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Abstract

Obfuscation of Quantum Computation

by

James Bartusek

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sanjam Garg, Chair

A program obfuscator is a compiler that renders code unintelligible without harming
its functionality. The ability to obfuscate computation is an immensely powerful crypto-
graphic tool and, as such, developing techniques for program obfuscation is one of the
central goals of modern cryptography.

This thesis presents the first known methods for obfuscating useful classes of quantum
computations. We propose several obfuscation schemes and prove their security in the
classical oracle model, obtaining the following results.

• Obfuscation for null quantum circuits. This yields several novel applications, in-
cluding witness encryption for QMA and succinct non-interactive zero-knowledge
arguments for QMA.

• Obfuscation for pseudo-deterministic quantum circuits. We obfuscate any quan-
tum circuit that takes a classical input and computes a (nearly) deterministic classi-
cal output. Thus, we obtain the first scheme that is powerful enough to obfuscate
Shor’s algorithm.

• Quantum state obfuscation. A quantum state obfuscator supports obfuscation
of (pseudo-deterministic) quantum circuits with auxiliary quantum input. This re-
sult gives the first candidate “best-possible” copy-protection scheme for general-
purpose software.

Along the way, we present the first constructions of several quantum cryptographic
primitives, including publicly-decodable X-measurable commitments, publicly-verifiable
quantum fully-homomorphic encryption, and publicly-verifiable linearly-homomorphic
authentication of quantum data.
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1 Introduction

Modern cryptography has had tremendous success developing methods to safeguard in-
formation, achieving tasks that are foundational to internet security such as public-key
encryption and digital signatures [DH76, RSA78], as well as more versatile tasks such as
secure computation [Yao82] and zero-knowledge proofs [GMR85]. But since the birth of
the field, researchers have wondered whether it is possible to take these results a step
further [DH76]: Is it feasible to encrypt not just bits of information, but computer programs
themselves? Of course, one could simply encrypt the code of the computer program. How-
ever, this renders the program useless to anyone without the secret key to the encryption
scheme. Instead, the goal is to compile the program 𝑃 into a new program ̃︀𝑃 such that ̃︀𝑃
has the same functionality as 𝑃 , but reveals as little as possible about the implementation
details of 𝑃 . This, intuitively, is the notion of program obfuscation.

Finding provably secure methods for program obfuscation has been one of the central
questions driving research in cryptography over the past couple of decades. On the one
hand, it is now understood that obfuscation is an extraordinarily powerful tool, not only
for protecting software against piracy and intellectual property theft, but also for seem-
ingly unrelated cryptographic tasks such as succinct arguments [SW14], non-interactive
multi-party key exchange [BZ14], and fully-homomorphic encryption [CLTV15], just to
name a few. In fact, in 2014 [SW14], program obfuscation was dubbed a “central hub” of
cryptography due to its myriad applications, and it has certainly lived up to that billing.
On the other hand, secure program obfuscation has been notoriously difficult to achieve.
Despite being introduced informally in 1976 [DH76] and given a formal treatment in 2001
[BGI+01], it was not until 2013 [GGH+13] that the first plausibly secure candidate for ob-
fuscating classical computation was proposed, and not until 2021 [JLS21] that researchers
developed the first classical obfuscation scheme proven secure under well-understood
mathematical conjectures.

While there has certainly been significant progress over the past decade, the feasibil-
ity and scope of program obfuscation remain poorly understood in the big picture, and
several open questions are yet unanswered. The goal of this thesis is to take the first steps
towards addressing one of these open problems, and expand the boundary encompassing
the class of computations that are known to be obfuscatable.

Quantum computation. Quantum information processing is a powerful paradigm in
computer science that leverages quantum mechanical properties to help simulate physi-
cal systems, secure information, and speed up computations, among other applications.
The past several years have witnessed increased investment in quantum computing tech-
nology, and continued progress towards building general-purpose quantum computers
and quantum communication networks.

In anticipation of full-scale quantum computing and networking, researchers have
begun to investigate basic questions pertaining to the privacy and integrity of quan-
tum information, resulting in a remarkable series of feasibility results. For example, we
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now know how to encrypt [AMTDW00] and authenticate [BCG+02] quantum informa-
tion, prove quantum statements in zero-knowledge [BJSW16], perform secure multi-party
quantum computations [CGS02, DNS10, DGH+20], and delegate quantum computations
privately and verifiably [Chi05, ABOEM18, BFK09, RUV13, Mah18a, Mah18b].

Motivating questions. However, despite the efforts and results listed above, the fea-
sibility of obfuscating quantum computation has remained elusive. Since obfuscation is
such a central primitive in the study of classical cryptography, this begs the following
question, which has remained largely open.

Is it possible to obfuscate quantum computation?

This thesis will take the first significant steps towards answering this question in the
affirmative. In light of recent breakthrough results establishing the feasibility of “classical
control” over quantum systems via the use of cryptography, we seek to make progress
by “reducing” obfuscation of quantum computations to obfuscation of classical compu-
tation, and then appeal to results from the long line of literature on classical obfuscation.
Given the apparent difficulty of and lack of prior progress on this question, we operate
in an idealized setting called the “classical oracle model”, where black-box obfuscation
of efficient classical computation comes for free.1 Establishing the feasibility of quantum
obfuscation in this model provides the first concrete evidence that quantum obfuscation
is achievable, and hence, we ask the following question.

What class of quantum computations can be obfuscated in the classical oracle model?

Progress on this question begs a deeper understanding of the usefulness of quantum
obfuscation, perhaps even beyond straightforward applications like protecting the intel-
lectual property in novel quantum algorithms. Thus, a secondary focus of this thesis is to
make progress on the following questions.

What are the applications quantum obfuscation? Should it be considered a “central
hub” of quantum cryptography?

1.1 Results

We consider three flavors of obfuscation for (various classes of) quantum computation,
and show that each is achievable in the classical oracle model (under additional compu-
tational assumptions). We introduce these notions and give informal theorem statements
below, directing the reader to Section 2.2.1 for formal definitions, and Section 3.1, Sec-
tion 4.4.1, and Section 5.4 for formal theorem statements.

1See Section 1.1 for more discussion on the classical oracle model. Informally, in the classical oracle
model, the obfuscated program as well as the (possibly adversarial) evaluator are granted oracle access to
an efficiently computable classical function sampled by the obfuscator.
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First, we construct obfuscation for null quantum circuits, extending the powerful notion
of “null-iO” [WZ17] from the classical to the quantum setting. Informally, an obfuscator
for null quantum circuits takes as input the (classical) description of a quantum circuit 𝑄
where 𝑄 produces a single classical bit of output, and outputs the (classical) description
of an obfuscated circuit ̃︀𝑄. For correctness, we require that on any (potentially quantum)
input |𝜓⟩ such that 𝑄(|𝜓⟩) = 𝑏 for some bit 𝑏,2 it holds that ̃︀𝑄(|𝜓⟩) = 𝑏.3 For security,
we require that for any two null quantum circuits 𝑄0, 𝑄1, meaning that for all inputs |𝜓⟩,
𝑄0(|𝜓⟩) = 𝑄1(|𝜓⟩) = 0, it holds that the obfuscations of 𝑄0 and 𝑄1 are indistinguishable
(to any quantum polynomial-time adversary). We show that this notion is achievable
under a standard post-quantum hardness assumption in the classical oracle model.

Theorem 1.1 (Informal, [BM22]). Assuming the quantum hardness of learning with errors
(LWE), there exists obfuscation for null quantum circuits in the classical oracle model.

Much like the classical setting, obfuscation for null quantum circuits has several pow-
erful cryptographic applications, including quantum analogues of witness encryption
and non-interactive zero-knowledge (see Section 1.2 for more details). However, the fact
that security only holds for quantum circuits that always output 0 severely limits its abil-
ity to protect more general-purpose quantum software.

To address this, we dramatically expand the class of quantum computations that can
be obfuscated by constructing an obfuscation scheme for all “pseudo-deterministic” quan-
tum circuits. A pseudo-deterministic circuit 𝑄 takes classical inputs and produces classi-
cal outputs, and satisfies the property that for each input 𝑥, there exists an output 𝑦 such
that Pr[𝑄(𝑥) = 𝑦] is negligibly close to 1. That is, 𝑄 implements a (nearly) deterministic
map from classical inputs to classical outputs. One prominent example of such a pseudo-
deterministic circuit is the circuit implementing Shor’s factoring algorithm.

Our next result establishes that it is possible to obfuscate these circuits in the classical
oracle model, but where the description of the obfuscated circuit includes a quantum state
(as we discuss later, we leave it open to improve the result to an obfuscated circuit with
classical description). We note that while our obfuscation scheme for null quantum cir-
cuits follows without too much difficulty given prior techniques, expanding the class to
all pseudo-deterministic circuits is significantly more technically involved, as we begin to
discuss in Section 1.3.

Theorem 1.2 (Informal, [BKNY23]). Assuming the quantum hardness of LWE, there exists
obfuscation for pseudo-deterministic quantum circuits in the classical oracle model, where the
obfuscated program is a quantum state.

2In general, the output of 𝑄 might be some distribution over {0, 1}, but here, we restrict our attention
to inputs that produce a deterministic outcome. In fact, we can slightly relax this requirement to inputs that
produce a “pseudo-deterministic” outcome, meaning that there is some bit 𝑏 such that Pr[𝑄(|𝜓⟩) = 𝑏] is
negligibly close to 1.

3Technically, we weaken the correctness requirement to allow ̃︀𝑄 access to multiple copies of the quantum
input |𝜓⟩.
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Finally, we consider a notion of obfuscation introduced in [CG24] called quantum state
obfuscation. Here, the program to be obfuscated consists of a (classically-described) quan-
tum circuit 𝑄 along with an auxiliary quantum input |𝜓⟩. To evaluate the program on some
classical input 𝑥, the circuit is run on both |𝜓⟩ and 𝑥 in order to produce a classical output
𝑦. Again, we restrict our attention to pseudo-deterministic quantum programs, where for
each input 𝑥, there is a string 𝑦 such Pr[𝑄(𝑥, |𝜓⟩) = 𝑦] is negligibly close to 1. As observed
in [CG24] and discussed further in Section 1.2, obfuscation for this class of programs en-
joys a deep connection to the powerful notion of quantum copy-protection [Aar09], one of
the holy grails of quantum cryptography.

Theorem 1.3 (Informal, [BBV24]). Assuming quantum-hard one-way functions, there exists ob-
fuscation for pseudo-deterministic quantum programs with auxiliary quantum input in the clas-
sical oracle model.

Note that this result, as stated, strictly improves upon Theorem 1.2. We weaken the
assumption from LWE to one-way functions, and generalize the class of obfuscatable pro-
grams to include those with auxiliary quantum input. However, as we discuss further in
Section 1.3, the techniques involved in each construction are quite different and inde-
pendently interesting. For example, one direction for future work is to instantiate the
building blocks used in the [BKNY23] construction with classical rather than quantum
communication, which would then yield a classical obfuscated program. We believe this
to be plausible, and consider it more difficult (though perhaps not impossible) to solve
the analogous question of “de-quantizing” the [BBV24] approach.

On the classical oracle model. Before proceeding further, we discuss the classical oracle
model in more detail. In this model, the obfuscation algorithm may output an efficient
deterministic classical functionality 𝐹 , and we include oracle access to 𝐹 as part of the
obfuscated program. That is, both the evaluator of the obfuscated program and the ad-
versary are allowed to make queries to 𝐹 (even in quantum superposition), but are not
allowed to inspect the internal details of the implementation of 𝐹 .

As mentioned earlier, a result in this model can be interpreted as reducing the prob-
lem of obfuscating quantum functionalities to classical functionalities. Indeed, instanti-
ating the oracle using a candidate quantum-secure indistinguishability obfuscation (iO)
scheme for classical computation (e.g. [BGMZ18, CVW18, BDGM22, GP21, WW21]) gives
a heuristically secure construction in the plain model.4 Furthermore, by the “best-possible”
security guarantee of iO [GR07], if there exists a secure implementation of the oracle in
the plain model, iO is one such.

4An analogy can be drawn here to other common idealized models utilized in cryptography. Indeed,
the classical oracle model idealizes the notion of obfuscation for classical circuits, much like the random
oracle model [BR95] idealizes a cryptographic hash function and the generic group model [Sho97] idealizes
a cryptographic group. Often a scheme is proven secure in the random oracle or generic group model, but
when used in practice, the random oracle is heuristically instantiated with a cryptographic hash function or
the generic group is heuristically instantiated with a cryptographic group. Here, we consider heuristically
instantiating the classical oracle with a classical obfuscation scheme.
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Work Obfuscator
input

Obfuscator
output

Program
input

Program
output Program class Assumption/

model Result

[BK21] Classical Quantum∘ Quantum Quantum Unitaries w/ logarithmically
many non-Clifford gates

iO for classical
circuits iO

[BM22]* Classical Classical Quantum∘ Classical Null circuits Classical oracle
model + LWE iO

[BKNY23]* Classical Quantum Classical Classical (Pseudo)-Deterministic
circuits

Classical oracle
model + LWE Ideal

[CG24] Quantum Quantum Classical Classical Deterministic circuits Quantum oracle
model iO

[BBV24]* Quantum Quantum Classical Classical (Pseudo)-Deterministic
circuits

Classical oracle
model + OWF Ideal

Table 1: * Indicates work included in this thesis. A couple of additional notes about
the schemes: In [BK21], the obfuscator outputs a quantum state that can only be used
to evaluate the program on one input, and then is potentially destroyed. In [BM22], the
obfuscated program can be run on quantum inputs, but requires multiple copies of the
quantum input. The last column refers to the definition of obfuscation that is achieved
in each work, where iO stands for indistinguishability obfuscation. Finally, we note that
while achieving the notion of ideal obfuscation is only possible in the oracle model, the
results in the classical oracle model yield heuristic candidates for iO in the plain model.

Moreover, results in the classical oracle model have historically inspired research that
showed analogous results without the aid of an oracle. For example, quantum money
[AC12] and signature tokens [BS16] were first achieved in the classical oracle model
before being de-oracle-ized [Zha21, CLLZ21], and copy-protection for unlearnable pro-
grams was first achieved in a quantum oracle model [Aar09] before it was achieved in the
classical oracle model [ALL+21] and later without oracles, for certain classes of function-
alities (e.g. [CLLZ21, CMP22, LLQZ22, CG24]).

Related work. Alagic and Fefferman [AF16] presented definitions for obfuscating quan-
tum circuits (and obfuscating classical circuits using quantum states), though without any
positive constructive results. Alagic, Brakerski, Dulek and Schaffner [ABDS21] presented
a negative result, establishing that virtual black-box (VBB) obfuscation of classical circuits,
even with the aid of quantum information, is impossible.

Broadbent and Kazmi [BK21] showed how to obfuscate quantum circuits that have
only a few non-Clifford gates. In their construction, the size of the obfuscated circuit
blows up exponentially with the number of non-Clifford gates, thus achieving a result
that, in some sense, goes barely beyond obfuscation for classical circuits. Finally, Co-
ladangelo and Gunn [CG24], define the notion of quantum state (indistinguishability)
obfuscation, show applications of this notion to software copy-protection, and construct
a quantum state indistinguishability obfuscator in the quantum oracle model. We summa-
rize these results, along with the contributions in this thesis, in Table 1.
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1.2 Applications

Now, we discuss in more detail several applications that follow from our quantum obfus-
cation schemes.

Advanced cryptographic primitives. First, our obfuscators yield the first candidate5

constructions of a number of quantum cryptographic primitives of interest. We list a
few here. Further applications are discussed in [BM22].

• Witness encryption for QMA. Informally, a witness encryption scheme [GGSW13]
supports the ability to encrypt a message with respect to some puzzle such that
the message can be decrypted only given a solution to the puzzle. Our obfuscation
scheme for null quantum circuits implies the ability to encrypt messages with re-
spect to puzzles with quantum solutions. A bit more formally, we obtain the first
candidate witness encryption for QMA (quantum Merlin-Arthur, the quantum ana-
logue of NP), where one can encrypt a message with respect to an instance 𝑥 of any
language in QMA.

• Non-interactive zero-knowledge for QMA. In turn, witness encryption for QMA
(plus iO for classical circuits) implies a one-message protocol for proving the valid-
ity of any statement in QMA, without revealing any additional information about
the witness. This gives the first candidate construction of non-interactive zero-
knowledge for QMA (in the common reference string model).

• Succinct non-interactive arguments for QMA. In fact, the zero-knowledge protocol
we obtain has a succinct proof, meaning that its size does not grow with the length of
the witness. Thus, we obtain the first candidate construction of a SNARG (succinct
non-interactive argument) for QMA, the quantum analogue of an extremely useful
and versatile primitive from classical cryptography.

• Attribute-based encryption for quantum predicates. Attribute-based encryption is
a “fine-grained” notion of encryption, where messages are encrypted with respect
to some (traditionally, classical) predicate 𝑃 , and keys are sampled with respect to
some “attribute” 𝑥. A ciphertext for predicate 𝑃 should only be able to be decrypted
by a key for 𝑥 if 𝑃 (𝑥) = 1. We extend this notion to the quantum setting, allowing
the predicate to be computable by any pseudo-deterministic quantum circuit, and
show that such an encryption scheme follows from witness encryption for QMA
(plus iO for classical circuits).

• Functional encryption for quantum predicates. Finally, we consider functional en-
cryption, which is the most general form of fine-grained encryption. In a functional

5We specify that these schemes are “candidates” because they all rely on the security of our quantum
obfuscators, which are only proven secure in the classical oracle model, and thus only yield plain model
schemes with heuristic security.
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encryption scheme, keys are sampled with respect to some (traditionally, classical)
functionality 𝑓 , and, given a ciphertext encrypting message 𝑚 and key for function
𝑓 , it should only be possible to recover the value 𝑓(𝑚). We present the first candidate
construction of functional encryption where 𝑓 may be any function computable by
a pseudo-deterministic quantum circuit. To achieve this, we actually require full-
fledged obfuscation of pseudo-deterministic quantum circuits (as opposed to null
quantum circuits, which sufficed for the previous applications).

Quantum software protection. Next, we discuss another natural class of applications
for quantum obfuscation, namely, quantum software protection. Suppose a company de-
velops a novel quantum algorithm, but wants to keep their algorithmic insights private.
A natural idea is to obfuscate the algorithm before releasing or selling it to the general pub-
lic. Our result establishing the feasibility of obfuscating any pseudo-deterministic quantum
circuit constitutes the first evidence that such quantum software protection exists. Indeed,
perhaps the most famous quantum algorithm to date, Shor’s algorithm, fits into the class
of pseudo-deterministic quantum computations.

In the classical setting, obfuscation has also been identified as a useful tool for digital
watermarking [BGI+01, CHN+18], which allows for embedding an unremovable “mark”
into a program, and acts as a deterrent against software piracy. In fact, quantum infor-
mation potentially allows for much stronger forms of protection against piracy, enabling
computation to be encoded into a quantum state that provably cannot be copied [Aar09].
Since its introduction, this notion of “copy-protection” has been a prominent subject of
research within quantum cryptography. However, positive progress on copy-protecting
general-purpose software has been difficult to obtain.

A mentioned earlier, the notion of quantum state obfuscation was recently conceptual-
ized and defined by [CG24] precisely for the purpose of obtaining better software copy-
protection schemes. Indeed, they demonstrate how a quantum state indistinguishability
obfuscator can be used to construct a “best-possible” copy-protection scheme, i.e. they
show a scheme to copy-protect any classical function that can be copy-protected at all!
Their observation is that if there exists some (as yet unknown) copy-protection scheme
for a classical (deterministic) function 𝑥 → 𝐹 (𝑥) that produces an unclonable quantum
program (|𝜓⟩ , 𝑄), then a quantum state obfuscation of 𝐹 is just as good a copy-protection
scheme. Indeed, this follows from the fact that the obfuscation of 𝐹 is indistinguishable
from an obfuscation of (|𝜓⟩ , 𝑄). However, they left the existence of quantum state in-
distinguishability obfuscation as an open question, only providing a construction with
respect to a quantum oracle that has no known (even heuristic) real-world instantiation.
Our construction of quantum state obfuscation in the classical oracle model gives the first
concrete candidate construction of quantum state obfuscation, and thus the first concrete
“best-possible” copy-protection scheme for general-purpose software.
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1.3 Approach

Our approach for program obfuscation begins with the notion of fully-homomorphic encryp-
tion (FHE). An FHE scheme encodes data 𝑥 into a ciphertext Enc(𝑥) so that anyone holding
Enc(𝑥) and a function 𝑓 can produce a ciphertext Enc(𝑓(𝑥)). Suppose that we have the de-
scription of a quantum circuit 𝑄 to be obfuscated. Given a quantum fully-homomorphic
encryption (QFHE) scheme [Mah18a], which supports the evaluation of quantum function-
alities, consider releasing an encryption Enc(𝑄). Then, any evaluator with an input 𝑥 can
obtain Enc(𝑄(𝑥)) by running an appropriate (quantum) evaluation procedure.

This comes close to a working obfuscation scheme, except that the evaluator obtains
Enc(𝑄(𝑥)) rather than the output 𝑄(𝑥) in the clear. To complete the construction, it may
be tempting to simply release the QFHE secret key sk, allowing the evaluator to decrypt
Enc(𝑄(𝑥)) and learn𝑄(𝑥). However, this would also allow the evaluator to decrypt Enc(𝑄)
and learn 𝑄, which is exactly what we are trying to hide. Instead, the idea is to prepare
a “constrained” secret key that only allows decryption of ciphertexts Enc(𝑄(𝑥)) that hold
an honestly evaluated output 𝑄(𝑥).

This is the high-level idea behind each of our obfuscation constructions, though we
instantiate the approach in multiple ways. First, we will discuss the approach taken by
[BM22] and [BKNY23], which uses the QFHE scheme as “black-box”, and later we’ll see
how to make “non-black-box” use of QFHE techniques to obtain an obfuscation scheme
that can be applied to quantum programs with a quantum description [BBV24].

For the black-box approach, we need an additional building block: Classical verifica-
tion of quantum computation (CVQC). In a CVQC scheme, a classical verifier requests the
help of a quantum prover for computing a quantum circuit𝑄(𝑥). The result 𝑦 obtained by
the verifier is trusted in the sense that no malicious (quantum polynomial-time) prover
should be able to cause the verifier to output 𝑦 ̸= 𝑄(𝑥). In particular, we will build on a
“commitment”-based approach to CVQC pioneered by [BCM+18, Mah18b].

1.3.1 Null quantum circuits

In order to prepare a constrained secret key, we consider the following idea. Given Enc(𝑄)
and an input 𝑥, rather than having the evaluator simply compute the (encrypted) output
Enc(𝑄(𝑥)), instruct them to utilize CVQC in order to include a proof 𝜋 that the output was
honestly evaluated. That is, they now compute a ciphertext Enc(𝑄(𝑥), 𝜋) that holds the
output 𝑄(𝑥) along with a proof 𝜋 that 𝑄(𝑥) was honestly computed. Then, obfuscate the
classical functionality 𝐹 [sk] that has the QFHE secret key sk hard-coded, takes as input a
ciphertext Enc(𝑦, 𝜋), decrypts it to obtain 𝑦 and 𝜋, and then only outputs the result 𝑦 if 𝜋
is a valid proof that 𝑦 = 𝑄(𝑥) (and otherwise just outputs a special reject symbol ⊥).

This idea actually has a major flaw. Given oracle access to 𝐹 [sk], an adversary can
launch the following attack. First, prepare an honest output ciphertext Enc(𝑄(𝑥), 𝜋). Then,
depending on the first bit of the description of 𝑄, either do nothing, or replace 𝜋 with a
bogus proof. Note that this operation is something that the adversary can do “under the
hood” of the QFHE scheme. Then, when the resulting ciphertext is queried to 𝐹 [sk], the
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adversary can determine the first bit of 𝑄 by observing whether 𝐹 [sk] returns a decrypted
plaintext or rejects. Thus, for general 𝑄, this approach is not secure.

However, in [BM22] we observed that this approach is secure in the special case that
𝑄 is a null quantum circuit. Indeed, if we replace the reject symbol ⊥ with the bit 0, and
𝑄 always outputs 0 anyway, then no adversary should be able to find an input on which
the oracle doesn’t output 0, which thwarts the above attack. In Section 3.1, we show how
to formalize this approach, obtaining an obfuscation scheme for null quantum circuits,
which, as discussed earlier, yields several powerful quantum cryptographic applications.

1.3.2 Pseudo-deterministic quantum circuits

Now, in order to generalize the class of quantum circuits supported, we will have to take
a different approach. Rather than verifying the quantum computation under the QFHE,
what if we instead verified the QFHE evaluation procedure itself? That is, we hope to
construct an argument system with a classical verifier 𝑉 that satisfies the following prop-
erties.

• Given Enc(𝑄), some public parameters pp, and any input 𝑥, it is possible to compute
a ciphertext ct = Enc(𝑄(𝑥)) and a proof 𝜋 such that 𝑉 (pp,Enc(𝑄), 𝑥, ct, 𝜋) = 1.

• Given Enc(𝑄) and the public parameters pp, no quantum polynomial-time adver-
sary can find (𝑥, ct, 𝜋) such that 𝑉 (pp,Enc(𝑄), 𝑥, ct, 𝜋) = 1 and Dec(sk, ct) ̸= 𝑄(𝑥).

This argument system would, in particular, imply a notion of publicly-verifiable QFHE.
If we could show that such a scheme exists, then an obfuscation of 𝑄 could consist of
pp,Enc(𝑄) along with a classical oracle that implements the function 𝐹 [pp,Enc(𝑄), sk] de-
fined as follows. Take as input (𝑥, ct, 𝜋), check if 𝑉 (pp,Enc(𝑄), 𝑥, ct, 𝜋) = 1, and if so
output Dec(sk, ct), and otherwise output ⊥.

Crucially, this approach follows the “verify-then-decrypt” paradigm, where the out-
put ciphertext is first verified to be honest, and only then decrypted using sk. This thwarts
the attack described above, since the secret key of the QFHE scheme is only ever used once
the proof is deemed to be valid.

CVQC and its limitations. Thus, it suffices to construct a (non-interactive) classically-
verifiable argument system that is powerful enough to handle computations Eval[Enc(𝑄)]
that map

Eval[Enc(𝑄)] : 𝑥→ Enc(𝑄(𝑥)),

where Enc is a QFHE scheme and 𝑄 is a (pseudo-)deterministic quantum circuit.
While the breakthrough work of [Mah18b] established the feasibility of CVQC, there

are two major problems with using this scheme out of the box for this application.

• Sampling circuits. [Mah18b]’s scheme only supports the verification of (pseudo)-
deterministic quantum circuits. However, QFHE evaluation procedures [Mah18a,
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Bra18] are inherently randomized, even if the underlying computation is determinis-
tic, meaning that the circuit that we would like to verify actually produces a sample
Enc(𝑄(𝑥)) from a classical distribution over ciphertexts.6

• Public verifiability. The adversary attacking our obfuscation scheme will have (ob-
fuscated) access to the CVQC verification function, which means that it can repeat-
edly query the verifier with proofs of its choice. If soundness holds even when ver-
ification is public, then the evaluator cannot break soundness using access to this or-
acle. However, [Mah18b]’s scheme is privately-verifiable, and can be broken given
this repeated access to the verifier.

In what follows, we will briefly cover the high-level ideas that we use to address each
of these issues, and defer a much more detailed overview to Section 4.1.

Quantum partitioning circuits. Towards solving the first problem, [CLLW22] presented
a scheme for classical verification of sampling circuits, though only with inverse polyno-
mial soundness error. While interesting on its own, this renders the scheme difficult to
use for our application, since a polynomial-time evaluator can eventually break sound-
ness and thus break security of the obfuscation scheme.

Instead, we relax our goal. We observe that if 𝑄 is deterministic, then we don’t need
the full power of verification of sampling circuits to verify the sampling of Enc(𝑄(𝑥)). In-
deed, we can partition the output space of Eval[Enc(𝑄)](·) into ciphertexts ct0 that decrypt
to 0 and ciphertexts ct1 that decrypt to 1. Thus, each input 𝑥 outputs a sample from one
of these two sets. That is, we can define a classical predicate 𝑃 := Dec(sk, ·) such that
𝑃 (Eval[Enc(𝑄)](·)) is (pseudo)-deterministic.

We say that 𝐶 is a quantum partitioning circuit if there exists a predicate 𝑃 such that
𝑃 (𝐶(·)) is pseudo-deterministic. We think of 𝐶 as abstracting the circuit Eval[Enc(𝑄)]
that we will ultimately want to verify, and we construct a classically-verifiable argument
system for such partitioning circuits. Crucially for our application, the prover in the argu-
ment system cannot depend on 𝑃 , since 𝑃 will contain the description of the FHE secret
key.7 That is, we will need an argument system with (roughly) the following syntax (see
Section 4.3.1 for a formal description).

• Gen(1𝜆, 𝐶) → pp: The parameter generation algorithm outputs public parameters
pp. We allow pp to contain the description of a classical oracle, and refer to such a
protocol as being in the oracle model.

• Prove(pp, 𝐶, 𝑥)→ 𝜋: The prover algorithm outputs a proof 𝜋.

6While this distribution is only supported on ciphertexts that encrypt the correct output bit 𝑄(𝑥), the
random coins used for the output ciphertext will vary.

7And otherwise, this notion would trivially reduce to classical verification of pseudo-deterministic quan-
tum circuits.
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• Ver(pp, 𝐶, 𝑥, 𝜋)→ 𝑞 ∪ {⊥}: The verifier checks if the proof is valid, and if so outputs
a classical string 𝑞.

• Out(𝑞, 𝑃 ) → 𝑏: The output algorithm takes 𝑞 and the description of a predicate 𝑃
and outputs a bit 𝑏.

For soundness, we require that no quantum polynomial-time prover can produce an
(𝑥, 𝜋) such that Ver(pp, 𝐶, 𝑥, 𝜋) → 𝑞 and Out(𝑞, 𝐶) ̸= 𝑃 (𝐶(𝑥)). We refer to such a protocol
as a non-interactive publicly-verifiable classical verification of quantum partitioning circuits.

Constructing this object turns out to be quite technically involved, and the bulk of
the work in [BKNY23]. Again, we provide a full overview of the techniques involved in
Section 4.1, and here discuss our approach for obtaining public verifiability.

Publicly-decodable X-measurable commitments. As mentioned earlier, our approach
builds on the “commitment”-based CVQC of [BCM+18, Mah18b]. We first abstract out a
primitive at the heart of this approach, which we call an X-measurable commitment.8

An X-measurable commitment (XMC) is a traditional (non-interactive) classical bit
commitment scheme augmented with a quantum functionality property. Note that any
classical bit commitment algorithm Com(ck, 𝑏) → (𝑏, 𝑢, 𝑐), where ck is the commitment
key, 𝑢 is opening information, and 𝑐 is the commitment string, can be used to commit
to a qubit |𝜓⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ in superposition. If the commitment scheme is perfectly
hiding, then measuring a commitment string 𝑐 would leave a remaining state of the form
𝛼0 |0⟩ |𝑢0⟩ + 𝛼1 |1⟩ |𝑢1⟩,9 which, in some sense, preserves the original qubit. One can al-
ways measure this state in the standard basis to obtain a bit 𝑏 and opening information
𝑢𝑏, which can be considered an opening to a standard basis measurement of |𝜓⟩. An X-
measurable commitment allows the committer the option to instead open to a Hadamard
basis measurement of |𝜓⟩. More formally, it should satisfy the following syntax.

