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Abstract

Procedural content generation (PCG), the process of algorithmically creating game components
instead of manually, has been a common tool of game development for decades. Recent advances
in large language models (LLMs) enable the generation of game behaviors based on player input at
runtime. Such code generation brings with it the possibility of entirely new gameplay interactions
that may be di�cult to integrate with typical game development work�ows. We explore these
implications through GROMIT, a novel LLM-based runtime behavior generation system for Unity.
When triggered by a player action, GROMIT generates a relevant behavior which is compiled
without developer intervention and incorporated into the game. We create three demonstration
scenarios with GROMIT to investigate how such a technology might be used in game development.
In a system evaluation we �nd that our implementation is able to produce behaviors that result in
signi�cant downstream impacts to gameplay. We outline a future work agenda to address these
concerns, including the need for additional guardrail systems for behavior generation.
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Figure �: Example of runtime behavior generation in an adventure game. When the player
initiates an interaction with no developer-de�ned output, the generation system is
invoked, creating the name, description, and code de�ning the behavior of a new
object to complete the interaction. The behavior code is compiled without developer
intervention and the resulting object is incorporated into the game.

� Introduction

In game development there are well established practices to generate game content algorithmically
rather than manually, in a processes known as Procedural Content Generation (PCG). PCG use
cases range from relatively straightforward tools for speeding up game development, to game-
de�ning systems enabling novel player experiences. PCG tools have been developed to generate
most types of game content, from textures to animations to entire virtual worlds. Amajor exception
is game behaviors, the programmed rules, mechanics, and actions that de�ne how the game itself
is played. Due to their open-ended nature, game behaviors have so far largely stayed beyond the
purview of generative systems. Traditional methods of procedural generation require the design
space to be parameterized in some way, and parameterizing the design space of game behaviors
requires severe restrictions that limit the scope of the generation. For instance, there is no clear
way to parameterize "power-ups for a platformer game", but LLMs have no trouble creating designs
for such a feature.

�



Recent advancements in the capabilities of Large Language Models (LLMs) promise to solve
the technical side of this problem. LLMs don’t require a properly de�ned design space, and so are
promising candidates for navigating the semantic ambiguity inherit in game behavior requests.
An import distinction in generative systems is whether the output content is �rst viewed by

developers during the game’s initial development, or by players afterwards. In this paper we use
the terms devtime and runtime to describe each scenario respectively�. There is nothing inherently
limiting this sort of behavior generation to tools used by developers in a devtime context. Imple-
menting Runtime Behavior Generation (RBG) would allow for more personalized interaction
with individual players. Compared to a devtime system, runtime systems can incorporate player
input, and can cover a larger potential design space than could be manually checked by a developer.
Optimistically, this method of behavior generation can enable entirely new forms of gameplay
and player agency, and o�er a new dimension of exploration. What would a runtime gameplay
behavior generation system look like, concretely? How might game developers go about creating
and incorporating such a system?

In this paper we begin exploring these questions through a design probe. We created a system
capable of runtime gameplay behavior generation, and used it to create three demos of possible
use-cases. We then ran these demos through quantitative tests to outline the e�cacy of such a
system, and highlight certain development pitfalls.

� Related Work

�.� Procedural Content Generation

Procedural Generation, the act of creating data algorithmically rather than manually, is a common
approach to e�ciently creating a large amount of content. PCG systems have been used in many
stages of game development and for most game systems [��] Tools like Material Maker allow
developers to quickly generate textures and materials [��]. A large library of systems exists for
generating foliage [��, ��]. While these tools can be used while a game is being developed, many
of the most notable PCG systems are run without direct developer oversight. Brewer analyzes
the ��-year legacy of Rogue, this in�uential game’s procedurally generated dungeons and items

