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Figure 1: An overview of our algorithm to personalize psychomotor skills in virtual reality with distributions of tasks modelled
as probabilistic programs.

ABSTRACT
Virtual reality (VR) is used to train psychomotor skills for domains
both within VR, e.g. games, and beyond VR, e.g. sports and health-
care. Although it is a common practice to employ variations of
tasks to train psychomotor skills, how to algorithmically predict
psychomotor skill acquisition given the task variations, or a dis-
tribution, has not been investigated. To address this problem, we
derive and adapt ideas from intelligent tutoring systems (ITS), a
sub-field of learning sciences. We formally model and generate task
distributions with physical constraints that are designed by instruc-
tors using a probabilistic programming language. We investigate
the effectiveness of Bayesian knowledge tracing (BKT) from ITS to
predict psychomotor skill acquisition. Our algorithm sequentially
sample a task from a probabilistic program, generates it in VR, and
updates the BKT prediction using the performance of a user on the
task. We conduct a between subject study that compares BKT to
self-prediction of skill acquisition. Our study shows that the exper-
imental condition outperforms the control, and BKT contributes to
much more consistent learning outcomes than self-prediction.

1 INTRODUCTION
Virtual reality (VR) has been used as an immersive medium to train
psychomotor skills, which consist of physical movements with
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cognitive conscious planning. These skills can be applied to either
within or beyond VR. Within VR, the skills can be utilized to engage
in virtual artwork such as painting in three dimension with Tilt
Brush [17] and dynamic games like EchoArena [28], which require
users to interact with body-driven interfaces. Beyond VR, literature
have shown that psychomotor skills trained in VR can transfer to
various domains such as healthcare [35] and sports [41], despite
the lack of or limited haptics (e.g. weight, tactile). Furthermore, it
is especially appealing that, in VR, one can fully control and track
objects and agents in the environment to generate a task in a 3D
immersive setting, whereas other immersive platforms, such as
Kinect [61], may not. For these benefits, VR-based psychomotor
skill training has been a topic of interest to HCI community fo-
cusing on various aspects of training. These include visual, tactile,
and auditory haptic feedback [6, 49, 57] for correction, design of
novel physical devices [34, 53]) to enhance sensory realism and
engagement for VR training, and construction of high fidelity VR
training simulators [24, 45].

In this paper, we focus on an algorithmic approach to personalize
psychomotor skill training in VR. Previous literature have estab-
lished that it is important to introduce structured variations to train
psychomotor skills. In neuro-physiology, the structured variability
in training tasks have been shown to enhance generalization of
psychomotor skills [4, 11, 52, 58]. This generalization is crucial be-
cause psychomotor skills require individuals to solve variations of
tasks. For example, to train a sports player how to accurately pass
a ball to a running teammate, coaches may vary the teammate’s
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speeds (e.g. 10 to 30 km/hr) and directions (e.g. 0 to 180 degrees).
The expectation is that if a player experiences enough task vari-
ations during training, they will later be able to perform the task
for parameters that were not trained but within the distribution
(e.g. speed 17 km/hr and direction 85 deg). This variability principle
has been incorporated and evaluated in psychomotor skill training
in reality (e.g. [22, 54]) and in VR (e.g. [9, 47]). These prior works
demonstrate that the principle does enhances psychomotor training
in practice.

We study an unaddressed challenge that arise from incorporating
structured variations, or distributions, to train psychomotor skills.
Suppose an instructor designs a distribution of tasks to train a skill.
Tasks are sequentially sampled from the distribution and generated
in VR to train and evaluate a user following each task. In this
setting, how can we algorithmically predict when a user acquires
the skill, meaning the user can solve all the tasks in the distribution?
While existing literature show that variations in tasks enhances
training, they do not propose a mechanism to predict how many
variations users should experience for skill acquisition. Rather, they
prescribe a fixed amount of time to train a skill with task variations.
However, individuals vary in their learning speeds. Ideally, VR
training systems should adaptively allocate more time to skills each
user find difficult and less on ones that are predicted to be acquired.
Yet, there is currently no algorithmic means for this prediction.

To develop a personalized algorithm principled in learning sci-
ences, we derive and adapt ideas from intelligent tutoring systems
(ITS), a sub-field of learning sciences. First, to formally represent
the instructors’ domain knowledge of psychomotor tasks to train a
skill, for the first time, we demonstrate that a probabilistic program-
ming language (PPL) can be adopted to model and generate a task
distribution with physical (spatio-temporal) constraints. Second,
we identify an existing, relevant design component in ITS called
Bayesian knowledge tracing (BKT) [60] to algorithmically predict
psychomotor skill acquisition. Given a probabilistic program, we
sequentially sample and generate a task in VR to train a user. After
each task, we update BKT’s prediction with the user’s performance.
Once BKT predicts acquisition, it transitions the user to train for
the next skill as visualized in Fig. 1. The scope of psychomotor skills
we target is defined by the capability of the formalism we use to
model and generate physical task distributions. We use a domain-
specific PPL called Scenic [15] which can model tasks consisting
of objects and agents with distributions over their behaviors and
initial conditions. Thus, we target a broad range of psychomotor
skills that require fine (e.g. hands) and/or gross (e.g. arms) motor ex-
ecutions to interact with objects and agents in VR. However, Scenic
cannot model tasks that are not related to objects. For example,
language-based tasks for keyboard typing are outside the scope of
Scenic.

We conduct a between subjects study to investigate the accuracy
of BKT’s prediction of skill acquisition across users and its impact
on user experience and learning gains. As many training involve
personalization of curriculum, i.e. the order of skills to train, for
ecological validity, we investigate BKT in a setting where a set of
skills are trained with a set of task distributions. While a number of
personalized curriculum approaches have been proposed, the lack
of benchmark makes it difficult to identify the state of the art. Thus,

we integrate BKT to an existing generic curriculum personaliza-
tion algorithm [38, 56]. The control condition employs self-guided
learning to self-predict skill acquisition and determines when to
transition to the next skill, given an expert-designed curriculum. In
contrast, our BKT-based algorithm adaptively predicts skill acquisi-
tion and generates personalized curriculum for the experimental
condition. The study shows that experimental condition results in
higher average learning gains than the control with much more
consistency (over 50% reduction in standard deviation). Our anal-
ysis shows that BKT induces this notably higher consistency in
learning. However, we observe the automated system’s skill transi-
tions determined solely based on BKT predictions (without any user
inputs) induces discomfort from some users. We share suggestions
for improvements.

The novel contributions of our work are the following: (1) we
demonstrate that a domain-specific PPL can be adopted as a for-
malism to model and generate psychomotor task distribution with
spatio-temporal constraints, (2) BKT contributes to much more
consistent learning outcomes than self-prediction when training
with a distribution of tasks, and (3) we identify the shortcomings
of BKT on user experience as its predictions are used to automate
skill transitions and provide suggestions to improve a user interface
when adopting BKT.