• Gen(1𝜆)→ (ck, rk): Gen outputs a public commitment key ck and a private receiver’s
key rk.10

• Com(ck,ℬ) → (ℬ,𝒰 , 𝑐): Com takes as input a single-qubit register ℬ and produces a
classical commitment 𝑐 along with registers (ℬ,𝒰), where 𝒰 holds opening informa-
tion.11

• Open(ℬ,𝒰) → 𝑢: The standard basis opening algorithm performs a measurement12

on registers (ℬ,𝒰) to produce a classical string 𝑢.
8In [BKNY23], this was called a Pauli functional commitment, but on second thought, we find the name

X-measurable to be more precise.
9Note that depending on the commitment scheme, the second register may contain a superposition over

random coins / opening information. For this overview, we make the simplifying assumption that there is
a single string consistent with each bit and commitment.

10For now, assume ck is classical, though later we will consider quantum commitment keys.
11Whenever we say that an algorithm takes as input or outputs a register, we mean that it operates on a

quantum state stored on that register.
12Without loss of generality, this can simply be a standard basis measurement of all registers.
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• Dec(rk, 𝑐, 𝑢)→ {0, 1,⊥}: The standard basis decoding algorithm takes the receiver’s
key rk, a commitment 𝑐, an opening 𝑢, and either outputs a bit 0 or 1, or outputs ⊥.

• OpenX(ℬ,𝒰)→ 𝑢: The Hadamard basis opening algorithm performs a measurement
on registers (ℬ,𝒰) to produce a classical string 𝑢.

• DecX(rk, 𝑐, 𝑢) → {0, 1,⊥}: The Hadamard basis decoding algorithm takes the re-
ceiver’s key rk, a commitment 𝑐, an opening 𝑢, and either outputs a bit 0 or 1, or
outputs ⊥.

The new correctness property now guarantees that committing to a qubit, opening
in the Hadamard basis, and then decoding the result gives the same result as directly
measuring the original qubit in the Hadamard basis.

This notion has appeared implicitly in prior work, e.g. [BCM+18, Mah18b, Vid20].
Indeed, [BCM+18, Mah18b] showed how to construct an X-measurable commitment that
satisfies certain binding-like properties,13 under the quantum hardness of LWE. Unfor-
tunately, this X-measurable commitment is not “publicly-decodable”, in the following
sense. If the committer is given oracle access to the functionality DecX(rk, ·, ·), they can
repeatedly issues queries (𝑐, 𝑢) and eventually learn the receiver’s secret key rk. Then,
they can use knowledge of rk to break the binding property of the commitment scheme.
Indeed, this is the essential reason that previous approaches to CVQC are not publicly-
verifiable.

To address this, we define a publicly-decodable notion of X-measurable commitments,
in which the committer is allowed oracle access to both Dec(rk, ·, ·) and DecX(rk, ·, ·). We
show how to construct such a commitment in the oracle model that satisfies the tradi-
tional notion of binding to standard basis measurements. To do so, we combine some
of the ideas from [BCM+18, Mah18b] with techniques originally developed in the con-
text of publicly-verifiable unclonable cryptography [AC12, BS16, AGKZ20]. Once this
is done, we combine our publicly-decodable commitments with the privately-verifiable
commitments of [BCM+18, Mah18b] (which satisfy extra binding properties, as alluded
to above) to obtain our publicly-verifiable classical verification of quantum partitioning
circuits protocol. For the details, see Section 4.1.4 and Section 4.2.

1.3.3 Quantum state obfuscation

Finally, we provide a brief overview of our approach for quantum state obfuscation, where
the input program may have a quantum description.

Note that the previous idea of using classical verification of quantum computation to
check for honest QFHE evaluation no longer works, because the “statement” to prove
now includes a quantum state. This is of course not handled by techniques developed
for classical verification. Thus, we take a different approach. In particular, we open up

13For example, they require that once the committer produces a valid standard basis opening, they have
negligible advantage in predicting the result of a Hadamard basis opening.
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the black box of QFHE, and develop an approach based on the underlying techniques
proposed in [Mah18a].

QFHE review. First, we review the high-level approach underlying [Mah18a]’s con-
struction of QFHE. An encrypted quantum state takes the form𝑋𝑥𝑍𝑧 |𝜓⟩ ,Enc(𝑥, 𝑧), where
(𝑥, 𝑧) are quantum one-time pad (QOTP) [AMTDW00] keys, and Enc is a classical fully-
homomorphic encryption of the QOTP keys. It turns out that universal quantum compu-
tation can be performed on this encrypted data by combining the following two types of
operations.

• Clifford operation: Given an operation 𝐶 that is comprised solely of Clifford gates,
the evaluator can apply 𝐶𝑋𝑥𝑍𝑧 |𝜓⟩ = 𝑋𝑥′𝑍𝑧′𝐶 |𝜓⟩, and update the QOTP keys ac-
cordingly under the classical FHE: Enc(𝑥, 𝑧)→ Enc(𝑥′, 𝑧′).

• Oblivious measurement: Given an encrypted bit Enc(𝑏) and a two-qubit state |𝜑⟩,
perform one of the following two measurements.

– If 𝑏 = 0, measure the second qubit in the standard basis.

– If 𝑏 = 1, measure the XOR of the two qubits.

Crucially, the evaluator should be able to perform this measurement without ever
learning the bit 𝑏, meaning without learning which measurement they actually per-
formed.14

[Mah18a] showed that there exists a classical FHE scheme with the property that a
ciphertext Enc(𝑏) can be used to perform the required oblivious measurement.

QFHE on authenticated data. As we have already seen, in order to bridge the gap be-
tween QFHE and quantum obfuscation, we will have to incorporate some notion of veri-
fiability. Here, rather than trying to verify the evaluation procedure all at once, we take a
more step-by-step approach. In particular, we will apply QFHE on authenticated quantum
data, so that any dishonest operation will result in an intermediate state that no longer
passes verification.

Quantum authentication has a long history of study, dating back to the original proto-
col of [BCG+02]. Briefly, a quantum authentication scheme encodes a state |𝜓⟩ →vk | ̃︀𝜓⟩ so
that anyone with the verification key vk can check if the state | ̃︀𝜓⟩ has been tampered with.
However, our setting imposes several additional requirements on the quantum authenti-
cation scheme, which we describe now.

14Technically, this is only possible if the resulting state is only correct up to a random phase flip, but this
is not a problem as long as whether or not the phase flip was applied is known under the classical FHE.
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• Publicly-verifiable: The evaluator of the obfuscated program will be able to check
the authenticity of their intermediate states as they perform the obfuscated compu-
tation. Thus, the authentication scheme must remain secure even if the tampering
adversary is given oracle access to the verification functionality. This situation is
typically not considered in the literature on quantum authentication (with some ex-
ceptions [DS18, GYZ17]).

• Linearly-homomorphic: Recall that in the QFHE template described above, Clif-
ford operations are essentially “for free”. Thus, we should also be able to easily
perform Clifford operations on the authenticated data. One of our observations
is that, in fact, in suffices to be able to perform only CNOT operations on the au-
thenticated data, while the remainder of the Clifford operations can be “absorbed”
into the oblivious measurement step. Still, this requires the authenticated scheme
to support homomorphic CNOT operations, which we view as a natural quantum
analogue of linear-homomorphism.

• ZX-measurable: In order to perform the oblivious measurement step, it must be
possible to perform both standard and Hadamard basis measurements15 on authen-
ticated data, and classically decode the results of these measurements. We refer to
this property as ZX-measurable.

Construction from random CSS codes. We construct an authentication scheme that sat-
isfies all of these properties simultaneously via a particular instantiation of the “encode-
encrypt” paradigm [BGS13]. Such schemes are parameterized by a family of CSS codes
C , and operate as follows. To encode a qubit |𝜓⟩, sample a random code 𝐶 ← C from
the family, sample a quantum one-time pad key (𝑥, 𝑧), and output the “encoded-and-
encrypted” state 𝑋𝑥𝑍𝑥𝐶 |𝜓⟩.

We let C be the family of all (single-qubit) CSS codes, which means that sampling a
random code from this family corresponds to sampling a uniformly random subspace 𝑆
(say, of dimension 𝜆 in an ambient space of dimension 2𝜆+ 1), along with a random shift
∆. Then, an authentication of qubit 𝛼0 |0⟩+ 𝛼1 |1⟩ takes the form

𝑋𝑥𝑍𝑧 (𝛼0 |𝑆⟩+ 𝛼1 |𝑆 +∆⟩) ,

where for any (affine) subspace 𝑆, the state |𝑆⟩ is the uniform superposition over all vec-
tors in 𝑆.

By encoding all qubits using the same subspace 𝑆 and shift ∆ (but potentially with
different one-time pad keys), we can support homomorphic CNOT operations. More-
over, it is not hard to see that the scheme supports classically-decodable standard and
Hadamard basis measurements (as do all encode-encrypt schemes). Finally, we show
that this scheme is indeed secure in the public-verification setting, drawing a connection

15More generally, it should be possible to perform even entangled measurements, as long as they are
diagonal in a tensor product of Z and X bases.
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to proof techniques used in the setting of publicly-verifiable unclonable cryptography,
which also relies on such uniformly random subspace (or coset) states.

While this is one of the central building blocks underlying our construction of quan-
tum state obfuscation, several details remain in the implementation of our obfuscation
scheme. We refer the reader to Section 5.1 to a more thorough overview of the techniques
involved.

1.4 Future directions

The results contained in this thesis constitute the first evidence that interesting and useful
classes of quantum computations can be obfuscated. However, this progress perhaps
raises more questions than it answers. In this section, we’ll highlight three directions for
future research.

Classical obfuscated programs. Ideally, we would like to show that given the classical
description of a quantum program (i.e., a description of the sequence of gates to apply), it
is possible to output a classically-described obfuscated program. Unfortunately, we cur-
rently only know how to achieve this for null quantum circuits. Indeed, our schemes that
support obfuscation of general (pseudo)-deterministic quantum circuits output a quan-
tum state as part of the obfuscated program, even if the original program only had a
classical description.

We leave open the question of obfuscation for pseudo-deterministic quantum circuits
where the obfuscated program has a classical description. However, we observe that the
[BKNY23] approach based on classical verification of QFHE evaluation appears amenable
to “de-quantization”. The main problem to solve here is to construct publicly-verifiable X-
measurable commitments using a classical commitment key rather than a quantum com-
mitment key.16 Conceptually, this seems to require classical parameters that allow for the
sampling of publicly-verifiable unclonable states (with some additional structure). A can-
didate for this task is an (obfuscated) affine partition function, as proposed by [AGKZ20].
However, establishing the security of this approach, even in the classical oracle model,
remains an open question.

Security in the plain model. We prove security of our obfuscation schemes in the ide-
alized classical oracle model. An important question going forward is whether we can
establish security in the plain model, i.e. assuming only indistinguishability obfuscation
for classical circuits, or perhaps some other concrete assumption on the classical obfus-
cation scheme. For example, does “best-possible” obfuscation for classical computation
imply best-possible copy-protection? Does non-interactive zero-knowledge for QMA ex-
ist under any concrete assumption(s)?

16We would also have to de-quantize signature tokens, but this would likely follow from the same tech-
niques needed to de-quantize the X-measurable commitment.
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Broadening the class of obfuscatable computation. Finally, perhaps the most exciting
question left is the same question that inspired this research in the first place. Simply put,
what class of (quantum) computations can be (plausibly) obfuscated?

Ultimately, we want to show that arbitrary polynomial-time quantum operations can
be obfuscated: Given the classical description of any efficiently-computable quantum
map𝑀 (that is, a completely positive trace-preserving map), produce a classically-described
obfuscated program ̃︁𝑀 that implements the same (or very close to the same) map as 𝑀 .
We leave it as an open problem to come up with any plausible candidate for this task.

There are also interesting intermediate goals. For example, can we go beyond pseudo-
deterministic circuits and obfuscate any quantum circuit with classical inputs and clas-
sical outputs? That is, can we obfuscate circuits that output arbitrary distributions over
classical outputs? We note that the [BBV24] scheme is actually a candidate obfuscator for
all such circuits, but it remains an open problem to prove its security when applied to
non-pseudo-deterministic circuits.
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2 Preliminaries

Let 𝜆 denote the security parameter. We write negl(·) to denote any negligible function,
which is a function 𝑓 such that for every constant 𝑐 ∈ N there exists 𝑁 ∈ N such that for
all 𝑛 > 𝑁 , 𝑓(𝑛) < 𝑛−𝑐. We write non-negl(·) to denote any function 𝑓 that is not negligible,
that is, there exists a constant 𝑐 such that for infinitely many 𝑛, 𝑓(𝑛) ≥ 𝑛−𝑐. Finally, we
write poly(·) to denote any polynomial function 𝑓 , that is, there exist constants 𝑐 and 𝑁
such that for all 𝑛 > 𝑁 , 𝑓(𝑛) < 𝑛𝑐.

For two probability distributions 𝐷0, 𝐷1 with support 𝑆, let

TV (𝐷0, 𝐷1) :=
∑︁
𝑥∈𝑆

|𝐷0(𝑥)−𝐷1(𝑥)|

denote the total variation distance. For a set 𝑆, we let 𝑥← 𝑆 denote sampling a uniformly
random element 𝑥 from 𝑆. If 𝐷 is a distribution, we let 𝑥 ← 𝐷 denote sampling from 𝐷,
and let

{𝑥 : 𝑥← 𝐷0} ≈𝜖 {𝑥 : 𝑥← 𝐷1}

denote that TV(𝐷0, 𝐷1) ≤ 𝜖. Finally, we denote a linear combination of distributions by

(1− 𝛿){𝑥 : 𝑥← 𝐷0}+ 𝛿{𝑥 : 𝑥← 𝐷1},

meaning with probability 1− 𝛿, sample from 𝐷0 and with probability 𝛿, sample from 𝐷1.

2.1 Quantum information

2.1.1 Background

An 𝑛-qubit register 𝒳 refers to a Hilbert space C2𝑛 . A pure state on register 𝒳 is a unit
vector |𝜓⟩𝒳 ∈ C2𝑛 . A mixed state on register 𝒳 is a density matrix 𝜌𝒳 ∈ C2𝑛×2𝑛 , which
is a positive semi-definite Hermitian operator with trace 1. A quantum operation 𝐹 is a
completely-positive trace-preserving (CPTP) map from a register 𝒳 to a register 𝒴 . A
unitary 𝑈 : 𝒳 → 𝒳 is a special case of a quantum operation that satisfies 𝑈 †𝑈 = 𝑈𝑈 † =
ℐ𝒳 , where ℐ𝒳 is the identity matrix on register 𝒳 . A projector Π is a Hermitian operator
such that Π2 = Π, and a projective measurement is a collection of projectors {Π𝑖}𝑖 such
that

∑︀
𝑖Π𝑖 = ℐ. Throughout, we will often write an expression like Π |𝜓⟩, where |𝜓⟩ is

supported on multiple registers, say 𝒳 , 𝒴 , and 𝒵 , while Π has only been defined on a
subset of these registers, say 𝒴 . In this case, we technically mean (ℐ𝒳 ⊗Π𝒴 ⊗ ℐ𝒵) |𝜓⟩, but
we drop the identity matrices to reduce notational clutter.

A family of quantum circuits is a sequence of quantum operations {𝐶𝜆}𝜆∈N, parameter-
ized by the security parameter 𝜆. We say that the family is quantum polynomial time (QPT)
if 𝐶𝜆 can be implemented with a poly(𝜆)-size quantum circuit. A family of oracle-aided
quantum circuits {𝐶F

𝜆}𝜆∈N has access to an oracle F : {0, 1}* → {0, 1}* that implements
some deterministic classical map. That is, 𝐶𝜆 can query a unitary that applies the map
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|𝑥⟩ |𝑦⟩ → |𝑥⟩ |𝑦 ⊕ F(𝑥)⟩. We say that the family is quantum polynomial query (QPQ) if 𝐶𝜆
only makes poly(𝜆)-many queries to F, but is otherwise computationally unbounded.

Let Tr denote the trace operator. The trace distance between states 𝜌, 𝜏 , denoted TD(𝜌, 𝜏)
is defined as

TD(𝜌, 𝜏) :=
1

2
Tr
(︁√︀

(𝜌− 𝜏)†(𝜌− 𝜏)
)︁
.

The trace distance between two states 𝜌 and 𝜏 is an upper bound on the probability that
any (unbounded) algorithm can distinguish 𝜌 and 𝜏 .

For any set 𝑆, we define 𝑂[𝑆] to be the boolean function that checks for membership
in 𝑆 and define the projector

Π[𝑆] =
∑︁
𝑠∈𝑆

|𝑠⟩⟨𝑠| .

Definition 2.1 (Pseudo-deterministic quantum circuit). A family of pseudo-deterministic
quantum circuits {𝑄𝜆}𝜆∈N is defined as follows. The circuit 𝑄𝜆 takes as input a classical string
𝑥 ∈ {0, 1}𝑚(𝜆) and outputs a bit 𝑏 ← 𝑄𝜆(𝑥). The circuit is pseudo-deterministic if for every
sequence of classical inputs {𝑥𝜆}𝜆∈N, there exists a sequence of outputs {𝑏𝜆}𝜆∈N such that

Pr[𝑄𝜆(𝑥𝜆) = 𝑏𝜆] = 1− negl(𝜆).

We will often leave the dependence on 𝜆 implicit, and just refer to pseudo-deterministic cir-
cuits 𝑄 with input 𝑥. In a slight abuse of notation, we will denote by 𝑄(𝑥) the bit 𝑏 such that
Pr[𝑄(𝑥) = 𝑏] = 1− negl(𝜆).

Next, we define a notion of quantum computation where the program itself has a
potentially quantum description.

Definition 2.2 (Quantum program). A quantum implementation of a functionality with clas-
sical inputs and outputs, or, a quantum program, is a pair (|𝜓⟩ , 𝐶), where |𝜓⟩ is a state and 𝐶
is the classical description of a quantum circuit. For any classical input 𝑥 ∈ {0, 1}𝑚, we write
𝑦 ← 𝐶(|𝑥⟩ |𝜓⟩) to denote the result of running 𝐶 and then measuring a dedicated𝑚′-qubit output
register in the standard basis to obtain 𝑦.

• We say that the program is deterministic if for all 𝑥, there exists 𝑦 ∈ {0, 1}𝑚′ such that

Pr[𝐶(|𝑥⟩ |𝜓⟩) = 𝑦] = 1.

• We say that a family of quantum programs {(|𝜓𝜆⟩ , 𝐶𝜆)}𝜆∈N is 𝜖-pseudo-deterministic for
some 𝜖 = 𝜖(𝜆) if for all sequences of inputs {𝑥𝜆}𝜆∈N, there exists a sequence of outputs
{𝑦𝜆}𝜆∈N such that

Pr[𝐶𝜆(|𝑥𝜆⟩ |𝜓𝜆⟩) = 𝑦𝜆] ≥ 1− 𝜖(𝜆).

We will often leave the dependence on 𝜆 implicit, and just refer to (pseudo)-deterministic pro-
grams (|𝜓⟩ , 𝐶). We will denote by 𝑄(𝑥) the string 𝑦 such that Pr[𝐶(|𝑥⟩ |𝜓⟩) = 𝑦] ≥ 1 − 𝜖(𝜆),
and refer to 𝑄 as the map induced by (|𝜓⟩ , 𝐶).
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2.1.2 Lemmas

Lemma 2.3 (Gentle measurement [Win99]). Let 𝜌 be a quantum state and let (Π, ℐ − Π) be a
projective measurement such that Tr(Π𝜌) ≥ 1− 𝛿. Let

𝜌′ =
Π𝜌Π

Tr(Π𝜌)

be the state after applying (Π, ℐ −Π) to 𝜌 and post-selecting on obtaining the first outcome. Then,
TD(𝜌, 𝜌′) ≤ 2

√
𝛿.

Lemma 2.4. Consider a register ℛ on 𝑛 qubits and a distribution ℱ over classical functions
𝑓 : {0, 1}𝑛 → {0, 1}. For any such 𝑓 , let Π𝑓 be the projection onto 𝑥 such that 𝑓(𝑥) = 1. Then
for any |𝜓⟩ on registerℛ,

E
𝑓←ℱ

[︁⃦⃦
Π𝑓 |𝜓⟩

⃦⃦2]︁ ≤ max
𝑥

{︂
Pr
𝑓←ℱ

[𝑓(𝑥) = 1]

}︂
.

Proof. For any |𝜓⟩ :=
∑︀

𝑥 𝛼𝑥 |𝑥⟩, write

E
𝑓←ℱ

[︁⃦⃦
Π𝑓 |𝜓⟩

⃦⃦2]︁
= E

𝑓←ℱ

⎡⎣ ∑︁
𝑥:𝑓(𝑥)=1

|𝛼𝑥|2
⎤⎦ =

∑︁
𝑥

Pr
𝑓←ℱ

[𝑓(𝑥) = 1]·|𝛼𝑥|2 ≤ max
𝑥

{︂
Pr
𝑓←ℱ

[𝑓(𝑥) = 1]

}︂
,

where the last inequality holds because {|𝛼𝑥|2}𝑥 is a probability distribution.

Lemma 2.5 (Pauli Twirl over Affine Subspaces). Let 𝑅, ̂︀𝑅 ⊆ F𝑛2 be subspaces of F𝑛2 , and let
(𝑥0, 𝑧0, 𝑥1, 𝑧1) be such that either 𝑥0 ⊕ 𝑥1 /∈ ̂︀𝑅⊥ or 𝑧0 ⊕ 𝑧1 /∈ 𝑅⊥. Then for any ∆ /∈ 𝑅, ̂︀∆ /∈ ̂︀𝑅
and density matrix 𝜌 on 𝑚 ≥ 𝑛 qubits,∑︁

𝑥∈𝑅+Δ,𝑧∈ ̂︀𝑅+̂︀Δ
(𝑍𝑧𝑋𝑥)(𝑋𝑥0𝑍𝑧0)(𝑋𝑥𝑍𝑧)𝜌(𝑍𝑧𝑋𝑥)(𝑍𝑧1𝑋𝑥1)(𝑋𝑥𝑍𝑧) = 0.

Proof. Using the fact that 𝑋𝑥𝑍𝑧 = (−1)𝑥·𝑧𝑍𝑧𝑋𝑥, we write∑︁
𝑥∈𝑅+Δ,𝑧∈ ̂︀𝑅+̂︀Δ

(𝑍𝑧𝑋𝑥)(𝑋𝑥0𝑍𝑧0)(𝑋𝑥𝑍𝑧)𝜌(𝑍𝑧𝑋𝑥)(𝑍𝑧1𝑋𝑥1)(𝑋𝑥𝑍𝑧)

=
∑︁

𝑥∈𝑅+Δ,𝑧∈ ̂︀𝑅+̂︀Δ
(−1)𝑥·𝑧0+𝑧·𝑥0+𝑥·𝑧1+𝑧·𝑥1(𝑋𝑥0𝑍𝑧0)𝜌(𝑍𝑧1𝑋𝑥1)

=

⎛⎝ ∑︁
𝑧∈ ̂︀𝑅+̂︀Δ

(−1)𝑧·(𝑥0⊕𝑥1)
⎞⎠(︃ ∑︁

𝑥∈𝑅+Δ

(−1)𝑥·(𝑧0⊕𝑧1)
)︃
(𝑥𝑥0𝑍𝑧0)𝜌(𝑍𝑧1𝑋𝑥1)

=

⎛⎝∑︁
𝑧∈ ̂︀𝑅

(−1)𝑧·(𝑥0⊕𝑥1)
⎞⎠(︃∑︁

𝑥∈𝑅

(−1)𝑥·(𝑧0⊕𝑧1)
)︃
(−1)̂︀Δ·(𝑥0⊕𝑥1)(−1)Δ·(𝑧0⊕𝑧1)(𝑥𝑥0𝑍𝑧0)𝜌(𝑍𝑧1𝑋𝑥1)

= 0,

where the last equality follows because either 𝑥0 ⊕ 𝑥1 /∈ ̂︀𝑅⊥ or 𝑧0 ⊕ 𝑧1 /∈ 𝑅⊥.
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The following two lemmas are applications of Cauchy-Schwarz. The first is adapted
from [DS23].

Lemma 2.6. Let 𝒦 be a set of keys, 𝑁 an integer, and {|𝜓𝑘⟩ , {Π𝑘,𝑖}𝑖∈[𝑁 ], 𝑂𝑘}𝑘∈𝒦 be a set of
states |𝜓𝑘⟩, projective submeasurements {Π𝑘,𝑖}𝑖∈[𝑁 ], and classical functions 𝑂𝑘 such that |𝜓𝑘⟩ ∈
Im(
∑︀

𝑖Π𝑘,𝑖) for each 𝑘. Then for any distinguisher 𝐷, which we take to be an oracle-aided binary
outcome projector, it holds that

E
𝑘←𝒦

[︀
‖𝐷𝑂𝑘 |𝜓𝑘⟩ ‖2

]︀
−
∑︁
𝑖

E
𝑘←𝒦
‖𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2 ≤ 𝑁 ·

[︃∑︁
𝑖 ̸=𝑗

E
𝑘←𝒦
‖Π𝑘,𝑗𝐷

𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2
]︃1/2

.

Proof.

E
𝑘←𝒦

[︂⃦⃦⃦⃦
𝐷𝑂𝑘 |𝜓𝑘⟩

⃦⃦2]︂
= E

𝑘←𝒦

[︃⃒⃒⃒⃒
⟨𝜓𝑘|

(︃∑︁
𝑖

Π𝑘,𝑖

)︃
𝐷𝑂𝑘

(︃∑︁
𝑖

Π𝑘,𝑖

)︃
|𝜓𝑘⟩

⃒⃒⃒⃒]︃

= E
𝑘←𝒦

[︃⃒⃒⃒⃒∑︁
𝑖

⟨𝜓𝑘|Π𝑘,𝑖𝐷
𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩+

∑︁
𝑖 ̸=𝑗

⟨𝜓𝑘|Π𝑘,𝑗𝐷
𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⃒⃒⃒⃒]︃

≤
∑︁
𝑖

E
𝑘←𝒦

⃦⃦
𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⃦⃦2
+ E

𝑘←𝒦

[︃∑︁
𝑖 ̸=𝑗

⃒⃒⃒⃒
⟨𝜓𝑘|Π𝑘,𝑗𝐷

𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩
⃒⃒⃒⃒]︃

≤
∑︁
𝑖

E
𝑘←𝒦

⃦⃦
𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⃦⃦2
+ E

𝑘←𝒦

[︃∑︁
𝑖 ̸=𝑗

√︁
⟨𝜓𝑘|Π𝑘,𝑖𝐷𝑂𝑘Π𝑘,𝑗𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

]︃

≤
∑︁
𝑖

E
𝑘←𝒦

⃦⃦
𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⃦⃦2
+𝑁 · E

𝑘←𝒦

⎡⎣(︃∑︁
𝑖 ̸=𝑗

‖Π𝑘,𝑗𝐷
𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2

)︃1/2
⎤⎦

≤
∑︁
𝑖

E
𝑘←𝒦

⃦⃦
𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩

⃦⃦2
+𝑁 ·

[︃∑︁
𝑖 ̸=𝑗

E
𝑘←𝒦
‖Π𝑘,𝑗𝐷

𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2
]︃1/2

,

where the first inequality is the triangle inequality, the second follows from Cauchy-
Schwarz applied to vectors |𝜓𝑘⟩ and Π𝑘,𝑗𝐷

𝑂𝑘Π𝑘,𝑖 |𝜓⟩, the third follows from Cauchy-Shwarz
applied to the length 𝑁2 vector (1, . . . , 1) and the vector with (𝑖, 𝑗)’th entry equal to√︁

⟨𝜓𝑘|Π𝑘,𝑖𝐷𝑂𝑘Π𝑘,𝑗𝐷𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩,

and the fourth is Jensen’s inequality.
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Lemma 2.7. Let 𝒦 be a set of keys, 𝑁 an integer, and {|𝜓𝑘⟩ , {Π𝑘,𝑖}𝑖∈[𝑁 ], 𝑂𝑘,Γ𝑘}𝑘∈𝒦 be a set of
states |𝜓𝑘⟩, projective submeasurements {Π𝑘,𝑖}𝑖∈[𝑁 ], classical function 𝑂𝑘, and projective mea-
surements Γ𝑘 such that |𝜓𝑘⟩ ∈ Im(

∑︀
𝑖Π𝑘,𝑖) for each 𝑘. Then for any oracle-aided unitary 𝑈 , it

holds that
E

𝑘←𝒦
[‖Γ𝑘𝑈𝑂𝑘 |𝜓𝑘⟩ ‖2] ≤ 𝑁 ·

∑︁
𝑖

E
𝑘←𝒦
‖Γ𝑘𝑈𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2.

Proof.

E
𝑘←𝒦

[‖Γ𝑘𝑈𝑂𝑘 |𝜓𝑘⟩ ‖2]

≤ E
𝑘←𝒦

⎡⎣(︃∑︁
𝑖

‖Γ𝑘𝑈𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖

)︃2
⎤⎦

≤ E
𝑘←𝒦

⎡⎣⎛⎝√𝑁√︃∑︁
𝑖

‖Γ𝑘𝑈𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2

⎞⎠2⎤⎦
= 𝑁 ·

∑︁
𝑖

E
𝑘←𝒦
‖Γ𝑘𝑈𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖2,

where the first inequality is the triangle inequality, and the second follows from Cauchy-
Shwarz applied to the length 𝑁 vector (1, . . . , 1) and the vector with 𝑖’th entry equal to
‖Γ𝑘𝑈𝑂𝑘Π𝑘,𝑖 |𝜓𝑘⟩ ‖.

We will frequently invoke the following lemma in order to switch between two oracles
that differ on hard-to-find inputs. The proof is a standard oracle hybrid argument.

Lemma 2.8. For each 𝜆 ∈ N, let 𝒦𝜆 be a set of keys, and {|𝜓𝑘⟩ , 𝑂0
𝑘, 𝑂

1
𝑘, 𝑆𝑘}𝑘∈𝒦𝜆 be a set of states

|𝜓𝑘⟩, classical functions𝑂0
𝑘, 𝑂

1
𝑘, and sets of inputs 𝑆𝑘. Suppose that the following properties holds.

1. The oracles 𝑂0
𝑘 and 𝑂1

𝑘 are identical on inputs outside of 𝑆𝑘.

2. For any oracle-aided unitary 𝑈 with 𝑞 = 𝑞(𝜆) queries, there is some 𝜖 = 𝜖(𝜆) such that

E
𝑘←𝒦

[︁⃦⃦
Π[𝑆𝑘]𝑈

𝑂0
𝑘 |𝜓𝑘⟩

⃦⃦2]︁ ≤ 𝜖.

Then, for any oracle-aided unitary 𝑈 with 𝑞(𝜆) queries and distinguisher 𝐷,⃒⃒⃒⃒
Pr
𝑘←𝒦

[︁
𝐷
(︁
𝑘, 𝑈𝑂0

𝑘 |𝜓𝑘⟩
)︁
= 0
]︁
− Pr

𝑘←𝒦

[︁
𝐷
(︁
𝑘, 𝑈𝑂1

𝑘 |𝜓𝑘⟩
)︁
= 0
]︁ ⃒⃒⃒⃒
≤ 4𝑞

√
𝜖.

Proof. For each 𝑖 ∈ [0, . . . , 𝑞], define hybrid ℋ𝑖 to sample 𝑘 ← 𝒦 and output (𝑘, 𝑈 (·) |𝜓𝑘⟩),
where 𝑈 ’s first 𝑞− 𝑖 oracle queries are answered with 𝑂0

𝑘 and 𝑈 ’s final 𝑖 oracle queries are
answered with 𝑂1

𝑘. For each 𝑖 ∈ [0, . . . , 𝑞− 1], define hybridℋ′𝑖 to be identical toℋ𝑖 except
that we apply the measurement {Π[𝑆𝑘], ℐ−Π[𝑆𝑘]} to𝑈 ’s state right before the 𝑞−𝑖’th oracle
query, and post-select on obtaining the second outcome. Then for any 𝑖 ∈ [0, . . . , 𝑞 − 1],
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• By condition 2 of the lemma statement and Lemma 2.3, it holds that TD(ℋ𝑖,ℋ′𝑖) ≤
2
√
𝜖.