�These terms heavily overlap with the de�nitions of ‘online’ and ‘o�ine’ used in prior PCG work, which describe
whether the content generation occurs after or prior to the game being shipped to players, although they di�er in
some key edge cases. For example, in No Man’s Sky the game universe was generated prior to the game’s release,
but is far too large for any signi�cant portion to have been manually checked by developers prior to the shipping.
In this case the world generation is technically o�ine, but is still considered runtime by our de�nition.
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Assets Behaviors
Devtime Speedtree [��]

Material Maker [��]
Ludi [�]

Runtime Rogue [�]
Minecraft [��]

GROMIT

Table �: Generation types of a sample of prior work in game development contexts, along with the
GROMIT RBG system introduced in this paper.

enhanced its exploration and replay potential, and inspired the massively popular "roguelike" video
game genre [�]. Games such as Minecraft [��] and No Man’s Sky [��] use procedural generation to
create entire virtual worlds for players to discover. World generation systems that additionally
account for player challenge have also been developed [�]. Nitsche et. al. demonstrate a world
generation system capable of combining player input with procedural methods [��]. Beyond these
straightforward examples, Compton et. al. note that generative methods have been used for many
systems that may not typically be considered "Content" [�].

Procedural Content Generation has also been applied to the rule sets and behaviors of a game.
The design spaces of full game genres or mechanics are too large to be reasonably parameterized,
so prior work has explicitly chosen sub-spaces to work with[��]. Togelius and Schmidhuber used
a discrete ��x�� grid populated with a player controlled agent and various colored objects, then
used an evolutionary system to create games based on the grid layout and object behavior [��].
Browne et al. developed the Ludi system, which generates board games in the style of tic-tac-toe
or Go [�]. Chu et al.’s BPAlt system allows a developer to parameterize a design space in the Unreal
engine, and then explore that space in a structured manner [�]. In all cases, explicit restrictions on
game rules are given which allow for a structured search of the design space. This requires some
level of human designer involvement, so these tools are devtime. A grid organizing some of these
prior works along with the prototype RBG system used in this paper can be seen in Table �. By
exchanging explicit restrictions with semantic requests, we can develop systems that interpret
user input for design restrictions in a runtime setting.
Khaled et. al. provide a set of metaphors describing the uses of PCG systems. Systems can be

treated as a Tool, used by a developer as part of the game design process. Systems can also be seen
as Designers which undertake design tasks alongside human developers, and as Materials which
are dynamically generated [��]. Which metaphors are used a�ects how a PCG system is thought
of by designers and developers, and in this paper we note how these metaphors can be applied to
a RBG system.
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�.� Runtime Generative AI in Video Games

In game development, use of devtime Generative AI systems is already somewhat common. The
GDC ���� State Of The Game Industry Report shows ��% of developers use some form of Generative
AI tools such as ChatGPT, DALL-E, and GitHub Copilot [��]. Tools are also being built speci�cally
for game development. Muse is a suite of AI tools for Unity, which allows developers to prototype
code, �D art, animations, and conversation text-trees [��].

Systems also exist for the runtime scenario. Rieder demonstrated that a machine learning based
system could be used as a game mechanic to power a runtime generative material [��]. In the
industry space, In�nite Craft is a sandbox game where the player combines object icons to form
an endless number of new objects [�]. In a similar vein, Suck Up! is a comedy adventure game
where the player takes the role of a vampire convincing AI-powered townsfolk to let the vampire
into their house [��].

Volum et al. use a large language model to write API code for piloting a character in the popular
video game Minecraft [��]. The agent is able to chain API function calls in response to user
prompting, and can coordinate with human-controlled characters to perform complicated in-game
tasks such as mining for speci�c items and solving escape-room puzzles. Inworld.ai is a commercial
software for creating AI non-playable characters (NPCs) for video games [��]. While Inworld gives
developers a high degree of control over how the NPCs will behave narratively by prompting
the agent’s personality and knowledge of the virtual environment, the NPC’s ability to interact
with the in-game world is largely left up to the developer to implement. These are all examples of
runtime content generation that follow behaviors manually created by the developers, RBG di�ers
in that the possible actions themselves can also be generated.
While not speci�c to games, Park et. al.’s Generative Agents system also tackles the problem