2 RELATEDWORK
2.1 Psychomotor Skill Training
In HCI, numerous dimensions of psychomotor skill training have
been investigated in extended reality (XR), an umbrella term for
augmented and virtual reality. Some projects focus on the con-
struction of high fidelity VR training simulators [24, 45]. Others
investigate diverse forms of visual, tactile, and auditory haptic feed-
back [6, 49, 57], including life-sized augmented mirrors [2]. Others
design new physical devices such as actuated rackets [51, 53] for
racket sports to enhance sensory realism and engagement in train-
ing. Our work in algorithmic personalization of psychomotor skills
in VR is largely orthogonal to these contributions, and could thus
be combined with them in future simulators.

Algorithmic approaches have been proposed to incorporate struc-
tured variations in adaptive training systems to train psychomotor
skills. For instance, Adapt2Learn [54] proposes an adaptive algo-
rithm to physically alter the training environments in reality to
generate incrementally difficult tasks. To train a basketball player,
it alters the height and the size of the basket hoop to show an
improvement in shooting skills based on a user’s performance in
training. In XR, structured variations are introduced in training
in diverse domains such as dental training [9] and space flight
training for astronauts [47]. Some VR adaptive training systems
introduce structured variations via pre-defined games with varying
difficulty levels [18, 55]. To our knowledge, these systems do not
employ adaptive means to predict skill acquisition. In our work, we
investigate BKT to algorithmically predict skill acquisition across
users.
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Figure 2: A simplified, generic architecture of intelligent tutoring systems, which is adapted from a survey on ITS architec-
tures [37]. The design components of ITS where our work makes novel contributions are highlighted in blue.

2.2 Intelligent Tutoring Systems for
Psychomotor Skills

Intelligent tutoring systems (ITS) [50] are a manifestation of a long-
held aspiration of many researchers and instructors to personalize
education. These systems adapt the tutorial pace to each student’s
learning speed, adjust the curriculum (i.e. the order in which con-
cepts are taught) according to the student’s knowledge state, and
provide relevant feedback if the student has any misunderstand-
ing. Therefore, ITS can help students personalize learning to their
learning speed and prior (or background) knowledge when student-
to-instructor ratio is high or there is no access to an instructor. For
these reasons, ITS have been deployed and proven successful in
academic courses ranging from K-12 through college [19, 43, 44].
Although ITS are traditionally designed for purely cognitive do-
mains (e.g. mathematics), their applications to psychomotor skill
training have started to be investigated with successes [39]. The
relevance is that psychomotor skills consists of cognitive skills to
consciously plan a sequence of actions to solve physical tasks. Prior
work shows that different architectures of ITS have been shown
effective for training psychomotor skills in diverse domains such
as healthcare [46], defense [16], and sports [31].

Our two novel contributions in relation to prior literature on
ITS for psychomotor training are visualized in Fig. 2. The figure
represents a simplified, generic ITS architecture, which is adapted
from a survey on ITS architectures [37]. In general, ITS (1) models
each student’s knowledge of skills, (2) models instructors knowl-
edge domain which consists of skills to train and associated sets of
cognitive training tasks, and (3) employs a teaching strategy that
procedurally generates tasks and tailored instructions, or feedback,
to a student via a user interface. The highlighted blue components
represent the two aspects where we make novel contributions to
ITS. First, there has been a lack of a formalism model and algo-
rithms to automatically generate instructors’ domain knowledge
of psychomotor tasks. Without a formalism, each researcher had
to devise one’s own way to (a) model a distribution with physical

(spatial and temporal) constraints and (b) sample from the distri-
bution while satisfying the constraints. Otherwise, the generated
tasks can be unrealistic. We demonstrate that a domain-specific
probabilistic programming language (PPL) can be adopted to ad-
dress these challenges. Second, even though task variations are
commonly employed in psychomotor training, there has been no
adaptive algorithm to predict how many task variations each user
should experience in order to acquire a skill, given a task distribu-
tion. Consequently, prior work which employs task variations have
relied on users to self-predict skill acquisition or prescribed a fixed
training time regardless of user’s learning speed. We investigate
BKTwhich has only been used in cognitive domains (e.g. mathemat-
ics) of ITS. Our study compares BKT to users’ self-prediction and
shows that BKT can considerably enhance consistency in learning
outcomes over self-prediction.

3 BACKGROUND
3.1 Bayesian Knowledge Tracing
Bayesian Knowledge Tracing (BKT) [60] has become the standard
in education research for modeling a student’s mastery of cognitive
skills in domains such as algebra. BKT is used in intelligent tutoring
systems (ITS) [50], a sub-field in learning sciences, such as Cogni-
tive Tutor [43] to estimate mastery of cognitive tasks with respect
to a distribution of questions sampled from a provided question
bank. For example, to educate a student on multiplication, ques-
tions are sequentially sampled from a library of questions related
to multiplication. After a student completes each question, BKT
updates the system’s belief of the student’s mastery.

Although BKT is designed for purely cognitive tasks, we find it
directly relevant for training psychomotor skills as they consist of
cognitive and motor skills. These cognitive aspects of psychomotor
skills involve accurately understanding the physical surroundings
and planning which sequence of actions to take. We believe that
BKT should be extended to include physical factors to more accu-
rately estimate mastery for psychomotor skills. The scope of this
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study is to investigate the effectiveness of BKT in its original form
to better understand how it should be extended. The extension of
BKT is out of scope for this study.

On this premise, we explain the mechanics of BKT. It assumes a
binary knowledge state, meaning that the student either mastered
or not mastered a skill. It also assumes a binary-graded response
from a student’s attempt to solve a task (i.e. correct or incorrect).
The underlying statistical architecture of BKT is a hidden Markov
model with observable nodes representing the student’s history of
binary responses 𝑜𝑏𝑠𝑡 to a sequence of training tasks indexed with
𝑡 , and hidden nodes representing students’ latent knowledge state
after experiencing 𝑡-th task. BKT parametrizes cognitive learning
into four parameters: the student’s initial probability of having
mastered the skill from prior knowledge before training (prior),
probability of the student mastering a previously not mastered skill
after experiencing a training task (learn), probability to make a mis-
take when applying an already mastered skill (slip), and probability
of correctly applying a skill that is not mastered yet (guess).

