
bilinear interpolation of the four nearest pixels to the point u on the retinal plane.

The area to area algorithm generates two rays from the corners of the screen pixel and
infers the area over which the entire screen pixel maps to the retina. It computes the screen
pixel color as the integral of the color of the target image over the implied retinal pixels.

The many-to-many algorithm generates multiple rays from various positions within the
screen pixel to the nearest pinhole. The screen pixel is then the average of all of the bilinear
interpolations. The point-to-point algorithm is the many-to-many algorithm with one light
ray sampled per screen pixel.



CHAPTER 2. RELATED WORK 7

Optimization Based Algorithms

While ray tracing algorithms compute the value of screen pixels from sampling rays and
interpolating colors, optimization based algorithms compute the relationship between the
screen pixels and the resulting retinal pixels as a matrix, and then optimize screen pixels
directly to achieve a retinal image as close to ideal. In this work, we will focus on using the
Forward Optimization optimization-based algorithm to produce screen images that result in
high quality simulated retinal images.

Forward Algorithm

In the Forward Algorithm, first introduced in [11], the Many to Many ray tracing algorithm
is applied to form a matrix P that describes the relationship between the simulated retinal
image y and and the screen image x. The dimensions of P are the number of screen pixels
times the number of retinal pixels. However, instead of bilinear interpolation, only the color
of the nearest sensor pixel to the hit is recorded. The algorithm uses least squares to solve

argminx||y � Px||22 (2.1)

where y is the target image. The least squares solution to this optimization problem is

x = (P T
P )�1

P
Ty (2.2)

however due to the huge size of the matrix, it is preferred to use an iterative solver such as
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm [12]. The for-
ward algorithm also requires the one-to-one assumption, which is valid for the experimental
parameters used in this work.
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Chapter 3

Compressed Sensing Approaches to
Image Construction

The least squares optimization problem of solving for x in (2.1) is infeasible at the size of the
target images. For a 1280⇥ 720 pixel image with 921,600 pixels, if there were 5 ⇥ 5 screen
pixels corresponding to each display pixel, the matrix storing the mapping from screen pixels
to sensor pixels would have size (1280⇥ 720)2⇥ 52, which is over 20 trillion parameters. If n
is the number of sensor pixels per display pixel, and the size of the image is w x l, then the
size of the matrix would be (wln)2, which is unfathomably large. The first workaround to
this issue is a consequence of the one-to-one assumption, which reminds us that each screen
pixel only has relevant rays (which project onto the retina) through one pinhole, and so the
vast majority of the matrix is zero. In expectation, the number of nonzero entries in the
matrix is roughly proportional to the number of screen pixels. We use a sparse format for
storing this matrix in the code.

In this chapter, we will introduce the sampling problem, and under what conditions a
discrete, time-varying signal can be perfectly reconstructed from a finite number of mea-
surements. This is applicable to this work, as we work with 2D images flattened into 1D
vectors. We will then expand sampling into ”sensing,” where the signal itself cannot be mea-
sured, but rather sensed through its projection onto another basis. The sensing approach
represents reflects that the eye does not observe a perfect image, but rather the convolution
of a perfect image with some blurring matrix. With enough sparsity in the signal, we can
utilize compressed sensing to reconstruct the image, where the sensed measurements are of
much lower dimension than the signal. We refer to the process of compressed sensing and
reconstruction of the original image as compressive deconvolution [4].

3.1 Sampling Problem

Traditional sampling from a time varying signal x(t) involves evaluating the function at time
points t1, t2 · · · tn and inferring the function from those points. Let tk = Tk. The extracted
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signal is

y(t) =
nX

1

x(t)�(t� tk) = x(t)
nX

1

�(t� Tk) (3.1)

.
In this work, we represent 2D images as 1D flattened arrays. We treat images as signals

that can be sampled at various pixels. While there is not as much significance of the signal
itself, reconstructing the signal allows us to interpolate unknown points (other pixels). The
Shannon Nyquist Theorem states that the sampling rate must be at least twice the highest
frequency present within a signal for perfect reconstruction. However, this requirement can
be further reduced in especially sparse signals through compressed sensing.