of piloting characters through a virtual environment called Smallville, and takes the approach of
using LLMs to directly manage Smallville as well as the agents [��]. The state of virtual objects
is determined by natural language prompts, which allows the generative agents to interact with
their environment in the same format they run on internally. This has the bene�t of making
the Smallville robust to changes made by the agents, so most actions made by agents can have a
true e�ect on the game state. This makes Smallville an example of a true RBG system. However,
since each interaction equates to at least one LLM query, this approach would not scale to full
sized real-time games. To be playable on a personal computer RBG systems still require most
moment-to-moment gameplay to be handled by traditional code.
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Figure �: System Diagram for GROMIT. The input system, scene understanding, LLM, and output
system are highlighted in orange, blue, green, and purple respectively. Once triggered,
the input system combines implicit and manual input. This is then combined with the
semantic scene graph to create an input form, which is sent to the LLM. Code from
the LLM output is compiled and added to the virtual environment. If compilation fails,
the error is sent to the LLM and the request is retried. Depending on the application,
manual input may not be used and miscellaneous output may change.

�.� Scene Manipulation

Behavior generation depends upon the context of the scene inside which objects exist. Attempts
to achieve scene understanding and manipulation date back to ���� with the SHRDLU system
[��], where its users could move colored blocks using natural language. A shared approach to
the representation of virtual environments is through the use of a Semantic Scene Graph (SSG),
which structures the environment in terms of nodes and links, representing spatial relations. SSGs
provide adaptivity to �D interaction tasks [�], allow semantic control over generated content [�],
and function in a way to generate and manipulate �D scenes [��]. We use SSGs to interface an
LLM with a �D environment.

LLMR is a complete GenAI scene manipulation tool, including object and animation generation
and behavior generation [�]. They focus on the explicit prompts to the generative system; we are
interested in how our RBG system a�ects game developers’ work�ows.
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� Runtime Behavior Generation

Our analysis of related work indicates that Runtime Behavior Generation systems suitable for
realtime games have been under-explored. As such, we elected to take a research-through-design
approach to investigate systems of this nature. We built an example of a runtime behavior
generation system, and used it to construct three demo experiences that sample the space of
possible use cases.

Theways in which runtime behavior generation systems can be used in a game can be partitioned
into three main types:

�. Fully Generative Games: Generating a signi�cant portion of all behaviors at runtime,
resulting in a game that largely adapts itself to the wants of any particular user. In this case,
the generative system has a large degree of control over the whole game.

�. Partially Generative Games: Manually creating key game behaviors, but generating
edge-case behaviors as they are encountered by the player. In this case, the generative
system has a small degree of control over the whole game.

�. Games With Generative Mechanics: Some combination of the �rst two cases, choosing
a particular section of the game to utilize behavior generation, and keeping the rest hand-
crafted. In this case the generative system has a large degree of control over a small portion
of the whole game.

Each of our demos embodies one of these use cases, and we use the demos to evaluate our RBG
system’s capabilities, as well as a demonstrative tool to help with communicating these use cases
in interviews with game developers.

�.� System Design

To gain insights into the speci�c properties of a runtime behaviour generation system we built
an example of such a system, which we call GROMIT�. GROMIT generates behaviors by making
requests to a LLM for program code which it then compiles and runs.
Where prior behavior generation systems restrict their design space through explicit param-

etarization, GROMIT’s restrictions come from a combination of prior context of the game’s
code/setting and the plain-text request prompt. This is an important distinction from �lling out a
�Named after the scene in the Wallace and Gromit animated series where Gromit lays tracks for a train as the train is
running.
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pre-formatted API. The generality of this format is what allows the system to truly generate novel
behaviors and is also the root cause of many of the issues that will be discussed in section �.