In this paper, we apply these four parameters tomodel psychomo-
tor skills without any modification. The mathematical definitions
of these parameters and the Bayesian update rule is formulated
below.

prior = 𝑃 (𝐿0)
learn = 𝑃 (𝑇 ) = 𝑃 (𝐿𝑡+1 = 1|𝐿𝑡 = 0)
guess = 𝑃 (𝐺) = 𝑃 (𝑜𝑏𝑠𝑡 = 1|𝐿𝑡 = 0)
slip = 𝑃 (𝑆) = 𝑃 (𝑜𝑏𝑠𝑡 = 0|𝐿𝑡 = 1)

Note that while 𝑃 (𝐿0) denotes the BKT’s prior parameter, we also
define 𝑃 (𝐿𝑡 ) as the probability that the student has mastered the
skill after experiencing 𝑡-th task. BKT updates 𝑃 (𝐿𝑡 ) given an ob-
served correct or incorrect response to calculate the posterior with:

𝑃 (𝐿𝑡 |𝑜𝑏𝑠𝑡 = 1) = 𝑃 (𝐿𝑡 ) (1 − 𝑃 (𝑆))
𝑃 (𝐿𝑡 ) (1 − 𝑃 (𝑆)) + (1 − 𝑃 (𝐿𝑡 ))𝑃 (𝐺)

𝑃 (𝐿𝑡 |𝑜𝑏𝑠𝑡 = 0) = 𝑃 (𝐿𝑡 )𝑃 (𝑆)
𝑃 (𝐿𝑡 )𝑃 (𝑆) + (1 − 𝑃 (𝐿𝑡 )) (1 − 𝑃 (𝐺))

The updated prior for the following time step, which incorporates
the probability of learning, is defined by:

𝑃 (𝐿𝑡+1) = 𝑃 (𝐿𝑡 |𝑜𝑏𝑠𝑡 ) + (1 − 𝑃 (𝐿𝑡 |𝑜𝑏𝑠𝑡 ))𝑃 (𝑇 )

3.2 Modeling Task Distribution as Probabilistic
Programs

We define a task distribution to operationalize BKT. A task distribu-
tion is analogous to a problem template (or variabilized problems)
in ITS, which contain random variables. For example, to teach ad-
dition, a problem is sampled from a template (e.g. x + y = ?, where
x, y are random variables). To use BKT with the template, instruc-
tors carefully design the value ranges to maintain the same level
of difficulty. Thus, the problems sampled from the same template
are evaluated equally. We acknowledge that there are tasks where
different values sampled from the task distribution could lead to
different performance. If a problem difficulty were to change due
to instantiated variable values, then it is considered to be loading
on an additional skill which should be explicitly modeled with the
creation of another skill [26]. Similarly, we assume that experts

are capable of designing physical task variations of the same diffi-
culty, which we encode as a probabilistic program. Thus, we equally
evaluate sampled tasks from the same distribution. Investigating
the potential challenges for experts to design such task variations
and how to update BKT prediction if difficulty varies within a task
distribution is left for future work.

In this paper, we formally model a task distribution using a
domain-specific probabilistic programming language (PPL) called
Scenic [14, 15]. Unlike existing many general PPLs (e.g. Scala [40],
BLOG [36]), Scenic provides domain-specific syntax and semantics
(i) to intuitively model a distribution with physical (spatial and
temporal) constraints and (ii) to sample from the distribution while
satisfying the constraints. Scenic is simulator-agnostic and its lan-
guage is generic such that it has been used in simulation across
domains such as self-driving, aviation, robotics, and sports [14]. To
briefly illustrate Scenic’s capability to model a distribution with
spatio-temporal constraints, an example snippet of a Scenic pro-
gram is shown in Fig. 3. The program models a distribution of
training tasks to train a user to accurately pass a frisbee disc to a
moving teammate. A snapshot of a task sampled from the program
and generated in VR is shown in Fig. 5 (right). Line 9-18 models
a distribution with spatial constraints, and line 1-6 models a dis-
tribution with temporal constraints. In line 9, the position of ego,
i.e. the user, is uniformly randomly sampled from a pre-defined
user spawn region. In line 10, a disc is modeled to be spawned
ahead of ego, with respect to where ego is facing, by uniformly
randomly 1 to 2 meters. Note that this ahead of syntax imposes a
spatial constraint. In line 12-18, a teammate player’s initial position
(line 12) and destination (line 13) are uniformly randomly sampled
from pre-defined regions as visualized as purple regions in Fig. 5
(right). The green dots within the purple regions represent different
sampled initial and destination positions over multiple tasks. A
declarative spatial constraint is specified over these two sampled
positions in line 18, which states that the distance between the two
positions must be greater than 15 meters. In line 1-6, a temporal
constraint is assigned over a distribution to define a behavior of the
teammate. The try and interrupt block defines an interactive be-
havior. The semantics is that, by default, the teammate executes the
behavior in the try block which is to wait. If the interrupt condition
is satisfied at any point in time, then Scenic pauses executing the
behavior in the try block and executes the action in the interrupt
block, which is to move to a destination point, until the interrupt
condition is no longer satisfied. Note that these try, interrupt
block imposes temporal constraints and a distribution is assigned
over teammate’s speed. For more details of Scenic language, refer
to [15].

4 METHODOLOGY
In this section, we explain our algorithm, as visualized in Fig. 4, to
train a set of psychomotor skills with a corresponding set of task
distributions. The objective of the algorithm is to maximize the
number of skill acquisitions within a bounded training time. The
key component of our algorithm is BKT which predicts acquisition
of a skill and its predictions are used to transition a user to train for
another skill. To account for the complexity of task distributions
in skill acquisition prediction, we first solicit domain knowledge
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Figure 3: An example snippet of a Scenic program to model
a task distribution

from instructors or experts and embed it to the prediction process.
This domain knowledge is used to formalize the relations between
tasks, distributions, and skills to enable algorithmic personalization.
Although ourmethodology is not specific to any specific VR domain,
for ease of explanation, we use the interactions with VR esports
experts from our study as a running example.

4.1 Soliciting Domain Knowledge from
Instructors

We describe the procedures of our interactions with instructors
to solicit their domain knowledge. Specifically, we inquire the fol-
lowing: (i) a set of skills to train and prerequisite relations among
the skills, and (ii) corresponding distributions of training and eval-
uation tasks for each skill with task evaluation metrics, and (iii)
BKT parameters for each skill (refer to Sec. 3.1). Each of the three
subsections below correspond to (i), (ii), and (iii).

4.1.1 Identifying Skills to Train & Their Pre-requisite Relations.
First, we conduct to a joint meeting with experts to identify and
represent the training skills and their pre-requisite relations as
a knowledge graph shown in Fig. 6. To facilitate the discussion,
we used a shared PowerPoint slide. We ask the experts to first
brainstorm which psychomotor skills are fundamental to engage in
the chosen VR domain, and type the names of the skills on the slide
so others can see. Once a sufficient number of skills are written
down, we ask the experts to discuss and reach a consensus on
which skill to train. Once the set of training skills are determined,
on the shared slide, we create a set of blocks, each with a skill
name inscribed as shown in Fig. 6 to facilitate the discussion on
pre-requisite relations among skills. We ask the experts to first
identify blocks (i.e. skills) that do not have any pre-requisite skills.
We re-arrange the identified blocks (e.g. T, GR, SP) to form a top
level in the shared slide as shown in Fig. 6. Then, we inquire the
experts to place the blocks, which immediately require the skills
at the top level, right underneath the top level and indicate the
pre-requisite relation with directed arrows, where the skill pointed
at requires the skill pointed from. We iterate this process until all
blocks are consumed, forming a directed, acyclic, pre-order graph,

i.e. in short, knowledge graph, for example, as shown in Fig. 6. Note
that these pre-requisite relations among skills are not necessary for
our methodology to apply (refer to Sec. 4.4).

