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Abstract

Foundation Models for Decision Making:
Algorithms, Frameworks, and Applications

by

Mengjiao Sherry Yang

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Pieter Abbeel, Chair

AlphaGo and ChatGPT are perhaps two most significant breakthroughs in artificial intel-
ligence in the past decade. These technologies were empowered by research in sequential
decision making (e.g., planning, search, and reinforcement learning) and foundation models
(e.g., language and video generation model trained on internet data). This thesis proposes
new techniques, algorithms, and frameworks of leveraging foundation models with broad
knowledge in the context of real-world decision making tasks, impacting applications such
as building dialogue agent, controlling robots, and making scientific discoveries. This the-
sis starts with traditional decision making in offline settings and progressively incorporat-
ing broader, internet-scale data through representation learning and generative modeling.
Emphasis is placed on both theoretical foundations and practical implications. Key con-
tributions of this thesis include algorithmic advancements of offline reinforcement learning,
improved representation learning for decision making, novel generative modeling techniques
as an alternative to reinforcement learning, and generative agents and generative simulators
at internet scale, all aimed at equipping foundation models with enhanced decision-making
capabilities and vice versa. Through extensive empirical and theoretical analysis, this thesis
demonstrates that foundation models, when properly leveraged, can significantly improve
decision-making tasks. The findings offer new directions for integrating machine learning
models with real-world applications, paving the way for more intelligent, adaptable, and
efficient systems.
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4.3 A pictoral representation of our depth study based on contrastive self-prediction.
We use the transformer-based architecture of attentive contrastive learning (ACL)
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4.4 Ablation results on imitation learning, offline RL, and online RL. x-axis shows
average rewards and standard error aggregated over either different Gym-MuJoCo
datasets (imitation and offline RL) or domains (online RL). Blue dotted lines show
average rewards without pretraining. (T) and (F) mean setting each factor to true
or false (opposite from the default configuration). Reconstructing, predicting,
or inputting action or reward (row 2-7) impairs imitation performance but are
important for offline and online RL. Bidirectional transformer hurts imitation
learning when downstream sample size is small. Finetuning and auxiliary loss
can help online RL. Additional results are presented in Appendix A.2.2. . . . . . 53

4.5 The TRAIL framework. Pretraining learns a factored transition model TZ ◦ ϕ
and an action decoder q on Doff. Downstream imitation learns a latent policy πZ
on D∗

off with expert actions reparametrized by ϕ. During inference, πZ and q are
combined to sample an action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Tasks for our empirical evaluation. We include the challenging AntMaze nav-
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D∗
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4.8 Average rewards (over 4 seeds) of TRAIL EBM (Theorem 5), TRAIL linear (The-

orem 7), and baseline methods when using a variety of unimodal (ant-medium),
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Doff paired with a smaller expert dataset D∗
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5.1 Visualization of the dataset collection, training, and inference of BC and PC on
a maze navigation task. During dataset collection, the expert uses a search pro-
cedure to determine the optimal action to generate a path to the goal location
(red star). During training, BC discards these intermediate search outputs and
learns to map states to actions directly. In contrast, PC learns the complete
sequence of intermediate computations (i.e., branches and backtracks) associated
with the search procedure. During inference, PC generates a sequence of interme-
diate search outcomes emulating the search procedure on a new test map before
outputting the final action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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5.2 Graphical models of vanilla BC, auxiliary BC, and procedure cloning with au-
toregressive and conditionally independent factorization. Node s represents an
input MDP state, a represents an expert action, and x represents the sequence
of procedure observations (x0, ..., xL). . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 In a discrete maze, the expert employs BFS by first expanding a search perimeter
until it encounters the goal cell, at which point it backtracks to find the op-
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by a 2D array and each cell of the array containing BFS-relevant information
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sequence of computations from input state to output action using a sequential
model p(a|xL) · ΠL

l=1p(xℓ|xℓ−1) · p(x0|s). . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 [Left] Visualization of the discrete maze (4 discrete actions) and AntMaze (8

continuous actions). [Right] Average success rate of PC and BC agents navigating
to the goal from random start locations over 10 test mazes. Agents are trained on
5, 10, 20, 40 mazes of 1 and 5 expert trajectories on discrete maze and AntMaze,
respectively. We find that procedure cloning leads to much better test maze
generalization compared to alternative approaches. . . . . . . . . . . . . . . . . 77

5.5 [Left] Visualization of the bimanual sweep task. [Middle] Average success metric
(proportion of particles in bowls at the end of the episode) of PC and BC agents
completing the bimanual sweeping task after learning on 10, 100, 1000 expert
trajectories; each variant is an aggregate of 10 runs. All of our algorithm imple-
mentations use the implicit loss function described in [17] for this task. [Right]
When using 1000 expert demonstrations with early stopping, PC achieves 83.9%
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5.6 In the MinAtar game-playing environment, the expert uses MCTS (Π0, ...,ΠL) to
find an optimal future trajectory [L, R, Goal]. We treat this future trajectory in
reverse order [Goal, R, L] as procedure observations, so that procedure cloning is
trained to first predict the goal image (MCTS leaf node) and then predict the
optimal action sequence backwards from the goal using a GPT-like autoregressive
model, ultimately predicting the expert’s output action as its last prediction. . . 80

5.7 Average episode reward (over 50 episodes) of PC and BC agents playing MinAtar
games over 3 test environments using sticky actions (left) and game difficulty
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5.8 Illustration of DT (RCSL) and DoC. Circles and squares denote states and ac-
tions. Solid arrows denote policy decisions. Dotted arrows denote (stochastic)
environment transitions. All arrows and nodes are present in the dataset, i.e.,
there are 4 trajectories, 2 of which achieve 0 reward. DT maximizes returns
across an entire trajectory, leading to suboptimal policies when a large return
(r = 100) is achieved only due to very low-probability environment transitions
(T = 0.01). DoC separates policy stochasticity from that of the environment and
only tries to control action decisions (solid arrows), achieving optimal control
through maximizing expected returns at each timestep. . . . . . . . . . . . . . . 82
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outperforms DT and future VAE, where the gain is more salient when the offline
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manoid. Future VAE can be sensitive to the KL coefficient β, which can result
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Chapter 1

Introduction

In the past decade, two significant breakthroughs in artificial intelligence (AI) include artifi-
cial Go player AlphaGo outperforming human player Lee Sedol in 2016 [21], and an artificial
chatbot ChatGPT being deployed in 2022 [22]. The technologies that empowered these
advances are research in sequential decision making and foundation models. In sequential
decision making, the goal is to have computers (agents) automatically decide on a sequence
of actions (e.g., where to place the Go pieces), and also have computers automatically im-
prove these decisions based on feedback from the environment (e.g., outcome of a Go game).
The machine learning approach to sequential decision making involves training a decision-
making policy, i.e., a strategy for choosing actions based on the current observation (e.g.,
the Go board), through trial and error. This approach works well in game settings where the
environment supports unlimited access, but struggles to scale beyond game settings in the
real world where unlimited access to the environment is impractical. Even in game settings,
prior work in sequential decision making has largely focused on task-specific or tabula rasa
settings with limited prior knowledge [23]. As a result, prior work in sequential decision
making generally struggles with generalization and sample efficiency, e.g., requiring 7 GPU
days of interactive game-play to solve a single Atari game [24].

More recently, foundation models, defined as large machine learning models trained at
scale using self-supervised learning [25], have been trained on large amounts of data from
the internet. For instance, autoregressive language models [26, 27] are trained to predict
the next word (token) given previous words (tokens) using text data crawled from the inter-
net. Similarly, video generation models [28, 29] are trained to predict the next frame given
language input and/or previous frames using videos from the internet. As a result, these
models could generate highly realistic natural language and videos. Nevertheless, imitating
content on the internet is not the final goal of these models. The final goal for these models
is to solve real-world tasks such as answering people’s questions and simulating real-world
interactions. To achieve this goal, the generated content of these models have to be control-
lable by humans. How to steer these models to generate desirable content according to user
feedback and how to enable these models to make a sequence of decisions that accomplish
some complex task (e.g., building a website) lies at the center of sequential decision making.
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It is highly beneficial to jointly consider research in foundation models and sequential
decision making. On one hand, broad knowledge from foundation models can improve the
sample efficiency and generalization of decision making algorithms. On the other hand,
decision making algorithms can enable task-specific optimization of otherwise task-agnostic
foundation models. This thesis studies techniques, frameworks, and algorithms at the in-
tersection of foundation models for decision making, and shows that broad knowledge from
foundation models can be effectively transformed into task-specific decisions to better solve
a wide class of problems and applications.

This thesis approaches foundation models for decision making by starting with traditional
decision making techniques in the setting with offline dataset, followed by incorporation
of broader data, until eventually internet-scale vision and language data is incorporated.
Significant attention will be paid to both the theoretical aspects as well as the practical
implications of leveraging foundation models to solve sequential decision making problems.
The work in this thesis builds on ideas from previous research on sequential decision making,
but the newly proposed approaches illustrate additional comprehensiveness and scalability.
The remainder of this chapter is organized as follows. Section 1.1 introduces foundation
models, which is type of machine learning models trained on internet-scale data. This
section discusses common techniques for training foundation models, including representation
learning and generative modeling. This section then describes limitations in foundation
models, including instruction following, long-horizon reasoning, multi-step planning, and
multi-modality. It then gives an overview of how this thesis addresses some of these challenges
by incorporating decision making techniques. Section 1.2 describes the canonical setting of
sequential decision making and common decision making algorithms including imitation
learning, reinforcement learning, search, and planning. The section then highlights the
major bottleneck of sequential decision making, including sample efficiency and lack of good
visual and textual representations. It then gives a glimpse into how this thesis address these
challenges by incorporating foundation models. Section 1.3 states the contribution of this
thesis and summarizes its organization.

1.1 Internet-Scale Knowledge and Foundation Models

One goal of AI can be viewed as automation, e.g., chatbots can automatically answer people’s
questions, self-driving cars and robots can automatically operate without human interven-
tion. Such a goal can be broken down into two parts: knowledge and action, e.g., chatbots
need to know about the particular questions being asked (knowledge) before coming up with
an answer (action), self-driving cars and robots need to understand the surrounding objects
(knowledge) before moving to a particular location (action). While the best actions depend
on the specific tasks or user requests, knowledge about the world is general and can be shared
across tasks. Prior to the development of foundation models, it was not clear how to equip
AI with broad knowledge about the world.

Nevertheless, broad knowledge exist on the internet in the form of textual and visual
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data. For instance, Wikipedia articles contain detailed information about specific topics,
which often contain answers to people’s inquiries about specific subjects. Similarly, tons of
driving videos and videos of humans performing household activities exist on the internet,
which could inform self-driving cars and robots of what to do in certain situations. The
problem of automation can then be naturally broken down to (1) how to inject these internet-
scale knowledge into machine learning models, so that models can elicit relevant knowledge
when solving specific tasks just like humans do, and (2) how to decide on a set of actions
that actually solve specific tasks using previously acquired knowledge. The terminology
of foundation models was introduced to emphasize the learning objective and scale of (1).
Specifically,

A foundation model is any model that is trained on broad data (generally using
self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of

downstream tasks [25].

To understand this definition of foundation models further, we focus on introducing
two common self-supervised objectives of foundation models: representation learning or
generative modeling. We introduce these two objectives below.

1.1.1 Representation Learning

Representation learning has been studied for decades and have many different interpreta-
tions such as dimension reduction [30], sparse coding [31], manifold learning [32], and so on.
Generally speaking, representation learning uses a different objective, often called the rep-
resentation learning objective, from the downstream task-specific objective. The high-level
idea behind representation learning objective is to learn some embedding representations of
the raw input (e.g., image or language), so that such these representation can capture broad
knowledge from the pretraining data. For instance, one common representation learning
objective for modeling language is denoising autoencoding, as in Bidirectional Encoder Rep-
resentations from Transformers (BERT) [1]. In BERT models, word tokens are encoded into
high-dimensional embedding representations, and trained by predicting neighboring word
tokens. In another word, good representations of words should enable the prediction of
neighboring words. As a result, this denoising autoencoding objective can successfully inject
knowledge into these pretrained representations by forcing them to contain information that
is helpful to predicting neighboring words. In addition to denoising autoencoding, another
example of representation learning objective in foundation models is contrastive learning [8].
Contrastive learning can be seen as encouraging the similarity of embeddings between sim-
ilar examples and discourage similarity of embeddings between dissimilar examples. For
instance, Contrastive Language-Image Pretraining (CLIP) [2] encourages the representation
of the image of a dog and the word “dog” to be similar, while discourage the representa-
tion of a dog image to be similar to the word “cat”. Figure 1.1 illustrates the above two
representation learning objectives, denoising autoencoding and contrastive learning. Note
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Figure 1.1: Example objectives of representation learning commonly used for training
foundation models. In BERT [1] (left), representations of word tokens encourage predictions
of neighboring words. In CLIP [2] (right), representations of the word “dog” and the an
image of a dog are encouraged to be similar.

that autoencoding and contrastive learning have long been studied, but scaling such repre-
sentation learning objectives to internet-scale datasets only happened in recent years, where
BERT and CLIP models are trained on text and images crawled from the internet.

Note that representation learning alone is generally not sufficient for solving any specific
tasks. The learned representations are usually finetuned on downstream objectives. For
instance, BERT representations of word tokens can be finetuned on sentiment classifica-
tion tasks, while CLIP representations of images can be finetuned on image classification
tasks. The mismatch between the representation learning objective and the downstream
task-specific objectives can some time limit the capabilities of representation learning ap-
proaches.

1.1.2 Generative Modeling

Different from representation learning in Section 1.1.1, generative modeling approach to pre-
training foundation models does not learn embedding representations of input data directly.
Instead, generative modeling focuses on learning the input distribution using approximate in-
ference or sampling approaches. In approximate inference, a known function class is learned
from data to approximate the input distribution. For instance, variational autoencoding
(VAE) is the most canonical approximate inference approach to generative modeling, which
uses a simpler tractable distribution (often Gaussian) to approximate the posterior distri-
bution of the latent variables. In the case where the data distribution is highly intractable,
one can restore to sampling methods such as Monte Carlo techniques. The sampling ap-



CHAPTER 1. INTRODUCTION 5

proach can be particularly effective when the data distribution it self is not of interest, but
being able to sample from the learned distribution is of interest. For instance, diffusion
models [33, 34, 35] rely on sampling methods. They work by defining a forward diffusion
process, which progressively adds noise to the data, and a reverse diffusion process, which
gradually removes this noise to generate new data samples from the model.

In addition to approximate inference and sampling based methods as in VAEs and diffu-
sion models, self-supervised learning through next token prediction has been shown effective
in modeling language. In large language models (LLMs) such as Generative Pretrained
Transformers (GPTs) [26, 27], are trained using a self-supervised learning approach where
the model learns to predict the next token in a sequence given the previous tokens. This
process involves maximizing the likelihood of the observed data (text sequences) by adjusting
the model parameters to increase the probability of the correct next token.

One of the advantages of generative modeling being the pretraining objective is that
pretraining and downstream task-specific learning can use the same training objective. For
instance, next token prediction is both the pretraining and the finetuning objective for
LLMs. The aligned objective between pretraining and finetuning often simplifies training
infrastructure and preserves knowledge from pretraining during the finetuning stage.

1.2 From Knowledge to Action via Decision Making

So far, we have discussed how foundation models can acquire broad knowledge from internet
data, i.e., through self-supervised learning at scale using representation learning or generative
modeling objectives. However, like we have discussed earlier in this section, acquiring knowl-
edge is only the first step to artificial intelligence. The next step is to derive the appropriate
actions using previously acquired knowledge, so that the derived action can achieve some
desirable goal or task. The process of deriving such desirable action is often times referred to
as decision making. In the recent research of large language models, supervised finetuning is
often employed directly to finetune pretrained LLMs on task-specific supervised data, such
as question and answer pairs. Using next-token prediction, LLMs can be simply finetuned to
predict the answer given specific questions. However, such näıve finetuning approach often
fell short in more complex problems that require extended reasoning, long-horizon planning,
and more strategic decision making. These problems often require models to understand the
long-term effect of actions, to be able to reason through the consequence of a combination
of action sequences, and to strategically select actions that maximizes the long-term gain.
As a result, the next-token-prediction objective is no longer sufficient.

The problem of optimal decision making lies at the core of sequential decision making [36],
encompassing areas such as reinforcement learning, imitation learning, planning, search, and
optimal control. Contrary to the paradigm of foundation models, where broad datasets
with billions of images and text tokens are used during pretraining, prior work on sequential
decision making has largely focused on task-specific or tabula rasa settings with limited prior
knowledge [23]. Despite a seemingly disadvantageous setup, research in sequential decision
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making has achieved significant progress in surpassing human performance on tasks such as
playing board games [37] and Atari video games [38], as well as operating robots to complete
navigation [39] and manipulation tasks [40, 41]. Nevertheless, since these methods learn to
solve a task from scratch without broad knowledge from vision, language, or other datasets,
they generally struggle with generalization and sample efficiency, e.g., requiring 7 GPU days
of interactive game-play to solve a single Atari game [24]. Intuitively, broad datasets similar
to those used for foundation models should also be beneficial for sequential decision making
models. For example, there are countless articles and videos on the Internet about how to
play Atari games. Similarly, there is a wealth of knowledge about properties of objects and
scenes that would be useful to a robot, or about human wants and emotions that could
improve a dialogue model.

While research on foundation models and sequential decision making has largely been
disjoint due to distinct applications and foci, there is increasing activity at the intersection of
these communities. On the foundation models side, with the discovery of emergent properties
of large language models, target applications have graduated from simple zero or few-shot
vision and language tasks to problems that now involve long-term reasoning [42, 43, 44]
or multiple interactions [45]. Conversely, in the sequential decision making communities,
researchers inspired by the success of large scale vision and language models have begun
to curate ever-larger datasets for learning multimodel, multitask, and generalist interactive
agents [46, 47, 48, 19, 49, 3]. Further blurring the lines between the two fields, some recent
work has investigated the use of pretrained foundation models such as CLIP [2] to bootstrap
the training of interactive agents for visual environments [50, 51], while other work has
investigated foundation models as dialogue agents optimized by reinforcement learning with
human feedback [22], and other work has adapted large language models to interact with
external tools such as search engines [52, 53, 54, 55, 56], calculators [57, 53], translators [53],
MuJoCo simulators [58], and program interpreters [59].

1.3 Thesis Statement and Organization

1.3.1 Thesis Statement

Despite early signs of success listed above, foundation models for decision making remain
largely underexplored, underutilized, and lacking solid empirical and theoretical grounding.
The challenges faced by existing research are as follows:

• Many traditional decision making benchmarks are (near-)Markovian (i.e., historyless),
and this brings the value of sequence modeling into question. The true power of
foundation models may require more complex tasks.

• Decision making tasks are composed of multi-modal data. At minimum, the states (ob-
servations), actions, and rewards of a task are each of different types. Moreover, across
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different tasks, states and actions can be highly distinct (image vs. text observations,
discrete vs. continuous actions).

• Unlike vision and language, decision making agents can further interact with the envi-
ronment to collect additional experience in conjunction with learning on existing data.
How such an interactive component should be integrated with foundation models is
not clear.

• Decision making algorithms such as RL already exhibits a large gap between theory
and practice. Hastily applying large models to decision making might create an even
greater gap.

In addition to these challenges, there are a number of open questions at the intersection
of foundation models and decision making:

• Can language model agents be developed to automatically learn to interact with hu-
mans, computers, tools, the world, and each other in a scientific and principled way?

• How can environments and tasks be structured so that vision language foundation
models can benefit traditional decision making applications in control, planning, and
reinforcement learning?

• Can sound, practical, and scalable algorithms be derived, similar to RLHF and MCTS
for language and vision based decision making applications?

• Given that foundation models are trained on data without actions, how can this limi-
tation be overcome from both the dataset and modeling perspectives?

This thesis seeks to address these challenges arising in the paradigm of foundation models
for decision making as well as answering these open questions, in order to equip foundation
models with the ability to conduct extended reasoning, planning, and search capabilities, as
well as accelerating traditional decision making tasks with broad knowledge acquired from
foundation models. Representation learning, generative modeling, and decision making algo-
rithms such as RL are closely interrelated, and therefore effective solutions require attention
to all three areas. Figure 1.2 illustrate the overall framework of foundation models for de-
cision making studied by this thesis. This thesis provides evidence to support the following
statement:

Thesis statement: With appropriate techniques, frameworks, and algorithms, foundation
models for decision making can be efficient, scalable, and empowering, both in theory and in

practice.

We hope that the frameworks, tools, algorithms, and concepts introduced in this thesis
will stimulate further research in foundation models for decision making, leveraging extensive
capabilities of foundation models to tackle more intricate tasks. The code created during
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Figure 1.2: Foundation models for decision making illustration. Foundation models are
first pretrained on internet-scale data using self-supervised learning, and are then employed
to solve real-world tasks through interacting and learning from feedback of external entities
such as the real world.

this thesis is openly accessible and has already been utilized by numerous researchers for
benchmarking and developing their own decision-making algorithms using foundation mod-
els.

1.3.2 Thesis Organization

This thesis studies the frameworks, techniques, algorithm design, and performance analysis
of leveraging foundation models in decision making problems. The results in this thesis
are developed in collaboration with various co-authors: Pieter Abbeel, Ofir Nachum, Dale
Schuurmans, Bo Dai, Hanjun Dai, Yilun Du, Servey Levine, George Tucker, Igor Mordatch,
Charlie Snell, Justin Fu, Doina Precup, Jonathan Tompson, Yi Su, and David Venuto. The
following paragraphs describe the organization and contributions of this thesis.

Chapter 2 introduces the necessary definitions and notation used throughout the the-
sis, as well as briefly reviews relevant concepts in decision making and generative modeling.
This chapter also formulates the problem of foundation models for decision making. Then,
Chapter 3 introduces algorithmic improvements to traditional RL methods to incorporate
additional offline interactive data. Chapter 4 explores using offline data to learn compact
representations of observations and actions, thereby accelerate downstream learning. Chap-
ter 5 considers training conditional generative models. Finally, Chapter 6 leverages internet
text and video data to learn large video and language policies and environments. The chap-
ters are generally organized both in the chronological order of the works developed, and
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also in the order of increasing model scale and data scale/diversity. For instance, Chapter 3
and Chapter 4 only considers offline interactive data following the strict form of sequential
decision making, while Chapter 5 incorporates broader data such as data with auxiliary
information. Finally, Chapter 6 considers internet-scale video and language datasets.

The contributions of this thesis include:

1. The first unified framework of Distribution Correction Estimation (DICE) for off-policy
policy evaluation and selection (Chapter 3).

2. The first comprehensive empirical study of different representation learning objec-
tives (e.g., contrastive, bisimulation, model-based) combined with different downstream
learning objectives (imitation, online/offline RL).

3. The first proofs that contrastive learning of state representations with random Fourier
features can improve the sample complexity of downstream imitation learning (Chap-
ter 4).

4. The first proofs that contrastive learning of action representations with random Fourier
features can improve the sample complexity of downstream imitation learning (Chap-
ter 4).

5. The first to identify and solve the failure mode of Decision Transformer [60] in stochastic
environments with provable guarantees (Chapter 5).

6. A novel technique called procedure cloning for incorporating auxiliary data into imi-
tation learning to improve generalization (Chapter 5).

7. The first to formulate text-conditioned video generation as a universal planning strat-
egy from which diverse behaviors can be synthesized (Chapter 6).

8. A novel framework for adapting pretrained video generation models to task-specific
domains (Chapter 6).

9. The first to demonstrate that text-and-image conditioned video generation can serve
as a universal simulator from which diverse actions and environment transitions can
be simulated (Chapter 6).
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Chapter 2

Preliminaries and Notation

In this chapter, we define notations and review relevant background on sequential decision
making and generative modeling. Definitions and notations from this chapter will be used
throughout the thesis. Individual chapters have additional definitions and notation that are
specific to the chapter. Furthermore, we also outline the problem space of decision making
with foundation models.

2.1 Sequential Decision Making Preliminaries

2.1.1 Markov Decision Process

Sequential decision making problems are most often formalized in terms of a Markov decision
process (MDP) [61], which is defined as a tupleM := ⟨S,A,R, T , µ, γ⟩ consisting of a state
space S, an action space A, a reward function R : S × A → ∆(R),1 a transition function
T : S × A → ∆(S), an initial state distribution µ ∈ ∆(S), and a discount factor γ ∈ [0, 1).
A policy π : S → ∆(A) interacts with the environment starting at an initial state s0 ∼ µ.
At each timestep t ≥ 0, an action at ∼ π(st) is sampled and applied to the environment,
after which the environment transitions into the next state st+1 ∼ T (st, at) while producing
a scalar reward rt ∼ R(st, at).

2

After π interacts with M for H timesteps (H can be infinite), an episode (trajectory)
is produced τ := {(s0, a0, r0), (s1, a1, r1), . . . , (sH , aH , rH)}. We use τt to denote the tuple
(st, at, rt), τ<t to denote a sub-episode up to timestep t, τ≥t to denote a sub-episode starting
from timestep t and ending at H, τt:t+h to denote a sub-episode from timestep t to t + h,
and τs or τa to denote only the state or action portion of a trajectory. The return associated
with episode τ is defined as the total discounted sum of rewards R(τ) :=

∑H
t=0 γ

trt. The

1∆(X ) denotes the simplex over a set X .
2We will focus on fully observable MDPs in this chapter, though an MDP can be extended to a partially

observable MDP (POMDP) by introducing an observation space O, an emission function E : S → O, and
the restriction that policies can only depend on observations and previous actions. More details of POMDPs
will be introduced in later chapters.
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trajectory distribution of a policy pπ(τ) is determined by

pπ(τ) = µ(s0)Π
H
t=0π(at|st)R(st, at)T (st+1|st, at). (2.1)

Trajectories generated by one or multiple policies can be collected in an offline dataset Doff =
{τ}. We can also write an offline dataset as a set of transition tuples Doff = {(si, ai, ri, s′i)}Mi=1,
where M is the number of transitions in the dataset. Whether to treat the offline interactive
dataset as a set of sequences or a set of transition tuples depends on the problem setting.

2.1.2 Imitation Learning

In standard imitation learning, R, T , and µ are unknown to the agent. Learning solely
takes place from a fixed dataset of demonstrations D∗

off = {(s, a)} previously collected by an
expert policy π∗ interacting with M through a ∼ π∗(s). The goal of imitation learning is
to train π on D∗

off so that π closely approximates π∗ according to some metric, such as the
Kullback–Leibler (KL) divergence between the trajectory distributions DKL(pπ∗(τ)∥pπ(τ)).

Behavioral cloning (BC). Learning from expert demonstrations leads to the common
framing of imitation learning as supervised learning of state to action mappings. Under this
framing, behavioral cloning (BC) [62] proposes to learn π by minimizing

LBC(π) := E(s,a)∼D∗
off

[− log π(a|s)]. (2.2)

Equation 2.2 can be viewed as the classification loss (discrete actions) or regression loss
(continuous actions) of state to action mappings, connecting BC to supervised learning in
vision and language.

2.1.3 Reinforcement Learning

Standard reinforcement learning [36] aims to maximize the expected returns of a policy
through trial-and-error interaction with the environment:

J(π) := E
[ ∑H

t=0 γ
trt

∣∣∣ π,M] . (2.3)

Policy-based methods. One conceptually straightforward way to optimize Equation 2.3
is through policy gradient, which estimates the gradient of Equation 2.3 with respect to
the policy π, and maximizes J(π) directly via gradient ascent. The most commonly used
gradient estimator has the form

∇θJ(πθ) = Eτ∼pπθ (τ)
[∑H

t=0 γ
t∇θ log πθ(at|st)Â(st, at)

]
, (2.4)

where Â is some advantage function that can be separately estimated via Monte-Carlo returns
from pπ(τ) [63]. The biggest drawback of policy gradient is sample inefficiency: since policy
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gradients are estimated from rollouts, the variance of the gradient estimate is often extreme.
To mitigate high variance, various works such as PPO [64] have proposed to improve policy
updates through the use of appropriate geometry [65, 66, 67] or through training a separate
critic network to estimate Â to futher reduce variance at the cost of introducing bias [68, 69,
70].

Value-based methods. Another family of reinforcement learning methods for optimizing
Equation 2.3, such as Q-learning [71], involves learning the optimal value function Q∗(st, at)
by satisfying a set of Bellman optimality constraints:

Q∗(st, at) = rt + γEst+1∼T (st+1|st,at)
[

maxat+1 Q
∗(st+1, at+1)

]
, (2.5)

after which an optimal policy can be extracted via π∗(·|st) = arga maxQ∗(st, a). Value-based
methods are typically more sample efficient than policy-based methods [72], but tend to be
unstable under function approximation [36]. At the intersection of policy and value based
methods, Actor-Critic methods [68] first learn Qπ(st, at) by satisfying the set of Bellman
expectation constraints:

Qπ(st, at) = rt + γEst+1∼T (st+1|st,at),at+1∼π(st+1) [Qπ(st+1, at+1)] , (2.6)

then plug Â(st, at) = Qπ(st, at) into the policy gradient objective, Equation 2.4, to update
the policy, so that learning the resulting policy will be both stable and sample efficient.

Off-policy and offline RL. To further improve the sample efficiency of on-policy methods,
a set of off-policy approaches have been proposed for both policy and value based RL [73,
74, 75], where data from sources other than the current policy can be utilized for learning
in conjunction with environment interaction. Offline RL [76] further considers the setting
where an agent only has access to a fixed dataset of previous interactions Doff, and no
further environment access to T or R is available. To ensure the learned policy avoids
out-of-distribution states and actions, offline RL methods often impose regularization via a
divergence between the learned policy and the offline dataset [77] or on the learned value
function [78]. More recently, some works have explored using additional online access as a
finetuning step after offline RL to improve sample efficiency [79, 80, 81].

Using foundation models for decision making differs from traditional offline RL (with
or without online finetuning) in that the latter focuses on learning RL algorithms from
task-specific RL datasets Doff (i.e., datasets with task-specific states, actions, and rewards),
whereas the former focuses on self-supervised learning on diverse data (e.g., data from vision
and language domains) followed by task-specific adaptation.

2.1.4 Planning, Search, and Optimal Control

Unlike the model-free RL algorithms outlined above, a broader set of approaches to se-
quential decision making (e.g., planning, search, optimization-based control, model-based
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RL) leverage explicit models of the environment. When the true environment dynamics are
known (e.g., the rules of a Chess game) and simulation is cheap, planning and search algo-
rithms, such as MCTS [82] that leverage an accurate simulator, can be highly effective [21].
When the environment can be characterized by precise dynamics, such as the constrained
movements of a robot arm, approaches in optimal control—such as trajectory optimiza-
tion [83], shooting [84], collocation [85], and model predictive control [86]—have long been
studied prior to the recent advances in deep learning. In deterministic scenarios, given an
environment governed by a known dynamics function st+1 = f(st, at), optimizing a sequence
of actions a0:T to execute in the environment corresponds to

a0:T = arg max
a0:T

J(s0, a0:T ) = arg max
a0:T

T∑
t=0

r(st, at) subject to st+1 = f(st, at). (2.7)

Model-based RL [87] considers the setting where the environment dynamics are unknown
and have to be estimated from samples, after which techniques from search, planning, and
optimal control [87, 88, 89, 90, 91] can be effectively applied given the learned dynamics
model.

2.2 Generative Models Preliminaries

Many foundation models can be characterized as modeling a (conditional) density p(x) on
a large dataset of images or texts x ∼ D. For example, x could be an image, a sequence
of images, or a sequence of text tokens. Different foundation models differ in their factor-
izations of p(x). Below, we provide a brief overview of several generative models and their
factorizations of p(x).

Latent Variable Models Latent variable models factorize the unknown data distribution
of interest p(x) into a latent variable distribution and a conditional distribution:

p(x) =

∫
p(z)p(x|z)dz, (2.8)

where the latent variable z can be both discrete or continuous. For the special cases when
z is discrete and the sum is tractable, or z is continuous and the integral is tractable, one
can simply calculate p(x) in closed form to support efficient maximum likelihood estimation
on a given dataset. However, for the more general cases when the requisite sum or integral
is intractable, techniques like VAEs [92] are applied to optimize the evidence lower-bound
(ELBO) of p(x) using a variational posterior q(z|x):

LVAE(p, q) = Ex∼D,z∼q(z|x) [− log p(x|z)] + Ex∼D [DKL (q(z|x)∥p(z))] . (2.9)

As an extension of VAE, VQ-VAE [93] uses a codebook to discretize the continuous latent
representation to learn a more compact, discrete representation of the data.
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Autoregressive Sequence Models Autoregressive sequence models have been popular-
ized by transformer-based language models [94, 27]. At their core, autoregressive models
factorize any joint distribution over a sequence x = (x1, ...xL) in an autoregressive manner:

p(x) = ΠL
ℓ=1p(xℓ|x<ℓ). (2.10)

Under this factorization, estimating the density p(x) reduces to learning each conditional
factor p(xℓ|x<ℓ) which can be parametrized by a transformer.

LLM(p) = Ex∼D

[
L∑
ℓ=1

− log p(xℓ|x<ℓ)
]
. (2.11)

Diffusion Models Diffusion models [33, 35, 95] are a class of latent variable models that
factorize the data distribution p(x) as a Markov chain of Gaussian transitions from a noise
distribution of the same dimension:

p(x) =

∫
p(xK)ΠK

k=1p(xk−1|xk)dx1:K , (2.12)

where p(xK) = N (0, I) and p(xk−1|xk) := N (µ(xk, k), σ(xk, k)). The forward diffusion
process corrupts x by iteratively adding Gaussian noise with a fixed variance schedule. The
reverse process then achieves data generation by approximating the noise that corrupted x
during the forward process.

2.2.1 Energy-Based Models

Energy-based models [96, 97] are a class of models that represent data distributions p(x) by
an unnormalized distribution parameterized by a learned energy function:

p(x) =
e−E(x)

Z
, (2.13)

where E is the energy function and Z =
∫
e−E(x)dx is the partition function. To sample from

the underlying distribution p(x), one typically runs an MCMC procedure such as Langevin
dynamics to sample from the underlying distribution.

2.3 Foundation Models as Conditional Generative

Models

We now examine the first concrete use case of foundation models in decision making: prob-
abilistic modeling of the trajectory distribution p(τ) from an interactive dataset τ ∼ Doff.
Depending on what part of τ is being modeled, foundation models can serve as conditional
generative models of behaviors (i.e. actions) or the underlying world models (i.e., environ-
ment dynamics). Below, we first review different generative models and then discuss and
explore how they can be used to represent behaviors and models of the environment.
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Figure 2.1: Illustrations of how conditional generative models can model behaviors, im-
provements, environments, and long-term futures given a trajectory τ ∼ Doff. Dark blue
indicates transitions with higher rewards. Models of behavior (Decision Transformers [3])
and self-improvement (Algorithm Distillation [4]) require near-expert data. Models of the
world (Trajectory Transformer [5]) and long-term future (UniPi [6]) generally require data
with good coverage.

2.3.1 Generative Models of Behavior

The generative models introduced above have mostly been applied to text or image data x ∼
D. Decision making, on the other hand, is concerned with task specific interactive data τ ∼
Doff that distinguishes state, action, and reward labels. We will see how different generative
models can be adopted to model agent behaviors (this subsection) and environment dynamics
(next subsection), as illustrated in Figure 2.1.

2.3.1.1 Foundation Models as Behavioral Priors

When the interactive data Doff contains diverse behaviors such as “pick up objects”, “move
objects horizontally”, or “place objects”, these behaviors can be composed to complete tasks
that were not present in Doff. Foundation models can be used to model such “behavioral
priors” (also known as “skills” or “options”). In this approach, pretraining generally involves
maximum likelihood estimation of actions conditioned on some trajectory level information.
Different tractable approximations can be leveraged to optimize this underlying training
objective. For instance, the VAE objective from Equation 5.7 can be directly instantiated,
where the encoder q takes a trajectory τ or some future goal as input and the decoder π
produces the sequence of actions as outputs [14, 98]:

LVAE(π, q) = Eτ∼Doff,z∼q(z|τ)

[
H∑
t=0

− log π(at|st, z)

]
+ Eτ∼Doff

[DKL(q(z|τ)∥p(z|s0))] . (2.14)

The posterior distribution q(z|τ) can represent a diverse set of behavioral priors when τ is
drawn from a wide set of related tasks. Since the posterior depends on future information,
the prior p(z|s0) is usually constrained to only depend on the past so that behaviors can be
correctly sampled at test time.

Similarly, the autoregressive sequence modeling objective from Equation 2.11 can also be
instantiated to model behavioral priors [99], resulting in a policy that can depend on the
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history of interaction π(at|st, τ<t). Such dependence is less common in Markovian environ-
ments, but has shown empirical benefits [19]. When the dataset consists of expert data D∗

off,
one can learn transformer-based BC policies by optimizing the sequence modeling objective
where an autoregressive transformer encodes the history (τ<t, st) and decodes the next action
at as:

LLM(π) = Eτ∼D∗
off

[
H∑
t=0

− log π(at|τ<t, st)]. (2.15)

An additional conditioning variable z that captures trajectory-level information such as
the goal or return z(τ) = R(τ) has been introduced in goal or return conditioned supervised
learning [100, 101, 102, 103, 104]:

LLM(π) = Eτ∼Doff

[
H∑
t=0

− log π(at|τ<t, st, z(τ))

]
. (2.16)

When behavior generation is conditioned on high returns, intuitively, desirable behavior is
encouraged [60].

One can also utilize a diffusion model to model the conditional distribution of behaviors
[105] by maximizing the likelihood in Equation 2.12:

LDiffusion(π) = Eτ∼Doff,k∼K

[
H∑
t=0

− log π(ak−1
t |akt , st, z(τ))

]
. (2.17)

To extract desirable behavior from a diffusion model when conditioned on high reward, one
can sample trajectories with high likelihood by using reward as classifier-free guidance [106].

Other conditional generative models that use normalizing flows [107], generative adver-
sarial networks [108], and energy-based models [17] have also been proposed for modeling
behavioral priors from Doff.

2.3.1.2 Generalist Agents Trained on Massive Behavior Datasets

A key advantage to generative modeling of behaviors lies in scaling up; despite different
tasks possessing different observations and rewards, there are often meaningful behaviors
shared across tasks (e.g., “moving left” has similar meaning in navigation, game playing, and
robot manipulation tasks). Inspired by the scaling success of transformers, generalist agents
modeling sequences of diverse behaviors have been developed for simulated tasks [99], over 40
Atari games [3], over 700 real-world robot tasks [19], and over 600 distinct tasks with varying
modalities, observations and action specifications [49]. This has led to generalist agents that
are able to play video games, caption images, chat, perform robot tasks, significantly better
than specialist agents trained on single tasks. Such works have also demonstrated the benefit
of scaling model parameters and the number of training tasks.

While combining multiple task-specific datasets Doff into a large multi-task dataset as
described above is one way to scale up behavior modeling, exploiting Internet-scale collections
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of text and video data D is another viable approach to scaling effectively. Internet-scale
text and video data is abundant in quantity but typically has limited action annotations
compared to Doff. Nevertheless, previous work has still incorporated such datasets. For
instance, Gato [49] approaches this issue with universal tokenization, so that data with
and without actions can be jointly trained using large sequence models. UniPi [6] directly
learns to predict robotic videos and trains a separate inverse model to infer actions from
generated videos. Applying inverse dynamics models to label large video data (e.g., from
YouTube) is also applicable to other domains such as self-driving cars [109] and video game
playing [110, 111].

2.3.1.3 Large Scale Online Learning

An alternative approach to assuming access to large-scale behavior datasets, online access to
massive online game simulators has enabled “large-scale” online RL models to be trained in
games such as DoTA [112] and StarCraft [113] using policy gradient or actor-critic algorithms.
Similarly, domain randomization [114] has been proposed to leverage online access to diverse
generated environments to help bridge the sim-to-real gap in robotics. These large scale
online training schemes, however, have not been able to leverage foundation models. An
important direction for future work is to explore how one can utilize and learn generative
models similarly in massive online settings.

2.3.1.4 Generative Models of Exploration and Self-Improvement

Generative models of behavior can also be extended to model meta-level processes, such
as exploration and self-improvement, whenever the dataset itself Doff embodies exploratory
and self-improving behavior (e.g., the replay buffer of a policy gradient agent trained from
scratch) [4]. That is, unlike other meta-RL methods, which usually train in online settings
by maximizing multi-episodic value functions [115, 116], algorithm distillation imitates the
action sequence of a multi-episodic improvement process from Doff by using a transformer-
based sequence model inspired by the zero-shot ability of language models, and adapts to
downstream tasks purely in-context without updating any network parameters.

Similar to algorithm distillation, which prompts an agent with its prior learning expe-
rience, corrective re-prompting also treats long-horizon planning as an in-context learning
problem, but uses corrective error information as prompts, essentially incorporating feed-
back from the environment as an auxiliary input to improve the executability of a derived
plan [117].

2.3.2 Generative Models of the World

In addition to learning models of behaviors, generative models can also learn models of the
world—i.e., the transition dynamics T and the reward function R—from the offline dataset
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Doff. Conditional generation from a world model is analogous to model-based rollouts, which
can be used to improve a policy.

2.3.2.1 One-Step Prediction of Reward and Dynamics for Model-based
Planning

One can view learning models of T andR as a generative modeling problem given trajectories
from an offline dataset τ ∼ Doff. Since Doff also contains actions from a behavior policy π,
then π, T , and R can be jointly modeled with a single generative procedure. Specifically, the
joint distribution of a trajectory p(τ) can be factored autoregressively into an environment
component and a policy component,

p(τ) = ΠH
t=0p(st, rt, at|τ<t) = ΠH

t=0T (st|τ<t) · π(at|τ<t, st) · R(rt|τ<t, st, at), (2.18)

so that maximum likelihood estimation of p(τ) using Doff under this factorization naturally
decomposes into learning the environment dynamics T ,R and the policy π that produced
the dataset Doff.

Unlike language models where words exist in a common discrete space, here the states,
actions and rewards in τ can all be expressed in different modalities, which poses challenges
to sequentially modeling τ . As a workaround, the Trajectory Transformer [5] discretizes
each dimension of states, actions, and rewards in a continuous control task before applying a
GPT-style autoregressive model on the discretized tokens. Discretization is more challenging
in image-based domains, where learning a latent representation of an image space and latent
dynamics model is more common. Here one can introduce a per-step latent variable zt into
the sequence modeling objective in Equation 2.18:

p(τ) = ΠH
t=0

∫
zt

Tenc(zt|τ<t) · Tdec(st|τ<t, zt) · π(at|τ<t, zt) · R(rt|τ<t, zt, at)dzt, (2.19)

where Tenc(zt|τ<t) encodes the history into the next step’s latent state, Tdec(st|τ<t, zt) decodes
the next step’s observation, and the policy π and reward R can take latent state zt as input.
Along this line, both [118] and [119] apply a sequential VAE [120] to optimize the ELBO
of Equation 2.19, and parametrize the latent dynamics model using an RNN or transformer
based state space model respectively. Similarly, [121, 122, 123, 124] usesd VQ-VAE or masked
autoencoders (MAE) to map image-based observations into discrete tokens before learning
a transformer or latent state space dynamics model on the discretized observations.

The various ways a learned world model can be used to infer a high quality policy have
been method and task specific. For example, heuristic decoding such as return guided beam
search and MCTS have been applied to policy optimization [5, 125, 122]. Separate actor and
critic pairs have also been trained using rollouts from a latent world model (also referred
to as “imagination”) without requiring generating image-based observations [126, 127]. A
world model, when trained to predict observations and actions in the original input space,
can also be used to generate additional training data for model-free RL [128, 129, 91, 130]
under the Dyna framework [36] or to generate additional input context to a policy [131].
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2.3.2.2 Planning with Generative Models of Long-term Future

Instead of autoregressively factoring τ by time step as in Equation 2.18, one can also directly
model the joint distribution of τ across all time steps at once using a diffusion model [132,
133]:

p(τ) = p(s0, a0, r0, . . . , sH , aH , rH) =

∫
p(τK)ΠK

k=1p(τk−1|τk)dτ1:K . (2.20)

By learning a trajectory level generative model, planning can be more easily integrated with
dynamics modelling by sampling from the composed distribution

p̃(τ) ∝ p(τ)z(τ), (2.21)

where z(τ) specifies the trajectory-level properties that one wishes to control. For in-
stance, [133] uses trajectory returns as z(τ) to guide a reverse diffusion process towards
sampling high-return trajectories. [105] further demonstrate that z(τ) can represent different
trajectory-level properties such as goals, skills, and dynamics constraints, where classifier-
free guidance can be applied to conditionally sample trajectories that satisfy the desired
properties. Going beyond low dimensional state action spaces, [6] also show that diffusion
models of long-term futures can also be applied to high-dimensional video data τ , using z(τ)
as text descriptions, effectively improving decision making with large-pretrained text-video
foundation models.

In addition to the benefit of flexible conditioning (e.g., on returns, goals, constraints,
skills, texts), sampling from the composed distribution in Equation 2.21 holds the promise
of accurate long horizon planning, since sampling an entire trajectory does not suffer from
compounding error when rolling out single-step dynamics. Beyond diffusion models, EBMs
can also be used to model the joint trajectory distributions p(τ), including conditioning
on latent trajectory properties z(τ), which might provide a natural approach to satisfying
multiple desirable properties, such as high return and safety [134, 135].

2.4 Foundation Models as Representation Learners

In this section, we discuss foundation models for decision making that leverage representation
learning for knowledge compression. On one hand, foundation models can extract represen-
tations from broad image and text data, D, resulting in a plug-and-play style of knowledge
transfer to vision and language based decision making tasks. On the other hand, foundation
models can also be used to support task-specific representation learning via task-specific
objectives and interactive data, Doff.

2.4.1 Plug-and-Play

Off-the-shelf foundation models pretrained on Internet-scale text and image data can be used
as preprocessors or initializers for various perceptual components of decision making agents.
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For instance, when an agent’s perception is based on images, contrastive learning [136]
and masked autoencoding [137] can be directly applied to the agent’s image observations,
providing state representations that can be further finetuned by BC or RL objectives [138,
139, 140, 141]. When agent actions can be characterized by natural language (e.g., “move
to the left then pick up the cup”), pretrained language models can be used to generate
higher-level plans for longer-horizon tasks, with the hope that language based descriptions
of actions generalize better than low-level motor controls [142, 143, 144, 145]. When agent
observations consist of both images and text descriptions, vision-language captioning models
can further enrich agent observations with language descriptions [146, 147, 145]. Vision-
language models such as CLIP and PaLI [148] are further able to provide task feedback and
reward information by aligning image and language modalities in the agent’s observation
and goal space [142, 149, 48]. Even in the case where an agent’s states, actions, and rewards
do not consist of images or text, pretrained language models, perhaps surprisingly, have still
been found useful as policy initializers for offline RL [150], online RL [151], and structured
prediction tasks [152].

Plug-and-play foundation models are generally more natural when the decision making
task concerns real-world images or texts. Plug-and-play is less applicable to decision making
tasks when there are idiosyncratic, domain specific state action spaces, which we will discuss
in Section 2.4.3.

2.4.2 Vision and Language as Task Specifiers

An important special case of plug-and-play foundation models is to use text commands or
visual inputs as task specifiers to learn more robust, general, and multi-task policies [143,
142, 19, 153]. For instance, a text description of “close the cabinet door” or a goal image with
the cabinet door closed can serve as policy input to augment the current robot state. There
are a few motivations behind this approach. First, using language and a goal image to specify
a task provides richer information about the intended task rather than merely providing a
scalar reward. Second, pretrained language models (equipped with prompting methods such
as chain-of-thought) can decompose high-level tasks into lower-level instructions that are
easier to execute [143, 142, 154, 155]. Furthermore, pretrained vision-language models can
enable language-conditioned agents to generalize to new instructions, scenes, and objects in
navigation and manipulation tasks [156, 157, 158, 159, 160, 161, 143, 142, 50, 162, 163, 164],
which has been a key challenge in robotics prior to their introduction [165].

Using vision and language task specifiers to prompt for desirable agent behaviors requires
additional data such as text descriptions or goal images of a given tasks. Moreover, prompting
for desirable outcomes from a large language model has significant potential but is also an
open problem in itself [166], whose complexity is exacerbated in decision making scenarios
with external entities and world dynamics.
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2.4.3 Learning Representations for Sequential Decision Making

Unlike vision-language foundation models that can learn from a broad data collection D
but lack the notion of decision making, foundation model techniques and architectures (as
opposed to the pretrained models themeselves) can be used to optimize objectives uniquely
devised for sequential decision making on the basis of task-specific interactive data Doff.
Figure 2.2 visually illustrates these representation learning objectives.

Model-based representations. Traditionally, representation learning for sequential de-
cision making has been framed as learning a latent state or action space of an environment
by “clustering” states and actions that yield similar transition dynamics [167, 168, 169, 170,
171, 172]. Similar to how foundation models can serve as generative models of world dynam-
ics by maximizing p(τ) in Equation 2.18, foundation models can also serve as representation
learners of world dynamics under the following objective:

p(τs,r) = ΠH
t=0p(st+1, rt|τ<t, st, at) = ΠH

t=0T (st+1|τ<t, ϕ(st), at) · R(rt|τ<t, ϕ(st), at). (2.22)

Using this factorization for maximum likelihood estimation of p(τs,r) using Doff naturally
leads to learning state representations ϕ(s) that “cluster” states with similar rewards and
next state probabilities. One could also choose to maximize the likelihood of the next
state representations as opposed to the next raw state, i.e., T (ϕ(st+1)|τ<t, ϕ(st), at) resulting
in a latent dynamics model [171]. Alternative learning objectives for ϕ(s) can be derived
depending on how T (st+1|τ<t, ϕ(st), at) is defined. For instance, T may be defined as an
energy-based model:

T (st+1|τ<t, ϕ(st), at) ∝ exp{ϕ(st+1)
⊤f(ϕ(st), at, τ<t)}, (2.23)

where f is a trainable function that maps ϕ(st), at, τ<t to the same embedding space as ϕ .
While Equation 2.22 learns state representations by modeling the forward dynamics, one can
also learn state representations based on an inverse dynamics model [173, 174] by predicting
at from τ<t, st, st+1, thereby maximizing

p(τa) = ΠH
t=0p(at|τ<t, ϕ(st), ϕ(st+1)). (2.24)
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Figure 2.2: Illustrations of different representation learning objectives such as model-based
representations [7], temporal contrastive learning [8], masked autoencoders [1], and offline
RL [9], on a trajectory τ ∼ Doff specifically devised for sequential decision making.
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In addition to forward and inverse dynamics based representations, it is also possible to learn
state representations derived from predicted value functions [175], curiosity metrics [176], or
other MDP-based similarity metrics such as bisimulation properties deduced from Bellman
backups [177, 178, 179]. The above representation learning objectives have mostly been
considered under the Markovian setting, hence the dependence on τ<t is often dropped.
Though the Markovian assumption makes large sequence models seem less relevant, these
representation learning objectives benefit from sequence modeling architectures in image-
based domains that are generally non-Markovian.

Temporal contrastive learning. The model-based representation objectives above re-
quire strictly interleaved state-action-reward tuples in the training data Doff, which can pre-
clude more flexible representation learning techniques that consider broader data sources,
D, such as YouTube videos (which can be thought of as state-only trajectories τs). Tem-
poral contrastive learning such as CPC [8], on the other hand, can model more flexible
sequence-level representations, and has been applied to playing games by watching YouTube
videos [180]. Specifically, in temporal contrastive learning, observations that are closer tem-
porally (e.g., observations that belong to the same trajectory) are encouraged to have similar
representations. Given a sub-trajectory τt:t+h, one can learn ϕ(s) by minimizing a contrastive
loss between ϕ(st) and ϕ(st+i):

−ϕ(st+i)
⊤Wiϕ(st) + logEρ[exp{ϕ(s̃)⊤Wiϕ(st)}]. (2.25)

where i = 1, . . . , h, Wi is a learnable weight matrix, and ρ is some non-trainable prior
distribution. Note that the temporal contrastive learning in Equation 2.25 bears resemblance
to learning an energy-based dynamics model in Equation 2.23, as established in prior work [7,
181].

Masked autoencoders. When a trajectory τ = (s0, a0, r0, ..., sH , aH , rH) from Doff is
treated as a flattened sequence, BERT-style denoising autoencoding objectives can be applied
to the sequence to learn representations of states, actions, rewards, and dynamics through
specific choices of masking patterns [182, 183, 184, 124]. These methods learn representations
ϕ(s) by first randomly masking a subset of tokens in τ to obtain τ̂ , then pass the masked
sequence τ̂ to a transformer, and finally reconstruct the masked portions of the original
input τ̄ from the transformer output F (τ̂). The training objective, for instance, can be
characterized as maximizing

p(τ̄ |τ̂) = ΠH
t=0mtp(τt|τ̂) = ΠH

t=0mt
exp{F (τ̂)Tt ϕ(st)}∑
s exp{F (τ̂)Tt ϕ(s)} , (2.26)

where for each masked input state st, a contrastive loss between its representation ϕ(st) and
the transformer output at its sequential position F (τ̂)t is applied. Unlike model-based rep-
resentation learning approaches that explicitly model state transition probabilities, masked
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autoencoders can learn representations from a broader dataset that potentially has missing
actions and rewards, while still being able to incorporate dynamics-based information in the
learned representations.