GROMIT is built for the Unity�D game engine and uses GPT-� as its LLM. These choices were
made primarily due to our team’s prior experience with these tools. In Unity, game scenes are
built up of a collection of entities, called GameObjects, each with an attached set of components.
Most components are typed as Monobehaviors, which typically express a single behavior/attribute
associated with the GameObject. At a high level, GROMIT works by recording a prompt for a
desired behaviour, combing this prompt with contextual scene information, and then sending
the request to a GPT-�. Depending on the usecase, the initial prompt may be created directly
by the player, or indirectly based on their in-game actions. The request is always framed as
requiring a JSON string containing C# code as part of the response, but may also require secondary
information. GROMIT then takes the response from GPT-� and compiles the C# code. The method
of prompt recording, and the way in which the compiled code is linked to the rest of the project,
di�ers depending on the use-case scenario.
The C# compilation system was adapted from a project by Sebastian Lague [��], and contains

several compilation tricks to compensate for programming errors GPT-� consistently makes.
For instance, GPT-� regularly does not include import statements and class names in the code
snippets it returns. Rather than attempting to prompt engineer the LLM to add these features,
which produces inconsistent results, we simply detect if the features are missing before script
compilation, and add default imports and dummy class wrappers if necessary. Additionally, if a
compilation error occurs GROMIT will re-prompt the LLM and include the compilation error. The
general system diagram for GROMIT is shown in Figure �, details of the input and output systems
change depending on how the behavior generation is being used.

Scene information is formatted using a Semantic Scene Graph (SSG), as shown in Figure �. The
SSG represents each object in the Unity�D scene as a node, encompassing information such as the
object’s name, description, and spatial data. These nodes are arranged in a hierarchy to re�ect
spatial and relational aspects of the scene. In the GROMIT implementation, nodes are manually
de�ned by the developer, and are organized in their hierarchy based on a combination of their
size/shape and their position in the existing Unity transform hierarchy. As objects move around
during gameplay, events are triggered which recompute local portions of the SSG. Automatic
methods for generating SSGs exist [��], however for our purposes of exploring behavior generation
we found a simple manual implementation was su�cient.

This structure facilitates the conversion of the �D scene into a JSON format, making it a text-
based representation that is compatible with LLMs. A signi�cant feature of the SSG is its ability
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(a) In-Game Scene (b) Semantic Scene Graph

Figure �: A sample game scene, and its resulting semantic scene graph. Each vertex in the
graph contains additional data regarding its coordinates, behaviors, and text description.
Vertices are labeled manually by the designer, and their position within the scene graph
is calculated at runtime.

to �lter nodes of its graph based on keywords derived from user input, streamlining the data
processed by the LLM. For example, in the scene shown in Figure � if the initial prompt only
mentions the table, then objects outside the house may be trimmed from the SSG before it is added
to the prompt. This is done in the spirit of Retrieval-Augmented Generation, adding only the
relevant information necessary for the request [��]. The scene graph is dynamic and capable of
updating in real-time to re�ect changes within the �D scene, whether due to user interaction or
LLM-driven modi�cations.

Depending on it’s usecase, GROMIT can be seen through either of Khaled et. al.’sTool,Designer,
andMaterialmetaphors. Additionally, GROMIT can be used in an Explicit setting where a player
deliberately invokes the generation, or in an Implicit setting where the generation is triggered
by regular gameplay. Crucially, in implicit scenarios it may be possible to obfuscate that any
generation is occurring at all.
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(a) Blockland Scene (b) Tra�c Scene

(c) Escape Room Scene (d) Adventure Game Scene

Figure �: Screenshots of each demo scene, including written responses from GROMIT explaining
newly generated behaviors. �a Shows the Sandbox blockland scene, and the generation
system’s response to the verbal request "Make the apple �oat around and tell me how
you did it". �b shows the Tra�c scene for the Sandbox demo and GROMIT’s response
to the request "Shrink the buildings and tell me how you did it". �c shows the result of
interacting the torch with one of the bookshelves in the library, revealing the bookshelf
behind it. �d shows the player using a ‘�restorm’ spell that was created by GROMIT.