4.1.2 Designing Task Distributions. Next, per skill, we inquire the
experts to verbally and visually explain variations of physical tasks
for training and evaluation as well as metrics to assess user perfor-
mance. We inform the experts that the task variations they design
to train each skill should be of the same difficulty (refer Sec. 3.2). In
the video call, we create a shared online document1 for the experts
to draw out the physical environments and their variations with
their mouses as they verbally explain. For each skill, we ask the
experts to collectively discuss and determine the tasks and their
evaluation metric by drawing them in the shared document. A
snapshot of experts’ drawing on Figma visualizing training task
distribution for a skill on passing a disc to a dynamically moving
teammate is shown in Fig. 5. By the end of this interaction, we have
a set of skills, each of which is associated with a task distribution
for training and evaluation, respectively.

4.1.3 Tuning BKT parameters. The predictions for skill acquisition
should account for the complexity of training task distribution.
The more complicated the task distribution is, the more practices
with tasks should be offered to reach acquisition. To account for the
complexity in prediction, we inquire the experts to tune three of the
four parameters of BKTwith the knowledge of the task distributions
which they designed and the pre-requisite relations among skills.
For the BKT’s "prior" parameter, we set the parameter to be very
low, e.g. 5%. Because the experts may likely not have good mental of
distributions of the BKT parameters, we simplify questions to Likert
5-point scale [32]. Then, we map the 5 point scale to probability. Per
skill, we ask “given that the user has already acquired pre-requisites
for this skill, please answer the following questions in 5 point scale,
where each point has the following meaning: 1(Strongly Disagree),
2 (Disagree), 3 (Undecided), 4 (Agree), 5 (Strongly Agree).”

(1) There is a high chance a novice user will learn the skill after
a single training task. (learn)

(2) A user is likely to solve the task in a training task without
having acquired the skill via random actions. (guess)

(3) Considering the complexity of the maneuvers that a novice
user has to make to solve for the training task, a user is likely
to make a mistake and fail to solve a task in this task even if
they had already acquired the necessary skills. (slip)

The “guess” parameter for psychomotor skills tend to be near 1
point. However, for the example skill on passing a disc to a moving
teammate as shown in Fig. 5, the experts’ responses vary from 1
to 3 points considering the cases where a user can accidentally
pass correctly to the teammate. This practice of enlisting experts
to manually tune BKT parameters based on their knowledge of
training tasks and their pre-requisite relations among skills, is not
unique to our work. In the first few years of operation, this was the
practice established by the Cognitive Tutor [43] for setting their
BKT parameter values.

1For example, a Figma [12] document can be used
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Figure 4: A visualization of our methodology to construct our algorithm.

4.2 Formalization of the Solicited Domain
Knowledge

We represent the pre-requisite relations among skills as a knowl-
edge graph, i.e. a directed acyclic graph, as shown in Fig. 4 under
“knowledge representation,” whose nodes are skills and directed
edges are pre-requisite relations. Each skill is associated with a
task distribution for training and evaluation, respectively. The task
distributions are formally modeled as probabilistic programs using
Scenic (refer to Sec. 3.2). For example, the Scenic program in Fig. 3
encodes the experts’ description of the training task distribution
shown in Fig. 5. A snapshot of a task sampled from this probabilistic
program and generated in VR is visualized in Fig. 5. Finally, we
implement a BKT model for each skill by mapping the experts’
Likert 5 point scale responses to probability. Regarding the “prior”
parameter, we conservatively uniformly set it to 0.05 across all skills
since we do not have data a priori for estimation.

4.3 Integrating BKT to Personalized
Curriculum Generation Algorithm

To train a set of skills to a user, a VR system needs to adequately
transition the user from one skill to another. We use BKT’s predic-
tions to determine when to transition the user to the next skill. To
study the effect of BKT on training users with a set of skills in an
ecologically valid setting, we integrate BKT to an existing generic
algorithm [38, 56] to personalize curriculum, i.e. the order of skills
to train. This is to reflect common practices in psychomotor train-
ing where curriculum is personalized. In the following, we briefly
describe the algorithm [38, 56] (Sec. 4.3.1, 4.3.2) and how we adapt
the algorithm to integrate BKT and use its predictions to control
skill transitions (Sec. 4.4).

4.3.1 Prior Knowledge Identification. To personalize the curricu-
lum, the algorithm first identify the user’s prior knowledge of skills.
It represents the user’s prior knowledge as a knowledge state, i.e. a
colored knowledge graph as visualized in Fig. 6. Each node in the
knowledge graph is colored in binary where green indicates the
skill in the node is acquired, whereas red represents that it is not ac-
quired. We assume binary knowledge per skill because BKT makes
this assumption (refer to Sec. 3.1). To efficiently identify the user’s

prior knowledge, the algorithm makes use of the pre-requisite rela-
tions among skills to expedite the process. The intuition for prior
knowledge identification is the following. If a skill is found to be
acquired, then the algorithm assumes that all of its pre-requisite
skills are also acquired. Therefore, it colors the nodes of the skill
and its pre-requisites in green. On the other hand, if a skill is not
acquired, then it assumes that all of its post-requisite skills are not
acquired. Hence, the algorithm colors the nodes of the skill and its
post-requisites to be red. For prior knowledge identification, the
algorithm starts with an uncolored knowledge graph and iteratively
samples an uncolored node that would maximize the number of
colored nodes after evaluation. The following mathematical formu-
lation is used to sample such a skill.

𝑠∗ = argmax
s is uncolored

min (𝑛+𝑠 , 𝑛−𝑠 ) (1)

𝑠 represents a skill to evaluate. 𝑛+𝑠 represents the number of nodes
that will be colored green if the skill, 𝑠 , is found to be acquired. In
contrast, 𝑛−𝑠 is the number of nodes that will be colored red if 𝑠 is
not acquired. The algorithm iteratively samples a node until all the
nodes in the graph are colored.

4.3.2 Adaptive Curriculum Generation. The algorithm uses zone
of proximal development (ZPD) [29] to personalize curriculum.
ZPD is a concept from psychology, which defines the "boundary
zone" of human knowledge. This boundary represents knowledge
that is not acquired yet but has close relation with those already
learned. Previous literature shows that, with tasks selected from
ZPD, students can learn on their own with little guidance from
instructors [30, 33], and feel more engaged in learning[8]. The
algorithm defines the ZPD on the knowledge state as highlighted
in light blue in Fig. 4, under “Curriculum Generation.” The nodes in
ZPD are a set of red color nodes that are either one edge away from
the green nodes or red nodes with no prerequisite skill. From the
ZPD set, the algorithm selects the next skill to train, which has the
minimum number of prerequisites. If there is a tie, then it uniformly
randomly chooses a skill among the tied skills.
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Figure 5: On the left, a snapshot of experts visual description of a training task distribution for a skill on accurately passing a
disc to a moving teammate. The out most contour in black represents the top down view of the map in which a user is trained
in. The variations in the initial positions of the user (black) and the virtual teammate (green) are drawn with blue and purple
boxes with their dimensions in red. The variations in the teammate’s moving speed and distance are typed. On the right is a
snapshot of a task sampled from the distribution and generated in VR. A user is throwing a disc to a moving teammate at a
distance on the right. The purple boxes in the experts’ drawing on the left figure are overlaid on the right figure. The green
dots in the purple boxes are sampled initial and destination positions for the teammate agent over multiple tasks. This task
distribution is modeled as a Scenic program shown in Fig. 3.2.