• By conditions 1 and 2 of the lemma statement and Lemma 2.3, it holds that TD(ℋ′𝑖,ℋ𝑖+1) ≤
2
√
𝜖.

The lemma follows by summing over differences in trace distance induced by the 2𝑞
hybrid switches.

Lemma 2.9 (Measure and re-program [DFMS19, DFM20]). 17 Let 𝐴,𝐵 be finite non-empty
sets, and let 𝑞 ∈ N. Let A be an oracle-aided quantum circuit that makes 𝑞 queries to a uniformly
random function 𝐻 : 𝐴 → 𝐵 and then outputs classical strings (𝑎, 𝑧) where 𝑎 ∈ 𝐴. There exists
a two-stage quantum circuit Sim[A] such that for any predicate 𝑉 , it holds that

Pr

⎡⎣𝑉 (𝑎, 𝑏, 𝑧) = 1 :
(𝑎, st)← Sim[A]

𝑏← 𝐵
𝑧 ← Sim[A](𝑏, st)

⎤⎦ ≥ Pr
[︀
𝑉 (𝑎,𝐻(𝑎), 𝑧) = 1 : (𝑎, 𝑧)← A𝐻

]︀
(2𝑞 + 1)2

.

Moreover, Sim[A] operates as follows.

• Sample 𝐻 : 𝐴 → 𝐵 as a 2𝑞-wise independent function and (𝑖, 𝑑) ← ({0, . . . , 𝑞 − 1} ×
{0, 1}) ∪ {(𝑞, 0)}.

• Run A until it has made 𝑖 oracle queries, answering each query using 𝐻 .

• When A is about to make its (𝑖 + 1)’th oracle query, measure its query registers in the
standard basis to obtain 𝑎. In the special case that (𝑖, 𝑑) = (𝑞, 0), the simulator measures
(part of) the final output register of A to obtain 𝑎.

• The simulator receives 𝑏← 𝐵.

• If 𝑑 = 0, answer A’s (𝑖 + 1)’th query using 𝐻 , and if 𝑑 = 1, answer A’s (𝑖 + 1)’th query
using 𝐻[𝑎→ 𝑏], which is the function 𝐻 except that 𝐻(𝑎) is re-programmed to 𝑏.

• Run A until it has made all 𝑞 oracle queries. For queries 𝑖 + 2 through 𝑞, answer using
𝐻[𝑎→ 𝑏].

• Measure A’s output 𝑧.

Note that the running time of Sim[A] is at most poly(𝑞, log |𝐴|, log |𝐵|) times the running
time of A.

17This theorem was stated more generally in [DFMS19, DFM20] to consider the drop in expectation for
each specific 𝑎* ∈ 𝐴, and also to consider a more general class of quantum predicates.
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2.2 Cryptography

2.2.1 Obfuscation

Definition 2.10 (Obfuscation). An obfuscator for pseudo-deterministic quantum (resp. classi-
cal) circuits is a pair of algorithms (Obf,Eval) with the following syntax.

• Obf(1𝜆, 𝑄) → ̃︀𝑄: The obfuscator takes as input the security parameter 1𝜆 and the descrip-
tion of a quantum (resp. classical) circuit𝑄, and outputs a (potentially quantum) obfuscated
circuit ̃︀𝑄.

• Eval
(︁ ̃︀𝑄, 𝑥)︁→ 𝑏: The evaluator takes as input an obfuscated circuit ̃︀𝑄 and an input 𝑥, and

outputs a bit 𝑏 ∈ {0, 1}.

Correctness is defined as follows for any pseudo-deterministic (resp. classical) family of circuits
{𝑄𝜆}𝜆∈N with input length 𝑚(𝜆).

∀𝑥 ∈ {0, 1}𝑚(𝜆),Pr
[︁
Eval

(︁ ̃︀𝑄, 𝑥)︁ = 𝑄𝜆(𝑥) : ̃︀𝑄← Obf(1𝜆, 𝑄𝜆)
]︁
= 1− negl(𝜆).

We define two notions of security.

• Ideal obfuscation: For any QPT adversary {𝐴𝜆}𝜆∈N, there exists a QPT simulator {Sim𝜆}𝜆∈N
such that for any polynomial 𝑛(𝜆), pseudo-deterministic family of circuits {𝑄𝜆}𝜆∈N with in-
put length 𝑚(𝜆) and size at most 𝑛(𝜆), and QPT distinguisher {𝐷𝜆}𝜆∈N,

⃒⃒⃒⃒
Pr
[︀
1← 𝐷𝜆

(︀
𝐴𝜆
(︀
Obf(1𝜆, 𝑄𝜆)

)︀)︀]︀
−Pr

[︁
1← 𝐷𝜆

(︁
Sim𝑄𝜆

𝜆

(︀
1𝜆, 𝑛(𝜆),𝑚(𝜆)

)︀)︁]︁ ⃒⃒⃒⃒
= negl(𝜆).

• Indistinguishability obfuscation: For any QPT adversary {𝐴𝜆}𝜆∈N and pair of function-
ally equivalent families of pseudo-deterministic (resp. classical) circuits {𝑄0,𝜆}𝜆∈N, {𝑄1,𝜆}𝜆∈N,⃒⃒⃒⃒

Pr
[︀
1← 𝐴𝜆

(︀
Obf(1𝜆, 𝑄0,𝜆)

)︀]︀
− Pr

[︀
1← 𝐴𝜆

(︀
Obf(1𝜆, 𝑄1,𝜆)

)︀]︀ ⃒⃒⃒⃒
= negl(𝜆).

Next, we define a notion of obfuscation for null quantum circuits.

Definition 2.11 (Obfuscation of null quantum circuits). An obfuscator for null quantum cir-
cuits is a pair of QPT algorithms (NObf,NEval) with the following syntax.

• NObf(1𝜆, 𝑄)→ ̃︀𝑄: The obfuscator takes as input the security parameter 1𝜆 and the descrip-
tion of a quantum circuit with quantum input and one bit of classical output, and outputs
an obfuscated circuit ̃︀𝑄.

• NEval
(︁ ̃︀𝑄, |𝜓⟩)︁→ 𝑏: The evaluator takes as input an obfuscated circuit ̃︀𝑄 and an input |𝜓⟩

and outputs a bit 𝑏 ∈ {0, 1}.
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An obfuscator (NObf,NEval) for null quantum circuits is correct if there exists a polynomial
𝑘(𝜆) such that for all polynomial-size families of quantum circuits {𝑄𝜆}𝜆∈N and inputs {|𝜓𝜆⟩}𝜆∈N
such that there exists {𝑏𝜆}𝜆∈N such that Pr[𝑄𝜆(|𝜓𝜆⟩) = 𝑏𝜆] = 1− negl(𝜆), it holds that

Pr
[︁
NEval

(︁ ̃︀𝑄, |𝜓𝜆⟩⊗𝑘(𝜆))︁ = 𝑏𝜆 : ̃︀𝑄← NObf(1𝜆, 𝑄𝜆)
]︁
= 1− negl(𝜆).

An obfuscator (NObf,NEval) for null quantum circuits is secure if for any QPT adversary
{𝐴𝜆}𝜆∈N and polynomial-size sequences of quantum circuits {𝑄0,𝜆}𝜆∈N, {𝑄1,𝜆}𝜆∈N such that for
all inputs {|𝜓𝜆⟩}𝜆∈N,

Pr[𝑄0,𝜆(|𝜓𝜆⟩) = 0] = 1− negl(𝜆) and Pr[𝑄1,𝜆(|𝜓𝜆⟩) = 0] = 1− negl(𝜆),

it holds that⃒⃒⃒⃒
Pr
[︀
1← 𝐴𝜆

(︀
NObf(1𝜆, 𝑄0,𝜆)

)︀]︀
− Pr

[︀
1← 𝐴𝜆

(︀
NObf(1𝜆, 𝑄1,𝜆)

)︀]︀ ⃒⃒⃒⃒
= negl(𝜆).

Remark 2.12. Note that our definition of obfuscation for null quantum circuits only guarantees
correctness for inputs that either accept or reject with high probability, and, moreover, requires the
evaluator to possess multiple copies of any quantum input. Thus, this definition can be considered
obfuscation for null pseudo-deterministic quantum circuits (strictly generalizing the standard
notion of obfuscation for null classical circuits) with an additional correctness guarantee that must
hold for quantum inputs that yield a (nearly) deterministic outcome. There is no correctness
guarantee for quantum inputs that do not yield a (nearly) deterministic outcome.

Next, we define a notion of obfuscation for quantum computation where the program
itself has a potentially quantum description.

Definition 2.13 (Quantum state obfuscation). For any 𝜖 = 𝜖(𝜆), let 𝒞𝜖 be the set of families of 𝜖-
pseudo-deterministic quantum programs (Definition 2.2), where each family {|𝜓𝜆⟩ , 𝐶𝜆}𝜆∈N ∈ 𝒞𝜖
is associated with an induced family of maps {𝑄𝜆 : {0, 1}𝑚(𝜆) → {0, 1}𝑚′(𝜆)}𝜆∈N. A quantum
state obfuscator is a pair of QPT algorithms (QSObf,QSEval) with the following syntax.

• QSObf
(︀
1𝜆, |𝜓⟩ , 𝐶

)︀
→ | ̃︀𝜓⟩: The obfuscator takes as input the security parameter 1𝜆 and a

quantum program (|𝜓⟩ , 𝐶), and outputs an obfuscated state | ̃︀𝜓⟩.
• QSEval

(︁
| ̃︀𝜓⟩ , 𝑥)︁ → 𝑦: The evaluator takes as input an obfuscated state | ̃︀𝜓⟩ and an input

𝑥 ∈ {0, 1}𝑚(𝜆), and outputs 𝑦 ∈ {0, 1}𝑚′(𝜆).

Correctness is defined as follows for any quantum program {|𝜓𝜆⟩ , 𝐶𝜆}𝜆∈N.

∀𝑥 ∈ {0, 1}𝑚(𝜆),Pr
[︁
QSEval

(︁
| ̃︀𝜓⟩ , 𝑥)︁ = 𝑄𝜆(𝑥) : | ̃︀𝜓⟩ ← QSObf

(︀
1𝜆, |𝜓𝜆⟩ , 𝐶𝜆

)︀]︁
= 1− negl(𝜆).

We define two notions of security.
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• Ideal obfuscation: For any QPT adversary {𝐴𝜆}𝜆∈N, there exists a QPT simulator {Sim𝜆}𝜆∈N
such that for any polynomial 𝑛(𝜆), program {|𝜓𝜆⟩ , 𝐶𝜆}𝜆∈N ∈ 𝒞𝜖 with induced family of
maps {𝑄𝜆 : {0, 1}𝑚(𝜆) → {0, 1}𝑚′(𝜆)}𝜆∈N such that |𝜓𝜆⟩ has at most 𝑛(𝜆) qubits and 𝐶𝜆
has at most 𝑛(𝜆) gates, and QPT distinguisher {𝐷𝜆}𝜆∈N,

⃒⃒⃒⃒
Pr
[︀
1← 𝐷𝜆

(︀
𝐴𝜆
(︀
QSObf

(︀
1𝜆, |𝜓𝜆⟩ , 𝐶𝜆

)︀)︀)︀]︀
− Pr

[︁
1← 𝐷𝜆

(︁
Sim𝑄𝜆

𝜆

(︀
1𝜆, 𝑛(𝜆),𝑚(𝜆),𝑚′(𝜆)

)︀)︁]︁ ⃒⃒⃒⃒
= negl(𝜆).

• Indistinguishability obfuscation: For any polynomial 𝑛(𝜆), pair of families {|𝜓𝜆,0⟩ , 𝐶𝜆,0}𝜆∈N,
{|𝜓𝜆,1⟩ , 𝐶𝜆,1}𝜆∈N ∈ 𝒞𝜖 with the same induced map {𝑄𝜆 : {0, 1}𝑚(𝜆) → {0, 1}𝑚′(𝜆)}𝜆∈N such
that |𝜓𝜆,0⟩ and |𝜓𝜆,1⟩ both have at most 𝑛(𝜆) qubits and𝐶𝜆,0 and𝐶𝜆,1 both have at most 𝑛(𝜆)
gates, and QPT adversary {𝐴𝜆}𝜆∈N,⃒⃒⃒⃒
Pr
[︀
1← 𝐴𝜆

(︀
QSObf

(︀
1𝜆, |𝜓𝜆,0⟩ , 𝐶𝜆,0

)︀)︀]︀
−Pr

[︀
1← 𝐴𝜆

(︀
QSObf

(︀
1𝜆, |𝜓𝜆,1⟩ , 𝐶𝜆,1

)︀)︀]︀ ⃒⃒⃒⃒
= negl(𝜆).

Remark 2.14 (Classical oracle model). In this work, we construct obfuscation schemes in the
classical oracle model. In this model, we allow the obfuscation algorithm to additionally output
the description of a classical deterministic functionality 𝑂, and both the evaluation algorithm and
the adversary are granted (quantum-accessible) oracle access to 𝑂. Any scheme in the classical
oracle model may be heuristically instantiated in the plain model by using a post-quantum in-
distinguishability obfuscator to obfuscate 𝑂 and include its obfuscation in the description of the
obfuscated circuit.

2.2.2 Trapdoor claw-free functions

In this section, we define a variant of trapdoor claw-free functions, which we refer to as
a dual-mode noisy trapdoor claw-free function family (dTCF) with an adaptive hardcore
bit.

Definition 2.15 (dTCF with adaptive hardcore bit). Let {𝑋𝜆}𝜆∈N and {𝑌𝜆}𝜆∈N be families of
finite sets. Below, we will leave the dependence of these sets on 𝜆 implicit. A dual-mode noisy
trapdoor claw-free function family with an adaptive hardcore bit is described by a tuple of
algorithms (Gen,Eval, Invert,Check, IsValid) with the following syntax.

• Gen(1𝜆, ℎ) → (pk, sk) is a randomized classical algorithm that takes as input a security
parameter 1𝜆 and a bit ℎ ∈ {0, 1} (where ℎ = 0 indicates injective mode and ℎ = 1
indicates 2-to-1 mode), and outputs a public key pk and a secret key sk. The public key
pk implicitly defines a function 𝑓pk : {0, 1} ×𝑋 → 𝒟𝑌 , where 𝒟𝑌 is the set of probability
distributions over 𝑌 .
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• Eval(pk, 𝑏)→ |𝜓pk,𝑏⟩ is a QPT algorithm that takes as input a public key pk and a bit 𝑏, and
outputs a fixed pure state |𝜓pk,𝑏⟩𝒳 ,𝒴 on two registers 𝒳 and 𝒴 , where 𝒳 is spanned by the
elements of 𝑋 and 𝒴 is spanned by the elements of 𝑌 . We further define

Eval[pk] := |0⟩⟨0|ℬ ⊗ Eval(pk, 0) + |1⟩⟨1|ℬ ⊗ Eval(pk, 1),

which is a map from the single qubit register ℬ to registers (ℬ,𝒳 ,𝒴).

• Invert(ℎ, sk, 𝑦) is a deterministic classical algorithm that takes as input ℎ ∈ {0, 1}, a secret
key sk, and an element 𝑦 ∈ 𝑌 . If ℎ = 0, it outputs a pair (𝑏, 𝑥) ∈ {0, 1}×𝑋 or ⊥. If ℎ = 1,
it outputs two pairs (0, 𝑥0) and (1, 𝑥1) with 𝑥0, 𝑥1 ∈ 𝑋 , or ⊥.

• Check(pk, 𝑏, 𝑥, 𝑦) → {⊤,⊥} is a deterministic classical algorithm that takes as input a
public key pk, a bit 𝑏 ∈ {0, 1}, an element 𝑥 ∈ 𝑋 , and an element 𝑦 ∈ 𝑌 , and outputs either
⊤ or ⊥.

• IsValid(𝑥0, 𝑥1, 𝑑) → {⊤,⊥} is a deterministic classical algorithm that takes as input two
elements 𝑥0, 𝑥1 ∈ 𝑋 and a string 𝑑, and outputs either ⊤,⊥, characterizing membership in
a set that we call

Valid𝑥0,𝑥1 := {𝑑 : IsValid(𝑥0, 𝑥1, 𝑑) = 1}.

We require that the following properties are satisfied.

1. Correctness:

(a) For all (pk, sk) ∈ Gen(1𝜆, 0): For every 𝑏 ∈ {0, 1}, every 𝑥 ∈ 𝑋 , and every 𝑦 ∈
Supp(𝑓pk(𝑏, 𝑥)),

Invert(0, sk, 𝑦) = (𝑏, 𝑥).

(b) For all (pk, sk) ∈ Gen(1𝜆, 1): For every 𝑏 ∈ {0, 1}, every 𝑥 ∈ 𝑋 , and every 𝑦 ∈
Supp(𝑓pk(𝑏, 𝑥)),

Invert(1, sk, 𝑦) = ((0, 𝑥0), (1, 𝑥1))

such that 𝑥𝑏 = 𝑥, 𝑦 ∈ Supp(𝑓pk(0, 𝑥0)), and 𝑦 ∈ Supp(𝑓pk(1, 𝑥1)).

(c) For all (pk, sk) ∈ Gen(1𝜆, 0) ∪ Gen(1𝜆, 1), every 𝑏 ∈ {0, 1} and every 𝑥 ∈ 𝑋 , it holds
that Check(pk, (𝑏, 𝑥), 𝑦) = 1 if and only if 𝑦 ∈ Supp(𝑓pk(𝑏, 𝑥)).

(d) For all (pk, sk) ∈ Gen(1𝜆, 0) ∪ Gen(1𝜆, 1) and every 𝑏 ∈ {0, 1}, it holds that

TD

(︃
|𝜓pk,𝑏⟩𝒳 ,𝒴 ,

1√︀
|𝑋|

∑︁
𝑥∈𝑋,𝑦∈𝑌

√︁
(𝑓pk(𝑏, 𝑥))(𝑦) |𝑥⟩𝒳 |𝑦⟩𝒴

)︃
= negl(𝜆),

where |𝜓pk,𝑏⟩ ← Eval(pk, 𝑏).

(e) For all (pk, sk) ∈ Gen(1𝜆, 1) and every pair of elements 𝑥0, 𝑥1 ∈ 𝑋 , the density of
Valid𝑥0,𝑥1 is 1− negl(𝜆).
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2. Mode indistinguishability: For every QPT adversary {𝐴𝜆}𝜆∈N,⃒⃒⃒
Pr
[︀
1← 𝐴𝜆(pk) : (pk, sk)← Gen(1𝜆, 0)

]︀
−Pr

[︀
1← 𝐴𝜆(pk) : (pk, sk)← Gen(1𝜆, 1)

]︀ ⃒⃒⃒
= negl(𝜆).

3. Adaptive hardcore bit: There is an efficiently computable and efficiently invertible injec-
tion 𝐽 : 𝑋 → {0, 1}𝑤 such that for every QPT adversary {𝐴𝜆}𝜆∈N,⃒⃒⃒⃒
⃒Pr

⎡⎣ Check(pk, 𝑏, 𝑥, 𝑦) = 1 ∧
𝑑 ∈ Valid𝑥0,𝑥1 ∧
𝑑 · (𝐽(𝑥0)⊕ 𝐽(𝑥1)) = 0

:
(pk, sk)← Gen(1𝜆, 1)
(𝑦, 𝑏, 𝑥, 𝑑)← 𝐴𝜆(pk)

((0, 𝑥0), (1, 𝑥1)) := Invert(1, sk, 𝑦)

⎤⎦
− Pr

⎡⎣ Check(pk, 𝑏, 𝑥, 𝑦) = 1 ∧
𝑑 ∈ Valid𝑥0,𝑥1 ∧
𝑑 · (𝐽(𝑥0)⊕ 𝐽(𝑥1)) = 1

:
(pk, sk)← Gen(1𝜆, 1)
(𝑦, 𝑏, 𝑥, 𝑑)← 𝐴𝜆(pk)

((0, 𝑥0), (1, 𝑥1)) := Invert(1, sk, 𝑦)

⎤⎦ ⃒⃒⃒⃒⃒ = negl(𝜆).

The works of [BCM+18, Mah18b] showed that, assuming the quantum hardness of
learning with errors (LWE), there exists a dual-mode noisy trapdoor claw-free function
family with an adaptive hardcore bit.

2.2.3 Quantum fully-homomorphic encryption

We define quantum fully-homomorphic encryption (QFHE) with classical keys and clas-
sical encryption of classical messages.

Definition 2.16 (Quantum fully-homomorphic encryption). A quantum fully-homomorphic
encryption scheme (Gen,Enc,Eval,Dec) consists of the following efficient algorithms.

• Gen(1𝜆, 𝐷) → (pk, sk): On input the security parameter 1𝜆 and a circuit depth 𝐷, the key
generation algorithm returns a public key pk and a secret key sk.

• Enc(pk, 𝑥) → ct: On input the public key pk and a classical plaintext 𝑥, the encryption
algorithm returns a classical ciphertext ct.

• Eval(𝑄, ct) → ̃︀ct: On input a quantum circuit 𝑄 and a ciphertext ct, the quantum evalua-
tion algorithm returns an evaluated ciphertext ̃︀ct.

• Dec(sk, ct) → 𝑥: On input the secret key sk and a classical ciphertext ct, the decryption
algorithm returns a message 𝑥.

The scheme should satisfy the standard notion of semantic security.

Definition 2.17 (Semantic security). A QFHE scheme (Gen,Enc,Eval,Dec) is secure if for any
QPT adversary {𝐴𝜆}𝜆∈N and circuit depth 𝐷,

⃒⃒⃒⃒
Pr

[︂
𝐴𝜆(ct) = 1 :

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 0)

]︂
−Pr

[︂
𝐴𝜆(ct) = 1 :

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 1)

]︂ ⃒⃒⃒⃒
= negl(𝜆).
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We will also require the following notion of correctness for evaluation of pseudo-
deterministic quantum circuits.

Definition 2.18 (Evaluation correctness). A QFHE scheme (Gen,Enc,Eval,Dec) is correct
if for any polynomial 𝐷(𝜆), family of pseudo-deterministic quantum circuits {𝑄𝜆}𝜆∈N of depth
𝐷(𝜆), inputs {𝑥𝜆}𝜆∈N, security parameter 𝜆, (pk, sk) ∈ Gen(1𝜆, 𝐷(𝜆)), and ct ∈ Enc(pk, 𝑥),

Pr[Dec(sk,Eval(𝑄𝜆, ct)) = 𝑄𝜆(𝑥𝜆)] = 1− negl(𝜆).

The works of Mahadev [Mah18a] and Brakerski [Bra18] show that such a QFHE scheme
can be constructed from the quantum hardness of learning with errors (LWE).

2.2.4 Signature tokens

Definition 2.19 (Signature token). A signature token scheme consists of algorithms (TokGen,
TokSign,TokVer) with the following syntax.

• TokGen(1𝜆) → (vk, |sk⟩): The TokGen algorithm takes as input the security parameter 1𝜆

and outputs a classical verification key vk and a quantum signing key |sk⟩.

• TokSign(𝑏, |sk⟩)→ 𝜎: The TokSign algorithm takes as input a bit 𝑏 ∈ {0, 1} and the signing
key |sk⟩, and outputs a classical signature 𝜎.

• TokVer(vk, 𝑏, 𝜎)→ {⊤,⊥}: The TokVer algorithm takes as input a verification key vk, a bit
𝑏, and a signature 𝜎, and outputs ⊤ or ⊥.

A signature token should satisfy the following definition of correctness.

Definition 2.20. A signature token scheme (TokGen,TokSign,TokVer) is correct if for any 𝑏 ∈
{0, 1},

Pr

[︂
TokVer(vk, 𝑏, 𝜎) = ⊤ :

(vk, |sk⟩)← TokGen(1𝜆)
𝜎 ← TokSign(𝑏, |sk⟩)

]︂
= 1.

A signature token should satisfy the following definition of security. Note that we
give the adversary oracle access to the verification functionality, and ask for exponential
security.

Definition 2.21. A signature token scheme (TokGen,TokSign,TokVer) satisfies unforgeability
if for any QPQ adversary {A𝜆}𝜆∈N,

Pr

[︂
TokVer(vk, 0, 𝜎0) = ⊤ ∧
TokVer(vk, 1, 𝜎1) = ⊤

:
(vk, |sk⟩)← TokGen(1𝜆)

(𝜎0, 𝜎1)← A
TokVer[vk]
𝜆 (|sk⟩)

]︂
= 2−Ω(𝜆),

where TokVer[vk] is the functionality TokVer(vk, ·, ·).

Theorem 2.22 ([BS16]). There exists a signature token scheme that satisfies Definition 2.20 and
Definition 2.21.
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We will also require a signature token with the property of strong unforgeability, de-
fined as follows.

Definition 2.23. A signature token scheme (TokGen,TokSign,TokVer) satisfies strong unforge-
ability if for any QPQ adversary {A𝜆}𝜆∈N,

Pr

⎡⎣ (𝑏0, 𝜎0) ̸= (𝑏1, 𝜎1) ∧
TokVer(vk, 𝑏0, 𝜎0) = ⊤ ∧
TokVer(vk, 𝑏1, 𝜎1) = ⊤

:
(vk, |sk⟩)← TokGen(1𝜆)

(𝑏0, 𝜎0, 𝑏1, 𝜎1)← A
TokVer[vk]
𝜆 (|sk⟩)

⎤⎦ = 2−Ω(𝜆),

where TokVer[vk] is the functionality TokVer(vk, ·, ·).

Claim 2.24. There exists a signature token scheme that satisfies Definition 2.20 and Defini-
tion 2.23.

Proof. This follows by a slight tweak to arguments in [BS16]. We first note that by a union
bound, it suffices to show that each of the following three cases happens with negligible
probability: (1) A𝜆 outputs 𝜎0, 𝜎1 such that 𝜎0 is a valid signature of 0 and 𝜎1 is a valid
signature of 1, (2) A𝜆 outputs 𝜎0 ̸= 𝜎′0 that are both valid signatures of 0, and (3) A𝜆
outputs 𝜎1 ̸= 𝜎′1 that are both valid signatures of 1. The first case is already proven by
[BS16].

The second case can be shown by following the proofs in [BS16] except for one differ-
ence: for a subspace𝐴 < F𝑛2 , the “target set” Λ(𝐴) (defined on page 25 of [BS16]) is instead
defined to consist of pairs of vectors (𝑎, 𝑏) such that 𝑎 ̸= 𝑏 ∈ 𝐴 ∖ {0𝑛}. The only change in
the proof then comes in [BS16, Lemma 19], where we need to show that

max
𝐴∈𝑆(𝑛),(𝑎,𝑏)∈Λ(𝐴)

Pr
𝐵←ℛ𝐴

[(𝑎, 𝑏) ∈ Λ(𝐵)] ≤ 1

4
,

where 𝑆(𝑛) is the set of subspaces of F𝑛2 of dimension 𝑛/2, and for any 𝐴 ∈ 𝑆(𝑛), ℛ𝐴 is
the set of 𝐵 ∈ 𝑆(𝑛) such that dim(𝐴 ∩ 𝐵) = 𝑛/2 − 1. This follows by first noting that
any distinct non-zero 𝑎, 𝑏 ∈ 𝐴 specify a two-dimensional subspace {0, 𝑎, 𝑏, 𝑎 + 𝑏}. Then,
following the proof of [BS16, Lemma 19], and defining

𝐺(𝑚, 𝑘) :=
𝑘−1∏︁
𝑖=0

2𝑚−𝑖 − 1

2𝑘−𝑖 − 1

to be the number of subspaces of F𝑘2 of dimension 𝑚, we have that this expression is at
most

𝐺(𝑛/2− 2, 𝑛/2− 3)

𝐺(𝑛/2, 𝑛/2− 1)
=

2𝑛/2−1 − 1

2𝑛/2 − 1
· 2

𝑛/2−2 − 1

2𝑛/2−1 − 1
≤ 1

4
.

Finally, the third case can be proven in the same way as the second, by defining Λ(𝐴)
as the set of (𝑎, 𝑏) such that 𝑎 ̸= 𝑏 ∈ 𝐴⊥ ∖ {0𝑛}.
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2.2.5 Puncturable pseudorandom functions

Definition 2.25 (Puncturable pseudorandom function). A puncturable pseudorandom func-
tion (PRF.Gen,PRF.Puncture,PRF.Eval) consists of the following PPT algorithms.

• PRF.Gen(1𝜆) → 𝑘: On input the security parameter, the key generation algorithm returns
a key 𝑘.

• PRF.Puncture(𝑘, 𝑧) → 𝑘𝑧: On input a key 𝑘 and a point 𝑧, the puncturing algorithm
returns the punctured key 𝑘𝑧.

• PRF.Eval(𝑘, 𝑥) → 𝑦: On input a key 𝑘 and a string 𝑥 ∈ {0, 1}𝜆, the evaluation algorithm
returns a string 𝑦 ∈ {0, 1}𝜆.

Correctness requires that evaluation using the punctured key agrees with evaluation
using the non-punctured key on all but the punctured point.

Definition 2.26 (Correctness). A puncturable PRF (PRF.Gen,PRF.Puncture,PRF.Eval) is cor-
rect if for all 𝜆 ∈ N, all 𝑧 ∈ {0, 1}𝜆, and all strings 𝑥 ̸= 𝑧 it holds that

Pr [PRF.Eval(𝑘, 𝑥) = PRF.Eval(𝑘𝑧, 𝑥)] = 1,

where 𝑘 ← PRF.Gen(1𝜆) and 𝑘𝑧 ← PRF.Puncture(𝑘, 𝑧).

Pseudorandomness requires that the evaluation of the PRF at any point 𝑧 is computa-
tionally indistinguishable from random, even given the punctured key 𝑘𝑧.

Definition 2.27 (Pseudorandomness). A puncturable PRF (PRF.Gen,PRF.Puncture,PRF.Eval)
is pseudorandom if for all 𝑧 ∈ {0, 1}𝜆 and QPT {𝐴𝜆}𝜆∈N, it holds that

⃒⃒⃒⃒
Pr

⎡⎣𝐴𝜆(𝑘𝑧, 𝑦) = 1 :
𝑘 ← PRF.Gen(1𝜆)

𝑘𝑧 ← PRF.Puncture(𝑘, 𝑧)
𝑦 ← PRF.Eval(𝑘, 𝑧)

⎤⎦
− Pr

⎡⎣𝐴𝜆(𝑘𝑧, 𝑢) = 1 :
𝑘 ← PRF.Gen(1𝜆)

𝑘𝑧 ← PRF.Puncture(𝑘, 𝑧)
𝑢← {0, 1}𝜆

⎤⎦ ⃒⃒⃒⃒ = negl(𝜆).
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3 Obfuscation of Null Quantum Circuits

In Section 3.1, we formalize the approach outlined Section 1.3 for obfuscating null quan-
tum circuits. Then, in Section 3.2, we present several applications, including witness
encryption for QMA and non-interactive zero-knowledge for QMA. For further applica-
tions, see [BM22].

3.1 Construction

We begin by defining the notion of a classical-verifier generalized sigma protocol for
QMA.

Definition 3.1 (Classical-verifier generalized sigma protocol for QMA). A classical-verifier
generalized sigma protocol for QMA consists of algorithms (Gen,Prove1,Prove2,Ver) with the
following syntax.

• Gen(1𝜆, 𝑄)→ (pp, sp): The PPT parameter generation algorithm takes as input the security
parameter 1𝜆 and a quantum circuit 𝑄 with quantum input and one bit of classical output,
and outputs public parameters pp and secret parameters sp.