�.� Demo: Sandbox

In the Sandbox demo, GROMIT is used as a general tool for manipulating the environment. A
screenshot of one of the scenes used for the Sandbox demo is shown in Figure �a. Players click a
button to begin recording input, and then provide a command to the system. For example, if a
players says "make the apple spin", GROMIT will attach a script to the apple that makes it rotate
over time. The primary medium for these instruction is spoken audio processed with a Whisper
audio-to-text model. We utilized the Whisper-for-Unity asset [��], although direct calls to any
speech to text API would su�ce. The audio input can be supplemented with pointing gestures.
Pointing is an incredibly common type of gesture, and has been well explored in prior work [��].

By casting a ray from the user’s reticle we can determine which object the user was pointing to
and include this in the action. We also highlight the object for visual feedback to the user.
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The LLM is prompted to complete the request by either writing code for a static method to be
run once, or by writing a MonoBehaviour component to be added to a Unity GameObject. If the
LLM writes a MonoBehaviour, it also provides the name of the GameObject it must be added to.
From the player’s perspective, they request a behavior change, wait a few seconds, and then that
behavior change is manifested in the scene.

Two scenes were made for the Sandbox demo, a simple box scene called "Blockland" and a larger
city scene called "Tra�c". These scenes were used for investigating GROMIT’s ability to work in
di�erently constructed games, and are discussed in more detail in section �.�.

This demo shows how GROMIT can be used as an Explicit Tool for players. There is a speci�c
action, in this case a button press, that triggers the system, and the system is used to directly carry
out a request by the player.

�.� Demo: Escape Room

To explore the ability for GROMIT to generate new interactions from implicit input, we built the
Escape Room demo. In the Escape Room demo, players are placed in a library and told to �nd a way
to escape. The intended solution for the game is to search the library for a unique book. Behind the
book is a key that unlocks the door to the library. Besides the door, key, bookshelves, and unique
book, there are an additional �� objects in the library room. While the only human-programmed
interaction in the demo is the key opening the door, the UI action to trigger the interaction (holding
an object and pressing the ’e’ key) can be performed between nearly any pair of objects in the
scene.
GROMIT is triggered when the player attempts to interact with a pair of objects that don’t

already have a de�ned interaction. The LLM is prompted to write a method to be run when
the objects interact, as shown in Figure �. This prompt is generated based on the names and
descriptions of the interacting objects with no direct input from the player. Once the method is
compiled and run it is linked to the rest of the demo such that subsequent interactions between the
objects will call the method without triggering GROMIT. Each interaction consists of the method
itself, and a text description. For example, interacting a torch with a bookshelf may generate a
method that destroys the bookshelf object along with the description “Burns the bookshelf down
with the torch", as seen in Figure �c.

In this case, GROMIT is used as an Implicit Designer. The player never experiences the system
being explicitly invoked as in the Sandbox demo, instead the system is triggered as necessary
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Figure �: Implicit prompting process in the Escape Room demo. When a player performs an
interaction with no existing behavior, the scene context is used to automatically prompt
the LLM.

during the course of normal gameplay. GROMIT is also given a clear design task in not only
implementing an interaction with a method, but also deciding what that interaction should be.

�.� Demo: Adventure Game

The Adventure Game demo takes deliberate inspiration from the classic adventure game series
The Legend of Zelda, which often sees the player navigating through a dungeon (shown if Figure
�d) by �ghting enemies and solving puzzles. In the demo, the combat system has the player cast
"spells", and any two spells can be combined to form a new spell in the style of In�nite Craft [�].
The initial set of spells were manually created by the authors, and spell combinations are created at
runtime by GROMIT. The generation process can be seen in Figure �. The puzzle system consists
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(a) Success By Complexity (b) Success by Lines of Code (c) Success by Scene

Figure �: Success rate of requests in the Sandbox Demos. �a shows the success rate by the user-
supplied complexity on a � point scale. �b shows the success rate by the line length
of the script GROMIT attempted to run. �c shows the success rate by the scene the
requests were run in. Error bars in Figures �a and �c are for a ��% con�dence level.

of switches and keys that change the world state and allow the player to reach di�erent parts of
the dungeon. Unlike the combat system, GROMIT has no direct control over the puzzle system.