Offline RL pretraining. When the downstream decision making tasks are to be trained
with RL objectives, it might seem natural to apply similar RL objectives during pretraining
when acquiring value-based representations [185, 81]. At a high level, value-based pretraining
encompasses any offline RL algorithms that have been pretrained on logged experience from
one or more tasks relevant to the downstream interactive task of interest. Value-based
pretraining has exhibited scaling capability in multi-task settings where state action spaces
are similar (e.g., all of Atari games [9]).

2.4.3.1 Post Representation Learning: BC and RL Finetuning

Unlike generative foundation models that can directly produce action or next state samples,
as in Section 2.3, foundation models as representation learners are only directed to extract
representations of states, actions, and dynamics; hence they require additional finetuning
or model-based policy optimization to achieve strong decision making performance. On the
theoretical side, various works have focused on developing representation learning objectives
that ensure downstream BC or policy/value-based RL finetuning using the pretrained rep-
resentations are provably efficient [186, 7, 187, 188, 189]. These analyses are generally based
on properties of linear MDPs. For instance, one such assumption states that the state-action
value function Qπ(s, a) can be represented as a linear combination of features ϕ(s, a) under
the linear MDP factorization T (s′|s, a) = ⟨ϕ(s, a), θ(s′)⟩ and R(s, a) = ⟨ϕ(s, a), θr⟩, which
ensures that standard policy and value based RL training can take place in the more compact
representation space ϕ(s, a) as opposed to the original state-action space. Beyond providing
compact state action spaces for policy and value-based model-free RL methods, pretrained
representations can also simplify model learning and policy rollouts of model-based policy
optimization [69, 175, 127] as described in Section 2.3.2.

While representation learning objectives specifically devised for sequential decision mak-
ing have theoretical benefits, it is less clear how these objectives can effectively incorporate
broader and multi-task data when the underlying dynamics differ from that of the target
task of interest.

2.5 Foundation Models as Agents and Environments

We have seen that foundation models can characterize different components of a decision
making process (M), such as agent behaviors (A), world dynamics (T ), task specifiers (R),
and state (S) and action representations. In this section, we further consider a special case
where pretrained large language models can serve as agents or environments. Treating lan-
guage models as agents, on one hand, enables learning from environment feedback produced



CHAPTER 2. PRELIMINARIES AND NOTATION 24

by humans, tools, or the real world, and on the other hand enables new applications such
as information retrieval and web navigation to be considered under a sequential decision
making framework. Language models can also be thought of as computational environments
that take text as input and produce text as output, effectively supporting interactions with
external prompts.

2.5.1 Interacting with Humans

Dialogue as an MDP. A piece of dialogue can be viewed as in alternating nteraction
between a dialogue agent π and a human environment M = E , where a conversation τ<t =
{e0, a1, e1, ..., at} consists of sentences ai and ei produced by π and E respectively. On
the t-th turn, a state st ∈ S captures the conversation history st = {τ<t, et}, an action
at ∈ A is an agent’s response given this context, a next state st+1 ∈ S concatenates st
with at and et+1, and a reward rt = R(st, at) is produced. An agent π aims to maximize
Ee0∼µ,π,T [

∑H
t=0 γ

tR(st, at)].

Optimizing dialogue agents. The application of large language models to dialogue gen-
eration is a natural one, as both the broad pretraining data D and the task-specific dialogue
data Doff are of the same text modality, which allows for task-specific finetuning using the
same self-supervised loss as pretraining [190, 191, 192, 53]. Such an approach has achieved
impressive performance as assessed by humans, under metrics including safety, sensibleness,
interestingness, truthfulness, and helpfulness [53, 193]. Although human feedback was ini-
tially used to evaluate dialogue systems [194], it was soon incorporated as a reward signal for
optimizing dialogue agents under the reinforcement learning with human feedback (RLHF)
framework [22, 45, 193, inter alia]. In practice, RLHF involves several stages: first, a pre-
trained language model is finetuned on dialogue data to provide an initial policy π; second,
output from this model is ranked by human raters, which is then used to train a preference
(reward) model R; finally, the language model is finetuned using policy gradient in Equation
2.4 to maximize the reward given by the preference model. Other RL objectives such as
Q-learning (Equation 2.5) and actor-critic (Equation 2.6) have also been used to enable dia-
logue agent to perform specific tasks, such as booking flights and selling items on Craigslist
[195, 196, 197, 198, 199].

Limitations of dialogue agents. While using human feedback is a natural way to turn
broad data D into task-specific data Doff, solely relying on human feedback to finetune a
language model agent has a number of limitations. For instance, language models have been
criticized for failing to access up-to-date information [52], hallucinating facts [200, 201], and
struggling to perform complex reasoning and mathematical calculations [202]. Such failure
modes are unsuprising if these desired properties were never a part of the feedback the
language model received. While one approach to mitigate such failure modes is to collect
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human feedback on each of the desired properties, leveraging tools and external entities that
can automatically provide feedback is likely to be a more scalable and reliable approach.

2.5.2 Interacting with Tools

Language model agents that generate API calls (to invoke external tools and receive responses
as feedback to support subsequent interaction) can be formulated as a sequential decision
making problem analogous to the dialogue formulation in the previous section. Several tools
such as search engines [52, 53, 54, 55, 56], calculators [57, 53], translators [53], MuJoCo
simulators [58], scratch pads [203], computer memory [204], and program interpreters [59]
have been used to augment language models in a supervised finetuning or prompting setting,
where response from tools are used as additional inputs to the language model.

Limitations of tool use agents. Unlike dialogue systems, where the agent and environ-
ment take turns, tool-using agents need to additionally decide when to call external tools,
which tools to use, and how to use these tools (e.g., reformulating query if results are not
helpful), all of which pose additional challenges. Consequently, the supervised finetuning of
tool-use agents requires significant human supervision through API call annotations. While
prompting-based tool-use requires fewer examples, the specific prompts typically need to
be hand-crafted for each tool [205]. Moreover, language models are known to be sensitive
to the prompt formats in both the zero and few-shot settings [206, 207]. As a result, the
communication between language models and external tools typically needs to be cleaned-
up by a rule-based parser, which further complicates the prompting setup. Recently, [208]
and [205] have made progress on self-supervised learning of tool use with language models,
training the language model to only an external tool if this leads to an improved response
over the outcome predicted by language model alone. Nevertheless, none of the existing
work considers tool use in an interactive setting where an agent can iterate on its behavior
according to tool feedback to improve its tool-use ability.

Tools as interactive environments. It is challenging to scale supervised finetuning and
prompting to a large number of tools with different uses and tools that return large amounts
of feedback (e.g., hundreds of search results). One sensible way of tackling this challenge is
to treat tools like web browsers as interactive environments, from which experience can be
sampled by executing search queries [192, 209], and optimizing such queries via RL tech-
niques such as policy gradient. Treating tools as interactive environments enables methods
that require massive and efficient online simulator access (e.g., Monte Carlo Tree Search for
AlphaGo) to be applied to a broader set of real-world problems, such as web navigation and
information retrieval. Additionally, situating language models in true knowledge obtained
from the environment better grounds the model, avoiding the the Dichotomy of Control
problem (e.g., sequence models generating next states without respecting environment tran-
sitions) [104].
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2.5.3 Language Models as Environments

Prompting as an MDP. Iterative prompting can be characterized as an MDP that
captures the interaction between a prompt provider π and a language model environment
E , where a prompt history τ<t = {e0, a1, e1, ..., at} consists of prompts ai and language
model outputs ei produced by π and E respectively. Here, e0 is the initial context to the
language model. In the t-th turn, a state st ∈ S captures the prompting history and the t-th
language model responses st = {τ<t, et}, an action at ∈ A is given by the prompt provider,
a next state st+1 ∈ S is produced by concatenating st with at and the next response of the
language model et+1, and a reward rt = R(st, at) is emitted. An agent π aims to maximize
Ee0∼µ,π,T [

∑H
t=0 γ

tR(st, at)]. In language model reasoning, for instance, R(st, at) = 1 if the
language model’s output successfully reaches a goal answer st (i.e., correct reasoning), and
R(st, at) = 0 otherwise.

Under this formulation, various schemes for language model prompting can be char-
acterized by high-level actions that map input strings to desired output strings using the
language model. For instance, such high-level actions include DECOMPOSE [210], RANK [211],
DENOISE [212], and PARAPHRASE [213]. These high-level actions can also be recursively com-
posed to achieve more sophisticated iterative prompting schemes [214]. Other prompting
schemes such as SUMMARIZE, PRUNE, SEARCH can be considered for handling challenges such
as overcoming long context lengths. Given that language models with auxiliary memory have
been shown to emulate universal Turing machines [204], language models could ultimately
serve as “computers” that also operate on human language with prompting as a flexible new
form of programming language.
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Chapter 3

A Framework for Offline Policy
Evaluation

Traditionally, sequential decision making, especially reinforcement learning (RL), considers
the tabular rasa setting where an agent interacts with an environment through trial and
error, while improving its policy (strategy for choosing actions) without any prior knowledge.
As a result, sample efficiency is at odds as the agent must sequentially interacts with the
environment numerous times to learn a good policy. This traditional problem setting of
learning from scratch can be overly restrictive, as there is hardly ever a task for which we have
absolutely zero data or prior knowledge. A more practical question naturally arises: given
previously failed or imperfect interactions, how might one use the suboptimal experience
to improve a policy. Furthermore, online environment access can be expensive and safety
critical, whereas logged experiences of previous interactions are often accessible. It is natural
to wonder if a policy can achieve good performance when only trained on previously logged
experience data without further access to the environment. This is the problem setting that
became known as offline RL, which was first introduced as an extension to off-policy RL [77,
76]. In off-policy RL, while there is a experience buffer that stores previous experiences,
online interactions are still provided, whereas in offline RL, no environment access is possible.

While the problem setting of offline RL also seems restrictive (assumptions on zero envi-
ronment access, step-by-step sequential interactions, etc), it opens the possibility of incorpo-
rating diverse datasets of previous interactions. Imagine that we have the data from previous
plays of a video game, can we use these data to build the best video game agent? Similarly,
given all of the driving data from human drivers, can we build the safest self-driving car?

As introduced in Section 2.1.3, policy improvement in RL can be broken down into
policy evaluation (computing the future expected return of the current policy) and policy
improvement (improving the actions to maximize future expected return). In this chapter,
we will focus on policy evaluation. Specifically, we introduce a novel framework for policy
evaluation, known as Distribution Correction Estimation (DICE). The major contribution
of this framework is that it enables the trade off between optimization stability and unbiased
estimation, so that estimators can be made more stable in function approximation settings.
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3.1 A Framework for Off-Policy Evaluation

3.1.1 Introduction

One of the most fundamental problems in reinforcement learning (RL) is policy evaluation,
where we seek to estimate the expected long-term payoff of a given target policy in a de-
cision making environment. An important variant of this problem, off-policy evaluation
(OPE) [215], is motivated by applications where deploying a policy in a live environment
entails significant cost or risk [216, 217]. To circumvent these issues, OPE attempts to es-
timate the value of a target policy by referring only to a dataset of experience previously
gathered by other policies in the environment. Often, such logging or behavior policies are
not known explicitly (e.g., the experience may come from human actors), which necessitates
the use of behavior-agnostic OPE methods [218].

While behavior-agnostic OPE appears to be a daunting problem, a number of estimators
have recently been developed for this scenario [218, 219, 220, 221], demonstrating impressive
empirical results. Such estimators, known collectively as the “DICE” family for DIstribution
Correction Estimation, model the ratio between the propensity of the target policy to visit
particular state-action pairs relative to their likelihood of appearing in the logged data. A
distribution corrector of this form can then be directly used to estimate the value of the
target policy.

Although there are many commonalities between the various DICE estimators, their
derivations are distinct and seemingly incompatible. For example, DualDICE [218] is de-
rived by a particular change-of-variables technique, whereas GenDICE [220] observes that
the substitution strategy cannot work in the average reward setting, and proposes a dis-
tinct derivation based on distribution matching. GradientDICE [221] notes that GenDICE
exacerbates optimization difficulties, and proposes a variant designed for limited sampling
capabilities. Despite these apparent differences in these methods, the algorithms all involve
a minimax optimization that has a strikingly similar form, which suggests that there is a
common connection that underlies the alternative derivations.

We show that the previous DICE formulations are all in fact equivalent to regularized
Lagrangians of the same linear program (LP). This LP shares an intimate relationship with
the policy evaluation problem, and has a primal form we refer to as the Q-LP and a dual
form we refer to as the d-LP. The primal form has been concurrently identified and studied in
the context of policy optimization [222], but we focus on the d-LP formulation for off-policy
evaluation here, which we find to have a more succinct and revealing form for this purpose.
Using the d-LP, we identify a number of key choices in translating it into a stable minimax
optimization problem – i.e., whether to include redundant constraints, whether to regularize
the primal or dual variables – in addition to choices in how to translate an optimized solution
into an asymptotic unbiased, “unbiased” for short, estimate of the policy value. We use this
characterization to show that the known members of the DICE family are a small subset of
specific choices made within a much larger, unexplored set of potential OPE methods.

To understand the consequences of the various choices, we provide a comprehensive study.
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First, we theoretically investigate which configurations lead to bias in the primal or dual
solutions, and when this affects the final estimates. Our analysis shows that the dual so-
lutions offer greater flexibility in stabilizing the optimization while preserving asymptotic
unbiasedness, versus primal solutions. We also perform an extensive empirical evaluation of
the various choices across different domains and function approximators, and identify novel
configurations that improve the observed outcomes.

3.1.2 Background

3.1.2.1 Dual Policy Evaluation

The value of a policy π is defined as the normalized expected per-step reward it obtains:

ρ(π) := (1− γ)E [
∑∞

t=0 γ
tR(st, at) | s0 ∼ µ,∀t, at ∼ π(st), st+1 ∼ T (st, at)] . (3.1)

In the policy evaluation setting, the policy being evaluated is referred to as the target policy.
The value of a policy may be expressed in two equivalent ways:

ρ(π) = (1− γ) · Ea0∼π(s0)
s0∼µ

[Qπ(s0, a0)] = E(s,a)∼dπ [R(s, a)], (3.2)

where Qπ and dπ are the state-action values and visitations of π, respectively, which satisfy

Qπ(s, a) = R(s, a) + BQπ(s, a), where PπQ(s, a) := Es′∼T (s,a),a′∼π(s′)[Q(s′, a′)] , (3.3)

dπ(s, a) = (1−γ)µ(s)π(a|s)+γ ·Pπ∗ dπ(s, a), where Pπ∗ d(s, a) := π(a|s)∑s̃,ã T (s|s̃, ã)d(s̃, ã). (3.4)

Note that Pπ and Pπ∗ are linear operators that are transposes (adjoints) of each other.
We refer to Pπ as the policy transition operator and Pπ∗ as the transpose policy transition
operator. The function Qπ corresponds to the Q-values of the policy π; it maps state-
action pairs (s, a) to the expected value of policy π when run in the environment starting at
(s, a). The function dπ corresponds to the on-policy distribution of π; it is the normalized
distribution over state-action pairs (s, a) measuring the likelihood π enounters the pair (s, a),
averaging over time via γ-discounting. We make the following standard assumption, which
is common in previous policy evaluation work [220, 222].

Assumption 1 (MDP ergodicity). There is unique fixed point solution to (3.4).

When γ ∈ [0, 1), (3.4) always has a unique solution, as 0 cannot belong to the spectrum of
I−γPπ∗ . For γ=1, the assumption reduces to ergodicity for discrete case under a restriction
of d to a normalized distribution; the continuous case is treated by [223].
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3.1.2.2 Off-policy Evaluation via the DICE Family

Off-policy evaluation (OPE) aims to estimate ρ(π) using only a fixed dataset of experiences.

Specifically, we assume access to a finite dataset D = {(s(i)0 , s
(i), a(i), r(i), s′(i))}Ni=1, where

s
(i)
0 ∼ µ, (s(i), a(i)) ∼ doff are samples from some unknown distribution doff , r(i) = R(s(i), a(i)),

and s′(i) ∼ T (s(i), a(i)). We at times abuse notation and use (s, a, r, s′) ∼ doff or (s, a, r) ∼ doff

as a shorthand for (s, a) ∼ doff , r = R(s, a), s′ ∼ T (s, a), which simulates sampling from the
dataset D when using a finite number of samples.

The recent DICE methods take advantage of the following expression for the policy value:

ρ(π) = E(s,a,r)∼doff [ζ∗(s, a) · r] , (3.5)

where ζ∗ (s, a) := dπ(s, a)/doff(s, a) is the distribution correction ratio. The existing DICE
estimators seek to approximate this ratio without knowledge of dπ or doff , and then ap-
ply (3.5) to derive an estimate of ρ(π). This general paradigm is supported by the following
assumption.

Assumption 2 (Boundedness). The stationary correction ratio is bounded, ∥ζ∗∥∞ ≤ C <
∞.

When γ < 1, DualDICE [218] chooses a convex objective whose optimal solution corre-
sponds to this ratio, and employs a change of variables to transform the dependence on dπ to
µ. GenDICE [220], on the other hand, minimizes a divergence between successive on-policy
state-action distributions, and introduces a normalization constraint to ensure the estimated
ratios average to 1 over the off-policy dataset. Both DualDICE and GenDICE apply Fenchel
duality to reduce an intractable convex objective to a minimax objective, which enables
sampling and optimization in a stochastic or continuous action space. GradientDICE [221]
extends GenDICE by using a linear parametrization so that the minimax optimization is
convex-concave with convergence guarantees.

3.1.3 A Unified Framework of DICE Estimators

In this section, given a fixed target policy π, we present a linear programming representation
(LP) of its state-action stationary distribution dπ (s, a) ∈ P , referred to as the d-LP. The
dual of this LP has solution Qπ, thus revealing the duality between the Q-function and the
d-distribution of any policy π. We then discuss the mechanisms by which one can improve
optimization stability through the application of regularization and redundant constraints.
Although in general this may introduce bias into the final value estimate, there are a number
of valid configurations for which the resulting estimator for ρ(π) remains unbiased. We show
that existing DICE algorithms cover several choices of these configurations, while there is
also a sizable subset which remains unexplored.
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3.1.3.1 Linear Programming for the dπ-distribution

The following theorem presents a formulation of ρ(π) in terms of a linear program with
respect to the constraints in (3.4) and (3.3).

Theorem 3. Given a policy π, under Assumption 1, its value ρ (π) defined in (3.1) can be
expressed by the following d-LP:

max
d:S×A→R

Ed [R (s, a)] , s.t., d(s, a) = (1− γ)µ(s)π(a|s) + γ · Pπ∗ d(s, a)︸ ︷︷ ︸
Bπ
∗ ·d

. (3.6)

We refer to the d-LP above as the dual problem. Its corresponding primal LP is

min
Q:S×A→R

(1− γ)Eµπ [Q (s, a)] , s.t., Q(s, a) = R(s, a) + BQ(s, a)︸ ︷︷ ︸
Bπ ·Q

. (3.7)

Proof. Notice that under Assumption 1, the constraint in (3.6) determines a unique solution,
which is the stationary distribution dπ. Therefore, the objective will be ρ (π) by definition.
On the other hand, due to the contraction of γ · Pπ, the primal problem is feasible and the
solution is Qπ, which shows the optimal objective value will also be ρ (π), implying strong
duality holds.

Theorem 3 presents a succinct LP representation for policy value and reveals the duality
between the Qπ-function and dπ-distribution, thus providing an answer to the question raised
by [219]. Although the d-LP provides a mechanism for policy evaluation, directly solving
either the primal or dual d-LPs is difficult due to the number of constraints, which will present
difficulties when the state and action spaces is uncountable. These issues are exaggerated in
the off-policy setting where one only has access to samples (s0, s, a, r, s

′) from a stochastic
process. To overcome these difficulties, one can instead approach these primal and dual LPs
through the Lagrangian,

max
d

min
Q
L(d,Q) := (1−γ) ·Ea0∼π(s0)

s0∼µ
[Q(s0, a0)]+

∑
s,a

d(s, a) ·(R(s, a)+γPπQ(s, a)−Q(s, a)).

(3.8)
In order to enable the use of an arbitrary off-policy distribution doff , we make the change
of variables ζ(s, a) := d(s, a)/doff(s, a). This yields an equivalent Lagrangian in a more
convenient form:

max
ζ

min
Q
LD(ζ,Q) := (1−γ)·Ea0∼π(s0)

s0∼µ
[Q(s0, a0)]+E(s,a,r,s′)∼doff

a′∼π(s′)
[ζ(s, a)·(r+γQ(s′, a′)−Q(s, a))].

(3.9)

The Lagrangian has primal and dual solutions Q∗ = Qπ and ζ∗ = dπ/doff . Approximate
solutions to one or both of Q̂, ζ̂ can be used to estimate ρ̂(π), by either using the standard
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DICE paradigm in (3.5) which corresponds to the dual objective in (3.6) or, alternatively, by
using the primal objective in (3.7) or the Lagrangian objective in (3.9); we further discuss
these choices later in this section. Although the Lagrangian in (3.9) should in principle be
able to derive the solutions Qπ, dπ and so yield accurate estimates of ρ(π), in practice there
are a number of optimization difficulties that are liable to be encountered. Specifically, even
in tabular case, due to lack of curvature, the Lagrangian is not strongly-convex-strongly-
concave, and so one cannot guarantee the convergence of the final solution with stochastic
gradient descent-ascent (SGDA). These optimization issues can become more severe when
moving to the continuous case with neural network parametrization, which is the dominant
application case in practice. In order to mitigate these issues, we present a number of ways
to introduce more stability into the optimization and discuss how these mechanisms may
trade-off with the bias of the final estimate. We will show that the application of certain
mechanisms recovers the existing members of the DICE family, while a larger set remains
unexplored.

3.1.3.2 Regularizations and Redundant Constraints

The augmented Lagrangian method (ALM) [224] is proposed exactly for circumventing the
optimization instability, where strong convexity is introduced by adding extra regulariza-
tions without changing the optimal solution. However, directly applying ALM, i.e., adding
hp (Q) := ∥Bπ ·Q−Q∥2dD or hd (d) := Df (d||Bπ∗ · d) where Df denotes the f -divergence, will
introduce extra difficulty, both statistically and algorithmically, due to the conditional ex-
pectation operator in Bπ and Bπ∗ inside of the non-linear function in hp (Q) and hd (d), which
is known as “double sample” in the RL literature [225]. Therefore, the vanilla stochastic
gradient descent is no longer applicable [226], due to the bias in the gradient estimator.

In this section, we use the spirit of ALM but explore other choices of regularizations to
introduce strong convexity to the original Lagrangian (3.9). In addition to regularizations,
we also employ the use of redundant constraints, which serve to add more structure to
the optimization without affecting the optimal solutions. We will later analyze for which
configurations these modifications of the original problem will lead to biased estimates for
ρ(π).

We first present the unified objective in full form equipped with all choices of regulariza-
tions and redundant constraints:

max
ζ≥0

min
Q,λ

LD(ζ,Q, λ) :=(1− γ) · Ea0∼π(s0)
s0∼µ

[Q(s0, a0)] + λ

+ E(s,a,r,s′)∼doff
a′∼π(s′)

[ζ(s, a) · (αR ·R(s, a) + γQ(s′, a′)−Q(s, a)− λ)]

+ αQ · E(s,a)∼doff [f1(Q(s, a))]− αζ · E(s,a)∼doff [f2(ζ(s, a))]. (3.10)

Now, let us explain each term in (αQ, αζ , αR, ζ ≥ 0, λ).
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• Primal and Dual regularization: To introduce better curvature into the Lagrangian, we
introduce primal and dual regularization αQEdoff [f1 (Q)] or αζEdoff [f2 (ζ)], respectively.
Here f1, f2 are some convex and lower-semicontinuous functions.

• Reward: Scaling the reward may be seen as an extension of the dual regularizer, as it
is a component in the dual objective in (3.6). We consider αR ∈ {0, 1}.

• Positivity: Recall that the solution to the original Lagrangian is ζ∗ (s, a) = dπ(s,a)
doff(s,a)

≥ 0.
We thus consider adding a positivity constraint to the dual variable. This may be
interpreted as modifying the original d-LP in (3.6) to add a condition d ≥ 0 to its
objective.

• Normalization: Similarly, the normalization constraint also comes from the property
of the optimal solution ζ∗ (s, a), i.e., Edoff [ζ (s, a)] = 1. If we add an extra constraint
to the d-LP (3.6) as

∑
s,a d(s, a) = 1 and apply the Lagrangian, we result in the term

λ− Edoff [λζ (s, a)] seen in (3.10).

As we can see, the latter two options come from the properties of optimal dual solution, and
this suggests that their inclusion would not affect the optimal dual solution. On the other
hand, the first two options (primal/dual regularization and reward scaling) will in general
affect the solutions to the optimization. Whether a bias in the solution affects the final
estimate depends on the estimator being used.

Remark (Robust optimization justification): Besides the motivation from ALM for
strong convexity, the regularization terms in (3.10), αQ · E(s,a)∼doff [f1(Q(s, a))] and αζ ·
E(s,a)∼doff [f2(ζ(s, a))], can also be interpreted as introducing robustness with some pertur-
bations to the Bellman differences. We consider the dual regularization as an example.
Particularly, the Fenchel dual form

αζ · E(s,a)∼doff [f2(ζ(s, a))] = αζ

{
max

δ(s,a)∈Ω
⟨ζ, δ⟩ − E(s,a)∼doff [f ∗

2 (δ (s, a))]

}
,

where Ω denotes the domain of function f ∗
2 . For simplicity, we consider f ∗

2 (·) = (·)2. Plug
this back into (3.10), we obtain

max
ζ≥0

min
Q,λ,δ∈Ω

LD(ζ,Q, λ) := (1− γ) · Ea0∼π(s0)
s0∼µ

[Q(s0, a0)] + λ

+ E(s,a,r,s′)∼doff
a′∼π(s′)

[ζ(s, a) · (αR ·R(s, a) + γQ(s′, a′)−Q(s, a)− λ− αζδ (s, a))]

+ αQ · E(s,a)∼doff [f1(Q(s, a))] + αζ · E(s,a)∼doff [δ2 (s, a)], (3.11)

which can be understood as introducing slack variables or perturbations in L2-ball to the
Bellman difference αR ·R(s, a)+γQ(s′, a′)−Q(s, a). For different regularization, the pertur-
bations will be in different dual spaces. From this perspective, besides the stability considera-
tion, the dual regularization will also mitigate both statistical error, due to sampling effect in
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approximating the Bellman difference, and approximation error induced by parametrization
of Q. Similarly, the primal regularization can be interpreted as introducing slack variables
to the stationary state-action distribution condition, please refer to Appendix A.1.1.

Given estimates Q̂, λ̂, ζ̂, there are three potential ways to estimate ρ(π).

• Primal estimator: ρ̂Q(π) := (1− γ) · Ea0∼π(s0)
s0∼µ

[Q̂(s0, a0)] + λ̂.

• Dual estimator: ρ̂ζ(π) := E(s,a,r)∼doff [ζ̂(s, a) · r].

• Lagrangian: ρ̂Q,ζ(π) := ρ̂Q(π)+ρ̂ζ(π)+E(s,a,r,s′)∼doff
a′∼π(s′)

[
ζ̂ (s, a) (γQ̂(s′, a′)− Q̂(s, a)− λ̂)

]
.

The following theorem outlines when a choice of regularizations, redundant constraints,
and final estimator will provably result in an unbiased estimate of policy value.

Theorem 4 (Regularization profiling). Under Assumption 1 and 2, we summarize the ef-
fects of (αQ, αζ, αR, ζ ≥ 0, λ), which corresponds to primal and dual regularizations, w/w.o.
reward, and positivity and normalization constraints. without considering function approxi-
mation.

Regularization (with or without λ) ρ̂Q ρ̂ζ ρ̂Q,ζ

αR = 1
ζ free Unbiased

Biased
Unbiased

αζ = 0 ζ ≥ 0

Biased

Biased

αQ ¿ 0
αR = 0

ζ free

Unbiased Unbiased

ζ ≥ 0

αR = 1
ζ free

αζ ¿ 0 ζ ≥ 0

αQ = 0
αR = 0

ζ free

ζ ≥ 0

Notice that the primal and dual solutions can both be unbiased under specific regular-
ization configurations, but the dual solutions are unbiased in 6 out of 8 such configurations,
whereas the primal solution is unbiased in only 1 configuration. The primal solution ad-
ditionally requires the positivity constraint to be excluded (see details in Appendix A.1.2),
further restricting its optimization choices.

The Lagrangian estimator is unbiased when at least one of Q̂, λ̂ or ζ̂ are unbiased. This
property is referred to as doubly robust in the literature [227] This seems to imply that the
Lagrangian estimator is optimal for behavior-agnostic off-policy evaluation. However, this is
not the case as we will see in the empirical analysis. Instead, the approximate dual solutions
are typically more accurate than approximate primal solutions. Since neither is exact, the
Lagrangian suffers from error in both, while the dual estimator ρ̂ζ will exhibit more robust

performance, as it solely relies on the approximate ζ̂.
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3.1.3.3 Recovering Existing OPE Estimators

This organization provides a complete picture of the DICE family of estimators. Existing
DICE estimators can simply be recovered by picking one of the valid regularization config-
urations:

• DualDICE [218]: (αQ = 0, αζ = 1, αR = 0) without ζ ≥ 0 and without λ. DualDICE
also derives an unconstrained primal form where optimization is exclusively over the
primal variables (see Appendix A.1.4). This form results in a biased estimate but avoids
difficults in minimax optimization, which again is a tradeoff between optimization
stability and solution unbiasedness.

• GenDICE [220] and GradientDICE [221]: (αQ = 1, αζ = 0, αR = 0) with λ. Gen-
DICE differs from GradientDICE in that GenDICE enables ζ ≥ 0 whereas Gradient-
DICE disables it.

• DR-MWQL and MWL [219]:(αQ = 0, αζ = 0, αR = 1) and (αQ = 0, αζ = 0, αR = 0),
both without ζ ≥ 0 and without λ.

• LSTDQ [228]: With linear parametrization for τ(s, a) = α⊤ϕ (s, a) and Q (s, a) =
β⊤ϕ (s, a), for any unbiased estimator without ξ ≥ 0 and λ in Theorem 4, we can
recover LSTDQ. Please refer to Appendix A.1.3 for details.

• Algae Q-LP [222]: (αQ = 0, αζ = 1, αR = 1, ζ ≥ 0) without ζ ≥ 0 and without λ.

• BestDICE: (αQ = 0, αζ = 1, αR = 0/1) with ζ ≥ 0 and with λ. More importantly, we
discover a variant that achieves the best performance, which was not identified without
this unified framework.

3.1.4 Related Work

Off-policy evaluation has long been studied in the RL literature [229, 227, 230, 231, 215, 217].
While some approaches are model-based [232], or work by estimating the value function [233],
most rely on importance reweighting to transform the off-policy data distribution to the on-
policy target distribution. They often require to know or estimate the behavior policy, and
suffer a variance exponential in the horizon, both of which limit their applications. Recently,
a series of works were proposed to address these challenges [234, 235, 236]. Among them
is the DICE family [218, 220, 221], which performs some form of stationary distribution
estimation. The presented work develops a convex duality framework that unifies many
of these algorithms, and offers further important insights. Many OPE algorithms may be
understood to correspond to the categories considered here. Naturally, the recent stationary
distribution correction algorithms [218, 220, 221], are the dual methods. The FQI-style
estimator [233] loosely corresponds to our primal estimator. Moreover, Lagrangian-type
estimators are also considered [236, 219], although some are not for the behavior-agnostic
setting [236].



CHAPTER 3. A FRAMEWORK FOR OFFLINE POLICY EVALUATION 36

Convex duality has been widely used in machine learning, and in RL in particular. In
one line of literature, it was used to solve the Bellman equation, whose fixed point is the
value function [237, 238, 239]. Here, duality facilitates derivation of an objective function
that can be conveniently approximated by sample averages, so that solving for the fixed
point is converted to that of finding a saddle point. Another line of work, more similar to
the presented work, is to optimize the Lagrangian of the linear program that characterizes
the value function [240, 241, 242]. In contrast to our work, these algorithms typically do not
incorporate off-policy correction, but assume the availability of on-policy samples.

3.1.5 Experimental Evaluation of DICE Family

In this section, we empirically verify the theoretical findings. We evaluate different choices of
estimators, regularizers, and constraints, on a set of OPE tasks ranging from tabular (Grid)
to discrete-control (Cartpole) and continuous-control (Reacher), under linear and neural
network parametrizations, with offline data collected from behavior policies with different
noise levels (π1 and π2). See Appendix A.1.6 for implementation details and additional
results. Our empirical conclusions are as follows:

• The dual estimator ρ̂ζ is unbiased under more configurations and yields best perfor-
mance out of all estimators, and furthermore exhibits strong robustness to scaling and
shifting of MDP rewards.

• Dual regularization (αζ > 0) yields better estimates than primal regularization; the
choice of αR ∈ {0, 1} exhibits a slight advantage to αR = 1.

• The inclusion of redundant constraints (λ and ζ ≥ 0) improves stability and estimation
performance.

• As expected, optimization using the unconstrained primal form is more stable but also
more biased than optimization using the minimax regularized Lagrangian.

Based on these findings, we propose a particular set of choices that generally performs well,
overlooked by previously proposed DICE estimators: the dual estimator ρ̂ζ with regularized
dual variable (αζ > 0, αR = 1) and redundant constraints (λ, ζ ≥ 0) optimized with the
Lagrangian.

Choice of Estimator (ρ̂Q, ρ̂ζ, or ρ̂Q,ζ) We first consider the choice of estimator. In each
case, we perform Lagrangian optimization with regularization chosen according to Theorem 4
to not bias the resulting estimator. We also use αR = 1 and include redundant constraints
for λ and ζ ≥ 0 in the dual estimator. Although not shown, we also evaluated combinations
of regularizations which can bias the estimator (as well as no regularizations) and found that
these generally performed worse; see Section 3.1.5 for a subset of these experiments.
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Figure 3.1: Estimation results on Grid, Reacher, and Cartpole using data collected from
different behavior policies (π2 is closer to the target policy than π1). Biased estimator-
regularizer combinations from Theorem 4 are omitted. The dual estimator with regularized
dual variable outperforms all other estimators/regularizers. Lagrangian can be as good as
the dual but has a larger variance.

Our evaluation of different estimators is presented in Figure 3.1. We find that the dual
estimator consistently produces the best estimates across different tasks and behavior poli-
cies. In comparison, the primal estimates are significantly worse. While the Lagrangian
estimator can improve on the primal, it generally exhibits higher variance than the dual
estimator. Presumably, the Lagrangian does not benefit from the doubly robust property,
since both solutions are biased in this practical setting.

To more extensively evaluate the dual estimator, we investigate its performance when
the reward function is scaled by a constant, shifted by a constant, or exponentiated. 1 To
control for difficulties in optimization, we first parametrize the primal and dual variables as
linear functions, and use stochastic gradient descent to solve the convex-concave minimax
objective in (3.10) with αQ = 0, αζ = 1, and αR = 1. Since a linear parametrization changes
the ground truth of evaluation, we compute the upper and lower estimation bounds by only
parameterizing the primal or the dual variable as a linear function. Figure 3.2 (top) shows
the estimated per-step reward of the Grid task. When the original reward is used (col.
1), the primal, dual, and Lagrangian estimates eventually converge to roughly the same
value (even though primal estimates converge much slower). When the reward is scaled
by 10 or 100 times or shifted by 5 or 10 units (the original reward is between 0 and 1),
the resulting primal estimates are severely affected and do not converge given the same
number of gradient updates. When performing this same evaluation with neural network
parametrization (Figure 3.2, bottom), the primal estimates continue to exhibit sensitivity
to reward transformations, whereas the dual estimates stay roughly the same after being
transformed back to the original scale. We further implemented target network for training
stability of the primal variable, and the same concolusion holds (see Appendix). Note that
while the dual solution is robust to the scale and range of rewards, the optimization objective
used here still has αR = 1, which is different from αR = 0 where ρ̂Q is no longer a valid
estimator.

1Note this is separate from αR, which only affects optimization. We use αR = 1 exclusively here.
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Figure 3.2: Primal (red), dual (blue), and Lagrangian (green) estimates under linear (top)
and neural network (bottom) parametrization when rewards are transformed during training.
Estimations are transformed back and plotted on the original scale. The dual estimates are
robust to all transformations, whereas the primal and Lagrangian estimates are sensitive to
the reward values.

Choice of Regularization (αζ, αR, and αQ) Next, we study the choice between regular-
izing the primal or dual variables. Given the results of Section 3.1.5, we focus on ablations
using the dual estimator ρ̂ζ to estimate ρπ. Results are presented in Figure 3.3. As expected,
we see that regularizing the primal variables when αR = 1 leads to a biased estimate, espe-
cially in Grid (π1), Reacher (π2), and Cartpole. Regularizing the dual variable (blue lines)
on the other hand does not incur such a bias. Additionally, the value of αR has little effect
on the final estimates when the dual variable is regularized (dotted versus solid blue lines).
While the invariance to αR may not generalize to other tasks, an advantage of the dual
estimates with regularized dual variable is the flexibility to set αR = 0 or 1 depending on
the reward function.

Choice of Redundant Constraints (λ and ζ ≥ 0) So far our experiments with the
dual estimator used λ and ζ ≥ 0 in the optimizations, corresponding to the normalization
and positive constraints in the d-LP. However, these are in principle not necessary when
γ < 1, and so we evaluate the effect of removing them. Given the results of the previous
sections, we focus our ablations on the use of the dual estimator ρ̂ζ with dual regularization
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Figure 3.3: Dual estimates when αR = 0 (dotted line) and αR = 1 (solid line). Regularizing
the dual variable (blue) is consistently better than regularizing the primal variable (orange).
αR ̸= 0 and αQ ̸= 0 leads to biased estimation (solid orange). The value of αR does not
affect the final estimate when αζ = 1, αQ = 0.
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Figure 3.4: Apply positive constraint, normalization constraint, and the unconstrained pri-
mal form during optimization (blue curves). Positivity constraint (row 1) improves training
stability. Normalization constraint is essential when γ = 1, and also helps when γ < 1 (row
2). Solving the unconstrained primal problem (row 3) can be useful when the action space
is discrete.

αζ > 0, αR = 1.
Normalization. We consider the effect of removing the normalization constraint (λ).
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Figure 3.4 (row 1) shows the effect of keeping (blue curve) or removing (red curve) this
constraint during training. We see that training becomes less stable and approximation
error increases, even when γ < 1.

Positivity. We continue to evaluate the effect of removing the positivity constraint
ζ ≥ 0, which, in our previous experiments, was enforced via applying a square function to
the dual variable neural network output. Results are presented in Figure 3.4 (row 2), where
we again see that the removal of this constraint is detrimental to optimization stability and
estimator accuracy.

Choice of Optimization (Lagrangian or Unconstrained Primal Form) So far, our
experiments have used minimax optimization via the Lagrangian to learn primal and dual
variables. We now consider solving the unconstrained primal form of the d-LP, which Sec-
tion 3.1.3.2 suggests may lead to an easier, but biased, optimization. Figure 3.4 (row 3)
indeed shows that the unconstrained primal reduces variance on Grid and produces better
estimates on Cartpole. Both environments have discrete action spaces. Reacher, on the other
hand, has a continuous action space, which creates difficulty when taking the expectation
over next step samples, causing bias in the unconstrained primal form. Given this mixed
performance, we generally advocate for the Lagrangian, unless the task is discrete-action
and the stochasticity of the dynamics is known to be low.
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Chapter 4

Representation Learning from
Suboptimal Data

From the previous chapter, we saw that offline interactive dataset can be used to directly
evaluate or improve reinforcement learning (RL) policies. Nevertheless, offline RL makes
assumptions about data coverage which can be difficult to satisfy in practice. Furthermore,
offline RL algorithms can be sensitive to hyperparamters. It is therefore desirable to consider
alternative usage of the offline interactive dataset.

In vision and language, data from other tasks or broader dataset such as those from the
internet can often be used for representation learning. For instance, CLIP [2] uses internet
data to learn representations of images and text so that images and texts of the same instance
have similar representations. While representation learning objectives such as contrastive
learning [8] has been shown to be effective in many settings, the principled understanding of
why these representation learning objectives can accelerate downstream learning has been
limited. Decision making is a more complex setting compared to downstream supervised
learning, hence it is non-trivial to provide principled analysis behind representation learning
for RL.

In this chapter, we explore an alternative of using the offline interactive dataset. Instead
of directly train RL policies on such offline data, we first employ representation learning
objectives to learn compact representations of states or actions, followed by downstream
learning such as imitation or online/offline RL. In Section 4.1, we first conduct an empirical
study of a broad array of representation learning objectives. From this empirical study, we
found that a particular class of representation learning objectives — temporal contrastive
learning, has consistently shown benefit for all environments across all downstream objec-
tives. In Section 4.2, we follow up on such empirical observation to theoretically understand
the benefit of contrastive objectives in learning compact representations of actions. Overall,
this chapter shows that representation learning is an effective alternative to offline RL both
empirically and theoretically.
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4.1 Ablation Study of Representation Learning

Objectives

4.1.1 Introduction

Within the reinforcement learning (RL) research field, offline RL has recently gained a
significant amount of interest [76, 243]. Offline RL considers the problem of performing
reinforcement learning – i.e., learning a policy to solve a sequential decision-making task –
exclusively from a static, offline dataset of experience. The recent interest in offline RL is
partly motivated by the success of data-driven methods in the supervised learning literature.
Indeed, the last decade has witnessed ever more impressive models learned from ever larger
static datasets [244, 245, 27, 246]. Solving offline RL is therefore seen as a stepping stone
towards developing scalable, data-driven methods for policy learning [10]. Accordingly, much
of the recent offline RL research focuses on proposing new policy optimization algorithms
amenable to learning from offline datasets (e.g., [247, 77, 46, 78, 248, 249]).

In this section, we consider a slightly different approach to incorporating offline data
into sequential decision-making. We are inspired by recent successes in semi-supervised
learning [250, 1, 136], in which large and potentially unlabelled offline datasets are used to
learn representations of the data – i.e., a mapping of input to a fixed-length vector embedding
– and these representations are then used to accelerate learning on a downstream supervised
learning task. We therefore consider whether the same paradigm can apply to RL. Can offline
experience datasets be used to learn representations of the data that accelerate learning on
a downstream task?

This broad and general question has been partially answered by previous works [14, 107].
These works focus on using offline datasets to learn representations of behaviors, or actions.
More specifically, these works learn a spectrum of behavior policies, conditioned on a latent
z, through supervised action-prediction on the offline dataset. The latent z then effectively
provides an abstract action space for learning a hierarchical policy on a downstream task,
and this straightforward paradigm is able to accelerate learning in a variety of sequential
decision-making settings. Inspired by these promising results and to differentiate our own
work, we focus our efforts on the question of representation learning for observations, or
states, as opposed to learning representations of behaviors or actions. That is, we aim to
answer the question, can offline experience datasets be used to learn representations of state
observations such that learning policies from these pretrained representations, as opposed
to the raw state observations, improves performance on a downstream task?1

To approach this question, we devise a variety of offline datasets and corresponding down-
stream tasks. For offline datasets, we leverage the Gym-MuJoCo datasets from D4RL [10],

1Whether the two aspects of representation learning – action representations and state representations
– can be combined is an intriguing question. However, to avoid an overly broad study, we focus only on
state representation learning, and leave the question of combining this with action representation learning
to future work.
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Figure 4.1: A summary of the advantages of the best-performing contrastive self-prediction
variant as a pretraining representation learning objective, across a variety of settings: imi-
tation learning, offline RL, and online RL. Each subplot shows the aggregated mean reward
and standard error during training, with aggregation over offline datasets of different behav-
ior (e.g., expert, medium, etc.), with five seeds per dataset (see Section 4.1.3). Contrastive
self-prediction exhibits significant performance gains in all domains and tasks.

which provide a diverse set of datasets from continuous control simulated robotic environ-
ments. For downstream tasks, we consider three main categories: (1) low-data imitation
learning, in which we aim to learn a task-solving policy from a small number of expert
trajectories; (2) offline RL, in which we aim to learn a task-solving policy from the same
offline dataset used for representation learning; and (3) online RL, in which we aim to learn
a task-solving policy using online access to the environment.

Once these settings are established, we then continue to evaluate the ability of state
representation learning on the offline dataset to accelerate learning on the downstream task.
Our experiments are separated into two parts, breadth and depth. First for breadth, we
consider a diverse variety of representation learning objectives taken from the RL and su-
pervised learning literature. The results of these experiments show that, while several of
these objectives perform poorly, a few yield promising results. This promising set essentially
comprises of objectives which we call contrastive self-prediction; these objectives take sub-
trajectories of experience and then use some components of the sub-trajectory to predict
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other components, with a contrastive loss when predicting states – e.g., using a contrastive
loss on the affinity between a sequence of states and actions and the next state, akin to
popular methods in the supervised learning literature [250, 1].

These initial findings guide our second set of experiments. Aiming for depth, we devise
an extensive ablation based on contrastive self-prediction to investigate what components
of the objective are most important and in which settings. For example, whether it is
important to include reward as part of the sub-trajectory, or whether discrete representations
are better than continuous, whether pre-training and fixing the representations is better than
finetuning, etc. In short, we find that state representation learning can yield a dramatic
improvement in downstream learning. Compared to performing policy learning from raw
observations, we show that relatively simple representation learning objectives on offline
datasets can enable better and faster learning on imitation learning, offline RL, and and
partially observable2 online RL (see Figure 4.1). We believe these results are especially
compelling for the imitation learning setting – where even a pretraining dataset that is far
from expert behavior yields dramatic improvement in downstream learning – and in the
offline RL setting – where we show the benefits of representation learning are significant
even when the pretraining dataset is the same as the downstream task dataset. We hope
that these impressive results guide and encourage future researchers to develop even better
ways to incorporate representation learning into sequential decision-making.

4.1.2 Background and Related Work

Representation learning for RL has a rich and diverse existing literature, and we briefly
review these relevant works.

Abstraction and Bisimulation Traditionally, representation learning has been framed
as learning or identifying abstractions of the state or action space of an environment [168, 169,
167, 170]. These methods aim to reduce the original environment state and action spaces to
more compact spaces by clustering those states and actions which yield similar rewards and
dynamics. Motivated by similar intuitions, research into bisimulation metrics has aimed to
devise or learn similarity functions between states [177, 178]. While these methods originally
required explicit knowledge of the reward and dynamics functions of the environment, a
number of recent works have translated these ideas to stochastic representation learning
objectives using deep neural networks [171, 179, 172]. Many of these modern approaches
effectively learn reward and transition functions in the learned embedding space, and training
of these models is used to inform the learned state representations.

Representations in Model-Based Learning The idea of learning latent state repre-
sentations via learning reward and dynamics models leads us to related work in the model-
based RL literature. Several recent model-based RL methods use latent state representa-

2Results on fully observable online RL are in Appendix A.2.2.
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tions as a way to simplify the model learning and policy rollout elements of model-based
policy optimization [175, 251, 118], with the rollout in latent space sometimes referred to
as ‘imagination’ [126, 127]. Similar ideas have also appeared under the label of ‘embed to
control’ [252, 253]. Other than learning representations through forward models, there are
also works which propose to learn inverse models, in which an action is predicted based on
the representations of its preceding state and subsequent state [173, 254].

Contrastive Objectives Beyond model-based representations, many previous works pro-
pose the use of contrastive losses as a way of learning useful state representations [255, 256,
257, 258]. These works effectively define some notion of similarity between states and use
a contrastive loss to encourage similar states to have similar representations. The similar-
ity is usually based on either temporal vicinity (pairs of states which appear in the same
sub-trajectory) or user-specified augmentations, such as random shifts of image observa-
tions [257]. Previous work has established connections between the use of contrastive loss
and mutual information maximization [259] and energy-based models [260].

State Representation Learning in Offline RL The existing works mentioned above
almost exclusively focus on online settings, often learning the representations on a contin-
uously evolving dataset and in tandem with online policy learning. In contrast, our work
focuses on representation learning on offline datasets and separated from downstream task
learning. This serves two purposes: First, using static offline datasets makes comparisons
between different methods easier, avoiding confounding factors associated with issues of ex-
ploration or nonstationary datasets. Second, the offline setting is arguably more practical;
in practice, static offline datasets are more common than cheap online access to an environ-
ment [76]. Previous work in a similar vein to ours includes [258] and [254], which propose
to use unsupervised pretraining, typically only on expert demonstrations, as a way of ini-
tializing an image encoder for downstream online RL. Our own work complements these
existing studies, by presenting extensive comparisons of a variety of representation learning
objectives in several distinct settings. Moreover, our work is unique for showing benefits of
representation learning on non-image tasks, thus avoiding the use of any explicit or implicit
prior knowledge that is typically exploited for images (e.g., using image-based augmentations
or using a convolutional network architecture).

4.1.3 Task Setups

We now continue to our own contributions, starting by elaborating on the experimental
protocol we design to evaluate representation learning in the context of low-data imitation
learning, offline RL (specifically, offline policy optimization), and online RL in partially
observable environments. This protocol is summarized in Table 4.1.
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Table 4.1: A summary of our experimental setups. In total, there are 16 choices of offline
data and downstream task combinations each for imitation learning, offline RL, and online
RL. Given that we run each setting with five random seeds, this leads to a total of 240
training runs for every representation learning objective we consider.

Imitation
domain ∈ {halfcheetah, hopper,walker2d, ant}

→
data:{domain}-{data}-v0
task:BC on first N

from {domain}-expert-v0
data ∈ {medium,medium-replay}
N ∈ {10000, 25000}

Offline RL
domain ∈ {halfcheetah, hopper,walker2d, ant}

→
data:{domain}-{data}-v0
task:BRAC

on {domain}-{data}-v0
data ∈ {expert,medium-expert,medium,

medium-replay}
Online RL

domain ∈ {halfcheetah, hopper,walker2d, ant}
→

data:{domain}-{data}-v0 masking

task:SAC on randomly

masked version of {domain}
data ∈ {expert,medium-expert,medium,

medium-replay}

Datasets We leverage the Gym-MuJoCo datasets from D4RL [10]. These datasets are gen-
erated from running policies on the well-known MuJoCo benchmarks of simulated locomotive
agents: halfcheetah, hopper, walker2d, and ant. Each of these four domains is associated
with four datasets – expert, medium-expert, medium, and medium-replay – corresponding
to the quality of the policies used to collect that data. Each dataset is composed of a number
of trajectories τ := (s0, a0, r0, s1, a1, r1, . . . , sT ). For example, the dataset ant-expert-v0 is
a dataset of trajectories generated by expert task-solving policies on the ant domain, while
the dataset halfcheetah-medium-v0 is generated by mediocre, far from task-solving, policies.

Notably, although the underyling MuJoCo environments are Markovian, the datasets are
not necessarily Markovian, as they may be generated by multiple distinct policies.

Imitation Learning in Low-Data Regime Imitation learning [261] seeks to match the
behavior of an agent with that of an expert. While expert demonstrations are often lim-
ited and expensive to obtain in practice, non-expert experience data (e.g., generated from a
mediocre agent randomly interacting with an environment) can be much more easily acces-
sible.

To mimic this practical scenario, we consider an experimental protocol in which the
downstream task is behavioral cloning [262] on a small set of expert trajectories – selected by
taking either the first 10k or 25k transitions from an expert dataset in D4RL, corresponding
to about 10 and 25 expert trajectories, respectively. We then consider either the medium
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or medium-replay datasets from the same domain for representation learning.3 Thus, this
set of experiments aims to determine whether representations learned from large datasets of
mediocre behavior can help elevate the performance of behavioral cloning on a much smaller
expert dataset.

Offline RL with Behavior Regularization One of the main motivations for the in-
troduction of the D4RL datasets was to encourage research into fully offline reinforcement
learning; i.e., whether it is possible to learn return-maximizing policies exclusively from a
static offline dataset. Many algorithms for this setting have recently been proposed, com-
monly employing some sort of behavior regularization [263, 264, 77]. In its simplest form,
behavior regularization augments a vanilla actor-critic algorithm with a divergence penalty
measuring the divergence of the learned policy from the offline data, thus compelling the
learned policy to stay close to the actions appearing in the dataset.

While the actor and critic are typically trained with the raw observations as input, with
this next set of experiments, we aim to determine whether representation learning can help
in this regime as well. In this setting, the pretraining and downstream datasets are the
same, determined by a single choice of domain (halfcheetah, hopper, walker2d, or ant) and
data (expert, medium-expert, medium, or medium-replay). For the downstream algorithm,
we use behavior regularized actor-critic (BRAC) [77], which is a simple behavior regularized
method employing a KL divergence penalty. Notably, although the original BRAC work
uses different regularization strengths and policy learning rates for different domains, we fix
these to values which we found to generally perform best (regularization strength of 1.0 and
policy learning rate of 0.00003).

Thus, this set of experiments aims to determine whether learning BRAC from learned
state representations is better (in terms of performance and less dependence on hyperpa-
rameters) than learning BRAC from the raw states, even when the state representations are
learned using the same offline dataset.