• Prove1(pp, |𝜓⟩) → (𝜋1, |st⟩): The QPT first prover algorithm takes as input the public
parameters pp and a quantum state |𝜓⟩, and outputs a classical string 𝜋1 and a quantum
state |st⟩.

• Prove2(|st⟩ , 𝑟)→ 𝜋2: The QPT second prover algorithm takes as input a quantum state |st⟩
and a classical string 𝑟, and outputs a classical string 𝜋2.

• Ver(sp, 𝜋1, 𝑟, 𝜋2) → 𝑏: The PPT verification algorithm takes as input the public parameters
pp, and classical strings 𝜋1, 𝑟, 𝜋2, and outputs a bit 𝑏 indicating acceptance or rejection.

The protocol satisfies completeness if there exists a polynomial 𝑘(𝜆) such that for any polynomial-
size family of quantum circuits {𝑄𝜆}𝜆∈N and inputs {|𝜓𝜆⟩}𝜆∈N such that Pr[𝑄𝜆(|𝜓𝜆⟩) = 1] =
1− negl(𝜆), it holds that

Pr

⎡⎢⎢⎢⎣Ver(sp, 𝜋1, 𝑟, 𝜋2) = 1 :

(pp, sp)← Gen(1𝜆, 𝑄𝜆)

(𝜋1, |st⟩)← Prove1
(︁
pp, |𝜓𝜆⟩⊗𝑘(𝜆)

)︁
𝑟 ← {0, 1}𝜆

𝜋2 ← Prove2(|st⟩ , 𝑟)

⎤⎥⎥⎥⎦ = 1− negl(𝜆).

The protocol satisfies soundness if for any polynomial-size family of quantum circuits {𝑄𝜆}𝜆∈N
such that for all inputs {|𝜓𝜆⟩}𝜆∈N, Pr[𝑄𝜆(|𝜓𝜆⟩) = 1] = negl(𝜆), and any QPT adversary {𝐴1,𝜆, 𝐴2,𝜆}𝜆∈N,
it holds that
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Pr

⎡⎢⎢⎣Ver(sp, 𝜋1, 𝑟, 𝜋2) = 1 :

(pp, sp)← Gen(1𝜆, 𝑄𝜆)
(𝜋1, |st⟩)← 𝐴1(pp)

𝑟 ← {0, 1}𝜆
𝜋2 ← 𝐴2(|st⟩ , 𝑟)

⎤⎥⎥⎦ = negl(𝜆).

The protocol satisfies blindness if for any two polynomial-size families of quantum ciruits
{𝑄0,𝜆}𝜆∈N and {𝑄1,𝜆}𝜆∈N, and any QPT adversary {𝐴𝜆}𝜆∈N, it holds that

⃒⃒⃒⃒
Pr
[︀
1← 𝐴𝜆(pp) : (pp, sp)← Gen(1𝜆, 𝑄0,𝜆)

]︀
−Pr

[︀
1← 𝐴𝜆(pp) : (pp, sp)← Gen(1𝜆, 𝑄1,𝜆)

]︀ ⃒⃒⃒⃒
= negl(𝜆).

Imported Theorem 3.2 ([Mah18b, ACGH20]). Assuming a dTCF with an adaptive hardcore
bit (Definition 2.15), there exists a classical-verifier generalized sigma protocol for QMA that
satisfies completeness and soundness.

Next, we show a simple transformation based on quantum fully-homomorphic en-
cryption that generically adds blindness to any classical-verifier generalized sigma pro-
tocol for QMA.

Claim 3.3. Assuming QFHE (Definition 2.16) and a classical-verifier generalized sigma protocol
for QMA that satisfies completeness and soundness, there exists a classical-verifier generalized
sigma protocol for QMA that satisfies completeness, soundness, and blindness.

Proof. The complete and sound protocol (Gen,Prove1,Prove2,Verify) can be turned into a
blind protocol (Gen′,Prove′1,Prove

′
2,Verify

′) as follows. Gen′ will run Gen, sample a random
QFHE key pair (pk, sk), and output pp′ ← Enc(pk, pp) and sp′ := (sp, sk). Prove′1 will run
Prove1 under the QFHE to produce (𝜋′1, |st′⟩) := Enc(pk, 𝜋1),Enc(pk, |st⟩). Prove′2, given 𝑟,
will run Prove2 under the QFHE to produce 𝜋′2 := Enc(pk, 𝜋2). Finally, the verification
procedure Ver′(sp′, 𝜋′1, 𝑟, 𝜋

′
2) will compute 𝜋1 := Dec(sk, 𝜋′1), 𝜋2 := Dec(sk, 𝜋′2), and output

Verify(sp, 𝜋1, 𝑟, 𝜋2).
Correctness of (Gen′,Prove′1,Prove

′
2,Ver

′) follows immediately from correctness of QFHE.
Soundness follows by a reduction to the soundness of (Gen,Prove1,Prove2,Ver), in which
the reduction samples the (pk, sk) key pair, encrypts pp received from its challenger, and
decrypts each of Enc(pk, 𝜋1) and Enc(pk, 𝜋2) before forwarding them to its challenger.
Blindness follows immediately from the semantic security of QFHE.

Imported Theorem 3.4 ([DFMS19, ACGH20]). Let (Gen,Prove1,Prove2,Ver) be a classical-
verifier generalized sigma protocol for QMA that satisfies soundness, and let 𝐻 : {0, 1}* →
{0, 1}𝜆 be a (quantum-accessible) random oracle. Then for any polynomial-size family of quantum
circuits {𝑄𝜆}𝜆∈N such that for all inputs {|𝜓𝜆⟩}𝜆∈N, Pr[𝑄𝜆(|𝜓𝜆⟩) = 1] = negl(𝜆), and any oracle-
aided QPT adversary {𝐴𝜆}𝜆∈N, it holds that

Pr

[︂
Ver(sp, 𝜋1, 𝐻(𝜋1), 𝜋2) = 1 :

(pp, sp)← Gen(1𝜆, 𝑄𝜆)
(𝜋1, 𝜋2)← 𝐴𝐻𝜆 (pp)

]︂
= negl(𝜆).
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Next, we present our construction of obfuscation for null quantum circuits (Defini-
tion 2.11). We make use of the following ingredients, and our construction is in the clas-
sical oracle model (see Remark 2.14)

• A pseudorandom function 𝐹𝑘 secure against superposition-query attacks [Zha12].

• A classical-verifier generalized sigma protocol for QMA (Gen,Prove1,Prove2,Ver)
that satisfies completeness, soundness, and blindness (Definition 3.1).

Our construction is given in Fig. 1.

Obfuscation for null quantum circuits

• NObf(1𝜆, 𝑄):

– Sample (pp, sp)← Gen(1𝜆, 𝑄).

– Sample a PRF key 𝑘 ← {0, 1}𝜆 and define the function 𝐻(·) = 𝐹 (𝑘, ·).
– Let 𝑉 (𝜋1, 𝜋2) be the function that computes and outputs 𝑏 = Ver(sp, 𝜋1, 𝐻(𝜋1), 𝜋2).

– Output ̃︀𝑄 = pp, 𝑂 = (𝐻,𝑉 ).

• NEval𝑂
(︁ ̃︀𝑄, |𝜓⟩)︁:

– Compute (𝜋1, |st⟩)← Prove1(pp, |𝜓⟩).
– Compute 𝜋2 ← Prove2(|st⟩ , 𝐻(𝜋1)).

– Output 𝑉 (𝜋1, 𝜋2).

Figure 1: An obfuscator for null quantum circuits in the classical oracle model.

Theorem 3.5. The scheme described in Fig. 1 is an obfuscator for null quantum circuits satisfying
Definition 2.11.

Proof. To argue correctness, we first switch𝐻 to a uniformly random function, which only
introduces a negligible difference in the output of the evaluation procedure, by the secu-
rity of the PRF. Then correctness for inputs that map to 1 follows from the completeness of
the sigma protocol, and correctness for inputs that map to 0 follows from the soundness
of the sigma protocol.

Next, we argue security. Fix any two null circuits 𝑄0, 𝑄1 (these are technically families
of circuits, but we drop the indexing by 𝜆 to avoid clutter), and a QPT adversary 𝐴. Let
𝑞 be an upper bound on the number of queries that 𝐴 makes to its oracles. Consider the
following sequence of hybrids.

• ℋ0 : Run𝐴𝐻,𝑉 (pp), where pp, 𝐻, 𝑉 are sampled by the honest obfuscator NObf(1𝜆, 𝑄0).
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• ℋ1 : Switch 𝐻 to a uniformly random function.

• ℋ2,𝑖 for 𝑖 from 1, . . . , 𝑞: Switch the adversary’s first 𝑖 queries to 𝑉 to be answered by
a function that outputs 0 on all inputs.

• ℋ3: Switch pp to be sampled as (pp, sp)← Gen(1𝜆, 𝑄1).

• ℋ4,𝑖 for 𝑖 from 𝑞, . . . , 1: Reverse the change fromℋ2,𝑖.

• ℋ5: Reverse the change from ℋ1. This results in 𝐴𝐻,𝑉 (pp), where pp, 𝐻, 𝑉 are sam-
pled by the honest obfuscator NObf(1𝜆, 𝑄1).

To complete the proof, we have the following sequence of claims.

• |Pr[ℋ1 = 1] − Pr[ℋ0 = 1]| = negl(𝜆). This follows directly from the superposition-
query security of the PRF.

• For all 𝑖 ∈ [𝑞], |Pr[ℋ2,𝑖 = 1] − Pr[ℋ2,𝑖−1 = 1]| = negl(𝜆), where ℋ2,0 := ℋ1. This
follows from the soundness of the sigma protocol and Imported Theorem 3.4. In-
deed, suppose there was a non-negligible difference between ℋ2,𝑖 and ℋ2,𝑖−1 for
some 𝑖 ∈ [𝑞]. Then it must be the case that in ℋ𝑖−1,the adversary’s 𝑖’th query to 𝑉
has non-negligible amplitude on (𝜋1, 𝜋2) such that Ver(sp, 𝜋1, 𝐻(𝜋1), 𝜋2) = 1. How-
ever, this would violate Imported Theorem 3.4, since the adversary’s 𝑖− 1 previous
queries to 𝑉 can be answered without the use of sp (in particular, by answering with
the function that outputs 0 on all inputs).

• |Pr[ℋ3 = 1]−Pr[ℋ2,𝑞 = 1]| = negl(𝜆). This follows directly from the blindness of the
sigma protocol, since sp is no longer needed to simulate the adversary’s calls to 𝑉 .

• For all 𝑖 ∈ [𝑞], |Pr[ℋ4,𝑖+1 = 1] − Pr[ℋ4,𝑖 = 1]| = negl(𝜆), where ℋ4,𝑖+1 := ℋ3. This
follows from the soundness of the sigma protocol and Imported Theorem 3.4.

• |Pr[ℋ4,1 = 1] − Pr[ℋ5 = 1]| = negl(𝜆). This follows directly from the superposition-
query security of the PRF.

3.2 Applications

3.2.1 Witness encryption for QMA

A language ℒ = (ℒyes,ℒno) in QMA is defined by a tuple (𝒱 , 𝑝, 𝛼, 𝛽), where 𝑝 is a poly-
nomial, 𝒱 = {𝑉𝜆}𝜆∈N is a uniformly generated family of circuits such that for every 𝜆, 𝑉𝜆
takes as input a string 𝑥 ∈ {0, 1}𝜆 and a quantum state |𝜓⟩ on 𝑝(𝜆) qubits and returns a
single bit, and 𝛼, 𝛽 : N → [0, 1] are such that 𝛼(𝜆) − 𝛽(𝜆) ≥ 1/𝑝(𝜆). The language is then
defined as follows.
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• For all 𝑥 ∈ ℒyes of length 𝜆, there exists a quantum state |𝜓⟩ of size at most 𝑝(𝜆) such
that the probability that 𝑉𝜆 accepts (𝑥, |𝜓⟩) is at least 𝛼(𝜆). We denote the (possibly
infinite) set of quantum witnesses that make 𝑉𝜆 accept 𝑥 byℛℒ(𝑥).

• For all 𝑥 ∈ ℒno of length 𝜆, and all quantum states |𝜓⟩ of size at most 𝑝(𝜆), it holds
that 𝑉𝜆 accepts on input (𝑥, |𝜓⟩) with probability at most 𝛽(𝜆).

We now recall the definition of witness encryption [GGSW13], and adapt it to the
quantum setting. Note that we define encryption only with respect to classical messages.
This is without loss of generality, since one can encrypt a quantum state with the quan-
tum one-time pad [AMTDW00] and then use the witness encryption to encrypt the corre-
sponding (classical) one-time pad keys.

Definition 3.6 (Witness encryption for QMA). Witness encryption (WE.Enc,WE.Dec) for a
language ℒ ∈ QMA with relationℛℒ consists of the following algorithms.

• WE.Enc(1𝜆, 𝑥,𝑚)→ ct: On input the security parameter 1𝜆, a statement 𝑥, and a message
𝑚 ∈ {0, 1}, the QPT encryption algorithm returns a ciphertext ct.

• WE.Dec(𝑥, ct, |𝜓⟩)→ 𝑚: On input a statement 𝑥, a ciphertext ct, and a quantum state |𝜓⟩,
the QPT decryption algorithm returns a message 𝑚.

We define correctness below.

Definition 3.7 (Correctness). A witness encryption (WE.Enc,WE.Dec) for a language ℒ ∈
QMA is correct if there exists a polynomial 𝑘(𝜆) such that for any 𝑚 ∈ {0, 1}, all polynomial-
length sequences of instances {𝑥𝜆}𝜆∈N and witnesses {|𝜓𝜆⟩}𝜆∈N where each 𝑥𝜆 ∈ ℒyes and |𝜓𝜆⟩ ∈
ℛℒ(𝑥𝜆), it holds that

Pr
[︁
WE.Dec

(︁
𝑥𝜆,WE.Enc

(︀
1𝜆, 𝑥𝜆,𝑚

)︀
, |𝜓𝜆⟩⊗𝑘(𝜆)

)︁
= 𝑚

]︁
= 1− negl(𝜆).

Next, we define security.

Definition 3.8 (Security). A witness encryption (WE.Enc,WE.Dec) for a language ℒ ∈ QMA is
secure if for all polynomial-length sequences of instances {𝑥𝜆}𝜆∈N where each 𝑥𝜆 ∈ ℒno, and any
QPT {𝐴𝜆}𝜆∈N, it holds that⃒⃒⃒⃒

Pr
[︀
𝐴𝜆(WE.Enc(1𝜆, 𝑥𝜆, 0)) = 1

]︀
− Pr

[︀
𝐴𝜆(WE.Enc(1𝜆, 𝑥𝜆, 1)) = 1

]︀ ⃒⃒⃒⃒
= negl(𝜆).

Lemma 3.9. Assuming an obfuscator for null quantum circuits (Definition 2.11) where the ob-
fuscator algorithm is classical, there exists witness encryption for all languages in QMA where
the encryption algorithm is classical.
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Proof. WE.Enc(1𝜆, 𝑥,𝑚) will simply output ct ← NObf(1𝜆, 𝑄[𝑥,𝑚]), where 𝑄[𝑥,𝑚] is the
quantum circuit that takes as input |𝜓⟩, runs the QMA verification procedure for instance
𝑥 and witness |𝜓⟩, and then outputs 𝑚 if verification accepts, and otherwise outputs 0.
WE.Dec(𝑥, ct, |𝜓⟩⊗𝑘) will take 𝑘 copies of the witness |𝜓⟩ and run NEval(𝑐, |𝜓⟩⊗𝑘) to pro-
duce either 𝑚 or ⊥. Assuming that the QMA language ℒ is such that 𝛼(𝜆) = 1 − negl(𝜆)
and 𝛽(𝜆) = negl(𝜆) (which is without loss of generality by applying standard QMA ampli-
fication), correctness and security of the witness encryption scheme follow immediately
from correctness and security of the obfuscator for null quantum circuits. In particular,
for 𝑥 ∈ ℒno, 𝑄[𝑥,𝑚] is a null circuit, which implies that for any QPT {𝐴𝜆}𝜆∈N,⃒⃒⃒⃒

Pr
[︀
𝐴𝜆(NObf(1

𝜆, 𝑄[𝑥,𝑚])) = 1
]︀
− Pr

[︀
𝐴𝜆(NObf(1

𝜆, 𝑄[𝑥, 0])) = 1
]︀ ⃒⃒⃒⃒

= negl(𝜆).

3.2.2 ZK-SNARG for QMA

In this section, we show how to construct a non-interactive zero-knowledge (NIZK) ar-
gument for QMA by utilizing witness encryption for QMA with a classical encryption
algorithm. In fact, the resulting NIZK for QMA will also satisfy succinctness, yielding a
ZK-SNARG (zero-knowledge succinct non-interactive argument) for QMA.

We first recall the definition of NIZK for QMA.

Definition 3.10 (NIZK argument). A NIZK argument (NIZK.Setup,NIZK.Prove,NIZK.Verify)
for a language ℒ ∈ QMA with relationℛℒ consists of the following efficient algorithms.

• NIZK.Setup(1𝜆) → crs: On input the security parameter 1𝜆, the setup algorithm returns a
common reference string crs.

• NIZK.Prove
(︁
crs, 𝑥, |𝜓⟩⊗𝑘(𝜆)

)︁
→ 𝜋: On input a common reference string crs, a statement

𝑥, and 𝑘(𝜆) copies of the witness |𝜓⟩, the proving algorithm returns a proof 𝜋.

• NIZK.Verify(crs, 𝑥, 𝜋) → 𝑏: On input a common reference string crs, a statement 𝑥, and a
proof 𝜋, the verification algorithm returns a bit 𝑏 indicating acceptance or rejection.

We define completeness below.

Definition 3.11 (Completeness). A NIZK argument (NIZK.Setup,NIZK.Prove,NIZK.Verify) is
complete if for all 𝑥 ∈ ℒyes, and all |𝜓⟩ ∈ ℛℒ(𝑥) it holds that

Pr
[︁
NIZK.Verify

(︁
crs, 𝑥,NIZK.Prove

(︁
crs, 𝑥, |𝜓⟩⊗𝑘(𝜆)

)︁)︁
= 1
]︁
= 1− negl(𝜆),

where crs← NIZK.Setup(1𝜆).

Next, we define (non-adaptive) computational soundness.
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Definition 3.12 (Computational soundness). A NIZK argument (NIZK.Setup,NIZK.Prove,
NIZK.Verify) is computationally sound if for all QPT {𝐴𝜆}𝜆∈N and all 𝑥* ∈ ℒno, it holds that

Pr [NIZK.Verify(crs, 𝑥*, 𝐴𝜆(crs, 𝑥
*)) = 1] = negl(𝜆)

where crs← NIZK.Setup(1𝜆).

Next, we define statistical zero-knowledge.

Definition 3.13 (Statistical zero-knowledge). A NIZK argument (NIZK.Setup,NIZK.Prove,
NIZK.Verify) is statistically zero-knowledge if there exists a QPT simulator Sim such that for any
statement 𝑥 ∈ ℒyes, any witness |𝜓⟩ ∈ ℛℒ(𝑥), and any random coins 𝑟 ∈ {0, 1}𝜆, it holds that

Sim(1𝜆, 𝑥, 𝑟) ≈negl(𝜆) NIZK.Prove
(︁
crs, 𝑥, |𝜓⟩⊗𝑘(𝜆)

)︁
,

where crs := NIZK.Setup(1𝜆; 𝑟).

Finally, we define succinctness.

Definition 3.14 (Succintness). A NIZK argument (NIZK.Setup,NIZK.Prove,NIZK.Verify) is
succinct if there is a fixed polynomial 𝑝(𝜆) such that for any language ℒ ∈ QMA, the size of the
proof 𝜋 is at most 𝑝(𝜆).

Next, we describe a succinct NIZK argument system (ZK-SNARG) for any language
ℒ ∈ QMA with relationℛℒ. We use the following ingredients.

• A witness encryption scheme (WE.Enc,WE.Dec) for the language ℒ with a classical
encryption algorithm (Definition 3.6).

• A puncturable PRF (PRF.Gen,PRF.Puncture,PRF.Eval) (Definition 2.25).

• A one-way function OWF.

• An indistinguishability obfuscator i𝒪 for classical polynomial-size circuits (Defini-
tion 2.10)

Our ZK-SNARG (NIZK.Setup,NIZK.Prove,NIZK.Verify) is presented in Fig. 2.

Theorem 3.15. The scheme in Fig. 2 is a NIZK argument for QMA that satisfies completeness,
computational soundness, statistical zero-knowledge, and succinctness.

Proof. Completeness follows directly from the correctness of the building blocks. To show
statistical zero-knowledge, we define the simulator to compute crs as in the NIZK.Setup al-
gorithm and then set 𝜋 = PRF.Eval(𝑘0, 𝑥). This distribution is identical to the one induced
by the honest algorithms, except for when WE.Dec fails, which happens only with neg-
ligible probability. Succinctness is immediate by inspection. Thus, it remains to argue
soundness.

The proof proceeds by defining a series of hybrid distributions for the computation of
the crs that we argue to be computationally indistinguishable from each other. In the last
hybrid, the probability that any prover can cause the verifier to accept some 𝑥* ∈ ℒno will
be negligible.
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ZK-SNARG for QMA

• NIZK.Setup(1𝜆):

– Sample two keys 𝑘0 ← PRF.Gen(1𝜆) and 𝑘1 ← PRF.Gen(1𝜆).

– Compute the obfuscation ̃︀P ← i𝒪(1𝜆,P) where P is the circuit that, on input some state-
ment 𝑥, returns WE.Enc(1𝜆, 𝑥,PRF.Eval(𝑘0, 𝑥);PRF.Eval(𝑘1, 𝑥)). The circuit P is padded to
the maximum size of P* (defined in the proof of Theorem 3.15).

– Compute the obfuscation ̃︀V← i𝒪(1𝜆,V) where V is the circuit that, on input some state-
ment 𝑥 and a string 𝑦, returns 1 if and only if OWF(PRF.Eval(𝑘0, 𝑥)) = OWF(𝑦). The
circuit V is padded to the maximum size of V* (defined in the proof of Theorem 3.15).

– Return crs = (̃︀P, ̃︀V).

• NIZK.Prove
(︁
crs, |𝜓⟩⊗𝑘(𝜆)

, 𝑥
)︁

:

– Compute 𝑐 = ̃︀P(𝑥).
– Return 𝜋 = WE.Dec

(︁
𝑥, 𝑐, |𝜓⟩⊗𝑘(𝜆)

)︁
.

• NIZK.Verify(crs, 𝜋, 𝑥):

– Return ̃︀V(𝑥, 𝜋).

Figure 2: A succinct NIZK argument for QMA.

• Hybrid ℋ0: This is the original distribution where the crs is sampled by crs ←
NIZK.Setup(1𝜆).

• Hybridℋ1: In this hybrid we compute ̃︀P← i𝒪(1𝜆,P1) where P1 is the circuit that on
input some statement 𝑥, checks whether 𝑥 = 𝑥*. If that is the case, then it returns
the ciphertext

ct = WE.Enc(1𝜆, 𝑥*,PRF.Eval(𝑘0, 𝑥
*);PRF.Eval(𝑘1, 𝑥

*)).

Otherwise compute ct = WE.Enc(1𝜆, 𝑥,PRF.Eval(𝑘0, 𝑥);PRF.Eval(𝑘1,𝑥* , 𝑥)), where 𝑘1,𝑥* ←
PRF.Puncture(𝑘1, 𝑥

*).

Note that the circuits P and P1 have different representations but are functionally
equivalent. Thus, ℋ0 and ℋ1 are computationally indistinguishable by the security
of the obfuscator i𝒪.

• Hybrid ℋ2: In this hybrid we compute ̃︀P ← i𝒪(1𝜆,P2) where P2 is defined as P1

except that if 𝑥 = 𝑥*, then it returns the ciphertext

ct = WE.Enc(1𝜆, 𝑥*,PRF.Eval(𝑘0, 𝑥
*);𝑢)

where 𝑢← {0, 1}𝜆.
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Indistinguishability fromℋ1 follows from the pseudorandomness of the puncturable
PRF.

• Hybrid ℋ3: Here we compute ̃︀P ← i𝒪(1𝜆,P3) where P3 is defined as P2 except that
if 𝑥 ̸= 𝑥*, then it returns the ciphertext

ct = WE.Enc(1𝜆, 𝑥,PRF.Eval(𝑘0,𝑥* , 𝑥);PRF.Eval(𝑘1,𝑥* , 𝑥))

where 𝑘0,𝑥* ← PRF.Puncture(𝑘0, 𝑥
*).

By the correctness of the puncturable PRF, the two circuits are functionally identical
and therefore indistinguishability fromℋ2 follows from the security of i𝒪.

• Hybrid ℋ4: In this hybrid we compute ̃︀P ← i𝒪(1𝜆,P*) where P* is defined as P3

except that if 𝑥 = 𝑥*, then it returns the ciphertext

ct = WE.Enc(1𝜆, 𝑥*, 0𝜆;𝑢)

where 𝑢← {0, 1}𝜆.

Recall that 𝑥* ∈ ℒno and thus indistinguishability between ℋ3 and ℋ4 follows from
the security of the witness encryption scheme.

• Hybrid ℋ5: We now compute ̃︀V ← i𝒪(1𝜆,V1) where V1 is the circuit that, on input
a pair of strings (𝑥, 𝑦) checks whether 𝑥 = 𝑥*. If this is the case, then it returns 1 if
OWF(PRF.Eval(𝑘0, 𝑥

*)) = OWF(𝑦) and 0 otherwise. If 𝑥 ̸= 𝑥* it returns 1 if and only
if OWF(PRF.Eval(𝑘0,𝑥* , 𝑥)) = OWF(𝑦) where 𝑘0,𝑥* is the punctured key.

Observe that the circuits V and V1 are functionally equivalent and thus we can in-
voke the security of i𝒪 to show indistinguishability fromℋ4.

• Hybrid ℋ6: In this hybrid we compute ̃︀V ← i𝒪(1𝜆,V2) where V2 is defined as V1

except for the case where 𝑥 = 𝑥*. In this case the circuit returns 1 if and only if
OWF(𝑟) = OWF(𝑦), where 𝑟 ← {0, 1}𝜆.

Indistinguishability from ℋ5 follows from a reduction to the pseudorandomness of
the puncturable PRF.

• Hybrid ℋ7: In the final hybrid we compute ̃︀V ← i𝒪(1𝜆,V*) where V* is defined
as V2 except for the case where 𝑥 = 𝑥*. In this case the circuit returns 1 if and
only if 𝑅 = OWF(𝑦), where 𝑅 = OWF(𝑟), i.e. the image of the one-way function is
hardwired in the circuit.

Since the two circuits are functionally equivalent, indistinguishability from ℋ6 fol-
lows from the security of i𝒪.

Observe that in ℋ7, causing the verifier to accept a proof 𝜋 for 𝑥* ∈ ℒno requires one
to output a valid preimage of 𝑅 = OWF(𝑟), where 𝑟 is uniformly sampled. This is a
contradiction to the one-wayness of OWF, and concludes the proof.
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3.2.3 Attribute-based encryption for BQP

We first recall the definition of attribute-based encryption (ABE). For convenience we
consider the notion of ciphertext-policy ABE where messages are encrypted with respect
to circuits and keys are issued for attribute strings. If the class of circuits supported by
the scheme is large enough, then one can switch to the complementary notion (i.e. key-
policy ABE) by encoding universal (quantum) circuits. We also consider without loss of
generality an ABE that encrypts a single (classical) bit of information.

Definition 3.16 (Attribute-based encryption for BQP). An ABE scheme for BQP (ABE.Gen,
ABE.Enc,ABE.KeyGen,ABE.Dec) consists of the following efficient algorithms.

• ABE.Gen(1𝜆, 1ℓ): On input the security parameter 1𝜆 and the length ℓ of attributes, the
parameter generation algorithm outputs a master public key mpk and a master secret key
msk.

• ABE.Enc(mpk, 𝑄,𝑚): On input the master public key mpk, a pseudo-deterministic quan-
tum circuit 𝑄 with one bit of output, and a message 𝑚, the encryption algorithm outputs a
ciphertext ct𝑄.

• ABE.KeyGen(msk, 𝑥): On input the master secret key msk and an attribute 𝑥, the key gen-
eration algorithm outputs a secret key sk𝑥.

• ABE.Dec(sk𝑥, ct𝑄): On input a secret key sk𝑥 and a ciphertext ct𝑄, the decryption algo-
rithms either outputs a message 𝑚 or ⊥.

We always assume that the ciphertexts contain a description of the corresponding cir-
cuit 𝑄 and the keys contain a description of the corresponding attribute 𝑥. We now define
correctness.

Definition 3.17 (Correctness). An ABE scheme (ABE.Gen,ABE.Enc,ABE.KeyGen,ABE.Dec)
is correct if for any 𝜆 ∈ N, ℓ ∈ N,𝑚 ∈ {0, 1}, 𝑥 ∈ {0, 1}ℓ, and any quantum circuit 𝑄 on ℓ input
bits such that Pr[𝑄(𝑥) = 1] = 1− negl(𝜆), it holds that

Pr [ABE.Dec (ABE.KeyGen(msk, 𝑥),ABE.Enc(mpk, 𝑄,𝑚)) = 𝑚] = 1− negl(𝜆),

where (mpk,msk)← ABE.Gen(1𝜆, 1ℓ).

Finally we define the notion of security for ABE. We consider the selective notion of
security, where the quantum circuit associated with the challenge ciphertext is known
ahead of time. It is well known that this can be generically upgraded to the stronger
notion of adaptive security via complexity leveraging, i.e. at the cost of an exponential
decrease in the quality of the reduction.

40



Definition 3.18 (Security). An ABE scheme (ABE.Gen,ABE.Enc,ABE.KeyGen,ABE.Dec) is
secure if for all quantum circuits 𝑄*, and all admissible QPT distinguishers {𝐴𝜆}𝜆∈N, it holds
that⃒⃒⃒⃒
Pr

⎡⎣𝑏 = 𝐴𝜆(ct𝑄* ,mpk; 𝜌𝜆)
ABE.KeyGen(msk,·) :

(mpk,msk)← ABE.Gen(1𝜆, 1ℓ)
𝑏← {0, 1}

ct𝑄* ← ABE.Enc(mpk, 𝑄*, 𝑏)

⎤⎦− 1/2

⃒⃒⃒⃒
= negl(𝜆)

where {𝐴𝜆}𝜆∈N is admissible if each query 𝑥 to ABE.KeyGen(msk, ·) is such that Pr[𝑄*(𝑥) = 1] ≤
negl(𝜆).

We are now ready the present our construction of ABE for BQP. We use the following
ingredients, all with sub-exponential security.

• A witness encryption scheme (WE.Enc,WE.Dec) for any language ℒ in BQP with a
classical encryption algorithm (Definition 3.6).

• A puncturable PRF (PRF.Gen,PRF.Puncture,PRF.Eval) (Definition 2.25).

• A pseudorandom generator PRG : {0, 1}𝜆 → {0, 1}ℓ·𝜆.

• An indistinguishability obfuscator i𝒪 for classical polynomial-size circuits (Defini-
tion 2.10)

Our scheme (ABE.Gen,ABE.Enc,ABE.KeyGen,ABE.Dec) is described in Fig. 3.

Theorem 3.19. The scheme in Fig. 3 is an attribute-based encryption scheme for BQP (Defini-
tion 3.16) that satisfies correctness and (selective) security.

Proof. Correctness of the scheme follows immediately from the correctness of the building
blocks.