In this demo, GROMIT can be seen as an Implicit Material. Similar to the Escape Room demo,
the system is never invoked directly by the user. Where in the Escape Room demo GROMIT can
de�ne interactions between any two objects and these interactions can have any e�ects, in the
Adventure Game demo GROMIT can only write the behaviors of new spell objects. Spells created
by GROMIT can be fed back into GROMIT, so the entirety of the behavior generation in the demo
can be abstracted as a property of the spell objects. In this sense, spells in the demo are a generative
material powered by GROMIT.

� System Evaluation

�.� Explicit Scene Manipulation

To evaluate GROMIT’s ability to manipulate virtual scenes, we conducted a quantitative evaluation
consisting of making various behavior requests in the Sandbox demo. Two scenes were used in the
study. The �rst scene, Blockland, was a simple scene designed for testing GROMIT’s functionality
and was built with GROMIT in mind. Blockland is shown in Figures �a and �a. The second scene,
Tra�c, was a larger scale tra�c simulation imported from another project and is shown in Figure
�b. Tra�c was not built with GROMIT in mind.

Behavior requests were collected through a Mechanical Turk survey. Survey respondents were
instructed to provide � requests of varying complexity for GROMIT to perform for each of the
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two scenes: � simple, � medium, and � complex. �� surveys were given, which resulted in ���
unique requests after nonsensical or partial entries were removed.
Each request was run through GROMIT in its relevant scene and was marked by the authors

as "Successful" or "Unsuccessful" based on whether the script written by GROMIT eventually
compiled without errors and whether the e�ect of GROMIT’s output could reasonably be said to
complete the request. The length of GROMIT’s output for each request was also recorded.
Overall, across the ��� unique requests, GROMIT achieved a success rate of ��%, successfully

executing �� requests while failing in ��. Comparing success rates by the complexity assigned in
the survey submissions shows no correlation, as seen in Fig. �a. A Chi-Squared test between the
complexity groups did not show a signi�cant di�erence (for all pairs ? > .��). Linear regression
shows a negative correlation between success rate and the line length of code outputted by
GROMIT (Spearman’s A = �.����, ? < .���, see Figure �b). These results suggest that GROMIT
has a harder time completing requests that are complicated to implement, but that humans use
di�erent internal metrics to judge complexity.
Comparing the success rates of requests by the test scene shows a clear di�erence (? < .����,

see Fig. �c). Requests made in Blockland, which was designed with GROMIT in mind, tend to
succeed with a ��% success rate, whereas requests made in the Tra�c scene tend to fail with a ��%
success rate. These results suggest that designing a program to be easily manipulable is necessary
for GROMIT to be e�ective, and that programs designed without GROMIT in mind are unlikely
to work well with it. For example, a number of requests in both scenes were some variation of
"Change the color of X to C". In the Blockland scene all objects used standard Unity materials,
which can have color �lters applied in code. In the Tra�c scene all objects used a mobile di�use
material, where the only way to change the color of the object is to edit the image �le of the
texture. This is comparatively very complicated to do in code. All of the color change requests
succeeded in the Blockland scene, and failed in the Tra�c scene. On average, GROMIT completed
all requests in ��.� seconds. The average time drops to �.� seconds when using the gpt-�o model.