Online RL in Partially Observable Environments In this set of experiments, we aim
to determine whether representations learned from offline datasets can improve or accelerate
learning in an online domain. One of the most popular online RL algorithms is soft actor
critic (SAC) [265]. SAC is a well-performing algorithm on its own, and so to increase the
difficulty of the downstream task, we consider a simple modification to make our domains
partially observable: zero-masking out a random dimension of the state observation. This
modification also brings our domains closer to practice, where partial observability due to
flaky sensor readings is common [266]. For those interested, we include results of represen-
tation learning on the standard, fully-observable MuJoCo environments in Appendix A.2.2.

Accordingly, the offline dataset is determined by a choice of domain (halfcheetah, hopper,
walker2d, or ant) and data (expert, medium-expert, medium, or medium-replay), with the

3To avoid issues of extrapolation when transferring learned representations to the expert dataset, we
include the small number of expert demonstrations in the offline dataset during pretraining.
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same masking applied to this dataset. Representations learned on this dataset are then
applied downstream, where SAC is trained on the online domain, with the representation
module providing an embedding of the masked observations of the environment within a
learned embedding space.

Evaluation Each representation learning variant we evaluate is run with five seeds on
each of the experimental setups described above. Unless otherwise noted, a single seed
corresponds to an initial pretraining phase of 200k steps, in which a representation learning
objective is optimized using batches of 256 sub-trajectories randomly sampled from the
offline dataset. After pretraining, the learned representation is fixed and applied to the
downstream task, which performs the appropriate training (BC, BRAC, or SAC) for 1M
steps. In this downstream phase, every 10k steps, we evaluate the learned policy on the
downstream domain environment by running it for 10 episodes and computing the average
total return. We normalize this total return according to the normalization proposed in [10],
such that a score of 0 roughly corresponds to a random agent and a score of 100 to an expert
agent. We average the last 10 evaluations within the 1M downstream training, and this
determines the final score for the run. To aggregate over multiple seeds and task setups, we
simply compute the average and standard error of this final score.

4.1.4 Experiments: Breadth Study

We begin our empirical study with an initial assessment into the performance of a broad set
of representation learning ideas from the existing literature.

4.1.5 Representation Learning Objectives

We describe the algorithms we consider below. While it is infeasible for us to extensively
evaluate all previously proposed representation learning objectives, our choice of objectives
here aims to cover a diverse set of recurring themes and ideas from previous work (see
Section 4.1.2).

We use the notation

τt:t+k := (st, at, rt, . . . , st+k−1, at+k−1, rt+k−1, st+k)

to denote a length-(k + 1) sub-trajectory of state observations, actions, and rewards; we
use st:t+k, at:t+k, rt:t+k to denote a subselection of this trajectory based on states, actions,
and rewards, respectively. We use ϕ to denote the representation function; i.e., ϕ(s) is
the representation associated with state observation s, and ϕ(st:t+k) := (ϕ(st), . . . , ϕ(st+k)).
All learned functions, including ϕ, are parameterized by neural networks. Unless otherwise
noted, ϕ is parameterized as a two-hidden layer fully-connected network with 256 units per
layer and output of dimension 256 (see further details in Appendix A.2.1).
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Inverse model Given a sub-trajectory τt:t+1, use ϕ(st:t+1) to predict at. That is, we
train an auxiliary f such that f(ϕ(st:t+1)) is a distribution over actions, and the learning
objective is − logP (at|f(ϕ(st:t+1))). This objective may be generalized to sequences longer
than k + 1 = 2 as − logP (at+k−1|f(ϕ(st:t+k), at:t+k−1)).

Forward raw model Given a sub-trajectory τt:t+1, use ϕ(st), at to predict rt, st+1. That
is, we train an auxiliary f, g such that f(ϕ(st), at) is a distribution over next states and
g(ϕ(st), at) is a scalar reward prediction. The learning objective is ||rt − g(ϕ(st), at)||2 −
logP (st+1|f(ϕ(st), at)). This objective may be generalized to sequences longer than k+1 = 2
as ||rt − g(ϕ(st:t+k−1), at:t+k−1)||2 − logP (st+1|f(ϕ(st:t+k−1), at:t+k)).

Forward latent model; a.k.a., DeepMDP [171] This is the same as the forward raw
model, only that f now describes a distribution over next state representations. Thus, the
log-probability with respect to f becomes − logP (ϕ(st+1)|f(ϕ(st), at)).

Forward energy model This is the same as the forward raw model, only that f is no
longer a distribution over raw states. Rather, f maps ϕ(st), at to the same embedding space
as ϕ and the probability P (st+1|f(ϕ(st), at)) is defined in an energy-based way:

ρ(st+1) exp{ϕ(st+1)
⊤Wf(ϕ(st), at)}

Eρ[exp{ϕ(s̃)⊤Wf(ϕ(st), at)}]
, (4.1)

where W is a trainable matrix and ρ is a non-trainable prior distribution (we set ρ to be the
distribution of states in the offline dataset).

(Momentum) temporal contrastive learning (TCL) Given a sub-trajectory τt:t+1, we
apply a contrastive loss between ϕ(st), ϕ(st+1). The objective is

−ϕ(st+1)
⊤Wϕ(st) + logEρ[exp{ϕ(s̃)⊤Wϕ(st)}], (4.2)

where W and ρ are as in the forward energy model above. This objective may be generalized
to sequences longer than k + 1 = 2 by having multiple terms in the loss for i = 1, . . . , k:

−ϕ(st+i)
⊤Wiϕ(st) + logEρ[exp{ϕ(s̃)⊤Wiϕ(st)}]. (4.3)

If momentum is used, we apply the contrastive loss between f(ϕ(st)) and ϕtarget(st+i), where
f is a learned function and ϕtarget denotes a non-trainable version of ϕ, with weights corre-
sponding to a slowly moving average of the weights of ϕ, as in [258, 267].

Attentive Contrastive Learning (ACL) Following the theme of contrastive losses and
inspired by a number of works in the RL [259] and NLP [250] literature which apply such
losses between tokens and contexts using an attention mechanism, we devise a similar ob-
jective for our settings. Implementation-wise, we borrow ideas from BERT [1], namely we
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Figure 4.2: Performance of downstream imitation learning, offline RL, and online RL tasks
under a variety of representation learning objectives. x-axis shows aggregated average re-
wards (over five seeds) across the domains and datasets described in Section 4.1.3. Methods
that failed to converge are eliminated from the results (see Appendix A.2.1). ACL is set to
the default configuration that favors imitation learning (see Section 4.1.6). When applicable,
we also label variants with k + 1 ∈ {2, 8}. Methods above the dotted line are variants of
contrastive self-prediction. ACL performs well on imitation learning. VPN and (momentum)
TCL perform well on offline and online RL.

(1) take a sub-trajectory st:t+k, at:t+k, rt:t+k, (2) randomly mask a subset of these, (3) pass
the masked sequence into a transformer, and then (4) for each masked input state, apply a
contrastive loss between its representation ϕ(s) and the transformer output at its sequential
position. We use k + 1 = 8 in our implementation. Figure 4.5 provides a diagram of ACL.

Value prediction network (VPN) Taken from [175], this objective uses an RNN starting
at ϕ(st) and inputting at:t+k for k steps to predict the k-step future rewards and value
functions. While the original VPN paper defines the (k + 1)-th value function in terms of a
max over actions, we avoid this potential extrapolation issue and simply use the (k + 1)-th
action provided in the offline data. As we will elaborate on later, VPN bears similarities to
ACL in that it uses certain components of the input sequence (states and actions) to predict
other components (values).

Deep bisimulation for control This objective is taken from [179], where the represen-
tation function ϕ is learned to respect an L1 distance based on a bisimulation similarity
deduced from Bellman backups.

Results The results of these representation learning objectives are presented in Figure 4.2.
Representation learning, even before the extensive ablations we will embark on in Sec-
tion 4.1.6, on average improves downstream imitation learning, offline RL, and online RL
tasks by 1.5x, 2.5x, and 15% respectively. The objectives that appear to work best – ACL,
(Momentum) TCL, VPN – fall under a class of objectives we term contrastive self-prediction,
where self-prediction refers to the idea that certain components of a sub-trajectory are pre-
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dicted based on other components of the same sub-trajectory, while contrastive refers to the
fact that this prediction should be performed via a contrastive energy-based loss when the
predicted component is a state observation.

We also find that a longer sub-trajectory k + 1 = 8 is generally better than a short
one k + 1 = 2. The advantage here is presumably due to the non-Markovian nature of the
dataset. Even if the environment is Markovian, the use of potentially distinct policies for
data collection can lead to non-Markovian data.

Despite these promising successes, there are a number of objectives which perform poorly.
Raw predictions of states (forward model) yields disappointing results in these settings. For-
ward models of future representations – DeepMDP, Bisimulation – also exhibit poor perfor-
mance. This latter finding was initially surprising to us, as many theoretical notions of state
abstractions are based on the principle of predictability of future state representations. Nev-
ertheless, even after extensive tuning of these objectives and attempts at similar objectives
(e.g., we briefly investigated incorporating ideas from [118]), we were not able to achieve
any better results. Even if it is possible to find better architectures or hyperparameters, we
believe the difficulty in tuning these baselines still makes them unattractive in comparison
to the simpler and better performing alternatives.

4.1.6 Experiments: Depth Study

The favorable results of objectives based on the idea of contrastive self-prediction is com-
pelling, but the small number of objectives evaluated leaves many questions unanswered.
For example, when generating the context embedding for a specific prediction, should one
use past states (as in TCL and Momentum TCL) or also include actions and/or rewards (as
in ACL and VPN)? Should this context use the same representation network ϕ (as in TCL
and VPN), a momentum version of it (as in Momentum TCL), or a completely separate
network (as in ACL)?

We use this section to study these and other important questions by conducting a series
of ablations on the factors which compose a specific contrastive self-prediction objective and
how it is applied to downstream learning. We describe all these factors in Table 4.2, as well
as a high-level summary of their effects. Further anecdotal observations found during our
research are summarized in Appendix A.2.3.

We choose the transformer-based implementation of ACL to serve as the skeleton for all
these ablations (see Figure 4.5), due to its general favorable empirical performance in the
previous section, as well as its ease of modification. For each downstream task below, we
present the ablations with respect to the default configuration of the factors in Table 4.2
that corresponds to the original ACL introduced in Section 4.1.4, and change one factor at
a time to observe its effect on downstream task performance.

Results The results of our ablation studies are presented in Figure 4.4, and we highlight
some of the main findings below. We also take the best performing ablation from each row
(imitation, offline RL, and online RL) and plot the performance during training in Figure 4.1.
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Figure 4.3: A pictoral representation of our depth study based on contrastive self-prediction.
We use the transformer-based architecture of attentive contrastive learning (ACL) as a skele-
ton for ablations with respect to various representation learning details. Solid arrows corre-
spond to the configuration of ACL. Dotted arrows and blue text are factors considered in the
ablation study. Gray blocks are masked state/action/reward entries. After the pretraining
phase, the representation network ϕ is reused for downstream tasks, unless ‘context embed-
ding’ is true, in which case the transformer is used.

Further results are available in Appendix A.2.2, and more of our interpretations of these
results are included in Appendix A.2.4.

Let us first consider the effects of inclusion or prediction of actions and rewards. We
notice some interesting behavior across the different downstream modes. Namely, it appears
that imitation learning is best served by focusing only on state contrastive learning and
not including or predicting actions and rewards, whereas the offline and online RL settings
appear to benefit from these. Due to the mixed results we initially observed from including
or predicting actions and rewards, we also introduce the idea of reconstructing actions and
rewards based on ϕ(s), and we found this to have much more consistent benefit in the RL
settings, although it still degrades imitation learning performance. This disconnect between
objectives which are good for imitation learning vs. RL, first seen in Section 4.1.4, thus
continues to be present in these ablations as well, and we find that no single objective
dominates in all settings.

We also evaluate a number of representation learning paradigms popular in the NLP
literature [1], namely using bidirectional transformers, finetuning, and context embedding.
Although these techniques are ubiquitous in the NLP literature, we find mixed results in
RL settings. Context embedding consistently hurts performance. Bidirectional transformer
hurts imitation learning but helps online RL. Finetuning leads to a modest degredation in
performace in imitation and offline RL but can improve online RL depending on the domain
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Figure 4.4: Ablation results on imitation learning, offline RL, and online RL. x-axis shows
average rewards and standard error aggregated over either different Gym-MuJoCo datasets
(imitation and offline RL) or domains (online RL). Blue dotted lines show average rewards
without pretraining. (T) and (F) mean setting each factor to true or false (opposite from
the default configuration). Reconstructing, predicting, or inputting action or reward (row
2-7) impairs imitation performance but are important for offline and online RL. Bidirectional
transformer hurts imitation learning when downstream sample size is small. Finetuning and
auxiliary loss can help online RL. Additional results are presented in Appendix A.2.2.

being evaluated.
We additionally considered using the representation learning objective as an auxiliary

training loss, which is popular in the online RL literature [254, 258]. And indeed, we find
that it can dramatically improve representation learning in online RL, but at the same time,
dramatically degrade performance in the offline settings (imitation learning or offline RL).
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4.2 Representation Learning with Contrastive Fourier

Features

4.2.1 Introduction

Imitation learning uses expert demonstration data to learn sequential decision making poli-
cies [268]. Such demonstrations, often produced by human experts, can be costly to obtain
in large number. On the other hand, practical application domains, such as recommenda-
tion [269] and dialogue [194] systems, provide large quantities of offline data generated by
suboptimal agents. Since the offline data is suboptimal in performance, using it directly for
imitation learning is infeasible. While some prior works have proposed using suboptimal
offline data for offline reinforcement learning (RL) [270, 77, 76], this would require reward
information, which may be unavailable or infeasible to compute from suboptimal data [271].
Nevertheless, conceptually, suboptimal offline datasets should contain useful information
about the environment, if only we could distill that information into a useful form that can
aid downstream imitation learning.

One approach to leveraging suboptimal offline datasets is to use the offline data to extract
a lower-dimensional latent action space, and then perform imitation learning on an expert
dataset using this latent action space. If the latent action space is learned properly, one may
hope that performing imitation learning in the latent space can reduce the need for large
quantities of expert data. While a number of prior works have studied similar approaches in
the context of hierarchical imitation and RL setting [272, 273, 274, 275, 276, 277, 14, 13, 278],
such methods typically focus on the theoretical and practical benefits of temporal abstraction
by extracting temporally extended skills from data or experience. That is, the main benefit
of these approaches is that the latent action space operates at a lower temporal frequency
than the original environment action space. We instead focus directly on the question of
action representation: instead of learning skills that provide for temporal abstraction, we
aim to directly reparameterize the action space in a way that provides for more sample-
efficient downstream imitation without the need to reduce control frequency. Unlike learning
temporal abstractions, action reparamtrization does not have to rely on any hierarchical
structures in the offline data, and can therefore utilize highly suboptimal datasets (e.g., with
random actions).

Aiming for a provably-efficient approach to utilizing highly suboptimal offline datasets,
we use first principles to derive an upper bound on the quality of an imitation learned
policy involving three terms corresponding to (4.4) action representation and (4.5) action
decoder learning on a suboptimal offline dataset, and finally, (4.6) behavioral cloning (i.e.,
max-likelihood learning of latent actions) on an expert demonstration dataset. The first
term in our bound immediately suggests a practical offline training objective based on a
transition dynamics loss using an factored transition model. We show that under specific
factorizations (e.g., low-dimensional or linear), one can guarantee improved sample efficiency
on the expert dataset. Crucially, our mathematical results avoid the potential shortcomings
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and an action decoder q on Doff. Downstream imitation learns a latent policy πZ on D∗

off with
expert actions reparametrized by ϕ. During inference, πZ and q are combined to sample an
action.

of temporal skill extraction, as our bound is guaranteed to hold even when there is no
temporal abstraction in the latent action space.

We translate these mathematical results into an algorithm that we call Transition-
Reparametrized Actions for Imitation Learning (TRAIL). As shown in Figure 4.5, TRAIL
consists of a pretraining stage (corresponding to the first two terms in our bound) and a
downstream imitation learning stage (corresponding to the last term in our bound). During
the pretraining stage, TRAIL uses an offline dataset to learn a factored transition model
and a paired action decoder. During the downstream imitation learning stage, TRAIL first
reparametrizes expert actions into the latent action space according to the learned transi-
tion model, and then learns a latent policy via behavioral cloning in the latent action space.
During inference, TRAIL uses the imitation learned latent policy and action decoder in con-
junction to act in the environment. In practice, TRAIL parametrizes the transition model as
an energy-based model (EBM) for flexibility and trains the EBM with a contrastive loss. The
EBM enables the low-dimensional factored transition model referenced by our theory, and we
also show that one can recover the linear transition model in our theory by approximating
the EBM with random Fourier features [279].

To summarize, our contributions include (i) a provably beneficial objective for learning
action representations without temporal abstraction and (ii) a practical algorithm for opti-
mizing the proposed objective by learning an EBM or linear transition model. An extensive
evaluation on a set of navigation and locomotion tasks demonstrates the effectiveness of the
proposed objective. TRAIL’s empirical success compared to a variety of existing methods
suggests that the benefit of learning single-step action representations has been overlooked
by previous temporal skill extraction methods. Additionally, TRAIL significantly improves
behavioral cloning even when the offline dataset is unimodal or highly suboptimal (e.g., ob-
tained from a random policy), whereas temporal skill extraction methods lead to degraded
performance in these scenarios. Lastly, we show that TRAIL, without using reward labels,
can perform similarly or better than offline reinforcement learning (RL) with orders of mag-
nitude less expert data, suggesting new ways for offline learning of squential decision making
policies.
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4.2.2 Related Work

Learning action abstractions is a long standing topic in the hierarchical RL literature [272,
273, 274, 275, 277]. A large body of work focusing on online skill discovery have been pro-
posed as a means to improve exploration and sample complexity in online RL. For instance,
[280, 281, 282, 283, 284] propose to learn a diverse set of skills by maximizing an infor-
mation theoretic objective. Online skill discovery is also commonly seen in a hierarchical
framework that learns a continuous space [276, 285, 277, 286] or a discrete set of lower-level
policies [287, 288, 289], upon which higher-level policies are trained to solve specific tasks.
Different from these works, we focus on learning action representations offline from a fixed
suboptimal dataset to accelerate imitation learning.

Aside from online skill discovery, offline skill extraction focuses on learning temporally
extended action abstractions from a fixed offline dataset. Methods for offline skill extraction
generally involve maximum likelihood training of some latent variable models on the offline
data, followed by downstream planning [98], imitation learning [290, 14, 278], offline RL [14,
291], or online RL [292, 293, 294, 295, 107, 13, 12, 296] in the induced latent action space.
Among these works, those that provide a theoretical analysis attribute the benefit of skill
extraction predominantly to increased temporal abstraction as opposed to the learned action
space being any “easier” to learn from than the raw action space [14, 256]. Unlike these
methods, our analysis focuses on the advantage of a lower-dimensional reparametrized action
space agnostic to temporal abstraction. Our method also applies to offline data that is highly
suboptimal (e.g., contains random actions) and potentially unimodal (e.g., without diverse
skills to be extracted), which have been considered challenging by previous work [14].

While we focus on reducing the complexity of the action space through the lens of action
representation learning, there exists a disjoint set of work that focuses on accelerating RL
with state representation learning [297, 298, 178, 171, 179, 299, 7], some of which have
proposed to extract a latent state space from a learned dynamics model. Analogous to our
own derivations, these works attribute the benefit of representation learning to a smaller
latent state space reduced from a high-dimensional input state space (e.g., images). Lastly,
there exist model-based approaches that utilizes offline data to learn model dynamics which
in tern accelerates imitation [300, 301]. These work differ from our focus of using the offline
data to learn latent action space.

4.2.3 Preliminaries

In this section, we introduce the problem statements for imitation learning and learning-
based control, and define relevant notations.

Learning goal. Imitation learning aims to recover an expert policy π∗ with access to only
a fixed set of samples from the expert: D∗

off = {(si, ai)}ni=1 with si ∼ dπ
∗

and ai ∼ π∗(si).
One approach to imitation learning is to learn a policy π that minimizes some discrepancy
between π and π∗. In our analysis, we will use the total variation (TV) divergence in state
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visitation distributions,
Diff(π, π∗) = DTV(dπ∥dπ∗

),

as the way to measure the discrepancy between π and π∗. Our bounds can be easily modified
to apply to other divergence measures such as the Kullback–Leibler (KL) divergence or
difference in expected future returns. Behavioral cloning (BC) [62] solves the imitation
learning problem by learning π from D∗

off via a maximum likelihood objective

JBC(π) := E(s,a)∼(dπ∗ ,π∗)[− log π(a|s)],

which optimizes an upper bound of Diff(π, π∗) defined above [302, 7]:

Diff(π, π∗) ≤ γ

1− γ

√
1

2
Edπ∗ [DKL(π∗(s)∥π(s))] =

γ

1− γ

√
const(π∗) +

1

2
JBC(π).

BC with suboptimal offline data. The standard BC objective (i.e., direct max-likelihood
on D∗

off) can struggle to attain good performance when the amount of expert demonstra-
tions is limited [303, 304]. We assume access to an additional suboptimal offline dataset
Doff = {(si, ai, s′i)}mi=1, where the suboptimality is a result of (i) suboptimal action samples
ai ∼ UnifA and (ii) lack of reward labels. We use (s, a, s′) ∼ doff as a shorthand for sim-
ulating finite sampling from Doff via si ∼ doff , ai ∼ UnifA, s

′
i ∼ T (si, ai), where doff is an

unknown offline state distribution. We assume doff sufficiently covers the expert distribu-
tion; i.e., dπ

∗
(s) > 0 ⇒ doff(s) > 0 for all s ∈ S. The uniform sampling of actions in Doff is

largely for mathematical convenience, and in theory can be replaced with any distribution
uniformly bounded from below by η > 0, and our derived bounds will be scaled by 1

|A|η as
a result. This works focuses on how to utilize such a suboptimal Doff to provably accelerate
BC.

4.2.4 Near-Optimal Imitation Learning with Reparametrized
Actions

In this section, we provide a provably-efficient objective for learning action representations
from suboptimal data. Our initial derivations (Theorem 5) apply to general policies and
latent action spaces, while our subsequent result (Theorem 7) provides improved bounds for
specialized settings with continuous latent action spaces. Finally, we present our practical
method TRAIL for action representation learning and downstream imitation learning.

Performance Bound with Reparametrized Actions Despite Doff being highly sub-
optimal (e.g., with random actions), the large set of (s, a, s′) tuples from Doff reveals the
transition dynamics of the environment, which a latent action space should support. Un-
der this motivation, we propose to learn a factored transition model T := TZ ◦ ϕ from
the offline dataset Doff, where ϕ : S × A → Z is an action representaiton function and



CHAPTER 4. REPRESENTATION LEARNING FROM SUBOPTIMAL DATA 58

TZ : S × Z → ∆(S) is a latent transition model. Intuitively, good action representations
should enable good imitation learning.

We formalize this intuition in the theorem below by establishing a bound on the quality
of a learned policy based on (4.4) an offline pretraining objective for learning ϕ and TZ ,
(4.5) an offline decoding objective for learning an action decoder q, and (4.6) a downstream
imitation learning objective for learning a latent policy πZ with respect to latent actions
determined by ϕ.

Theorem 5. Consider an action representation function ϕ : S×A→ Z, a factored transition
model TZ : S ×Z → ∆(S), an action decoder q : S ×Z → ∆(A), and a tabular latent policy
πZ : S → ∆(Z). Define the transition representation error as

JT(TZ , ϕ) := E(s,a)∼doff [DKL(T (s, a)∥TZ(s, ϕ(s, a)))] ,

the action decoding error as

JDE(q, ϕ) := E(s,a)∼doff [− log q(a|s, ϕ(s, a))],

and the latent behavioral cloning error as

JBC,ϕ(πZ) := E(s,a)∼(dπ∗ ,π∗)[− log πZ(ϕ(s, a)|s)].

Then the TV divergence between the state visitation distributions of q◦πZ : S → ∆(A) and π∗

can be bounded as

Diff(q ◦ πZ , π∗) ≤

Pretraining



C1 ·
√

1

2
E(s,a)∼doff [DKL(T (s, a)∥TZ(s, ϕ(s, a)))]︸ ︷︷ ︸

= JT(TZ , ϕ)

+C2 ·
√

1

2
Es∼doff [max

z∈Z
DKL(πα∗(s, z)∥q(s, z))]︸ ︷︷ ︸

≈ const(doff , ϕ) + JDE(q, ϕ)

(4.4)

(4.5)

Downstream
Imitation

+C3 ·
√

1

2
Es∼dπ∗ [DKL(π∗,Z(s)∥πZ(s))]︸ ︷︷ ︸
= const(π∗, ϕ) + JBC,ϕ(πZ)

, (4.6)

where C1 = γ|A|(1 − γ)−1(1 + Dχ2(dπ
∗∥doff)

1
2 ), C2 = γ(1 − γ)−1(1 + Dχ2(dπ

∗∥doff)
1
2 ),

C3 = γ(1− γ)−1, πα∗ is the optimal action decoder for a specific data distribution doff and a
specific ϕ:

πα∗(a|s, z) =
doff(s, a) · 1[z = ϕ(s, a)]∑

a′∈A d
off(s, a′) · 1[z = ϕ(s, a′)]

,
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and π∗,Z is the marginalization of π∗ onto Z according to ϕ:

π∗,Z(z|s) :=
∑

a∈A,z=ϕ(s,a)

π∗(a|s).

Theorem 5 essentially decomposes the imitation learning error into (4.4) a transition-
based representation error JT, (4.5) an action decoding error JDE, and (4.6) a latent behav-
ioral cloning error JBC,ϕ. Notice that only (4.6) requires expert data D∗

off; (4.4) and (4.5) are
trained on the large offline data Doff. By choosing |Z| that is smaller than |A|, fewer demon-
strations are needed to achieve small error in JBC,ϕ compared to vanilla BC with JBC. The
Pearson χ2 divergence term Dχ2(dπ

∗∥doff) in C1 and C2 accounts for the difference in state
visitation between the expert and offline data. In the case where dπ

∗
differs too much from

doff , known as the distribution shift problem in offline RL [76], the errors from JT and JDE

are amplified and the terms (4.4) and (4.5) in Theorem 5 dominate. Otherwise, as JT → 0
and q, ϕ → argmin JDE, optimizing πZ in the latent action space is guaranteed to optimize
π in the original action space.

Sample Complexity To formalize the intuition that a smaller latent action space |Z| <
|A| leads to more sample efficient downstream behavioral cloning, we provide the follow-
ing theorem in the tabular action setting. First, assume access to an oracle latent action
representation function ϕorcl := OPT ϕ(Doff) which yields pretraining errors (4.4)(ϕorcl) and
(4.5)(ϕorcl) in Theorem 5. For downstream behavioral cloning, we consider learning a tabular
πZ on D∗

off with n expert samples. We can bound the expected difference between a latent
policy πϕorcl,Z with respect to ϕorcl and π∗ as follows.

Theorem 6. Let ϕorcl := OPT ϕ(Doff) and πorcl,Z be the latent BC policy with respect to
ϕorcl. We have,

ED∗
off

[Diff(πϕorcl,Z , π
∗)] ≤ (4.4)(ϕorcl) + (4.5)(ϕorcl) + C3 ·

√
|Z||S|
n

,

where C3 is the same as in Theorem 5.

We can contrast this bound to its form in the vanilla BC setting, for which |Z| = |A|
and both (4.4)(ϕorcl) and (4.5)(ϕorcl) are zero. We can expect an improvement in sample
complexity from reparametrized actions when the errors in (4.4) and (4.5) are small and
|Z| < |A|.

Linear Transition Models with Deterministic Latent Policy Theorem 5 has intro-
duced the notion of a latent expert policy π∗,Z , and minimizes the KL divergence between
π∗,Z and a tabular latent policy πZ . However, it is not immediately clear, in the case of
continuous latent actions, how to ensure that the latent policy πZ is expressive enough to
capture any π∗,Z . In this section, we provide guarantees for recovering stochastic expert
policies with continuous latent action space under a linear transition model.
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Consider a continuous latent space Z ⊂ Rd and a deterministic latent policy πθ(s) = θs
for some θ ∈ Rd×|S|. While a deterministic θ in general cannot capture a stochastic π∗,
we show that under a linear transition model TZ(s′|s, ϕ(s, a)) = w(s′)⊤ϕ(s, a), there always
exists a deterministic policy πθ : S → Rd, such that θs = π∗,Z(s), ∀s ∈ S. This means that
our scheme for offline pretraining paired with downstream imitation learning can provably
recover any expert policy π∗ from a deterministic πθ, regardless of whether π∗ is stochastic.

Theorem 7. Let ϕ : S ×A→ Z for some Z ⊂ Rd and suppose there exist w : S → Rd such
that TZ(s′|s, ϕ(s, a)) = w(s′)⊤ϕ(s, a) for all s, s′ ∈ S, a ∈ A. Let q : S × Z → ∆(A) be an
action decoder, π : S → ∆(A) be any policy inM and πθ : S → Rd be a deterministic latent
policy for some θ ∈ Rd×|S|. Then,

Diff(q ◦ πθ, π∗) ≤ (4.4)(TZ , ϕ) + (4.5)(q, ϕ)

Downstream
Imitation

{
+ C4 ·

∥∥∥∥ ∂∂θEs∼dπ∗ ,a∼π∗(s)[(θs − ϕ(s, a))2]

∥∥∥∥
1

, (4.7)

where C4 = 1
4
|S|∥w∥∞, (4.4) and (4.5) corresponds to the first and second terms in the

bound in Theorem 5.

By replacing term (4.6) in Theorem 5 that corresponds to behavioral cloning in the
latent action space by term (4.7) in Theorem 7 that is a convex function unbounded in all
directions, we are guaranteed that πθ is provably optimal regardless of the form of π∗ and
π∗,Z . Note that the downstream imitation learning objective implied by term (4.7) is simply
the mean squared error between actions θs chosen by πθ and reparameterized actions ϕ(s, a)
appearing in the expert dataset.

4.2.5 TRAIL: Reparametrized Actions and Imitation Learning
in Practice

In this section, we describe our learning framework, Transition-Reparametrized Actions for
Imitation Learning (TRAIL). TRAIL consists of two training stages: pretraining and down-
stream behavioral cloning. During pretraining, TRAIL learns TZ and ϕ by minimizing
JT(TZ , ϕ) = E(s,a)∼doff [DKL(T (s, a)∥TZ(s, ϕ(s, a)))]. Also during pretraining, TRAIL learns
q and ϕ by minimizing JDE(q, ϕ) := E(s,a)∼doff [− log q(a|s, ϕ(s, a))]. TRAIL parametrizes q
as a multivariate Gaussian distribution. Depending on whether TZ is defined according to
Theorem 5 or Theorem 7, we have either TRAIL EBM or TRAIL linear.

TRAIL EBM for Theorem 5. In the tabular action setting that corresponds to
Theorem 5, to ensure that the factored transition model TZ is flexible to capture any complex
(e.g., multi-modal) transitions in the offline dataset, we propose to use an energy-based model
(EBM) to parametrize TZ(s′|s, ϕ(s, a)),

TZ(s′|s, ϕ(s, a)) ∝ ρ(s′)exp(−∥ϕ(s, a)− ψ(s′)∥2), (4.8)
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where ρ is a fixed distribution over S and ψ : S → Z is a function of s′. In our implementation
we set ρ to be the distribution of s′ in doff , which enables a practical learning objective for
TZ by minimizing E(s,a)∼doff [DKL(T (s, a)∥TZ(s, ϕ(s, a)))] in Theorem 5 using a contrastive
loss:

Edoff [− log TZ(s′|s, ϕ(s, a)))] = const(doff) +
1

2
Edoff [||ϕ(s, a)− ψ(s′)||2]

+ logEs̃′∼ρ[exp{−1

2
||ϕ(s, a)− ψ(s̃′)||2}].

During downstream behavioral cloning, TRAIL EBM learns a latent Gaussian policy πZ
by minimizing JBC,ϕ(πZ) = E(s,a)∼(dπ∗ ,π∗)[− log πZ(ϕ(s, a)|s)] with ϕ fixed. During inference,
TRAIL EBM first samples a latent action according to z ∼ πZ(s), and decodes the latent
action using a ∼ q(s, z) to act in an environment. Figure 4.5 describes this process pictorially.

TRAIL Linear for Theorem 7. In the continuous latent action setting that corre-
sponds to Theorem 7, we propose TRAIL linear, an approximation of TRAIL EBM, to enable
learning linear transition models required by Theorem 7. Specifically, we first learn f, g that
parameterize an energy-based transition model T (s′|s, a) ∝ ρ(s′) exp{−||f(s, a)−g(s′)||2/2}
using the same contrastive loss as above (replacing ϕ and ψ by f and g), and then apply
random Fourier features [279] to recover ϕ̄(s, a) = cos(Wf(s, a) + b), where W is a d × k
matrix with entries sampled from a unit Gaussian and b a vector with entries sampled uni-
formly from [0, 2π]. W and b are implemented as an untrainable neural network layer on top
of f . This results in an approximate linear transition model,

T (s′|s, a) ∝ ρ(s′) exp{−||f(s, a)− g(s′)||2/2} ∝ ψ̄(s′)⊤ϕ̄(s, a).

During downstream behavioral cloning, TRAIL linear learns a deterministic policy πθ in the
continuous latent action space determined by ϕ̄ via minimizing

∥∥ ∂
∂θ
Es∼dπ∗ ,a∼π∗(s)[(θs − ϕ̄(s, a))2]

∥∥
1

with ϕ̄ fixed. During inference, TRAIL linear first determines the latent action according to
z = πθ(s), and decodes the latent action using a ∼ q(s, z) to act in an environment.

4.2.6 Experimental Evaluation

We now evaluate TRAIL on a set of navigation and locomotion tasks (Figure 4.6). Our
evaluation is designed to study how well TRAIL can improve imitation learning with limited
expert data by leveraging available suboptimal offline data. We evaluate the improvement
attained by TRAIL over vanilla BC, and additionally compare TRAIL to previously pro-
posed temporal skill extraction methods. Since there is no existing benchmark for imitation
learning with suboptimal offline data, we adapt existing datasets for offline RL, which con-
tain suboptimal data, and augment them with a small amount of expert data for downstream
imitation learning.

Evaluating Navigation without Temporal Abstraction
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Description and Baselines. We start our evaluation on the AntMaze task from D4RL [10],
which has been used as a testbed by recent works on temporal skill extraction for few-shot
imitation [14] and RL [14, 13, 12]. We compare TRAIL to OPAL [14], SkilD [12], and
SPiRL [13], all of which use an offline dataset to extract temporally extended (length t = 10)
skills to form a latent action space for downstream learning. SkiLD and SPiRL are origi-
nally designed only for downstream RL, so we modify them to support downstream imitation
learning as described in Appendix A.2.7. While a number of other works have also proposed
to learn primitives for hierarchical imitation [290, 278] and RL [292, 293, 295, 294, 107], we
chose OPAL, SkiLD, and SPiRL for comparison because they are the most recent works in
this area with reported results that suggest these methods are state-of-the-art, especially
in learning from suboptimal offline data based on D4RL. To construct the suboptimal and
expert datasets, we follow the protocol in [14], which uses the full diverse or play D4RL
AntMaze datasets as the suboptimal offline data, while using a set of n = 10 expert trajecto-
ries (navigating from one corner of the maze to the opposite corner) as the expert data. The
diverse and play datasets are suboptimal in the corner-to-corner navigation task, as they
only contain data that navigates to random or fixed locations different from task evaluation.

Implementation Details. For TRAIL, we parameterize ϕ(s, a) and ψ(s′) using separate
feed-forward neural networks (see details in Appendix A.2.7) and train the transition EBM
via the contrastive objective described in Section 4.2.5. We parametrize both the action
decoder q and the latent πZ using multivariate Gaussian distributions with neural-network
approximated mean and variance. For the temporal skill extraction methods, we implement
the trajectory encoder using a bidirectional RNN and parametrize skill prior, latent policy,
and action decoder as Gaussians following [14]. We adapt SPiRL and SkiLD for imitation
learning by including the KL Divergence term between the latent policy and the skill prior
during downstream behavioral cloning (see details in Appendix A.2.7). We do a search on
the extend of temporal abstraction, and found t = 10 to work the best as reported in these
papers’ maze experiments. We also experimented with a version of vanilla BC pretrained on
the suboptimal data and fine-tuned on expert data for fair comparison, which did not show
a significant difference from directly training vanilla BC on expert data.

cartpole-swingupantmaze-large ant cheetah-run fish-swim walker-stand walker-walk humanoid-runantmaze-medium

Figure 4.6: Tasks for our empirical evaluation. We include the challenging AntMaze nav-
igation tasks from D4RL [10] and low (1-DoF) to high (21-DoF) dimensional locomotaion
tasks from DeepMind Control Suite [11].
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Expert Dπ*

Suboptimal Doff

expert 10 trajsexpert 10 trajs expert 10 trajs expert 10 trajs

antmaze-large-diverse antmaze-medium-diverse antmaze-medium-playantmaze-large-play

Figure 4.7: Average success rate (%) over 4 seeds of TRAIL EBM (Theorem 5) and temporal
skill extraction methods – SkiLD [12], SPiRL [13], and OPAL [14] – pretrained on suboptimal
Doff. Baseline BC corresponds to direct behavioral cloning of expert D∗

off without latent
actions.

Results. Figure 4.7 shows the average performance of TRAIL in terms of task success
rate (out of 100%) compared to the prior methods. Since all of the prior methods are
proposed in terms of temporal abstraction, we evaluate them both with the default temporal
abstract, t = 10, as well as without temporal abstraction, corresponding to t = 1. Note that
TRAIL uses no temporal abstraction. We find that on the simpler antmaze-medium task,
TRAIL trained on a single-step transition model performs similarly to the set of temporal
skill extraction methods with t = 10. However, these skill extraction methods experience a
degradation in performance when temporal abstraction is removed (t = 1). This corroborates
the existing theory in these works [14], which attributes their benefits predominantly to
temporal abstraction rather than producing a latent action space that is “easier” to learn.
Meanwhile, TRAIL is able to excel without any temporal abstraction.

These differences become even more pronounced on the harder antmaze-large tasks.
We see that TRAIL maintains significant improvements over vanilla BC, whereas temporal
skill extraction fails to achieve good performance even with t = 10. These results suggest
that TRAIL attains significant improvement specifically from utilizing the suboptimal data
for learning suitable action representations, rather than simply from providing temporal ab-
straction. Of course, this does not mean that temporal abstraction is never helpful. Rather,
our results serve as evidence that suboptimal data can be useful for imitation learning not
just by providing temporally extended skills, but by actually reformulating the action space
to make imitation learning easier and more efficient.

Evaluating Locomotion with Highly Suboptimal Offline Data

Description. The performance of TRAIL trained on a single-step transition model in the
previous section suggests that learning single-step latent action representations can benefit a
broader set of tasks for which temporal abstraction may not be helpful, e.g., when the offline
data is highly suboptimal (with near-random actions) or unimodal (collected by a single
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Expert Dπ*

Suboptimal Doff

ant-expert 25kant-expert 10kant-expert 25kant-expert 10kant-expert 25kant-expert 10k

ant-randomant-medium-replayant-mediumant-medium ant-medium-replay ant-random

Figure 4.8: Average rewards (over 4 seeds) of TRAIL EBM (Theorem 5), TRAIL linear
(Theorem 7), and baseline methods when using a variety of unimodal (ant-medium), low-
quality (ant-medium-replay), and random (ant-random) offline datasets Doff paired with a
smaller expert dataset D∗

off (either 10k or 25k expert transitions).

stationary policy). In this section, we consider a Gym-MuJoCo task from D4RL using the
same 8-DoF quadruped ant robot as the previously evaluated navigation task. We first learn
action representations from the medium, medium-replay, or random datasets, and imitate
from 1% or 2.5% of the expert datasets from D4RL. The medium dataset represents data
collected from a mediocre stationary policy (exhibiting unimodal behavior), and the random

dataset is collected by a randomly initialized policy and is hence highly suboptimal.

Implementation Details. For this task, we additionally train a linear version of TRAIL
by approximating the transition EBM using random Fourier features [279] and learn a deter-
ministic latent policy following Theorem 7. Specifically, we use separate feed-forward net-
works to parameterize f(s, a) and g(s′), and extract action representations using ϕ(s, a) =
cos(Wf(s, a) + b), where W, b are untrainable randomly initialized variables as described
in Section 4.2.5. Different from TRAIL EBM which parametrizes πZ as a Gaussian, TRAIL
linear parametrizes the deterministic πθ using a feed-forward neural network.

Results. Our results are shown in Figure 4.8. Both the EBM and linear versions of TRAIL
consistently improve over baseline BC, whereas temporal skill extraction methods generally
lead to worse performance regardless of the extent of abstraction, likely due to the degenerate
effect (i.e., latent skills being ignored by a flexible action decoder) resulted from unimodal
offline datasets as discussed in [14]. Surprisingly, TRAIL achieves a significant performance
boost even when latent actions are learned from the random dataset, suggesting the benefit
of learning action representations from transition models when the offline data is highly
suboptimal. Additionally, the linear variant of TRAIL performs slightly better than the
EBM variant when the expert sample size is small (i.e., 10k), suggesting the benefit of
learning deterministic latent policies from Theorem 7 when the environment is effectively
approximated by a linear transition model.

Evaluation on DeepMind Control Suite
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Dπ*cartpole-swingup ~20%
Doffcartpole-swingup 80% cheetah-run 80% fish-swim 80% walker-stand 80% walker-walk 80% humanoid-run 80%

cheetah-run ~20% fish-swim ~20% walker-stand ~20% walker-walk ~20% humanoid-run ~20%

Figure 4.9: Average task rewards (over 4 seeds) of TRAIL EBM (Theorem 5), TRAIL
linear (Theorem 7), and OPAL (other temporal methods are included in Appendix A.2.8)
pretrained on the bottom 80% of the RL Unplugged datasets followed by behavioral cloning
in the latent action space on 1

10
of the top 20% of the RL Unplugged datasets following

the setup in [15]. Baseline BC achieves low rewards due to the small expert sample size.
Dotted lines denote the performance of CRR [16], an offline RL method trained on the full
RL Unplugged datasets with reward labels.

Description. Having witnessed the improvement TRAIL brings to behavioral cloning on
AntMaze and MuJoCo Ant, we wonder how TRAIL perform on a wider spectrum of lo-
comotion tasks with various degrees of freedom. We consider 6 locomotion tasks from the
DeepMind Control Suite [11] ranging from simple (e.g., 1-DoF cartople-swingup) to com-
plex (e.g., 21-DoF humanoid-run) tasks. Following the setup in [15], we take 1

10
of the

trajectories whose episodic reward is among the top 20% of the open source RL Unplugged
datasets [20] as expert demonstrations, and the bottom 80% of RL Unplugged as the subopti-
mal offline data. For completeness, we additionally include comparison to Critic Regularized
Regression (CRR) [16], an offline RL method with competitive performance on these tasks.
CRR is trained on the full RL Unplugged datasets (i.e., combined suboptimal and expert
datasets) with reward labels.

Results. Figure 4.9 shows the comparison results. TRAIL outperforms temporal ex-
traction methods on both low-dimensional (e.g., cartpole-swingup) and high-dimensional
(humanoid-run) tasks. Additionally, TRAIL performs similarly to or better than CRR
on 4 out of the 6 tasks despite not using any reward labels, and only slightly worse on
humanoid-run and walker-walk. To test the robustness of TRAIL when the offline data is
highly suboptimal, we further reduce the size and quality of the offline data to the bottom
5% of the original RL Unplugged datasets. As shown in Figure A.13 in Appndix A.2.8,
the performance of temporal skill extraction declines in fish-swim, walker-stand, and
walker-walk due to this change in offline data quality, whereas TRAIL maintains the same
performance as when the bottom 80% data was used, suggesting that TRAIL is more robust
to low-quality offline data.

This set of results suggests a promising direction for offline learning of sequential deci-
sion making policies, namely to learn latent actions from abundant low-quality data and
behavioral cloning in the latent action space on scarce high-quality data. Notably, compared
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to offline RL, this approach is applicable to settings where data quality cannot be easily
expressed through a scalar reward.
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Table 4.2: Factors of contrastive self-prediction considered in our ablation study and sum-
maries of their effects. For each effect entry, ↓ means decreased performance, ↑ means
improved performance, and = means no significant effect.

Factor Description Imitation Offline Online

reconstruct action Add action prediction loss based on ϕ(s). ↓ ↑ ↑
reconstruct reward Add a reward prediction loss based on ϕ(s). ↓ ↑ ↑
predict action Add an action prediction loss based on trans-

former outputs. Whenever this is true, we also
set ‘input embed’ to true.

↓ ↑ ↑

predict reward Add a reward prediction loss based on trans-
former outputs. Whenever this is true, we also
set ‘input embed’ to true.

↓ ↑ ↑

input action Include actions in the input sequence to trans-
former.

↓ ↑ ↑

input reward Include rewards in the input sequence to trans-
former.

↓ ↑ ↑

input embed Use representations ϕ(s) as input to trans-
former, as opposed to raw observations.

↓ = ↑

bidirectional To generate sequence output at position i, use
full input sequence as opposed to only inputs at
position > i.

↓ = ↑

finetune Pass gradients into ϕ during learning on down-
stream tasks.

↓ ↓ ↑

auxiliary loss Use representation learning objective as an aux-
iliary loss during downstream learning, as op-
posed to pretraining.

↓ ↓ ↑

momentum Adopt an additional momentum representation
network. Whenever this is true, we also set ‘in-
put embed’ to true.

↓ ↓ ↑

discrete embedding Learn discrete representations. Following [118],
we treat the 256-dim output of ϕ as logits to
sample 16 categorical distributions of dimension
16 each and use straight-through gradients.

↓ ↓ ↓

context embedding Following [1], use transformer output as repre-
sentations for downstream tasks. Whenever this
is true, we also set ‘input embed’ to true.

↓ ↓ ↓
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Chapter 5

Generative Modeling as an
Alternative to Offline RL

In the previous chapters, we have seen that offline interactive data can be used to train
RL policies (Chapter 3) or learn representations of states and actions (Chapter 4). Both
approaches make assumptions about data coverage, and have been difficult to scale up to
multiple environments/tasks. Therefore, it is desirable to further explore alternatives of
leverage offline interactive data.

In language modeling, generative pretrained transformers (GPT) has shown that next-
token prediction can be a powerful pretraining objective that is aligned with downstream
task specific finetuning. Generative pretraining in language has an advantage — language
is a unified representation of information while language generation is a unified task inter-
face. For instance, broad data with diverse information such as code, Wikipedia articles, and
math equations can all be represented as text. Meanwhile, many tasks such as translation,
summarization, and sentiment classification can all be cast into a language generation task.
As a result, we can pour internet-scale language data into a single model trained using a
single objective. This approach scales favourably with dataset and model size. It is there-
fore interesting to explore whether generative pretraining objectives can apply to sequential
decision making settings.

In this chapter, we explore next-token prediction in sequential decision making settings.
Specifically, Section 5.1 proposes incorporating problem solving as a part of the next-token
prediction process during imitation learning. In another word, instead of directly predicting
actions from states, this section explores predicting intermediate thoughts and auxiliary
information that leads to the optimal action before predicting the action itself. Procedure
cloning generalizes significantly better than traditional imitation learning. In Section 5.2,
we focus on studying a family of methods named Return-Conditioned Supervised Learning
(RCSL), which treats the mapping from states to action as a next-token prediction problem,
and allows flexible incorporation of additional conditioning information such as the desired
returns to be achieved. Overall, this chapter shows, both empirically and theoretically, that
conditional generation can be an effective alternative to offline RL and using offline data for
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representation learning.
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5.1 Chain-of-Thought Imitation with Procedure

Cloning

5.1.1 Introduction

The idea of learning by imitation in autonomous agents closely resembles how humans (es-
pecially children) learn in real life — by watching and mimicking how someone else performs
a certain task [268]. While humans are able to generalize exceedingly well from a small
number of demonstrations, today’s imitation-learned autonomous agents often struggle in
situations that only slightly differ from the demonstrations, e.g., opening a door in a different
shape or color [165]. One explanation for such a difference is that while humans imitate,
we understand the task at a high level as opposed to only remembering a mapping from
images to actions [305], and indeed, generalization failures can also occur in humans when
there is a lack of understanding of the underlying reasons for the behavior, such as solving
a complex math problem. As a result, students are told to “learn principles, not formulas”
and “understand, do not memorize” to encourage better generalization — to be able to solve
problems that are similar but different from the ones taught in lectures [306, 307, 308]. Just
as students are taught the step-by-step derivations of a math problem during a lecture, is
it possible to have an equivalent “chain of thought” supervision for training autonomous
agents?

While solving complex math derivations may not be the predominant application of
today’s imitation-learned autonomous agents, the tasks they are commonly applied to —
e.g., path navigation, robot manipulation, and strategy games — often do employ chain-of-
thought reasoning procedures in the form of planning, search, or other multi-step algorithms
when collecting expert data [309, 310, 21]. Since such multi-step algorithms are application-
specific and therefore lack a common representation which can be systematically character-
ized, it is typical for imitation learning to assume access to only logged demonstrations of
state-action pairs, leaving out the much richer insight into expert behavior provided by the
algorithm’s intermediate computations. In addition, the planning or search procedures used
by the expert may rely on tools not available to the agent during inference (e.g., environment
simulators), so how these intermediate computations should be used to facilitate imitation
learning is not clear.

In this work, we formulate chain of thought imitation as an extension of traditional imi-
tation learning. Different from the traditional imitation learning setup where an agent only
has access to expert state-action pairs as demonstrations, chain of thought imitation also has
access to the intermediate computations that generated the expert state-action pairs in the
training data (Figure 5.1). We then propose procedure cloning (PC), an alternative to behav-
ioral cloning (BC) [62], which applies supervised sequence prediction to imitate the complete
series of of expert computations before outputting an expert action (Figure 5.1). Procedure
cloning learns a policy by maximizing the likelihood of the joint distribution of procedure
observations and expert actions, which can be modeled autoregressively using a transformer-
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Figure 5.1: Visualization of the dataset collection, training, and inference of BC and PC
on a maze navigation task. During dataset collection, the expert uses a search procedure
to determine the optimal action to generate a path to the goal location (red star). During
training, BC discards these intermediate search outputs and learns to map states to actions
directly. In contrast, PC learns the complete sequence of intermediate computations (i.e.,
branches and backtracks) associated with the search procedure. During inference, PC gen-
erates a sequence of intermediate search outcomes emulating the search procedure on a new
test map before outputting the final action.

like architecture [94]. During inference, a procedure cloned policy autoregressively generates
procedure observations from a given input state, mimicking the computations of a search or
planning algorithm before outputting the final action, thus avoiding any reliance on priv-
ileged tools or information used by the expert’s procedure. From a modeling perspective,
procedure cloning can employ a more expressive model (e.g., transformer) trained on more
data (i.e., procedure observations), which leads to better generalization according to the new
“scaling law” of large language models [311]. Intuitively, procedure cloning learns not only
what to do (i.e., the output action), but how and why to do it (i.e., the procedure), which
further resembles how humans learn complex tasks.

We demonstrate how to conduct procedure cloning and leverage the generalization ability
of procedure cloned agents on a variety of path navigation, robotic manipulation, and strat-
egy game tasks. For example, in path navigation an expert trajectory may be determined
by using a BFS search algorithm on an annotated map (e.g., x, y coordinates of obstacles),
which are expensive to obtain [312]. We show that a procedure cloning agent can successfully
learn to imitate BFS on a previously unseen test map without requiring additional anno-
tations, achieving 100% test accuracy while a BC agent completely fails to navigate (0%
accuracy) when the maze layout changes. Similarly, in an image-based robotic manipulation
task, we observe that BC quickly overfits to the set of training images, whereas procedure
cloning learns to predict the intermediate computation outcomes of a scripting policy, thus
generalizing much better and achieving a success metric of 83.9% compared to 78.2% from
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the previous state-of-the-art [17]. Finally, in strategy games expert trajectories are collected
by running MCTS [23], which requires access to a simulator and can be extremely slow [313].
We show that procedure cloning can effectively learn from the path traversed by MCTS col-
lected in a deterministic environment to then successfully generalize in a zero-shot manner
to stochastic environments and more difficult game settings, where running MCTS, even if
given access to a simulator, performs poorly.

Related Work

Generalization in sequential decision making. Learning decision making policies with
good generalization properties has a long-standing history in bandit [314, 315, 316], imitation
learning [302], and reinforcement learning (RL) [317, 318, 319, 320] settings in the form of re-
gret or Probably Approximately Correct (PAC) bound analysis. These studies are concerned
with generalization in a continual learning setup without explicit separation of training and
testing stages. We are more interested in an agent’s ability to generalize to a separate “test”
environment whose configuration is different from the training environment, which is often
what happens when an agent is deployed to the real world after being trained in a simu-
lator. With high-capacity neural network parametrized policies being the norm in training
image-based agents, the risk of overfitting to the training environment is nontrivial [321, 322].
Various works have injected stochasticity into the training process including using stochastic
policies [323], random starts [324, 325], sticky actions [326], and frame skipping [327] as a
means to prevent overfitting to the specific environment dynamics experienced by the agent
during training. A variety of image-based regularization techniques have also been applied
to deep RL including dropout and l-2 regularization [328], data augmentation and batch nor-
malization [329], domain randomization [114], and network randomization [330]. Instead of
improving generalization through regularization or data augmentation like in existing work,
we instead ask the question of whether learning the sequence of computations as opposed to
only the final expert action during training can help an agent generalize better.