Figure 6: Our system represents a knowledge state as a col-
ored, acyclic, directed, pre-order graph as visualized in this
figure. Each node represents a skill. The directed edges en-
code prerequisite relations. The color represents acquisition
(green: acquired, red: not acquired). The zone of proximal
development (ZPD) highlighted in light blue is a set of not
acquired skills that are in proximity to acquired ones.

4.4 BKT-Driven Skill Acquisition Prediction
and Transition

We adapt the algorithm to integrate BKT in the following way.
Once the algorithm selects the next skill, it retrieves the associated
probabilistic program. Then, the adapted algorithm sequentially
samples a task from the distribution and generates it in VR until
BKT predicts acquisition as visualized in Fig. 1. After each task, the
algorithm updates BKT’s belief of skill acquisition with the user’s
performance. Traditionally, the standard use of BKT is that skill

acquisition is reached if BKT’s prediction (in probability) is greater
than 0.99 [60].We adopt the same criterion in the adapted algorithm.
Once BKT predicts acquisition, it updates the knowledge state by
changing the color of its node from red to green and then updates
the ZPD to select the next skill to train. The adapted algorithm
completes once all the skills are acquired, i.e. all nodes are colored
green in the graph, or training time expires. Note that pre-requisite
relations among skills are not necessary for our methodology to
apply. If they exist, then we will leverage these relations to person-
alize curriculum (Sec. 4.3.2). If they do not exist, we can randomly
generate a curriculum and procedurally generate task variations
until BKT predicts skill acquisition.

5 EXPERIMENT
We conducted a between subjects study with 18 participants to
evaluate our adapted algorithm, which used BKT to predict psy-
chomotor skill acquisition and transition user to next skills based
on BKT’s predictions. We used self-guided learning as the control
condition since there is no baseline algorithm to predict skill ac-
quisition with respect to task distributions. The control condition
self-predicted skill acquisition in lieu of BKT.

The three hypotheses of our study are: (H1)BKT ismore accurate
than self-prediction in predicting psychomotor skill acquisition
with respect a task distribution, (H2) the BKT-driven personalized
psychomotor training will induce higher learning gains, and (H3)
thus, users trained with our algorithm will have a higher drop
in subjective task load than the control condition. We also pose a
research question: (R4) how does the user experience differ between
the two conditions?
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5.1 Example Application Domain: Esports
Esports is an interesting application domain which require skills
that encapsulate diverse characteristics of psychomotor skills in gen-
eral. It requires both fine (e.g. hand, feet) and gross (e.g. arm, legs,
waist) movements, while involving careful tactical cognitive plan-
ning. Also, it involves physical coordination with other dynamic
virtual agent(s). For these reasons, we select Echo Arena, a zero
gravity frisbee VR esports, as our example application domain to
conduct our study. We reconstruct Echo Arena in Unity [20] and
interface Scenic (refer Sec. 3.2) to model and generate the desired
training and evaluation scenarios in VR.

5.2 Experts/Instructors Recruitment
We recruited four professional Echo Arena esports players via di-
rect messaging on Discord [23]. They provided us with necessary
domain knowledge (refer Sec. 4) through 2 hours of joint video call.
Each professional was paid $50 for their time. These professionals
had achieved the top 10 in ranking over the last few years in the VR
acquire League [28], which hosted the largest annual Echo Arena
tournament. For context, in the most recent tournament in 2022,
nearly 8,000 people around the world joined the competition [27].
These four experts also had experience in coaching novices or ama-
teur Echo Arena players.

5.3 Participants
We recruited participants through university online forums and
mailing lists from a community of VR users. We received 25 re-
sponses of subjects with prerequisite dynamic VR game experience.
Out of the 25 respondents, we excluded 7 subjects according to
our three pre-determined exclusion criteria: 1) exhibiting motion
sickness, 2) too much skill expertise (no opportunity for learn-
ing), and 3) extreme lack of hand-eye coordination (unlikely to
acquire any skill during our short training session). The accepted
18 participants’ ages ranged from 19 - 25 years, with 4 females and
14 males. Eligibility criteria and a summary of participants’ back-
grounds are listed in the supplemental material. Each participant
was financially compensated with $40 gift card for their 2 hours of
participation. For the participants who were excluded according to
our pre-determined criteria, they were compensated for the time
they participate at $20 per hour rate.

5.4 Procedure
We conducted an IRB approved between subjects experiment to
avoid learning and fatigue effects. We randomly divided the ac-
cepted 18 participants into two disjoint groups, i.e. the control and
the experimental groups, with 9 participants in each condition. The
study is conducted individually, not in groups. The study consists
of the following sessions2: basic tutorial (5 min), pre-test (15 min),
advanced tutorial (10 min), training (25 min), post-test (15 min), and
exit questionnaire (5 min), with 10 min breaks in between sessions
including the half way through the training session. The details
of each session is explained in the supplement. We trained and
evaluated 10 different skills provided by our recruited experts. The
pre/post tests examined the 10 skills with a variable number of

2Video recordings of each session can be found in this link.

tasks. The task distributions to train and evaluate the skills were
the same for this study. For pre/post tests, we sampled a different
constant number of tasks per probabilistic program; per skill, the
number of minimum consecutive successes required for the skill’s
BKT to predict skill acquisition was used for pre/post test. This is to
allow our algorithm to assess skill acquisition for prior knowledge
identification.

The 10 skills and their pre-requisite relations are visualized as a
knowledge graph in Fig. 6. Thrust (T) relates to a navigation skill
using thrusters in EchoArena’s zero gravity space. Grab/Release
(GR) is another navigation skill by only grabbing and releasing
static objects in space. Static pass (SP) is a skill to accurately pass a
disc to a static teammate. Dynamic pass (DP) is to accurately pass to
a moving teammate. These skills require fine (e.g. hand) and gross
(e.g. arm) movements. For example, the snapshot of a human player
in Fig. 5 is training for a dynamic pass, where the user retracts and
then extends the arm to throw the disc to a moving teammate. The
user grabs and releases the disc by pressing on a button on the
hand controller. Grabbing and thrusting can also be executed by
pressing different buttons on the controller. The rest of the skills,
i.e. nodes, in the knowledge graph require a subset of these four
skills as prerequisite skills. The details of these skills and videos of
training are included in the supplement3.

Both conditions followed the exact same procedure as above,
except for the training session. During training, the experimental
condition was trained with our algorithm which adapted the num-
ber of tasks to sample per skill and the next skill to transition to
using BKT. In contrast, the control condition was provided with
a curriculum designed by our experts who all had experience in
training novices for EchoArena. Both the curriculum by the ex-
perts or the curricula from our algorithm are constructed from the
same knowledge graph. The control condition self-predicted its
skill acquisition and manually transitioned to the next skill in the
expert-designed curriculum.