�.� Implicit Rule Generation

To determine if GROMIT has the ability to support implicit use cases, we ran a system evaluation
to determine the success and failure rates of interactions in the Escape Room and Adventure Game
demos.
To generate data for the Escape Room demo, we populated the room with additional items. In

the MTurk survey we also asked participants for �� additional items to include in an escape room.
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The results were a sword, a wizard’s hat, a potion, a relic, a stationary kit, a stray frog, a sheet of
paper, a newspaper, an old walking stick, and a pen. We then used GROMIT’s auto prompting to
generate interactions between each pair of items. Besides the �� items from the survey, there were
� items (a torch, bookshelves, the special book, the key, the door) which we implemented for the
intended puzzle solution. Since each item was not allowed to interact with itself, there were ���
interaction item pairs. We implemented the � interaction necessary for the intended solution (the
key opens the door). Additionally, � objects (the door and the bookshelf) were stationary so could
not interact with each other. This left ��� potential interactions for GROMIT to generate. We used
GROMIT to generate interactions between each viable object pair.

To generate data for the adventure game, we started with �� spells created by the paper authors.
These were combined in breadth-�rst order until ��� spells had been generated by GROMIT.
We categorized each of the behaviors generated by GROMIT based on whether the generation
was successful, meaning the generated behavior ran without errors and aligned with it’s text
description. If the generation was unsuccessful, the category of error was also recorded. The
results are summarized in Figure �.

In the Escape Room Demo, none of the combinations resulted in compiler errors and � resulted
in runtime errors. Another �� had had text descriptions that suggested an event should happen,
but the written code did not produce this event. GROMIT responded that �� of the pairs shouldn’t
have any interaction. The remaining �� pairs gained some form of successful interaction. �� of
these interactions appear to be mainly visual changes, such as a torch heating up a sword by
changing it’s color to red, but � interactions resulted in alternate solutions to the escape room.
These alternate solutions either destroyed the bookshelves in some way, allowing a faster way to
�nd the key, or created new "magical" objects such as wands or sta�s which could open the door.
In the Adventure Game Demo, �� interactions resulted in continued compilation errors after

re-prompting, � resulted in runtime errors, � did not produce an e�ect related to their description
(in most of these cases the spell simply deleted itself on use), and �� did not produce any e�ect.
The remaining ��� attempts produced new functional spells. Of these, � could be used in some
meaningful way outside of combat. These spells either allowed the player to trigger the puzzle
switches from new locations, or enhanced player movement through various kinds of teleportation.
In the implicit rule generation study, all failure cases resulted in no change to game behavior,

usually due to the generated scripts not interacting with the scene. In the explicit scene manipula-
tion study, �� of the �� failure cases similarly resulted in no visible changes to game behavior. The
� remaining cases resulted in visible errors, but these fell short of crashing the game or preventing
continued gameplay. One of the more dramatic occurred when the request "Implement a day-night
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Figure �: Results of automatically generating interactionswith GROMIT. A result was considered a
compiler or runtime error if the behavior threw an error that prevented it from compiling
or running properly. A result was categorized as an "Inconsistent Description" if it ran
without errors but had a signi�cant mismatch between how the behavior was described
and what it actually did. Results where the LLM responded that the behavior should
produce no e�ect were marked as "no interaction". If the behavior did produce some
e�ect it was labeled a "Novel Interaction". If a Novel Interaction was found to cause
signi�cant gameplay changes it was recategorized as a "High-Impact Interaction".

cycle" resulted in a script which disabled the light source in the blockland scene. We have created
some requests that can cause larger-scale errors than were seen in the study. For example, in the
tra�c scene the request "Make each building spin individually" can instead cause all buildings
to spin around a central point. In theory, generated code could crash the entire game though we
have not observed this in our testing. No behavior generated for either demo resulted in the game
crashing in any way. This is largely due to GROMIT handling compilation errors internally, and
runtime errors being limited in scope. On average, GROMIT completed all requests in �.� and ��.�
seconds for the escape room and adventure game scenes respectively. The average times drop to
�.� and �.� seconds when using the gpt-�o model.