Access to additional task information Many previous works in imitation learning and
RL have observed that access to additional task information can help an agent learn better
policies. For instance, [303] relies on access to the simulator for collecting more expert
trajectories to reduce the quadratic error in task horizon to linear. [331] assumes that expert
demonstrations contain both high-level and low-level trajectories, and learns a hierarchical
policy explicitly. While our procedure observations can appear to be high-level labels or sub-
goals similar to [331, 332], we do not make assumptions about the structure of procedure
observations, which can simply be scalar variable values computed during program execution.
There is also a large body of literature that assumes access to a suboptimal offline dataset in
addition to the expert demonstration data collected from the same environment, and conduct
representation learning [299, 179, 182, 7, 333], hierarchical skill extraction [290, 14, 278], or
dynamics model learning [334, 300, 301] on the suboptimal offline data followed by imitation
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learning from an expert. These works commonly assume good coverage in the offline data,
which requires large amounts of state-action pairs being collected from running additional
policies in the environment. We instead propose observing additional information from only
running the expert policy, which requires far fewer state-action pairs being collected for
training. Another line of existing work in the direction of multi-task learning suggests that
learning an auxiliary task enhances imitation learning or RL [335, 336, 165, 337, 165, 338,
339]. For instance, [340] showed that predicting internal features of the emulator (e.g., enemy
on the screen) is beneficial, [341] found predicting scene depth helps navigation, and [342]
found predicting explanations helps relational tasks with causal structure. Chain of thought
imitation differs from multi-task learning in that procedures directly influence the action
outcomes through computations, in which case learning the procedure directly (as opposed
to treating it as an auxiliary objective similar to existing work) is more beneficial. The
graphical model in Figure 5.2 visualizes this distinction.

Chain of thought sequence modeling. The idea of decomposing multi-step problems
into intermediate steps (the so-called chain of thought [43]) and learning the intermediate
steps using a sequence model has been applied to domain specific problems such as program
induction [343], learning to solve math problems [57], learning to execute [203], learning to
reason [344, 345, 346, 347, 348, 349], and language model prompting [43]. The chain of
thought imitation learning problem we formulate is domain agnostic and applicable to many
sequential decision making task traditionally solved by imitation learning in a Markovian
setting such as robot locomotion, navigation, manipulation, and strategy games. Unlike
language-based tasks, problems in decision making have only recently started being explored
by language models [350, 60, 5, 351, 352, 150], as the Markovian nature of these problems
brings the value of sequence modeling into question. Our work contributes to bridging the
gap between learning memoryless policies in Markovian environments and the intuition that
large sequence models should help in reasoning-based decision making.

5.1.2 Procedure Cloning

In this section, we first observe that in many imitation learning situations, expert demonstra-
tions can provide much richer insight into the desirable behavior than just the final optimal
action. We formulate learning under these situations as chain of thought imitation, where an
agent can learn from not just the optimal action but the “thought process” an expert goes
through before arriving at the final decision. We then formalize such thought process as pro-
cedures, and propose procedure cloning for learning such thought process through supervised
sequence prediction.

Chain of thought imitation Depending on the form of the expert policy π∗ used to
generate the training data D∗

RL, an agent potentially has access to a rich set of information
about a task which can facilitate learning. For instance, when π∗ is some scripting policy
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Figure 5.2: Graphical models of vanilla BC, auxiliary BC, and procedure cloning with au-
toregressive and conditionally independent factorization. Node s represents an input MDP
state, a represents an expert action, and x represents the sequence of procedure observations
(x0, ..., xL).

following a fixed set of rules [353], the rules (e.g., “if close to enemy then fire”) reveal causal
information between firing and the enemy disappearing. In other settings when π∗ is a search
algorithm, the induced search tree exposes the path for finding the optimal action. When π∗

is a multi-step hand-coded algorithm, the breakdown of the steps (e.g., “first move to objects
then sweep”) reveals important ordering information about the task. Even in the case where
π∗ is a human demonstrator, we can ask the human to explain the thought process that led
to their decision. We refer to learning from the procedures (e.g., planning, search, multi-step
algorithm) that generated the final action as chain of thought imitation.

Procedures and procedure observations To formulate chain of thought imitation as
a learning problem, we define a procedure Π : S → ∆(A) as a sequence of computations
(Π0,Π1, ...,ΠL,ΠL+1) that first transform an input state s ∈ S into some computation state
(e.g., a variable value) using Π0 : S → Rd, followed by repeatedly applying each subproce-
dure, Πℓ : Rd → Rd, ∀ℓ ∈ [1, L], to the computation state before mapping the last compu-
tation state back to the MDP action space using ΠL+1 : Rd → ∆(A), in a sequential order.
A procedure can be broken down to subprocedures at any user-defined granularity (e.g., a
function or a for loop), depending on how frequently the computation state is retrieved for
procedure learning. Each pair of training data, (s, a) ∼ D∗

RL, is acquired through executing
such a procedure, i.e., π∗ = Π.

We define procedure observations as the sequence of computation states captured from a
procedure: x = (x0, ...xL) ∈ R(L+1)×d where x0 = Π0(s) and xℓ = Πℓ◦Πl−1◦...◦Π1◦Π0(s),∀ℓ ∈
[1, L]. The training data with procedure observations is denoted as DΠ = {(s(i),x(i), a(i))}ni=1.
Note that we do not assume any procedure or procedure observation is available at test time,
hence we still need to learn a policy π that only takes s as input.

Procedure cloning With the procedure observations defined above, we are now ready for
learning procedures through procedure cloning (PC). We model a PC policy by estimating
the joint distribution of the procedure observations and the final action conditioned on the
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input state p(a,x|s), which we can factorize autoregressively as:

p(a,x|s) = p(a|x, s) · ΠL
l=1p(xℓ|x<ℓ, s) · p(x0|s). (5.1)

Under this factorization, estimating p(a,x|s) reduces to estimating each conditional factor,
which can be parametrized using a transformer model [94]. The autoregressive factorization
is highly flexible, but if the amount of expert demonstrations is small, and each procedure
observation xℓ only depends on the previous procedure observation xℓ−1 (i.e., the computa-
tion states are fully observed), and the final action only depends on the last computation
state, a conditionally independent factorization can be more desirable. In other words, au-
toregressive models need more data to train, so the conditional independence factorization
below is preferable if the procedure information available fully captures the computation
state:

p(a,x|s) = p(a|xL) · ΠL
l=1p(xℓ|xℓ−1) · p(x0|s). (5.2)

The graphical models of the two factorizations of PC policies are shown in Figure 5.2.
To learn a PC policy, we maximize the empirical likelihood of the joint distribution in
Equation 5.1 on given samples DΠ = {(s(i),x(i), a(i))}ni=1:

min
ϕ,θ,ψ

JPC(ϕ, θ, ψ) = Ê(s,x,a)∼DΠ
[− log p(a,x|s)] (5.3)

= Ê(s,x,a)∼DΠ

[
− log qψ(a|x, s)−

L∑
ℓ=1

log pθ(xℓ|x<ℓ, s)− log pϕ(x0|s)
]
. (5.4)

Connection to BC with auxiliary tasks. The PC objective in Equation 5.4 can be
reduced to the vanilla BC objective in Equation (2.2) by discarding the second and third
term inside the expectation of Equation 5.4 and setting qψ(a|x, s) = π(a|s). We note that
several previous works [336, 335, 165, 337, 340, 341] have used procedure information as
auxiliary tasks to BC, which may be interpreted as learning p(a,x|s) under the assumption
that a and x are independent conditioned on s: p(a,x|s) = π(a|s) ·p(x|s). Procedure cloning
instead focuses on situations where such a conditional independence assumption does not
hold (i.e., a is directly computed by the procedure represented by x), and in these situations,
as we will show in our experiments, treating the procedure information as a precursor to a
can perform better than using it as an auxiliary task. The graphical models of vanilla BC
and BC with auxiliary task objective are shown in Figure 5.2.

5.1.3 Proof of concept: Synthetic maze navigation

In this section, we study a tabular maze navigation task with synthetically generated maze
layouts (see Figure 5.3). We describe the task setup, followed by how to extract procedure
data from a breadth-first search (BFS) path planning algorithm to train a procedure cloning
agent, and empirically show that procedure cloning indeed generalizes much better to unseen
maze layouts than other BC baselines. While this proof of concept illustration might seem
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Figure 5.3: In a discrete maze, the expert employs BFS by first expanding a search perimeter
until it encounters the goal cell, at which point it backtracks to find the optimal action
at the starting state (cells in light blue are visited and dark blue are backtracked). We
encode this algorithm as a sequence of procedure observations (x0, ..., x6) of the intermediate
computation states, with each xi represented by a 2D array and each cell of the array
containing BFS-relevant information (i.e., whether this cell is being expanded or backtracked
and the action recorded when expanding to this cell). Procedure cloning is trained to predict
the entire sequence of computations from input state to output action using a sequential
model p(a|xL) · ΠL

l=1p(xℓ|xℓ−1) · p(x0|s).

domain-specific to BFS in mazes, we will see in Section 5.1.4.3 that procedure cloning can
be applied to many types of search or multi-step algorithms.

Task description and evaluation protocol. We use a gridworld maze environment
in which an agent seeks to navigate to a goal location in a maze from a random starting
location using 4 discrete actions including up (U), down (D), left (L), and right (R). The input
to the agent is a multi-channel “image” with the maze wall, goal location, and agent location
encoded in separate channels. The maze layout is algorithmically generated with random
internal walls that form a tunnel-shaped map (see example maze in Figure 5.4. We generate
a set of mazes S0 ⊂ S and split S0 into disjoint training Strain

0 and testing Stest
0 sets. We

then generate expert trajectories by running BFS on only the training set of mazes Strain
0 .

At test time, the agent is evaluated on Stest
0 by their success rate of navigating to the goal.

Figure 5.3 visualizes the data and training pipeline.

Procedure data collection. BFS is a common path planning algorithm for naviga-
tion [354, 355, 356, 357], which we use to generate expert trajectories for training an imi-
tation learning agent. To compute the optimal action at each time step, BFS keeps track
of a visited 2D array (colored cells in Figure 5.3) that marks whether each position (1)
has been visited by the search, (2) if so, which action visited it, and (3) has a position been
backtracked. We simply take a snapshot of the entire visited array as procedure obser-
vations xℓ every time BFS expands the search perimeter, resulting in a series of procedure
data x = (x1, ..., xL) as shown in Figure 5.3. Π0 is the identity map and x0 = s.
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Figure 5.4: [Left] Visualization of the discrete maze (4 discrete actions) and AntMaze (8
continuous actions). [Right] Average success rate of PC and BC agents navigating to the
goal from random start locations over 10 test mazes. Agents are trained on 5, 10, 20, 40
mazes of 1 and 5 expert trajectories on discrete maze and AntMaze, respectively. We find
that procedure cloning leads to much better test maze generalization compared to alternative
approaches.

Procedure learning. Since each of the visited 2D arrays xℓ only depends on the previous
visited array xℓ−1, and the final visited array after backtracking uniquely identifies the
expert action on its own, we choose the conditionally independent factorization of p(a,x|s)
(Equation 5.2) described in Section 5.1.2. Specifically, we parametrize pθ(xℓ|xℓ−1),∀ℓ ∈ [1, L]
using a deep convolutional neural network that takes in the current visited array xℓ−1

as input and produces the next visited array xℓ as output. We optimize θ using the
cross-entropy loss between the predicted and true next visited array. Since the procedure
observations xℓ and the original input s are in the same image space, ϕ(x) shares the same
parameters as pθ(xℓ|xℓ−1). During inference when a new test maze layout s is given, we
apply x̂0 = ϕ(s) and x̂ℓ ∼ pθ(·|x̂ℓ−1) repeatedly until an array x̂L is predicted for which the
entry in x̂L corresponding to the agent’s current location is labelled as “backtracked”, and
we return the backtracked action as the final output action.

Generalization results. We compare procedure cloning to applying data augmentation
with random crop, translation, and zoom (Aug BC) or auxiliary objective of predicting the
visited array (Aux BC) to vanilla BC. BC policies are parametrized with convolutional
neural networks (CNN) and multi-layer perceptrons (MLPs). Aux BC receives the same
information as PC when computing the auxiliary loss, i.e., the visitation maps are given
to both PC and Aux BC. Figure 5.4 (Disc.16 × 16 and Disc.32 × 32) shows the average
success rate (over 5 trajectories) of reaching the goal from random start locations on 10
test maze layouts unseen during training. Procedure Cloning successfully generalizes to test
mazes, whereas vanilla BC completely fails to learn (0% sucess rate) in bigger maze 32 × 32.
Aux BC and Aug BC help in the smaller maze but not in the bigger maze. The poor test
performance of BC is due to generalization failure as opposed to insufficient model capacity
as BC’s success rate on the training mazes are close to 100%.
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5.1.4 Experiments

We now evaluate procedure cloning in larger scale settings on tasks including simulated
robotic navigation [10] and manipulation [358, 17], and learning to play MinAtar [359] (a
miniature version of Atari [360]). Procedure Cloning exhibits significant generalization to
previously unseen maze layouts, positions of objects being manipulated, and environment
configurations such as transition stochasticity and game difficulty in each of the tasks, re-
spectively. See Appendix A.3.2 for more results.

5.1.4.1 Evaluating continuous robot navigation in AntMaze

Task description. Following the discrete maze navigation task in Section 5.1.3, we now
consider a more realistic setting of mimicking real-world robotic navigation. We adopt
the AntMaze environment from D4RL [10], where an 8-DoF “Ant” quadruped robot with
continuous state and action spaces is placed in a 2D maze environment. The original task
designed for offline RL only has one maze layout which is not revealed to the agent (the
agent only sees its current position and joint-based state measurements). To adopt the task
for evaluating generalization across maze layouts, we also pass the algorithmically generated
maze layouts from Section 5.1.3 to the agent as inputs. During evaluation, the agent needs
to navigate to the goal in previously unseen maze layouts.

PC implementation. The procedure that generated the expert training trajectories for
goal-reaching in AntMaze involves a low-level PID controller that is good for navigating
to local locations close to the robot and a high-level waypoint generator which uses BFS
search to find the next local waypoint [10]. We apply procedure cloning to the high-level
waypoint generator following the same steps as in discrete maze described in Section 5.1.3.
The predicted waypoint is then passed to a Gaussian parametrized policy (optimized with
max-likelihood) together with the agent’s joint measurements. For BC and variants, we use
a convolutional neural network to embed the maze layout into a fixed dimensional vector
and concatenate the robot joint measurements together with the agent and goal locations to
a Gaussian policy.

Generalization results. Figure 5.4 (Ant 10 × 10 and Ant 13 × 13) shows the average
(over 5 trajectories) success rate of the robot reaching the goal from random starting locations
on 10 test mazes. Procedure Cloning consistently provides significant benefits over vanilla
BC, whereas data augmentation on the maze layout and predicting the visited array as an
auxiliary loss are less helpful. We know the poor test performance of BC (and other baseline
methods) is more due to generalization failure as opposed to insufficient model capacity
because the success rate on the training mazes between procedure cloning and auxiliary BC
are similar (Figure A.23 in Appendix A.3.2).
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Figure 5.5: [Left] Visualization of the bimanual sweep task. [Middle] Average success metric
(proportion of particles in bowls at the end of the episode) of PC and BC agents completing
the bimanual sweeping task after learning on 10, 100, 1000 expert trajectories; each variant is
an aggregate of 10 runs. All of our algorithm implementations use the implicit loss function
described in [17] for this task. [Right] When using 1000 expert demonstrations with early
stopping, PC achieves 83.9% compared to 78.2% success of the existing state-of-the-art
achieved by implicit BC.

5.1.4.2 Evaluating image-based robot manipulation

Task description. The bimanual sweeping task [358, 17] requires two 7-DoF robot arms
equipped with spatula-like end-effectors to sweep a pile of particles evenly into two bowls
while avoiding dropping particles between the tips of the spatulas. The scripted oracle for
collecting expert trajectories uses access to privileged information including object poses
and contact points, which are not accessible at test time. Rather, only high-resolution
(96 × 96) images in conjunction with end-effector positions and orientations are given to
the imitation-learned agent during inference. Actions are end-effector positions for each
robot arm (6 dimensions for each arm for a total of 12 dimensions for the action); for
how to incorporate kinematic actions into this environment, we refer the reader to [358].
Random seeds determining the initial position of the particles are partitioned so that test-
time configurations are not seen in training.

PC implementation and results. The scripted policy first scoops the particles by mov-
ing the spatulas to their computed geometric center and then moves the spatulas to a bowl
before releasing the particles. At each state of a trajectory, we collect the Cartesian coor-
dinates of one of these two goal points – geometric center of the particles or position of the
bowl – depending on the expert’s behavior mode at that state, and use these as procedure
observations. We supervise the PC agent to first predict these coordinates, then predict the
actions conditioned on the predicted coordinates and end-effector positions and orientations.
For both BC and PC we parameterize log-likelihood using energy-based models, also known
as an implicit loss, which is state-of-the-art for this task [17]. We compare PC to BC trained
directly on image inputs and auxiliary BC which learns to predict oracle coordinates as an
auxiliary objective. We see that the BC variants quickly overfit to the training set of ob-
servations, whereas PC generalizes much better (Figure 5.5, left). Despite early stopping
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Figure 5.6: In the MinAtar game-playing environment, the expert uses MCTS (Π0, ...,ΠL) to
find an optimal future trajectory [L, R, Goal]. We treat this future trajectory in reverse order
[Goal, R, L] as procedure observations, so that procedure cloning is trained to first predict the
goal image (MCTS leaf node) and then predict the optimal action sequence backwards from
the goal using a GPT-like autoregressive model, ultimately predicting the expert’s output
action as its last prediction.

(taking the maximum evaluation success rate over all training steps), PC still outperforms
all of the BC variants (Figure 5.5, right), improving significantly over the state-of-the-art.

5.1.4.3 Evaluating strategy games in MinAtar

Task description. MinAtar is a minature version of the Atari Arcade Learning Environ-
ment [360] consisting of 5 games with simplified 10 × 10 multi-channel images as inputs. To
generate the expert trajectories for training, we run a AlphaZero-style [23] Monte-Carlo tree
search (MCTS) algorithm on the deterministic version of the environments to collect expert
trajectories (see Appendix A.3.1 for details). During evaluation, we test the imitation-learned
agents on a set of test environments with different seeds from the training environments where
expert trajectories are collected. To further evaluate generalization, we apply sticky actions
with probability 0.1 and game difficulty ramping to the test environments where such an
option is available.

PC implementation. In contrast to running BFS in maze navigation where the visited

array cleanly captures the entire state of the search, running MCTS in MinAtar is more con-
voluted, involving a number of MCTS simulation runs each with selection, expansion, roll-
outs, and backtrack steps and different tree structures, making capturing the full search state
difficult. Fortunately, procedure cloning with autoregressive factorization (Equation 5.1) al-
lows procedure data to be partial observations of the computation state, and so we elect
to use only a subset of the MCTS computation states as supervision for PC. Namely, we
record the optimal action sequence after the last MCTS simulation run (from the final search
tree) and the goal image at the tree leaf as procedure observations (highlighted in blue in
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Figure 5.7: Average episode reward (over 50 episodes) of PC and BC agents playing MinAtar
games over 3 test environments using sticky actions (left) and game difficulty ramping (right)
not see in the training environments.

Figure 5.6); this is effectively the optimal future trajectory determined by MCTS. A PC
policy is trained to use the input state to first predict the goal image using a CNN and
then use the goal as input to an autoregressive action sequence model p(xℓ|x<ℓ, s) where xℓ
is the optimal action that is ℓ-steps away from the goal (i.e., predicting the optimal action
sequence backwards from the goal). Figure 5.6 illustrates the data and training pipeline of
procedure cloning.

Generalization results. Figure 5.7 shows the average reward (over 50 episodes) collected
by running PC and BC policies in 3 test environments with different environment seeds
than the environments used to collect training trajectories. Figure 5.7 (left) evaluates gen-
eralization to stochastic environments, where we found sticky actions caused MCTS (gray)
to struggle to search for good actions without extensive tuning. Figure 5.7 (right) evalu-
ates generalization to more difficult game settings (available in 3 out of 5 MinAtar games).
Autoregressive PC policy generalizes the best across all games and all settings.

5.2 Overcome Failures of RCSL in Stochastic

Environments

5.2.1 Introduction

Offline reinforcement learning (RL) aims to extract an optimal policy solely from an existing
dataset of previous interactions [247, 77, 78]. As researchers begin to scale offline RL to large
image, text, and video datasets [46, 48, 110, 49, 150], a family of methods known as return-
conditioned supervised learning (RCSL), including Decision Transformer (DT) [60, 3] and
RL via Supervised Learning (RvS) [361], have gained popularity due to their algorithmic
simplicity and ease of scaling. At the heart of RCSL is the idea of conditioning a policy
on a specific future outcome, often a return [362, 101, 60] but also sometimes a goal state
or generic future event [363, 364, 98]. RCSL trains a policy to imitate actions associated
with a conditioning input via supervised learning. During inference (i.e., at evaluation), the
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Figure 5.8: Illustration of DT (RCSL) and DoC. Circles and squares denote states and
actions. Solid arrows denote policy decisions. Dotted arrows denote (stochastic) environment
transitions. All arrows and nodes are present in the dataset, i.e., there are 4 trajectories,
2 of which achieve 0 reward. DT maximizes returns across an entire trajectory, leading
to suboptimal policies when a large return (r = 100) is achieved only due to very low-
probability environment transitions (T = 0.01). DoC separates policy stochasticity from
that of the environment and only tries to control action decisions (solid arrows), achieving
optimal control through maximizing expected returns at each timestep.

policy is conditioned on a desirable high-return or future outcome, with the hope of inducing
behavior that can achieve this desirable outcome.

Despite the empirical advantages that come with supervised training [361, 365], RCSL can
be highly suboptimal in stochastic environments [103, 102], where the future an RCSL policy
conditions on (e.g., return) can be primarily determined by randomness in the environment
rather than the data collecting policy itself. Figure 5.8 (left) illustrates an example, where
conditioning an RCSL policy on the highest return observed in the dataset (r = 100) leads
to a policy (a1) that relies on a stochastic transition of very low probability (T = 0.01) to
achieve the desired return of r = 100; by comparison the choice of a2 is much better in terms
of average return, as it surely achieves r = 10. The crux of the issue is that the RCSL policy
is inconsistent with its conditioning input. Conditioning the policy on a desired return (i.e.,
100) to act in the environment leads to a distribution of real returns (i.e., 0.01 ∗ 100) that
is wildly different from the return value being conditioned on. This issue would not have
occurred if the policy could also maximize the transition probability that led to the high-
return state, but this is not possible as transition probabilities are a part of the environment
and not subject to the policy’s control.

A number of works propose a generalization of RCSL, known as future-conditioned su-
pervised learning methods. These techniques have been shown to be effective in imitation
learning [107, 13], offline Q-learning [14], and online policy gradient [366]. It is common
in future-conditioned supervised learning to apply a KL divergence regularizer on the la-
tent variable – inspired by variational auto-encoders (VAE) [92] and measured with respect



CHAPTER 5. GENERATIVE MODELING AS AN ALTERNATIVE TO OFFLINE RL83

to a learned prior conditioned only on past information – to limit the amount of future
information captured in the latent variable. It is natural to ask whether this regularizer
could remedy the insconsistency of RCSL. Unfortunately, as the KL regularizer makes no
distinction between future information that is controllable versus that which is not, such an
approach will still exhibit inconsistency, in the sense that the latent variable representation
may contain information about the future that is due only to environment stochasticity.

It is clear that the major issue with both RCSL and näıve variational methods is that
they make no distinction between stochasticity of the policy (controllable) and stochasticity
of the environment (uncontrollable) [367, 368]. An optimal policy should maximize over the
controllable (actions) and take expectations over uncontrollable (e.g., transitions) as shown
in Figure 5.8 (right). This implies that, under a variational approach, the latent variable
representation that a policy conditions on should not incorporate any information that is
solely due to randomness in the environment. In other words, while the latent representation
can and should include information about future behavior (i.e., actions), it should not reveal
any information about the rewards or transitions associated with this behavior.

To this end, we propose a future-conditioned supervised learning framework termed di-
chotomy of control (DoC), which, in Stoic terms [369], has “the serenity to accept the things
it cannot change, courage to change the things it can, and wisdom to know the difference.”
DoC separates mechanisms within a policy’s control (actions) from those beyond a policy’s
control (environment stochasticity). To achieve this separation, we condition the policy on
a latent variable representation of the future while minimizing the mutual information be-
tween the latent variable and future stochastic rewards and transitions in the environment.
Theoretically, we show that DoC policies are consistent with their conditioning inputs, en-
suring that conditioning on a high-return future will correctly induce high-return behavior.
Empirically, we show that DoC can outperform both RCSL and näıve variational methods
on highly stochastic environments.

5.2.2 Related Work

Return-Conditioned Supervised Learning. Since offline RL algorithms [247, 77, 78]
can be sensitive to hyper-parameters and difficult to apply in practice [361, 365], return-
conditioned supervised learning (RCSL) has become a popular alternative, particularly when
the environment is deterministic and near-expert demonstrations are available [102]. RCSL
learns to predict behaviors (actions) by conditioning on desired returns [100, 101] using
an MLP policy [361] or a transformer-based policy that encapsulates history [60]. Richer
information other than returns, such as goals [363, 364] or trajectory-level aggregates [351],
have also been used as inputs to a conditional policy in practice. Our work also conditions
policies on richer trajectory-level information in the form of a latent variable representation
of the future, with additional theoretical justifications of such conditioning in stochastic
environments.
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RCSL Failures in Stochastic Environments. Despite the empirical success of RCSL
achieved by DT and RvS, recent work has noted the failure modes in stochastic environments.
[367] and [368] presented counter-examples where online RvS can diverge in stochastic en-
vironments. [103] first identified the failure of return-conditioned supervised learning with
stochastic transitions and proposed to cluster offline trajectories and condition the policy
on the average cluster returns. While conditioning on expected as opposed to maximum re-
turns is more reasonable, this approach has technical limitations and can lead to undesirable
policy-averaging, i.e., a single policy covering two very different behaviors (clusters) that
happen to have the same return. [102] also identified near-determinism as a necessary condi-
tion for RCSL to achieve optimality guarantees similar to other offline RL algorithms but did
not propose a solution for RCSL in stochastic settings. [370] also identifies overly optimistic
behavior of DT and proposes to use discrete β-VAE to induce diverse future predictions a
policy can condition on. This approach only differs the issue with stochastic environments to
stochastic latent variables, i.e., the latent variables will still contain stochastic environment
information that the policy cannot reliably reproduce.

Learning Latent Variables from Offline Data. Various works have explored learning a
latent variable representation of the future (or past) transitions in offline data via maximum
likelihood and use the latent variable to assist planning [98], imitation learning [290, 14,
278], offline RL [14, 291], or online RL [292, 293, 371, 294, 107, 296, 366]. These works
generally focus on the benefit of increased temporal abstraction afforded by using latent
variables as higher-level actions in a hierarchical policy. [370] has introduced latent variable
models into RCSL, which is one of the essential tools that enables our method, but they
did not incoporate the appropriate constraints which can allow RCSL to effectively combat
environment stochasticity, as we will see in our work. Lastly, [372] used mutual information
constraints to separate controllable from uncontrollable aspects of an MDP with the goal of
accelerating reinforcement learning, whereas we study the dichotomy of control under the
context of return-and-future conditioned supervised learning.

5.2.3 Preliminaries

Learning a Policy in RCSL In future- or return-conditioned supervised learning, one
uses a fixed training data distribution D of episodes τ (collected by unknown and potentially
multiple agents) to learn a policy π, where π is trained to predict at conditioned on the history
τ0:t−1, the observation st, and an additional conditioning variable z that may depend on both
the past and future of the episode. For example, in return-conditioned supervised learning,
policy training minimizes the following objective over π:

LRCSL(π) := Eτ∼D

[
H∑
t=0

− log π(at|τ0:t−1, st, z(τ))

]
, (5.5)

where z(τ) is the return R(τ).
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Inconsistency of RCSL To apply an RCSL-trained policy π during inference — i.e.,
interacting online with the environment — one must first choose a specific z.1 For example,
one might set z to be the maximal return observed in the dataset, in the hopes of inducing
a behavior policy which achieves this high return. Using πz as a shorthand to denote the
policy π conditioned on a specific z, we define the expected return VM(πz) of πz in M as,

VM(πz) := Eτ∼Pr[·|πz ,M] [R(τ)] . (5.6)

Ideally the expected return induced by πz is close to z, i.e., z ≈ VM(πz), so that acting
according to π conditioned on a high return induces behavior which actually achieves a high
return. However, RCSL training according to Equation (5.5) will generally yield policies
that are highly inconsistent in stochastic environments, meaning that the achieved returns
may be significantly different than z (i.e., VM(πz) ̸= z). This has been highlighted in various
previous works [102, 103, 368, 373, 370], and we provided our own example in Figure 5.8.

Approaches to Mitigating Inconsistency A number of future-conditioned supervised
learning approaches propose to learn a stochastic latent variable embedding of the future,
q(z|τ), while regularizing q with a KL-divergence from a learnable prior conditioned only on
the past p(z|s0) [14, 366, 98], thereby minimizing:

LVAE(π, q, p) := Eτ∼D,z∼q(z|τ)

[
H∑
t=0

− log π(at|τ0:t−1, st, z)

]
+ β · Eτ∼D [DKL(q(z|τ)∥p(z|s0))] .

(5.7)

One could consider adopting such a future-conditioned objective in RCSL. However, since
the KL regularizer makes no distinction between observations the agent can control (actions)
from those it cannot (environment stochasticity), the choice of coefficient β applied to the
regularizer introduces a ‘lose-lose’ trade-off. Namely, as noted in [14], if the regularization
coefficient is too large (β ≥ 1), the policy will not learn diverse behavior (since the KL limits
how much information of the future actions is contained in z); while if the coefficient is too
small (β < 1), the policy’s learned behavior will be inconsistent (in the sense that z will
contain information of environment stochasticity that the policy cannot reliably reproduce).
The discrete β-VAE incoporated by [370] with β < 1 corresponds to this second failure mode.

5.2.4 Dichotomy of Control

In this section, we first propose the DoC objective for learning future-conditioned policies
that are guaranteed to be consistent. We then present a practical framework for optimiz-
ing DoC’s constrained objective in practice and an inference scheme to enable better-than-
dataset behavior via a learned value function and prior.

1For simplicitly, we assume z is chosen at timestep t = 0 and held constant throughout an entire episode.
As noted in [102], this protocol also encompasses instances like DT [60] in which z at timestep t is the
(desired) return summed starting at t.



CHAPTER 5. GENERATIVE MODELING AS AN ALTERNATIVE TO OFFLINE RL86

5.2.4.1 Dichotomy of Control via Mutual Information Minimization

As elaborated in the prevous section, whether z(τ) is the return R(τ) or more generally
a stochastic latent variable with distribution q(z|τ), existing RCSL methods fail to satisfy
consistency because they insufficiently enforce the type of future information z can contain. A
key observation is that z should not include any information due to environment stochasticity,
i.e., any information about a future rt, st+1 that is not already known given the previous
history up to that point τ0:t−1, st, at. (A similar observation was made in [103] under the more
restrictive assumption that z is a cluster index, which we do not require here.) To address
the independence requirement in a general and sound way, we modify the RCSL objective
from Equation 5.5 to incorporate a conditional mutual information constraint between z and
each pair rt, st+1 in the future:

LDoC(π, q) := Eτ∼D,z∼q(z|τ)

[
H∑
t=0

− log π(at|τ0:t−1, st, z)

]
s.t. MI(rt; z | τ0:t−1, st, at) = 0,MI(st+1; z | τ0:t−1, st, at) = 0, (5.8)

∀ τ0:t−1, st, at and 0 ≤ t ≤ H, (5.9)

where MI(rt; z|τ0:t−1, st, at) denotes the mutual information between rt and z given τ0:t−1, st, at
when measured under samples of rt, z from D, q; and analogously for MI(st+1; z|τ0:t−1, st, at).

The first part of the DoC objective conditions the policy on a latent variable repre-
sentation of the future, similar to the first part of the future-conditioned VAE objective
in Equation (5.7). However, unlike Equation (5.7), the DoC objective enforces a much more
precise constraint on q, given by the MI constraints in Equation (5.8).

5.2.4.2 Dichotomy of Control in Practice

Contrastive Learning of DoC Constraints. To satisfy the mutual information con-
straints in Equation (5.8) we transform the MI to a contrastive learning objective. Specifi-
cally, for the constraint on r and z (and similarly on st+1 and z) one can derive,

MI(rt; z|τ0:t−1, st, at)

= DKL (Pr[rt, z|τ0:t−1, st, at]∥Pr[rt|τ0:t−1, st, at]Pr[z|τ0:t−1, st, at])

= EPr[rt,z|τ0:t−1,st,at]

[
log

(
Pr[rt|z, τ0:t−1, st, at]

Pr[rt|τ0:t−1, st, at]

)]
= EPr[rt,z|τ0:t−1,st,at] log Pr[rt|z, τ0:t−1, st, at]− EPr[rt|τ0:t−1,st,at] log Pr[rt|τ0:t−1, st, at]. (5.10)

The second expectation above is a constant with respect to z and so can be ignored during
learning. We further introduce a conditional distribution ω(rt|z, τ0:t−1, st, at) parametrized
by an energy-based function f : Ω 7→ R:

ω(rt|z, τ0:t−1, st, at) ∝ ρ(rt) exp {f(rt, z, τ0:t−1, st, at)}, (5.11)
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where ρ is some fixed sampling distribution of rewards. In practice, we set ρ to be the
marginal distribution of rewards in the dataset. Hence we express the first term of Equa-
tion 5.10 via an optimization over ω, i.e.,

max
ω

EPr[rt,z|τ0:t−1,st,at] [logω(rt|z, τ0:t−1, st, at)]

= max
f

EPr[rt,z|τ0:t−1,st,at]

[
f(rt, z, τ0:t−1, st, at)− logEρ(r̃) [exp{f(r̃, z, τ0:t−1, st, at)}]

]
.

Combining this (together with the analogous derivation for MI(st+1; z|τ0:t−1, st, at)) with
Equation 5.8 via the Lagrangian, we can learn π and q(z|τ) by minimizing the final DoC
objective:

LDoC(π, q) = max
f

Eτ∼D,z∼q(z|τ)

[
H∑
t=0

− log π(at|τ0:t−1, st, z)

]

+β ·
H∑
t=0

Eτ∼D,z∼q(z|τ)
[
f(rt, st+1, z, τ0:t−1, st, at)− logEρ(r̃,s̃′) [exp{f(r̃, s̃′, z, τ0:t−1, st, at)}]

]
.

(5.12)

Algorithm 1 Inference with Dichotomy of Control

Inputs Policy π(·|·, ·, ·), prior p(·), value function V (·), initial state s0, number
of samples hyperparameter K.
Initialize z∗;V ∗ � Track the best latent and its value.

for k = 1 to K do
Sample zk ∼ p(z|s0) � Sample a latent from the learned prior.

if V (zk) > V ∗ then
z∗ = zk; V

∗ = V � Set best latent to the one with the highest value.

return π(·|·, ·, z∗) � Policy conditioned on the best z∗.

DoC Inference. As is standard in RCSL approaches, the policy learned by DoC requires
an appropriate conditioning input z to be chosen during inference. To choose a desirable
z associated with high return, we propose to (1) enumerate or sample a large number of
potential values of z, (2) estimate the expected return for each of these values of z, (3)
choose the z with the highest associated expected return to feed into the policy. To enable
such an inference-time procedure, we need to add two more components to the method
formulation: First, a prior distribution p(z|s0) from which we will sample a large number of
values of z; second, a value function V (z) with which we will rank the potential values of z.
These components are learned by minimizing the following objective:

Laux(V, p) = Eτ∼D,z∼q(z|τ)

[
(V (z)−R(τ))2 +DKL(stopgrad(q(z|τ))∥p(z|s0))

]
. (5.13)
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Note that we apply a stop-gradient to q(z|τ) when learning p so as to avoid regularizing q
with the prior. This is unlike the VAE approach, which by contrast advocates for regularizing
q via the prior. See Algorithm 1 for inference pseudocode (and Appendix A.4.4 for training
pseudocode.

5.2.5 Consistency Guarantees for Dichotomy of Control

We provide a theoretical justification of the proposed learning objectives LDoC and Laux,
showing that, if they are minimized, the resulting inference-time procedure will be sound, in
the sense that DoC will learn a V and π such that the true value of πz in the environment
M is equal to V (z). More specifically we define the following notion of consistency :

Definition 8 (Consistency). A future-conditioned policy π and value function V are con-
sistent for a specific conditioning input z if the expected return of z predicted by V is equal
to the true expected return of πz in the environment: V (z) = VM(πz).

To guarantee consistency of π, V , we will make the following two assumptions:

Assumption 9 (Data and environment agreement). The per-step reward and next-state
transitions observed in the data distribution are the same as those of the environment. In
other words, for any τ0:t−1, st, at with Pr[τ0:t−1, st, at|D] > 0, we have Pr[r̂t = rt|τ0:t−1, st, at,D] =
R(r̂t|τ0:t−1, st, at) and Pr[ŝt+1 = st+1|τ0:t−1, st, at,D] = T (ŝt+1|τ0:t−1, st, at) for all r̂t, ŝt+1.

Assumption 10 (No optimization or approximation errors). DoC yields policy π and value
function V that are Bayes-optimal with respect to the training data distribution and q. In
other words, V (z) = Eτ∼Pr[·|z,D] [R(τ)] and π(â|τ0:t−1, st, z) = Pr [â = at|τ0:t−1, st, z,D].

Given these two assumptions, we can then establish the following consistency guarantee
for DoC.

Theorem 11. Suppose DoC yields π, V, q with q satisfying the MI constraints:

MI(rt; z|τ0:t−1, st, at) = MI(st+1; z|τ0:t−1, st, at) = 0, (5.14)

for all τ0:t−1, st, at with Pr[τ0:t−1, st, at|D] > 0. Then under Assumptions 9 and 10, V and π
are consistent for any z with Pr[z|q,D] > 0.

Consistency in Markovian environments. While the results above are focused on en-
vironments and policies that are non-Markovian, one can extend Theorem 11 to Markovian
environments and policies. This result is somewhat surprising, as the assignments of z to
episodes τ induced by q are necessarily history-dependent, and projecting the actions ap-
pearing in these clusters to a non-history-dependent policy would seemingly lose important
information. However, a Markovian assumption on the rewards and transitions of the en-
vironment is sufficient to ensure that no ‘important’ information will be lost, at least in
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terms of the satisfying requirements for consistency in Definition 8. Alternative notions of
consistency are not as generally applicable.

We begin by stating our assumptions.

Assumption 12 (Markov environment). The rewards and transitions ofM are Markovian;
i.e., R(τ0:t−1, st, at) = R(τ̃0:t−1, st, at) and T (τ0:t−1, st, at) = T (τ̃0:t−1, st, at) for all τ, τ̃ , st, at.
We use the shorthand R(st, at), T (st, at) for these history-independent functions.

Assumption 13 (Markov policy, without optimization or approximation errors). The policy
learned by DoC is Markov. This policy π as well as its corresponding learned value function
V are Bayes-optimal with respect to the training data distribution and q. In other words,
V (z) = Eτ∼Pr[·|z,D] [R(τ)] and π(â|st, z) = Pr [â = at|st, z,D].

With these two assumptions, we can then establish the analogue to Theorem 11, which
relaxes the dependency on history for both the policy π and the MI constraints:

Theorem 14. Suppose DoC yields π, V, q with q satisfying the MI constraints:

MI(rt; z|st, at) = MI(st+1; z|st, at) = 0, (5.15)

for all st, at with Pr[st, at|D] > 0. Then under Assumptions 9, 12, and 13, V and π are
consistent for any z with Pr[z|q,D] > 0.

5.2.6 Experiments

We conducted an empirical evaluation to ascertain the effectiveness of DoC. For this eval-
uation, we considered three settings: (1) a Bernoulli bandit problem with stochastic re-
wards, based on a canonical ‘worst-case scenario’ for RCSL [102]; (2) the FrozenLake domain
from [327], where the future VAE approach proves ineffective; and finally (3) a modified set
of OpenAI Gym [327] environments where we introduced environment stochasticity. In these
studies, we found that DoC exhibits a significant advantage over RCSL/DT, and outperforms
future VAE when the analogous to “one-step” RL is insufficient. For DT, we use the same
implementation and hyperparameters as [60]. Both VAE and DoC are built upon the DT
implementation and additionally learn a Gaussian latent variable over succeeding 20 future
steps. See experiment details in Appendix A.4.5 and additional results in Appendix A.4.6.

5.2.6.1 Evaluating Stochastic Rewards in Bernoulli Bandit

Bernoulli Bandit. Consider a two-armed bandit as shown in Figure 5.9 (left). The two
arms, a1, a2, have stochastic rewards drawn from Bernoulli distributions of Bern(1− p) and
Bern(p), respectively. In the offline dataset, the a1 arm with reward Bern(1 − p) is pulled
with probability πD(a1) = p. When p is small, this corresponds to the better arm only being
pulled occasionally. Under this setup, πRCSL(a1|r = 1) = πRCSL(a2|r = 1) = 0.5, which is
highly suboptimal compared to always pulling the optimal arm a1 with reward Bern(1− p)
for p < 0.5.
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r ∼ Bern(1 − p)

a1

a2
πD(a2) = 1 − p

πD(a1) = p

r ∼ Bern(p)

Figure 5.9: [Left] Bernoulli bandit where the better arm a1 with reward Bern(1 − p) for
p < 0.5 is pulled with probability πD(a1) = p in the offline data. [Right] Average rewards
achieved by DoC and baselines across 5 environment seeds. RCSL is highly suboptimal when
p is small, whereas DoC achieves close to Bayes-optimal performance (dotted line) for all
values of p.

Results. We train tabular DoC and baselines on 1000 samples where the superior arm with
r ∼ Bern(1 − p) is pulled with probability p for p ∈ {0.1, ..., 0.5}. Figure 5.9 (right) shows
that RCSL and percentage BC (filtered by r = 1) always result in policies that are indifferent
in the arms, whereas DoC is able to recover the Bayes-optimal performance (dotted line)
for all p values considered. Future VAE performs similarly to DoC for small p values, but is
sensitive to the KL regularization coefficient when p is close to 0.5.

5.2.6.2 Evaluating Stochastic Transitions in FrozenLake

FrozenLake. Next, we consider the FrozenLake environment with stochastic transitions
where the agent taking an action has probability p of moving in the intended direction, and
probability 0.5 · (1 − p) of slipping to either of the two sides of the intended direction. We
collect 100 trajectories of length 100 using a DQN policy trained in the original environment
(p = 1

3
) which achieves an average return of 0.7, and vary p during data collection and

evaluation to test different levels of stochasticity. We also include uniform actions with
probability ϵ to lower the performance of the offline data so that BC is highly suboptimal.

Results. Figure 5.10 presents the visualization (left) and results (right) for this task. When
the offline data is closer to being expert (ϵ = 0.3), DT, future VAE, and DoC perform sim-
ilarly with better performance in more deterministic environments. As the offline dataset
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becomes more suboptimal (ϵ = 0.5), DoC starts to dominate across all levels of transition
stochasticity. When the offline data is highly suboptimal (ϵ = 0.7), DT and future VAE has
little advantage over BC, whereas DoC continues to learn policies with reasonable perfor-
mance.

5.2.6.3 Evaluating Stochastic Gym MuJoCo

Environments. We now consider a set of Gym MuJoCo environments including Reacher,
Hopper, HalfCheetah, and Humanoid. We additionally consider AntMaze from D4RL [10].
These environments are deterministic by default, which we modify by introducing time-
correlated Gaussian noise to the actions before inputing the action into the physics simulator
during data collection and evaluation for all but AntMaze environments. Specifically, the
Gaussian noise we introduce to the actions has 0 mean and standard deviation of the form
(1 − e−0.01·t) · sin(t) · σ where t is the step number and σ ∈ [0, 1]. For AntMaze where
the dataset has already been collected in the deterministic environment by D4RL, we add
gaussian noise with 0.1 standard deviation to the reward uniformly with probability 0.1
(both to the dataset and during evaluation).

Results. Figure 5.11 shows the average performance (across 5 seeds) of DT, future VAE,
and DoC on these stochastic environments. Both future VAE and DoC generally provide
benefits over DT, where the benefit of DoC is more salient in harder environments such as
HalfCheetah and Humanoid. We found future VAE to be sensitive to the β hyperparameter,
and simply using β = 1 can result in the falure case as shown in Reacher-v2.

U

D

L R

T(s′ |s, a) = p

 random in  = 0.3ϵ D  random in  = 0.5ϵ D  random in  = 0.7ϵ D

Figure 5.10: [Left] Visualization of the stochastic FrozenLake task. The agent has a prob-
ability p of moving in the intended direction and 1 − p of slipping to either sides. [Right]
Average performance (across 5 seeds) of DoC and baselines on FrozenLake with different lev-
els of stochasticity (p) and offline dataset quality (ϵ). DoC outperforms DT and future VAE,
where the gain is more salient when the offline data is less optimal (ϵ = 0.5 and ϵ = 0.7).
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Figure 5.11: Average performance (across 5 seeds) of DoC and baselines on modified stochas-
tic Gym MuJoCo and AntMaze tasks. DoC and future VAE generally provide benefits over
DT, where DoC provide more benefits on harder tasks such as Humanoid. Future VAE can
be sensitive to the KL coefficient β, which can result in the failure mode shown in Reacher-v2
if not tuned properly.
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In the previous chapter, we have seen that conditional generation can be used to flexibly
parametrize policies that can incorporate auxiliary information such as chain-of-thought
reasoning steps or desirable future returns. So far, we have only considered datasets that are
largely task specific and are in the form of interactive data with interleaved state, action,
reward, and some auxiliary information. It is worth considering much broader dataset such
as text and videos from the internet, and investigate how information contained in these
broad data may accelerate decision making problems.

There has been tremendous progress in training large language models (LLMs) from
internet text datasets in the past few years. The impressive performance of LLMs on a wide
variety of tasks makes it tempting to reduce the artificial intelligence agenda to scaling up
these systems. However, this is not sufficient. Firstly, the quantity of publicly available text
data is becoming a bottleneck to further scaling. Secondly, and perhaps more importantly,
natural language alone might not be enough to describe all intelligent behavior or capture
all information about the physical world we live in (e.g., imagine teaching someone how to
tie a knot using words only). While language is a powerful tool to describe higher-level
abstractions, it is not always sufficient to capture the physical world in all its wealth of
detail.

Thankfully, there are abundant video data on the internet (e.g., over ten thousand years
of consecutive video watching from YouTube alone) encapsulating a wealth of information
imbued with knowledge of the world. Nevertheless, today’s machine learning models trained
on internet text or video data have demonstrated remarkably different capabilities. LLMs
have advanced to tackling intricate tasks that require sophisticated reasoning, tool use, and
decision making. In contrast, video generation models have been less explored, primar-
ily focusing on creating entertainment videos for human consumption [28, 374]. Given the
paradigm shift unfolding in language modeling, it is important to ask whether we can ele-
vate video generation models to the level of autonomous agents, simulation environments,
and computational engines similar to language models so that applications requiring visual
modalities such as robotics, self-driving, and science can more directly benefit from internet
visual knowledge and pretrained video models.

In this chapter, we take the position that video generation will be to the physical world
as language modeling is to the digital world. To arrive at this conclusion, we first show how
video generation is a universal policy that can characterize broad robotics tasks and even
learn from human videos (Section 6.1). Next, we further illustrate that video generation is
not only a universal policy, but also a universal environment simulator (Section 6.2). With
such a universal simulator, diverse activities from those of humans, to robot manipulation,
and to various dynamical systems, can all be simulated using a unified interface. Lastly,
we have noted that video generation can be expensive to train and evaluate. Therefore, we
propose efficient adaptation of video generation models to task specific domains (Section 6.3).
Overall, this chapter shows that video generation can be treated as a unified interface to
solve real-world decision making tasks such as robotics and self-driving. This last chapter
opens many research opportunities in leveraging internet data to learn generalist agent and
environment models.
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Cut A Pineapple in 
A Few Steps

Move A Red Block 
to A Brown Box

Wipe Plate with  
Yellow Sponge

Wipe A Brown Box 
Before Pick up A Red 
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Text-Conditioned Video Generation Combinatorial Language
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Figure 6.1: Text-Conditional Video Generation as Universal Policies. Text-
conditional video generations enables us to train general purpose policies on wide sources of
data (simulated, real robots and YouTube) which may be applied to downstream multi-task
settings requiring combinatorical language generalization, long-horizon planning, or internet-
scale knowledge.

6.1 Text-to-Video as Universal Policies

6.1.1 Introduction

Building models that solve a diverse set of tasks has become a dominant paradigm in the
domains of vision and language. In natural language processing, large pretrained models have
demonstrated remarkable zero-shot learning of new language tasks [27, 375, 376]. Similarly,
in computer vision, models such as those proposed in [2, 377] have shown remarkable zero-
shot classification and object recognition capabilities. A natural next step is to use such
tools to construct agents that can complete different decision making tasks across many
environments.

However, training such agents faces the inherent challenge of environmental diversity,
since different environments operate with distinct state action spaces (e.g., the joint space
and continuous controls in MuJoCo are fundamentally different from the image space and
discrete actions in Atari). Such diversity hampers knowledge sharing, learning, and gener-
alization across tasks and environments. Although substantial effort has been devoted to
encoding different environments with universal tokens in a sequence modeling framework [49],
it is unclear whether such an approach can preserve the rich knowledge embedded in pre-
trained vision and language models and leverage this knowledge to transfer to downstream
reinforcement learning (RL) tasks. Furthermore, it is difficult to construct reward functions
which specify different tasks across environments.

In this work, we address the challenges in environment diversity and reward specification
by leveraging video (i.e., image sequences) as a universal interface for conveying action
and observation behavior in different environments, and text as a universal interface for
expressing task descriptions. In particular, we design a video generator as a planner that
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sequentially conditions on a current image frame and a text snippet describing a current goal
(i.e., the next high-level step) to generate a trajectory in the form of an image sequence,
after which an inverse dynamics model is used to extract the underlying actions from the
generated video. Such an approach allows the universal nature of language and video to be
leveraged in generalizing to novel goals and tasks across diverse environments. Specifically,
we instantiate the text-conditioned video generation model using video diffusion. A set of
underlying actions are then regressed from the synthesized frames and used to construct a
policy to implement the planned trajectory. The proposed model, UniPi, is visualized in
Figure 6.1.

We have found that formulating policy generation via text-conditioned video synthesis
yields the following advantages:

Combinatorial Generalization. The rich combinatorial nature of language can be lever-
aged to synthesize novel combinatorial behaviors in the environment. This enables the pro-
posed approach to rearrange objects to new unseen combinations of geometric relations, as
shown in Section 6.1.4.1.

Multi-task Learning. Formulating action prediction as a video prediction problem read-
ily enables learning across many different tasks. We illustrate in Section 6.1.4.2 how this
enables learning across language-conditioned tasks and generalizing to new ones at test time
without finetuning.

Action Planning. The video generation procedure corresponds to a planning procedure
where a sequence of frames representing actions is generated to reach the target goal. Such a
planning procedure is naturally hierarchical: a temporally sparse sequence of images toward
a goal can first be generated, before being refined with a more specific plan. Moreover, the
planning procedure is steerable, in the sense that the plan generation can be biased by new
constraints introduced at test-time through test-time sampling. Finally, plans are produced
in a video space that is naturally interpretable by humans, making action verification and
plan diagnosis easy. We illustrate the efficacy of hierarchical sampling in Table 6.2 and
steerability in Figure 6.5.

Internet-Scale Knowledge Transfer. By pretraining a video generation model on a
large-scale text-video dataset recovered from the internet, one can recover a vast repository
of “demonstrations” that aid the construction of a text-conditioned policy in novel environ-
ments. We illustrate how this enables the realistic synthesis of robot motion videos from
given natural language instructions in Section 6.1.4.3.

The main contribution of this work is to formulate text-conditioned video generation
as a universal planning strategy from which diverse behaviors can be synthesized. While
such an approach departs from typical policy generation in RL, where subsequent actions to
execute are directly predicted from a current state, we illustrate that UniPi exhibits notable
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generalization advantages over traditional policy generation methods across a variety of
domains.

6.1.2 Background

We first motivate a new abstraction, the Unified Predictive Decision Process (UPDP), as an
alternative to the Markov Decision Process (MDP) commonly used in RL, and then show
an instantiation of a UPDP with diffusion models.

Limitations of Markov Decision Process The Markov Decision Process [61] is a broad
abstraction used to formulate many sequential decision making problems. Many RL algo-
rithms have been derived from MDPs with empirical successes [378, 118, 187], but existing
algorithms are typically unable to combinatorially generalize across different environments.
Such difficulty can be traced back to certain aspects of the underlying MDP abstraction:

i) The lack of a universal state interface across different control environments. In fact,
since different environments typically have separate underlying state spaces, one would
need to a construct a complex state representation to represent all environments, mak-
ing learning difficult.

ii) The explicit requirement of a real-valued reward function in an MDP. The RL problem
is usually defined as maximizing the accumulated reward in an MDP. However, in many
practical applications, how to design and transfer rewards is unclear and different across
environments.

iii) The dynamics model in an MDP is environment and agent dependent. Specifically, the
dynamics model T (s′|s, a) characterizing transition between states (s.s′) under action
a, is explicitly dependent to the environment and action space of the agent, which can
be significantly different between different agents and tasks.