After completing each task, the control condition was asked in
VR for their (i) binary self-prediction (i.e. acquired/ not acquired)
on the acquisition of the current skill, and (ii) whether to transition
to another skill. Either until the participant decided to transition
(control) or BKT predicts acquisition (experimental), tasks were
iteratively sampled from associated probabilistic program and gen-
erated in VR. Because the periodic self-prediction inquiry takes
up a small portion of training time, we also asked the experimen-
tal condition to also self-predict after each task for fairness, even
though it is not used. During training we collect the following data.
After subjects completes each task, we record the task name, binary
task evaluation result (i.e. correct/ incorrect), BKT’s prediction,
and binary self-prediction prediction, and time when the data are
collected.

5.5 Measurements
Skill Acquisition Prediction Error This error is computed using
the difference between the expected and the actual post test scores
for the skills that are predicted to be acquired by either BKT or

3Video recordings of training for each of the 10 skills can be found in this link.
To observe how fine and gross motor movements are used for these skills, refer to
basic and advanced tutorial videos in this link.

https://drive.google.com/drive/folders/1r0OzLk0_Ys0rnQpIgZt8MBDqhOlTp_TJ?usp=sharing
https://drive.google.com/drive/folders/1senMSlCcIEkZ9qKHP9M3HGUadhkpHgAD?usp=sharing
https://drive.google.com/drive/folders/1r0OzLk0_Ys0rnQpIgZt8MBDqhOlTp_TJ?usp=drive_link
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self-prediction, i.e.𝑀 −∑𝑀
𝑖=1 (# of correctly solved tasks for skill i)

/ (N tasks used to evaluate skill i) where𝑀 is the number of tasks
that are predicted to be acquired by either BKT or self-prediction.
Refer to Sec. 5.4 for how 𝑁 is selected per skill.
Learning Gains A learning gain for a participant is computed by
one’s score improvement (i.e. post test - pre test scores), where
the pre and post test scores are computed in the following way:∑𝐾
𝑖=1 (# of correctly solved tasks for skill i) / (total # of tasks used

to evaluate skill i), where K is the number of skills to train. In this
study, K=10, and each skill is evaluated with a variable number of
tasks (refer Sec. 5.4).
NASATaskLoad IndexWeuse theNASA task load index (TLX) [21]
to measure a subject’s subjective mental workload for the skills
we train, before and after the training session. To measure the
improvement in the subjective task load, we compute (TLX score
after training - TLX score before training). A skill acquisition with
respect to a task distribution should ideally mean that a user can
solve all tasks in the distribution. Thus, if a skill is acquired, we
should expect the subjective task load to decrease with respect to
the task distribution.
Custom User Experience Survey We use our custom user ex-
perience survey to evaluate subjects’ training experience for both
conditions. The survey starts with an open question inquiring for
any negative experience with the training followed by the three
Likert 5-Point scale questions.

(1) The training session was engaging.
(2) The training session was incrementally challenging.
(3) The training has helped me learn new skills in virtual reality.
A table listing out the 5 point scale and their meanings, i.e.

strongly disagree, disagree, neutral, agree, strongly agree) was pro-
vided underneath each statement. We focus on these three aspects
of training because many theories in learning sciences and psy-
chology support the idea that incremental difficulty is important
for engagement in learning new skills [1, 3, 7, 10].
Statistical Significance TestWe use Mann-Whitney’s U test using
Python Scipy’s stats package [25] for all the statistical significance
tests reported in the Results Section. We choose this test because
the sample size is too limited to expect normal distributions to hold
for unpaired t-test.
Correlation We compute the Pearson correlation [13] to compute
any correlations.

5.6 Results
Skill Acquisition Prediction Accuracy Our results show that
BKT has lower average prediction error than self-prediction, as
visualized in Fig. 7 (right). BKT overestimates participants’ skill
acquisition by 28.21 ± 13.06%, whereas the control overestimate
by 34.81 ± 23.67%. However, these two distributions of prediction
errors is not statistically significant (p-value 0.46). The experimental
condition has a noticeably higher correlation coefficient of 0.96 (p-
value < 0.01) than the self prediction’s 0.59 (p-value 0.09).
Learning Gains Prior to comparing the learning gains between
the two conditions, we check whether there is any imbalance in
the prior skills between the two conditions. The difference in the
distributions of the pre-test scores is not statistically significant
(p-value < 0.05). Regarding learning gains, the experimental group

outperform the control group on average with statistical signifi-
cance (p-value < 0.05) as shown in Fig. 7 with an effect size of 0.41.
On average, the control group improves 22.96±12.90% in learning
gains, whereas the experimental group improves 30.37±5.97%. We
observe that the standard deviation of the experimental condition
is reduced by 53.7% than the control’s.
Subjective Task Loads Despite the higher average learning gains,
the experimental condition does not result in lower subject task
load after training than the control. Recall that lower TLX score is
preferable because it means the subjective task load has decreased.
The experimental condition shows amild average decrease in NASA
TLX scores by 6.56 ± 16.00%, while the control exhibits a medium
average decrease by 17.56 ± 11.77%. However, the difference in
the distributions of TLX score improvements is not statistically
significant (p-value 0.07).
User Experience After post tests, we equally ask both conditions
for their user experience with training, using our Likert 5-point
scale questionnaire related to engaging, incrementally difficult, and
helpfulness in learning new skills. Both conditions positively rate
their training experience as plotted in Fig. 8, averaging approx-
imately 4.5 out 5 points for all three aspects. Mann-Whitney U
test show that the differences in distributions across conditions
for engagement, incremental difficulty, and helpfulness are not
statistically significant, reporting p-values of 0.86, 0.43, and 0.34,
respectively.

We also ask both conditions for any negative experiences with
the training in general. While the control condition does not share
any negative feedback, four out of nine participants in the experi-
mental condition (we denote participants as E1-E9) report negative
experiences particularly with the skill transitions. Some partici-
pants share frustration from too many assigned practices for a
specific skill:“I got frustrated towards the end because I was stuck
in a task” (E3) and “getting stuck in a task was a bit frustrating in
the beginning, but frustration went down as I saw myself improving”
(E5). On the contrary, some report premature transitions: “some-
times, the training algorithm transitioned you a bit earlier than you
expected” (E6) and “during the training, I thought I still needed some
more practice, but during evaluation I actually performed better than
I expected” (E1).
Generated Curriculum The comparison between the control
condition’s expert-designed curriculum and the algorithm’s per-
sonalized curricula is visualized in Fig. 9. These curricula are all
constructed from the same knowledge graph shown in Fig. 6.

6 DISCUSSION
In this section, we analyze our results in relation to our hypotheses
(H1-H3) as stated in Sec. 5 in Sec. 6.1. Based on observations of our
study, we suggest directions to improve observed shortcomings of
BKT in Sec. 6.2.

6.1 Analysis
H1: Prediction Accuracy for Skill Acquisition Contrary to
our hypothesis, BKT is not more accurate than self-prediction. Al-
though the results show that the BKT’s skill acquisition prediction
error (28.21± 13.06%) is lower on average than the self-prediction’s
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Measures Results
H1 1. Skill Acquisition Prediction Error 1. The average predictions errors were not statistically different.