To show security, we proceed by defining an exponentially long series of hybrids, it-
erating over all possible attributes 𝑥 ∈ {0, 1}ℓ. More specifically, starting from hybrid
ℋ0 (the original experiment with the bit 𝑏 fixed to 𝑏 = 0) we define, for each 𝑖 ∈ {0, 1}ℓ,
a different sequence of hybrids and we argue about the indistinguishability of neigh-
bouring distributions. As mentioned earlier, we assume all primitives we use are sub-
exponentially secure, that is, there exists an 𝜖 > 0 such that no efficient adversary can
break the primitive with probability better than 2−𝜆

𝜖 . Thus, we can set the security pa-
rameter for each to be at least ℓ𝑐 for some 𝑐 > 1/𝜖, ensuring that efficient adversaries have
advantage negl(𝜆)/2ℓ.

• Hybrid ℋ𝑖,0: Defined like ℋ0, except that we change the way we compute the chal-
lenge ciphertext. We begin by computing a punctured key 𝑟𝑖 ← PRF.Puncture(𝑟, 𝑖).
Then we compute ̃︀E← i𝒪(1𝜆,E1), where E1 takes as input a pair (𝑥, 𝑠) and does the
following.

41



ABE for BQP

• ABE.Gen(1𝜆, 1ℓ):

– Sample a key 𝑘 ← PRF.Gen(1𝜆).

– Compute the obfuscation ̃︀P ← i𝒪(1𝜆,P) where P is the circuit that, on input some
attribute 𝑥 ∈ {0, 1}ℓ and a string 𝑠 ∈ {0, 1}𝜆, returns 1 if and only if PRG(𝑠) =
PRG(PRF.Eval(𝑘, 𝑥)). The circuit P[𝑘] is padded to the maximum size of P* (defined in
the proof of Theorem 3.19).

– Return msk = 𝑘 and mpk = ̃︀P.

• ABE.Enc(mpk, 𝑄,𝑚):

– Sample a key 𝑟 ← PRF.Gen(1𝜆).

– Compute the obfuscation ̃︀E ← i𝒪(1𝜆,E) where E is the circuit that, on input some at-
tribute 𝑥 ∈ {0, 1}ℓ and a string 𝑠 ∈ {0, 1}𝜆, checks whether ̃︀P(𝑥, 𝑠) = 1 and returns
WE.Enc(1𝜆, (𝑄, 𝑥),𝑚;PRF.Eval(𝑟, 𝑥)) if this is the case. The circuit E[𝑚, 𝑟] is padded to the
maximum size of E* (defined in the proof of Theorem 3.19).

– Return ̃︀E.

• ABE.KeyGen(msk, 𝑥):

– Return PRF.Eval(𝑘, 𝑥).

• ABE.Dec(sk𝑥, ct𝑄):

– Parse ct𝑄 as ̃︀E and compute 𝑐 = ̃︀E(𝑥, sk𝑥).
– Return WE.Dec((𝑄, 𝑥), 𝑐).a

aNote that WE.Dec does not need to take a third input (the witness) since the statement is in BQP.

Figure 3: An attribute-based encryption scheme for BQP

– If 𝑥 < 𝑖: Check whether ̃︀P(𝑥, 𝑠) = 1 and return

WE.Enc(1𝜆, (𝑄, 𝑥), 1;PRF.Eval(𝑟𝑖, 𝑥))

if this is the case.

– If 𝑥 = 𝑖: Check whether ̃︀P(𝑥, 𝑠) = 1 and return

WE.Enc(1𝜆, (𝑄, 𝑥), 0;PRF.Eval(𝑟, 𝑥))

if this is the case.

– If 𝑥 > 𝑖: Check whether ̃︀P(𝑥, 𝑠) = 1 and return

WE.Enc(1𝜆, (𝑄, 𝑥), 0;PRF.Eval(𝑟𝑖, 𝑥))

if this is the case.
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Note that, by the correctness of the puncturable PRF, the circuits E and E1 are func-
tionally equivalent and therefore indistinguishability follows from the security of
the classical obfuscator i𝒪.

• Hybridℋ𝑖,1: Defined like the previous hybrid, except that we compute ̃︀E← i𝒪(1𝜆,E2),
where E2 takes as input a pair (𝑥, 𝑠) and does the following.

– If 𝑥 < 𝑖: Same as E1.

– If 𝑥 = 𝑖: Check whether ̃︀P(𝑥, 𝑠) = 1 and return WE.Enc(1𝜆, (𝑄, 𝑥), 0; 𝑟) if this is
the case, where 𝑟 ← {0, 1}𝜆.

– If 𝑥 > 𝑖: Same as E1.

Note that the two hybrids differ only in the definition of 𝑟, which is uniformly sam-
pled in ℋ𝑖,1 and computed according to the puncturable PRF in ℋ𝑖,0. By the in-
distinguishability of the puncturable PRF, we have that the two distributions are
computationally close.

• Hybrid ℋ𝑖,2: In this hybrid we check whether 𝑄*(𝑖) = 0. If this is not the case, then
we proceed as before. Otherwise, we compute ̃︀E ← i𝒪(1𝜆,E3), where E3 takes as
input a pair (𝑥, 𝑠) and does the following.

– If 𝑥 < 𝑖: Same as E2.

– If 𝑥 = 𝑖: Check whether ̃︀P(𝑥, 𝑠) = 1 and return WE.Enc(1𝜆, (𝑄, 𝑥), 1; 𝑟) if this is
the case, where 𝑟 ← {0, 1}𝜆.

– If 𝑥 > 𝑖: Same as E2.

Note that we change the view of the adversary only if 𝑄*(𝑖) = 0, which implies that
the statement (𝑄, 𝑖) is false. Thus indistinguishability follows from the security of
the witness encryption scheme.

• Hybrid ℋ𝑖,3: This is defined as the previous one, except that we compute a punc-
tured key 𝑘𝑖 ← PRF.Puncture(𝑘, 𝑖) and we modify the public parameters as follows.
We obfuscate ̃︀P ← i𝒪(1𝜆,P1) where P1 is the circuit that, on input some attribute
𝑥 ∈ {0, 1}ℓ and a string 𝑠 ∈ {0, 1}𝜆, does the following.

– If 𝑥 ̸= 𝑖: Return 1 if and only if PRG(𝑠) = PRG(PRF.Eval(𝑘𝑖, 𝑥)).

– If 𝑥 = 𝑖: Return 1 if and only if PRG(𝑠) = PRG(PRF.Eval(𝑘, 𝑖)).

By the perfect correctness of the puncturable PRF, the two circuits are functionally
equivalent and therefore the indistinguishability follows from the security of the
obfuscator i𝒪.

• Hybrid ℋ𝑖,4: In this hybrid we compute ̃︀P ← i𝒪(1𝜆,P2) where P2 is the circuit that,
on input some attribute 𝑥 ∈ {0, 1}ℓ and a string 𝑠 ∈ {0, 1}𝜆, does the following.
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– If 𝑥 ̸= 𝑖: Same as P1.

– If 𝑥 = 𝑖: Return 1 if and only if PRG(𝑠) = PRG(𝑘), where 𝑘 ← {0, 1}𝜆.

Additionally, we answer the query of the adversary to the key generation oracle
with 𝑘, if queried on attribute 𝑖.

Note that this hybrid is identical to the previous one, except that 𝑘 is sampled uni-
formly. By the security of the puncturable PRF, the two hybrids are computationally
indistinguishable.

• Hybrid ℋ𝑖,5: Before sampling the public parameters, we check whether 𝑄*(𝑖) = 1.
If this is not the case, then we proceed as before. Otherwise we obfuscate ̃︀P ←
i𝒪(1𝜆,P3) where P3 is the circuit that, on input some attribute 𝑥 ∈ {0, 1}ℓ and a
string 𝑠 ∈ {0, 1}𝜆, does the following.

– If 𝑥 ̸= 𝑖: Same as P2.

– If 𝑥 = 𝑖: Return 1 if and only if PRG(𝑠) = 𝐾, where 𝐾 ← {0, 1}𝜆·ℓ.

Note that if 𝑄*(𝑖) ̸= 1, then the distribution induced by this hybrid is identical to
the previous one, so we only consider the case where 𝑄*(𝑖) = 1. Observe that an
admissible adversary never queries the key generation oracle on 𝑖. Thus, the key 𝑘
is not present in the view of the distinguisher. Indistinguishability follows from the
pseudorandomness of PRG.

• Hybrid ℋ𝑖,6: Here we again check whether 𝑄*(𝑖) = 1. If this is not the case, then
we proceed as before. Otherwise we compute ̃︀P← i𝒪(1𝜆,P*) where P* is the circuit
that, on input some attribute 𝑥 ∈ {0, 1}ℓ and a string 𝑠 ∈ {0, 1}𝜆, does the following.

– If 𝑥 ̸= 𝑖: Same as P3.

– If 𝑥 = 𝑖: Return 0.

Note that the programs P3 and P* are identical except if 𝐾 falls within the range of
PRG. Since this happens only with negligible probability, then the two hybrids are
computationally indistinguishable by the security of the obfuscator i𝒪.

• Hybrid ℋ𝑖,7: In this hybrid we check whether 𝑄*(𝑖) = 1. If this is not the case,
then we proceed as before. Otherwise, we compute the challenge ciphertext as ̃︀E←
i𝒪(1𝜆,E*), where E* takes as input a pair (𝑥, 𝑠) and does the following.

– If 𝑥 < 𝑖: Same as E3.

– If 𝑥 = 𝑖: Check whether ̃︀P(𝑥, 𝑠) = 1 and return WE.Enc(1𝜆, (𝑄, 𝑥), 1; 𝑟) if this is
the case, where 𝑟 ← {0, 1}𝜆.

– If 𝑥 > 𝑖: Same as E3.
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Observe that at this point ̃︀P always returns 0 whenever queried on 𝑖, and thus the
programs E3 and E* are functionally equivalent. Indistinguishability follows from
the security of i𝒪.

• Hybridℋ𝑖,8: We revert the change done inℋ𝑖,6.

• Hybridℋ𝑖,9: We revert the change done inℋ𝑖,5.

• Hybridℋ𝑖,10: We revert the change done inℋ𝑖,4.

• Hybridℋ𝑖,11: We revert the change done inℋ𝑖,3.

• Hybridℋ𝑖,12: We revert the change done inℋ𝑖,1.

• Hybridℋ𝑖,13: We revert the change done inℋ𝑖,0.

We denote by ℋ1 the last hybrid of the sequence ℋ2ℓ,13. Observe that such an hybrid
is identical to the original experiment with the bit 𝑏 fixed to 𝑏 = 1. This concludes our
proof.
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4 Obfuscation of Pseudo-Deterministic Quantum Circuits

In this section, we cover our construction of obfuscation for all pseudo-deterministic
quantum circuits. We begin with a technical overview, filling in many of the details that
were missing from the high-level discussion in Section 1.3. Next, in Section 4.2, we con-
struct and prove the security of one of our central building blocks: a publicly-decodable
X-measurable commitment. Then, in Section 4.3, we leverage these commitments in our
construction of classical verification of partitioning circuits, which we use to obtain a
publicly-verifiable quantum fully-homomorphic encryption scheme. Finally, we com-
plete the construction of obfuscation in Section 4.4.

4.1 Technical overview

As discussed in Section 1.3, we reduce the task of obfuscating pseudo-deterministic quan-
tum computation in the classical oracle model to the task of constructing a non-interactive
publicly-verifiable classical verification protocol for quantum partitioning circuits.

To recap, we say that 𝑄 is a quantum partitioning circuit if there exists a predicate 𝑃
such that 𝑃 (𝑄(·)) is pseudo-deterministic. The argument system we need has roughly
the following syntax (see Section 4.3.1 for a formal description).

• Gen(1𝜆, 𝑄) → pp: The parameter generation algorithm outputs public parameters
pp. We allow pp to contain the description of a classical oracle, and refer to such a
protocol as being in the oracle model.

• Prove(pp, 𝑄, 𝑥)→ 𝜋: The prover algorithm outputs a proof 𝜋.

• Ver(pp, 𝑄, 𝑥, 𝜋)→ 𝑞 ∪ {⊥}: The verifier checks if the proof is valid, and if so outputs
a classical string 𝑞.

• Out(𝑞, 𝑃 ) → 𝑏: The output algorithm takes 𝑞 and the description of a predicate 𝑃
and outputs a bit 𝑏.

For soundness, we require that no quantum polynomial-time prover can produce an
(𝑥, 𝜋) such that Ver(pp, 𝑄, 𝑥, 𝜋)→ 𝑞 and Out(𝑞, 𝑃 ) ̸= 𝑃 (𝑄(𝑥)).

4.1.1 Private verification of quantum partitioning circuits

First, we describe a privately-verifiable scheme for classical verification of quantum parti-
tioning circuits that follows readily from prior work [Mah18b, CLLW22, Bar21].

The starting point is a particular way to prepare a history state |𝜓𝑄,𝑥⟩ of the computa-
tion 𝑄(𝑥), due to [CLLW22]. The state |𝜓𝑄,𝑥⟩ is prepared in such a way that, given |𝜓𝑄,𝑥⟩,
the verifier can either measure certain registers in the standard basis to obtain an approx-
imate sample 𝑞 ← 𝑄(𝑥), or measure a random local Hamiltonian term (which involves
just standard basis and Hadamard basis measurements). In the protocol from [Bar21],
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the prover is instructed to prepare multiple copies of this history state, and the verifier
chooses some subset for sampling (obtaining an output sample) and the other subset for
verifying (measuring a local Hamiltonian term). If verification passes, the verifier collects
the output samples {𝑞𝑡}𝑡 and outputs the bit 𝑏 := Maj ({𝑃 (𝑞𝑡)}𝑡), which should be equal to
𝑃 (𝑄(𝑥)) with overwhelming probability.

Instantiating this protocol using only classical communication relies on [Mah18b]’s
“measurement protocol” based on X-measurable commitments, which were introduced
informally in Section 1.3. Recall that X-measurable commitments are non-interactive bit
commitments that allow the committer to measure a committed state in the Hadamard
basis, and have the following syntax.

• Gen(1𝜆)→ (ck, rk): Gen outputs a public commitment key ck and a private receiver’s
key rk.

• Com(ck,ℬ) → (ℬ,𝒰 , 𝑐): Com takes as input a single-qubit register ℬ and produces a
classical commitment 𝑐 along with registers (ℬ,𝒰), where 𝒰 holds opening informa-
tion.

• Open(ℬ,𝒰)→ 𝑢: The standard basis opening algorithm performs a measurement on
registers (ℬ,𝒰) to produce a classical string 𝑢.

• Dec(rk, 𝑐, 𝑢)→ {0, 1,⊥}: The standard basis decoding algorithm takes the receiver’s
key rk, a commitment 𝑐, an opening 𝑢, and either output a bit 0 or 1, or outputs ⊥.

• OpenX(ℬ,𝒰)→ 𝑢: The Hadamard basis opening algorithm performs a measurement
on registers (ℬ,𝒰) to produce a classical string 𝑢.

• DecX(rk, 𝑐, 𝑢) → {0, 1,⊥}: The Hadamard basis decoding algorithm takes the re-
ceiver’s key rk, a commitment 𝑐, an opening 𝑢, and either outputs a bit 0 or 1, or
outputs ⊥.

In fact, [Mah18b]’s measurement protocol requires an extra dual-mode property of the
X-measurable commitment. That is, Gen(1𝜆, ℎ) now takes as input a bit ℎ indicating the
“mode”, where ℎ = 1 is the regular mode, and ℎ = 0 is a perfectly binding mode. In per-
fectly binding mode, for every commitment 𝑐 there is at most one bit 𝑏 such that there
exists an opening 𝑢 with Dec(rk, 𝑐, 𝑢) = 𝑏. This mode allows for the definition of an algo-
rithm Invert(rk, 𝑐) → 𝑏 that outputs the bit 𝑏 such that there exists 𝑢 with Dec(rk, 𝑐, 𝑢) = 𝑏
(or outputs⊥ if such a 𝑏 does not exist). Importantly, the ck output on ℎ = 0 vs ℎ = 1 must
be computationally indistinguishable.

Now, given these building blocks, we obtain the protocol described in Fig. 4.
In more detail, Fig. 4 consists of a number 𝑟 of parallel rounds, where 𝑘 of them are

denoted “Hadamard” rounds, and the rest are denoted “test” rounds. Which rounds
are which is determined by a random oracle 𝐻 applied to the prover’s X-measurable
commitments 𝑐.
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Classical verification of quantum partitioning circuits with one-time soundness

Parameters: ℓ qubits per round, 𝑟 total rounds, 𝑘 Hadamard rounds.

Setup: Random oracle 𝐻 : {0, 1}* → {0, 1}log (
𝑟
𝑘).

Gen(1𝜆, 𝑄)

• For 𝑖 ∈ [𝑟], choose a subset 𝑆𝑖 ⊂ [ℓ] of qubits that will be measured in the standard basis to
obtain output samples. Then, sample a string ℎ𝑖 = (ℎ𝑖,1, . . . , ℎ𝑖,ℓ) ∈ {0, 1}ℓ of basis choicesa that
are 0 on indices in 𝑆𝑖 and otherwise correspond to random Hamiltonian terms.

• For 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ], sample (ck𝑖,𝑗 , rk𝑖,𝑗)← XMC.Gen(1𝜆, ℎ𝑖,𝑗), and output

pp := {ck𝑖,𝑗}𝑖,𝑗 , sp := ({ℎ𝑖, 𝑆𝑖}𝑖, {rk𝑖,𝑗}𝑖,𝑗).

Prove(1𝜆, 𝑄, pp, 𝑥)

• Prepare sufficiently many copies of the history state |𝜓𝑄,𝑥⟩ on register ℬ = {ℬ𝑖,𝑗}𝑖,𝑗 .

• For 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ], apply XMC.Com(ck𝑖,𝑗 ,ℬ𝑖,𝑗)→ (ℬ𝑖,𝑗 ,𝒰𝑖,𝑗 , 𝑐𝑖,𝑗), and let 𝑐 := (𝑐1,1, . . . , 𝑐𝑟,ℓ).

• Compute 𝑇 = 𝐻(𝑐), where 𝑇 ∈ {0, 1}𝑟 has Hamming weight 𝑘.

• For 𝑖 : 𝑇𝑖 = 0 and 𝑗 ∈ [ℓ], apply XMC.Open(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗)→ 𝑢𝑖,𝑗 .

• For 𝑖 : 𝑇𝑖 = 1 and 𝑗 ∈ [ℓ], apply XMC.OpenX(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗)→ 𝑢𝑖,𝑗 .

• Output 𝜋 := (𝑐, 𝑢), where 𝑢 := (𝑢1,1, . . . , 𝑢𝑟,ℓ).

Ver(1𝜆, 𝑄, 𝑃, sp, 𝑥, 𝜋)

• Parse 𝜋 = (𝑐, 𝑢) and compute 𝑇 = 𝐻(𝑐).

• For 𝑖 : 𝑇𝑖 = 0 and 𝑗 ∈ [ℓ], check that XMC.Dec(rk𝑖,𝑗 , 𝑐𝑖,𝑗 , 𝑢𝑖,𝑗) ̸= ⊥.

• For 𝑖 : 𝑇𝑖 = 1 and 𝑗 ∈ [ℓ]:

– If ℎ𝑖,𝑗 = 0, compute the bit 𝑏𝑖,𝑗 := XMC.Invert(rk𝑖,𝑗 , 𝑐𝑖,𝑗), and abort if ⊥.

– If ℎ𝑖,𝑗 = 1, compute the bit 𝑏𝑖,𝑗 := XMC.DecX(rk𝑖,𝑗 , 𝑐𝑖,𝑗 , 𝑢𝑖,𝑗), and abort if ⊥.

• Apply a verification procedure to {𝑏𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗 /∈𝑆𝑖
based on the Hamiltonian for 𝑄(𝑥). If

this passes, parse the bits {𝑏𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗∈𝑆𝑖
as a set of output samples {𝑞𝑡}𝑡, and output 𝑏 :=

Maj ({𝑃 (𝑞𝑡)}𝑡).b

aWe associate 0 with the standard basis and 1 with the Hadamard basis.
bFor technical reasons, the final output is actually computed as a “majority of majorities”, but we

ignore that detail here.

Figure 4: A non-interactive privately-verifiable protocol for classical verification of quan-
tum partitioning circuits, based on prior work [Mah18b, CLLW22, Bar21]. The circuit 𝑄
and predicate 𝑃 are such that 𝑃 (𝑄(·)) is a pseudo-deterministic circuit.

Each Hadamard round essentially runs a copy of the protocol described above, where
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the verifier obtains a number of output samples. We let ℓ denote the number of qubits per
round, which is the number of history states per round times the number of qubits per his-
tory state. The standard basis measurements are obtained by inverting the commitments
themselves (since these commitments are generated in mode ℎ = 0), and the Hadamard
basis measurements are obtained via the OpenX procedure. On the other hand, in the
test rounds, the prover opens all of their commitments using the Open procedure, and
the verifier simply checks that Dec does not reject these openings. We also note that the
public and secret parameters (pp, sp) are generated independently of the input 𝑥, which
was shown to be possible by an observation of [ACGH20].18

The one-time soundness of this protocol was proven in [Bar21] based on the sound-
ness of the measurement protocol due to [Mah18b], which in turn relies on particular
properties on the X-measurable commitment scheme.

Challenges with reusability. Now, our goal is to obtain soundness even against provers
that have (superposition) oracle access to the verification algorithm. We denote this al-
gorithm Ver[sp](·, ·), which has the secret parameters sp hard-coded (and implicitly 1𝜆, 𝑄,
and 𝑃 ), expects (𝑥, 𝜋) as input, and outputs either a bit 𝑏 or ⊥.

Unfortunately, there is a simple attack on soundness in this setting. The main issue
is that the secret parameters sp hard-code the measurement bases ℎ = (ℎ1, . . . , ℎ𝑟), and
soundness of the underlying information-theoretic protocol would be completely com-
promised if the prover could figure out ℎ. Note that in the Hadamard rounds, the strings
𝑢𝑖,𝑗 corresponding to ℎ𝑖,𝑗 = 0 are completely ignored by the verifier, while the strings 𝑢𝑖,𝑗
corresponding to ℎ𝑖,𝑗 = 1 factor into the verifier’s response. This discrepancy provides
a way for the prover to learn the bits of ℎ𝑖,𝑗 by querying the verifier multiple times, ulti-
mately breaking soundness of the protocol (see [BM22] for a more detailed discussion of
this issue).

Can signature tokens help? Before coming to our solution, we discuss one promising
but flawed attempt at upgrading to reusable soundness via the primitive of signature to-
kens [BS16]. A signature token consists of a quantum signing |sk⟩ that can be used to sign
a single arbitrary message 𝑥, and then becomes useless.

So suppose we included |sk⟩ in the public parameters, and ask that the prover sign
its proof 𝜋 before querying Ver[sp]. That is, Ver[sp] will now take as input (𝑥, 𝜋, 𝜎), and
only respond if 𝜎 is a valid signature on 𝜋. Intuitively, if the prover tries to start collect-
ing information from multiple malformed proofs in order to learn enough bits of ℎ to
break soundness, they should fail to produce the multiple signatures required to learn
this information.

Unfortunately, this intuition is false. First, since the prover has superposition access
to the verifier, they never have to actually output a classical signature 𝜎. Moreover, in
known signature token schemes [BS16], the public parameters can be used to implement

18Technically, Gen just needs to know the size of 𝑄.
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a projection |sk⟩⟨sk| onto the original signing key. Thus, even though a prover may “dam-
age” its state |sk⟩ by querying Ver[sp] in superposition in order to learn a single bit of
information about ℎ, they could then project back onto |sk⟩ via amplitude amplification.
Thus, they could launch the same attacks as before, ultimately learning enough about ℎ
to break soundness.

4.1.2 Reusable soundness for a single instance

Classically, the following is a common route for boosting one-time soundness to reusable
soundness for, say, an NP argument system. Note that for any fixed instance 𝑥, either 𝑥
is a yes instance, so we don’t have to worry about the prover breaking soundness with
respect to 𝑥, or 𝑥 is a no instance, so by the one-time soundness of the protocol, the prover
should never be able to make the verification oracle accept, rendering it useless. Thus,
we can obtain reusable soundness if each instance 𝑥 was associated with its own pair
of public and secret parameters (pp𝑥, sp𝑥). One method for achieving this is to fix the
actual public parameters as an obfuscation of a program that takes 𝑥 as input and samples
parameters (pp𝑥, sp𝑥) using randomness derived from a PRF applied to 𝑥 (see [BGL+15]
for an example).

Although we would like to follow this approach, one difficulty is that in our setting
the notion of an “instance” is unclear. The inputs 𝑥 to the circuit cannot be classified into
yes and no instances, since they all produce some valid outputs. In particular, note that
the attacks on reusability outlined above will work even if the prover always queries the
verification oracle on the same input 𝑥, eventually producing a 𝜋 that causes the verifier
to output 𝑏 ̸= 𝑃 (𝑄(𝑥)). A next attempt would be to start with some input 𝑥, sample 𝑞 ←
𝑄(𝑥), and consider the pair (𝑥, 𝑞) to be an instance. However, since𝑄 is a sampling circuit,
it may be the case that this particular 𝑞 is only sampled with small, or even negligible,
probability on input 𝑥. Our one-time sound scheme is not equipped to prove a statement
of the form, “𝑞 is in the support of the output of 𝑄(𝑥)”. Thus, we will need a different
approach.

Committing to the history state. Given an input 𝑥, we will essentially classify the history
state of the computation𝑄(𝑥) into “yes” and “no” instances. That is, an honestly prepared
history state |𝜓𝑄,𝑥⟩ should be classified as a yes instance, while any large enough pertur-
bation to |𝜓𝑄,𝑥⟩ should be classified as a no instance. However, looking ahead, it will be
crucial that our instances are classical so that we can generate parameters by applying a
PRF to the instance. Thus, what we really need is a classical commitment to the history state.
Moreover, after the state is committed, we still need it to be available for the prover to use
in the one-time sound scheme. Fortunately, the prover only needs to perform standard
and Hadamard basis measurements on the state (in addition to some operations that are
classically controlled on the state). Thus, we have already discussed the exact primitive
that we need - an X-measurable commitment!

In Fig. 5, we outline a protocol where an instance (𝑥,̃︀𝑐), consisting of an input 𝑥 and
a commitment ̃︀𝑐 to a set of history states |𝜓𝑄,𝑥⟩, is generated and fixed before the pro-
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tocol begins. We use an X-measurable commitment denoted PD-XMC to commit to the
history states, where the PD stands for “publicly-decodable”, a crucial property that we
will discuss later in this overview.

We remark that correctness of this protocol relies on a couple of specific properties: (1)
XMC.Com and PD-XMC.Com are both classically controlled on the register ℬ, so they com-
mute with each other, and (2) XMC.Open (resp. XMC.OpenX) simply measures the register
ℬ in the standard (resp. Hadamard) basis19 so the first bit of the string 𝑢 can be computed
instead by applying PD-XMC.Com to ℬ followed by PD-XMC.Open and PD-XMC.Dec (resp.
PD-XMC.OpenX and PD-XMC.DecX).

Now, our next goal will be to obtain reusable soundness for any fixed instance (𝑥,̃︀𝑐).
That is, we give the prover oracle access to Ver[sp, ̃︀rk, (𝑥,̃︀𝑐)](·) where ̃︀rk and (𝑥,̃︀𝑐) are now
hard-coded and the only input is a proof 𝜋, and require that the prover cannot make the
verifier output 𝑏 ̸= 𝑃 (𝑄(𝑥)).

Binding. Following the classical intuition, for the purpose of analyzing the scheme we
would like to split (𝑥,̃︀𝑐) into yes and no instances:

1. “Yes” instance: ̃︀𝑐 can only be opened in a way that would cause the verifier to out-
put 𝑏 = 𝑃 (𝑄(𝑥)) (or ⊥). In this case, the prover could potentially learn the secret
parameters sp via repeated queries, but would not be able to break soundness.

2. “No” instance: ̃︀𝑐 can only be opened in a way that would cause the verifier to output
𝑏 ̸= 𝑃 (𝑄(𝑥)) (or ⊥). In this case, by one-time soundness of the underlying protocol,
the prover should never be able to make the verifier output anything other than ⊥.

Now, a crucial difference from the classical case is that a prover might launch a super-
position of both strategies, so we can’t exactly classify each (𝑥,̃︀𝑐) as either a yes or a no
instance. However, in this case we will hope to rely on some notion of binding from the
PD-XMC commitment scheme in order to guarantee that the prover cannot meaningfully
“mix” these two strategies.

As discussed above, X-measurable commitments only satisfy a notion of binding to
classical bits rather than to quantum states, so we will need to capture these two options
using classical openings. For the first option, the parallel repetition theorem of [ACGH20,
Bar21] can be used to show that if the verifier accepts, then many, say 4/5, of their output
samples 𝑞𝑡 from indices {𝑆𝑖}𝑖:𝑇𝑖=1 must be such that 𝑃 (𝑞𝑡) = 𝑃 (𝑄(𝑥)). For the second
option, it is clear that the verifier will only output 𝑏 ̸= 𝑃 (𝑄(𝑥)) if at least half of these
output samples are such that 𝑃 (𝑞𝑡) ̸= 𝑃 (𝑄(𝑥)). Thus, it suffices to show that the prover
can’t mix the following strategies.

1. Open ̃︀𝑐 on the positions {𝑆𝑖}𝑖:𝑇𝑖=1 to samples 𝑞𝑡 such that a large fraction (say 4/5) of
them are “honest”: 𝑃 (𝑞𝑡) = 𝑃 (𝑄(𝑥)).

19Though it could be performing an arbitrary operation to the 𝒰 register.
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A protocol with reusable soundness for a single “instance”

Parameters: ℓ qubits per round, 𝑟 total rounds, 𝑘 Hadamard rounds.

Setup: Random oracle 𝐻 : {0, 1}* → {0, 1}log (
𝑟
𝑘).

Instance generation

• For 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ], the verifier samples ( ̃︀ck𝑖,𝑗 , ̃︀rk𝑖,𝑗)← PD-XMC.Gen(1𝜆), outputs ̃︀ck := { ̃︀ck𝑖,𝑗}𝑖,𝑗 ,
and keeps ̃︀rk := {̃︀rk𝑖,𝑗}𝑖,𝑗 private.

• Given an input 𝑥, the prover prepares sufficiently many copies of the history state |𝜓𝑄,𝑥⟩ on
register ℬ = {ℬ𝑖,𝑗}𝑖,𝑗 .

• For 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ], the prover applies PD-XMC.Com( ̃︀ck𝑖,𝑗 ,ℬ𝑖,𝑗) → (ℬ𝑖,𝑗 , ̃︀𝒰𝑖,𝑗 ,̃︀𝑐𝑖,𝑗). Then, it sets̃︀𝑐 := (̃︀𝑐1,1, . . . ,̃︀𝑐𝑟,ℓ) and outputs the instance (𝑥,̃︀𝑐).
Gen(1𝜆, 𝑄)

• The verifier samples pp = {ck𝑖,𝑗}𝑖,𝑗 , sp = ({ℎ𝑖, 𝑆𝑖}𝑖, {rk𝑖,𝑗}𝑖,𝑗) as in Fig. 4.

Prove(1𝜆, 𝑄, pp, 𝑥)

• For 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ], apply XMC.Com(ck𝑖,𝑗 ,ℬ𝑖,𝑗)→ (ℬ𝑖,𝑗 ,𝒰𝑖,𝑗 , 𝑐𝑖,𝑗), and let 𝑐 := (𝑐1,1, . . . , 𝑐𝑟,ℓ).

• Compute 𝑇 = 𝐻(𝑐), where 𝑇 ∈ {0, 1}𝑟 has Hamming weight 𝑘.