Unified Predictive Decision Process These difficulties inspire us to construct an al-
ternative abstraction for unified sequential decision making across many environments. Our
abstraction, termed Unified Predictive Decision Process (UPDP), exploits images as a uni-
versal interface across environments, texts as task specifiers to avoid reward design, and
a task-agnostic planning module separated from environment-dependent control to enable
knowledge sharing and generalization.

Formally, we define a UPDP to be a tuple G = ⟨X , C, H, ρ⟩, where X denotes the obser-
vation space of images, C denotes the space of textual task descriptions, H ∈ N is a finite
horizon length, and ρ(·|x0, c) : X × C → ∆(XH) is a conditional video generator. That is,
ρ(·|xo, c) ∈ ∆(XH) is a conditional distribution over H-step image sequences determined
by the first frame x0 and the task description c. Intuitively, ρ synthesizes H-step image
trajectories that illustrate possible paths for completing a target task c. For simplicity, we
focus on finite horizon, episodic tasks.
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Given a UPDP G, we define a trajectory-task conditioned policy π(·|{xh}Hh=0, c) : XH+1×
C → ∆(AH) to be a conditional distribution over H-step action sequences AH . Ideally,
π(·|{xh}Hh=0, c) specifies a conditional distribution of action sequences that achieves the given
trajectory {xh}Hh=0 in the UPDP G for the given task c. To achieve such an alignment, we
will consider an offline RL scenario where we have access to a dataset of existing experience
D = {(xi, ai)H−1

i=0 , xH , c}nj=1 from which both ρ(·|x0, c) and π(·|{xh}Hh=0, c) can be estimated.
In contrast to an MDP, a UPDP directly models video-based trajectories and bypasses

the need to specify a reward function beyond the textual task description. Since the space of
video observations XH and task descriptions C are both naturally shared across environments
and easily interpretable by humans, any video-based planner ρ(·|x0, c) can be conveniently
reused, transferred and debugged. Another benefit of a UPDP over an MDP is that UPDP iso-
lates video-based planner using ρ(·|x0, c) from deferred action selection using π(·|{xh}Hh=0, c).
This design choice isolates planning decisions from action-specific mechanisms, allowing the
planner to be environment and agent agnostic.

UPDP can be understood as implicitly planning over an MDP and directly outputting the
optimal trajectory under instructions. The abstraction of UPDP bypasses reward design,
state extraction and explicit planning, and allows for non-Markovian modeling of image-
based state space. However, learning a planner in UPDP requires videos and task descrip-
tions, whereas traditional MDPs do not require such data, so whether MDP or UPDP is more
suitable for a given task depends on what types of training data is available. Although the
non-Markovian model and the requirement of video and text data induce additional difficul-
ties in UPDP comparing to MDP, it is possible to leverage existing large text-video models
that have been pretrained on massive, web-scale datasets to alleviate these complexities.

Diffusion Models for UPDP Let τ = [x1, . . . , xH ] ∈ XH denote a sequence of images.
We leverage the significant recent advances in diffusion models for capturing the conditional
distribution ρ(τ |x0, c), which we will leverage as a text and initial-frame conditioned video
generator in a UPDP. We emphasize that the UPDP formulation is also compatible with other
probabilistic models, such as a variational autoencoder [379], energy-based model [97, 380], or
generative adversarial network [381]. For completeness we briefly cover the core formulation
at a high-level, but defer details to background references [382].

We start with an unconditional model. A continuous-time diffusion model defines a for-
ward process qk(τk|τ) = N (·;αkτ, σ2

kI), where k ∈ [0, 1] and αk, σ
2
k are scalars with predefined

schedules. A generative process p(τ) is also defined, which reverses the forward process by
learning a denoising model s(τk, k). Correspondingly τ can be generated by simulating this
reverse process with an ancestral sampler [35] or numerical integration [383]. In our case, the
unconditional model needs to be further adapted to condition on both the text instruction
c and the initial image x0. Denote the conditional denoiser as s(τk, k|c, x0). We leverage
classifier-free guidance [106] and use ŝ(τk, k|c, x0) = (1 + ω)s(τk, k|c, x0) − ωs(τk, k) as the
denoiser in the reverse process for sampling, where ω controls the strength of the text and
first-frame conditioning.
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Figure 6.2: Given an input observation and text instruction, we plan a set of images repre-
senting agent behavior. Images are converted to actions using an inverse dynamics model.

6.1.3 Decision Making with Videos

Next we describe our proposed approach UniPi in detail, which is a concrete instantiation
of the diffusion UPDP. UniPi incorporates each of the two main components discussed in
Section 6.1.2 and shown in Figure 6.2: (i) a diffusion model for the universal video-based
planner ρ(·|x0, c), which synthesizes videos conditioned on the first frame and task descrip-
tions; and (ii) a task-specific action generator π(·|{xh}Hh=0, c), which infers actions sequences
from generated videos through inverse dynamics modeling.

Universal Video-Based Planner Encouraged by the recent success of text-to-video
models [28], we seek to construct a video diffusion module as the trajectory planner, which
can faithfully synthesize future image frames given an initial frame and textual task de-
scription. However, the desired planner departs from the typical setting in text-to-video
models [384, 28] which normally generate unconstrained videos given a text description.
Planning through video generation is more challenging as it requires models to both be able
to generate constrained videos that start at a specified image, and then complete the target
task. Moreover, to ensure valid action inference across synthesized frames in a video, the
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Seen Novel

Model Place Relation Place Relation

State + Transformer BC [19] 19.4 ± 3.7 8.2 ± 2.0 11.9 ± 4.9 3.7 ± 2.1
Image + Transformer BC [19] 9.4 ± 2.2 11.9 ± 1.8 9.7 ± 4.5 7.3 ± 2.6
Image + TT [5] 17.4 ± 2.9 12.8 ± 1.8 13.2 ± 4.1 9.1 ± 2.5
Diffuser [133] 9.0 ± 1.2 11.2 ± 1.0 12.5 ± 2.4 9.6 ± 1.7
UniPi (Ours) 59.1 ± 2.5 53.2 ± 2.0 60.1 ± 3.9 46.1 ± 3.0

Table 6.1: Task Completion Accuracy on Combinatorial Environment. UniPi generalizes
well to both seen and novel combinations of language prompts in Place (e.g., place X in Y) and
Relation (e.g., place X to the left of Y) tasks.

video prediction module needs to be able to track the underlying environment state across
synthesized video frames.

Conditional Video Synthesis. To generate a valid and executable plan, a text-to-video
model must synthesize a constrained video plan starting at the current observed image. One
approach to solve this problem is to modify the underlying test-time sampling procedure of
an unconditional model, by fixing the first frame of the generated video plan to always begin
at the observed image, as done in [133]. However, we found that this performed poorly
and led to subsequent frames in the video plan to deviate significantly from the original
observed image. Instead, we found it more effective to explicitly train a constrained video
synthesis model by providing the first frame of each video as explicit conditioning context
during training.

Trajectory Consistency through Tiling. Existing text-to-video models typically gener-
ate videos where the underlying environment state changes significantly during the temporal
duration [28]. To construct an accurate trajectory planner, it is important that the envi-
ronment remain consistent across all time points. To enforce environment consistency in
conditional video synthesis, we provide, as additional context, the observed image when
denoising each frame in the synthesized video. In particular, we re-purposed a temporal
super-resolution video diffusion architecture, and provided as context the conditioned visual
observation tiled across time, as the opposed to a low temporal-resolution video for denoising
at each timestep. In this model, we directly concatenate each intermediate noisy frame with
the conditioned observed image across sampling steps, which serves as a strong signal to
maintain the underlying environment state across time.

Hierarchical Planning. When constructing plans in high dimensional environments with
long time horizons, directly generating a set of actions to reach a goal state quickly becomes
intractable due to the exponential blow-up of the underlying search space. Planning methods
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often circumvent this issue by leveraging a natural hierarchy in planning. Specifically, plan-
ning methods first construct coarse plans operating on low dimensional states and actions,
which may then be refined into plans in the underlying state and action spaces. Similar to
planning, our conditional video generation procedure likewise exhibits a natural temporal
hierarchy. We first generate videos at a coarse level by sparsely sampled videos (“abstrac-
tions”) of our desired behavior along the time axis. Then we refine the videos to represent
valid behavior in the environment by super-resolving videos across time. Meanwhile, coarse-
to-fine super-resolution further improves consistency via interpolation between frames.

Flexible Behavioral Modulation. When planning a sequence of actions to a given sub-
goal, one can readily incorporate external constraints to modulate the generated plan. Such
test-time adaptability can be implemented by composing a prior h(τ) during plan generation
to specify desired constraints across the synthesized action trajectory [133], which is also
compatible with UniPi. In particular, the prior h(τ) can be specified using a learned classifier
on images to optimize a particular task, or as a Dirac delta on a particular image to guide
a plan towards a particular set of states. To train the text-conditioned video generation
model, we utilize the video diffusion algorithm in [28], where pretrained language features
from T5 [385] are encoded. Please see Appendix A.5.1 for the underlying architecture and
training details.

Task Specific Action Adaptation Given a set of synthesized videos, we may train
a small task-specific inverse-dynamics model to translate frames into a set of actions as
described below.

• Inverse Dynamics. We train a small model to estimate actions given input images.
The training of the inverse dynamics is independent from the planner and can be done
on a separate, smaller and potentially suboptimal dataset generated by a simulator.
Action Execution. Finally, we generate an action sequence given x0 and c by syn-
thesizing H image frames and applying the learned inverse-dynamics model to predict
the corresponding H actions. Inferred actions can then be executed via closed-loop
control, where we generate H new actions after each step of action execution (i.e.,
model predictive control), or via open-loop control, where we sequentially execute each
action from the intially inferred action sequence. For computational efficiency, we use
an open-loop controller in all our experiments in this work.

6.1.4 Experimental Evaluation

The focus of these experiments is to evaluate UniPi in terms of its ability to enable effective,
generalizable decision making. In particular, we evaluate

(1) the ability to combinatorially generalize across different subgoals in Section 6.1.4.1,
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Figure 6.3: Combinatorial Video Generation. Generated videos for unseen language
goals at test time.

(2) the ability to effectively learn and generalize across many tasks in Section 6.1.4.2,

(3) the ability to leverage existing videos on the internet to generalize to complex tasks in
Section 6.1.4.3.

See experimental details in Appendix A.5.1. Additional results are given in Appendix A.5.2
and videos in the supplement.

6.1.4.1 Combinatorial Policy Synthesis

First, we measure the ability of UniPi to combinatorially generalize to different language
tasks.

Setup. To measure combinatorial generalization, we use the combinatorial robot planning
tasks in [386]. In this task, a robot must manipulate blocks in an environment to satisfy
language instructions, i.e., put a red block right of a cyan block. To accomplish this task,
the robot must first pick up a white block, place it in the appropriate bowl to paint it a
particular color, and then pick up and place the block in a plate so that it satisfies the
specified relation. In contrast to [386] which uses pre-programmed pick and place primitives
for action prediction, we predict actions in the continuous robotic joint space for both the
baselines and our approach.

We split the language instructions in this environment into two sets: one set of instruc-
tions (70%) that is seen during training, and another set (30%) that is only seen during
testing. The precise locations of individual blocks, bowls, and plates in the environment are
fully randomized in each environment iteration. We train the video model on 200k example
videos of generated language instructions in the train set. Details of this environment can
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Synthesized Frames
Put the Right 
Cyan Block 

on An Orange 
Block

Executed Action Frames

Figure 6.4: Action Execution. Synthesized video plans and executed actions in the simu-
lated environment. The two video plans roughly align with each other.

Put the Right 
Cyan Block 

on An Orange 
Block

Synthesized Frames

Put the Left 
Cyan Block 

on An Orange 
Block

Input Frame
Intermediate 

Guidance

Figure 6.5: Adaptable Planning. By guiding test-time sampling towards a an intermediate
image through fixing that intermediate frame during sampling, we can adapt our planning
procedure to move a particular block.

be found in Appendix A.5.1. We constructed demonstrations of videos in this task by using
a scripted agent.

Baselines. We compare the proposed approach with three separate representative ap-
proaches. First, we compare to existing work that uses goal-conditioned transformers to
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Put the Red Blocks in 
A Gray Bowl

Pack All the Porcelain 
Salad Plate Objects in 

the Brown Box

Pack All the Green 
and Blue Blocks into 

the Brown Box

Input Frame Synthesized Frames

Figure 6.6: Multitask Video Generation. Generated video plans on different new test
tasks in the multitask setting.

Frame Frame Temporal
Condition Consistency Heirarchy Place Relation

No No No 13.2 ± 3.2 12.4 ± 2.4
Yes No No 52.4 ± 2.9 34.7 ± 2.6
Yes Yes No 53.2 ± 3.0 39.4 ± 2.8
Yes Yes Yes 59.1 ± 2.5 53.2 ± 2.0

Table 6.2: Task Completion Accuracy Ablations. Each component of UniPi improves its
performance.

learn across multiple environments, where goals can be specified as episode returns [3], ex-
pert demonstrations [49], or text and images [19]. To represent these baselines, we construct
a transformer behavior cloning (BC) agent to predict the subsequent action to execute given
the task description and either the visual observation (Image + Transformer BC) or the
underlying robot joint state (State + Transformer BC). Second, given that our approach
regresses a sequence of actions to execute, we further compare with transformer models that
regress a sequence of future actions to execute, similar to the goal-conditioned behavioral
cloning of the Trajectory Transformer [5] (Image + TT). Finally, to highlight the importance
of the video-as-policy approach, we compare UniPi with learning a diffusion process that,
conditioned on an image observation, directly infers future robot actions in the joint space
(as opposed to diffusing future image frames), corresponding to [133, 105]. For both our
method and each baseline, we condition the policy on encoded language instructions using
pretrained T5 embeddings. Note that in this setting, existing offline reinforcement learning
baselines are not directly applicable as we do not have access to the reward functions in the
environment.
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Input Frame Synthesized Frames

Flip Pot 
Upright in Sink

Turn Faucet
Left

Pick Up Sponge 
and Wipe Plate

Put Big Spoon from
Basket to Tray

Figure 6.7: High Fidelity Plan Generation. UniPi can generate high resolution video
plans across different language prompts.

Metrics. To compare UniPi with baselines, we measure final task completion accuracy
across new instances of the environment and associated language prompts. We subdivide
the evaluation along two axes: (1) whether the language instruction has been seen during
training and (2) whether the language instruction specifies placing a block in relation to
some other block as opposed to direct pick-and-place.

Combinatorial Generalization. In Table 6.1, we find that UniPi generalizes well to
both seen and novel combinations of language prompts . We illustrate our action generation
pipeline in Figure 6.4 and different generated video plans using our approach in Figure 6.3.

Ablations. In Table 6.2, we ablate UniPi on seen language instructions and in-relation-to
tasks. Specifically, we study the effect of conditioning the video generative model on the
first observation frame (frame condition), tiling the observed frame across timesteps (frame
consistency) and super-resolving video generation across time (temporal hierarchy). All
components of UniPi are crucial for good performance. In settings where frame consistency
is not enforced, we provide a zeroed out image as context to the non-start frames in a video.

Adaptability. We next assess the ability of UniPi to adapt at test time to new constraints.
In Figure 6.5, we illustrate the ability to construct plans which color and move one particular
block to a specified geometric relation.



CHAPTER 6. RL, SEARCH, AND PLANNING WITH INTERNET-SCALE VIDEOS106

Place Pack Pack
Model Bowl Object Pair

State + Transformer BC 9.8 ± 2.6 21.7 ± 3.5 1.3 ± 0.9
Image + Transformer BC 5.3 ± 1.9 5.7 ± 2.1 7.8 ± 2.6
Image + TT 4.9 ± 2.1 19.8 ± 0.4 2.3 ± 1.6
Diffuser 14.8 ± 2.9 15.9 ± 2.7 10.5 ± 2.4
UniPi (Ours) 51.6 ± 3.6 75.5 ± 3.1 45.7 ± 3.7

Table 6.3: Task Completion Accuracy on Multitask Environment. UniPi generalizes well
to new environments when trained on a set of different multi-task environments.

6.1.4.2 Multi-Environment Transfer

We next evaluate the ability of UniPi to effectively learn across a set of different tasks and
generalize, at test time, to a new set of unseen environments.

Setup. To measure multi-task learning and transfer, we use the suite of language guided
manipulation tasks from [162]. We train our method using demonstrations across a set of 10
separate tasks from [162], and evaluate the ability of our approach to transfer to 3 different
test tasks. Using a scripted oracle agent, we generate a set of 200k videos of language
execution in the environment. We report the underlying accuracy in which each language
instruction is completed.

Baselines. We use the same baseline methods as in Section 6.1.4.1. While our environment
setting is similar to that of [162], this method is not directly comparable to our approach,
as CLIPort abstracts actions to the existing primitives of pick and place as opposed to using
joint space of a robot. CLIPort is also designed to solve the significantly simpler problem
of inferring only the poses upon which to pick and place objects (with no easy manner to
adapt to our setting).

Multitask Generalization. In Table 6.3 we present results of our approach and baselines
across new tasks. Our approach is able to generalize and synthesize new videos and decisions
of different language tasks, and can generate videos consisting of picking different kinds of
objects and different colored objects. We further present video visualizations of our approach
in Figure 6.6.
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Synthesized Frames

Pick Up 
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(Scratch)

Pick Up 
Yellow Corn
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Put Carrot 
On Burner 
(Scratch)
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Figure 6.8: Pretraining Enables Combinatorical Generalization. Using internet pre-
training enables UniPi to synthesize videos of tasks not seen during training. In contrast, a
model trained from scratch incorrectly generates plans of different tasks.

6.1.4.3 Real World Transfer

Finally we evaluate the extent to which UniPi can generalize to real world scenarios and
construct complex behaviors by leveraging widely available videos on the internet.

Setup. Our training data consists of an internet-scale pretraining dataset and a smaller
real-world robotic dataset. The pretraining dataset uses the same data as [28], which consists
of 14 million video-text pairs, 60 million image-text pairs, and the publicly available LAION-
400M image-text dataset. The robotic dataset is adopted from the Bridge dataset [387] with
7.2k video-text pairs, where we use the task IDs as texts. We partition the 7.2k video-text
pairs into train (80%) and test (20%) splits. We pretrain UniPi on the pretraining dataset
followed by finetuning on the train split of the Bridge data.

Video Synthesis. We are particularly interested in the effect of pretraining on internet-
scale video data that is not robotic specific. We report the CLIP scores, FIDs, and VIDs
(averaged across frames and computed on 32 samples) of UniPi trained on Bridge data,
with and without pretraining. As shown in Table 6.4, UniPi with pretraining achieves
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Input Frame Synthesized Frame

Figure 6.9: Robustness to Background Change. UniPi learns to be robust to changes
of underlying background, such as black cropping or the addition of photo-shopped objects.

Model (24x40) CLIP Score ↑ FID ↓ FVD ↓
No Pretrain 24.43 ± 0.04 17.75 ± 0.56 288.02 ± 10.45
Pretrain 24.54 ± 0.03 14.54 ± 0.57 264.66 ± 13.64

Table 6.4: Video Generation Quality of UniPi on Real Environment. The use of existing
data on the internet improves video plan predictions under all metrics considered.

significantly better FID and FVD and a marginally better CLIP score than UniPi without
pretraining, suggesting that pretraining on non-robot data helps with generating plans for
robots. Interestingly, UniPi without pretraining often synthesizes plans that fail to complete
the task (Figure 6.7), which is not well reflected in the CLIP score, suggesting the need for
better generation metrics for control-specific tasks.
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Generalization. We find that internet-scale pretraining enables UniPi to generalize to
novel task commands and scenes in the test split not seen during training, whereas UniPi
trained only on task-specific robot data fails to generalize. Specifically, Figure 6.8 shows
the generalization results of novel task commands that do not exist in the Bridge dataset.
Additionally, UniPi is relatively robust to background changes such as black cropping or the
addition of photo-shopped objects as shown in Figure 6.9.

6.1.5 Related Work

Learning Generative Models of the World. Models trained to generate environment
rewards and dynamics that can serve as “world models” for model-based reinforcement
learning and planning have been recently scaled to large-scale architectures developed for
vision and language [118, 5, 388, 121]. These works separate learning the world model
from planning and policy learning, and arguably present a mismatch between the generative
modeling objective of the world and learning optimal policies. Additionally, learning a
world model requires the training data to be in a strict state-action-reward format, which
is incompatible with the largely available datasets on the internet, such as YouTube videos.
While methods such as VPT [110] can utilize internet-scale data through learning an inverse
dynamics model to label unlabled videos, an inverse dynamics model itself does not support
model-based planning or reinforcement learning to further improve learned policies beyond
imitation learning. Our text-conditioned video policies can be seen as jointly learning the
world model and conducting hierarchical planning simultaneously, and is able to leverage
widely available datasets that are not specifically designed for sequential decision making.

Diffusion Models for Decision Making. Diffusion models have recently been applied
to different decision making problems [133, 105, 389, 390, 391, 392]. Most similar to this
work, [133] trained an unconditional diffusion model to generate trajectories consisting of
joint-based states and actions, and used a separately trained reward model to select generated
plans. [105] on the other hand, trained a conditional diffusion model to guide behavior
synthesis from desired rewards, constraints or agent skills. Unlike both works, which learn
task-specific policies from scratch, our approach of text-condition video generation as a
universal policy can leverage internet-scale knowledge to learn generalist agents that can be
deployed to a variety of novel tasks and environments. Additionally, [393] applied web-scale
text-conditioned image diffusion to generate a goal image to condition a policy on, whereas
our work uses video diffusion to learning universal policies directly.

Learning Generalist Agents. Inspired by the large-scale pretraining success of vision
and language domains, large-scale sequence and image models have recently been applied
to learning generalist decision making agents [49, 3, 9]. However, these generalist agents
can only operate under environments with the same state and action spaces (e.g., Atari
games) [3, 9], or require studious tokenization [49] that might seem unnatural in reinforce-
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ment learning settings where different environments have distinct state and actions spaces.
Another downside of using customized tokens for control is the inability to directly utilize
knowledge from pretrained vision and language models. Our approach, on the other hand,
uses text and images as universal interfaces for policy learning so that the knowledge from
pretrained vision and language models can be preserved. Our choice of diffusion as opposed
to autoregressive sequence modeling also enables long-term and hierarchical planning.

Learning Text-Conditioned Policies. There has been a growing amount of work using
text commands as a way to learn multi-task and generalist control policies [394, 143, 19,
156, 149, 153]. Different from our framing of video-as-policies, existing work directly trains
a language-conditioned control policy in the action space of some specific robot, leaving
cross-morphology multi-environment learning of generalist agents as an unsolved problem.
We believe this work is the first to propose images as a universal state and action space to
enable broad knowledge transfer across environments, tasks, and even between humans and
robots.

6.2 Video Generation as Real-World Simulators

6.2.1 Introduction

Generative models trained on internet data can now produce highly realistic text [395],image [396],
and video [28]. Perhaps the ultimate goal of generative models is to be able to simulate the
visual effects of a wide variety of actions, from how cars are driven on a street to how fur-
niture and meals are prepared. With a real-world simulator, humans can “interact” with
diverse scenes and objects, robots can learn from simulated experience without risking phys-
ical damage, and a vast amount of “real-world” like data can be simulated to train other
types of machine intelligence.

One roadblock to building this simulator lies in the datasets — different datasets cover
different information that have to be brought together to simulate realistic experience. For
instance, paired text-image data from the internet contains rich scenes and objects but little
movement [397, 398], video captioning and question answering data contain rich high-level
descriptions but little low-level movement detail [399, 400], human activity data contains
rich human action but little mechanical motion [401, 402], and robotics data contains rich
robot action but are limited in quantity [403, 404]. Since different datasets are curated by
different industrial or research communities for different purposes, divergence in information
is natural and hard to overcome, posing difficulties to a real-world simulator that seeks to
capture all visual aspects of the world.

In this work, we propose to combine a wealth of data in a conditional video generation
framework to instantiate a universal simulator (UniSim)1. Under a unified action-in-video-

1Note that by “universal”, we mean the model can simulate through the unified interface of actions and
videos, as opposed to being able to simulate everything. Sound, for instance, is not being simulated.
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out interface, the simulator enables rich interaction through fine-grained motion control of
otherwise static scenes and objects. To support long-horizon repeated interactions, we formu-
late the simulator as an observation prediction model that can be rolled out autoregressively
to support consistent simulation across video generation boundaries.

While the potential applications of the simulator are broad, we demonstrate three specific
use cases. We first show how the simulator enables a vision-language policy to perform long-
horizon goal-conditioned tasks through hindsight relabeling of simulated experience [405]. In
addition to learning high-level vision-language policies, we illustrate how the simulator can
enable learning low-level control policies by leveraging model-based reinforcement learning
(RL) [406]. Both the high-level vision-language policy and the low-level control policy, while
trained purely in simulation, can generalize to real robot settings. This is enabled by using
the simulator that is nearly visually indistinguishable from the real world, achieving one
step towards bridging the sim-to-real gap in embodied learning [407]. Furthermore, we can
simulate rare events where data collection is expensive or dangerous (e.g., crashes in self-
driving cars). Such simulated videos can then be used to improve other machine intelligence
such as rare event detectors, suggesting broad applications of UniSim beyond embodied
learning. The main contributions can be summarized as follows:
• We take the first step toward building a universal simulator of real-world interaction by

combining diverse datasets rich in along different dimensions — e.g., objects, scenes, ac-
tions, motions, language, and motor controls — in a unified action-in-video-out generative
framework.

• We formulate the action-in-video-out framework as an observation prediction model conditioned on finite history and parametrized by a video diffusion model. We illustrate that the observation prediction model can be rolled out autoregressively to obtain consistent and long-horizon videos.

• We illustrate how the simulator can enable both high-level language policies, low-level
control policies, and video captioning models to generalize to the real world when trained
purely in simulation, thereby bridging the sim-to-real gap.

6.2.2 Learning an Interactive Real-World Simulator

We define a simulator of the real world as a model that, given some state of the world (e.g.,
an image frame), can take in some action as input, and produce the visual consequence
of the action (in the form of a video) as output. Learning such a simulator is hard, since
different actions have different formats (e.g.,language instructions, robot controls, camera
movements) and videos have different frame rates. Nevertheless, we propose specific strate-
gies for processing each type of data to unify the action space and align videos of variable
lengths to actions in Section 6.2.2.1. With a unified action space, we then train an action-
conditioned video generation model to fuse information across datasets through a universal
interface relating actions to videos in Section 6.2.2.2.
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UniSim

Figure 6.10: A universal simulator (UniSim). The simulator of the real-world learns
from broad data with diverse information including objects, scenes, human activities, motions
in navigation and manipulation, panorama scans, and simulations and renderings.

6.2.2.1 Orchestrating Diverse Datasets

Below, we highlight diverse information in different datasets and propose ways to process
actions into a common format (see all datasets used to train UniSim in Appendix A.6.2):
• Simulated execution and renderings. While annotating actions for real-world videos

is expensive, simulation engines such as Habitat [408] can render a wide variety of actions.
We use datasets previously collected from these simulators, i.e., Habitat object navigation
with HM3D [18] and Language Table Data from [409] to train UniSim. We extract text
descriptions as actions when available. For simulated continuous control actions, we encode
them via language embeddings and concatenate the text embeddings with discretized
control values.

• Real robot data. An increasing amount of video data of real-robot executions paired
with task descriptions such as the Bridge Data [387] and data that enabled RT-1 and RT-
2 [19] are becoming increasingly available. Despite low-level control actions often being
different across robots, the task descriptions can serve as high-level actions in UniSim. We
further include discretize continuous controls actions when available similar to simulated
robotics data.

• Human activity videos. Rich human activity data such as Ego4D [402], EPIC-KITCHENS [410],
and Something-Something V2 [411] have been curated. Different from low-level robot con-
trols, these activities are high-level actions that humans take to interact with the world.
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Universal Simulator

Figure 6.11: Training and inference of UniSim. UniSim is a video diffusion model
trained to predict the next (variable length) set of observation frames (ot) given observations
from the past (e.g., ot−1) and action input at−1. UniSim can handle temporally extended ac-
tions in various modalities such as motor controls (∆x1,∆ω1,∆x2, ...), language descriptions
(“wipe table”), and actions extracted from camera motions and other sources. Each dotted
arrow indicates concatenating the initial noise sample for the next video segment with the
previous frame.

But these actions are often provided as labels for video classification or activity recognition
tasks [411]. In this case, we convert the video labels into text actions. In addition, we
subsample the videos to construct chunks of observations at a frame rate that captures
meaningful actions.

• Panorama scans. There exists a wealth of 3D scans such as Matterport3D [412]. These
static scans do not contain actions. We construct actions (e.g., turn left) by truncating
panorama scans and utilize the information of camera poses between two images.

• Internet text-image data. Paired text-image datasets such as LAION [413] contain
static images of a variety of objects without actions. However, the captions often contain
motion information such as “a person walking”. To use image data in UniSim, we treat
individual images as single-frame videos and image captions as actions.
For each of these datasets, we process text tokens into continuous representations using

T5 language model embeddings [385] concatenated with low-level actions such as robot
controls. This serves as the final unified action space of our simulator.

6.2.2.2 Simulating Long-Horizon Interactions through Observation Prediction

With observations from different environments that have been converted to videos, and
actions of different formats that have been converted to continuous embeddings, we can
formulate interactions with many real-world environments as interacting with a universal
simulator. We then formulate the universal simulator as an observation prediction model
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that predicts observations conditioned on actions and previous observations as shown in
Figure 6.11. We finally show that this observation prediction model can be parametrized
using video diffusion.

Simulating Real-World Interactions. We define an observation space O and an ac-
tion space A which capture the videos and actions described in Section 6.2.2.1. At a specific
interactive step t, an agent, having observed a set of history frames ht−1 ∈ O, decides on
some temporally extended action at−1 ∈ A, which can be resolved into a sequence of low-
level robot commands to be executed in the real world. During the execution, the next set of
video frames ot ∈ O are captured from the real world. The goal of a simulator is to predict
ot from ht−1 and at−1. We can formulate this prediction problem as learning an observation
prediction model p(ot|ht−1, at−1). While an ideal predictive model should condition on all
information of the past, i.e., (o0, a0 . . . , at−2, ot−1), through some recurrent state, we found
conditioning on a finite set of frames (e.g., frames from the most recent interaction, ot−1)
greatly simplifies the modeling problem. To simulate long interactions, we can sample from
the observation prediction model p(ot|ht−1, at−1) autoregressively conditioned on the previ-
ously sampled observations. One advantage of this observation prediction model is that the
simulator stays the same across all tasks and can be used in combination with any reward
function, which can be separately learned. The learned reward function can then be used
to optimize policies π(at|ht) using existing decision making algorithms such as planning and
RL, as we will illustrate in Section 6.2.4 and Section 6.2.5.

Parametrizing and Training the Simulator. We parametrize p(ot|ht−1, at−1) using
diffusion models [33, 35] as an instantiation of UniSim outlined in Figure 6.11. Specifically,

the reverse process learns a denoising model ϵθ(o
(k)
t , k|ht−1, at−1) that, conditioned on the

history, generates the next observationfrom initial noise samples using K denoising steps.
In practice, we only use previous video frames and omit previous actions as history, and
concatenate previous video frames with initial noise samples o

(K)
t ∼ N (0, I) channelwise

to serve as conditional inputs to the denoising model. To condition on an action at−1,
we leverage classifier-free guidance [106]. The final T (ot|ht−1, at−1) is parametrized by the
variance schedule:

ϵθ(o
(k)
t , k|ht−1, at−1) = (1 + η)ϵθ(o

(k)
t , k|ht−1, at−1)− ηϵθ(ot, k|ht−1), (6.1)

where η controls action conditioning strength. With this parametrization, we train ϵθ by
minimizing

LMSE =
∥∥∥ϵ− ϵθ(√1− β(k)ot +

√
β(k)ϵ, k

∣∣∣ht−1, at−1

)∥∥∥2 ,
where ϵ ∼ N (0, I), and β(k) ∈ R are a set of K different noise levels for each k ∈ [1, K]. Given
the learned ϵθ, an observation ot can be generated by sampling from the initial distribution
o
(K)
t ∼ N (0, I) and iteratively denoising according to the following process for k from K to

0
o
(k−1)
t = α(k)(o

(k)
t − γ(k)ϵθ(o(k)t , k|ht−1, at−1)) + ξ, ξ ∼ N

(
0, σ2

kI
)
, (6.2)
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Figure 6.12: Action-rich simulations. UniSim can support manipulation actions such as
“cut carrots”, “wash hands”, and “pickup bowl” from the same initial frame (top left) and
other navigation actions.

where γ(k) is the denoising step size, α(k) is a linear decay on the current denoised sample,
and σk is a time varying noise level that depends on α(k) and β(k).

Architecture and Training. We use the video U-Net architecture to implement UniSim
by employing interleaved temporal and spatial attention and convolution layers in both the
downsampling and upsampling passes. For history conditioning, we replicate the condition-
ing frames at all future frame indices, and concatenate the conditioning frames with the
noise sample for each of the future frame to serve as input to the U-Net. UniSim model has
5.6B parameters and requires 512 TPU-v3 and 20 days to train on all data. See more details
in Appendix A.6.3

6.2.3 Simulating Real-World Interactions

We now demonstrate emulating real-world manipulation and navigation environments by
simulating both action-rich and long-horizon interactions for both humans and robots.
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1. Pick up can 
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Figure 6.13: Long-horizon simulations. UniSim sequentially simulates 8 interactions
autoregressively. The simulated interactions maintain temporal consistency across long-
horizon interactions, correctly preserving objects and locations (can on counter in column
2-7, orange in drawer in column 4-5).

6.2.3.1 Action-Rich, Long-Horizon, and Diverse Interactions

Action-Rich Simulation. We first demonstrate action-rich interactions through natural
language actions. Figure 6.12 shows simulation of human manipulation and navigation
starting from the same initial observation (left-most column). We can instruct a person
in the initial frame to perform various kitchen tasks (top left), press different switches (top
right), or navigate scenes (bottom). The model only trained on generic internet data, without
action-rich manipulation data such as EPIC-KITCHENS [410], fails to simulate action-rich
manipulations (Appendix A.6.6).

Long-Horizon Simulation. Next, we illustrate 8 sequential interactions in Figure 6.13.
We condition the simulation of each interaction on previous observations and new language
action as described in Section 6.2.2.2. UniSim successfully preserves objects manipulated by
previous instructions (e.g., the orange and can are preserved in the drawers in Columns 4, 5, 7,
8 after being put in the drawers). See additional long-horizon interactions in Appendix A.6.1.

Diversity and Stochasticity in the Simulator. UniSim can also support highly
diverse and stochastic environment transitions, e.g., diverse objects being revealed after
removing the towel on top (Figure 6.14 left), diverse object colors and locations (cups and
pens in Figure 6.14 right), and real-world variabilities such as change in camera angles.
Flexibility in diffusion models promotes simulation of highly stochastic environments that
cannot be controlled by actions, so that a policy can learn to only control the controllable
part [104].
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Toothpaste Spider PlateUncover Pen Bottle Pickup 1. Put cup 2. Pen 3. Apple

Figure 6.14: Diverse and stochastic simulations. On the left, we use text to specify the
object being revealed by suffixing “uncovering” with the object name. On the right, we only
specify “put cup” or “put pen”, and cups and pens of different colors are sampled as a result
of the stochastic sampling process during video generation.

Condition FID ↓ FVD ↓ IS ↑ CLIP ↑
1 frame 59.47 315.69 3.03 22.55
4 distant 34.89 237 3.43 22.62
4 recent 34.63 211.3 3.52 22.63

Table 6.5: Ablations of history condi-
tioning using FVD, FID, and Inception
score, and CLIP score on Ego4D. Condition-
ing on multiple frames is better than on a
single frame, and recent history has an edge
over distant history.

Habitat: 
navigate 

to TV

Navigate 
to TV

Figure 6.15: Simulations of low-data do-
mains using the Habitat object navigation us-
ing HM3D dataset [18] with only 700 train-
ing examples. Prefixing language actions with
dataset identifier leads to video samples that
complete the action (top).

6.2.3.2 Ablation and Analysis

Frame Conditioning Ablations. We ablate over choices of past frames to condition on
using a validation split of the Ego4D dataset [402], which contains egocentric movement re-
quiring proper handling of observation history. We compare UniSim conditioned on different
numbers of past frames in Table 6.5. Conditioning on 4 frames is better than conditioning
on a single frame, but conditioning on history that is too far in the past (4 frames with expo-
nentially increasing distances) can hurt performance. Increasing the number of conditioning
frames beyond 4 did not further improve performance on Ego4D, but it could be helpful for
applications that require memory from distant past (e.g., navigation for retrieval).

Simulating Low-Data Domains. During joint training of UniSim on diverse data, we
found that näıvely combining datasets of highly varying size can result in low generation
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quality in low-data domains. While we can increase the weight of these domains in the data
mixture during training, we found that attaching a domain identifier such as the name of the
dataset to the actions being conditioned on improves generation quality in low-data domains,
as shown in Figure 6.15. While such domain identifier improves in-distribution generation
quality, we found domain-specific identifiers to hurt generalization to other domains, and
should only be applied with the test domain is in distribution of the training domain.

6.2.4 UniSim for Long-Horizon Planning

We now demonstrate how UniSim can be used to train other types of machine intelligence
such as vision-language policies, RL agents, and vision-language models through simulating
highly realistic experiences.

Language models and vision language models (VLM) have recently been used as policies
that can operate in image or text based observation and action spaces [147, 414, 415]. One
major challenge in learning such agents lies in the need for large amounts of language action
labels. The labor intensity in data collection only increases as tasks increase in horizon and
complexity. UniSim can generate large amounts of training data for VLM policies through
hindsight relabeling.

Setup and Baseline. We use data from the Language Table environment [156] for
learning geometric rearrangements of blocks on a table. We train an image-goal conditioned
VLM policy to predict language instructions and the motor controls from the start and goal
images using the PALM-E architecture [414] (See data and model details in Appendix A.6.4).
For the baseline, the goal is set to the last frame of the original short-horizon trajectories.
During each evaluation run, we set the long-horizon goal by modifying the location of 3-4
blocks, and measure the blocks’ distance to their goal states after executing 5 instructions
using the VLM policy. We define the reduction in distance to goal (RDG) metric as

RDG =
∥s0 − sgoal∥2 − ∥sT − sgoal∥2

∥s0 − sgoal∥2
, (6.3)

where sT represents the underlying block locations after executing the policy, s0 and sgoal
represents the initial and goal block locations.

Generating Hindsight Data with the Simulator. To use the simulator for long-
horizon tasks, we draw inspiration from hindsight relabeling [416]. Specifically, we create a
total of 10k long-horizon trajectories from the simulator by doing rollouts in the simulator
3-5 times per trajectory, where each rollout corresponds to one scripted language instruction.
We then use the final frame from each long-horizon rollout as a goal input and the scripted
language instructions as supervision for training the VLM policy.

Results on Real-Robot Evaluation. Despite the VLM policy only being trained on
simulated data, it is able to produce effective high-level language actions given an initial and
goal image from the real Language Table domain where the data for training the simulator
was collected. The simulator can simulate video trajectories from the initial real observation,
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Figure 6.16: Long-horizon simulation. A VLM poliy generates high-level language actions
(first row) which are executed in the simulator (middle row) similar to how they are executed
in the real world (bottom row) using the Language Table robot. The VLM trained on data
from the simulator complete long-horizon tasks by successfully moving three blocks (blue,
green, yellow) to match their target location in the goal image.

from which robot actions are recovered using an inverse dynamics model and executed on
the real robot. Figure 6.16 shows that the language actions produced by the VLM, the
generated videos from the simulator according to the language actions, and the executions
on the real robot. We see that the simulated video trajectory is successfully translated to
robot actions in the real world. See additional results from the long-horizon VLM policy in
Appendix A.6.1.

Results on Simulated Evaluation. In addition to testing the language instructions
and simulated video by converting video trajectory into robot actions executed on the real
robot, we also conduct simulator based evaluation to compare the reduction in distance to
goal (RDG) of the VLM policy using generated long-horizon data to using the original short-
horizon data in Table 6.6. The VLM trained using long-horizon generated data performs 3-4
times better than using the original data in completing long-horizon goal-conditioned tasks.

6.2.5 Real-World Simulator for Reinforcement Learning

Reinforcement learning (RL) has achieved superhuman performance on difficult tasks such
as playing Go and Atari games [417, 324], but has limited real world applications due, among
other reasons, to the lack of a realistic environment simulator [418]. We investigate whether
the simulator can enable effective training of RL agents by providing the agent with a realistic
simulator that can be accessed in parallel.

Setup. We finetune the PaLI 3B vision-language model [148] to predict low-level control
actions (joint movements in ∆x,∆y) from an image observation and a task description (e.g.,
“move the blue cube to the right”) using behavioral cloning (BC) to serve as the low-level
control policy and the baseline, which we call the vision-language-action (VLA) policy similar



CHAPTER 6. RL, SEARCH, AND PLANNING WITH INTERNET-SCALE VIDEOS120

RDG (moved) RDG (all)

VLM-BC 0.11 ± 0.13 0.07 ± 0.11
Simulator-Hindsight 0.34 ±0.13 0.34 ± 0.13

Table 6.6: Evaluation of long-horizon ac-
tions. Reduction in distance to goal (RDG)
defined in Equation 6.3 across 5 evaluation
runs of VLM trained using simulated long-
horizon data (bottom row) compared to VLM
trained on original short-horizon data (top
row). Using the simulator performs much
better both in RGD of moved blocks (left)
and RGD in all blocks (right).

Succ. rate (all) Succ. rate (pointing)

VLA-BC 0.58 0.12
Simulator-RL 0.81 0.71

Table 6.7: Evaluation of RL policy. Per-
centage of successful simulated rollouts (out
of 48 tasks) using the VLA policy with and
without RL finetuning on Language Table
(assessed qualitatively using video rollouts in
the simulator). Simulator-RL improves the
overall performance, especially in pointing-
based tasks which contain limited expert
demonstrations.

Real-robot execution 
of “move blue cube to 

green circle”

Simulated rollout 
from   moving 
left, right, down, up

Δx, Δy

Simulated rollout 
from  

moving diagonally
Δx, Δy

Figure 6.17: [Top] Simulation from low-level controls. UniSim supports low-level
control actions as inputs to move endpoint horizontally, vertically, and diagonally. [Bottom]
Real-robot execution of an RL policy trained in simulation and zero-shot onto the real
Language Table task. The RL policy can successfully complete the task of “moving blue
cube to green circle”.

to [415]. Because UniSim can take low-level control actions as input, we can directly conduct
model-based rollouts in the simulator using control actions generated by VLA policy. To
acquire reward information, we use the number of steps-to-completion from the training data
as a proxy reward to train a model that maps the current observation to learned reward. We
then use the REINFORCE algorithm [63] to optimize the VLA policy, treating the rollouts
from the simulator as the on-policy rollouts from the real environment and use the learned
reward model to predict rewards from simulated rollouts. See details of RL training in
Appendix A.6.4.

Results. We first do a sanity check on simulating real-robot executions by applying
low-level control actions (e.g., ∆x = 0.05, δy = 0.05) repeatedly for 20-30 environment
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Activity MSR-VTT VATEX SMIT

No finetune 15.2 21.91 13.31 9.22
Activity 54.90 24.88 36.01 16.91
Simulator 46.23 27.63 40.03 20.58

Table 6.8: VLM trained in UniSim to perform video captioning tasks. CIDEr scores
for PaLI-X finetuned only on simulated data from UniSim compared to no finetuning and
finetuning on true video data from ActivityNet Captions. Finetuning only on simulated data
has a large advantage over no finetuning and transfers better to other tasks than finetuning
on true data.

steps to move the endpoint left, right, down, up, and diagonally in Figure 6.17 (top two
rows). We see that the simulated rollouts capture both the endpoint movements and the
physics of collision. To compare the RL policy trained in simulation to the BC policy,
we qualitatively assessed the simulated rollouts in the simulator. Table 6.7 shows that
RL training significantly improves the performance of the VLA policy across a wide set of
tasks, especially in tasks such as “point to blue block”. We then directly deploy the RL
policy trained in the simulator onto the real robot in zero-shot, and observe successful task
executions as shown in Figure 6.17 (bottom row). Additional results on real robot can be
found in Appendix A.6.1.

6.2.6 Realistic Simulator for Broader Vision-Language Tasks

UniSim can generate training data for other machine-learning subproblems. This is especially
useful when natural data is rare or difficult to collect (e.g., footage of crimes or accidents).
We provide such a proof-of-concept by training vision-language models on purely generated
data from UniSim, and observe significant performance benefits in video captioning.

Setup. We finetune PaLI-X [419], a VLM with 55B parameters pretrained on a broad
set of image, video, and language tasks, to caption a set of videos generated by UniSim using
texts from the training split of ActivityNet Captions [400]. We measure the CIDEr score
of the finetuned model on the test split of ActivityNet Captions as well as other captioning
tasks following the same setup as [419]. See finetuning details of PaLI-X in Appendix A.6.4.

Results. We compare PaLI-X finetuned on purely generated videos to pretrained PaLI-
X without finetuning and PaLI-X finetuned on original ActivityNet Captions in Table 6.8.
Purely finetuning on generated data drastically improves the captioning performance from
no finetuning at all on ActivityNet (15.2 to 46.23), while achieving 84% performance of
finetuning on true data. Furthermore, PaLI-X finetuned on generated data transfers better
to other captioning tasks such as MSR-VTT [399], VATEX [420], and SMIT [421] than
PaLI-X finetuned on true data, which tends to overfit to ActivityNet. These results suggest
that UniSim can serve as an effective data generator for improving broader vision-language
models.
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6.2.7 Related Work

Internet-Scale Generative Models. Language models trained on internet text succeed
at text-based tasks [395, 422] but not physical tasks, which requires perception and control.
Internet-scale generative models can synthesize realistic images and videos [423, 28, 374,
424, 425], but have mostly been applied to generative media [426] as opposed to empowering
sophisticated agents capable of multi-turn interactions. [427] shows video generation can
serve as policies, but the major bottleneck for policy learning often lies in limited access to
real-world environments [418]. We focus on this exact bottleneck by learning universal sim-
ulators of the real world, enabling realistic and unlimited “environment” access for training
sophisticated agents interactively.

Learning World Models. Learning an accurate dynamics model in reaction to con-
trol inputs has been a long-standing challenge in system identification [428], model-based
reinforcement learning [429], and optimal control [430, 431]. Most systems choose to learn
one dynamics model per system in the lower dimensional state space as opposed to in the
pixel space [432, 433, 434], which, despite being a simpler modeling problem, limits knowl-
edge sharing across systems. With large transformer architectures, learning image-based
world models has become plausible [118, 119, 123, 121, 435, 436], but mostly in games or
simulated domains with visually simplistic and abundant data. In generative modeling of
videos, previous works have leveraged text prompts [437, 438], driving motions [439, 440],
3D geometries [441, 442], physical simulations [443], frequency information [444], and user
annotations [445] to introduce movements into videos. However, they focus on generating
domain specific videos (e.g., for self-driving) as opposed to building a universal simulator
that can be used to further improve other agents. The amount of control over generated
videos in these existing work is also limited, as they do not treat video generation as a
dynamics modeling problem like in our work.

6.3 Efficient Adaptation of Video Generation Models

6.3.1 Introduction

Large text-to-video models with billions of parameters trained on internet-scale data have
become capable of generating highly realistic videos from general text descriptions [28,
446, 374]. When models are used for specific domains such as generating video plans for
robotics [427] and self-driving cars [447], videos for animation [448], or videos with cus-
tomizable styles similar to those common in text-to-image [448, 396, 135, 449, 450, 451],
a pretrained text-to-video model requires task-specific adaptation. Efficient and effective
adaptation of text-to-video models is what stands in the way from expanding their current
application of these models in media and entertainment to their potential to solve real-world
problems by modeling real-world physics and dynamics in problem-specific settings.

Unfortunately, similar to state-of-the-art language models [395, 422], pretrained text-to-
video models are black boxes to the general public; one can use them to generate videos,
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Egocentric 
manipulation: 
Puts wood on 

table

Egocentric 
manipulation: 
Scrubs hands 
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Egocentric 
navigation: 
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Egocentric 
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Figure 6.18: Video Adapter Generated Videos. Video Adapter is capable of flexible
generation of diverse videos with distinct styles including videos with manipulation and
navigation based egocentric motions, videos with personalized styles such as animation and
science fictions, and simulated and real robotic videos.

but not finetune them to solve domain-specific tasks, as the parameters of pretrained text-
to-video models are not publicly available [28, 384, 425]. This rules out direct applications
of efficient finetuning from text-to-image, such as LoRA in stable diffusion [452], Dream-
Booth [453], and ControlNet [451], which require access to the pretrained model weights.
While some finetuning-free techniques can control image generation by manipulating visual
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or textual features [396, 449], it is not clear how to manipulate these features for video gener-
ation, as these features would then have to capture complex temporal information extracted
from networks with orders of magnitude larger sizes than text-to-image [425].

Inspired by finetuning-free adaptation of language models through in-context learning [27]
and sophisticated prompting [43], which essentially modify the prior distribution of pre-
trained langauge models to perform specific tasks, we ask the natural question of whether
it is possible to modify the prior distribution of pretrained text-to-video models to achieve
downstream tasks without finetuning the pretrained model. Intuitively, even though the
exact video statistics in a downstream task differ from the pretraining videos, certain video
properties such as dynamics of the world and semantics of objects from the large pretrained
model are still tremendously helpful to the generation of downstream videos. This suggests
that a large pretrained video model could be used as a knowledge prior to guide the genera-
tion of task-specific videos while maintaining broad properties such as temporal consistency
and object permanence.

To this end, we propose Video Adapter, a probabilistic approach for exploiting a black-
box video diffusion model to guide the generation of task and domain specific videos. By
factoring the domain-specific video distribution into a pretrained prior and a small trainable
component, we can preserve desirable characteristics of the pretrained model (i.e., temporal
consistency and object permanence) in generating specialized videos, effectively adapting
the black-box pretrained model without requiring access to the pretrained model weights.
One limitation of Video Adapter is that it requires scores of the black-box video diffusion
model as outputs, but we note that this is hard to avoid if one wants to effectively use the
broad knowledge of pretrained models. Therefore, we advocate for proprietary text-to-video
APIs to expose diffusion scores as additional outputs to broaden the applications of large
video diffusion models.

We evaluate Video Adapter on a variety of tasks and domains as illustrated in Fig-
ure 6.18. Quantitatively, Video Adapter achieves better FVD and Inception Scores than
the pretrained video model or the task-specific small models in generating domain specific
videos for robotics [387] and egocentric movements [402]. Qualitatively, we show that Video
Adapter can generate stylized videos such as sci-fi and animation, and further enable domain
randomization in robotics [114] for bridging sim-to-real [454] through randomized stylisation
of lighting and distractors.

6.3.2 Preliminaries

We first introduce relevant background information on denoising diffusion probabilistic mod-
els (DDPMs) and discuss their connection to Energy-Based Models (EBMs). We will then
use this connection to EBMs to convert black-box video diffusion models to probabilistic
priors.

Denoising Diffusion Probabilistic Models. Denoising diffusion probablistic models [33,
35] are a class of probabilistic generative models where the generation of a video τ =



CHAPTER 6. RL, SEARCH, AND PLANNING WITH INTERNET-SCALE VIDEOS125

[x1, . . . , xH ] ∈ XH is formed by iterative denoising. Given a video τ sampled from a video
distribution p(τ), a randomly sampled Gaussian noise variable ϵ ∼ N (0, I), and a set of T
different noise levels βt, a denoising model ϵθ is trained to denoise the noise corrupted video
τ at each specified noise level t ∈ [1, T ]:

LMSE =
∥∥∥ϵ− ϵθ(√1− βtτ +

√
βtϵ, t

)∥∥∥2
Given this learned denoising function, new videos may be generated from the diffusion

model by initializing a video sample τT at noise level T from a Gaussian N (0, I). This sample
τT is then iteratively denoised following the expression:

τt−1 = αt(τt − γtϵθ(τt, t) + ξ), ξ ∼ N
(
0, σ2

t I
)
, (6.4)

where γt is the step size of denoising, αt is a linear decay on the currently denoised sample,
and σt is a time varying noise that depends on αt and γt. The final sample τ0 after T rounds
of denoising corresponds to the final generated video.