3.2 Compressed Sensing

Following the procedure from [13], [14], instead of directly sampling values of x(t), we ”sense”
its projection onto the sensor �k through

yk =
nX

i=1

x(iT )�k(iT ) = hx,�ki (3.2)

where x,� 2 Rn. A compressed measurement for x across several points can be described
as

y = �x (3.3)

where y 2 Rm and � is an m⇥ n matrix. One condition for successful reconstruction of the
signal is that it is sparse in some sparsifying basis  , where  is an n ⇥ n matrix. Most
images are sparse in some wavelet basis. We can measure a signal’s sparsity through the
notion of S-sparsity, which means that it has at most S nonzero coordinates. Candes and
Wakin derive this optimization problem in [13] as

min
x̃2Rn

||x̃||l1 subject to yk = h�k, x̃i 8k 2 M (3.4)

where M is a subset of size m of the n possible compressed measurements. In compressed
sensing m ⌧ n. This can be condensed to

min
x̃2Rn

||x̃||l1 subject to y = � x̃ (3.5)

We choose �, the sensing basis, so that it has low correlation with  , the sparsifying basis.
Then, information in measurements of  x will be spread out when multiplied by �, which
helps create a well-conditioned least squares problem for image correction in this basis. We
can use a structurally random matrix, introduced in [15]

� =

r
N

M
DFR (3.6)

where R is a random n ⇥ n matrix, F is an orthonormal n ⇥ n matrix (such as the FFT
matrix) and D samples m rows of FR. D is a subset of m rows of the identity matrix.
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3.3 Compressive Deconvolution Objective

While the human eye sensor can only measure Hx, we can utilize compressive deconvolution
in the following setup from [4]

min
x

1

2µ
k�y � �Hxk22 + �k �1

Hxk1 (3.7)

where y is the ideal unblurred image, µ is a reconstruction error penalty hyperparameter, and
� is another hyperparameter that forces x to be sparse in the wavelet basis. In practice, this
optimization problem can be solved without computing these large matrices, and alternative
computational representations or iterative optimizers that do not require the full, in-memory
matrices still su�ce. Parande’s work in [4] describes the ADMM (Alternating Method of
Direct Multipliers) procedure to solve this problem.
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Chapter 4

Simulating Higher Order Aberrations

Higher order aberrations are a class of optical aberrations that are not correctable by
conventional lenses. Three of the more common higher order aberrations found in human
eyes are coma, trefoil, and spherical aberrations. These correspond to radial orders 3 and 4
in Figure 4.1 taken from [16]. In this chapter, we will explain how rays are refracted through
perfect lenses and how we represent light rays. Then, we will propose a fast method to
simulate the refraction of light rays through an aberrated lens. Finally, we will introduce
the wavefront aberration polynomial and Zernike Polynomials as a method of characterizing
aberration profiles of eyes.

4.1 Ray-Tracing Model for Unaberrated Systems

Ray Representation

In this subsection, we will present a simplified model of the light transport introduced in
Parande’s thesis [4]. We model the directional intensities of these light rays as a four di-
mensional scalar function I(x, u) from 2D point x on the display plane to 2D point u on
the lens plane (where the eye refracts light). We specify the context of the intensity light
ray intensity function where it changes. We will also model ray direction with the tuple
(x,u,↵, �) where ↵ is the location of the start plane and � is the location of the end plane.
We will define the optical axis as perpendicular to the start and end planes.

Ray Projection

We will use the following properties of light rays in this representation. We will define the
optical axis as perpendicular to the planes containing the objects and the lens.

1. Translation along Optical Axis: The direction of the ray (x,u,↵, �) is equivalent to
the direction of the ray (x,u,↵+�, �+�), where � is the length of translation along
the optical axis.
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2. Translation within Start Plane: The direction of the ray (x,u,↵, �) is equivalent to
the direction of the ray (x + �,u + �,↵, �), where � is a 2D translation within the
start plane.