• For 𝑖 : 𝑇𝑖 = 0 and 𝑗 ∈ [ℓ], apply PD-XMC.Open(ℬ𝑖,𝑗 , ̃︀𝒰𝑖,𝑗) → ̃︀𝑢𝑖,𝑗 followed by
XMC.Open(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗)→ 𝑢𝑖,𝑗 . Let 𝑢′𝑖,𝑗 be 𝑢𝑖,𝑗 with the first bit removed.

• For 𝑖 : 𝑇𝑖 = 1 and 𝑗 ∈ [ℓ], apply PD-XMC.OpenX(ℬ𝑖,𝑗 , ̃︀𝒰𝑖,𝑗) → ̃︀𝑢𝑖,𝑗 followed by
XMC.OpenX(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗)→ 𝑢𝑖,𝑗 . Let 𝑢′𝑖,𝑗 be 𝑢𝑖,𝑗 with the first bit removed.

• Output 𝜋 := (𝑐, ̃︀𝑢, 𝑢), where ̃︀𝑢 := (̃︀𝑢1,1, . . . , ̃︀𝑢𝑟,ℓ) and 𝑢 := (𝑢′1,1, . . . , 𝑢
′
𝑟,ℓ).

Ver(1𝜆, 𝑄, 𝑃, sp, ̃︀rk, (𝑥,̃︀𝑐), 𝜋)
• Parse 𝜋 = (𝑐, ̃︀𝑢, 𝑢) and compute 𝑇 = 𝐻(𝑐).

• For 𝑖 : 𝑇𝑖 = 0 and 𝑗 ∈ [ℓ], compute 𝑏′𝑖,𝑗 := PD-XMC.Dec(̃︀rk𝑖,𝑗 ,̃︀𝑐𝑖,𝑗 , ̃︀𝑢𝑖,𝑗) and check that
XMC.Dec(rk𝑖,𝑗 , 𝑐𝑖,𝑗 , (𝑏

′
𝑖,𝑗 , 𝑢

′
𝑖,𝑗)) ̸= ⊥.

• For 𝑖 : 𝑇𝑖 = 1 and 𝑗 ∈ [ℓ]:

– If ℎ𝑖,𝑗 = 0, compute the bit 𝑏𝑖,𝑗 := XMC.Invert(rk𝑖,𝑗 , 𝑐𝑖,𝑗), and abort if ⊥.

– If ℎ𝑖,𝑗 = 1, compute 𝑏′𝑖,𝑗 := PD-XMC.DecX(̃︀rk𝑖,𝑗 ,̃︀𝑐𝑖,𝑗 , ̃︀𝑢𝑖,𝑗), followed by the bit 𝑏𝑖,𝑗 :=
XMC.DecX(rk𝑖,𝑗 , 𝑐𝑖,𝑗 , (𝑏

′
𝑖,𝑗 , 𝑢

′
𝑖,𝑗)), and abort if ⊥.

• Apply a verification procedure to {𝑏𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗 /∈𝑆𝑖
based on the Hamiltonian for 𝑄(𝑥). If

this passes, parse the bits {𝑏𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗∈𝑆𝑖
as a set of output samples {𝑞𝑡}𝑡, and output 𝑏 :=

Maj ({𝑃 (𝑞𝑡)}𝑡).

Figure 5: A protocol for classical verification of quantum partitioning circuits that is
reusably sound for each fixed instance (𝑥,̃︀𝑐).
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2. Open ̃︀𝑐 on the positions {𝑆𝑖}𝑖:𝑇𝑖=1 to samples 𝑞𝑡 such that a significant fraction (say
1/2) of them are “dishonest”: 𝑃 (𝑞𝑡) ̸= 𝑃 (𝑄(𝑥)).

Since the {𝑆𝑖}𝑖 positions are all standard basis positions, and no string can satisfy both
requirements, arguing that these strategies can’t mix should now reduce to some binding
property for the classical strings opened on the {𝑆𝑖}𝑖:𝑇𝑖=1 positions. However, note that in
Fig. 5, none of these positions are even opened by PD-XMC.Open (that is, opened in the
standard basis)! Indeed, only the test round positions are opened in the standard basis.

Thus, we need to relate the strings opened on {𝑆𝑖}𝑖:𝑇𝑖=1 to the strings opened on
{𝑆𝑖}𝑖:𝑇𝑖=0. Now, we note that 𝑇 is chosen via a random oracle applied to 𝑐, and 𝑐 already
determines the only possible openings for the standard basis positions since the XMC pa-
rameters are sampled in perfectly binding mode on these positions. Thus, it is possible
to argue that the adversary can’t significantly change their distribution of opened strings
on test round vs. Hadamard round positions. So it suffices to show that the following
strategies can’t mix:

1. Open ̃︀𝑐 on the positions {𝑆𝑖}𝑖:𝑇𝑖=0 to samples 𝑞𝑡 such that a large fraction (say 3/4) of
them are “honest”: 𝑃 (𝑞𝑡) = 𝑃 (𝑄(𝑥)).

2. Open ̃︀𝑐 on the positions {𝑆𝑖}𝑖:𝑇𝑖=0 to samples 𝑞𝑡 such that a significant fraction (say
1/3) of them are “dishonest”: 𝑃 (𝑞𝑡) ̸= 𝑃 (𝑄(𝑥)).

Thus, we will only need a “vanilla” notion of string binding for PD-XMC, which can be
reduced (see Section 4.2.1 for more discussion) to a vanilla notion of single-bit binding for
a quantum commitment to a classical bit. That is, given a decoding key ̃︀rk, a commitment̃︀𝑐, and a bit 𝑏, let

Π̃︀rk,̃︀𝑐,𝑏 :=
∑︁

̃︀𝑢:Dec(̃︀rk,̃︀𝑐,̃︀𝑢)=𝑏
|̃︀𝑢⟩⟨̃︀𝑢|

be the projection onto strings ̃︀𝑢 that open to 𝑏. Then for any two-part adversary (C,U),
where C is the committer, and U is the “opener”20 (modeled as a unitary), it holds that for
any 𝑏 ∈ {0, 1},

E
( ̃︀ck,̃︀rk)←Gen(1𝜆)

[︁⃦⃦
Π̃︀rk,̃︀𝑐,1−𝑏UΠ̃︀rk,̃︀𝑐,𝑏 |𝜓⟩ ⃦⃦ : (|𝜓⟩ ,̃︀𝑐)← C( ̃︀ck)]︁ = negl(𝜆).

A couple of remarks:

• Looking at Fig. 5, we see that this binding property should hold even if the opener
has oracle access to Dec(̃︀rk,̃︀𝑐, ·). In fact, in the known construction of XMC described
above [BCM+18, Mah18b], this standard basis decoding is indeed public. Moreover,
this definition of binding is implied by the dual-mode property of XMC, and thus
our requirements for PD-XMC can so far be satisfied by the known construction of
XMC.

20More precisely, U is an algorithm that tries to break binding by rotating a state that is supported on valid
openings to 𝑏 to a state that is supported on valid openings to 1 − 𝑏. We refer to this part of the adversary
as the opener.
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• Note that we only require binding on the standard basis positions, that is, (𝑖, 𝑗)
such that ℎ𝑖,𝑗 = 0. Looking at Fig. 5, we see that the prover does not have access
to DecX(̃︀rk𝑖,𝑗,̃︀𝑐𝑖,𝑗, ·) on these positions. This is important, because the ability to per-
form a Hadamard basis measurement on the committed qubit implies the ability to
reflect it across the 𝑋 (Hadamard basis) axis, thus changing its standard basis mea-
surement. Thus, it seems difficult to design a X-measurable commitment scheme
that remains binding when the opener has access to DecX.

Proving soundness for a single instance. Next, we briefly discuss how soundness for
a single instance can be proven based on this binding property of PD-XMC. We start
with an adversary that is assumed to be breaking soundness after a number of queries to
the verification oracle. That is, they output a proof 𝜋* that causes the verifier to accept
and output 𝑏 ̸= 𝑃 (𝑄(𝑥)). We know that a significant fraction of the samples 𝑞𝑡 from
positions {𝑆𝑖}𝑖:𝑇𝑖=0 in 𝜋* must be such that 𝑄(𝑞𝑡) ̸= 𝑃 (𝑄(𝑥)). Then, we replace each of
the adversary’s Ver[sp, ̃︀rk, (𝑥,̃︀𝑐)] queries one by one to being answered with ⊥. While the
adversary may query Ver[sp, ̃︀rk, (𝑥,̃︀𝑐)] on accepting 𝜋, we know that for such 𝜋, a large
fraction of the samples 𝑞𝑡 from positions {𝑆𝑖}𝑖:𝑇𝑖=0 must be such that 𝑄(𝑞𝑡) = 𝑃 (𝑄(𝑥)).
Thus, by the binding of PD-XMC, the fact that we are changing the oracle’s response to
such 𝜋 should have a negligible effect on the probability that the adversary continues to
output 𝜋*, since 𝜋 and 𝜋* contain openings to different strings and thus reside in parts of
the adversary’s state that have negligible overlap. After replacing all of these queries with
⊥, we see that our adversary is actually breaking soundness of the underlying one-time
sound protocol, since they no longer learn anything from their queries to Ver[sp, ̃︀rk, (𝑥,̃︀𝑐)],
which completes the proof. For more details, see the discussion before the “soundness”
part of the proof of Theorem 4.32.

4.1.3 Public verifiability in the oracle model

Next, we show how to obtain full-fledged public-verifiability in the oracle model. As a
first attempt, we follow the classical approach, and include in the public parameters the
PD-XMC parameters { ̃︀ck𝑖,𝑗}𝑖,𝑗 along with a classical oracle that implements the following
program OGen[𝑘], which has a PRF key 𝑘 hard-coded.

OGen[𝑘]:

• Take an 𝑥 and a commitment ̃︀𝑐 as input, and compute 𝑠 := PRF𝑘((𝑥,̃︀𝑐)).
• Compute (pp, sp) := Gen(1𝜆; 𝑠) from Fig. 4 using random coins 𝑠, and output pp.

Unfortunately, this attempt does not result in a sound scheme. To see why, note that
the adversary can query the verification oracle on multiple (𝑥,̃︀𝑐), thus using it to im-
plement the oracle PD-XMC.DecX(̃︀rk𝑖,𝑗, ·, ·) for any index (𝑖, 𝑗) of its choice. Indeed, for
each index (𝑖, 𝑗), the adversary just has to find some (𝑥,̃︀𝑐) that generates parameters with
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ℎ𝑖,𝑗 = 1. As mentioned above, if the opener has access to PD-XMC.DecX(̃︀rk𝑖,𝑗, ·, ·), it is
not clear how to obtain any binding property for the bit on index (𝑖, 𝑗). Thus, an adver-
sary could break soundness on a particular instance (𝑥,̃︀𝑐) by querying its oracles on other
instances (𝑥′,̃︀𝑐′) in order to obtain access to any PD-XMC.DecX(̃︀rk𝑖,𝑗, ·, ·) of its choice.

Using signature tokens. To solve this issue, we use signature tokens to make sure that
the adversary’s strategy on multiple distinct (𝑥,̃︀𝑐) cannot “mix”. That is, we include the
signing key |sk⟩ for a signature token scheme in the public parameters, and alter OGen[𝑘]
as follows, where vk is the verification key for the signature token scheme.

OGen[𝑘, vk]:

• Take an 𝑥, a commitment ̃︀𝑐, and a signature 𝜎 as input.

• If 𝜎 is a valid signature of (𝑥,̃︀𝑐) under vk, compute 𝑠 := PRF𝑘((𝑥,̃︀𝑐, 𝜎)), and otherwise
abort.

• Compute (pp, sp) := Gen(1𝜆; 𝑠) from Fig. 4 using random coins 𝑠, and output pp.

Moreover, the verification oracle Ver[vk, 𝑘], which now hard-codes 𝑘 rather than some
fixed secret parameters sp, will also require a valid signature 𝜎 on any (𝑥,̃︀𝑐) that it takes as
input. Intuitively, once the adversary learns the public parameters pp𝑥,̃︀𝑐,𝜎 corresponding
to some instance (𝑥,̃︀𝑐) and signature 𝜎, it can only access the oracles PD-XMC.DecX(rk𝑖,𝑗, ·, ·)
on the specific indices (𝑖, 𝑗) such that ℎ𝑖,𝑗 = 1 for the ℎ hard-coded in parameters pp𝑥,̃︀𝑐,𝜎.
Note that this actually requires the signature token scheme to be strongly unforgeable. That
is, the adversary shouldn’t even be able to produce a different signature 𝜎′ on the same
message (𝑥,̃︀𝑐), since then (𝑥,̃︀𝑐, 𝜎′) could be used to generate a fresh set of parameters with
different ℎ. While this notion was not proven explicitly in [BS16], we note that it follows
easily from their proof strategy.

To formalize this intuition, we treat the PRF as a random oracle 𝐻 and make use of the
measure and re-program technique of [DFMS19, DFM20]. If the adversary is breaking
soundness, it must output a proof 𝜋 with respect to some (𝑥,̃︀𝑐, 𝜎). Thus, we can “pre-
measure” one of the adversary’s queries to 𝐻 to obtain (𝑥,̃︀𝑐, 𝜎), and then re-program
𝐻((𝑥,̃︀𝑐, 𝜎)) → 𝑠 to fresh randomness 𝑠, which defines fresh parameters (pp𝑥,̃︀𝑐,𝜎, sp𝑥,̃︀𝑐,𝜎).
After this measurement, by the strong unforgeability of the signature token, the adversary
won’t be able to query the verification oracle on any (𝑥′,̃︀𝑐′, 𝜎′) ̸= (𝑥,̃︀𝑐, 𝜎), so they will only
be able to access DecX(̃︀rk𝑖,𝑗, ·, ·) for (𝑖, 𝑗) such that ℎ𝑖,𝑗 = 1 as defined by pp𝑥,̃︀𝑐,𝜎. Then,
security should reduce to the single instance setting discussed above.

It is useful to note a crucial difference from the more direct but flawed approach to
using signature tokens discussed earlier in the overview. There, we could never hope to
use the security of the signature token, because we couldn’t “force” the adversary to ever
measure a signature (and indeed there was an attack on the attempted scheme). Here,
since we are using the signature as part of the input to a random oracle, we can make
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use of measure-and-reprogram to first “force” a measurement of a signature during the
security proof, and then use signature token security.

The need for public decodability. However, we have so far omitted a crucial detail.
Note that before the measurement of (𝑥,̃︀𝑐, 𝜎), the adversary can access any DecX oracle
of its choice. Indeed, we can’t hope to prevent this, as the adversary has full access to
both OGen[𝑘, vk] and Ver[𝑘, vk], and this measurement anyway only happens during an
intermediate hybrid in the proof.

In the reduction to the binding of PD-XMC, this first part of the adversary corresponds
to the commit stage. Thus, we will need an X-measurable commitment scheme where the
committer has access to both the Dec and DecX oracles, while the opener (necessarily) only
has access to Dec.

We refer to such a commitment scheme as an X-measurable commitment with public
decodability. Somewhat more formally, we will require the following binding property,
where Dec[rk] (resp. DecX[rk]) is the oracle implementing the classical functionality Dec(rk, ·, ·)
(resp. DecX(rk, ·, ·)). For any polynomial-query adversary (C,U),

Pr
( ̃︀ck,̃︀rk)←Gen(1𝜆)

[︁⃦⃦
Π̃︀rk,̃︀𝑐,1−𝑏UDec[̃︀rk]Π̃︀rk,̃︀𝑐,𝑏 |𝜓⟩ ⃦⃦ = 1/poly(𝜆) : (|𝜓⟩ ,̃︀𝑐)← CDec[̃︀rk],DecX[̃︀rk]( ̃︀ck)]︁ = negl(𝜆).

Unfortunately, the known construction of X-measurable commitments [BCM+18, Mah18b]
does not satisfy this property, which we explain in the following section. Thus, in the re-
mainder of this overview, we demonstrate a novel approach to constructing X-measurable
commitments, and describe a construction with public decodability in the oracle model.
Once we have this commitment, our construction of non-interactive publicly-verifiable
classical verification of quantum partitioning circuits is complete, which also completes
our construction of obfuscation for pseudo-deterministic quantum circuits.

4.1.4 Publicly-decodable X-measurable commitments

First, we review why the X-measurable commitment based on claw-free hash functions
[BCM+18, Mah18b] does not satisfy binding with public decodability. To commit to a
state |𝜓⟩ = 𝛼0 |0⟩+𝛼1 |1⟩, the committer evaluates and measures an (approximately) two-
to-one hash function 𝑓 in superposition to end up with a commitment 𝑐 and a left-over
state 𝛼0 |0⟩ |𝑥0⟩+ 𝛼1 |1⟩ |𝑥1⟩, where 𝑥0, 𝑥1 are 𝑛-bit strings such that 𝑥0 starts with 0 and 𝑥1
starts with 1. If they do this honestly, it will hold that 𝑓(𝑥0) = 𝑓(𝑥1) = 𝑐. Moreover, the
receiver has a trapdoor for 𝑓 and can thus compute both 𝑥0 and 𝑥1 from 𝑐.

Now, a standard basis opening to the bit 𝑏 is the string 𝑥𝑏. To open |𝜓⟩ in the Hadamard
basis, the committer measures each qubit of their left-over state in the Hadamard basis,
obtaining a bit 𝑏′ and a string 𝑑. It follows that 𝑏 := 𝑏′ + 𝑑 · (𝑥0 + 𝑥1)

21 is a decoding of
the Hadamard basis measurement of |𝜓⟩. Thus, if we define 𝑆 := {0, 𝑥0 + 𝑥1} to be a

21Here, and throughout this section, all arithmetic will be over F2.
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one-dimensional subspace of F𝑛2 , access to the DecX oracle provides the committer with a
membership oracle for the subspace 𝑆⊥. Since 𝑆 is just one dimension, it is straightfor-
ward to use this oracle to learn a description of 𝑆, which is 𝑥0 + 𝑥1. But if the committer C
computes the string 𝑥0+𝑥1 and passes it along with 𝛼0 |0⟩ |𝑥0⟩+𝛼1 |1⟩ |𝑥1⟩ to U, the opener
can first measure their state in the standard basis to obtain (𝑏, 𝑥𝑏), and then use 𝑥0 + 𝑥1 to
compute (1 − 𝑏, 𝑥1−𝑏), obtaining a valid opening for both bits in the standard basis. This
completely breaks any notion of binding for the commitment scheme.

Using a larger subspace. To solve this issue, we follow this template but increase the
dimension of 𝑆, thus decreasing the dimension of 𝑆⊥. That is, suppose that the left-over
state after a commitment to |𝜓⟩ = 𝛼0 |0⟩+ 𝛼1 |1⟩was instead

𝛼0 |0⟩ |𝐴0⟩+ 𝛼1 |1⟩ |𝐴1⟩ ,

where 𝐴 = 𝑆 + 𝑣 is a coset of a random 𝑛/2-dimensional subspace 𝑆,22 𝐴0 is the affine
subspace of vectors in 𝐴 that start with 0, and 𝐴1 is the affine subspace of vectors in 𝐴
that start with 1. Here, we are using the notation

|𝐴⟩ := 1√︀
|𝐴|

∑︁
𝑠∈𝐴

|𝑠⟩

for any affine subspace 𝐴.
It can be shown that if this state is measured in the Hadamard basis to produce 𝑏′, 𝑑,

then 𝑏 := 𝑏′ ⊕ 𝑟𝑑,𝑆 is a decoding of the Hadamard basis measurement of |𝜓⟩, where we
define the bit 𝑟𝑑,𝑆 = 0 if 𝑑 ∈ 𝑆⊥ and 𝑟𝑑,𝑆 = 1 if 𝑑+ (1, 0, . . . , 0) ∈ 𝑆⊥. Thus, the DecX oracle
can be implemented just given a membership checking oracle for 𝑆⊥. Moreover, now that
𝑆⊥ has 𝑛/2 dimensions, and 𝑆 is random, it is no longer clear that an adversary can use
oracle access to 𝑆⊥ to learn a description of 𝑆.

Completing the construction. Now, two main questions remain: (1) How do we define
a commitment key ck that enables the committer to apply the map |𝑏⟩ → |𝑏⟩ |𝐴𝑏⟩? (2) What
is the actual commitment string 𝑐? We will first address question (1).

Our commitment key will consist of a quantum state and a classical oracle. The Gen
algorithm will sample a random 𝑛/2-dimensional affine subspace 𝐴 = 𝑆 + 𝑣, set rk = 𝐴,
and release the quantum state |𝐴⟩, which is a uniform superposition over all vectors in
𝐴. Note that |𝐴⟩ = 1√

2
|𝐴0⟩ + 1√

2
|𝐴1⟩, which can be seen as the “|+⟩” state in the two-

dimensional space spanned by |𝐴0⟩ and |𝐴1⟩. Thus, for any 𝑏 ∈ {0, 1}, we need to allow
the committer to rotate the |+⟩ state to the “|𝑏⟩” state |𝐴𝑏⟩. It is easy to project onto vectors
that start with either 0 or 1, but we will have to implement a reflection across the 𝑋-axis
of this space if this projection results in |𝐴1−𝑏⟩. While it is clear that this can be done given
a quantum oracle implementing the projection |𝐴⟩⟨𝐴|, it was observed by [AGKZ20] that

22Assume that 𝐴 and 𝑆 are “balanced”, meaning that exactly half of their vectors start with 0.
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a classical oracle for membership in 𝑆⊥ suffices! Thus, as a first attempt, we will set the
commitment key ck to consist of |𝐴⟩ and an oracle 𝑂[𝑆⊥] for membership in 𝑆⊥.

This brings us to our second question. So far, we have shown that a committer, given
ck, can perform the map

𝛼0 |0⟩+ 𝛼1 |1⟩ → 𝛼0 |0⟩ |𝐴0⟩+ 𝛼1 |1⟩ |𝐴1⟩ ,

and give this final state to the opener. However, since the opener also has access to
ck and thus to 𝑂[𝑆⊥], there is no sense in which the original state is committed, since the
opener could continue to use 𝑂[𝑆⊥] to rotate arbitrarily around the space spanned by |𝐴0⟩
and |𝐴1⟩.

To fix this, we use a signature token. We include the signing key |sk⟩ for a single-bit
signature token scheme in ck, and alter the oracle 𝑂[𝑆⊥] so that it only responds given a
valid signature on 0. The actual commitment string 𝑐 will then be a signature on 1. Thus,
while the committer is free to rotate around span{|𝐴0⟩ , |𝐴1⟩} using access to 𝑆⊥, as soon
as it outputs a valid classical commitment string 𝑐, the membership oracle for 𝑆⊥ will
become inaccessible and the opener will intuitively be unable to make further changes to
the state.

The proof of binding. Now, it remains to formalize this intuition, and prove that this
scheme satisfies binding with public decodability. After appealing to the security of the
signature token scheme, we can reduce this to showing that for any polynomial-query
adversary (C,U),

Pr
[︁⃦⃦

Π𝐴1U
𝑂[𝐴]Π𝐴0 |𝜓⟩

⃦⃦
≥ 1/poly : |𝜓⟩ ← C𝑂[𝐴],𝑂[𝑆⊥](|𝐴⟩)

]︁
= negl,

where the probability is over a random choice of 𝑛/2-dimensional affine subspace
𝐴 = 𝑆 + 𝑣, and Π𝐴𝑏 is the projection onto vectors 𝑠 ∈ 𝐴𝑏. Note that C and U have access
to 𝑂[𝐴], the membership checking oracle for the affine subspace 𝐴 since this is needed to
implement Dec, and C has access to 𝑂[𝑆⊥] because it is needed to implement both ck and
DecX.

To show this, we will follow [AC12]’s blueprint for proving security in the classical
oracle model, and proceed via the following steps.

1. Show that we can instead sample 𝐴 from a public ambient space of dimension 3𝑛/4,
and remove U’s access to the 𝑂[𝐴] oracle.

2. Perform a worst-case to average-case reduction over the sampling of 𝐴.

3. Have the committer apply amplitude amplification onto Π𝐴0 . At this point, we can
reduce the problem to showing that for small enough 𝜖, there cannot exist a query-
bounded C and a unitary U such that for all 𝑛/2-dimensional affine subspaces 𝐴 of
F3𝑛/4
2 ,

|𝜓𝐴⟩ ∈ Im(Π𝐴0) and
⃦⃦
Π𝐴1U |𝜓𝐴⟩

⃦⃦
≥ 𝜖,
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where |𝜓𝐴⟩ ← C𝑂[𝐴],𝑂[𝑆⊥](|𝐴⟩).

4. Apply the “inner-product adversary method” of [AC12]. That is, we (i) define a re-
lationℛ on pairs of affine subspaces (𝐴,𝐵) such that ⟨𝐴|𝐵⟩ = 1/2 for all (𝐴,𝐵) ∈ ℛ,
(ii) argue that for any collection of states {|𝜓𝐴⟩}𝐴 that satisfy the above conditions,

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] ≤ 1/2− 𝛿

for some large enough 𝛿, and (iii) conclude that if C can decrease the expected in-
ner product over ℛ by 𝛿, it must be making “too many” oracle queries, yielding a
contradiction.

However, arguing part (ii) of this final step turns out to be significantly more challeng-
ing than analogous claims in previous work (e.g. [AC12, BS16]). Indeed, the condition is
neither that |𝜓𝐴⟩ is some fixed state (as in [AC12]), or that measuring |𝜓𝐴⟩ in the standard
basis yields a classical string in some well-defined set (as in [BS16]). Rather, the condi-
tion involves reasoning about the overlap between two projectors, where one is defined
via an arbitrary rotation U. Moreover, we only have the guarantee that |𝜓𝐴⟩ is 𝜖-close to
Im(U†Π𝐴1U), and this value cannot be amplified to 1 (depending on U, the images of Π𝐴0

and U†Π𝐴1U may not intersect at all).
In Section 4.5.2, we show that for our definition of ℛ, 𝛿 > 𝜖13, which is enough for

us to reach a contradiction and complete the proof. We proceed by contradiction, and
eventually reduce to a Welch bound [Wel74], which upper bounds the number of vectors
of a given minimum distance that can be packed into a low-dimensional Hilbert space.
We defer a further overview and details of this proof to Section 4.5.2. This completes our
proof of binding with public decodability.

4.2 Publicly-decodable X-measurable commitments

4.2.1 Definition

Recall that an X-measurable commitment augments the standard notion of a (non-interactive)
bit commitment with an additional functionality property. It includes traditional key gen-
eration, commit, and decommit procedures, and must satisfy a notion of binding to a clas-
sical bit. However, when used to commit to a qubit |𝜓⟩ = 𝛼0 |0⟩+ 𝛼1 |1⟩ in superposition,
it supports the additional ability to open to a Hadamard basis measurement of |𝜓⟩.

The syntax of an X-measurable commitment is given below. We present the syntax
in the oracle model, where the committer obtains access to an efficient classical oracle CK
as part of its commitment key. Such a scheme can be heuristically instantiated in the
plain model by using a post-quantum indistinguishability obfuscator to obfuscate this
oracle. We allow the remainder of the commitment key to be a quantum state |ck⟩, but
note that quantum commitment keys are not inherent to the definition of an X-measurable
commitment.
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Definition 4.1 (X-measurable commitment: Syntax). An X-measurable commitment consists
of six algorithms (Gen,Com,Open,Dec,OpenX,DecX) with the following syntax.

• Gen(1𝜆)→ (rk, |ck⟩ ,CK) is a QPT algorithm that takes as input the security parameter 1𝜆

and outputs a classical receiver key rk and a quantum commitment key (|ck⟩ ,CK), where
|ck⟩ is a quantum state on register 𝒦, and CK is the description of a classical deterministic
polynomial-time functionality CK : {0, 1}* → {0, 1}*.

• ComCK
𝑏 (|ck⟩) → (𝒰 , 𝑐) is a QPT algorithm that is parameterized by a bit 𝑏 and has oracle

access to CK. It applies a map from register 𝒦 (initially holding the commitment key |ck⟩)
to registers (𝒰 , 𝒞) and then measures 𝒞 in the standard basis to obtain a classical string
𝑐 ∈ {0, 1}* and a left-over state on register 𝒰 . We then write

ComCK := |0⟩⟨0| ⊗ ComCK
0 + |1⟩⟨1| ⊗ ComCK

1

to refer to the map that applies the ComCK
𝑏 map classically controlled on a single-qubit regis-

ter ℬ to produce a state on registers (ℬ,𝒰 , 𝒞), and then measures 𝒞 in the standard basis to
obtain a classical string 𝑐 along with a left-over quantum state on registers (ℬ,𝒰).

• Open(ℬ,𝒰)→ 𝑢 is a QPT measurement on (ℬ,𝒰) that outputs a classical string 𝑢.23

• Dec(rk, 𝑐, 𝑢) → {0, 1,⊥} is a classical deterministic polynomial-time algorithm that takes
as input the receiver key rk, a commitment 𝑐, and an opening 𝑢, and outputs either a bit 𝑏 or
a ⊥ symbol.

• OpenX(ℬ,𝒰)→ 𝑢 is a QPT measurement on (ℬ,𝒰) that outputs a classical string 𝑢.24

• DecX(rk, 𝑐, 𝑢)→ {0, 1,⊥} is a classical deterministic polynomial-time algorithm that takes
as input the receiver key rk, a commitment 𝑐, and an opening 𝑢, and outputs either a bit 𝑏 or
a ⊥ symbol.

Definition 4.2 (X-measurable commitment: Correctness). An X-measurable commitment
(Gen,Com,Open,Dec,OpenX,DecX) is correct if for any single-qubit (potentially mixed) state
on register ℬ, it holds that

TV
(︀
IdealZ(ℬ),RealZ(1𝜆,ℬ)

)︀
= negl(𝜆), and TV

(︀
IdealX(ℬ),RealX(1𝜆,ℬ)

)︀
= negl(𝜆),

where the distributions are defined as follows.

23Without loss of generality, we can assume that this procedure simply measures all registers in the stan-
dard basis (by including any potential pre-processing as part of the Com procedure). Thus, strictly speaking,
we don’t have to include an explicit Open algorithm in the syntax of an X-measurable commitment, though
we do here for notational convenience later.

24One could define the “canonical” OpenX procedure to simply measure all registers in the Hadamard
basis. Indeed, this is the case for all known approaches to building X-measurable commitments. However,
we leave open the possibility that there exist interesting X-measurable commitments with more general
OpenX procedures, and thus include an arbitrary OpenX procedure as part of the syntax.
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• IdealZ(ℬ) measures ℬ in the standard basis.

• IdealX(ℬ) measures ℬ in the Hadamard basis.

• RealZ(1𝜆,ℬ) samples (rk, |ck⟩ ,CK)← Gen(1𝜆), (ℬ,𝒰 , 𝑐)← ComCK(ℬ, |ck⟩), 𝑢← Open(ℬ,𝒰),
and outputs Dec(rk, 𝑐, 𝑢).

• RealX(1𝜆,ℬ) samples (rk, |ck⟩ ,CK)← Gen(1𝜆), (ℬ,𝒰 , 𝑐)← ComCK(ℬ, |ck⟩), 𝑢← OpenX(ℬ,𝒰),
and outputs DecX(rk, 𝑐, 𝑢).

An X-measurable commitment that satisfies binding with public decodability allows the
adversarial Committer to have oracle access to the receiver’s functionalities Dec(rk, ·, ·)
and DecX(rk, ·, ·). However, we crucially do not give the adversarial Opener access to
DecX(rk, ·, ·).

Definition 4.3 (X-measurable commitment: Single-bit binding with public decodability).
An X-measurable commitment (Gen,Com,Open,Dec,OpenX,DecX) satisfies single-bit binding
with public decodability if the following holds. Given rk, 𝑐, and 𝑏 ∈ {0, 1}, let

Πrk,𝑐,𝑏 :=
∑︁

𝑢:Dec(rk,𝑐,𝑢)=𝑏

|𝑢⟩⟨𝑢| .