2. Correlation 2. However, BKT predictions are substantially more highly
correlated to skill acquisition.

H2 Learning gains EC has higher and more consistent average learning gains.
H3 NASA TLX Despite higher average learning gains, EC do not result in higher

average improvements in subjective task load after training.
R4 Custom User Experience Survey Both conditions report positive user experience with no statistical

difference. However, EC reports some negative user experience.
Table 1: This table maps the measurements listed in Sec. 5.5 to the summary of results in Sec. 5.6. The three hypotheses (H1,2,3)
are explained in Sec. 5. EC stands for experimental condition. Assume that EC is being compared to the control condition.

(34.81 ± 23.67%), there is no statistically significant difference. In-
stead, we observe a different outcome where BKT noticeably lowers
fluctuations in skill acquisition prediction errors. The standard de-
viation of the BKT’s prediction errors is nearly 50% lower than the
self-prediction’s. The two box plots shown in Fig. 7 visually con-
trasts this difference and its impact on learning gains. The left box
plot compares the skill acquisition prediction errors between the
control (brown) and the experimental (pink) groups. We observe
that the self-prediction’s prediction error ranges from as low as
nearly 0% to over 70%, whereas the experimental’s is considerably
more consistent. Consequently, due to its consistency, BKT’s pre-
dictions are 37%more highly correlated to skill acquisition than the
self-prediction’s. Since skill acquisition prediction directly controls
skill transition, it directly impacts learning gains. Indeed, on the
right plot concerning learning gains, we identify the similar trend.
The learning gains for the control group ranges as low as 0% (i.e.
learned nothing) to 50%, while the experimental’s are noticeably
more consistent.

We also note that BKT’s high correlation does not derive from un-
derestimation of skill acquisition, thereby providing over-practices
to train a fewer number of skills. The control and the experimental
conditions trains for on average 7.78 ± 1.98 and 7.56 ± 2.51 skills,
respectively, out of 10 skills during 25 minutes of training session,
with no statistical difference. These numbers represent how many
skills self-prediction and BKT predicted the users to have acquired
and, thus, transitioned them to train for the next skills. They do not
represent howmany skills the users actually acquired in each group.
The analysis of these prediction errors are analyzed above. In short,
BKT exhibits much more consistent predictions of skill acquisition
than self-prediction without noticeable underestimation of skills.

These disparity in the consistency of predictions becomes clearer
as we contrast the processes involved in the two methods. Ideally,
skill acquisition with respect to a task distribution means that the
user can solve all tasks in the distribution. For self-prediction, this
means that each user needs to: first, accurately approximate the
task distribution from experiencing sampled tasks. Second, the user
needs to accurately assess confidence in solving tasks with respect
to one’s estimated mental model of the the task distribution. This
approximation of the task distribution likely becomes challenging
as task complexity increases.

On the contrary, for modeling BKT per skill, domain experts
tunes BKT parameters (refer to Sec. 3.1) using their understanding
of the task distribution that they designed and mental models of

novice students’ learning processes. As their mental student models
may be biased, we recruit three instructors to reduce the bias. Hence,
BKT is better informed of the complexity of task distribution than
self-prediction. Nevertheless, the sources of errors for BKT could
derive from experts’ bias in mental models of students and BKT’s
lack of consideration for physical factors.
H2: On Learning Gains The results are visualized in Fig. 7 (left).
The experimental condition exhibits higher average learning gains
than the control condition (p-value < 0.05), with an effect size of
0.41. Much more noticeable is the consistent learning outcome with
the experimental condition, whose standard deviation of learning
gains (±12.90%) is 53.7% lower than the control condition’s (±5.97%).
This shows that our algorithm considerably lowers fluctuations in
the learning outcomes than the control, reducing the chance of
users falling behind. However, in trade-off, this also means that
our algorithm could potentially stifle the learning of exceptional
users whomay benefit more from self-guided learning. Although an
outlier, we observe the highest learning gain is achieved by a user
in the control condition in Fig. 7 (right plot). Hence, the utility of
our BKT-driven personalization may be higher in domains where
users are expected to all exceed certain levels of learning gains.
This may include safety-related training such as in healthcare, first
responders, construction, manufacture, etc., where VR has been
utilized for training [59].

There are two compounding factors that likely contributed to the
higher learning gains of the experimental condition. First, although
not statistically significant, BKT has a lower average prediction
error (28.21 ± 13.06%) than self-prediction (34.81 ± 23.67%). Second,
our algorithm’s personalized curriculum generation (refer Sec. 4.3)
automatically skips over skills that a user already acquired from
prior experience and focuses on skills not acquired. In contrast,
users in control condition manually progress through a fixed (non-
personalized) curriculum and need to decide whether to transition
to the next skill. Fig. 9 visualizes the differences in curricula between
conditions. This personalization results in more diverse curricula
in the experimental condition as highlighted in blue, in contrast
to a single curriculum the control adhered to. The combination of
these two factors contributed to the experimental group’s efficient
training time allocation to achieve higher learning gains.
H3: On Subjective Task Loads Counter-intuitively, despite higher
average learning gains, the experimental condition does not result
in lower average subjective task load than than control after train-
ing. Recall that it is desirable to lower subjective task load (i.e. lower
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Figure 7: The left box plots compare the BKT and the self-prediction’s average errors in predicting psychomotor skill acquisition.
The right box plots compare the average learning gains between the two conditions. The pink line in the box plot represents
the average and the yellow line, the median.

NASA TLX score) through training (refer Sec. 5.5). The control con-
dition decreases in the NASA TLX score by 17.56 ± 11.77% on
average, whereas the experimental only decreases by 6.56± 16.00%.
Although the difference is not statistically significant, we observe
the average to actually lean more favorably towards the control.
This discrepancy in the learning gains and subjective task load has
been observed in academic learning setting (e.g. [48]) as well, where
the condition achieving the highest objective learning gains also
counter-intuitively result in the highest subjective task load. The
following user experience results explain the potential cause of this
discrepancy.
R4: On User Experience As pointed out in the verbal interview,
this potential cause of the discrepancy derives from our use of BKT
predictions to control skill transitions. Recall that our algorithm
trains a skill until its BKT predicts skill acquisition and only then
transitions a user to the next skill. While the control group reported
no negative experience with training, nearly half of the experimen-
tal condition complained of the algorithm’s skill transitions. The
participants in the experimental condition (E3,E5) repeatedly use
the word “stuck” to share their frustration from not being able to
stop excessive training on a particular skill. Also, E1 and E6 complain
that the system prematurely transition them to training new skills
even though they do not feel prepared to move on. The algorithm’s
disregard of users’ mental state when determining skill transition
is a potential cause of the observed discrepancy.

Although the experimental condition complained of specific oc-
currences in training, in general, both conditions positively reported
to our custom user experience survey. As shown in Fig. 8, both con-
ditions responded that the training was engaging, incrementally
difficult, and helpful for learning new skills, averaging around 4.5
out of 5 across all three aspects, with no statistically significant
difference. The high average user ratings for the experimental con-
dition along with the learning gains outcome show that BKT could
be integrated with an existing personalized curriculum generation
algorithm. More importantly, this indicates that BKT may be used

in the current adaptive training ecology where curriculum is often
personalized.