3. Propagation of Ray: The direction of the ray (0,u, 0, 1) is equivalent to the direction
of the ray (0, cu, 0, c), where c is a scale factor of the distance between the start and
end planes.

Thin Lens Equation

In this work, we use ray tracing to model the path of light rays through the optical system.
When ray tracing through a constant focal length system, one way to compute the direction
of the ray after refraction is to use the thin lens equation

1

f
=

1

do
+

1

di
(4.1)

1. This states that the incident rays of an object 1/do before a lens with focal length f

converge to form an image at a distance 1/di behind the lens.

2. The 2D location of the image formed by the rays along the axes parallel to the orien-
tation of the lens is that of the chief ray passing unrefracted through the center of the
lens.

3. The direction of the rays after refracting through the lens is computed by subtracting
the location of the image from the point where the ray enters the lens. The location
of the image can be computed in 3D space using (1) and (2).

Wave Front Polynomial

However, for an aberrated system with a varying focal length over the surface of the lens,
we use a hybrid approach between wavefront aberration and ray tracing. A wavefront
is defined as the surface over which the phase of a wave is constant. The optical path
di↵erence (OPD) is the di↵erence in path length between two rays (post refraction). The
wavefront aberration is the path di↵erence between the aberrated wave front and a spherical
reference wavefront. These definitions are taken from [17]. We will denote the wavefront
aberration as W (x, y) or W (x) if x is 2D.

Our process for approximating the refraction of a ray through an aberrated lens is di↵erent
from that of a perfect, spherical lens. Consistent with Figure 4.2 from [17], to model the
passage of light through an eye, the ray will refract through the waveform from right to left.
We begin by refracting the ray R1 that starts at 2D location x on the display plane and
ends at 2D location on the aperture plane u, (x, u, display, aperture), over the spherical,
reference wavefront to obtain the ray (u, s, aperture, sensor). Note that (u, s, aberrated
aperture, sensor) is the corresponding ray on the aberrated wavefront. We then create two
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additional light rays with small translations of magnitude � within the aperture plane, and
translate them forward along the optical axis by the wavefront aberration function magnitude
evaluated at their respective coordinates. These three rays approximate the local curvature
of the aberrated wavefront. The refracted ray is approximated as

wu =

0

BB@

2

664
u+


�
0

�

W

✓
u+


�
0

�◆

3

775�


u
W (u)

�
1

CCA⇥

0

BB@

2

664
u+


0
�

�

W

✓
u+


0
�

�◆

3

775�


u
W (u)

�
1

CCA (4.2)

where � is small. We use this cross product to find the normal vector to the aberrated
wavefront near u with direction wu, which allows us to compute s. We are now able to trace
light rays through aberrated optical systems and construct the H matrix for optimization
based correction algorithms.

4.2 Zernike Polynomials

Zernike polynomials, first developed by Frits Zernike in 1934 [18], are useful for representing
optical aberrations. Due to their polar representation, they easily scale, add, translate,
and rotate. The Zernike polynomials are also form an orthogonal set over the unit circle,
allowing for unique decompositions of wavefronts into linear combinations of Zernike modes.
Finally, certain Zernike modes model classical aberrations, such as comas, astigmatisms, and
spherical aberrations [19]. Hence the Zernike basis is preferred for optical analysis.
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Figure 4.1: Zernike polynomials form a set of orthonormal waveforms that are useful for
describing visual aberrations.
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Figure 4.2: The wavefront aberration polynomial describes the optical path di↵erence be-
tween the wavefront and an unaberrated, reference spherical wave front.
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Chapter 5

Evaluation and Results

5.1 Display, User, and Model Parameters

The model used to evaluate the e↵ects of higher order aberrations on vision correction is an
optimization based compressive deconvolution prefilter. The sparse H matrix describing the
relation between the screen pixels and retinal pixels is obtained through ray tracing. The
data is collected with the following parameters in Table 5.1. To construct the H matrix, we
will sample and trace 9 random rays originating from each screen pixel to the retina. The
other parameters in the table include optimization penalty weights as well as specifications
of the vision correcting display and the simulated optical system.