Consider any adversary {(C𝜆,U𝜆)}𝜆∈N, where each C𝜆 is an oracle-aided quantum operation,
each U𝜆 is an oracle-aided unitary, and each (C𝜆,U𝜆) make at most poly(𝜆) oracle queries. Then
for any 𝑏 ∈ {0, 1},

E
[︁⃦⃦⃦

Πrk,𝑐,1−𝑏U
CK,Dec[rk]
𝜆 Πrk,𝑐,𝑏 |𝜓⟩

⃦⃦⃦
: (|𝜓⟩ , 𝑐)← C

CK,Dec[rk],DecX[rk]
𝜆 (|ck⟩)

]︁
= negl(𝜆),

where the expectation is over rk, |ck⟩ ,CK ← Gen(1𝜆). Here, Dec[rk] is the oracle implement-
ing the classical functionality Dec(rk, ·, ·) and DecX[rk] is the oracle implementing the classical
functionality DecX(rk, ·, ·).

Next, we extend the above single-bit binding property to a notion of string binding.

Definition 4.4 (X-measurable commitment: String binding with public decodability). An
X-measurable commitment (Gen,Com,Open,Dec,OpenX,DecX) satisfies string binding with
public decodability if the following holds for any polynomial 𝑚 = 𝑚(𝜆) and two disjoint sets
𝑊0,𝑊1 ⊂ {0, 1}𝑚 of 𝑚-bit strings. Given a set of 𝑚 receiver keys rk = (rk1, . . . , rk𝑚), 𝑚 strings
c = (𝑐1, . . . , 𝑐𝑚), and 𝑏 ∈ {0, 1}, define

Πrk,c,𝑊𝑏
:=
∑︁
𝑤∈𝑊𝑏

⎛⎝⨂︁
𝑖∈[𝑚]

Πrk𝑖,𝑐𝑖,𝑤𝑖

⎞⎠ .

Consider any adversary {(C𝜆,U𝜆)}𝜆∈N, where each C𝜆 is an oracle-aided quantum operation, each
U𝜆 is an oracle-aided unitary, and each (C𝜆,U𝜆) make at most poly(𝜆) oracle queries. Then,
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E
[︁⃦⃦⃦

Πrk,c,𝑊1U
CK,Dec[rk]
𝜆 Πrk,c,𝑊0 |𝜓⟩

⃦⃦⃦
: (|𝜓⟩ , c)← C

CK,Dec[rk],DecX[rk]
𝜆 (|ck⟩)

]︁
= negl(𝜆),

where the expectation is over {rk𝑖, |ck𝑖⟩ ,CK𝑖 ← Gen(1𝜆)}𝑖∈[𝑚]. Here, |ck⟩ = (|ck1⟩ , . . . , |ck𝑚⟩),
CK is the collection of oracles CK1, . . . ,CK𝑚, Dec[rk] is the collection of oracles Dec[rk1], . . . ,Dec[rk𝑚],
and DecX[rk] is the collection of oracles DecX[rk1], . . . ,DecX[rk𝑚].

We prove the following lemma in Section 4.5.1.

Lemma 4.5. Any X-measurable commitment that satisfies single-bit binding with public de-
codability also satisfies string binding with public decodability.

4.2.2 Construction

Before describing our construction, we introduce some notation.

• A subspace 𝑆 < F𝑛2 is balanced if half of its vectors start with 0 and the other half start
with 1. Note that 𝑆 is balanced if and only if at least one of its basis vectors starts
with 1. Thus, a random large enough (say 𝑛/2-dimensional) subspace is balanced
with probability 1 − negl(𝑛). By default, we will only consider balanced subspaces
in what follows.

• For an affine subspace 𝐴 = 𝑆 + 𝑣 of F𝑛2 , we write

|𝑆 + 𝑣⟩ := 1√︀
|𝑆|

∑︁
𝑠∈𝑆

|𝑠+ 𝑣⟩ .

• Given an affine subspace 𝑆 + 𝑣, let (𝑆 + 𝑣)0 be the set of vectors in 𝑆 + 𝑣 that start
with 0 and let (𝑆 + 𝑣)1 be the set of vectors in 𝑆 + 𝑣 that start with 1.

We describe our construction of an X-measurable commitment in Fig. 6.

Theorem 4.6. The X-measurable commitment described in Fig. 6 satisfies correctness (Defini-
tion 4.2).

Proof. We will first show that the map applied by ComCK
𝑏 in the case that the measurement

of the first qubit of 𝒦0 is 1 − 𝑏 successfully takes |(𝑆 + 𝑣)1−𝑏⟩ → |(𝑆 + 𝑣)𝑏⟩. Since Tok is
perfectly correct, it suffices to show that for any balanced affine subspace |𝑆 + 𝑣⟩,

𝐻⊗𝑛Ph𝑂[𝑆⊥]𝐻⊗𝑛 |(𝑆 + 𝑣)1−𝑏⟩ → |(𝑆 + 𝑣)𝑏⟩ ,

where Ph𝑂[𝑆⊥] is the map |𝑠⟩ → (−1)𝑂[𝑆⊥](𝑠) |𝑠⟩, and 𝑂[𝑆⊥] is the oracle that outputs 0 if
𝑠 ∈ 𝑆⊥ and 1 if 𝑠 /∈ 𝑆⊥. This was actually shown in [AGKZ20], but we repeat it here for
completeness.
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Publicly-decodable X-measurable commitment

Parameters: Polynomial 𝑛 = 𝑛(𝜆) ≥ 𝜆.
Ingredients: Signature token scheme (Tok.Gen,Tok.Sign,Tok.Verify) (Section 2.2.4).

• Gen(1𝜆): Sample a uniformly random 𝑛/2-dimensional balanced affine subspace 𝑆 + 𝑣 of F𝑛
2

and sample (vk, |sk⟩)← Tok.Gen(1𝜆). Set

rk := (𝑆, 𝑣, vk), |ck⟩ := (|𝑆 + 𝑣⟩ , |sk⟩).

Define CK to take as input (𝜎, 𝑠) for 𝑠 ∈ {0, 1}𝑛 and output ⊥ if Tok.Verify(vk, 0, 𝜎) = ⊥, and
otherwise output 0 if 𝑠 ∈ 𝑆⊥ or 1 if 𝑠 /∈ 𝑆⊥.

• ComCK
𝑏 (|ck⟩):

– Parse |ck⟩ = (|𝑆 + 𝑣⟩𝒦0 , |sk⟩𝒦1).

– Coherently apply Tok.Sign(1𝜆, 0, ·) from the 𝒦1 register to a fresh register 𝒢, which will
now hold a superposition over signatures 𝜎 on the bit 0.

– Measure the first qubit of register 𝒦0 in the standard basis. If the result is 𝑏, the state on
register 𝒦0 has collapsed to |(𝑆 + 𝑣)𝑏⟩, and we continue. Otherwise, perform a rotation
from |(𝑆 + 𝑣)1−𝑏⟩ to |(𝑆 + 𝑣)𝑏⟩ by applying the operation (𝐻⊗𝑛)𝒦0PhCK(·,·)(𝐻⊗𝑛)𝒦0 to
registers (𝒦0,𝒢), where PhCK(·,·) is the map |𝑠⟩𝒦0 |𝜎⟩𝒢 → (−1)CK(𝜎,𝑠) |𝑠⟩𝒦0 |𝜎⟩𝒢 .

– Next, reverse the Tok.Sign(1𝜆, 0, ·) operation on (𝒦1,𝒢) to recover |sk⟩ on register 𝒦1.

– Finally, sample and output 𝑐 ← Tok.Sign(1𝜆, 1, |sk⟩), along with the final state on register
𝒰 := 𝒦0.

• Open(ℬ,𝒰): Measure all registers in the standard basis.

• Dec(rk, 𝑐, 𝑢):

– Parse rk = (𝑆, 𝑣, vk) and 𝑢 = (𝑏, 𝑠), where 𝑏 ∈ {0, 1} and 𝑠 ∈ {0, 1}𝑛.

– Check that Tok.Verify(vk, 1, 𝑐) = ⊤, and if not output ⊥.

– If 𝑠 ∈ (𝑆 + 𝑣)𝑏, output 𝑏, and otherwise output ⊥.

• OpenX(ℬ,𝒰): Measure all registers in the Hadamard basis.

• DecX(rk, 𝑐, 𝑢):

– Parse rk = (𝑆, 𝑣, vk) and 𝑢 = (𝑏′, 𝑠), where 𝑏′ ∈ {0, 1} and 𝑠 ∈ {0, 1}𝑛.

– Check that Tok.Verify(vk, 1, 𝑐) = ⊤, and if not output ⊥.

– If 𝑠 ∈ 𝑆⊥, then define 𝑟 := 0. If 𝑠⊕ (1, 0, . . . , 0) ∈ 𝑆⊥, then define 𝑟 := 1. Otherwise, abort
and output ⊥. That is, 𝑟 is set to 0 if 𝑠 ∈ 𝑆⊥ and to 1 if 𝑠 ∈ (𝑆0)

⊥ ∖ 𝑆⊥. Then, output
𝑏 := 𝑏′ ⊕ 𝑟.

Figure 6: An X-measurable commitment that satisfies binding with public decodability.
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We will use the facts that 𝑆1 = 𝑆0 + 𝑤 for some 𝑤, and that (𝑆 + 𝑣)0 = 𝑆0 + 𝑣0 and
(𝑆 + 𝑣)1 = 𝑆0 + 𝑣1 for some 𝑣0, 𝑣1 such that 𝑣0 + 𝑣1 = 𝑤. Also note that for any 𝑠 ∈ 𝑆⊥,
𝑠 · 𝑤 = 0, and for any 𝑠 ∈ (𝑆0)

⊥ ∖ 𝑆⊥, 𝑠 · 𝑤 = 1.

𝐻⊗𝑛Ph𝑂[𝑆⊥]𝐻⊗𝑛 |(𝑆 + 𝑣)1−𝑏⟩

= 𝐻⊗𝑛Ph𝑂[𝑆⊥]𝐻⊗𝑛
1√

2𝑛/2−1

(︃∑︁
𝑠∈𝑆0

|𝑠+ 𝑣1−𝑏⟩

)︃

= 𝐻⊗𝑛Ph𝑂[𝑆⊥] 1√
2𝑛/2+1

⎛⎝∑︁
𝑠∈𝑆⊥

0

(−1)𝑠·𝑣1−𝑏 |𝑠⟩

⎞⎠
= 𝐻⊗𝑛Ph𝑂[𝑆⊥] 1√

2𝑛/2+1

⎛⎝∑︁
𝑠∈𝑆⊥

(−1)𝑠·𝑤+𝑠·𝑣𝑏 |𝑠⟩+
∑︁

𝑠∈𝑆⊥
0 ∖𝑆⊥

(−1)𝑠·𝑤+𝑠·𝑣𝑏 |𝑠⟩

⎞⎠
= 𝐻⊗𝑛Ph𝑂[𝑆⊥] 1√

2𝑛/2+1

⎛⎝∑︁
𝑠∈𝑆⊥

(−1)𝑠·𝑣𝑏 |𝑠⟩+
∑︁

𝑠∈𝑆⊥
0 ∖𝑆⊥

(−1)1+𝑠·𝑣𝑏 |𝑠⟩

⎞⎠
= 𝐻⊗𝑛

1√
2𝑛/2+1

⎛⎝∑︁
𝑠∈𝑆⊥

(−1)𝑠·𝑣𝑏 |𝑠⟩+
∑︁

𝑠∈𝑆⊥
0 ∖𝑆⊥

(−1)𝑠·𝑣𝑏 |𝑠⟩

⎞⎠
= 𝐻⊗𝑛

1√
2𝑛/2+1

⎛⎝∑︁
𝑠∈𝑆⊥

0

(−1)𝑠·𝑣𝑏 |𝑠⟩

⎞⎠
= |(𝑆 + 𝑣)𝑏⟩ .

Thus, applying ComCK to a pure state |𝜓⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ and commitment key |ck⟩
produces the state

|𝜓Com⟩ = 𝛼0 |0⟩ |(𝑆 + 𝑣)0⟩+ 𝛼1 |1⟩ |(𝑆 + 𝑣)1⟩ ,
and a signature 𝑐 on the bit 1.

We continue by arguing that measuring and decoding |𝜓Com⟩ in the standard (resp.
Hadamard) basis produces the same distribution as directly measuring |𝜓⟩ in the stan-
dard (resp. Hadamard) basis. As a mixed state is a probability distribution over pure
states, this will complete the proof of correctness.

First, it is immediate that measuring |𝜓Com⟩ in the standard basis produces a bit 𝑏 with
probability |𝛼𝑏|2 along with a vector 𝑠 such that 𝑠 ∈ (𝑆 + 𝑣)𝑏.

Next, note that applying Hadamard to each qubit of |𝜓Com⟩ except the first results in
the state

𝛼0 |0⟩

⎛⎝∑︁
𝑠∈𝑆⊥

0

(−1)𝑠·𝑣0 |𝑠⟩

⎞⎠+ 𝛼1 |1⟩

⎛⎝∑︁
𝑠∈𝑆⊥

0

(−1)𝑠·𝑣1 |𝑠⟩

⎞⎠ ,
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and thus, measuring each of these qubits (except the first) in the Hadamard basis pro-
duces a vector 𝑠 and a single-qubit state

(−1)𝑠·𝑣0𝛼0 |0⟩+ (−1)𝑠·𝑣1𝛼1 |1⟩ = 𝛼0 |0⟩+ (−1)𝑠·𝑤𝛼1 |1⟩ .

So, measuring this qubit in the Hadamard basis is equivalent to measuring |𝜓⟩ in the
Hadamard basis and masking the result with 𝑠 · 𝑤. Recalling that 𝑠 · 𝑤 = 0 if 𝑠 ∈ 𝑆⊥ and
𝑠 · 𝑤 = 1 if 𝑠 ∈ (𝑆0)

⊥ ∖ 𝑆⊥ completes the proof of correctness.

4.2.3 Proof of binding

This section is dedicated to proving the following theorem.

Theorem 4.7. Assuming that Tok satisfies unforgeability (Definition 2.21), the X-measurable
commitment described in Fig. 6 with 𝑛 ≥ 130𝜆 satisfies single-bit binding with public decod-
ability (Definition 4.3).

The proof of this theorem will be identical for each choice of 𝑏 ∈ {0, 1} in the state-
ment of Definition 4.3. So, consider any adversary (C,U) attacking the publicly-decodable
single-bit binding game for 𝑏 = 0, where we drop the indexing by 𝜆 for notational conve-
nience. We first show that it suffices to prove the following claim, in which U no longer
has oracle access to CK.

Claim 4.8. For any (C,U) where C and U each make poly(𝜆) many oracle queries, it holds that

Pr
rk,|ck⟩,CK←Gen(1𝜆)

[︂⃦⃦⃦
Πrk,𝑐,1U

Dec[rk]Πrk,𝑐,0 |𝜓⟩
⃦⃦⃦2
≥ 1

2𝜆
: (|𝜓⟩ , 𝑐)← CCK,Dec[rk],DecX[rk](|ck⟩)

]︂
= negl(𝜆).

Lemma 4.9. Claim 4.8 implies Theorem 4.7.

Proof. First, we note that to prove Theorem 4.7, it suffices to show that for any any (C,U)
with poly(𝜆) many oracle queries and any 𝜖(𝜆) = 1/poly(𝜆), it holds that

Pr
rk,|ck⟩,CK←Gen(1𝜆)

[︂⃦⃦⃦
Πrk,𝑐,1U

CK,Dec[rk]Πrk,𝑐,0 |𝜓⟩
⃦⃦⃦2
≥ 𝜖(𝜆) : (|𝜓⟩ , 𝑐)← CCK,Dec[rk],DecX[rk](|ck⟩)

]︂
= negl(𝜆).

To show that Claim 4.8 implies the above statement, we define the oracle𝑂⊥ to always
map (𝜎, 𝑠)→ ⊥, and then argue that

E
rk,|ck⟩,CK←Gen(1𝜆)

(|𝜓⟩,𝑐)←CCK,Dec[rk],DecX[rk](|ck⟩)

[︂⃦⃦⃦
Πrk,𝑐,1U

CK,Dec[rk]Πrk,𝑐,0 |𝜓⟩
⃦⃦⃦2
−
⃦⃦⃦
Πrk,𝑐,1U

𝑂⊥,Dec[rk]Πrk,𝑐,0 |𝜓⟩
⃦⃦⃦2]︂

= negl(𝜆).
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This follows from a standard hybrid argument, by reduction to the unforgeability of the
signature token scheme. Consider replacing each CK oracle query with a 𝑂⊥ oracle query
one by one, starting with the last query. That is, we define hybridℋ0 to be

E
rk,|ck⟩,CK←Gen(1𝜆)

(|𝜓⟩,𝑐)←CCK,Dec[rk],DecX[rk](|ck⟩)

[︂⃦⃦⃦
Πrk,𝑐,1U

CK,Dec[rk]Πrk,𝑐,0 |𝜓⟩
⃦⃦⃦2]︂

,

and in hybridℋ𝑖, we switch the 𝑖’th-from-last query from being answered by CK to being
answered by 𝑂⊥. Now, fix any 𝑖, and consider measuring the query register of U’s 𝑖’th-
from-last query to obtain classical strings (𝜎, 𝑠). Then since Πrk,𝑐,0 is the zero projector
when 𝑐 is not a valid signature on 1, and CK outputs⊥whenever 𝜎 is not a valid signature
on 0, we have that

E[ℋ𝑖−1 −ℋ𝑖] ≤ Pr[Tok(vk, 1, 𝑐) = 1 ∧ Tok(vk, 0, 𝜎) = 1] = negl(𝜆),

by the unforgeability of the signature token scheme. Since there are poly(𝜆) many hybrids,
this completes the hybrid argument.

Finally, it follows by Markov that

Pr
rk,|ck⟩,CK←Gen(1𝜆)

(|𝜓⟩,𝑐)←CCK,Dec[rk],DecX[rk](|ck⟩)

[︂⃦⃦⃦
Πrk,𝑐,1U

CK,Dec[rk]Πrk,𝑐,0 |𝜓⟩
⃦⃦⃦2
−
⃦⃦⃦
Πrk,𝑐,1U

𝑂⊥,Dec[rk]Πrk,𝑐,0 |𝜓⟩
⃦⃦⃦2
≥ 𝜖(𝜆)− 1

2𝜆

]︂

≤ negl(𝜆)

𝜖(𝜆)− 1/2𝜆
= negl(𝜆),

which completes the proof.

Now, we introduce some more notation.

• Let 𝒜𝑘,𝑛 be the set of balanced 𝑘-dimensional affine subspaces of F𝑛2 .

• For an affine subspace 𝐴 = 𝑆+ 𝑣, let 𝑂[𝐴] : F𝑛2 → {0, 1} be the classical functionality
that outputs 1 on input 𝑠 iff 𝑠 ∈ 𝑆 + 𝑣, and let 𝑂[𝐴⊥] : F𝑛2 → {0, 1} be the classical
functionality that outputs 1 on input 𝑠 iff 𝑠 ∈ 𝑆⊥.

• For an affine subspace 𝐴 = 𝑆 + 𝑣 and a bit 𝑏 ∈ {0, 1}, define the projector

Π[𝐴𝑏] :=
∑︁

𝑠∈(𝑆+𝑣)𝑏

|𝑠⟩⟨𝑠| .

We will use this notation to re-define the game in Claim 4.8, and show that it suffices
to prove the following claim.
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Claim 4.10. For any two unitaries (UCom,UOpen), where UCom and UOpen each make poly(𝜆) many
oracle queries, it holds that

Pr
𝐴←𝒜𝑛/2,𝑛

[︂⃦⃦⃦
Π[𝐴1]U

𝑂[𝐴]
OpenΠ[𝐴0] |𝜓⟩

⃦⃦⃦2
≥ 1

2𝜆
: |𝜓⟩ := U

𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩)

]︂
= negl(𝜆).

Lemma 4.11. Claim 4.10 implies Claim 4.8.

Proof. First, we note that re-defining Πrk,𝑐,𝑏 in the statement of Claim 4.8 to ignore 𝑐 and
only check for membership in the affine subspace (𝑆 + 𝑣)𝑏 only potentially increases the
squared norm of the resulting vector. This means that we can ignore the string 𝑐 output
by C. Then, we can give the committer vk in the clear, and observe that it is now straight-
forward for the committer to simulate its Dec[rk] oracle with 𝑂[𝐴], where 𝐴 is the affine
subspace defined by rk, and also to simulate its DecX[rk] oracle with 𝑂[𝐴⊥]. Finally, we
can purify any operation C to consider a unitary UCom that outputs |𝜓⟩.

Our next step is to remove UOpen’s oracle access to 𝑂[𝐴]. We will show that it suffices
to prove the following.

Claim 4.12. For any two unitaries (UCom,UOpen), where UCom makes poly(𝜆) many oracle queries,
it holds that

Pr
𝐴←𝒜𝑛/2,3𝑛/4

[︂⃦⃦⃦
Π[𝐴1]UOpenΠ[𝐴0] |𝜓⟩

⃦⃦⃦2
≥ 1

2𝜆+1
: |𝜓⟩ := U

𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩)

]︂
= negl(𝜆).

Notice that we are now sampling affine subspaces of a 3𝑛/4-dimensional space.

Lemma 4.13. Claim 4.12 implies Claim 4.10.

Proof. Given an 𝑛/2-dimensional affine subspace 𝐴, let 𝑇 ← Super(3𝑛/4, 𝐴) denote sam-
pling a uniformly random (3𝑛/4)-dimensional subspace 𝑇 such that 𝐴 ⊂ 𝑇 . Then, define
𝑂[𝑇 ∖ {0𝑛}] to be the oracle that checks for membership in the set 𝑇 ∖ {0𝑛}.

Now, we will show via a standard hybrid argument that

E
𝐴←𝒜𝑛/2,

𝑇←Super(3𝑛/4,𝐴)

|𝜓⟩:=U
𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩)

[︂⃦⃦⃦
Π[𝐴1]U

𝑂[𝐴]
OpenΠ[𝐴0] |𝜓⟩

⃦⃦⃦2
−
⃦⃦⃦
Π[𝐴1]U

𝑂[𝑇∖{0𝑛}]
Open Π[𝐴0] |𝜓⟩

⃦⃦⃦2]︂
≤ poly(𝜆)

2𝑛/4
.

Consider replacing each 𝑂[𝐴] oracle query with a 𝑂[𝑇 ∖ {0𝑛}] oracle query one by one,
starting with the last query. That is, we define hybridℋ0 to be

E
𝐴←𝒜𝑛/2,𝑛

𝑇←Super(3𝑛/4,𝐴)

|𝜓⟩:=U
𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩)

[︂⃦⃦⃦
Π[𝐴1]U

𝑂[𝐴]
OpenΠ[𝐴0] |𝜓⟩

⃦⃦⃦2]︂
,
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and in hybrid ℋ𝑖, we switch the 𝑖’th-from-last query from being answered by 𝑂[𝐴] to
being answered by 𝑂[𝑇 ∖ {0𝑛}]. By Lemma 2.4, we have that

E[ℋ𝑖−1 −ℋ𝑖] ≤ max
𝑠

Pr
𝑇
[𝑠 ∈ (𝑇 ∖ {0𝑛}) ∖ 𝑆] ≤ 1

2𝑛/4
.

Since there are poly(𝜆) many hybrids, this completes the hybrid argument. Now, it
follows by Markov that

Pr
𝐴←𝒜𝑛/2,𝑛

𝑇←Super(3𝑛/4,𝐴)

|𝜓⟩:=U
𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩)

[︂⃦⃦⃦
Π[𝐴1]U

𝑂[𝐴]
OpenΠ[𝐴0] |𝜓⟩

⃦⃦⃦2
−
⃦⃦⃦
Π[𝐴1]U

𝑂[𝑇∖{0𝑛}]
Open Π[𝐴0] |𝜓⟩

⃦⃦⃦2
≥ 1

2𝜆
− 1

2𝜆+1

]︂

≤ poly(𝜆)2𝜆+1

2𝑛/4
= negl(𝜆),

since 𝑛 > 5𝜆. This completes the proof, since we can imagine fixing 𝑇 as a public ambient
space of dimension 3𝑛/4 and sampling 𝐴 as a random affine subspace of 𝑇 .

Next, we perform a worst-case to average-case reduction over the sampling of 𝐴 and
thus show that it suffices to prove the following.

Claim 4.14. There do not exist two unitaries (UCom,UOpen), where UCom makes poly(𝜆) many
oracle queries, such that for all 𝐴 ∈ 𝒜𝑛/2,3𝑛/4 it holds that⃦⃦⃦

Π[𝐴1]UOpenΠ[𝐴0] |𝜓𝐴⟩
⃦⃦⃦2
≥ 1

22𝜆
,

where |𝜓𝐴⟩ := U
𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩).

Lemma 4.15. Claim 4.14 implies Claim 4.12.

Proof. Suppose that there exists (UCom,UOpen) that violates Claim 4.12. We define an ad-
versary (̃︀C, ̃︀UOpen) as follows.

• ̃︀C takes |𝐴⟩ as input and samples a uniformly random change of basis 𝐵 of F3𝑛/4
2 .

Define the unitary U𝐵 acting on 3𝑛/4 qubits to map |𝑠⟩ → |𝐵(𝑠)⟩.

• Run UCom on |𝐵(𝐴)⟩. Answer each of UCom’s oracle queries with U𝐵𝑂[𝐴]U
†
𝐵 or U𝐵𝑂[𝐴⊥]U

†
𝐵,

where U𝐵 acts on the query register.

• Let |𝜓⟩ be UCom’s output, and output | ̃︀𝜓⟩ := (U†𝐵 |𝜓⟩ , 𝐵), where register ℬ holds 𝐵,
which is a classical description of the change of basis.
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• ̃︀UOpen is defined to be UCoB−1UOpenUCoB, where

UCoB :=
1

#𝐵

∑︁
B

U𝐵 ⊗ |𝐵⟩ ⟨𝐵|ℬ , and UCoB−1 :=
1

#𝐵

∑︁
𝐵

U†𝐵 ⊗ |𝐵⟩ ⟨𝐵|
ℬ ,

where #𝐵 is the total number of change of bases 𝐵.

Then it holds that for any 𝐴 ∈ 𝒜𝑛/2,3𝑛/4,

Pr

[︂⃦⃦⃦
Π[𝐴1]̃︀UOpenΠ[𝐴0] | ̃︀𝜓⟩ ⃦⃦⃦2 ≥ 1

2𝜆+1
: | ̃︀𝜓⟩ ← ̃︀C𝑂[𝐴],𝑂[𝐴⊥](|𝐴⟩)

]︂
= Pr

𝐵(𝐴)←𝒜𝑛/2,3𝑛/4

[︂⃦⃦⃦
Π[𝐵(𝐴)1]UOpenΠ[𝐵(𝐴)0] |𝜓⟩

⃦⃦⃦2
≥ 1

2𝜆+1
: |𝜓⟩ ← U

𝑂[𝐵(𝐴)],𝑂[𝐵(𝐴)⊥]
Com (|𝐵(𝐴)⟩)

]︂
= non-negl(𝜆),

where the final equality follows because we are assuming that (UCom,UOpen) violates
Claim 4.12, and for any fixed balanced 𝐴 and uniformly random 𝐵, it holds that 𝐵(𝐴)
is a uniformly random balanced affine subspace except with negl(𝑛) probability. Now,
define | ̃︀𝜓𝐵⟩ to be the output of ̃︀C conditioned on sampling 𝐵. Then define ̃︀UCom to be a
purification of C. It holds that for any fixed 𝐴 ∈ 𝒜𝑛/2,3𝑛/4 and | ̃︀𝜓⟩ := ̃︀U𝑂[𝐴],𝑂[𝐴⊥]

Com (|𝐴⟩),

⃦⃦⃦
Π[𝐴1]̃︀UOpenΠ[𝐴0] | ̃︀𝜓⟩ ⃦⃦⃦2 = 1

#𝐵

∑︁
𝐵

⃦⃦⃦
Π[𝐴1]̃︀UOpenΠ[𝐴0] | ̃︀𝜓𝐵⟩ ⃦⃦⃦2 ≥ non-negl(𝜆) · 1

2𝜆+1
≥ 1

22𝜆
,

which completes the proof.

Next, we perform amplitude amplification onto Π[𝐴0], showing that it suffices to prove
the following claim.

Claim 4.16. There do not exist two unitaries (UCom,UOpen), where UCom makes at most 22𝜆 oracle
queries, such that for all𝐴 ∈ 𝒜𝑛/2,3𝑛/4 and |𝜓𝐴⟩ := U

𝑂[𝐴],𝑂[𝐴⊥]
Com (|𝐴⟩), there exists a state |𝜓′𝐴⟩ such

that ⃦⃦
|𝜓𝐴⟩ − |𝜓′𝐴⟩

⃦⃦
≤ 1

215𝜆
, |𝜓′𝐴⟩ ∈ Im(Π[𝐴0]), and

⃦⃦
Π[𝐴1]𝑈Open |𝜓′𝐴⟩

⃦⃦
≥ 1

2𝜆
.

Lemma 4.17. Claim 4.16 implies Claim 4.14.

Proof. For any binary projective measurement (Π, I−Π), we define UΠ to be a unitary that
maps |𝜑⟩ → − |𝜑⟩ for any |𝜑⟩ ∈ Im(Π) and acts as the identity on all |𝜑⟩ orthogonal to Π.
We use the following imported theorem.
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Imported Theorem 4.18 (Fixed-point amplitude amplification, [GSLW19] Theorem 27).
There exists an oracle-aided unitary Amplify that is parameterized by (𝛼, 𝛽), and has the following
properties. Let |𝜓⟩ and |𝜓𝐺⟩ be normalized states and Π be a projector such that Π |𝜓⟩ = 𝛾 |𝜓𝐺⟩,
where 𝛾 ≥ 𝛼. Then | ̃︀𝜓𝐺⟩ := Amplify

U|𝜓⟩⟨𝜓|,UΠ

𝛼,𝛽 (|𝜓⟩) is such that ‖ |𝜓𝐺⟩ − | ̃︀𝜓𝐺⟩ ‖ ≤ 𝛽, and

Amplify
U|𝜓⟩⟨𝜓|,UΠ

𝛼,𝛽 (|𝜓⟩) makes 𝑂(log(1/𝛽)/𝛼) oracle queries.

Now, suppose that (UCom,UOpen) violates Claim 4.14. Set 𝛼 = 1/2𝜆, 𝛽 = 1/215𝜆, and
define ̃︀UCom(|𝐴⟩) := Amplify

U|𝜓𝐴⟩⟨𝜓𝐴|,UΠ[𝐴0]

𝛼,𝛽 (|𝜓𝐴⟩),

where |𝜓𝐴⟩ := UCom(|𝐴⟩).
We first argue that ̃︀UCom can be implemented with just oracle access to𝑂[𝐴] and𝑂[𝐴⊥].

Clearly, the projector Π[𝐴0] can be implemented with 𝑂[𝐴], so it remains to show how to
implement the projector |𝜓𝐴⟩⟨𝜓𝐴|. Note that

|𝜓𝐴⟩⟨𝜓𝐴| = UCom |𝐴⟩⟨𝐴|U†Com,

so it suffices to show how to implement |𝐴⟩⟨𝐴|.
Recalling that 𝐴 = 𝑆 + 𝑣, we claim that

|𝐴⟩⟨𝐴| = 𝐻⊗𝑛Π[𝑆⊥]𝐻⊗𝑛Π[𝑆 + 𝑣].