Energy-Based Models View of DDPMs. The denoising function ϵθ estimates the
score [455, 456, 135] of an underlying (unnormalized) EBM probability distribution [96, 97]
characterizing the noise perturbed data. Therefore, a diffusion model corresponds to an
EBM, pθ(τ) ∝ e−Eθ(τ), where the denoising function is given by ϵ(τt, t) = ∇τEθ(τt). The
sampling procedure in a diffusion model corresponds to the Langevin sampling procedure on
an EBM (see derivation in Appendix A.7.1):

τt−1 = αt(τt − γ∇τEθ(τt) + ξ), ξ ∼ N
(
0, σ2

t I
)
. (6.5)

This equivalence of diffusion models and EBMs allows us to consider sampling from the
product of two different diffusion models p1(τ)p2(τ), such that each diffusion model corre-
sponds to an EBM, e−E1(τ) and e−E2(τ), and the product is given by e−E

′(τ) = e−(E1(τ)+E2(τ)).
In particular, we can sample from this new distribution also by using Langevin sampling:

τt−1 = αt(τt − γ∇τE
′
θ(τt) + ξ), ξ ∼ N

(
0, σ2

t I
)
, (6.6)

which corresponds to the sampling procedure using denoising functions

τt−1 = αt(τt − γ(ϵθ1(τt, t) + ϵθ2(τt, t)) + ξ), ξ ∼ N
(
0, σ2

t I
)
. (6.7)

Below we will illustrate how this factored EBM parameterization of a diffusion model can
allow a black-box pretrained model to be leveraged as a probabilistic prior.

6.3.3 Probabilistic Adaptation of Black-Box Text-to-Video
Models

To explain how a black-box text-conditioned video diffusion model can be effectively used
as a probabilistic prior for video generation, we will first introduce the functional form of
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Figure 6.19: Video Adapter Framework. Video Adapter only requires training a small
domain-specific text-to-video model with orders of magnitude fewer parameters than a large
video model pretrained from internet data. During sampling, Video Adapter composes the
scores of the pretrained and the domain specific video models, achieving high-quality and
flexible video synthesis.

probabolistic adaptation in Section 6.3.3.1, and then discuss how the probabilistic composi-
tion can be implemented with diffusion models in Section 6.3.3.2. To generate high-quality
videos, we also explain in Section 6.3.3.3 how the underlying probabilistic composition can
be sharpened to generate low temperature samples.

6.3.3.1 Black-Box Text-to-Video Models as Probabilistic Priors

Black-box text-to-video models were pretrained on massive datasets consisting of millions of
videos, and are therefore able to capture a powerful prior ppretrained(τ |text) on the natural
distribution of videos τ . Given a smaller task-specific dataset of video-text pairs, DAdapt =
{(τ0, text0), . . . , (τn, textn)}, how can one leverage the powerful prior captured by a pretrained
video diffusion model to synthesize videos similar to those in DAdapt? One approach is to di-
rectly finetune the weights of ppretrained(τ |text) using DAdapt, but ppretrained(τ |text) has billions
of parameters whose weights are often proprietary to private enterprises. Similar challenges
with large language models have led to prompting and in-context learning. Analogously, we
propose Video Adapter as a finetuning-free method to adapt pretrained video diffusion to a
new dataset of videos DAdapt through probabilistic composition. Specifically, given DAdapt,
we learn a separate small video diffusion model pθ(τ |text) to represent the distribution of
videos in DAdapt. We then adapt ppretrained(τ |text) to DAdapt by constructing a product distri-
bution pproduce(τ |text) in the form (see adaptation to multiple domains in Appendix A.7.4):

pproduct(τ |text)︸ ︷︷ ︸
Product Distribution

∝ ppretrained(τ |text)︸ ︷︷ ︸
Pretrained Prior

pθ(τ |text)︸ ︷︷ ︸
Small Video Model

, (6.8)

By fixing the pretrained model ppretrained(τ |text), we train the small video model pθ(τ |text) via
maximum likelihood estimation on DAdapt. This allows pθ(τ |text) to exhibit high likelihood
across videos in DAdapt, but because pθ(τ |text) is a small model trained on less diverse
data, it can exhibit erroneously high likelihood across many unrealistic videos. The product
distribution pproduct(τ |text) removes unrealistic videos by downweighting any videos τ that
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are not likely under the pretrained prior, enabling one to generate videos in the style of
DAdapt that are realistic under ppretrained(τ |text).

6.3.3.2 Implementing Probabilistic Adaptation

To adapt the black-box model pproduct(τ |text) from Equation 6.8, as well as to sample from
it, we exploit the EBM interpretation of diffusion models discussed in Section 6.3.2. Based
on the EBM interpretation, the pretrained diffusion model ppretrained(τ |text) corresponds to
an EBM e−Epretrained(τ |text) while the smaller video model pθ(τ |text) parameterizes an EBM
e−Eθ(τ |text). The product distribution then corresponds to:

pproduct(τ |text) ∝ ppretrained(τ |text)pθ(τ |text) ∝ e−(Epretrained(τ |text)+Eθ(τ |text)) = e−E
′(τ |text),

which specifies a new EBM E ′(τ) from the sum of energy functions of the component models.
Substituting this EBM into Equation 6.6, we can sample from the product distribution

pproduct(τ |text) through the diffusion sampling procedure:

τt−1 = αt(τt − γ∇τ (Epretrained(τt|text) + Eθ(τt|text)) + ξ), ξ ∼ N
(
0, σ2

t I
)

which corresponds to sampling from Equation 6.4 according to

τt−1 = αt(τt − γ(ϵpretrained(τt, t|text) + ϵθ(τt, t|text)) + ξ), ξ ∼ N
(
0, σ2

t I
)
.

Thus, to probabilistically adapt the pretrained black-box model to a new dataset DAdapt,
we can use the standard diffusion sampling procedure, but change the denoising prediction
to the sum of predictions from both the black-box pretrained model and the task-specific
small model. To control the strength of the pretrained prior in final video generation, we
can introduce a weight term λ to scale the pretrained distribution pλpretrained(τ |text), which
corresponds to scaling the denoised prediction from ϵpretrained(τt, t|text) by a scalar λ

ϵ(τt, t|text) = ϵθ(τt, t|text) + λϵpretrained(τt, t|text). (6.9)

The combined model can be further refined by integrating multiple steps MCMC sampling
between each diffusion noise distribution similar to [457, 458]. Note that the prior strength λ can be tunable or time-dependent, which we found to be useful in practice (Appendix A.7.2).

6.3.3.3 Adapting Low Temperature Sampling

In practice, text conditioning in the denoising model ϵ(τt, t|text) from Equation 6.9 are
often parametrized using classifier-free guidance [106] to generate sharp images or videos
conditioned on text while avoiding distractions from spurious likelihood modes of diffusion
models. This corresponds to sampling from the modified probability distribution:

pcfg(τ |text) ∝ p(τ)

(
p(τ |text)

p(τ)

)ω
∝ p(τ)p(text|τ)ω,
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where ω corresponds to the classifier free guidance strength, typically chosen to be signifi-
cantly larger than 1. By upweighting the expression p(text|τ) via the inverse temperature ω,
the modified distribution pcfg(τ |text) above can generate lower temperature video samples
conditioned on the text.

It appears straightforward to similarly construct low temperature samples when adapting
the black-box model by sampling from the distribution

pcfgproduct(τ |text) ∝ pcfgpretrained(τ |text)pcfgθ (τ |text), (6.10)

but using the classifier-free distribution pcfgpretrained(τ |text) as the probabilistic prior is now

problematic, since classifier-free guidance has restricted pcfgpretrained(τ |text) to very few high
probability modes which might be incompatible with DAdapt. To effectively leverage a
broad probabilistic prior while simultaneously generating low temperature samples emulat-
ing DAdapt, we propose to first construct a new text-conditioned video distribution following
Section 6.3.3.1:

pproduct(τ |text) ∝ ppretrained(τ |text)pθ(τ |text).

We can then use the density ratio of this composed text-conditioned distribution with the
unconditional video density pθ(τ) learned on DAdapt to construct a new implicit classifier
pproduct(τ |text). By increasing the inverse temperature ω on this implicit classifier, we can
generate low temperature and high quality video samples conditioned on a given text by
sampling from the modified distribution:

p∗product(τ |text) = pθ(τ)

(
pproduct(τ |text)

pθ(τ)

)ω
,

which corresponds to sampling from a modified denoising function:

ϵ̃θ(τ, t|text) = ϵθ(τ, t) + ω(ϵθ(τ, t|text) + λϵpretrained(τ, t|text)− ϵθ(τ, t))

We quantitatively and qualitatively ablate the effect of this denoising function in Figure 6.23
and Table 6.10, showing that this variant leads to better blending of styles between models.
The overall pseudocode for the proposed approach with classifier-free guidance is given in
Algorithm 2.

6.3.4 Experiments

In this section, we illustrate how a black-box pretrained text-to-video model can deliver a
rich set of downstream capabilities when combined with a task-specific video model. In
particular, leveraging a high quality and broad probabilistic prior enables (1) controllable
video synthesis from edge-only inputs, (2) high-quality video modeling that outperforms
both the pretrained model and the task-specific video model, and (3) domain randomization
and data augmentation for robotics. See experiment details and additional experimental
results in Appendix A.7.2 and in supplementary material.
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Algorithm 2 Sampling algorithm of Video Adapter.
Input: Pretrained black-box model ϵpretrained(τ, t|text), inverse temperature ω, prior strength λ.

Initialize sample τT ∼ N (0, I)
for t = T, . . . , 1 do

ϵ̃text ← ϵθ(τt, t|text) + λϵpretrained(τt, t|text) // Compute score using text-
conditioned prior.
ϵ← ϵθ(τt, t) // Compute unconditional score.
ϵ̃cfg ← ϵ + ω(ϵ̃text − ϵ) // Compute weight for low temperature
sampling.
τt−1 = ddpm sample(τt, ϵ̃cfg) // Run diffusion sampling (can use other sam-
plers).

6.3.4.1 Adapting to Specific Video Domains

Setup. We first demonstrate that the probabilistic prior in Video Adapter can be used to
adapt and modify the styles of videos. We curate two adaptation datasets DAdapt, one with
an “animation” style and the other with a “scifi” style, where videos containing relevant
keywords in their descriptions are grouped together to form DAdapt. A black-box large video
diffusion model with 5.6B parameters was pretrained on mapping Sobel edges to all videos,
and two task-specific small models with 330M parameters were trained to map Sobel edges
to DAdapt videos.

Stylizing Video Generation. In Figure 6.21 and Figure 6.22, we demonstrate how the
pretrained prior can adapt the animation and scifi models to alternative styles while main-
taining the original animation and scifi contents. These results show that Video Adapter can
effectively combine rich knowledge of styles from the black-box model, such as “digital art”,
“outdoor video”, “storybook illustration”, with the animation content of the small model,
thereby achieving flexible stylization.

Edges

Small

Video Adapter 
(Dark 

Background)

Video Adapter 
(Abstract Video)

Figure 6.20: Instance Specific Styl-
ization. Video Adapter enables the
stylization of video model trained on a
single animation style

Specific Animation Style. We further trained
a small video model on an “animation” style of a
particular artist. In Figure 6.20, we illustrate how
the pretrained prior can maintain the anime content
while changing the styles such as background color.

Analysis. In Figure 6.23, we change the mag-
nitude of the weight on the pretrained prior, and
compare Video Adapter with directly interpolating
the classifier-free scores between the pretrained and
adapter models (as in Equation 6.10). We find that



CHAPTER 6. RL, SEARCH, AND PLANNING WITH INTERNET-SCALE VIDEOS130

Edges

Small

Video Adapter 
(Digital Art)

Video Adapter 
(Outdoor Video)

Video Adapter 
(Storybook 
Illustration)

Edges

Small

Video Adapter 
(Arcade Style)

Video Adapter 
(Science 
Fiction)

Video Adapter 
(Blue Sunny

Day)

Figure 6.21: Video Adapter enables stylization of a Animation Specific Model.
Video Adapter enables a large pretrained model to adapt and change the style a small
animation style model.

Edges

Small

Video Adapter 
(Red Sun over 

Stadium)

Video Adapter 
(Snow Falling 

on Ground)

Video Adapter 
(Dark Night 

Sky)

Edges

Small

Video Adapter 
(Concept Art)

Video Adapter 
(Vintage Film)

Video Adapter 
(Black and 
White TV)

Figure 6.22: Video Adapter enables stylization of a SciFi Specific Model. Video
Adapter enables a large pretrained model to adapt and change the style a small Scifi anima-
tion style model.

Video Adapter maintains the adapter style more ac-
curately, whereas classifier-free score interpolation
collapses to the teacher style with intermediate in-
terpolation, leading to erratic artifacts.

6.3.4.2 High-Quality Efficient Video Modeling

Setup. To demonstrate Video Adapter’s ability in adapting the black-box pretrained model
to domains that are not a part of pretraining, we consider adapting to Ego4D [402] and Bridge
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Edges

Small

Comic Book
Weight: 0.5

Comic Book
Weight: 1.0

Video Adapter
Classifier-Free Score Mix

Figure 6.23: Analysis of Video Adapter. As adaptation weight increases, Video Adapter
modifies the style as instructed (left), whereas directly mixing two classifier-free guidance
scores fails to adapt the video (right).

Data [387]. These adaptations are nontrivial, as Ego4D consists of mostly egocentric videos
that are not commonly found on the internet. Similarly, the Bridge Data consists of task-
specific videos of a WidowX250 robot that is out of the distribution of the pretraining data.
For Ego4D, we take a subset of the original dataset consisting of 97k text-video pairs and
split them into train (90%) and test (10%) to form DAdapt. For the Bridge Data, we take the
entire dataset consisting of 7.2k text-video pairs and use the same train-test split to form
DAdapt.

For the pretrained model, we use the 5.6B base model pretrained on generic internet
videos from [28]. For the task-specific small model, we downscale the video diffusion model
from [28] by a factor of 80, 40, and 2 to create a diverse set of small models to be trained on
task-specific DAdapt. Table 6.9 shows the number of parameters of pretrained and small video
models. Both the pretrained model and the small models are trained to generate subsequent
frames conditioned on the first frame.

Quantitative Results. Table 6.9 shows the quantitative performance of Video Adapter
under different video modeling metrics. On the Bridge Data, training a small model with
parameters equivalent to 1.25% of the pretrained video model (first row) already achieves
better metrics than the pretrained model. However, Video Adapter incorporating the pre-
trained model as a probablistic prior is able to further improve the metrics of the small model
(second row). On Ego4D, due to the complexity of the egocentric videos, the smallest model
with 1.25% of the pretrained video model can no longer achieve performance better than
the pretrained model (first row), but incorporating the pretrained model during sampling
still improves performance (second row). After increasing the size of the small model, Video
Adapter is able to achive better metrics than both the pretrained and task-specific model.
We further compare Video Adapter to finetuning the pretrained model for an equivalent
number of TPU hours (see Appendix A.7.3), and show that Video Adapter achieves better
performance than full tuning. Note that we only compare to full tuning out of curiosity as
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Bridge Ego4D

Model FVD ↓ FID ↓ Param (B)↓ FVD ↓ IS ↑ Param (B) ↓
Small (S) 186.8 38.8 0.07 228.3 2.28 0.07
Small (S) + Pretrained 177.4 37.6 0.07 156.3 2.82 0.07
Small (L) 152.5 30.1 0.14 65.1 3.31 2.8
Small (L) + Pretrained 148.1 29.5 0.14 52.5 3.53 2.8
Pretrained 350.1 42.6 5.6 91.7 3.12 5.6
Pretrained Finetune 321.0 39.4 5.6 75.5 3.33 5.6

Table 6.9: Video Modeling Quantitative Performance Video Adapter (Small + Pretrained)
achieves better FVD, FID, and Inception Scores than both the pretrained model, pretrained model
finetuned for equivalent number of TPU hours, and the task-specific small model with parameters
as fewer as 1% of the pretrained model.

opposed to benchmarking, as the motivation of this work is the lack of weight access to the
black-box pretrained models.

Model FVD ↓ FID ↓
CFG Mix 167.4 33.1
Small (L) 152.5 30.1
Video Adapter 148.1 29.5

Table 6.10: Ablations.
Video Adapter improves
the underlying video mod-
eling performance of models
on while directly mixing
classifier-free scores (CFG
Mix) hurts performance.

Qualitative Results. Figure 6.24 and Figure 6.25 show the
generated videos on Bridge Data and Ego4D. On the Bridge
Data in Figure 6.24, the pretrained model produces videos that
do not correspond to the task described by the text (there is
no robot arm movements in the generated video). The task-
specific small model produces videos with unrealistic move-
ments that teleport the robot arm. Video Adapter, on the
other hand, produces videos with realistic movements that
complete the task.

On Ego4D in Figure 6.25, the pretrained model produces
high quality videos that contain little egocentric movement
(first row), as the pretraining data mostly consists of generic
videos from the internet that are not egocentric. The task-
specific small model trained on Ego4D, on the other hand, produces videos with egocentric
movement but of low quality (second row) due to limited model capacity. Video Adapter
combines the best of both and generates high-quality egocentric videos (third row).

Ablations. In Table 6.10, we report generative modeling performance of the small model
on Bridge either using Video Adapter, or a interpolation between the classifier-free scores
of pretrained and small models. We find that Video Adapter improves performance, while
interpolation between classifier-free scores hurts performance.
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Pretrained

Small

Video 
Adepter

Put pot or pan in sink. Put eggplant into pot or pan.

Put pan from drying rack into sink. Put corn into bowl.

Pretrained

Small

Video 
Adepter

Figure 6.24: Video Adapter on Bridge Data. The pretrained model (first row) produces
videos that are high-quality but are generally static and fail to complete the task. The small
(L) model (second row) produces low-quality videos with unrealistic arm movements. Video
Adapter (third row) produces high-quality videos and successfully completes the task.

6.3.4.3 Sim-to-Real Video Augmentation

Setup. One important application of controllable video synthesis is to render realistic
robotic videos from simulation with a variety of data augmentations so that policies trained
on the augmented observations are more likely to generalize well to real-world settings [454].
To demonstrate Video Adapter’s capability in supporting sim-to-real transfer, we train a
task-specific small edge-to-real model on 160k real robot trajectories of the LanguageTable
dataset [459], generating videos of execution conditioned on the Sobel edges of the real videos.
Similarly, we train another small edge-to-sim model on 160k simulated robot videos. Note
that the simulated and real robotics data are not paired (paired sim-to-real data are hard to
find) but are connected through edge-conditioning. We again leverage the edge-conditioned
large model pretrained on internet data for style specification.

Adapted Videos. Figure 6.26 shows the generated robotic videos from Video Adapter.
Video Adapter can effectively generate paired simulated and real robotic videos that com-
plete a task described by a language prompt, and further generate videos with various data
augmentation styles that can be utilized to train policies with better sim-to-real transfer
abilities through techniques similar to domain randomization [114].
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Small

Video 
Adepter

Removes left hand from cable at the bicycle's seat.

Drop a fabric. Put pot or pan in sink.

Pretrained

Small

Video 
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Figure 6.25: Video Adapter on Ego4D. The pretrained model (first row) produces high-
quality but nearly static videos that do not reflect the egocentric nature.The small (L)
model (second row) produces low-quality videos but with more egocentric movements. Video
Adapter (third row) produces high-quality and egocentric videos.

6.3.5 Related Work

Text-to-Video Synthesis. Following the recent success of text-to-image models [460, 461,
396, 462, 463, 464, 465], large text-to-video models with autoregressive [446, 384, 466, 423]
and diffusion [28, 374, 425, 438, 467] architectures have been developed, often by extend-
ing existing text-to-image models. Unfortunately, the model weights of large text-to-video
models are generally not publically available, preventing downstream adaptations of these
models.

Adapting Pretrained Models Adapting pretrained models for customized editing, in-
painting, and stylization has been extensively studied in text-to-image and image-to-image
translation models [449, 468, 469, 470, 471, 472, 450, 473, 474, 475]. In text-to-video, most
existing work either leverages text prompts [476, 467], finetunes a pretrained model on
stylized data [477], or performing light training on a copy of the pretrained video model sim-
ilar to ControlNet [478]. Text-only adaption can be unreliable, whereas finetuning, prefix-
tuning [479], low-rank adaptation [480], and ControlNet all require access to the pretrained
model weights, which are often not available for text-to-video models. Black-box adaptation
has been applied extensively in language models [27, 43, 166], and large video models will
soon face the same problem.
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Figure 6.26: Video Adapter on sim-to-real transfer. First row: simulated videos of
execution plans generated by Video Adapter. Second row: real videos of execution plans
generated by Video Adapter. Third row: real videos of execution plans generated by Video
Adapter with data augmentation.

Compositional Generative Models. The techniques in this work are further related to
existing work on compositional generative modeling [135, 481, 134, 457, 482, 483, 484, 485,
486, 487, 488, 489, 490], where different generative models are probabilistically combined to
jointly generate outputs. In [134], an approach to combine different probability distributions
using EBMs is introduced. Most similar in spirit to this work, [486] composes a pretrained
language model with a small EBM to improve language generation. However, different from
this work, the small EBM is used to improve to global consistency of the language model,
whereas we aim to use a small model to probabilistically adapt to a large pretrained video
model to separate domains.
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Chapter 7

Conclusion

Over the course of the various chapters of this thesis, we have developed techniques, frame-
works, and algorithms for decision making with foundation models, and have illustrated that
decision making with foundation models can be efficient, scalable, and empowering, both in
theory and in practice. The techniques, frameworks, and algorithms developed have been or-
ganized into three categories. Chapter 3 developed a framework for off-policy evaluation with
offline dataset. The ability to incorporate offline data has been a major milestone to efficient
learning compared to traditional approaches to reinforcement learning. Chatper 4 focused
on an empirical study followed by developing representation learning objectives and algo-
rithms for learning state and action representations that provably accelerates downstream
imitation learning. Chapter 5 developed conditional generation techniques to incorporate
broad information such as chain-of-thought and future desired reward into a policy. These
three approaches, i.e., offline RL, representation learning, and generative modeling, have
been broadly adopted in many other works that leverage offline dataset for decision making.
Lastly, Chapter 6 scales existing methods such as model-based search, planning, and rein-
forcement learning to internet-scale text and videos, empowering real-world RL, planning,
and search in learned simulators. Below, we draw specific conclusions from each chapter.

Off-policy evaluation. We have proposed a unified view of off-policy evaluation via the
regularized Lagrangian of the d-LP. Under this unification, existing DICE algorithms are
recovered by specific (suboptimal) choices of regularizers, (redundant) constraints, and ways
to convert optimized solutions to policy values. By systematically studying the mathemati-
cal properties and empirical effects of these choices, we have found that the dual estimates
(i.e., policy value in terms of the state-action distribution) offer greater flexibility in incor-
porating optimization stablizers while preserving asymptotic unibasedness, in comparison to
the primal estimates (i.e., estimated Q-values). Our study also reveals alternative estimators
not previously identified in the literature that exhibit improved performance. Overall, these
findings suggest promising new directions of focus for OPE research in the offline setting.
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Representation learning for RL. We have derived a near-optimal objective for learning
a latent action space from suboptimal offline data that provably accelerates downstream
imitation learning. To learn this objective in practice, we propose transition-reparametrized
actions for imitation learning (TRAIL), a two-stage framework that first pretrains a factored
transition model from offline data, and then uses the transition model to reparametrize the
action space prior to behavioral cloning. Our empirical results suggest that TRAIL can im-
prove imitation learning drastically, even when pretrained on highly suboptimal data (e.g.,
data from a random policy), providing a new approach to imitation learning through a com-
bination of pretraining on task-agnostic or suboptimal data and behavioral cloning on limited
expert datasets. That said, our approach to action representation learning is not necessar-
ily specific to imitation learning, and insofar as the reparameterized action space simplifies
downstream control problems, it could also be combined with reinforcement learning in fu-
ture work. More broadly, studying how learned action reparameterization can accelerate
various facets of learning-based control represents an exciting future direction, and we hope
that our results provide initial evidence of such a potential.

Return-conditioned supervised learning. Despite the empirical promise of return- or
future-conditioned supervised learning (RCSL) with large transformer architectures, envi-
ronment stochasticity hampers the application of supervised learning to sequential decision
making. To address this issue, we proposed to augment supervised learning with the di-
chotomy of control principle (DoC), guiding a supervised policy to only control the control-
lable (actions). Theoretically, DoC learns consistent policies, guaranteeing that they achieve
the future or return they are conditioned on. Empirically, DoC outperforms RCSL in highly
stochastic environments. While DoC still falls short in addressing other RL challenges such
as ‘stitching’ (i.e., composing sub-optimal trajectories), we hope that dichotomy of control
serves as a stepping stone in solving sequential decision making with large-scale supervised
learning.

UniPi. We have demonstrated the utility of representing policies using text-conditioned
video generation, showing that this enables effective combinatorial generalization, multi-task
learning, and real world transfer. These positive results point to the broader direction of
using generative models and the wealth of data on the internet as powerful tools to generate
general-purpose decision making systems.

We further discuss limitations and future directions for specific work presented in this
thesis below.

Limitation and Future Work

Limitations of representation learning for RL. Even with this multitude of fresh
insight into the question of representation learning in RL, our study is limited in a number
of aspects, and these aspects can serve as a starting point for future work. For example,
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one may consider additional downstream tasks such as multi-task, transfer, or exploration.
Alternatively, one can extend our ablations to real-world domains like robot learning. Or,
one may consider ablating over different network architectures. Despite these limitations, we
hope our current work proves useful to RL researchers, and serves as a guide for developing
even better and more general representation learning objectives.

Limitations of Procedure Cloning. One major limitation of procedure cloning com-
pared to traditional BC is in the computational overhead, since PC needs to predict inter-
mediate procedures. Furthermore, the choice of how to encode the expert’s algorithm into a
form amenable to PC is up to the practitioner. While we have presented ways to encode a va-
riety of policies here (BFS, MCTS, scripted robotic policies), applying PC to other domains
may require some amount of trial-and-error in designing the ideal computation sequence for
PC.

Limitation and future work of video adaptaion. As video foundation models become
more powerful but remain proprietary, black-box adaptation of these models is inevitible. We
have proposed Video Adapter for leveraging black-box text-to-video models as probabilistic
priors for guiding generation of specific videos. One limitation of Video Adapter is it still
requires training a small domain-specific model, so adaptation is not completely training
free. Another limitation is Video Adapter requires diffusion scores from pretrained black-
box models. We advocate future video diffusion models to make scores as a part of the
output to improve accessibility of these models.

Limitations of UniPi. Our current approach has several limitations. First, the underly-
ing video diffusion process can be slow, it can take a minute to generate highly photorealistic
videos. This slowness can be overcome by distilling the diffusion process into a faster sam-
pling network, which in our initial experimentation resulted in a 16x speed-up. UniPi may
further be sped up with by faster speed samplers in diffusion models. Second, the environ-
ments considered in this work are generally fully observed. In partially observable environ-
ments, video diffusion models might make hallucination of objects or movements that are
unfaithful or not in the physical world. Integrating video models with semantic knowledge
about the world may help resolve this issue, and the integration of UniPi with LLMs would
be an interesting direction of future work.

Limitation and future work of UniSim While we have shown it is possible to learn a
simulator of the real world in response to various action inputs ranging from texts to robot
controls. UniSim can simulate visually realistic experiences for interacting with humans and
training autonomous agents. We hope UniSim will instigate broad interest in learning and
applying real-world simulators to improve machine intelligence. UniSim has a few limitations
that call for future work:
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• Hallucination. When an action is unrealistic given the scene (e.g., “wash hands” is
given to a tabletop robot), we observe hallucinations (e.g., the table turns into a sink
or the view turns away from the tabletop robot and a sink shows up). Ideally, we want
UniSim to detect actions that are not possible to simulate as opposed to hallucinating
unrealistic outcomes.

• Limited memory. The simulator conditioned on a few frames of the recent history
cannot capture long-term memory (e.g., an apple in a drawer could disappear when
the drawer is opened if putting the apple in the drawer is not a part of the history for
conditioning). How much history to condition on depends on the application of the
(e.g., whether the simulator will be used for policy learning in a near-Markov setting
or question answering that requires long-term memory).

• Limited out-of-domain generalization. This is especially true for domains that
are not represented in the training data. For instance, the simulator is mostly trained
on 4 robot morphologies, and its ability to generalize to an unseen robot is limited.
Further scaling up training data could help, as the training data is nowhere near all
the video data available on the internet.

• Visual simulation only. Our simulator is not suitable for environments where ac-
tions do not cause visual observation change (e.g., different forces in grasping a static
cup). A true universal simulator should capture all aspects of the world beyond visual
experience (e.g., sound, sensory, etc).
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[126] Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez,
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Jürgen Schmidhuber. Training agents using upside-down reinforcement learning. arXiv
preprint arXiv:1912.02877, 2019.

[363] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, and Alexey Doso-
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[448] He Wang, Sören Pirk, Ersin Yumer, Vladimir G Kim, Ozan Sener, Srinath Sridhar,
and Leonidas J Guibas. Learning a generative model for multi-step human-object
interactions from videos. In Computer Graphics Forum, volume 38, pages 367–378.
Wiley Online Library, 2019.

[449] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik,
and Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image gen-
eration using textual inversion. arXiv preprint arXiv:2208.01618, 2022.

[450] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir
Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven
generation. arXiv preprint arXiv:2208.12242, 2022.

[451] Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models, 2023.



BIBLIOGRAPHY 178

[452] James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen,
and Hongxia Jin. Continual diffusion: Continual customization of text-to-image diffu-
sion with c-lora. arXiv preprint arXiv:2304.06027, 2023.

[453] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and
Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-
driven generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 22500–22510, 2023.

[454] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in
deep reinforcement learning for robotics: a survey. In 2020 IEEE symposium series on
computational intelligence (SSCI), pages 737–744. IEEE, 2020.

[455] Pascal Vincent. A connection between score matching and denoising autoencoders.
Neural computation, 23(7):1661–1674, 2011.

[456] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the
data distribution. Advances in neural information processing systems, 32, 2019.

[457] Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob
Fergus, Jascha Sohl-Dickstein, Arnaud Doucet, and Will Grathwohl. Reduce, reuse, re-
cycle: Compositional generation with energy-based diffusion models and mcmc. arXiv
preprint arXiv:2302.11552, 2023.
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Appendix A

Appendix

A.1 Appendix for Distribution Correction Estimation

A.1.1 Robustness Justification

We explain the robustness interpretation of the dual regularization as the perturbation
of Bellman differences. In this section, we elaborate the robustness interpretation of the
primal regularization. For simplicity, we also consider f1 (·) = (·)2. Therefore, we have
αQ ·E(s,a)∼doff [f1(Q(s, a))] = αQ ·

{
maxδ(s,a) ⟨Q, δ⟩ − E(s,a)∼doff [δ2 (s, a)]

}
. Plug the dual form

into (3.10) and with strong duality, we have

max
ζ≥0,δ

min
Q,λ

LD(ζ,Q, λ, δ) :=(1− γ) · Ea0∼π(s0)
s0∼µ

[Q(s0, a0)] + αQE(s,a)∼doff [δ (s, a) ·Q (s, a)] + λ

+ E(s,a,r,s′)∼doff
a′∼π(s′)

[ζ(s, a) · (αR ·R(s, a) + γQ(s′, a′)−Q(s, a)− λ)]

− αQ · E(s,a)∼doff [δ2(s, a)]− αζ · E(s,a)∼doff [f2(ζ(s, a))], (A.1)

which can be understood as the Lagrangian of

max
ζ≥0,δ

αRE(s,a)∼doff [ζ (s, a) ·R (s, a)]− αQ · E(s,a)∼doff [δ2(s, a)]− αζ · E(s,a)∼doff [f2(ζ(s, a))]

s.t. (1− γ)µ0π + αQd
off · δ + γ · Pπ∗ ·

(
doff · ζ

)
=
(
doff · ζ

)
(A.2)

E(s,a)∼doff [ζ] = 1.

As we can see, the primal regularization actually introduces L2-ball perturbations to the
stationary state-action distribution condition (A.2). For different regularization, the per-
turbations will be in different dual spaces. For examples, with entropy-regularization, the
perturbation lies in the simplex. The corresponding optimization of (3.11) is

min
Q

(1− γ)Eµ0π [Q (s, a)] + αQ · E(s,a)∼doff [f1 (Q)] + αζ · E(s,a)∼doff [δ2 (s, a)] (A.3)

s.t. Q (s, a) ≥ R (s, a) + BQ (s, a)− αζδ (s, a) . (A.4)



APPENDIX A. APPENDIX 184

In both (A.3) and (A.2), the relaxation of dual ζ in (A.2) does not affect the optimality of
dual solution: the stationary state-action distribution is still the only solution to (A.2); while
in (A.3), the relaxation of primal Q will lead to different optimal primal solution. From this
view, one can also justify the advantages of the dual OPE estimation.

A.1.2 Proof for Theorem 4

The full enumeration of αQ, αζ , αR, λ, and ζ≥ 0 results in 25 = 32 configurations. We note
that it is enough to characterize the solutions Q∗, ζ∗ under these different configurations.
Clearly, the primal estimator ρ̂Q is unbiased when Q∗ = Qπ, and the dual estimator ρ̂ζ is
unbiased when ζ∗ = dπ/doff . For the Lagrangian estimator ρ̂Q,ζ , we may write it in two ways:

ρ̂Q,ζ(π) = ρ̂Q(π) +
∑
s,a

doff(s, a)ζ(s, a)(R(s, a) + γPπQ(s, a)−Q(s, a)) (A.5)

= ρ̂ζ(π) +
∑
s,a

Q(s, a)((1− γ)µ(s)π(a|s) + γPπ∗ doff × ζ(s, a)− doff × ζ(s, a)). (A.6)

It is clear that when Q∗ = Qπ, the second term of (A.5) is 0 and ρ̂Q,ζ(π) = ρ(π). When
ζ∗ = dπ/doff , the second term of (A.6) is 0 and ρ̂Q,ζ(π) = ρ(π). Therefore, the Lagrangian
estimator is unbiased when either Q∗ = Qπ or ζ∗ = dπ/doff .

Now we continue to characterizing Q∗, ζ∗ under different configurations. First, when
αQ = 0, αζ = 0, it is clear that the solutions are always unbiased by virtue of Theorem 3
(see also [222]). When αQ > 0, αζ > 0, the solutions are in general biased. We summarize
the remaining configurations (in the discounted case) of αQ > 0, αζ = 0 and αQ = 0, αζ > 0
in the table below. We provide proofs for the configurations of the shaded cells. Proofs for
the rest configurations can be found in [218, 222].

Proof. Under our Assumptions 1 and 2, the strong duality holds for (3.10). We provide the
proofs by checking the configurations case-by-case.

• iii)-iv) In this configuration, the regularized Lagrangian (3.10) becomes

max
ζ≥0

min
Q,λ

LD(ζ,Q, λ) := (1− γ) · Ea0∼π(s0)
s0∼µ

[Q(s0, a0)] + αQ · E(s,a)∼doff [f1(Q(s, a))] + λ

+E(s,a,r,s′)∼doff
a′∼π(s′)

[ζ(s, a) · (γQ(s′, a′)−Q(s, a)− λ)],

which is equivalent to

max
ζ≥0

min
Q
LD(ζ,Q) =

〈
(1− γ)µ0π + γ · Pπ∗ ·

(
doff · ζ

)
− doff · ζ,Q

〉
+ αQEdoff [f1 (Q)]

s.t. Edoff [ζ] = 1. (A.7)
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Apply the Fenchel duality w.r.t. Q, we have

max
ζ

LD (ζ,Q∗) = −αQEdoff
[
f ∗
1

(
(1−γ)µ0π+γ·Pπ

∗ ·(doff ·ζ)−doff ·ζ
αQdoff

)]
(A.8)

s.t. Edoff [ζ] = 1. (A.9)

If f ∗
1 (·) achieves the minimum at zero, it is obvious that

doff · ζ∗ = (1− γ)µ0π + γ · Pπ∗ ·
(
doff · ζ∗

)
⇒ doff · ζ∗ = dπ.

Therefore, we have
L (ζ∗, Q∗) = −αQf ∗

1 (0) ,

and

Q∗ = argmax
Q

〈
(1− γ)µ0π + γ · Pπ∗ ·

(
doff · ζ∗

)
− doff · ζ∗, Q

〉
+ αQEdoff [f1 (Q)]

= f ∗′
1 (0)

• i)-ii) Following the derivation in case iii)-iv), we have the regularized Lagrangian as
almost the same as (A.7) but has an extra term αREdoff [ζ ·R], i.e.

max
ζ

min
Q
LD(ζ,Q) := (1− γ) · Ea0∼π(s0)

s0∼µ
[Q(s0, a0)] + αQ · E(s,a)∼doff [f1(Q(s, a))]

+E(s,a,r,s′)∼doff
a′∼π(s′)

[ζ(s, a) · (αR ·R (s, a) + γQ(s′, a′)−Q(s, a))].

We first consider the case where the ζ is free and the normalization constraint is not
enforced.

After applying the Fenchel duality w.r.t. Q, we have

max
ζ

LD (ζ,Q∗) = αR
〈
doff · ζ, R

〉
− αQEdoff

[
f ∗
1

(
doff ·ζ−(1−γ)µ0π−γ·Pπ

∗ ·(doff ·ζ)
αQdoff

)]
.(A.10)

We denote

ν =
doff · ζ − (1− γ)µ0π − γ · Pπ∗ ·

(
doff · ζ

)
doff

⇒ doff · ζ = (I − γ · Pπ∗ )−1 ((1− γ)µ0π + doff · ν
)
,

and thus,

LD (ζ∗, Q∗) = max
ν

〈
(I − γ · Pπ∗ )−1 ((1− γ)µ0π + doff · ν

)
, αRR

〉
− αQEdoff

[
f ∗
1

(
ν

αQ

)]
= αR (1− γ)Ea0∼π(s0)

s0∼µ
[Qπ (s0, a0)] + max

ν
Edoff [ν · (Qπ)]− αQEdoff

[
f ∗
1

(
ν

αQ

)]
,

= αR (1− γ)Ea0∼π(s0)
s0∼µ

[Qπ (s0, a0)] + αQEdoff [f1 (Qπ)]
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where the second equation comes from the fact Qπ = (I − B)−1R and last equation
comes from Fenchel duality with ν∗ = αQf

′
1 (Qπ).

Then, we can characterize

ζ∗ =
(I − γ · Pπ∗ )−1 ((1− γ)µ0π)

doff
+ αQ

(I − γ · Pπ∗ )−1 (doff · f ′
1 (Qπ)

)
doff

=
dπ

doff
+ αQ

(I − γ · Pπ∗ )−1 (doff · f ′
1 (Qπ)

)
doff

,

and

Q∗ = (f ′
1)

−1

(
doff · ζ∗ − (1− γ)µ0π − γ · Pπ∗ ·

(
doff · ζ∗

)
αQdoff

)
= Qπ.

If we have the positive constraint, i.e., ζ ≥ 0, we denote

exp (ν) =
(I − γ · Pπ∗ )

(
doff · ζ

)
doff

⇒ doff · ζ = (I − γ · Pπ∗ )−1 doff · exp (ν) ,

then,

LD (ζ∗, Q∗) = max
ν

Edoff [exp (ν) ·Qπ]− αQEdoff
[
f ∗
1

(
1

αQ

(
exp (ν)− (1− γ)µ0π

doff

))]
.

By first-order optimality condition, we have

exp (ν∗)

(
Qπ − f ∗′

1

(
1

αQ

(
exp (ν)− (1− γ)µ0π

doff

)))
= 0

= exp (ν∗) =

(
αQf

′
1 (Qπ) +

(1− γ)µ0π

doff

)
+

⇒ doff · ζ∗ = (I − B)−1 · doff
(
αQf

′
1 (Qπ) +

(1− γ)µ0π

doff

)
+

⇒ ζ∗ =
1

doff
(I − B)−1 · doff

(
αQf

′
1 (Qπ) +

(1− γ)µ0π

doff

)
+

. (A.11)

For Q∗, we obtain from the Fenchel duality relationship,

Q∗ = f ∗′
1

(
1

αQ

(
exp (ν∗)− (1− γ)µ0π

doff

))
= f ∗′

1

(
1

αQ

((
αQf

′
1 (Qπ) +

(1− γ)µ0π

doff

)
+

− (1− γ)µ0π

doff

))
. (A.12)

Then, the LD (ζ∗, Q∗) can be obtained by plugging (ζ∗, Q∗) in (A.11) and (A.12).
Obviously, in this case, the estimators are all biased.
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As we can see, in both i) and ii), none of the optimal dual solution ζ∗ satisfies the
normalization condition. Therefore, with the extra normalization constraint, the opti-
mization will be obviously biased.

• v)-viii) These cases are also proved in [222] and we provide a more succinct proof
here. In these configurations, whether αR is involved or not does not affect the proof.
We will keep this component for generality. We ignore the ζ≥ 0 and λ for simplicity,
the conclusion does not affected, since the optimal solution ζ∗ automatically satisfies
these constraints.

Consider the regularized Lagrangian (3.10) with such configuration, we have

min
Q

max
ζ

LD(ζ,Q) := (1− γ) · Ea0∼π(s0)
s0∼µ

[Q(s0, a0)]− αζ · E(s,a)∼doff [f2(ζ(s, a))]

+E(s,a,r,s′)∼doff
a′∼π(s′)

[ζ(s, a) · (αR ·R(s, a) + γQ(s′, a′)−Q(s, a))].(A.13)

Apply the Fenchal duality to ζ, we obtain

min
Q

LD (ζ∗, Q) := (1−γ)·Ea0∼π(s0)
s0∼µ

[Q(s0, a0)]+αζEdoff
[
f ∗
2

(
1

αζ
(Bπ ·Q (s, a)−Q (s, a))

)]
,

(A.14)
with Bπ ·Q (s, a) := αR·R (s, a)+γPπQ (s, a). We denote ν (s, a) = B·Q (s, a)−Q (s, a),
then, we have

Q (s, a) = (I − B)−1 (αR ·R− ν) .

Plug this into (A.14), we have

LD (ζ∗, Q∗) = min
ν

(1− γ) · Ea0∼π(s0)
s0∼µ

[(
(I − B)−1 (αR ·R− ν)

)
(s0, a0)

]
+αζEdoff

[
f ∗
2

(
1

αζ
ν (s, a)

)]
,

= αREdπ [R (s, a)]− αζ max
ν

(
Edπ

[
ν(s0, a0)

αζ

]
+ Edoff

[
f ∗
2

(
1

αζ
ν (s, a)

)])
,

= αREdπ [R (s, a)]− αζDf

(
dπ||doff

)
(A.15)

The second equation comes from the fact dπ = (I − γ · Pπ∗ )−1 (µπ). The last equation
is by the definition of the Fenchel duality of f -divergence. Meanwhile, the optimal
1
αζ
ν∗ = f ′

2

(
dπ

doff

)
. Then, we have

Q∗ = − (I − B)−1 ν∗ + (I − B)−1 (αR ·R)

= −αζ (I − B)−1 f ′
2

(
dπ

doff

)
+ αRQ

π,
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and

ζ∗(s, a) = argmax
ζ

ζ · ν∗(s, a)− αζf2 (ζ (s, a))

= f ∗′
2

(
1

αζ
ν∗ (s, a)

)
=

dπ (s, a)

doff (s, a)
.

A.1.3 Recovering Existing OPE estimators

We verify the LSTDQ as a special case of the unified framework if the primal and dual are
linearly parametrized, i.e., Q (s, a) = w⊤ϕ (s, a) and τ (s, a) = v⊤ϕ (s, a), from any unbiased
estimator without ξ≥ 0 and λ. For simplicity, we assume the solution exists.

• When (αQ = 1, αζ = 0, αR = 1), we have the estimator as

max
v

min
w
LD(v, w) :=(1− γ) · w⊤Ea0∼π(s0)

s0∼µ
[ϕ(s0, a0)] + αQ · E(s,a)∼doff [f1(w

⊤ϕ(s, a))]

+ v⊤E(s,a,r,s′)∼doff
a′∼π(s′)

[ϕ(s, a) · (αR ·R(s, a) + γw⊤ϕ(s′, a′)− w⊤ϕ(s, a))].

Then, we have the first-order optimality condition for v as

E(s,a,r,s′)∼doff
a′∼π(s′)

[ϕ(s, a) · (αR ·R(s, a) + γw⊤ϕ(s′, a′)− w⊤ϕ(s, a))] = 0,

⇒ w = E(s,a,r,s′)∼doff
a′∼π(s′)

[ϕ(s, a) · (ϕ(s, a)− γϕ(s′, a′))]︸ ︷︷ ︸
Ξ

−1E(s,a)∼doff [αR ·R (s, a)ϕ (s, a)] ,

⇒ Q∗ (s, a) = w⊤ϕ (s, a) ,

which leads to

ρ̂Q(π) = (1− γ) · Ea0∼π(s0)
s0∼µ

[Q̂(s0, a0)]

= (1− γ)Ea0∼π(s0)
s0∼µ

[ϕ (s, a)]⊤Ξ−1E(s,a)∼doff [R (s, a)ϕ (s, a)] .

• When (αQ = 0, αζ = 1, αR = {0/1}), we have the estimator as

max
v

min
w
LD(v, w) :=(1− γ) · w⊤Ea0∼π(s0)

s0∼µ
[ϕ(s0, a0)]− αζ · E(s,a)∼doff [f2(v

⊤ϕ(s, a))]

+ v⊤E(s,a,r,s′)∼doff
a′∼π(s′)

[ϕ(s, a) · (αR ·R(s, a) + γw⊤ϕ(s′, a′)− w⊤ϕ(s, a))].
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Then, we have the first-order optimality condition as

v⊤E(s,a,r,s′)∼doff
a′∼π(s′)

[ϕ(s, a) · (γϕ(s′, a′)− ϕ(s, a))] + (1− γ) · Ea0∼π(s0)
s0∼µ

[ϕ(s0, a0)] = 0,

which leads to

v = (1− γ) · Ξ−1Ea0∼π(s0)
s0∼µ

[ϕ(s0, a0)].

Therefore, the dual estimator is

ρ̂ζ (π) = E(s,a,r)∼doff [R · ϕ (s, a)]⊤ v

= (1− γ)Ea0∼π(s0)
s0∼µ

[ϕ (s, a)]⊤Ξ−1E(s,a)∼doff [R (s, a)ϕ (s, a)] .

• When (αQ = 1, αζ = 0, αR = 0), by the conclusion for (A.7), we have

v⊤E(s,a,r,s′)∼doff
a′∼π(s′)

[ϕ(s, a) · (γϕ(s′, a′)− ϕ(s, a))] + (1− γ) · Ea0∼π(s0)
s0∼µ

[ϕ(s0, a0)] = 0,

which leads to similar result as above case.

A.1.4 Alternative Biased Form

Unconstrained Primal Forms
When αζ > 0 and αQ = 0, the form of the Lagranian can be simplified to yield an

optimization over only Q. Then, we may simplify,

max
ζ(s,a)

ζ(s, a) · (αR ·R(s, a) + γPπQ(s, a)−Q(s, a))− αζ · f2(ζ(s, a))

= αζ · f ∗
2

(
1

αζ
(αR ·R(s, a) + γPπQ(s, a)−Q(s, a))

)
. (A.16)

So, the Lagrangian may be equivalently expressed as an optimization over only Q:

min
Q

(1− γ) · Ea0∼π(s0)
s0∼µ

[Q(s0, a0)] + αQ · E(s,a)∼doff [f1(Q(s, a))]

+ αζ · E(s,a)∼doff

[
f ∗
2

(
1

αζ
(αR ·R(s, a) + γPπQ(s, a)−Q(s, a))

)]
. (A.17)

We call this the unconstrained primal form, since optimization is now exclusively over primal
variables. Still, given a solution Q∗, the optimal ζ∗ to the original Lagrangian may be derived
as,

ζ∗(s, a) = f ∗′
2 ((αR ·R(s, a) + γPπQ∗(s, a)−Q∗(s, a))/αζ). (A.18)
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Although the unconstrained primal form is simpler, in practice it presents a disadvantage,
due to inaccessibility of the transition operator Pπ. That is, in practice, one must resort to
optimizing the primal form as

min
Q

(1− γ) · Ea0∼π(s0)
s0∼µ

[Q(s0, a0)] + αQ · E(s,a)∼doff [f1(Q(s, a))]

+ αζ · E(s,a,r,s′)∼doff
a′∼π(s′)

[
f ∗
2

(
1

αζ
(αR ·R(s, a) + γQ(s′, a′)−Q(s, a))

)]
. (A.19)

This is in general a biased estimate of the true objective and thus leads to biased solutions,
as the expectation over the next step samples are taken inside a square function (we choose
f2 to be the square function). Still, in some cases (e.g., in simple and discrete environments),
the bias may be desirable as a trade-off in return for a simpler optimization.

Unconstrained Dual Form We have presented an unconstrained primal form. Sim-
ilarly, we can derive the unconstrianed dual form by removing the primal variable with a
particular primal regularization αQEdoff [f1 (Q)]. Then, we can simplify

min
Q(s′,a′)

1

doff (s′, a′)
(1− γ)µ(s′)π (a′|s′) ·Q (s′, a′) + αQf1 (Q)

+
1

doff (s′, a′)

(
γ

∫
P π (s′, a′|s, a) doff · ζ (s, a) dsda− doff (s′, a′) ζ (s′, a′)

)
·Q (s′, a′)

= −αQ · f ∗
1

(
doff · ζ − (1− γ)µπ − γ

(
Pπ∗ · doff

)
ζ

αQdoff

)
, (A.20)

with Q∗ = f ∗′
1

(
doff ·ζ−(1−γ)µπ−γ(Pπ

∗ ·doff)ζ
αQdoff

)
.

So, the regularized Lagrangian can be represented as

max
d
αREdoff [ζ ·R]

− αQEdoff
[
f ∗
1

(
doff · ζ − (1− γ)µπ − γ

(
Pπ∗ · doff

)
ζ

αQdoff

)]
− αζEdoff [f2 (ζ)] . (A.21)

Similarly, to approximate the intractable second term, we must use

max
d
αREdoff [ζ ·R]

− αQE(s,a,r,s′)∼doff
a′∼π(s′)

[
f ∗
1

(
ζ (s′, a′)− (1− γ)µ(s′)π(a′|s′)− γζ (s, a)

αQdoff

)]
− αζEdoff [f2 (ζ)] ,

which will introduce bias.
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A.1.5 Undiscounted MDP

When γ = 1, the value of a policy is defined as the average per-step reward:

ρ(π) := lim
tstop→∞

E

[
1

tstop

tstop∑
t=0

R(st, at)

∣∣∣∣∣ s0 ∼ µ, ∀t, at ∼ π(st), st+1 ∼ T (st, at)

]
. (A.22)

The following theorem presents a formulation of ρ(π) in the undiscounted case:

Theorem 15. Given a policy π and a discounting factor γ = 1, the value ρ (π) defined
in (A.22) can be expressed by the following d-LP:

maxd:S×A→R Ed [R (s, a)] , s.t., d(s, a) = Pπ∗ d(s, a) and
∑

s,a d(s, a) = 1. (A.23)

The corresponding primal LP under the undiscounted case is

minQ:S×A→R λ, s.t., Q(s, a) = R(s, a) + PπQ(s, a)− λ. (A.24)

Proof. With the additional constraint
∑

s,a d(s, a) = 1 in (A.23), the Markov chain induced
by π is ergodic with a unique stationary distribution d∗ = dπ, so the dual objective is still
ρ (π) by definition. Unlike in the discounted case, any optimal Q∗ with a constant offset
would satisfy (A.24), so the optimal solution to (A.24) is independent of Q.

A.1.6 Experiment Details

OPE tasks For all tasks, We use γ = 0.99 in all experiments except for the ablation study
of normalization constraint where γ = 0.995 and γ = 1 are also evaluated. We collect 400
trajectories for each of the tasks, and the trajectory length for Grid, Reacher, and Cartpole
are 100, 200, and 250 respectively for γ < 1, or 1000 for γ = 1.

Grid. We use a 10× 10 grid environment where an agent can move left/right/up/down.
The observations are the x, y coordinates of this agent’s location. The reward of each step
is defined as exp(−0.2|x − 9| − 0.2|y − 9|). The target policy is taken to be the optimal
policy for this task (i.e., moving all the way right then all the way down) plus 0.1 weight
on uniform exploration. The behavior policies π1 and π2 are taken to be the optimal policy
plus 0.7 and 0.3 weights on uniform exploration respectively.

Reacher. We train a deterministic policy on the Reacher task from OpenAI Gym [327]
until convergence, and define the target policy to be a Gaussian with the pre-trained policy
as the mean and 0.1 as the standard deviation. The behavior policies π1 and π2 have the
same mean as the target policy but with 0.4 and 0.2 standard deviation respectively.

Cartpole. We modify the Cartpole task from OpenAI Gym [327] to infinite horizon by
changing the reward to −1 if the original task returns termination and 1 otherwise. We train
a deterministic policy on this task until convergence, and define the target policy to be the
pre-trained policy (weight 0.7) plus uniform random exploration (weight 0.3). The behavior
policies π1 and π2 are taken to be the pre-trained policy (weight 0.55 and 0.65) plus uniform
random exploration (weight 0.45 and 0.35) respectively.
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Linear Parametrization Details To test estimation robustness to scaling and shifting of
MDP rewards under linear parametrization, we first determine the estimation upper bound
by parametrizing the primal variable as a linear function of the one-hot encoding of the state-
action input. Similarly, to determine the lower bound, we parametrize the dual variable
as a linear function of the input. These linear parametrizations are implemented using
feed-forward networks with two hidden-layers of 64 neurons each and without non-linear
activations. Only the output layer is trained using gradient descent; the rest layers are
randomly initialized and fixed. The true estimates where both primal and dual variables are
linear functions are verified to be between the lower and upper bounds.