Parameter Description Value

µ Reconstruction Penalty Weight 10�2

� Sparsity Penalty Weight 10�3

Viewing Distance Distance to the observer’s eye 300 mm
Near Point Distance Distance from observer’s eye to near focal plane 500 mm
Aperture Radius Radius of aperture of observer’s eye 1.5 mm
Focal Length Focal Length of observer’s optical system 20 mm
Ray Sampling Number of times rays are sampled per screen pixel 9

Pinhole Mask Separation Distance between pinhole array and underlying screen 6 mm
Screen Pixels per Pinhole Screen Pixels per Pinhole 5⇥ 5

Sensor Pixel Pitch Size of each screen pixel 0.078 mm

Table 5.1: Settings used for model evaluation
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5.2 Aberration Parameters

This section discusses the experimental, varying parameters used for evaluating the e↵ects
of higher order aberrations on the simulated retinal image’s visual quality. The eye lens is
modeled as an aberrated wavefront in Figure 4.2, as a sum of a spherical wavefront and the
wavefront aberration polynomial. We will model the e↵ects where each wavefront aberration
is a pure Zernike mode. We will model ranges of aberrations that are approximately found
in the human eye.

Pure Zernike Aberrations

While we are focused on hyperopic (farsighted) vision and the correction of visual aberrations
in nearby and handheld devices, we use statistics from [20] to determine appropriate testing
ranges to represent in this work. In this study, 126 eyes from 63 subjects with age 26.4± 5.9
years were studied. The study used an aberrometer to record the wavefront of the partic-
ipants’ eyes. The study characterized the wavefront as a sum of a spherical, unaberrated
wavefront and several weighted Zernike polynomials comprising the wavefront aberration.

The root mean square value range of the total aberration in the studied eyes were 6.85±2.4
µm, which is approximately a 95% range of 0.002 to 0.011 mm amount of aberration. The
range of measured coe�cients for the vertical trefoil aberration, Z�3

3 , was 3⇥10�5 to 8⇥10�4

mm, or 3⇥ 10�2 to 8⇥ 10�1
µm.

5.3 Selected Images for Vertically Oriented Zernike
Modes of Aberration

The prefilterings and projections in this section use a compression ratio of 0.3, so the sensing
matrix � has an output to input dimension ratio of 0.3 (note that we represent images in 1D
vectors). The three represented Zernike modes in this section are the vertical coma, oblique
trefoil, and spherical aberration. These modes are shown in Figure 4.1 among radial orders
3 and 4. Zernike polynomials are denoted as Z l

n, where n is the order of the polynomial and
0  l  n.
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Vertical Coma Aberration Z
�1
3

The range of magnitudes of coma aberrations in [20] is 3 ⇥ 10�5 mm to 6 ⇥ 10�4 mm, or
3 ⇥ 10�2

µm to 6 ⇥ 10�1
µm. Each row of the table shows simulated retinal images of the

optical system from Table 5.1 with the specified root-mean-square vertical coma aberration,
with and without correction (prefiltering).

Parameter Corrected Image Parameter Uncorrected Image

0 µm 0 µm

0.1 µm 0.1 µm

0.2 µm 0.2 µm

0.3 µm 0.3 µm

0.4 µm 0.4 µm
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0.5 µm 0.5 µm

0.6 µm 0.6 µm

0.7 µm 0.7 µm

Table 5.2: Bunny images for varying coe�cients of the vertical coma aberration
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Figure 5.1: Graphs comparing root-mean-square coma aberration and PSNR/SSIM quality
metrics for corrected and uncorrected simulated retinal images.
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Oblique Trefoil Aberration Z
3
3

The range of magnitudes of trefoil aberrations in [20] is 3 ⇥ 10�5 mm to 8 ⇥ 10�4 mm, or
3 ⇥ 10�2

µm to 8 ⇥ 10�1
µm. Each row of the table shows simulated retinal images of the

optical system from Table 5.1 with the specified root-mean-square oblique trefoil aberration,
with and without correction (prefiltering).