� Discussion and Future Work

The complete version of this project also includes an interview study with n=�� game developers
using GROMIT as a probe to elicit their current opinion on runtime behavior generation tools, in
order to enumerate the speci�c themes curtailing the wider use of such tools.
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This paper has demonstrated RBG in several small-scale scenarios. We expect that incorporating
common LLM scaling strategies, such as adding a planning stage to the behavior generation
pipeline, could allow GROMIT-like systems to scale to larger tasks. Properly assessing scalability
would ideally involve creating a large-scale game system incorporating RBG, which we leave to
future work.

Future work should also investigate player perspectives on RBG. Exploring, among other things,
if and how players can detect RBG, how their gameplay changes with knowledge of RBG, and
player opinion on the general use of Generative AI. Comparing those �ndings with developer
opinions would help both to characterize the relationship between developers and players with
this technology, and to inform developer decisions on making games with RBG.
Finding a process to better control RBG systems is a primary concern, which is unsurprising

when comparing RBG to commonly used PCG systems. Devtime PCG systems are often experienced
as tools used to develop a part of the resulting game, which gives developers two avenues of
control. They can develop the PCG system itself, and/or they can verify the output of the system
before it is included in the main game. In this sense content created by an devtime system can still
express developer intent even if the developer was not responsible for the PCG software itself,
such as when using a GenAI system. In terms of ownership, the output of an devtime system acts
similarly to content purchased from an asset store. The asset itself might not have been created by
the developer, but its inclusion is still a vector of developer intent.
Runtime systems, in contrast, only have the �rst avenue of control. Without the ability for

developers to verify output before it is shown to users, the developer impact on the PCG output
can only come from their e�ect on the PCG system itself. This makes PCG systems that are both
runtime and GenAI-based problematic, since they have no direct method of developer control.
The high-level choice to use the runtime tool at all is certainly still made by the developer, but
their level of control is signi�cantly reduced.

LLMs already provide several methods of developer input. Prompts can be partially engineered
by the developers. Few-shot examples can be provided to demonstrate intended output. Indeed,
we used both these methods in GROMIT to achieve basic functionality. However, these methods
don’t necessarily �t with the requirements expressed by developers. Depending on the desired
guardrails, there may be better interfaces for expressing the requirements.

Additionally, based on the results of section �, as well as the general quality concerns expressed
by developers, restricting only the input to the model may be insu�cient. We identify that
GROMIT and behavior generation systems with a similar implementation have � main avenues
for restriction implementations. These are:

��



�. Modi�ed input to the LLM

�. Static analysis of code generated by the LLM

�. Dynamic analysis of LLM-generated code in a sandboxed environment

�. Rollback/Undo functionality if restriction violation occurs

A "Guardrail System" that maps the constraint descriptions from a vocabulary developers already
use to a set of implementations from the above list could improve on both the usability and
e�ectiveness of an approach using only existing LLM control methods. Ideally, this could restore
the avenue of direct control present in traditional PCG systems. We conclude that there’s a need for
a set of such Guardrail Systems, although the degree to which such tools can/should be generalized
between games is unclear. Future work should explore the e�cacy of speci�c guardrail systems,
both in their ability to control a RBG system and in their alignment with developer needs.

� Conclusion

In this paper, we solidi�ed the emerging concept of Runtime Behavior Generation as it applies
to the games industry. Through three concrete examples, we explored possible ways RBG can
be used for games. We conducted a system evaluation and found that, using our current system,
generated behaviors can achieve a high success rate if other game systems are designed to be easily
manipulable through code. We also found that some generated behaviors can have signi�cant
e�ects on gameplay. We highlight potential future work that could address these challenges.
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Figure �: Diagram of an example prompt from the Adventure Game demo with labeled com-
ponents. When the player combines the Fire and Air spells, a prompt is generated to
request a new spell. Although they were manually created by a developer, the existing
spells are included in the prompt as if the LLM had generated them so that the JSON
format can be reused. The LLM output JSON is then interpreted and the code compiled.
The compiled behavior is then combined with the emoji and plaintext output to generate
the resulting spell.
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