Neural Network Details For the neural network parametrization, we use feed-forward
networks with two hidden-layers of 64 neurons each and ReLU as the activation function.
The networks are trained using the Adam optimizer (β1 = 0.99, β2 = 0.999) with batch size
2048. The learning rate of each task and configuration is found via hyperparameter search,
and is determined to be 0.00003 for all configurations on Grid, 0.0001 for all configurations on
Reacher, and 0.0001 and 0.00003 for dual and primal regularization on Cartpole respectively.

A.1.7 Additional Results

Comparison to unregularized Lagrangian We compare the best performing DICE
estimator discovered in our unified framework to directly solving the Lagrangian without any
regularization or redundant constraints, i.e., DR-MWQL as primal, MWL as dual, and their
combination [219]. Results are shown in Figure A.1. We see that the BestDICE estimator
outperforms the original primal, dual and Lagrangian both in terms of training stability
and final estimation. This demonstrates that regularization and redundant constraints are
crucial for optimization, justifying our motivation.

0k 40k 80k 120k 160k
0.50

0.75

1.00

1.25

1.50
Grid (π1)

0k 40k 80k 120k 160k
0.50

0.75

1.00

1.25

1.50
Grid (π2)

0k 40k 80k 120k 160k
−0.75

−0.50

−0.25

0.00

Reacher (π1)

0k 40k 80k 120k 160k
−0.75

−0.50

−0.25

0.00

Reacher (π2)

0k 40k 80k 120k 160k
0.0

0.5

1.0

1.5

2.0
Cartpole (π1)

0k 40k 80k 120k 160k
0.0

0.5

1.0

1.5

2.0
Cartpole (π2)

Train steps

P
er

-s
te

p
re

w
ar

d

Dual est.
Dual reg.

Dual est.
No reg.

Lagrangian est.
No reg.

Primal est.
No reg. True value

Dual est.
Dual reg.

Dual est.
No reg.

Lagrangian est.
No reg.

Primal est.
No reg. True value

Dual est.
Dual reg.

Dual est.
No reg.

Lagrangian est.
No reg.

Primal est.
No reg. True value

Dual est.
Dual reg.

Dual est.
No reg.

Lagrangian est.
No reg.

Primal est.
No reg. True value

Dual est.
Dual reg.

Dual est.
No reg.

Lagrangian est.
No reg.

Primal est.
No reg. True value

Dual est.
Dual reg.

Dual est.
No reg.

Lagrangian est.
No reg.

Primal est.
No reg. True value

Figure A.1: Primal (orange), dual (green), and Lagrangian (gray) estimates by solving the
original Lagrangian without any regularization or redundant constraints, in comparison with
the best DICE estimates (blue).

Primal Estimates with Target Networks We use target networks with double Q-
learning [491] to improve the training stability of primal variables, and notice performance
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improvements in primal estimates on the Reacher task in particular. However, the primal
estimates are still sensitive to scaling and shifting of MDP rewards, as shown in Figure A.2.
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Figure A.2: Primal (red) and Lagrangian (orange) estimates under the neural network
parametrization with target networks to stabilize training when rewards are transformed
during training. Estimations are transformed back and plotted on the original scale. De-
spite the performance improvements on Reacher compared to Figure 3.2, the primal and
Lagrangian estimates are still sensitive to the reward values.

Additional Regularization Comparison In addition to the two behavior policies in the
main text (i.e., π1 and π2), we show the effect of regularization using data collected from
a third behavior policy (π3). Similar conclusions from the main text still hold (i.e., dual
regularizer is generally better; primal regularizer with reward results in biased estimates) as
shown in Figure A.3.

Additional Ablation Study We also conduct additional ablation study on data collected
from a third behavior policy (π3). Results are shown in Figure A.4. Again we see that the
positivity constraint improves training stability as well as final estimates, and unconstrained
primal form is more stable but can lead to biased estimates.
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Figure A.3: Dual estimates when αR = 0 (dotted line) and αR = 1 (solid line) on data
collected from a third behavior policy (π3). Regularizing the dual variable (blue) is better
than or similar to regularizing the primal variable (orange).
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Figure A.4: Apply positive constraint and unconstrained primal form on data collected from
a third behavior policy (π3). Positivity constraint (row 1) improves training stability. The
unconstrained primal problem (row 2) is more stable but leads to biased estimates.

A.2 Appendix for Representation Learning for

Decision Making

A.2.1 Experimental Details for Representation Learning
Ablation

Representation Network We parametrize the representation function ϕ as a two-hidden
layer fully connected neural network with 256 units per layer and output dimension 256. A
Swish [492] activation function is applied to the output of each hidden layer. We experi-
mented with representation dimension sizes 16, 64, 256, and 512, and found 256 and 512 to
generally work the best (see Figure A.7 in Appendix A.2.2).
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Transformer Network The BERT-style transformer used in attentive contrastive learn-
ing (ACL) consists of one preprocessing layer of 256 units and ReLU activaiton, followed by
a multi-headed attention layer (4 heads with 128 units each), followed by a fully connected
feed forward layer with hidden dimension 256 and ReLU activation, finally followed by an
output layer of 256 units (the same as ϕ’s output). We experimented with different num-
ber of attention blocks and number of heads in each block, but did not observe significant
difference in performance.

When masking input (sequences of state, actions, or rewards), we randomly choose to
‘drop’ each item with probability 0.3, ’switch’ with probability 0.15, and ‘keep’ with probabil-
ity 0.15. ‘Drop’ refers to replacing the item with a trainable variable of the same dimension.
‘Switch’ refers to replacing the item with a randomly sampled item from the same batch.
‘Keep’ refers to leaving the item unchanged. These probability rates where chosen arbitrarily
and not tuned.

Action Prediction and Reconstruction Whenever a loss includes action prediction
or reconstruction, we follow [265], and (1) utilize an output distribution given by a tanh-
squashed Gaussian and (2) apply an additive adaptive entropy regularizer to the action
prediction loss.

Other Networks With few exceptions, all other functions f, g mentioned in Section 4.1.4
are two-hidden layer fully connected neural networks with 256 units per layer and using a
Swish [492] activation.

The only exception is Momentum TCL, where f is the same structure but using a residual
connection on the output.

Training During pretraining, we use the Adam optimizer with learning rate 0.0001, except
for the TCL variants, for which we found 0.0003 to work better. For Momentum TCL, we
use a moving average with rate 0.05.

Convergence Failures Representations learned under objectives including forward-raw
model, VPN (with k+1 = 2), and DeepMDP consistently diverge and output NaNs on offline
and online RL, and are therefore removed from the results in Figure 4.2. The bisimulation
objective on offline and online RL fails to converge in some runs but occasionally succeeds,
therefore the means of succeeded runs are computed and shown in Figure 4.2.
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A.2.2 Additional Experimental Results for Representation
Ablation

Figure A.5: Average reward of best ACL ablation on fully-observable online RL compared
to the baseline without pretraining.

Fully-Observable Online Environments

Figure A.6: Additional training curves of contrastive learning objectives aggregated over
different offline datasets in the same domain. Both in this figure and in Figure 4.1, we plot
the best variant of ACL according to the ablation study, namely we set “input reward” to
false in imitation learning, “reconstruct action” to true in offline RL, and “auxiliary loss”
(in ant and halfcheetah) or “finetuning” (in hopper and walker2d) to true in online RL.
The best variant of ACL generally performs the best compared to other contrastive learning
objectives, although TCL’s performance is competitive in offline RL.

Additional Contrastive Learning Results
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Figure A.7: Average reward across domains and datasets with different representation di-
mensions. 256 and 512 work the best (this ablation is conducted with “reconstruct action”
and “reconstruct reward” set to true).

Ablation over Representation Size

Figure A.8: Average reward across domains and datasets with different pretraining window
k in imitation learning, offline RL, and partially/fully observable online RL.

Ablation over Pretraining Window Size
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Figure A.9: Left: Ablation (with compounding factors) with reconstructing action/reward
as default. Right: reward ablation on antmaze-umaze with sparse reward.

Ablation over Compounding Factors and on Sparse Reward
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Figure A.10: Imitation learning ablation on individual domains and datasets. The negative
impact of inputting action and reward to pretraining is more evident in halfcheetah and
walker2d. Reconstructing/predicting action/reward is especially harmful in halfcheetah,
hopper, and walker2d. There always exists some variant of ACL that is better than without
representation learning (blue lines) in all domain-dataset combinations.

Ablation Results for Individual Domains and Datasets
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Figure A.11: Offline RL ablation on individual domains and datasets. The benefit of rep-
resentation learning is more evident when expert trajectories are present (e.g., expert and
medium-expert) than when they are absent (medium and medum-replay). Reconstructing
action and reward is more important in ant and halfcheetah than in hopper and walker2d.
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Figure A.12: Online RL ablation on individual domains and datasets. Auxiliary loss gen-
erally improves performance in all domains and datasets. Finetuning improves halfcheetah,
hopper, and walker2d but significantly impairs ant.
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A.2.3 Additional Anecdotal Conclusions from Representation
Ablation

1. More ablations. Although we present our ablations as only changing one factor at a
time, we also experimented with changing multiple factors at a time. We did not find
any of these additional ablations to change the overall conclusions.

2. Reconstruct action. One ablation that did work surprisingly well was to only recon-
struct the action (with no other loss). This appeared to perform poorly on imitation
learning, but well on other settings.

3. More transformers. We experimented with a different application of transformers
than ACL. Namely, we attempted to treat each dimension of the state as a token in
a sequence (as opposed to using the whole state observation as the token). We found
this to provide promising results, although it did not convincingly improve upon the
configuration of ACL. Still, it may merit further investigation by future work.

4. Transformer architecture. We experimented with a different number of attention
blocks or number of heads in each block, but did not observe significant differences in
performance.

5. Normalized or regularized representations. We experimented with applying an
explicit normalization layer on the output of ϕ and found no benefits. We also experi-
mented with a stochastic representation along with a KL-divergence regularizer to the
standard normal distribution, and again found no benefits.

A.2.4 Additional Interpretations of Results for Representation
Ablation

While we wanted to avoid making claims without exhaustive proof regarding why certain
design choices are better than others, we believe many of our findings are interpretable, and
here is a selection of our hypotheses:

1. Reward prediction helps in offline and online RL because rewards are critical to the
downstream task.

2. Bisimulation-style approaches perform poorly because they are too eager to reduce the
latent space (e.g., in the absence of reward, ϕ would be constant).

3. The poor performance of auxiliary training in offline RL may reflect the fact that offline
RL is generally more liable to divergence in training, which would dominate gradients
from any auxiliary objective and render the representation learning objective useless.
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4. The poor performance of context embeddings in all setups may be explained as a
consequence of an overly-rich representation – i.e., using context embedding means
that in the downstream task the same state may appear multiple times as different
representations (since it is in a different context), and this can complicate learning in
near-Markovian environments, unlike in NLP.

A.2.5 Proofs for Foundational Lemmas for TRAIL

Lemma 16. If π1 and π2 are two policies inM and dπ1(s) and dπ2(s) are the state visitation
distributions induced by policy π1 and π2 where dπ(s) := (1 − γ)

∑
t=0 γ

t · Pr [st = s|π,M].
Define Diff(π2, π1) = DTV(dπ2∥dπ1) then

Diff(π2, π1) ≤
γ

1− γErrdπ1 (π1, π2, T ), (A.25)

where

Errdπ1 (π1, π2, T ) :=
1

2

∑
s′∈S

∣∣Es∼dπ1 ,a1∼π1(s),a2∼π2(s)[T (s′|s, a1)− T (s′|s, a2)]
∣∣ . (A.26)

is the TV-divergence between T ◦ π1 ◦ dπ1 and T ◦ π2 ◦ dπ1.
Proof. Following similar derivations in [493, 256], we express DTV(dπ2∥dπ1) in linear operator
notation:

Diff(π2, π1) = DTV(dπ2∥dπ1) =
1

2
1|(1− γ)(I − γT Π2)

−1µ− (1− γ)(I − γT Π1)
−1µ|, (A.27)

where Π1,Π2 are linear operators S → S × A such that Πiν(s, a) = πi(a|s)ν(s) and 1 is
an all ones row vector of size |S|. Notice that dπ1 may be expressed in this notation as
(1− γ)(I − γT Π1)

−1µ. We may re-write the above term as

1

2
1|(1− γ)(I − γT Π2)

−1((I − γT Π1)− (I − γT Π2))(I − γT Π1)
−1µ|

=γ · 1

2
1|(I − γT Π2)

−1(T Π2 − T Π1)d
π1|. (A.28)

Using matrix norm inequalities, we bound the above by

γ · 1

2
∥(I − γT Π2)

−1∥1,∞ · 1|(T Π2 − T Π1)d
π1|. (A.29)

Since T Π2 is a stochastic matrix, ∥(I−γT Π2)
−1∥1,∞ ≤

∑∞
t=0 γ

t∥T Π2∥1,∞ = (1−γ)−1. Thus,
we bound the above by

γ

2(1− γ)
1|(T Π2 − T Π1)d

π1| = γ

1− γErrdπ1 (π1, π2, T ), (A.30)

and so we immediately achieve the desired bound in (A.25).
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The divergence bound above relies on the true transition model T which is not available
to us. We now introduce an approximate transition model T to proxy Errdπ1 (π1, π2, T ).

Lemma 17. For π1 and π2 two policies inM and any transition model T (·|s, a) we have,

Errdπ1 (π1, π2, T ) ≤ |A|E(s,a)∼(dπ1 ,UnifA)[DTV(T (s, a)∥T (s, a))] + Errdπ1 (π1, π2, T ). (A.31)

Proof.

Errdπ1 (π1, π2, T ) =
1

2

∑
s′∈S

∣∣Es∼dπ1 ,a1∼π1(s),a2∼π2(s)[T (s′|s, a1)− T (s′|s, a2)]
∣∣ (A.32)

=
1

2

∑
s′∈S

∣∣∣∣∣∑
a∈A

Es∼dπ1 [T (s′|s, a)π1(a|s)− T (s, a)π2(a|s)]
∣∣∣∣∣ (A.33)

=
1

2

∑
s′∈S

∣∣∣∣∣∑
a∈A

Es∼dπ1 [(T (s′|s, a)− T (s′|s, a))(π1(a|s)− π2(a|s)) + T (s′|s, a)(π1(a|s)− π2(a|s))]
∣∣∣∣∣

(A.34)

≤ 1

2

∑
s′∈S

∣∣∣∣∣∑
a∈A

Es∼dπ1 [(T (s′|s, a)− T (s′|s, a))(π1(a|s)− π2(a|s))]
∣∣∣∣∣+ Errdπ1 (π1, π2, T ) (A.35)

≤ 1

2

∑
s′∈S

∑
a∈A

Es∼dπ1 [
∣∣(T (s′|s, a)− T (s′|s, a))(π1(a|s)− π2(a|s))

∣∣] + Errdπ1 (π1, π2, T ) (A.36)

≤ |A|E(s,a)∼(dπ1 ,UnifA)[DTV(T (s′|s, a)∥T (s′|s, a)|] + Errdπ1 (π1, π2, T ), (A.37)

and we arrive at the inequality as desired where the last step comes fromDTV(T (s, a)∥T (s, a)) =
1
2

∑
s′∈S |T (s′|s, a)− T (s′|s, a)|.

Now we introduce a representation function ϕ : S×A→ Z and show how the error above
may be reduced when T (s, a) = TZ(s, ϕ(s, a)):

Lemma 18. Let ϕ : S×A→ Z for some space Z and suppose there exists TZ : S×Z → ∆(S)
such that T (s, a) = TZ(s, ϕ(s, a)) for all s ∈ S, a ∈ A. Then for any policies π1, π2,

Errdπ1 (π1, π2, T )] ≤ Es∼dπ1 [DTV(π1,Z∥π2,Z)], (A.38)

where πk,Z(z|s) is the marginalization of πk onto Z:

πk,Z(z|s) :=
∑

a∈A,z=ϕ(s,a)

πk(a|s) (A.39)

for all z ∈ Z, k ∈ {1, 2}.
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Proof.

1

2

∑
s′∈S

∣∣Es∼dπ1 ,a1∼π1(s),a2∼π2(s)[T (s′|s, a1)− T (s′|s, a2)]
∣∣ (A.40)

=
1

2

∑
s′∈S

∣∣∣∣∣ ∑
s∈S,a∈A

TZ(s′|s, ϕ(s, a))π1(a|s)dπ1(s)−
∑

s∈S,a∈A

TZ(s′|s, ϕ(s, a))π2(a|s)dπ1(s)
∣∣∣∣∣

=
1

2

∑
s′∈S

∣∣∣∣∣∣∣∣
∑

s∈S,z∈Z

TZ(s′|s, z)
∑
a∈A,

ϕ(s,a)=z

π1(a|s)dπ1(s)−
∑

s∈S,z∈Z

TZ(s′|s, z)
∑
a∈A,

ϕ(s,a)=z

π2(a|s)dπ1(s)

∣∣∣∣∣∣∣∣
=

1

2

∑
s′∈S

∣∣∣∣∣ ∑
s∈S,z∈Z

TZ(s′|s, z)π1,Z(z|s)dπ1(s)−
∑

s∈S,z∈Z

TZ(s′|s, z)π2,Z(z|s)dπ1(s)
∣∣∣∣∣

=
1

2

∑
s′∈S

∣∣∣∣∣Es∼dπ1
[∑
z∈Z

TZ(s′|s, z)(π1,Z(z|s)− π2,Z(z|s))
]∣∣∣∣∣ (A.41)

≤ 1

2
Es∼dπ1

[∑
z∈Z

∑
s′∈S

TZ(s′|s, z) |π1,Z(z|s)− π2,Z(z|s)|
]

(A.42)

=
1

2
Es∼dπ1

[∑
z∈Z

|π1,Z(z|s)− π2,Z(z|s)|
]

(A.43)

= Es∼dπ1 [DTV(π1,Z∥π2,Z)] , (A.44)

and we arrive at the inequality as desired.

Lemma 19. Let d ∈ ∆(S,A) be some state-action distribution, ϕ : S × A → Z, and
πZ : S → ∆(Z). Denote πα∗ as the optimal action decoder for d, ϕ:

πα∗(a|s, z) =
d(s, a) · 1[z = ϕ(s, a)]∑

a′∈A d(s, a′) · 1[z = ϕ(s, a′)]
,

and πα∗,Z as the marginalization of πα∗ ◦ πZ onto Z:

πα∗,Z(z|s) :=
∑

a∈A,z=ϕ(s,a)

(πα∗ ◦ πZ)(a|s) =
∑

a∈A,z=ϕ(s,a)

∑
z̃∈Z

πα∗(a|s, z̃)πZ(z̃|s).

Then we have
πα∗,Z(z|s) = πZ(z|s) (A.45)

for all z ∈ Z and s ∈ S.
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Proof.

πα∗,Z(z|s) =
∑

a∈A,z=ϕ(s,a)

∑
z̃∈Z

πα∗(a|s, z̃)πZ(z̃|s) (A.46)

=
∑

a∈A,z=ϕ(s,a)

∑
z̃∈Z

d(s, a) · 1[z̃ = ϕ(s, a)]∑
a′∈A d(s, a′) · 1[z̃ = ϕ(s, a′)]

πZ(z̃|s) (A.47)

=
∑

a∈A,z=ϕ(s,a)

d(s, a) · 1[z = ϕ(s, a)]∑
a′∈A d(s, a′) · 1[z = ϕ(s, a′)]

πZ(z|s) (A.48)

= πZ(z|s)
∑

a∈A,z=ϕ(s,a)

d(s, a) · 1[z = ϕ(s, a)]∑
a′∈A d(s, a′) · 1[z = ϕ(s, a′)]

(A.49)

= πZ(z|s), (A.50)

and we have the desired equality.

Lemma 20. Let πZ : S → ∆(Z) be a latent policy in Z and q : S × Z → A be an action
decoder, πα,Z be the marginalization of q ◦ πZ onto Z:

πα,Z(z|s) :=
∑

a∈A,z=ϕ(s,a)

(q ◦ πZ)(a|s) =
∑

a∈A,z=ϕ(s,a)

∑
z̃∈Z

πα(a|s, z̃)πZ(z̃|s).

Then for any s ∈ S we have

DTV(πZ(s)∥πα,Z(s)) ≤ max
z∈Z

DTV(πα∗(s, z)∥q(s, z)), (A.51)

where πα∗ is the optimal action decoder defined in Lemma 19 (and this holds for any choice
of d from Lemma 19).
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Proof.

DTV(πZ(s)∥πα,Z(s)) (A.52)

=
1

2

∑
z∈Z

|πZ(z|s)− πα,Z(z|s)| (A.53)

=
1

2

∑
z∈Z

∣∣∣∣∣∣πZ(z|s)−
∑

a∈A,z=ϕ(s,a)

∑
z̃∈Z

πα(a|s, z̃)πZ(z̃|s)

∣∣∣∣∣∣ (A.54)

=
1

2

∑
z∈Z

∣∣∣∣∣∣πZ(z|s)−
∑

a∈A,z=ϕ(s,a)

∑
z̃∈Z

(πα(a|s, z̃)− πα∗(a|s, z̃) + πα∗(a|s, z̃))πZ(z̃|s)

∣∣∣∣∣∣ (A.55)

=
1

2

∑
z∈Z

∣∣∣∣∣∣
∑

a∈A,z=ϕ(s,a)

∑
z̃∈Z

(πα(a|s, z̃)− πα∗(a|s, z̃))πZ(z̃|s)

∣∣∣∣∣∣ (by Lemma 19) (A.56)

≤1

2
Ez̃∼πZ(s)

∑
z∈Z

∑
a∈A,z=ϕ(s,a)

|πα(a|s, z̃)− πα∗(a|s, z̃)|

 (A.57)

=
1

2
Ez̃∼πZ(s)

[∑
a∈A

|πα(a|s, z̃)− πα∗(a|s, z̃)|
]

(A.58)

=Ez̃∼πZ(s) [DTV(q(s, z̃)∥, πα∗(s, z̃))] (A.59)

≤max
z∈Z

DTV(q(s, z)∥πα∗(s, z)), (A.60)

(A.61)

and we have the desired inequality.

Lemma 21. Let π1,Z be the marginalization of π1 onto Z as defined in Lemma 18, and let
πZ, q, πα,Z be as defined in Lemma 20, and let πα∗,Z be as defined in Lemma 19. For any
s ∈ S we have

DTV(π1,Z(s)∥πα,Z(s)) ≤ max
z∈Z

DTV(q(s, z)∥πα∗(s, z)) +DTV(π1,Z(s)∥πZ(s)). (A.62)

Proof. The desired inequality is achieved by plugging the inequality from Lemma 20 into
the following triangle inequality:

DTV(π1,Z(s)∥πα,Z(s)) ≤ DTV(πZ(s)∥πα,Z(s)) +DTV(π1,Z(s)∥πZ(s)). (A.63)

Our final lemma will be used to translate on-policy bounds to off-policy.
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Lemma 22. For two distributions ρ1, ρ2 ∈ ∆(S) with ρ1(s) > 0⇒ ρ2(s) > 0, we have,

Eρ1 [h(s)] ≤ (1 +Dχ2(ρ1∥ρ2)
1
2 )
√
Eρ2 [h(s)2]. (A.64)

Proof. The lemma is a straightforward consequence of Cauchy-Schwartz:

Eρ1 [h(s)] = Eρ2 [h(s)] + (Eρ1 [h(s)]− Eρ2 [h(s)]) (A.65)

= Eρ2 [h(s)] +
∑
s∈S

ρ1(s)− ρ2(s)
ρ2(s)

1
2

· ρ2(s)
1
2h(s) (A.66)

≤ Eρ2 [h(s)] +

(∑
s∈S

(ρ1(s)− ρ2(s))2
ρ2(s)

) 1
2

·
(∑
s∈S

ρ2(s)h(s)2

) 1
2

(A.67)

= Eρ2 [h(s)] +Dχ2(ρ1∥ρ2)
1
2 ·
√
Eρ2 [h(s)2]. (A.68)

Finally, to get the desired bound, we simply note that the concavity of the square-root
function implies Eρ2 [h(s)] ≤ Eρ2 [

√
h(s)2] ≤

√
Eρ2 [h(s)2].

A.2.6 Proofs for Major Theorems for TRAIL

Proof of Theorem 5

Proof. Let π2 := q ◦ πZ , we have π2,Z(z|s) = πα,Z(z|s) =
∑

a∈A,ϕ(s,a)=z(q ◦ πZ)(z|s). By
plugging the result of Lemma 21 into Lemma 18, we have

Errdπ1 (π1, π2, T )] ≤ Es∼dπ1
[
max
z∈Z

DTV(πα∗(s, z)∥q(s, z)) +DTV(π1,Z(s)∥πZ(s))

]
. (A.69)

By plugging this result into Lemma 17, we have

Errdπ1 (π1, π2, T ) ≤ |A|E(s,a)∼(dπ1 ,UnifA)[DTV(T (s, a)∥T (s, a))] (A.70)

+ Es∼dπ1
[
max
z∈Z

DTV(πα∗(s, z)∥q(s, z))

]
(A.71)

+ Es∼dπ1 [DTV(π1,Z(s)∥πZ(s))] . (A.72)

By further plugging this result into Lemma 16 and let π1 = π∗, we have:

Diff(q ◦ πZ , π∗) ≤ γ|A|
1− γ · E(s,a)∼(dπ1 ,UnifA)[DTV(T (s, a)∥TZ(s, ϕ(s, a))]

+
γ

1− γ · Es∼dπ
∗ [max

z∈Z
DTV(πα∗(s, z)∥q(s, z))]

+
γ

1− γ · Es∼dπ
∗ [DTV(π∗,Z(s)∥πZ(s))]. (A.73)
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Finally, by plugging in the off-policy results of Lemma 22 to the bound in Equation (A.73)
and by applying Pinsker’s inequalityDTV(T (s, a)∥TZ(s, ϕ(s, a)))2 ≤ 1

2
DKL(T (s, a)∥TZ(s, ϕ(s, a))),

we have

Diff(q ◦ πZ , π∗) ≤ C1 ·
√

1

2
E(s,a)∼doff [DKL(T (s, a)∥TZ(s, ϕ(s, a)))]︸ ︷︷ ︸

= JT(TZ , ϕ)

+ C2 ·
√

1

2
Es∼doff [max

z∈Z
DKL(πα∗(s, z)∥q(s, z))]︸ ︷︷ ︸

≈ const(doff , ϕ) + JDE(q, ϕ)

+ C3 ·
√

1

2
Es∼dπ∗ [DKL(π∗,Z(s)∥πZ(s))]︸ ︷︷ ︸
= const(π∗, ϕ) + JBC,ϕ(πZ)

, (A.74)

where C1 = γ|A|(1 − γ)−1(1 + Dχ2(dπ
∗∥doff)

1
2 ), C2 = γ(1 − γ)−1(1 + Dχ2(dπ

∗∥doff)
1
2 ),

and C3 = γ(1 − γ)−1. Since the maxz∈Z is not tractable in practice, we approximate
Es∼doff [maxz∈Z DKL(πα∗(s, z)∥q(s, z))] using E(s,a)∼doff [DKL(πα∗(s, ϕ(s, a))∥q(s, ϕ(s, a)))], which
reduces to JDE(q, ϕ) with additional constants. We now arrive at the desired off-policy bound
in Theorem 5.

Proof of Theorem 6

Lemma 23. Let ρ ∈ ∆({1, . . . , k}) be a distribution with finite support. Let ρ̂n denote the
empirical estimate of ρ from n i.i.d. samples X ∼ ρ. Then,

En[DTV(ρ∥ρ̂n)] ≤ 1

2
· 1√

n

k∑
i=1

√
ρ(i) ≤ 1

2
·
√
k

n
. (A.75)

Proof. The first inequality is Lemma 8 in [494] while the second inequality is due to the
concavity of the square root function.

Lemma 24. Let D := {(si, ai)}ni=1 be i.i.d. samples from a factored distribution x(s, a) :=
ρ(s)π(a|s) for ρ ∈ ∆(S), π : S → ∆(A). Let ρ̂ be the empirical estimate of ρ in D and π̂ be
the empirical estimate of π in D. Then,

ED[Es∼ρ[DTV(π(s)∥π̂(s))]] ≤
√
|S||A|
n

. (A.76)
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Proof. Let x̂ be the empirical estimate of x in D. We have,

Es∼ρ[DTV(π(s)∥π̂(s))] =
1

2

∑
s,a

ρ(s) · |π(a|s)− π̂(a|s)| (A.77)

=
1

2

∑
s,a

ρ(s) ·
∣∣∣∣x(s, a)

ρ(s)
− x̂(s, a)

ρ̂(s)

∣∣∣∣ (A.78)

≤ 1

2

∑
s,a

ρ(s) ·
∣∣∣∣ x̂(s, a)

ρ(s)
− x̂(s, a)

ρ̂(s)

∣∣∣∣+
1

2

∑
s,a

ρ(s) ·
∣∣∣∣ x̂(s, a)

ρ(s)
− x(s, a)

ρ(s)

∣∣∣∣
(A.79)

=
1

2

∑
s,a

ρ(s) ·
∣∣∣∣ x̂(s, a)

ρ(s)
− x̂(s, a)

ρ̂(s)

∣∣∣∣+DTV(x∥x̂) (A.80)

=
1

2

∑
s

ρ(s) ·
∣∣∣∣ 1

ρ(s)
− 1

ρ̂(s)

∣∣∣∣
(∑

a

x̂(s, a)

)
+DTV(x∥x̂) (A.81)

=
1

2

∑
s

ρ(s) ·
∣∣∣∣ 1

ρ(s)
− 1

ρ̂(s)

∣∣∣∣ · ρ̂(s) +DTV(x∥x̂) (A.82)

= DTV(ρ∥ρ̂) +DTV(x∥x̂). (A.83)

Finally, the bound in the lemma is achieved by application of Lemma 23 to each of the TV
divergences.

To prove Theorem 6, we first rewrite Theorem 5 as

Diff(πZ , π
∗) ≤ (4.4)(ϕ) + (4.5)(ϕ) + C3 · Es∼dπ∗ [DTV(π∗,Z(s)∥πZ(s))], (A.84)

where (4.4) and (4.5) are the first two terms in the bound of Theorem 5, and C3 = γ
1−γ .

The result in Theorem 6 is then derived by setting ϕ = ϕπorcl and πZ := πϕorcl,Z and using
the result of Lemma 24.

Note that the above sample analysis can be extended to the continuous latent action
space characterized by Theorem 7 as follows.

Theorem 25. Let ϕorcl := OPT ϕ(Doff) and πorcl,θ be the latent BC policy with respect to
ϕorcl. Let d be the dimension of the continuous latent actions and ∥ϕ∥∞ be the l∞ norm of
ϕorcl for any s, a. We have

ED∗
off

[Diff(πϕorcl,θ, π
∗)] ≤ (4.4)(ϕorcl) + (4.5)(ϕorcl) + C4 · d∥ϕ∥∞

√
2|S|
n+ 1

,

where (4.4), (4.5), and C4 are the same as in Theorem 7.
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Proof. We use µ ∈ Rd×|S| to denote the optimal setting of θ which yields a zero l1-norm of
∂
∂θ
Es∼dπ ,a∼π∗ [(θs − ϕ(s, a))2]; i.e.,

µs = Ea∼π∗(s)[ϕ(s, a)]. (A.85)

According to Theorem 7, we want to bound the l1-norm of ∂
∂θ
Es∼dπ ,a∼π∗ [(θs − ϕ(s, a))2]

evaluated at the approximate solution µ̂ ∈ Rd×|S| with respect to finite dataset D∗
off; i.e.,

µ̂s = Ea∼D∗
off(·|s) [ϕ(s, a)] , (A.86)

with the convention that µ̂s = 0 if s does not appear in D∗
off. To this end, we have the

following derivation, which uses En to denote the expectation over realizations of µ̂ due to
n-size draws of the target dataset D∗

off:

En
[∥∥∥∥ ∂∂θ ∣∣∣θ=µ̂Es∼dπ ,a∼π∗

[
(θs − ϕ(s, a))2

]∥∥∥∥
1

]
= En [Es∼dπ [∥µ̂s − Ea∼π∗ [ϕ(s, a)]∥1]] (A.87)

= En [Es∼dπ [∥µ̂s − µs∥1]] (A.88)

= Es∼dπ [En [∥µ̂s − µs∥1]]. (A.89)

We now split up the inner expectation based on the number of times k that s appears in
D∗

off:

Es∼dπ [En [∥µ̂s − µs∥1]] = Es∼dπ
[

n∑
k=0

Pr[count(s) = k] · Ek [∥µ̂s − µs∥1]
]

(A.90)

≤

√√√√Es∼dπ
[

n∑
k=0

Pr[count(s) = k] · Ek [∥µ̂s − µs∥1]2
]

(A.91)

(A.92)

where Ek denotes the expectation over realizations of µ̂s over k-size draws of a ∼ π∗(s). By
standard combinatorics, we know

Pr[count(s) = k] =

(
n

k

)
dπ(s)k(1− dπ(s))n−k. (A.93)

Furthermore, for k = 0, we have

Ek [∥µ̂s − µs∥1]2 = ∥µs∥21 ≤ d2∥ϕ∥2∞, (A.94)

while for k > 0, since Ek[µ̂s] = µs, we have

Ek [∥µ̂s − µs∥1]2 ≤ d · Ek
[
∥µ̂s − µs∥22

]
= d · Vark [µ̂s] ≤

d2∥ϕ∥2∞
k

≤ 2d2∥ϕ∥2∞
k + 1

. (A.95)
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Combining equations A.93, A.94, and A.95 we have for any k ≥ 0

dπ(s) · Pr[count(s) = k] · Ek [∥µ̂s − µs∥1]2 ≤
2d2∥ϕ∥2∞
k + 1

(
n

k

)
dπ(s)k+1(1− dπ(s))n−k

=
2d2∥ϕ∥2∞
n+ 1

(
n+ 1

k + 1

)
dπ(s)k+1(1− dπ(s))n−k,

(A.96)

and so by the binomial theorem,

n∑
k=0

dπ(s) · Pr[count(s) = k] · Ek [∥µ̂s − µs∥1]2 ≤
2d2∥ϕ∥2∞
n+ 1

. (A.97)

Plugging the above into equation A.91 we deduce

Es∼dπ [En [∥µ̂s − µs∥1]] ≤ d∥ϕ∥∞
√

2|S|
n+ 1

, (A.98)

and we have the convergence rate as desired.

Proof of Theorem 7

Proof. The gradient term in Theorem 7 with respect to a specific column θs of θ may be
expressed as

∂

∂θs
Es̃∼dπ ,a∼π(s̃)[(θs̃ − ϕ(s̃, a))2]

= −2Ea∼π(s)[dπ(s)ϕ(s, a)] + 2dπ(s)θs

= −2Ea∼π(s)[dπ(s)ϕ(s, a)] + 2Ez=θs [dπ(s) · z], (A.99)

and so,

w(s′)⊤
∂

∂θs
Es̃∼dπ ,a∼π(s̃)[(θs̃ − ϕ(s̃, a))2]

= −2Ea∼π(s)[dπ(s)T (s′|s, a)] + 2Ez=θs [dπ(s)w(s′)⊤z]. (A.100)

Summing over s ∈ S, we have:∑
s∈S

w(s′)⊤
∂

∂θs
Es̃∼dπ ,a∼π(s̃)[(θs̃ − ϕ(s̃, a))2]

= 2Es∼dπ ,a∼π(s),z=θs [−T (s′|s, a) + TZ(s′|s, z)] (A.101)



APPENDIX A. APPENDIX 213

Thus, we have:

Errdπ(π, πθ, T ) =
1

2

∑
s′∈S

∣∣Es∼dπ ,a∼π(s),z=θs [−T (s′|s, a) + TZ(s′|s, z)]
∣∣

=
1

4

∑
s′∈S

∣∣∣∣∣∑
s∈S

w(s′)⊤
∂

∂θs
Es̃∼dπ ,a∼π(s̃)[(θs̃ − ϕ(s̃, a))2]

∣∣∣∣∣
≤ 1

4
|S|∥w∥∞ ·

∥∥∥∥ ∂∂θEs∼dπ ,a∼π(s)[(θs − ϕ(s, a))2]

∥∥∥∥
1

. (A.102)

Then by combining Lemmas 16, 17, 22, and apply Equation (A.102) (as opposed to
Lemma 18 as in the tabular case), we arrive at the desired bound in Theorem 7.

A.2.7 Experiment Details for TRAIL

Architecture We parametrize ϕ as a two-hidden layer fully connected neural network with
256 units per layer. A Swish [492] activation function is applied to the output of each hidden
layer. We use embedding size 64 for AntMaze and 256 for Ant and all DeepMind Control
Suite (DMC) tasks after sweeping values of 64, 256, and 512, though we found TRAIL to
be relatively robust to the latent dimension size as long as it is not too small (i.e., ≥ 64).
The latent skills in temporal skill extraction require a much smaller dimension size, e.g., 8
or 10 as reported by [14, 12]. We tried increasing the latent skill size for these work during
evaluation, but found the reported value 8 to work the best. We additionally experimented
with different extend of skill extraction, but found the previously reported t = 10 to also
work the best. We implement the trajectory encoder in OPAL, SkiLD, and SPiRL using a
bidirectional LSTM with hidden dimension 256. We use β = 0.1 for the KL regularization
term in the β VAE of OPAL (as reported). We also use 0.1 as the weight for SPiRL and
SkiLD’s KL divergence terms.

Training and Evaluation During pretraining, we use the Adam optimizer with learning
rate 0.0003 for 200k iterations with batch size 256 for all methods that require pretrain-
ing. During downstream behavioral cloning, learned action representations are fixed, but
the action decoder is fine-tuned on the expert data as suggested by [14]. Behavioral cloning
for all methods including vanilla BC is trained with learning rate 0.0001 for 1M iterations.
We experimented with learning rate decay of downstream BC by a factor of 3 at the 200k
boundary for all methods. We found that when the expert sample size is small, decaying
learning rate can prevent overfitting for all methods. The reported results are with learn-
ing rate decay on AntMaze and without learning rate decay on other environments for all
methods. During the downstream behavioral cloning stage, we evaluate the latent policy
combined with the action decoder every 10k steps by executing q ◦ πZ in the environment
for 10 episodes and compute the average total return. Each method is run with 4 seeds
where each seed corresponds to one set of action representations and downstream imitation
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learning result on that set of representations. We report the mean and standard error for all
methods in the bar and line figures.

Modification to SkiLD and SPiRL Since SkiLD [12] and SPiRL [13] are originally
designed for RL as opposed to imitation learning, we replace the downstream RL algorithms
of SkiLD and SPiRL by behavioral cloning with regularization (but keep skill extraction the
same as the original methods). Specifically, for SkILD, we apply a KL regularization term
between the latent policy and the learned skill prior in the suboptimal offline dataset during
pretraining, and another KL regularization term between the latent policy and a learn “skill
posterior” on the expert data as done in the original paper during downstream behavioral
cloning. We do not need to train the binary classifier that SkiLD trains to decide which
regularizer to apply because we know which set of actions are expert versus suboptimal in
the imitation learning setting. For SPiRL, we apply the KL divergence between latent policy
and skill prior extracted from offline data (i.e., using the red term in Algorithm 1 of [13]) as
an additional term to latent behavioral cloning.

Dataset Details

AntMaze. For the expert data in AntMaze, we use the goal-reaching expert policies
trained by [14] (expert means that the agent is trained to navigate from the one cor-
ner of the maze to the opposite corner) to collect n = 10 trajectories. For the sub-
optimal data in AntMaze, we use the full D4RL datasets antmaze-large-diverse-v0,
antmaze-medium-play-v0, antmaze-medium-diverse-v0, and antmaze-medium-play-v0.

Ant. For the expert data in Ant, we use a small set of expert trajectories selected by taking
either the first 10k or 25k transitions from ant-expert-v0 in D4RL, corresponding to about
10 and 25 expert trajectories, respectively. For the suboptimal data in Ant, we use the full
D4RL datasets ant-medium-v0, ant-medium-replay-v0, and ant-random-v0.

RL Unplugged. For DeepMind Control Suite [11] set of tasks, we use the RL Un-
plugged [20] dataset. For the expert data, we take 1

10
of the trajectories whose episodic

reward is among the top 20% of the open source RL Unplugged datasets following the setup
in [15]. For the suboptimal data, we use the bottom 80% of the RL Unplugged dataset.
Table A.1 records the total number of trajectories available in RL Unplugged for each task
(80% of which are used as suboptimal data), and the number of expert trajectories used in
our evaluation.
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Task # Total # D∗
off

cartpole-swingup 40 2
cheetah-run 300 3
fish-swim 200 1
humanoid-run 3000 53
walker-stand 200 4
walker-walk 200 6

Table A.1: Total number of trajectories from RL Unplugged [20] locomotion tasks used to
train CRR [16] and the number of expert trajectories used to train TRAIL. The bottom 80%
of # Total is used to learn action representations by TRAIL.

A.2.8 Additional Empirical Results for TRAIL

Figure A.13: Average task rewards (over 4 seeds) of TRAIL EBM (Theorem 5), TRAIL
linear (Theorem 7), and OPAL, SkiLD, SPiRL trained on the bottom 80% (top) and bottom
5% (bottom) of the RL Unplugged datasets followed by behavioral cloning in the latent
action space. Baseline BC achieves low rewards due to the small expert sample size. Dotted
lines denote the performance of CRR [16] trained on the full dataset with reward labels.

Additional baselines for RL Unplugged

FrankaKitchen Results
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Expert Dπ*

Suboptimal Doff

kitchen-complete kitchen-complete

kitchen-mixed kitchen-partial

Figure A.14: Average rewards (over 4 seeds) of TRAIL EBM (Theorem 5), TRAIL linear
(Theorem 7), and baseline methods pretrained on kitchen-mixed and kitchen-partial

from D4RL to imitate kitchen-complete. TRAIL linear without temporal abstraction
performs slightly better than SKiLD and OPAL with temporal abstraction over 10 steps.

Figure A.15: Average task rewards (over 4 seeds) of TRAIL EBM (Theorem 5) and vanilla
BC (right) in a discrete four-room maze environment (left) where an agent is randomly
placed in the maze and tries to reach the target ‘T’. TRAIL learns a discrete latent action
space of size 4 from the discrete original action space of size 12 on 500 uniform random
trajectories of length 20 shows clear benefit over vanilla BC on expert data.

Discrete Maze Results We conduct additional evaluation on an environment with tab-
ular state and action spaces. As shown in Figure A.15, an agent is randomly placed into a
four-room environment, and the task is to navigate to the target ‘T’. The task reward is 1
at ‘T‘ and 0 elsewhere. There are 12 discrete actions corresponding to rotating clockwise
by 90, 180, 270, 360 degrees, rotating counterclockwise by 90, 180, 270, 360 degrees, moving
forward by 1 or 2 grids, and moving backward by 1 or 2 grids (the action space is artificially
blown up as suggested by the reviewer). TRAIL is pretrained on 500 trajectories of length
20 with uniform action selection. The expert demonstration always navigates to the target
‘T’ from any random starting location. TRAIL’s latent action dimension is set to 4. We see
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that TRAIL with a smaller latent action space offers benefits over vanilla BC.
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A.2.9 Ablation Study for TRAIL

Expert Dπ*

Suboptimal Doff

expert 10 trajsexpert 10 trajs expert 10 trajs expert 10 trajs

antmaze-large-diverse antmaze-medium-diverse antmaze-medium-playantmaze-large-play

Figure A.16: Ablation study on action decoder finetuning, latent dimension size, and pre-
training baseline BC on suboptimal data in the AntMaze environment. TRAIL with default
embedding dimension 64 and finetuning the action decoder corresponds to the second row.
Other dimension size (256 and 512) lead to worse performance. Finetuning the action de-
coder on the expert data has some small benefits. Pretraining BC on suboptimal data before
finetuning on expert does not lead to significantly better performance.

Expert Dπ*

Suboptimal Doff

ant-expert 25kant-expert 10kant-expert 25kant-expert 10kant-expert 25kant-expert 10k

ant-randomant-medium-replayant-mediumant-medium ant-medium-replay ant-random

Figure A.17: Ablation study on latent dimension size in the Ant environment. TRAIL is
generally robust to the choices of the latent action dimension (64, 256, 512) for the Ant task.

Expert Dπ*

Suboptimal Doff

ant-expert 25kant-expert 10kant-expert 25kant-expert 10kant-expert 25kant-expert 10k

ant-randomant-medium-replayant-mediumant-medium ant-medium-replay ant-random

Figure A.18: Ablation study on finetuning the action decoder in the Ant environment.
Finetuning the action decoder leads to a slight benefit.
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A.2.10 Visualization of Latent Actions in TRAIL

Figure A.19: PCA and t-SNE visualizations of the random, medium-replay, medium, and
expert D4RL Ant datasets. Without action representation learning (left), the distinction
between expert and suboptimal actions is not obvious. The latent actions of TRAIL (right),
on the other hand, results in the expert latent actions being more visually separable from
suboptimal actions.

A.3 Appendix for Procedure Cloning

A.3.1 Experimental details

Maze generation details We algorithmically generate maze layouts in a 2D gridworld
environment. Each maze contains a randomly generated goal location and randomly gener-
ated internal walls that form a tunnel-like map as shown in Figure A.20. The long corridors
of the maze layouts make it difficult to learn a good navigation policy with little data, espe-
cially when the maze is large. The maze layout generator ensures that there is at least one
valid path from any empty location to the goal.

Details of training the AlphaZero-style MCTS expert For the expert MCTS pol-
icy on MinAtar, we modify the AlphaZero-style MCTS agent implementation from the
Acme [495] library1. We use the MinAtar environment simulator for rollouts (as opposed to
learning an environment model). During each MCTS simulation run, an action is selected

1Code of Acme: https://github.com/deepmind/acme
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Figure A.20: Example maze layouts with increasing maze size.

similar to UCT [496] according to:

asearch = argmax
a

[
Q(s, a) + β

√
N(s)

N(s,a)+1
πprior(a | s)

]
, (A.103)

where Q(s, a) is a learned value function using TD-learning, N is the visit-count of the tree
node corresponding to s, β is a hyperparameter for controlling how greedily to search, and
πprior is a prior for guiding the MCTS search and is updated by minimizingDKL (πprior(·|s)∥πMCTS(·|s)),
where πMCTS(·|s) is the softmax of the node s’s children visit-counts. The hyperparameters
for training the MCTS expert is shown in Table A.2.

Table A.2: MCTS hyperparameters on MinAtar.

Hyperparameter Value

Number of simulation runs 500
UCT β 1.0
TD discount γ 0.99
TD buffer size 100,000
Learning rate 0.0003
Batch size 64

Details for training PC policies

Predicting multiple goals on MinAtar. Since we do not limit the search depth of
the MCTS agent explicitly, the resulting search tree after 500 simulation runs can have
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arbitrarily long branches. Therefore, for collecting procedure data, we set a fixed depth (i.e.,
15) as the goal which represents the state 15 steps into the future, and the GPT-like [27]
autoregressive prediction model is trained on sequence of length 15 actions. We further
found that predicting more than a single goal along the optimal path and more than a single
backward action sequence during each time step improve PC’s performance.

Number of expert samples in DΠ. The timeout for collecting expert trajectories and for
evaluating imitation-learned agents are set to 100, 1000, 2500 for discrete maze, AntMaze,
and MinAtar respectively. Because some MinAtar games are easier to learn than others, i.e.,
Freeway only requires a single expert trajectory to learn a good BC policy, we take only the
first 50 samples of a single trajectory as expert data for Freeway to increase the challenge
of imitation learning. For the rest of the games, we take the full trajectories. Results in
the main text use 10 expert trajectories for each game. Results for other number of expert
trajectories can be found in Appendix A.3.2.

PC timeout. During evaluation, PC needs to predict the stopping condition to output
a final action after predicting a series of intermediate procedures. This can result in the
intermidiate procedure being arbitrarily long. We therefore use the environment timeout
steps as a hard stopping condition for PC, and output an action sampled uniformly at
random if PC times out.

Architecture and hyperparameters

Architecture. The CNNs used in discrete maze, AntMaze, and MinAtar of our experi-
ments have 5 layers of convolution with kernel size (3, 3, 3, 3, 3), stride (1, 1, 1, 1, 1), channel
(128, 128, 256, 256, 256), SAME padding, and without any pooling. The MLPs in discrete
maze, AntMaze, and MinAtar have 2 hidden layers of 256 units each interleaved with ReLU
activation. We have experimented with larger CNN and MLP model capacity, but they do
not improve the generalization performance of the agents. The transformer autoregressive
model in the MinAtar experiment has 4 self-attention layers of 8 heads with 128 hidden units
each, followed by 2 feedforward layers of 256 units interleaved with ReLU activation. The
bimanual sweep experiment follows the same architecture as [17] – this original architecture
already performs autoregressive modelling on actions, so it is straightforward to incorporate
procedure observations into this model, treating them as additional predictions that appear
before the output actions. For all data augmentation baseline, we apply random crop of the
size of the image, random horizontal and vertical translation of [-10%, +10%], and random
horizontal and vertical zoom of [-10%, +10%] sequentially.

Training. For discrete maze, AntMaze, and MinAtar, we use the Adam optimizer with
learning rate 3e-4, train the models for 500k steps with batch size 32, and evaluate every
10k steps. The line plots we present show the average results of the the last 3 evaluations.
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Each model is trained on a single NVIDIA P100 GPU. For bimanual sweep, we follow the
same training procedure as [17] using TPU v2.

A.3.2 Additional experimental results

Results on value iteration network We were curious about whether having a planning-
like (procedure-like) module in the policy parametrization similar to Value Iteration Network
(VIN) [497] can solve the generalization task in our maze setup. We therefore evaluate VIN
on 5, 10, 20, 40 training mazes of size 8 × 8, 16 × 16, and 32 × 32 with 1 and 16 trajectories
each and test if VIN can generalize to the 10 unseen test mazes. The original VIN paper
used k = 10 (the number of VI blocks) and k = 20 for maze size 8 × 8, 16 × 16, which we
follow, and use k = 40 for maze 32 × 32. Figure A.21 shows that VIN does not generalize
in our setting, likely due to VIN heavily relying on heavily on the grid structure of the task,
where as our tunnel-shaped map is highly convoluted and requires a lot more training data
(VIN was originally trained on 5000 training mazes with 7 trajectories each, which is way
more data than our evaluation setting).
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Figure A.21: Average success rate of PC, BC (variants), and VIN navigating to the goal
from random start locations over 10 test maze layouts in discrete maze.
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Additional results on discrete maze
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Additional results on AntMaze
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Additional results on MinAtar
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Figure A.22: Average success rate of PC and BC agents navigating to the goal from random
start locations over testing mazes (top) and training mazes (bottom) in discrete maze‘. While
BC variants can achieve high training performance when the number of expert trajectories
is large, they still exhibit poor generalization performance on test mazes.
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Figure A.23: Average success rate of PC and BC agents navigating to the goal from random
start locations over testing mazes (top) and training mazes (bottom) in AntMaze. While
Aux BC can achieve similar training performance as PC, Aux BC still exhibits poorer gen-
eralization performance on test mazes.
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Figure A.24: Average episode reward of PC and BC on MinAtar over 3 test environments
with the same configuration as training (top), with sticky actions (middle), and with difficulty
ramping (bottom). Rows have different number of expert trajectories (50, 10, 20). PC
generally provides gains over BC in different evaluation settings.
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A.3.3 Further analysis of procedure cloning

Discrete maze 16 x 16, # Traj 1

Train steps Train steps

Single-step accuracy Last-step accuracy

# Train maps = 5

# Train maps = 10

# Train maps = 40

Figure A.25: Per-step accuracy of predicting visitation map and final expert action prediction
accuracy with compounding error evaluated on discrete maze of size 16x16 where a single
trajectory from each maze layout is used for training. The compounding error quickly
becomes negligible as the number of training mazes increases (i.e., 10 training mazes).

Compounding error of PC during evaluation

Figure A.26: Example visualizations of PC’s learned BFS procedure on discrete maze envi-
ronment. PC learned to conduct BFS from the goal (red) backwards to the agent location
(green). For the ease of visualization, the exact actions taken by the learned BFS traversal
are eliminated from the blue cells.

Visualization of learned PC procedure

Zero-shot generalization to greater distribution shift
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Train maze Test maze

U

D

L R

Discrete Maze

Figure A.27: [Left] Visualization of training and test mazes. Training mazes have tunnel-
shaped inner walls whereas test mazes have no inner walls or block-shaped inner walls.
[Right] Average success rate of PC and BC agents navigating to the goal from random start
locations over 10 test mazes. Agents are trained on 5, 10, 20, 40 mazes of 1 trajectory each.
We find that procedure cloning leads to much better test maze generalization compared
to alternative approaches when the test mazes exhibit drastic distribution shift from the
training mazes.
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A.3.4 Additional related work

Neural program induction While neural program induction (NPI) may be interpreted
to apply to any “program” similar to PC, its demonstrated applications (both in [498]
and [499]) are based on problems that exhibit hierarchical and modular solutions with shared
and repeated subprograms (e.g., a “pick” primitive within a block-stacking task). Thus, NPI
not only advocates to imitate the full program but also parameterize the agent in a modular
way — like a program with function calls and return values — to take advantage of this
modular and repeated structure. The main argument in these existing papers hinges on the
modular decomposition of both task and agent, which allows for more efficient data sharing,
especially in multiple-task settings. In contrast, our PC evaluations are on environments
with much less modular structures, and we avoid using specialized agent parameterizations
in favor of more generic architectures (e.g., transformers). Thus, we believe our work is
complementary to NPI, showing that the paradigm of using procedural information – while
first proposed by the NPI work to some extent – applies to much more general settings than
initially suggested by NPI.