Parameter Corrected Image Parameter Uncorrected Image

0 µm 0 µm

0.1 µm 0.1 µm

0.2 µm 0.2 µm

0.3 µm 0.3 µm

0.4 µm 0.4 µm
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0.5 µm 0.5 µm

0.6 µm 0.6 µm

0.7 µm 0.7 µm

0.8 µm 0.8 µm

Table 5.3: Bunny images for varying coe�cients of the oblique trefoil aberration
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Figure 5.2: Graphs comparing root-mean-square trefoil aberration and PSNR/SSIM quality
metrics for corrected and uncorrected simulated retinal images.
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Spherical Aberration Z
0
4

The range of magnitudes of spherical aberrations in [20] is 0 mm to 4⇥ 10�4 mm, or 0 µm
to 4⇥ 10�1

µm. Each row of the table shows simulated retinal images of the optical system
from Table 5.1 with the specified root-mean-square spherical aberration, with and without
correction (prefiltering).

Parameter Corrected Image Parameter Uncorrected Image

0 µm 0 µm

0.1 µm 0.1 µm

0.2 µm 0.2 µm

0.3 µm 0.3 µm

0.4 µm 0.4 µm
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Table 5.4: Bunny images for varying coe�cients of the spherical aberration
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Figure 5.3: Graphs comparing root-mean-square spherical aberration and PSNR/SSIM qual-
ity metrics for corrected and uncorrected simulated retinal images.
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5.4 Results

The vertical coma aberration was varied from 0 µm to 0.7 µm in Table 5.2, which is slightly
beyond the range of RMS coma aberration observed in [20]. While the quality of the cor-
rected, simulated images does does not appear to decrease with increasing aberration mag-
nitude, the uncorrected images significantly degrade in quality. In Figure 5.1, the PSNR
(peak signal to noise ratio) of the corrected images is consistently higher than the PSNR of
the uncorrected images. The changes in the PSNR of the corrected images across varying
levels of aberration show no pattern, suggesting that the quality of the reconstruction is not
determined by the aberration magnitude and the H matrix in this range. This is supported
by the one-to-one assumption, as reasonable levels of aberration would map each retinal pixel
to no more than one display pixel. The structural similarity (SSIM) metric paints a similar
picture, but shows a degradation of quality of the simulated retinal images with increasing
aberration.

Similar results were observed in the trefoil aberration experiment. The oblique trefoil
aberration was varied from 0 µm to 0.8 µm in Table 5.3, as per the range of RMS trefoil
aberration observed in [20]. The quality of the corrected, simulated images does does not
appear to decrease with increasing aberration magnitude. However, the uncorrected images
significantly degrade in quality, noticeably above 0.4 µm of RMS aberration. In Figure 5.2,
the PSNR (peak signal to noise ratio) of the corrected images is consistently higher than
the PSNR of the uncorrected images. The changes in the PSNR of the corrected images
across increasing levels of aberration stay within 0.5 PSNR points, but still seem to slightly
degrade in quality, though imperceptibly. The structural similarity of the corrected images,
though, seems to stay constant over the tested range, while the structural similarity of the
uncorrected images significantly degrade.

The last of the experiments explored the quality of simulated retinal images of the optical
system with spherical aberration. The RMS spherical aberration was varied from 0 µm to 0.4
µm, which was approximately the range observed in [20]. Like in the other two experiments,
the quality of the corrected and simulated images appears to be constant within the tested
range, while the uncorrected images quickly degrade in quality. This is quite noticeable when
the RMS aberration is at least 0.2 µm. However the PSNR of the uncorrected simulated
retinal images does not decrease with increasing RMS spherical aberration in Figure 5.3
which suggests the PSNR is not an appropriate metric for this measurement. The SSIM of
the uncorrected simulated retinal images decreases with respect to RMS aberration above
0.2 µm, which is in line with visual observations of Table 5.4.