6.2 Our Suggestions to Improve BKT
The key insight to take away from our work is that, when training
with task distributions, BKT is more reliable design component
than self-prediction for psychomotor skill acquisition prediction.
However, our study results also reveals BKT’s shortcomings related
to (a) errors in BKT predictions and (b) the use of the predictions
to control skill transitions. We suggest directions to improve BKT’s
accuracy and its usage in this section.

Suggestions to Improve BKT Predictions the canonical for-
mulation of BKT needs to be extended with more variables relating
to influential physical factors such as fatigue. During pre- and post-
test phase of our study, we frequently observe participants failing
to solve tasks in post-tests, which they were able to solve correctly
before in the pre-test. We conjecture that the accumulation of visual
fatigue from exposure to VR and physical fatigue from exertions
may have induced the outcomes we observed. However, further
investigation is necessary.

Suggestions to Improve Skill Transitions Our study reveals
two issues regarding our algorithm’s use of BKT’s predictions for
skill transitions: (a) premature transition before the users feel con-
fident with a skill and (b) frustration from excessive practices of a
same skill. To prevent premature transitions, it may be appropriate
to probe and incorporate the user’s self-prediction of the current
skill after BKT predicts skill acquisition. If the user is not confident,
then more tasks should be sampled and generated in VR until the
user is confident. This way, we can align the BKT’s prediction with
the user’s subjective confidence. However, this comes at the risk of,
in the worst case, a consistent underestimation of skill acquisition,
resulting in redundant training due to the user’s low confidence. For
this reason, it may be reasonable to explore effective ways to share
the BKT’s estimate of skill acquisition with the user during training
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Figure 8: The bar plots compare the user experience on the
training curriculum with respect to engaging, incrementally
difficult, and helpfulness in learning new skills across the
two conditions.

(e.g. a bar graph in percentage representing the skill acquisition in
VR). This way, users can align their self-prediction with the BKT’s.

To lower users’ frustration from excessive practices, there are
important factors to consider. Recall that BKT parameters (refer
Sec. 3.1) for each skill are tuned with the assumption that its pre-
requisite skills are already mastered. Hence, if the algorithm care-
lessly transition the user to a new skill that requires the current
one to avoid frustration, this violates the BKT’s assumption and,
therefore, degrades its prediction accuracy. Furthermore, this tran-
sition would also likely overload the user to simultaneously learn
the pre-requisite and new skills, potentially incurring more frus-
tration. To circumvent these issues, scaffolding [42] a skill could
help users master each skill before transitioning to the next skill,
while lowering frustration. This means to use domain knowledge
to divide the associated task distribution to the skill into different
sections of according to difficulty, and sample from relatively easier
section to assist learning. However, this scaffolding may be labor
intensive in trade-off.

7 LIMITATIONS & FUTUREWORK
There are a number of limitations in our study.
Too much variability degrades learning: Although introduc-
ing variability in training tasks has been shown to induce better
learning and generalization of psychomotor skills [4, 11, 52, 58],
too much variability in training can actually impair learning [5].
In our study, we assume that the instructors who design the task
distributions would introduce adequate amount of variations to
train each skill. We do not have any mechanism in place to measure
and determine whether the size of variations in the provided task
distribution would negatively impact learning.
Extracting Tacit Knowledge: It can be challenging to extract
tacit domain knowledge from the experts to specify accurate evalu-
ation metrics per task distribution as well as pre-requisite relations

among skills. We do not experience this issue in our study, but we
foresee this may be an issue depending on the skill to train. We
have not investigated a methodological approach to cope with this
difficult problem.
Tangled Effects in Our Study: And, in our algorithm, the effects
of personalizing the curriculum and the BKT-driven skill transitions
are jointly taking place. To better evaluate the isolated effect of the
two independent variables, further ablation study is necessary.
Limited Number of Subjects Recruiting participants with pre-
requisite background in dynamic VR activities was amajor difficulty
in this study. This is due to the highly dynamic nature of EchoArena
VR esports, where participants need to fly around in zero gravity
space. In fact, even with the pre-requisite background, some par-
ticipants (Sec. 5.3) were excluded during the study because they
suffered from motion sickness. In the future, we plan to expand
our study with more participants in augmented, not virtual, reality
where motion sickness is much less induced.
Authoring a Probabilistic Programming Language The scope
of this study did not includewhether other developers or researchers
can easily write scenarios with the probabilistic programming lan-
guage that we used in this study. This is to be explored in the future.
Designing a Task Distribution of the Same DifficultyWe as-
sume that the experts are capable of designing a task distribution
of the same difficulty to operationalize BKT (Sec. 3.2). We did not
investigate the challenges as experts design such task distributions
nor how to handle potential variations in task difficulty with the
distribution when updating BKT predictions.
Limited Haptics in VR The lack of or limited haptics (e.g. weight,
tactile) in VR introduces a gap in virtual training environment com-
pared to reality. If we are to train for a skill to be used in reality,
it is likely that this gap would impede the direct transfer of skills
acquired in VR to reality. Therefore, VR may not be used to directly
learn how to solve a task in reality. However, it can be used to learn
to solve its subtasks, thereby expediting the training in reality. For
example, suppose we train a user how to accurately pass a baseball
to a running teammate. The task consists of subtasks which could
be trained in VR (prior to training in reality), such as (i) perceiving
how fast the teammate is running and how far away the teammate
is, (ii) identifying how much ahead of the teammate one should
throw for the teammate to receive, (iii) determining how fast to
throw, and (iv) learning when to release the ball as one coordinates
joint movements to throw the ball to the teammate. VR could gener-
ate potentially many more variations of tasks than an actual human
teammate would in reality to help a user learn to solve the subtasks.
Then, the user could further train in reality to cope with weight of
the ball as one throws it.
Potential Applications to Other Immersive Platforms Our
algorithm may be applicable to other immersive platforms such as
Kinect. We leave this exploration for future work.

8 CONCLUSION
We investigate the effectiveness of BKT to train psychomotor skills
with distributions of tasks. In particular, we examine the accuracy
of BKT to algorithmically predict mastery of a skill accounting for
the complexity of the distribution of training tasks. Furthermore,
we study the effects of utilizing BKT predictions to control skill
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Figure 9: A comparison in curricula between the control and the experimental conditions. The small black boxes represent skills
to train, and the arrows, the order of skills to train. The control condition’s curriculum is highlighted with a large blackbox,
whereas the experimental condition’s curricula are highlighted in blue.

transitions on user experience. Our study shows that BKT is an
effective design component than self-assessment to predict skill
mastery with respect to a task distribution. However, the study also
reveals that solely relying on BKT predictions to control skill tran-
sitions could incur frustrations or deter improvements in subjective
task loads. We hope our findings serve as a foundation for HCI
community to design VR-based personalized psychomotor training
algorithms that are cognizant of the complexity of training task
distributions.
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