Goal-conditional imitation learning. While some of our experiments may be inter-
preted as utilizing “goals” as intermediate computation, there is a key difference from goal-
conditioned imitation learning [500, 501]. Namely, goal-conditioned imitation learning advo-
cates for using portions of the observation (or learned functions of the observation) as goals,
whereas PC uses information beyond what is available in the observation (e.g., coordinate
positions of objects). Thus, the common argument in goal-conditioned imitation centers
around getting more learning signal (goal-reaching) from the same data (s,a,s’ tuples). In
contrast, PC shows that having richer data in the demonstrations (procedure information)
is useful, even if that data is not available to the agent during inference. We also note that
another common argument made in goal-conditioned imitation learning is attributing their
sample efficiency benefits to reduced temporal frequency induced by the hierarchical design,
whereas PC shows benefits without any change in temporal frequency. Thus, we believe that
PC presents a novel approach.

Learning-to-plan methods Learning-to-plan methods (e.g., Universal Planning Net-
works [502], Value Iteration Networks [497]) are distinct from PC in that they train policies
end-to-end using state-action tuples. No additional supervision of the intermediate com-
putations of the expert is used; rather, these methods effectively propose a different policy
parameterization leveraging inductive biases (i.e., with an embedded end-to-end differen-
tiable planner). As shown in our evaluations of Implicit BC and Value Iteration Networks
(Appendix A.3.2), flexible policy parametrizations and architectures with desired inductive
bias still fail to generalize without proper integration of procedure information during train-
ing, showing that PC provides benefits orthogonal to these existing works.
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A.4 Appendix for Dichotomy of Control

A.4.1 Proof of Theorem 11

The proof relies on the following lemma, showing that the MI constraints ensure that the
observed rewards and dynamics conditioned on z in the training data are equal to the rewards
and dynamics of the environment.

Lemma 26. Suppose DoC yields q satisfying the MI constraints:

MI(rt; z|τ0:t−1, st, at) = MI(st+1; z|τ0:t−1, st, at) = 0, (A.104)

for all τ0:t−1, st, at with Pr[τ0:t−1, st, at|D] > 0. Then under Assumption 9,

Pr [r̂ = rt | τ0:t−1, st, at, z,D] = R(r̂t | τ0:t−1, st, at), (A.105)

Pr [ŝt+1 = st+1 | τ0:t−1, st, at, z,D] = T (ŝt+1 | τ0:t−1, st, at), (A.106)

for all τ0:t−1, st, at, z and r̂, ŝt+1, as long as Pr[τ0:t−1, st, at, z|D] > 0.

Proof. We show the derivations relevant to reward, with those for next-state being analogous.
We start with the definition of mutual information:

MI(rt; z|τ0:t−1, st, at) = E(rt,z)∼Pr[·|τ0:t−1,st,at,D]

[
log

Pr [rt|τ0:t−1, st, at, z,D]

Pr [rt|τ0:t−1, st, at,D]

]
(A.107)

= Ez∼Pr[·|τ0:t−1,st,at,D] [DKL(Pr[r|τ0:t−1, st, at, z,D]∥Pr[r|τ0:t−1, st, at,D])] . (A.108)

The KL divergence is a nonnegative quantity, and it is zero only when the two input distri-
butions are equal. Thus, the constraint MI(rt; z|τ0:t−1, st, at) = 0 implies,

Pr [r|τ0:t−1, st, at, z,D] = Pr[r|τ0:t−1, st, at,D], (A.109)

for all τ0:t−1, st, at, z with Pr[z|τ0:t−1, st, at,D] > 0. From Assumption 9 we know

Pr[r|τ0:t−1, st, at,D] = R(r|τ0:t−1, st, at), (A.110)

and so we immediately have the desired result.
We will further employ the following lemma, which takes us most of the way to proving

Theorem 11:

Lemma 27. Suppose DoC yields π, q with q satisfying the MI constraints:

MI(rt; z|τ0:t−1, st, at) = MI(st+1; z|τ0:t−1, st, at) = 0, (A.111)

for all τ0:t−1, st, at with Pr[τ0:t−1, st, at|D] > 0. Then under Assumptions 9 and 10, we have

Pr [τ | z,D] = Pr [τ | πz,M] , (A.112)

for all τ and all z with Pr[z|q,D] > 0.
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Proof. We may write the probability Pr [τ | z,D] as,

Pr [τ | z,D] =
H∏
t=0

Pr [at | τ0:t−1, st, z,D]

·
H∏
t=0

Pr [rt | τ0:t−1, st, at, z,D]

·
H−1∏
t=0

Pr [st+1 | τ0:t−1, st, at, z,D] . (A.113)

Case 1: We begin by considering the case of τ satisfying Pr [τ | z,D] > 0. For such a τ ,
by Assumption 10 we may write the first probability above as

Pr [at | τ0:t−1, st, z,D] = πz(at|τ0:t−1, st). (A.114)

Moreover, by Lemma 26 we may write the second and third probabilities as

Pr [rt | τ0:t−1, st, at, z,D] = R(rt|τ0:t−1, st, at) (A.115)

Pr [st+1 | τ0:t−1, st, at, z,D] = T (st+1|τ0:t−1, st, at). (A.116)

Therefore, for any τ with Pr [τ | z,D] > 0 we have,

Pr [τ | z,D] =
H∏
t=0

πz(at|τ0:t−1, st) ·
H∏
t=0

R(rt|τ0:t−1, st, at) ·
H−1∏
t=0

T (st+1|τ0:t−1, st, at)

= Pr [τ | πz,M] . (A.117)

Case 2: To handle the case of Pr [τ | z,D] = 0 we will show that Pr [τ0:t | z,D] = 0 implies
Pr [τ0:t | πz,M] = 0 by induction on t. The base case of t = −1 is trivial. For t > −1, we
may write,

Pr [τ0:t | z,D] = Pr [τ0:t−1 | z,D] · Pr [st | τ0:t−2, st−1, at−1, z,D] · Pr [at | τ0:t−1, st, z,D] ·
Pr [rt | τ0:t−1, st, at, z,D] , (A.118)

Pr [τ0:t | πz,M] = Pr [τ0:t−1 | πz,M] · T (st|τ0:t−2, st−1, at−1) · πz(at|τ0:t−1, st)·
R(rt|τ0:t−1, st, at). (A.119)

Suppose, for the sake of contradiction, that Pr [τ0:t | z,D] = 0 while Pr [τ0:t | πz,M] > 0. By
the inductive hypothesis, Pr [τ0:t−1 | z,D] > 0. Thus, by Lemma 26 we must have

Pr [st | τ0:t−2, st−1, at−1, z,D] = T (st|τ0:t−2, st−1, at−1), (A.120)
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and so T (st|τ0:t−2, st−1, at−1) > 0 implies that Pr [st | τ0:t−2, st−1, at−1, z,D] > 0. Thus, by
Assumption 10 we must have

Pr [at | τ0:t−1, st, z,D] = πz(at|τ0:t−1, st), (A.121)

and so πz(at|τ0:t−1, st) > 0 implies that Pr [at | τ0:t−1, st, z,D] > 0. Lastly, by Lemma 26 we
must have

Pr [rt | τ0:t−1, st, at, z,D] = R(rt|τ0:t−1, st, at), (A.122)

and so R(rt|τ0:t−1, st, at) > 0 implies that Pr [rt | τ0:t−1, st, at, z,D] > 0. Altogether, we find
that each of the three terms on the RHS of Equation (A.118) is strictly positive and so
Pr [τ0:t | z,D] > 0; contradiction.

Theorem Proof We are now prepared to prove Theorem 11.
Using Assumption 10, we can express V (z) as,

V (z) =

∫
Pr [τ̂ = τ | z,D] ·R(τ̂) dτ̂ . (A.123)

By Lemma 27 we have,

V (z) =

∫
Pr [τ̂ = τ | z,D] ·R(τ̂) dτ̂ (A.124)

=

∫
Pr [τ̂ = τ | πz,M] ·R(τ̂) dτ̂ (A.125)

= VM(πz), (A.126)

as desired.

A.4.2 Proof of Theorem 14

We begin by proving a result under stricter conditions, namely, when the MI constraints
retain the conditioning on history.

Lemma 28. Suppose DoC yields π, V, q with q satisfying the MI constraints:

MI(rt; z|τ0:t−1, st, at) = MI(st+1; z|τ0:t−1, st, at) = 0, (A.127)

for all τ0:t−1, st, at with Pr[τ0:t−1, st, at|D] > 0. Then under Assumptions 9, 12, and 13, V
and π are consistent for any z with Pr[z|q,D] > 0.

Proof. Let
πhist
z (â | τ0:t−1, st) = Pr [â = at | τ0:t−1, st, z,D] . (A.128)

By Lemma 27 and Theorem 11 we have

Pr [τ | z,D] = Pr
[
τ | πhist

z ,M
]
, (A.129)
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for all τ and
V (z) = VM(πhist

z ), (A.130)

for all z with Pr[z | q,D] > 0.
It is left to show that VM(πhist

z ) = VM(πz). To do so, we invoke Theorem 5.5.1 in [503],
which states that, for any history-dependent policy, there exists a Markov policy such that
the state-action visitation occupancies of the two policies are equal (and, accordingly, their
values are equal). In other words, there exists a Markov policy π̃z such that

Pr
[
ŝ = st, â = at | πhist

z ,M
]

= Pr [ŝ = st, â = at | π̃z,M] , (A.131)

for all t, ŝ, â, and
VM(πhist

z ) = VM(π̃z). (A.132)

To complete the proof, we show that π̃z = πz. By Equation (A.129) we have

Pr
[
ŝ = st, â = at | πhist

z ,M
]

= Pr [ŝ = st, â = at | z,D] . (A.133)

Thus, for any t, ŝ, â we have

π̃z(â = at|ŝ = st) =
Pr [ŝ = st, â = at | π̃z,M]

Pr [ŝ = st |π̃z,M]
(A.134)

=
Pr
[
ŝ = st, â = at | πhist

z ,M
]

Pr [ŝ = st | πhist
z ,M]

(A.135)

=
Pr [ŝ = st, â = at | z,D]

Pr [ŝ = st | z,D]
(A.136)

= πz(â = at|ŝ = st), (A.137)

where the first equality is Bayes’ rule, the second equality is due to Equation (A.131), the
third equality is due to Equation (A.133), and last equality is by definition of πz (Assump-
tion 13).

Before continuing to the main proof, we present the following analogue to Lemma 26:

Lemma 29. Suppose DoC yields q satisfying the MI constraints:

MI(rt; z|st, at) = MI(st+1; z|st, at) = 0, (A.138)

for all st, at with Pr[st, at|D] > 0. Then under Assumptions 9 and 12,

Pr [r̂ = rt | st, at, z,D] = R(r̂t | st, at), (A.139)

Pr [ŝt+1 = st+1 | st, at, z,D] = T (ŝt+1 | st, at), (A.140)

for all st, at, z and r̂, ŝt+1, as long as Pr[st, at, z|D] > 0.

Proof. The proof is analogous to the proof of Lemma 26.
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Theorem Proof We can now tackle the proof of Theorem 14. To do so, we start by
interpreting the episodes τ in the training data D as coming from a modified Markovian
environment M†. Specifically, we define M† as an environment with the same state space
as M but with an action space consisting of tuples (a, r, s′), where a is an action from the
action space of M, r is a scalar, and s′ is a state from the state space of M. We define the
reward and transition functions ofM† to be deterministic, so that the reward and next state
associated with (a, r, s′) is r and s′, respectively. This way, we may interpret any episode
τ = (st, at, rt)

H
t=0 in M as an episode

τ † = (st, (at, rt, st+1), rt)
H
t=0 (A.141)

in the modified environment M†. Denoting D† as the training data distribution when in-
terpreted in this way, we note that the MI constraints of Lemma 28 hold, since rewards and
transitions are deterministic. Thus, the policy π† defined as

π†((â, r̂, ŝ′)|st, z) = Pr[(â, r̂, ŝ′) = (at, rt, st+1)|st, z,D†] (A.142)

satisfies
V (z) = VM†(π†

z). (A.143)

It is left to show that VM†(π†
z) = VM(πz). To do so, consider an episode τ † ∼ Pr[·|π†

z,M†].
For any single-step transition in this episode,

(st, (at, rt, st+1), rt, st+1), (A.144)

we have, by definition of π†
z,

Pr[â = at|st, π†
z] = Pr[â = at|st, z,D†] = πz(â|st). (A.145)

In a similar vein, by definition of π†
z and Lemma 29 we have,

Pr[r̂ = rt|st, at, π†
z] = Pr[r̂ = rt|st, at, z,D†] = R(r̂|st, at), (A.146)

Pr[ŝt+1 = st+1|st, at, π†
z] = Pr[ŝt+1 = st+1|st, at, z,D†] = T (ŝt+1|st, at). (A.147)

Thus, any τ † = (st, (at, rt, st+1), rt)
H
t=0 sampled from π†

z,M† can be mapped back to a τ =
(st, at, rt)

H
t=0 in the original environment M, where Pr[τ †|π†

z,M†] = Pr[τ |πz,M]. It is clear
that R(τ †) = R(τ), and so we immediately have

VM†(π†
z) = VM(πz), (A.148)

as desired.

A.4.3 Invalidity of Alternative Consistency Frameworks

[103] propose a similar but distinct notion of consistency compared to ours (i.e., Definition 8),
and claim that it can be achieved with stationary policies in Markovian environments. In
this section, we show that this is, in fact, false, supporting the benefits of our framework.
We begin by rephrasing Theorem 2.1 of [103] using our own notation:
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Figure A.28: Deterministic environment used in the counter-example described in Ap-
pendix A.4.3. Circles represent states and squares represent actions; solid arrows represent
choice of actions and dashed arrows represent environment dynamics.

(Incorrect) Theorem 2.1 of [103]. Suppose M is Markovian and D, q are given such
that

Pr[ŝt+1 = st | st, at, z,D] = Pr[ŝt+1 = st | st, at,D], (A.149)

for all st, at, z, ŝt+1 with Pr[st, at, z|q,D] > 0 and define a Markov policy π as

π(â|st, z) = Pr[â = at|st, z,D]. (A.150)

Then for any z with Pr[z|q,D] > 0 and any τ ,

Pr[τ | πz,M] > 0 if and only if Pr[τ | z,D] > 0. (A.151)

Counter-example. A simple counter-example may be constructed by considering the
Markovian environment displayed in Figure A.28. The environment has three states. The
first state gives a choice of two actions (a0 ∈ {0, 1}), and each action deterministically tran-
sitions to the same second state. The second state again provides a choice of two actions
(a1 ∈ {0, 1}), and each of these again deterministically transitions to the same terminal
state. Thus, episodes in this environment are uniquely determined by choice of a0, a1. There
are four unique episodes:

τ0 = ⟨a0 = 0, a1 = 0⟩, (A.152)

τ1 = ⟨a0 = 1, a1 = 1⟩, (A.153)

τ2 = ⟨a0 = 0, a1 = 1⟩, (A.154)

τ3 = ⟨a0 = 1, a1 = 0⟩. (A.155)

We now construct q as a deterministic function, clustering these four trajectories into two
distinct z:

z0 = q(τ0) = q(τ1), (A.156)

z1 = q(τ2) = q(τ3). (A.157)

Suppose D includes τ0, τ1, τ2, τ3 with equal probability. Since the environment is determin-
istic, the conditions of Theorem 2.1 in [103] are trivially satisfied. Learning a policy π with
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respect to z0 yields

π(·|s0, z0) = [0.5, 0.5], (A.158)

π(·|s1, z0) = [0.5, 0.5]. (A.159)

However, it is clear that interacting with π(·|·, z0) in the environment will lead to τ2, τ3 with
non-zero probability, while τ2, τ3 are never associated with z0 in the data D. Contradiction.

A.4.4 Pseudocode for DoC training

Algorithm 3 Training with Dichotomy of Control

Inputs Offline dataset D = {τ (m)}Mm=1 where τ (m) = (s
(m)
t , a

(m)
t , r

(m)
t )Ht=0 with initial states

{s(m)
0 }Mm=1 and initial return-to-go values {R(m)}Mm=1, a parametrized distribution qϕ(·),

a policy πθ1(·, ·), a value function Vθ2(·), a prior pψ(·), an energy function fw(·), a fixed
distribution ρ(r, s′), learning rates η, and training batch size B.
while training has not converged do

Sample batch {(τ = (st, at, rt)
H
t=0)

(m)}Bm=1 from D, for m = 1, . . . , B.
Sample z from qϕ(τ) with reparametrization.
Compute LDoC + Laux according to Equation 5.12 and Equation 5.13.
Update ϕ← ϕ−η∇ϕL̂, ψ ← ψ−η∇ψstopgrad(L̂, ϕ), w ← w+η∇wL̂, θ1 ← θ1−η∇θ1L̂,

θ2 ← θ2 − η∇θ1L̂.
return πθ1(·, ·), Vθ2(·), pψ(·)
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A.4.5 Experiment Details

Hyperparameters. We use the same hyperparameters as the publically available Decision
Transformer [60] implementation. For VAE, we additionally learn a future and a prior both
parametrized the same as the policy using transformers with context length 20. All models
are trained on NVIDIA GPU P100.

Table A.3: Hyperparameters of Decision Transformer, future-conditioned VAE, and Di-
chotomy of Control.

Hyperparameter Value

Number of layers 3
Number of attention heads 1
Embedding dimension 128
Latent future dimension 128
Nonlinearity function ReLU
Batch size 64
Context length K 20 FrozenLake, HalfCheetah, Hopper, Humanoid, AntMaze

5 Reacher
Future length Kf Same as context length K
Return-to-go conditioning for DT 1 FrozenLake

6000 HalfCheetah
3600 Hopper
5000 Humanoid
50 Reacher
1 AntMaze

Dropout 0.1
Learning rate 10−4

Grad norm clip 0.25
Weight decay 10−4

Learning rate decay Linear warmup for first 105 training steps
β coefficient 1.0 for DoC, Best of 0.1, 1.0, 10 for VAE

Details of the offline datasets

FrozenLake. We train a DQN [38] policy for 100k steps in the original 4x4 FrozenLake
Gym environment with stochasticity level p = 1

3
. We then modify p to simulate environments

of different stochasticity levels, while collecting 100 trajectories of maximum length 100 at
each level using the trained DQN agent with probability ϵ of selecting a random action as
opposed to the action output by the DQN agent to emulate offline data with different quality.
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Gym MuJoCo. We train SAC [378] policies on the original set of Gym MuJoCo envi-
ronments for 100M steps. To simulate stochasticity in these environments, we modify the
original Gym MuJoCo environments by introducing noise to the actions before inputting the
action to the physics simulator to compute rewards and next states. The noise has 0 mean
and standard deviation of the form (1 − e−0.01·t) · sin(t) · σ where t is the step number and
σ ∈ [0, 1]. We then collect 1000 trajectories of 1000 steps each for all environments except for
Reacher (which has 50 steps in each trajectory) in the stochastic version of the environment
using the SAC policy to acquire the offline dataset for training.

AntMaze. For the AntMaze task, we use the AntMaze dataset from D4RL [10], which
contains 1000 trajectories of 1000 steps each. We add gaussian noise with standard deviation
0.1 to the rewards in the dataset uniformly with probability 0.1 to both the offline dataset
and during environment evaluation to simulate stochastic rewards from the environment.
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A.4.6 Additional Results

 random in  = 0.1ϵ D  random in  = 0.2ϵ D  random in  = 0.3ϵ D

 random in  = 0.4ϵ D  random in  = 0.5ϵ D  random in  = 0.6ϵ D

 random in  = 0.7ϵ D  random in  = 0.8ϵ D  random in  = 0.9ϵ D

Figure A.29: Average performance (across 5 seeds) of DoC and baselines on FrozenLake with
different levels of stochasticity (p) and offline dataset quality (ϵ). DoC outperforms DT and
future VAE with bigger gains the offline data is less optimal.

FrozenLake with different offline dataset quality.

Improvement of DoC over RvS To test the effect of applying the MI constraint to other
future-conditioned supervised learning baselines, we evaluate RvS parametrized by MLP
policies [361] with VAE and DoC modifications. In general, MLP parametrization performs
worse than transformer parametrization, but DoC is still able to provide significant benefit
over vanilla RvS.
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 random in  = 0.3ϵ D  random in  = 0.5ϵ D  random in  = 0.7ϵ D
U

D

L R

T(s′ |s, a) = p

Figure A.30: Average performance (across 5 seeds) of DoC and baselines on FrozenLake with
different levels of stochasticity (p) and offline dataset quality (ϵ). DoC outperforms RvS and
future VAE with bigger gains the offline data is less optimal.
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A.4.7 Additional Ablations

VAE with Stop Gradient One difference between DoC and VAE is whether there is a
stop gradient operation on the posterior q(z|τ) when minimizing the KL-divergence between
q(z|τ) and the prior p(z|s0). We conduct the ablation below in Figure A.31 where we also
apply stop gradient to VAE, and observe that VAE’s performance drops significantly.

0.2 0.3 0.4 0.5 0.6
Prob. moving in intended dir

0.2

0.4

0.6

pe
rf
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m
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ce

VAE VAE stopgrad DoC

Figure A.31: Average performance (across 5 seeds) of DoC and baselines on FrozenLake with
different levels of stochasticity (p) and offline dataset quality (ϵ). DoC outperforms RvS and
future VAE with bigger gains the offline data is less optimal.
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DoC, beta=0.01 DoC, beta=0.1 DoC, beta=1 DoC, beta=10

Figure A.32: Average performance (across 5 seeds) of DoC with different regularization
strength (β). The effect of β is more pronounced when the dataset is highly optimal (e.g., ϵ
random in D = 0.7), for which we found a smaller β (e.g., 0.1) to generally perform better.

DoC with different regularization strength (β)

DoC with different number of future samples (K)

A.5 Appendix for Learning Universal Policies

A.5.1 Architecture, Training, and Evaluation Details

Video Diffusion Training Details We use the same base architecture and training setup
as [28] which utilizes Video U-Net architecture with 3 residual blocks of 512 base channels
and channel multiplier [1, 2, 4], attention resolutions [6, 12, 24], attention head dimension
64, and conditioning embedding dimension 1024. We use noise schedule log SNR with range
[-20, 20]. We make modifications Video U-Net to support first-frame conditioning during
training. Specifically, we replicate the first frame to be conditioned on at all future frame
indices, and apply temporal super resolution model condition on the replicated first frame by
concatenating the first frame channel-wise to the noisy data similar to [463]. We use temporal
convolutions as opposed to temporal attention to mix frames across time, to maintain local
temporal consistency across time, which has also been previously noted in [28]. We train
each of our video diffusion models for 2M steps using batch size 2048 with learning rate
1e-4 and 10k linear warmup steps. We use 256 TPU-v4 chips for our first-frame conditioned
generation model and temporal super resolution model.
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Figure A.33: Average performance (across 5 seeds) of DoC with different number of samples
during inference (K). We found that higher number of samples leads to better performance
as we expect, and the gain beyound 100 samples is negligible.

We use T5-XXL [385] to process input prompts which consists of 4.6 billion parameters.
For combinatorial and multi-task generalization experiments on simulated robotic manipula-
tion, we train a first-frame conditioned video diffusion models on 10x48x64 videos (skipping
every 8 frames) with 1.7B parameters and a temporal super resolution of 20x48x64 (skip-
ping every 4 frames) with 1.7B parameters. The resolution of the videos are chosen so that
the objects being manipulated (e.g., blocks being moved around) are clearly visible in the
video. For the real world video results, we finetune the 16x40x24 (1.7B), 32x40x24 (1.7B),
32x80x48 (1.4B), and 32x320x192 (1.2B) temporal super resolution models pretrained on
the data used by [28].

Inverse Dynamics Training Details UniPi’s inverse dynamics model is trained to di-
rectly predict the 7-dimensional controls of the simulated robot arm from an image observa-
tion mean squared error. The inverse dynamics model consists of a 3x3 convolutional layer,
3 layers of 3x3 convolutions with residual connection, a mean-pooling layer across all pixel
locations, and an MLP layer of (128, 7) channels to predict the final controls. The inverse
dynamics model is trained using the Adam optimizer with gradient norm clipped at 1 and
learning rate 1e-4 for a total of 2M steps where linear warmup is applied to the first 10k
steps.
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Baselines Training Details We describe the architecture details of various baselines
below. The training details (e.g., learning rate, warm up, gradient clip) of each baseline
follow those of the inverse dynamics model detailed above.

Transformer BC [49, 3]. We employ the same transformer architecture as the 10M
model of [3] with 4 attention layers of 8 heads each and hidden size 512. We apply 4 layers
of 3x3 convolution with residual connection to extract image features, which, together with
T5 text embeddings, are used as inputs to the transformer. We additionally experimented
with vision transformer style linearization of the image patches similar to [3], but found the
performance to be similar. We use a context length of 4 and skip every 4 frames similar to
UniPi’s inverse dynamics. We tried increasing the context length of the transformer to 8 but
it did not help improve performance.

Transformer TT [5]. We use a similar transformer architecture as the Transformer BC
baseline detailed above. Instead of predicting the immediate next control in the sequence
as in Transformer BC, we predict the next 8 controls (skipping every 4 controls similar to
other baselines) at the output layer. We have also tried autoregressively predicting the next
8 controls, but found the errors to accumulate quickly without additional discretization.

State-Based Diffusion [133]. For the state-based diffusion baseline, we use a similar
architecture as UniPi’s first-frame conditioned video diffusion, where instead of diffusing and
generating future image frames, we replicate future controls across different pixel locations
and apply the same U-Net structure as UniPi to learn state-based diffusion models.

Details of the Combinatorial Planning Task In the combinatorial planning tasks, we
sample random 6 DOF poses for blocks, colored bowls, the final placement box. Blocks
start off uncolored (white) and must be placed in a bowl to obtain a color. The robot then
must manipulate and move the colored block to have the desired geometric relation in the
placement box. The underlying action space of the agent corresponds to 6 joint values of
robot plus a discrete contact action. When the contact action is active, the nearest block
on the table is attached to the robot gripper (where for methods that predict continuous
actions, we thresholded action prediction > 0.5 to correspond to contact). Given individual
action predictions for different models, we simulate the next state of the environment by
running the joint controller in Pybullet to try reach the predicted joint state (with a timeout
of 2 seconds due to certain actions being physically infeasible). As only a subset of the
video dataset contained action annotations, we trained the inverse-dynamics model on action
annotations from 20k generated videos.

Details of the CLIPort Multi-Environment Task In the CLIPort environment, we
use the same action space as the combinatorial planning tasks and execute actions similarly
using the built in joint controller in Pybullet. As our training data, we use a scripted agent on
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put-block-in-bowl-unseen-colors, packing-unseen-google-objects-seq, assembling-kits-seq-unseen-colors,
stack-block-pyramid-seq-seen-colors, tower-of-hanoi-seq-seen-colors, assembling-kits-seq-seen-colors,
tower-of-hanoi-seq-unseen-colors, stack-block-pyramid-seq-unseen-colors, packing-seen-google-objects-seq,
packing-boxes-pairs-seen-colors, packing-seen-google-objects-group. As our test
data, we used the environments put-block-in-bowl-seen-colors, packing-unseen-google-objects-group,
packing-boxes-pairs-unseen-colors. We trained the inverse dynamics on action anno-
tation across the 200k generated videos.
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A.5.2 Additional Results

Put A Brown Block 
on An Orange Block

Put A Red Block Right 
of An Orange Block

Put a Yellow block in 
the Brown box

Input Frame Synthesized Frames

Figure A.34: Combinatorial Video Generation. Additional results on UniPi’s generated
videos for unseen language goals at test time.

Additional Results on Combinatorial Generalization

Put the Gray Blocks 
in A Brown Bowl

Pack All the Purple And 
Red Blocks into the 

Brown Box

Pack All the Pepsi 
Max Box Objects in 

the Brown Box

Input Frame Synthesized Frames

Figure A.35: Multitask Video Generation. Additional results on UniPi’s generated video
plans on different new tasks in the multitask setting.

Additional Results on Multi-Environment Transfer
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Close small box flaps

Lift bowl

Put potato on plate

Input Frame Synthesized Frames

Put sweet potato in 
pot which is in sink 

distractors

Turn lever vertical to 
front distractors

Figure A.36: High Fidelity Plan Generation. Additional results on UniPi’s high reso-
lution video plans across different language prompts.

Additional Results on Real-World Transfer

A.6 Appendix for Learning Universal Simulators

In this Appendix we provide additional qualitative results on long-horizon simulation of
human and robot interactions (Section A.6.1), long-horizon VLM policies (Section A.6.1),
and low-level RL policies (Section A.6.1) that work on real robot. We also provided details
on the dataset used to train UniSim in Section A.6.2, the model architecture and training
details of UniSim in Section A.6.3, and the details of the three experimental setups for
applications of UniSim in Section A.6.4. Finally, we provide failed examples when UniSim
is not jointly trained on broad datasets (Section A.6.6). Video demos can be found at
anonymous-papers-submissions.github.io

A.6.1 Additional Results

Additional Long-Horizon Interaction

https://anonymous-papers-submissions.github.io/
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1. Close 
bottom drawer

4. Close top 
drawer

3. Put bottle in 
drawer

2. Open top 
drawer

1. Move sponge 
close to chips

3. Knock 
can over

2. Move can 
close to chips

Figure A.37: Additional results on long-horizon interaction with humans and robots. UniSim
can generate consistent video rollouts across 3-4 high-level language actions.
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Figure A.38: Additional results on applying UniSim to train vision-language policies to
complete long-horizon tasks. VLM finetuned with hindsight labeled data is able to generate
long-horizon instructions that moves two or three blocks successfully to match their location
in the goal image.

Additional Real-Robot Results for Long-Horizon Language Policy
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Additional Results on Learning RL Policy in UniSim
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Simulated last observation of each trajectory

Real first observation of each trajectory

Place your hand  
above the blue cube

Push the red circle  
towards center right

Slice yellow hexagon  
a bit right

Move the red star  
towards the red circle

Move the red star  
right and up a bit

Push the blue cube  
closer to the red circle

Push the yellow heart  
above the blue triangle

Slightly move the green circle 
downwards

Place your arm to the  
left of the red star

Separate the green circle  
from green star

Push the yellow heart  
at the bottom of the green star

Move the red circle  
into the green star

Move the yellow hexagon to 
the top left of the board

Place the green circle to  
the bottom of the blue cube

Separate the red star  
from the red circle

Separate the green circle  
from green star

Place your hand  
above the blue cube

Push the red circle  
towards center right

Slice yellow hexagon  
a bit right

Move the red star  
towards the red circle

Move the red star  
right and up a bit

Push the blue cube  
closer to the red circle

Push the yellow heart  
above the blue triangle

Slightly move the green circle 
downwards

Place your arm to the  
left of the red star

Separate the green circle  
from green star

Push the yellow heart  
at the bottom of the green star

Move the red circle  
into the green star

Move the yellow hexagon to 
the top left of the board

Place the green circle to  
the bottom of the blue cube

Separate the red star  
from the red circle

Separate the green circle  
from green star

Figure A.39: First real observations and last simulated observations of rolling out the RL
policy trained in UniSim.
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Real-robot last observation of each trajectory

Real first observation of each trajectory

Put the red star  
towards the blue cube

Move the blue cube  
next to the green circle

Put the yellow pentagon  
towards the blue cube

Move the blue cube  
close to the green circle

Slide the red circle  
next to the yellow pentagon

Put the yellow pentagon 
 to the blue cube

Move the blue cube  
close to the green circle

Slide the red circle  
next to the yellow pentagon

Put the yellow pentagon 
 to the blue cube

Put the red star  
towards the blue cube

Move the blue cube  
next to the green circle

Put the yellow pentagon  
towards the blue cube

Move the blue cube  
close to the green circle

Slide the red circle  
next to the yellow pentagon

Put the yellow pentagon 
 to the blue cube

Put the red star  
towards the blue cube

Move the blue cube  
next to the green circle

Put the yellow pentagon  
towards the blue cube

Learned reward model output

Figure A.40: First real observations and last real observations of executing the RL policy
trained from UniSim in the real world in zero-shot. Middle plot also shows the output
of the learned reward model (steps-to-completion) during policy execution, where step 0
corresponds to the top plot (initial observation) and step 70 corresponds to the bottom plot
(final observation).
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A.6.2 Datasets

We provide the datasets used to train UniSim below, including dataset name, number of
training examples (approximate), and weight in the data mixture. Miscellaneous data are
collections of datasets that have not been published. Some of these datasets have been
processed into train and validation split, hence the number of training examples may differ
from the original data size. When text are available in the original dataset, we use T5
language model embeddings [385] to preprocess the text into continuous representations.
When low-level controls are available in the original dataset, we encode them both as text
and normalize then discretize them into 4096 bins contatenated with language embeddings
(if present). The choice of mixture weights are either 0.1 or 0.05 without careful tuning. How
data mixture weights affect simulation performance is an interesting line of future work.

Dataset # Examples Weight

Simulation
Habitat HM3D [18] 710 0.1

Language Table sim [156] 160k 0.05

Real Robot

Bridge Data [387] 2k 0.05

RT-1 data [19] 70k 0.1

Language Table real [156] 440k 0.05

Miscellaneous robot videos 133k 0.05

Human activities

Ego4D [402] 3.5M 0.1

Something-Something V2 [411] 160k 0.1

EPIC-KITCHENS [410] 25k 0.1

Miscellaneous human videos 50k 0.05

Panorama scan Matterport Room-to-Room scans [504] 3.5M 0.1

Internet text-image
LAION-400M [413] 400M 0.05

ALIGN [505] 400M 0.05

Internet video Miscellaneous videos 13M 0.05

Table A.4: Dataset name, number of training examples, and mixture weights used for training
UniSim.
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A.6.3 Architecture and Training

We the 3D U-Net architecture to parametrize UniSim video model. We apply the spatial
downsampling pass followed by the spatial upsampling pass with skip connections to the
downsampling pass activations with interleaved 3D convolution and attention layers as in
the standard 3D U-Net. The video models in UniSim consist of one history conditioned
video prediction model as the base and two additional spatial super-resolution models sim-
ilar to [28]. The history conditioned base model operates at temporal and spatial resolu-
tion [16, 24, 40], and the two spatial super-resolution models operate at spatial resolution
[24, 40]→ [48, 80] and [48, 80]→ [192, 320], respectively. To condition the base video model
on the history, we take 4 frames from the previous video segment and concatenate them
channelwise to the noise samples inputted to the U-Net. We employ temporal attention
for the forward model to allow maximum modeling flexibility but temporal convolution to
the super-resolution models for efficiency reasons similar to [28]. The model and training
hyperparamters of UniSim are summarized in Table A.5.

Hyperparameter Value

Base channels 1024
Optimizer Adam (β1 = 0.9, β2 = 0.99)
Channel multipliers 1, 2, 4
Learning rate 0.0001
Blocks per resolution 3
Batch size 256
Attention resolutions 6, 12, 24
Num attention heads 16, 16, 8
Conditioning embedding dimension 4096
Conditioning embedding MLP layers: 4
Conditioning token length 64
EMA 0.9999
Dropout 0.1
Training hardware 512 TPU-v3 chips
Training steps 1000000
Diffusion noise schedule cosine
Noise schedule log SNR range [-20, 20]
Sampling timesteps 256
Sampling log-variance interpolation γ = 0.1
Weight decay 0.0
Prediction target ϵ

Table A.5: Hyperparameters for training UniSim diffusion model.
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A.6.4 Details of Experimental Setups

Details of Learning Long-Horizon Policy Language Table Dataset and environ-
ment. The Language Table [156] dataset consists of 160k simulated trajectories and 440k
real trajectories where each trajectory contains a language instruction (e.g., “move blue
cube to the right”), a sequence of visuomotor controls, and a sequence of image frames cor-
responding to the execution of the task. The original trajectories have short horizons (e.g.,
only moving one block).

PALM-E VLM Policy. We modify the original PALM-E 12B model [414] to condition
on a goal image as additional input before decoding the text actions. The VLM is finetuned
on either the original short horizon data or the long horizon simulated data using 64 TPUv3
chips for 1 day. The supervision for short-horizon baseline is the single step language in-
struction in the original data, whereas the supervision for long-horizon UniSim data is the
scripted long-horizon language instructions chained together that generated the video data.
Other model architecture and training details follow [414].

Simulated evaluation. In setting up goal in the simulated environments, a subset of
3-4 blocks (randomly selected) are moved by 0.05, 0.1, or 0.2 along the x,y axes (randomly
selected). The original observation space has x ∈ [0.15, 0.6] and y ∈ [−0.3048, 0.3048]. So the
modification of goal location corresponds to meaningful block movements. For executing the
long-horizon VLM policy trained on UniSim data, we first sample one language instruction
from the VLM, predict a video of 16 frames, and use a separately trained inverse dynamics
model similar to [427] to recover the low-level control actions, which we found to slightly
outperform directly regressing on control actions from language outputs of the VLM. We
execute 5 instructions in total, and measure the final distance to goal according to the ground
truth simulator state. We 5 evaluations each with a different random seed for sampling the
initial state and resetting the goal, and report the mean and standard error.

Details of RL Policy Training Stage 1 (Supervised Learning) Model Architec-
ture The PaLI 3B model trained on Language-Table uses a Vision Transformer architecture
G/14 [398] to process images, and the encoder-decoder architecture of UL2 language model
for encoding task descriptions and decoding tokens which can represent language, control
actions, or other values of interest (described below). Objectives In the first stage of train-
ing, using a dataset of demonstrations, we finetune the pretrained PaLI 3B vision language
model checkpoint [148] with the following tasks:

• Behavioral Cloning: Given observations and task instruction, predict the demon-
stration action. The continuous actions of the Language-Table domain are discretized
into the form “+1 -5”, and represented using extra tokens from the PaLI model’s
token vocabulary. As an example, “+1 -5” is represented by the token sequence
(<extra id 65>, <extra id 1>, <extra id 66>, <extra id 5>).

• Timestep to Success Prediction: Given observations and task instruction, predict
how many timesteps are left until the end of episode (i.e. success). Similar to actions,
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the number of steps remaining is represented via extra tokens from the PaLI model’s
token vocabulary.

• Instruction Prediction: Given the first and last frame of an episode, predict the
task instruction associated with that episode.

We use learning rate 0.001, dropout rate 0.1, and batch size 128 to finetune the PaLI 3B
model for 300k gradient steps with 1k warmup steps on both the simulated and real Language
Table dataset similar to RT-2 [415].

Stage 2 (RL Training) Reward Definition As mentioned above, during Stage 1, given
an observation and goal, the PaLI model is finetuned to predict how many timesteps are left
until the demonstration episode reaches a success state. Let us denote this function by d(o, g).
The reward we use during RL training is defined as r(ot, at, ot+1, g) = −[d(ot+1, g)−d(ot, g)]·C,
where C > 0 is a small constant used to stabilize training (C = 5e − 2 in this work). Intu-
itively, this reward tracks if from timestep t to t+1 the policy arrived closer to accomplishing
the desired goal. Before starting Stage 2, we make a copy of the Stage 1 model checkpoint
and keep it frozen to use as the reward model for RL training. Environment Definition To
implement video generation as environment transitions, we expose the inference interface of
the video generation model through remote procedure call, and use the DeepMind RL Envi-
ronment API (also known as DM Env API) [11] to wrap the remote procedure call in the step
function of the environment. When the environment is reset to start a new episode, a goal in-
struction is randomly sampled from the ones available in the dataset of demonstrations used
in Stage 1. RL Method We initialize the RL trained policy using the Stage 1 checkpoint,
which as mentioned was also trained with a Behavioral Cloning objective. A collection of ac-
tor processes perform policy rollouts in the video generation environment, and add rewards to
the trajectories using the reward model defined above. The policy is updated using the RE-

INFORCE [63] objective, i.e. ∇πL(ot, at, g) = ∇π log π(at|ot, g)·
[∑T

i=t γ
i−t · r(oi, ai, oi+1, g)

]
,

where L(ot, at, g) represents the loss associated with the observation-action pair (ot, at) in
an episode with the goal g. The actors are rate limited to prevent generated trajectories
from being very off-policy. We report the hyperparameters associated with RL training in
Table A.6.

Hyperparameter Value

Max steps per episode 100
Number of actor processes 64
Number of image history stack 2
Learner batch size 64
Discounting factor γ 0.9

Table A.6: Hyperparameters for training the VLA RL policy using the ACME framework.
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Details of Video Captioning Note that even though UniSim is a video based simulator
trained to condition on past history, we can achieve text-only conditioning by inputting
placeholder frames such as white images while increasing the classifier-free guidance strength
on text. We found this to work well in generating videos purely from captions of ActivityNet
Captions. For generating data to train VLMs, we take the training split of ActivityNet
Captions which consists of 30,740 text-video examples after the 50/25/25% train/val1/val2
split as in [419]. For each of the 30,740 text, we generate 4 videos from UniSim, and use
the text labels as supervision in finetuning PaLI-X. As a result, we have 4X amount of the
original training data (in terms the number of videos). In addition, we found the generated
videos to generally align better semantically than the original ActivityNet Captions videos,
which could contain noise and ambiguous videos that could be labeled differently. We use
ground truth temporal proposals at evaluation following [419] and [400]. Following [419], we
use the val1 split for validation and val2 split for testing.

A.6.5 Additional Ablations

Ablations of Datasets We conduct ablations on dataset used in UniSim by computing
the FVD and CLIP scores over 1024 samples from the test split. We observe that including
internet data and various activity and robot data performs the best. Removing the internet
data led to significantly worse FVD, highlighting the importance of using internet data in
UniSim.

Dataset FVD ↓ CLIP ↑
Internet only 219.62 22.27
Without internet 307.80 21.99
Universal simulator 211.30 22.63

Table A.7: Ablations of datasets using FVD and CLIP score on the held-out test split.
Including internet data and diverse human activity and robot data in UniSim achieves the
best FVD and CLIP scores.

Ablations of Model Size We conduct ablations on model size by computing the FVD
and CLIP scores over 1024 samples from the test split. We found that while increasing the
model size improves the video modeling performance, the amount of improvement measured
by FVD plateaus as the model gets bigger, which is slightly disappointing from a scaling
point of view.
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Model size FVD ↓ CLIP ↑
500M 277.85 22.08
1.6B 224.61 22.27
5.6B 211.30 22.63

Table A.8: Ablations of model size using FVD and CLIP score on the held-out test split.
The largest model achieves the best FVD and CLIP scores.
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A.6.6 Failed Simulations without Joint Training

Figure A.41: Failed environment simulation from the action “uncover bottle” without train-
ing on broad data as in UniSim. Top two videos are generated from only training on SSV2.
Bottom two videos are generated from only training on generic internet data (without SSV2,
EpicKitchen, Ego4D, and various robotics dataset).

A.7 Appendix for Efficient Adaptation of Video

Generation

In the section of the appendix Appendix we provided a detail derivation of connection be-
tween diffusion models and EBMs in Section A.7.1. We further provide additional exper-
imental details in Section A.7.2. Finally, we provide a comparison with using the same
computational budget to finetune the existing large pretrained model in Section A.7.3.
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A.7.1 Connection between Diffusion and EBM

The sampling procedure in a diffusion model corresponds to the Langevin sampling proce-
dure on an EBM. To see this, we consider perturbing a sample τ t−1 ∼ p (τ t−1) from target
distribution p(τ t−1) with a Gaussian noise, i.e.,

τ t = τ t−1 + ξ, ξ ∼ N
(
0, σ2

t I
)

which corresponds to the transition operator

T (τ t|τ t−1) ∝ exp

(
−∥τ t − τ t−1∥2

2σ2
t

)
where the joint distribution of τ t and τ t−1 is

p(τ t, τ t−1) ∝ exp

(
ψ
(
τ t−1

)
− ∥τ

t − τ t−1∥2
2σ2

t

)
.

We can express the Bayes estimator of τ t−1 given the perturbed observation τ t as

m(τ t) =

∫
τ t−1pθ(τ

t−1|τ t)dτ t−1 = τ t + σ2
t∇ log p

(
τ t
)

(A.160)

Proof. By the property of Gaussian distribution, we have

σ2∇x′p (x′|x) = p (x′|x) (x− x′) . (A.161)

Therefore, we have

σ∇x′

∫
p (x′|x) p(x)dx =

∫
(x− x′) p (x′, x) dx =

∫
xp (x′, x) dx− x′p(x′)(A.162)

⇒ σ∇x′ log p (x′) =

∫
x
p (x′, x)

p (x′)
dx− x′ = E [X|x′]− x′ (A.163)

Thus, we can represent the perturbed data with an EBM p(τ t) ∝ exp (Eθ (τ t, σt)), and
learn the parameters through regression [455, 506, 507, 456], which leads to the optimal
solution

min
θ

Eτ t−1∼D,ξ∼N(0,σ2
t I)

[∥∥τ t−1 −m(τ t)
∥∥2]

= Eτ t−1∼D,ξ∼N (0,σ2I)

[∥∥−ξ −∇Eθ (τ t−1 + ξ, σt
)
)
∥∥2] , (A.164)

whch also corresponds to the denoising diffusion training objective.
Once we have the trained Eθ (τ t), we can then recover the sample τ t−1 according the

denoising sampling procedure

τ t−1 = αtm(τ t) + αtξ = αt(τ t − γ∇τ tEθ
(
τ t, σt

)
) + αtξ, ξ ∼ N

(
0, σ2

t I
)

(A.165)

which corresponds to the sampling via stochastic localization [508] and Equation 6.5 in the
main paper.
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A.7.2 Experimental Details

Experiment Details

Dataset The large pretrained model is trained on 14 million video-text pairs plus 60 million
image-text pairs, and with the LAION-400M image-text dataset. The images are spatially
resized to 24x40 and videos using anti-aliased bi-linear resizing. We use different frame rate
for different types of videos for best visualization results. For the Bridge [387] we directly
use the released opensource dataset. For Ego4D [402] data, we take a small portion of
the released dataset. For Anime and Sci-Fi style, we curate two separates datasets with
their respective keywords. The keywords used for filtering data for Anime style are (in small
letter) “disney”, “cartoon”, “anime”, “animation”, “comic”, “pixar”, “animated”, “fantasy”.
The keywords used for filtering data for Sci-Fi style are “science fiction”, “sci-fi”, “scifi”,
“astronaut”, “alien”, “NASA”, “interstellar”. For the animation with a particular artist
style, we use the Case Closed animation (also named Detective Conan). For the Language
Table dataset, we used the data from [459].

Dataset Pretrain Bridge Ego4D Anime Sci-Fi Case Closed LangTable Sim LangTable Real

# Train 474M 2.3k 97k 0.6M 21k 5k 0.16M 0.16M

Table A.9: Training data size. Number of text-video or text-image pairs used for training the
pretrained large model and each of the small model. Training data for particular styles can be
magnitude smaller than the pretraining dataset.

Architecture. To pretrain the large model, we use the same pretraining dataset, base
architecture, and training setup as [28], with modifications of first-frame conditioning for
Bridge and Ego4D, and edge conditioning for stylisation and sim-to-real. Specifically, the
large model architecture consists of video U-Net with 3 residual blocks of 1024 base channels
and channel multiplier [1, 2, 4], attention resolutions [6, 12, 24], attention head dimension
64, and conditioning embedding dimension 1024. To support first frame conditioning, we
replicate the first frame across all future frame indices, and concatenate the replicated first
frame channel-wise to the noisy data following [427]. To support edge conditioning, we run
a sobel edge detector and use gradient approximations in the x-direction as the conditional
video, and concatenates these edge frames with noisy data similar to first-frame conditioning.
The large model consists of 5.6 billion parameters in total. For the set of small models for
adaptation, Ego4D Small (L) has 512 base channels in each of the residual blocks. Ego4D
Small (S) and Bridge Small (S) have a single residual block with 32 base channels. Bridge
Small (L) has a single residual block with 64 base channels. The set of stylisation models
(animation, sci-fi, and particular anime style) have 3 residual blocks and 256 base chan-
nels. For illustrating the generated videos at a higher resolution, we train two additional
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spatial super resolution models 24x40 → 48x80 (1.4B) and 48x80 → 192x320 (1.2B). We
additionally use T5-XXL [385] to process input text prompts which consists of 4.6 billion
parameters, which we omit from the parameter count as all large and small models require
text embeddings.

Training and Evaluation. We train each of our video diffusion models for 2M steps
using batch size 2048 with learning rate 1e-4 and 10k linear warmup steps. The large 5.6B
pretrained model requires 512 TPU-v4 chips, whereas various small models require anywhere
between 8 and 256 TPU-v4 chips depending on the size. We use noise schedule log SNR
with range [-20, 20]. We use 128 samples and 1024 samples to compute the FVD, FID, and
Inception Scores metric on Bridge and Ego4dD, respectively.

Sampling. All diffusion models are trained with 1000 timesteps of sampling. To generate
videos, we combined scores from both pretrained models and adapter models for all timesteps
except the last 100 timesteps. The last 100 timesteps capture high frequency information in
an image, and we found better image quality if we did not combine scores in these timesteps.
For simplicity, we use a pretrained neural strength of 0.2 for Ego4D and 0.1 for Bridge, and
0.4 for all animation datasets, but found additional gains when using large neural strength
at earlier timesteps and smaller ones later.
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Figure A.42: When the text-to-video model behind UniSim is only trained on data from
[19] as opposed incorporating broad data from the internet and other manipulation datasets,
long-horizon interaction simulations fail half of the time (red text).
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A.7.3 Comparison to Finetuning

To illustrate the computational efficiency of Video Adapter, we further compare video mod-
eling metrics of Video Adapter to finetuning the pretrained model for an equivalent number
of TPU time. Specifically, the pretrained model requires 512 TPU-v4 chips whereas the
small model on Bridge data requires 8 TPU-v4 chips. The small Bridge model requires 100k
steps to reach convergence, and hence we finetune the pretrained model for 100,000 / 64 =
1,560 steps. Video Adapter achieves better FVD and FID than finetuning the pretrained
model for an equal number of TPU steps as shown in Table 6.9.

A.7.4 Composing Multiple Factors

Given a set of N separate datasets {Di}i=1:N specifying a set of N different styles of videos,
we can also apply our probabilistic adaptation framework across these N models by learn-
ing N separate distributions {pi(τ |text)}i=1:N . We can directly sample from the product
distribution

pproduct(τ |text)︸ ︷︷ ︸
Product Distribution

∝ ppretrained(τ |text)︸ ︷︷ ︸
Pretrained Prior

∏
i=1:N

pi(τ |text)︸ ︷︷ ︸
N Different Video Models

, (A.166)

which now assigns high likelihood to videos that exhibit each of the composed styles.
We can directly sample from this composed model using the modified composite denoising

function

ϵ̃θ(τ, t|text) = ϵθ(τ, t) + ω
N∑
i=1

(ϵi(τ, t|text) + λϵpretrained(τ, t|text)− ϵi(τ, t)),

which simply corresponds to using a weighted average over the predictions of each of the N models.

A.7.5 Comparison to Parameter Efficient Finetuning

The problem setting of Video Adapter is that pretrained model weights are not accessible.
This scenario is common in large language models (e.g., GPT-4, Bard), and large text-to-
video models are heading in the same direction. Parameter efficient finetuning (e.g., LoRA,
null-text inversion, prefix-tuning) requires access to pretrained model weights, whereas Video
Adapter does not. Therefore Video Adapter is not comparable to parameter efficient fine-
tuning.

Nevertheless, we conducted comparisons to LoRA and null-text inversion out of curiosity
(prefix-tuning is omitted since it has only been applied to language models). For LoRA,
we use rank 1 and rank 64 to compare to the smaller and larger task-specific VideoAdapter
model. For null-text inversion, we use an unconditional null embedding of size [64, 4096] (the
same dimension as the original text embeddings). We report the video modeling metrics in
Table A.10.
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Bridge Ego4D

Model FVD ↓ FID ↓ FVD ↓ IS ↑
Small (S) 186.8 38.8 228.3 2.28
Small (S) + Pretrained 177.4 37.6 156.3 2.82
Small (L) 152.5 30.1 65.1 3.31
Small (L) + Pretrained 148.1 29.5 52.5 3.53
LoRA-Rank1 170.2 32.2 74.5 3.4
LoRA-Rank64 165.5 31.6 50.3 3.5
Null-text inversion 288.8 40.2 90.2 3.1

Table A.10: Comparison of Video Adapter to parameter efficient finetuning under fixed
compute budget. Video Adapter performs close to LoRA-Rank64 on Ego4D and better than pa-
rameter efficient finetuning on Bridge.

We observe that LoRA-Rank1 performs slightly better than Video Adapter (small). How-
ever, In the LoRA-Rank1 case, LoRA still performs worse than training a small domain
specific model. In this case, Video Adapter can simply use the small model without the
pretrained prior. In comparison, we found LoRA-Rank64 leads to mixed results when com-
pared to Video Adapter (large), i.e., LoRA outperforms Video Adapter on Ego4D but not
on Bridge data. We found that null-text inversion performs the worst, potentially due to
limited flexibility of null-embeddings during finetuning.

Our results illustrate that Video Adapter, despite requiring only black-bo adaptation
without access to pretrained model weights performs better than Null-text inversion and
very comparably to LoRA finetuning (with pretrained model weights).
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