Across all of the experiments, the SSIM of uncorrected simulated retinal images de-
creased with respect to the RMS aberration while the SSIM of corrected simulated retinal
images stayed nearly constant. The SSIM metric corresponded better than PSNR to visual
assessments of the quality of the images in Tables 5.2, 5.3, and 5.4.

Consistent with expectation, the measured quality of each uncorrected and simulated
image is worse than that of the corresponding corrected and simulated image, including
trials with 0 µm of higher order aberration. This is due to the hyperopic conditions of the
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model (shown in Table 5.1) which introduces further blurring to each image.
This data suggests that within reasonable levels of aberration, compressive deconvolution

based prefiltering can produce consistently satisfactory simulated retinal images.
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Chapter 6

Future Work

This work extends optimization-based approaches to compressive deconvolution algorithms
developed in [4] with support for modeling and handling higher order aberrations. While
higher order aberrations with optically practical coe�cients filter just as well as lower order
aberrations, the optimization algorithms and framework used in this work are too slow to
be useful for a visual device. As we are targeting e�cient image correction and streaming
capability, potential directions for further development include changes to the optimization
problem solver and to the hardware it runs on. By loosening the criteria for optimization
routine termination, there is a potential for large speedup at limited image quality cost.
Exploring methods to parallelize the optimization routine will also improve the runtime,
using an optimization routine with subproblems that can be run concurrently. Lastly, this
work does not explore divide-and-conquer approaches to compressive deconvolution. This
method allows compressive deconvolution to be run concurrently on pieces of the image with
some reconciliation routine for the boundaries. If the size of the compressive deconvolution
cell at least the size of the point spread region (the retinal area which can be reached by
light rays originating from all the sensor pixels in the cell), the problem can be broken down
and parallelized with low reconciliatory quality loss. This is a rich problem with potential
for large speed-ups.

This work only uses two measures of image quality: PSNR and SSIM. There may be
better metrics of image quality that can drive further insights about where the model’s
weak points are, and which types of aberrations or images are prone to significant quality
reduction. Due to the sensing matrix sampling from the entire image at once, the greater
point spread functions (lessened sparsity) that higher order aberrations introduced did not
a↵ect the optimal value of the objective. There were however, noticeable quality degradations
on very high values of the trefoil aberration that were unaccounted for by these two matrices,
which urges the usage of a more robust and representative image quality metric.
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Chapter 7

Conclusion

This research delves into the impact of higher-order aberrations on vision correction, build-
ing upon existing frameworks for the optimization-based compressive deconvolution prefilter.
Utilizing Zernike polynomials, which provide a comprehensive and orthonormal set of wave-
forms, the study models ray tracing through non-spherical waveforms to simulate and analyze
their e↵ects on visual quality. The model employs a sparse matrix, derived from ray tracing,
to describe the relationship between screen pixels and retinal pixels. Key parameters, such
as viewing distance, aperture radius, focal length, and others, were carefully selected to en-
sure realistic simulation conditions. The experimental setup included varying coe�cients for
vertical coma, oblique trefoil, and spherical aberrations, which were tested against a broad
range of values within medically significant ranges.

The results indicate that within the practical range of aberration coe�cients, the quality
of the reconstructed and simulated retinal images remained stable, as evidenced by PSNR
and SSIM metrics. This suggests that the compressive deconvolution prefilter is robust
against higher-order aberrations within the studied range. However, the study did identify a
perceptible degradation in image quality for higher coe�cients of spherical aberrations, not
captured by PSNR. This underscores the limitation of certain metrics in fully capturing the
nuances of visual quality, particularly in the presence of complex aberrations. The ability for
compressive deconvolution to successfully prefilter images is further limited by the one-to-
one assumption, as the significant ray deviation for high-coe�cient higher order aberrations
may not obey this assumption.

The findings highlight the potential for optimization-based compressive deconvolution to
e↵ectively mitigate the e↵ects of higher-order aberrations in practical applications, such as
handheld devices and near-eye displays.
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