The proof is essentially shown in [AC12, Lemma 21] (in the case where 𝐴 is a subspace),
and we repeat it here for completeness. It is clear that 𝐻⊗𝑛Π[𝑆⊥]𝐻⊗𝑛Π[𝑆 + 𝑣] |𝐴⟩ = |𝐴⟩,
so it remains to show that for any |𝜓⟩ such that ⟨𝜓|𝐴⟩ = 0, 𝐻⊗𝑛Π[𝑆⊥]𝐻⊗𝑛Π[𝑆 + 𝑣] |𝜓⟩ = 0.
Write |𝜓⟩ =

∑︀
𝑠∈{0,1}𝑛 𝑐𝑠 |𝑠⟩, where

∑︀
𝑠∈𝑆+𝑣 𝑐𝑠 = 0. Then

𝐻⊗𝑛Π[𝑆⊥]𝐻⊗𝑛Π[𝑆 + 𝑣] |𝜓⟩ = 𝐻⊗𝑛Π[𝑆⊥]𝐻⊗𝑛
∑︁
𝑠∈𝑆+𝑣

𝑐𝑠 |𝑠⟩

=
1

2𝑛/2
𝐻⊗𝑛Π[𝑆⊥]

∑︁
𝑡∈{0,1}𝑛

∑︁
𝑠∈𝑆+𝑣

(−1)𝑠·𝑡𝑐𝑠 |𝑡⟩

=
1

2𝑛/2
𝐻⊗𝑛

∑︁
𝑡∈𝑆⊥

∑︁
𝑠∈𝑆+𝑣

(−1)𝑠·𝑡𝑐𝑠 |𝑡⟩

=
1

2𝑛/2
𝐻⊗𝑛

∑︁
𝑡∈𝑆⊥

(︃ ∑︁
𝑠∈𝑆+𝑣

𝑐𝑠

)︃
|𝑡⟩ = 0.

Thus, ̃︀UCom can be implemented with just oracle access to 𝑂[𝐴] and 𝑂[𝐴⊥]. Moreover,
it makes at most𝑂(log(1/𝛽)𝛼)·poly(𝜆) ≤ 𝑂(𝜆2𝜆)·poly(𝜆) ≤ 22𝜆 queries to𝑂[𝐴] and𝑂[𝐴⊥].

Now, define

|𝜓′𝐴⟩ :=
Π[𝐴0] |𝜓𝐴⟩
‖Π[𝐴0] |𝜓𝐴⟩ ‖

,
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so |𝜓′𝐴⟩ ∈ Im(Π[𝐴0]) by definition. By the fact that (UCom,UOpen) violates Claim 4.14, we
know that⃦⃦

Π[𝐴1]UOpen |𝜓′𝐴⟩
⃦⃦2 ≥ ⃦⃦Π[𝐴1]UOpenΠ[𝐴0] |𝜓𝐴⟩

⃦⃦2 ≥ 1

22𝜆
=⇒

⃦⃦
Π[𝐴1]UOpen |𝜓′𝐴⟩

⃦⃦
≥ 1

2𝜆
.

Finally, by the definition of |𝜓′𝐴⟩,

‖Π[𝐴1]UOpenΠ[𝐴0] |𝜓𝐴⟩ ‖2 ≥
1

22𝜆
=⇒ Π[𝐴0] |𝜓𝐴⟩ = 𝛾 |𝜓′𝐴⟩ for 𝛾 ≥ 1

2𝜆
,

so the guarantee of Imported Theorem 4.18 implies that⃦⃦̃︀UCom(|𝐴⟩)− |𝜓′𝐴⟩
⃦⃦
≤ 1

215𝑝
.

Thus, (̃︀UCom,UOpen) violates Claim 4.16, which completes the proof.

Finally, we prove Claim 4.16, which, as we have shown, suffices to prove Theorem 4.7.

Proof. (of Claim 4.16) We will use the following imported theorem.

Imported Theorem 4.19 ([AC12]). Let 𝒪 be a set of classical functionalities 𝐹 : {0, 1}* →
{0, 1}. Let ℛ be a symmetric binary relation between functionalities where for every 𝐹 ∈ 𝒪,
(𝐹, 𝐹 ) /∈ ℛ, and for every 𝐹 ∈ 𝒪, there exists 𝐺 ∈ 𝒪 such that (𝐹,𝐺) ∈ ℛ. Moreover, for any
𝐹 ∈ 𝒪 and 𝑥 such that 𝐹 (𝑥) = 0, suppose that

Pr
𝐺←ℛ𝐹

[𝐺(𝑥) = 1] ≤ 𝛿,

whereℛ𝐹 is the set of 𝐺 such that (𝐹,𝐺) ∈ ℛ. Now, consider any oracle-aided unitary U𝐹 (|𝜓𝐹 ⟩)
that has oracle access to some 𝐹 ∈ 𝒪, is initialized with some state |𝜓𝐹 ⟩ that may depend on
𝐹 , makes 𝑇 queries, and outputs a state |*⟩ ̃︀𝜓𝐹 . Then if |⟨𝜓𝐹 |𝜓𝐺⟩| ≥ 𝑐 for all (𝐹,𝐺) ∈ ℛ and
E(𝐹,𝐺)←ℛ[|⟨ ̃︀𝜓𝐹 | ̃︀𝜓𝐺⟩|] ≤ 𝑑, then 𝑇 = Ω

(︁
𝑐−𝑑√
𝛿

)︁
.

Now, suppose there exists UCom,UOpen that violates Claim 4.16. Recall that UCom has
access to the oracles 𝑂[𝐴] and 𝑂[𝐴⊥], defined by the 𝑛/2-dimensional balanced affine
subspace 𝐴 = 𝑆 + 𝑣 of F3𝑛/4

2 . We define a single functionality 𝐹𝐴 that takes as input (𝑏, 𝑠)
and if 𝑏 = 0 outputs whether 𝑠 ∈ 𝑆 + 𝑣, and if 𝑏 = 1 outputs whether 𝑠 ∈ 𝑆⊥.

Then, we define a binary symmetric relation on functionalities 𝐹𝐴, 𝐹𝐵 as follows. Let-
ting 𝐴 = 𝑆𝐴 + 𝑣𝐴 and 𝐵 = 𝑆𝐵 + 𝑣𝐵, we define (𝐹𝐴, 𝐹𝐵) ∈ ℛ if and only if dim(𝐴0 ∩ 𝐵0) =
𝑛/2−2 and dim(𝐴1∩𝐵1) = 𝑛/2−2. Note that for any (𝐹𝐴, 𝐹𝐵) ∈ ℛ, dim(𝐴∩𝐵) = 𝑛/2−1.

Givenℛ defined this way, we see that for any fixed 𝐹𝐴 and (𝑏, 𝑠) such that 𝐹𝐴(𝑏, 𝑠) = 0,
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Pr
𝐹𝐵←ℛ𝐹𝐴

[𝐹𝐵(𝑏, 𝑠) = 1]

≤ max

{︃
|𝐵 ∖ 𝐴|

|F3𝑛/4
2 ∖ 𝐴 ∖ {03𝑛/4}|

,
|𝑆⊥𝐵 ∖ 𝑆⊥𝐴 |
|F3𝑛/4

2 ∖ 𝑆⊥𝐴 |

}︃

≤ max

{︂
2𝑛/2−1

23𝑛/4 − 2𝑛/2 − 1
,

2𝑛/4−1

23𝑛/4 − 2𝑛/4

}︂
≤ 1

2𝑛/4
.

Next, we note that U𝐹𝐴Com is initialized with the state |𝐴⟩, and, for any (𝐴,𝐵) such that
(𝐹𝐴, 𝐹𝐵) ∈ ℛ, it holds that |⟨𝐴|𝐵⟩| = 1/2. Our goal is then to bound

E
(𝐹𝐴,𝐹𝐵)←ℛ

[|⟨𝜓𝐴|𝜓𝐵⟩|] ,

where |𝜓𝐴⟩ = U𝐹𝐴Com(|𝐴⟩). Since (UCom,UOpen) violates Claim 4.16, we can write each |𝜓𝐴⟩
as |𝜓′𝐴⟩+ |𝜓err

𝐴 ⟩, where⃦⃦
|𝜓err
𝐴 ⟩
⃦⃦
≤ 1

215𝜆
, |𝜓′𝐴⟩ ∈ Im(Π[𝐴0]), and

⃦⃦
Π[𝐴1]UOpen |𝜓′𝐴⟩

⃦⃦
≥ 1

2𝜆
.

Thus, we have that

E
(𝐹𝐴,𝐹𝐵)←ℛ

[|⟨𝜓𝐴|𝜓𝐵⟩] ≤ E
(𝐹𝐴,𝐹𝐵)←ℛ

[|⟨𝜓′𝐴|𝜓′𝐵⟩|] +
3

215𝜆
.

Now, we appeal to the following theorem, which is proven in Section 4.5.2.

Theorem 4.20. Let 𝑛,𝑚, 𝑑 ∈ N, 𝜖 ∈ (0, 1/8) be such that 𝑑 ≥ 2 and 𝑛−𝑑+1 > 10 log(1/𝜖)+6.
Let U𝒳 ,𝒴 be any (2𝑛+𝑚)-dimensional unitary, where register 𝒳 is 2𝑛 dimensions and register 𝒴 is
2𝑚 dimensions. Let 𝒜 be the set of 𝑑-dimensional balanced affine subspaces 𝐴 = (𝐴0, 𝐴1) of F𝑛2 ,
where 𝐴0 is the affine subspace of vectors in 𝐴 that start with 0 and 𝐴1 is the affine subspace of
vectors in 𝐴 that start with 1. For any 𝐴 = (𝐴0, 𝐴1), let

Π𝐴0
:=
∑︁
𝑣∈𝐴0

|𝑣⟩⟨𝑣|𝒳 ⊗ I𝒴 , Π𝐴1
:= U†

(︃∑︁
𝑣∈𝐴1

|𝑣⟩⟨𝑣|𝒳 ⊗ I𝒴
)︃
U.

Let ℛ be the set of pairs (𝐴,𝐵) of 𝑑-dimensional affine subspaces of F𝑛2 such that dim(𝐴0 ∩
𝐵0) = 𝑑 − 2 and dim(𝐴1 ∩ 𝐵1) = 𝑑 − 2. Then for any set of states {|𝜓𝐴⟩}𝐴 such that for all
𝐴 ∈ 𝒜, |𝜓𝐴⟩ ∈ Im(Π𝐴0), and ‖Π𝐴1 |𝜓𝐴⟩ ‖ ≥ 𝜖,

E
(𝐴,𝐵)←ℛ

[|⟨𝜓𝐴|𝜓𝐵⟩|] <
1

2
− 𝜖13.
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Setting 𝜖 = 1/2𝜆, and noting that 3𝑛/4 − 𝑛/2 + 1 > 11𝜆 > 10 log
(︀
2𝜆
)︀
+ 6, this theorem

implies that

E
(𝐹𝐴,𝐹𝐵)←ℛ

[|⟨𝜓′𝐴|𝜓′𝐵⟩|] ≤
1

2
− 1

213𝜆
,

and thus we conclude that

E
(𝐹𝐴,𝐹𝐵)←ℛ

[|⟨𝜓𝐴|𝜓𝐵⟩] ≤
1

2
− 1

214𝜆
.

Thus, by Imported Theorem 4.19, UCom must be making

Ω

(︂
2𝑛/8

214𝜆

)︂
= Ω

(︀
2130𝜆/8−14𝜆

)︀
> 22𝜆

oracle queries, recalling that 𝑛 ≥ 130𝜆. However, UCom was assumed to be making at most
22𝜆 queries, so this is a contradiction, completing the proof.

4.3 Verification of quantum partitioning circuits

4.3.1 Definition

A protocol for publicly-verifiable non-interactive classical verification of quantum par-
titioning circuits consists of the following procedures. We write the syntax in the oracle
model, where the prover obtains access to a classical oracle as part of its public key. We
also specify a quantum proving key |pk⟩, but note that one could also consider the case
where the proving key pk is classical.

• Gen(1𝜆, 𝑄)→ (vk, |pk⟩ ,PK): The Gen algorithm takes as input the security parameter
1𝜆 and the description of a quantum circuit 𝑄 : {0, 1}𝑛′ → {0, 1}𝑛, and outputs a
classical verification key vk and a quantum proving key (|pk⟩ ,PK), which consists
of a quantum state |pk⟩ and the description of a classical deterministic polynomial-
time functionality PK : {0, 1}* → {0, 1}*.

• ProvePK(|pk⟩ , 𝑄, 𝑥)→ 𝜋: The Prove algorithm has oracle access to PK, takes as input
the quantum proving key |pk⟩, a circuit 𝑄, and an input 𝑥 ∈ {0, 1}𝑛′ , and outputs a
proof 𝜋.

• Ver(vk, 𝑥, 𝜋) → {(𝑞1, . . . , 𝑞𝑚)} ∪ {⊥}: The classical Ver algorithm takes as input the
verification key vk, an input 𝑥, and a proof 𝜋, and either outputs a sequence of
samples (𝑞1, . . . , 𝑞𝑚) or ⊥.

• Combine(𝑏1, . . . , 𝑏𝑚) → 𝑏: The Combine algorithm takes as input a sequence of bits
(𝑏1, . . . , 𝑏𝑚) and outputs a bit 𝑏.

The proof should satisfy the following notions of completeness and soundness.
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Definition 4.21 (Publicly-verifiable non-interactive classical verification of quantum par-
titioning circuits: Completeness). A protocol for publicly-verifiable non-interactive classical
verification of quantum partitioning circuits is complete if for any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that
{𝑃𝜆 ∘ 𝑄𝜆}𝜆∈N is pseudo-deterministic, and any sequence of inputs {𝑥𝜆}𝜆∈N, it holds that (where
we leave indexing by 𝜆 implicit)

Pr

[︂
Ver(vk, 𝑥, 𝜋) = (𝑞1, . . . , 𝑞𝑚) ∧
Combine(𝑃 (𝑞1), . . . , 𝑃 (𝑞𝑚)) = 𝑃 (𝑄(𝑥))

:
(vk, |pk⟩ ,PK)← Gen(1𝜆, 𝑄)

𝜋 ← ProvePK(|pk⟩ , 𝑄, 𝑥)

]︂
= 1−negl(𝜆).

We define soundness in the oracle model, where the adversarial prover gets access to
an oracle for the functionality Ver(vk, ·, ·).

Definition 4.22 (Publicly-verifiable non-interactive classical verification of quantum par-
titioning circuits: Soundness). A protocol for publicly-verifiable non-interactive classical veri-
fication of quantum partitioning circuits is sound if for any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘
𝑄𝜆}𝜆∈N is pseudo-deterministic, and any QPT adversarial prover {A𝜆}𝜆∈N, it holds that (where
we leave indexing by 𝜆 implicit)

Pr

[︂
Ver(vk, 𝑥, 𝜋) = (𝑞1, . . . , 𝑞𝑚) ∧
Combine(𝑃 (𝑞1), . . . , 𝑃 (𝑞𝑚)) = 1− 𝑃 (𝑄(𝑥)) :

(vk, |pk⟩ ,PK)← Gen(1𝜆, 𝑄)
(𝑥, 𝜋)← APK,Ver[vk](|pk⟩)

]︂
= negl(𝜆),

where Ver[vk] is the classical functionality Ver(vk, ·, ·) : (𝑥, 𝜋)→ {(𝑞1, . . . , 𝑞𝑚)} ∪ {⊥}.

4.3.2 QPIP1 verification

First, we recall an information-theoretic protocol for verifying quantum partitioning cir-
cuits using only single-qubit standard and Hadamard basis measurements.25 This pro-
tocol is a 𝜆-wise parallel repetition of the quantum sampling verification protocol from
[CLLW22], and was described in [Bar21]. Most of the underlying details of the protocol
will not be important to us, but we provide a high-level description.

The prover prepares multiple copies of a history state of the computation 𝑄(𝑥), which
is in general a sampling circuit. Each history state is prepared in a special way [CLLW22]
to satisfy the following properties: (i) a sample approximately from the output distri-
bution may be obtained by measuring certain registers of the state in the standard basis,
which can be achieved by adding enough dummy identity gates to ensure that the output
state is a large fraction of the history state, and (ii) the history state is the unique ground
state of the Hamiltonian, and all orthogonal states have much higher energy, ensuring
that the verifier can test the validity of the entire computation by testing the energy of the
history state.

25Quantum interactive protocols where the verifier only requires the ability to measure single qubits have
been referred to as QPIP1 protocols.
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Then, the verifier samples certain copies for verifying and other copies for sampling.
In the verify copies, it samples a random Hamiltonian term, and measures in the corre-
sponding standard and Hadamard bases, while in the sample copies, the verifier mea-
sures the output register in the standard basis. If the verifier accepts the results from
measuring the verify copies, it outputs the collection of samples obtained from the sam-
ple copies. It was shown by [Bar21] that if 𝑄 is a partitioning circuit with predicate 𝑃 ,
then one can set parameters so that conditioned on verification passing, it holds with
overwhelming probability that at least half of the output samples 𝑞𝑡 are such that 𝑃 (𝑞𝑡) =
𝑃 (𝑄(𝑥)). We describe the formal syntax of this protocol in Fig. 7, where the prover state
|𝜓⟩ consists of sufficiently many copies of the history state, and the verifier’s string ℎ of
measurement bases consists of (mostly) indices used for verification as well as some in-
dices used for sampling outputs, which we denote by 𝑆. By an observation of [ACGH20],
the sampling of ℎ can be performed independently of the input 𝑥, which is reflected in
the syntax of Fig. 7 (technically, it only needs the size |𝑄| rather than 𝑄 itself).

Next, we introduce some notation, and then state the correctness and soundness guar-
antees of this protocol that follow from prior work.

Definition 4.23. Define Maj to be the predicate that takes as input a set of bits {𝑏𝑖}𝑖 and outputs
the most frequently occurring bit 𝑏. In the event of a tie, we arbitrarily set the output to 0.

Definition 4.24. For a string 𝑥 ∈ {0, 1}𝑛 and a subset 𝑆 ⊆ [𝑛], define 𝑥[𝑆] to be the string
consisting of bits {𝑥𝑖}𝑖∈𝑆 .

Definition 4.25. Given an ℎ ∈ {0, 1}𝑛 and an 𝑛-qubit state |𝜓⟩, let 𝑀(ℎ, |𝜓⟩) denote the distri-
bution over 𝑛-bit strings that results from measuring each qubit 𝑖 of |𝜓⟩ in basis ℎ𝑖, where the bit
ℎ𝑖 = 0 indicates standard basis and ℎ𝑖 = 1 indicates Hadamard basis.

Imported Theorem 4.26 ([CLLW22, Bar21]). The protocol ΠQV (Fig. 7) that satisfies the fol-
lowing properties.

• Completeness. For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆∘𝑄𝜆, }𝜆∈N is pseudo-deterministic,
and any sequence of inputs {𝑥𝜆}𝜆∈N,

Pr

⎡⎢⎢⎣VQV
Ver(𝑄, 𝑥, ℎ,𝑚) = ⊤ ∧Maj({𝑃 (𝑞𝑡)}𝑡) = 𝑃 (𝑄(𝑥)) :

|𝜓⟩ ← PQV(1𝜆, 𝑄, 𝑥)

(ℎ, 𝑆)← VQV
Gen(1

𝜆, 𝑄)
𝑚←𝑀(ℎ, |𝜓⟩)
{𝑞𝑡}𝑡∈[𝜆] := 𝑚[𝑆]

⎤⎥⎥⎦ = 1−negl(𝜆).

• Soundness. For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘ 𝑄𝜆}𝜆∈N is pseudo-deterministic,
any sequence of inputs {𝑥𝜆}𝜆∈N, and any sequence of states {|𝜓*𝜆⟩}𝜆∈N,

Pr

⎡⎣VQV
Ver(𝑄, 𝑥, ℎ,𝑚) = ⊤ ∧Maj({𝑃 (𝑞𝑡)}𝑡) = 1− 𝑃 (𝑄(𝑥)) :

(ℎ, 𝑆)← VQV
Gen(1

𝜆, 𝑄)
𝑚←𝑀(ℎ, |𝜓*⟩)
{𝑞𝑡}𝑡∈[𝜆] := 𝑚[𝑆]

⎤⎦ = negl(𝜆).
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QPIP1 protocol ΠQV =
(︀
PQV,VQV

Gen,V
QV
Ver

)︀
Parameters: Number of bits 𝑛 output by 𝑄, and number of qubits ℓ = ℓ(𝜆) in the prover’s state.

Prover’s computation

• PQV(1𝜆, 𝑄, 𝑥) → |𝜓⟩ : on input the security parameter 1𝜆, the description of a quantum circuit
𝑄, and an input 𝑥, the prover prepares a state |𝜓⟩ on ℓ qubits, and sends it to the verifier.

Verifier’s computation

• VQV
Gen(1

𝜆, 𝑄) → (ℎ, 𝑆) : on input the security parameter 1𝜆 and the description of a quantum
circuit 𝑄, the verifier’s Gen algorithm samples a string ℎ ∈ {0, 1}ℓ and a subset 𝑆 ⊂ [ℓ] of size
𝑛 · 𝜆 with the property that for all 𝑖 ∈ 𝑆, ℎ𝑖 = 0.

• Next, the verifier measures 𝑚 ← 𝑀(ℎ, |𝜓⟩) to obtain a string of measurement results 𝑚 ∈
{0, 1}ℓ.

• VQV
Ver(𝑄, 𝑥, ℎ,𝑚) → {⊤,⊥} : on input a circuit 𝑄, input 𝑥, string of bases ℎ, and measurement

results 𝑚, the verifier’s Ver algorithm outputs ⊤ or ⊥.

• If ⊤, the verifier outputs the string 𝑚[𝑆] which is parsed as {𝑞𝑡}𝑡∈[𝜆] where each 𝑞𝑡 ∈ {0, 1}𝑛
and otherwise the verifier outputs ⊥.

Figure 7: Syntax for a QPIP1 protocol that verifies the output of a quantum partitioning
circuit 𝑄.

4.3.3 Classical verification

Next, we compile the above information-theoretic protocol into a classically-verifiable but
computationally-sound protocol, using Mahadev’s measurement protocol [Mah18b]. The
measurement protocol itself is a four-message protocol with a single bit challenge from
the verifier. Then, we apply parallel repetition and Fiat-Shamir, following [ACGH20,
CCY20, Bar21], which results in a two-message negligibly-sound protocol in the quantum
random oracle model.

The resulting protocol ΠCV = (PCV
Prep,V

CV
Gen,P

CV
Prove,P

CV
Meas,V

CV
Ver) makes use of a dual-mode

randomized trapdoor claw-free hash function (TCF.Gen,TCF.Eval,TCF.Invert,TCF.Check,
TCF.IsValid) (Definition 2.15), and is described in Fig. 8. We choose to explicitly split the
second prover’s algorithm into two parts PCV

Prove and PCV
Meas for ease of notation when we

build on top of this protocol in the next section.
We introduce some notation needed for describing the security properties of this pro-

tocol.

• Fix a security parameter 𝜆, circuit 𝑄, input 𝑥, and parameters (pp, sp) ∈ VCV
Gen(1

𝜆, 𝑄).

• Based on sp = {ℎ𝑖, 𝑆𝑖, {sk𝑖,𝑗}𝑗∈[ℓ]}𝑖∈[𝑟], we define the set 𝑆 := {𝑆𝑖}𝑖∈[𝑟]. For any proof
𝜋 = {𝑏𝑖,𝑗, 𝑦𝑖,𝑗, 𝑧𝑖,𝑗}𝑖,𝑗 generated by PCV, we let𝑤 := TestRoundOutputs[sp](𝜋) be a string
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Classically-verifiable protocol ΠCV =
(︀
PCV
Prep,V

CV
Gen,P

CV
Prove,P

CV
Meas,V

CV
Ver

)︀
Parameters: Number of qubits per round ℓ := ℓ(𝜆), number of parallel rounds 𝑟 := 𝑟(𝜆), number of Hadamard rounds

𝑘 := 𝑘(𝜆), and random oracle 𝐻 : {0, 1}* → {0, 1}log
(︁
𝑟
𝑘

)︁
.

• PCV
Prep(1

𝜆, 𝑄, 𝑥) → (ℬ1, . . . ,ℬ𝑟): For each 𝑖 ∈ [𝑟], prepare the state |𝜓𝑖⟩ := PQV(1𝜆, 𝑄, 𝑥) on register ℬ𝑖 =

(ℬ𝑖,1, . . . ,ℬ𝑖,ℓ), which we write as
|𝜓𝑖⟩ :=

∑︁
𝑣∈{0,1}ℓ

𝛼𝑣 |𝑣⟩ℬ𝑖 .

• VCV
Gen(1

𝜆, 𝑄) → (pp, sp): For each 𝑖 ∈ [𝑟], sample (ℎ𝑖, 𝑆𝑖) ← VQV
Gen(1

𝜆, 𝑄) where ℎ𝑖 = (ℎ𝑖,1, . . . , ℎ𝑖,ℓ), and sample
{(pk𝑖,𝑗 , sk𝑖,𝑗)← TCF.Gen(1𝜆, ℎ𝑖,𝑗)}𝑗∈[ℓ]. Then, set

pp := {{pk𝑖,𝑗}𝑗∈[ℓ]}𝑖∈[𝑟], sp := {ℎ𝑖, 𝑆𝑖, {sk𝑖,𝑗}𝑗∈[ℓ]}𝑖∈[𝑟].

• PCV
Prove(ℬ1, . . . ,ℬ𝑟, pp)→ (ℬ1, . . . ,ℬ𝑟, {𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]):

– Do the following for each 𝑖 ∈ [𝑟]: For each 𝑗 ∈ [ℓ], apply TCF.Eval[pk𝑖,𝑗 ](ℬ𝑖,𝑗)→ (ℬ𝑖,𝑗 ,𝒵𝑖,𝑗 ,𝒴𝑖,𝑗), resulting in
the state ∑︁

𝑣∈{0,1}ℓ
𝛼𝑣 |𝑣⟩ℬ𝑖 |𝜓pk𝑖,1,𝑣1

⟩𝒵𝑖,1,𝒴𝑖,1 , . . . , |𝜓pk𝑖,ℓ,𝑣ℓ
⟩𝒵𝑖,ℓ,𝒴𝑖,ℓ ,

and measure registers 𝒴𝑖,1, . . . ,𝒴𝑖,ℓ in the standard basis to obtain strings 𝑦𝑖,1, . . . , 𝑦𝑖,ℓ.

– Compute 𝑇 := 𝐻(𝑦1,1, . . . , 𝑦𝑟,ℓ), where 𝑇 ∈ {0, 1}𝑟 with Hamming weight 𝑘.

– For each 𝑖 : 𝑇𝑖 = 0, measure 𝒵𝑖,1, . . . ,𝒵𝑖,ℓ in the standard basis to obtain strings 𝑧𝑖,1, . . . , 𝑧𝑖,ℓ.

– For each 𝑖 : 𝑇𝑖 = 1, apply 𝐽(·) coherently to each register 𝒵𝑖,1, . . . ,𝒵𝑖,ℓ and then measure in the Hadamard
basis to obtain strings 𝑧𝑖,1, . . . , 𝑧𝑖,ℓ.

• PCV
Meas(ℬ1, . . . ,ℬ𝑟) → {𝑏𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]: Measure registers {ℬ𝑖,𝑗}𝑖:𝑇𝑖=0,𝑗∈[ℓ] in the standard basis to obtain bits
{𝑏𝑖,𝑗}𝑖:𝑇𝑖=0,𝑗∈[ℓ] and measure registers {ℬ𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗∈[ℓ] in the Hadamard basis to obtain bits {𝑏𝑖,𝑗}𝑖:𝑇𝑖=1,𝑗∈[ℓ].

• VCV
Ver(𝑄, 𝑥, sp, 𝜋)→ {{{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1} ∪ {⊥}:

– Parse 𝜋 := {𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] and compute 𝑇 := 𝐻(𝑦1,1, . . . , 𝑦𝑟,ℓ).

– For each 𝑖 : 𝑇𝑖 = 0 and 𝑗 ∈ [ℓ], compute TCF.Check(pk𝑖,𝑗 , 𝑏𝑖,𝑗 , 𝑧𝑖,𝑗 , 𝑦𝑖,𝑗). If any are ⊥, then output ⊥.

– For each 𝑖 : 𝑇𝑖 = 1, do the following.

* For each 𝑗 ∈ [ℓ]: If ℎ𝑖,𝑗 = 0, compute TCF.Invert(0, sk𝑖,𝑗 , 𝑦𝑖,𝑗), output⊥ if the output is⊥, and otherwise
parse the output as (𝑚𝑖,𝑗 , 𝑥𝑖,𝑗). If ℎ𝑖,𝑗 = 1, compute TCF.Invert(1, sk𝑖,𝑗 , 𝑦𝑖,𝑗), output ⊥ if the output
is ⊥, and otherwise parse the output as (0, 𝑥𝑖,𝑗,0), (1, 𝑥𝑖,𝑗,1). Then, check TCF.IsValid(𝑥𝑖,𝑗,0, 𝑥𝑖,𝑗,1, 𝑧𝑖,𝑗)
and output ⊥ if the result is ⊥. Finally, set 𝑚𝑖,𝑗 := 𝑏𝑖,𝑗 ⊕ 𝑧𝑖,𝑗 · (𝐽(𝑥𝑖,𝑗,0)⊕ 𝐽(𝑥𝑖,𝑗,1)).

* Let 𝑚𝑖 = (𝑚𝑖,1, . . . ,𝑚𝑖,ℓ), compute VQV
Ver(𝑄, 𝑥, ℎ𝑖,𝑚𝑖), output ⊥ if the result is ⊥, and otherwise set

{𝑞𝑖,𝑡}𝑡∈[𝜆] := 𝑚𝑖[𝑆𝑖].

– Output {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1.

Figure 8: Two-message protocol for verifying quantum partitioning circuits with a clas-
sical verifier.

77



𝑤 ∈ {0, 1}|𝑆| defined as follows. Let 𝑇 := 𝐻(𝑦1,1, . . . , 𝑦𝑟,ℓ). The string 𝑤 consists of 𝑟
sub-strings 𝑤1, . . . , 𝑤𝑟, where for each 𝑖 : 𝑇𝑖 = 0, 𝑤𝑖 consists of the bits {𝑏𝑖,𝑗}𝑗∈𝑆𝑖 , and
for each 𝑖 : 𝑇𝑖 = 1, 𝑤𝑖 = 0|𝑆𝑖|.

• For any predicate 𝑃 and bit 𝑏 ∈ {0, 1}, we define the set𝐷in[𝑃, 𝑏] ⊂ {0, 1}|𝑆| to consist
of 𝑤 := (𝑤1, . . . , 𝑤𝑟) with the following property. There are at least 3/4 fraction of 𝑤𝑖
such that, parsing 𝑤𝑖 as (𝑤𝑖,1, . . . , 𝑤𝑖,𝜆), it holds that Maj

(︁
{𝑃 (𝑤𝑖,𝑡)}𝑡∈[𝜆]

)︁
= 𝑏.

• For any predicate 𝑃 and bit 𝑏 ∈ {0, 1}, we define the set 𝐷out[𝑃, 𝑏] ⊂ {0, 1}|𝑆| to con-
sist of 𝑤 := (𝑤1, . . . , 𝑤𝑟) with the following property. There are at least 1/3 fraction
of 𝑤𝑖 such that, parsing 𝑤𝑖 as (𝑤𝑖,1, . . . , 𝑤𝑖,𝜆), it holds that Maj

(︁
{𝑃 (𝑤𝑖,𝑡)}𝑡∈[𝜆]

)︁
= 1−𝑏.

Note that for any predicate 𝑃 and 𝑏 ∈ {0, 1}, 𝐷in[𝑃, 𝑏] and 𝐷out[𝑃, 𝑏] are disjoint sets of
strings.

Now, we state four properties that ΠCV satisfies. The proof of Lemma 4.28 follows
immediately from the completeness of ΠQV (Imported Theorem 4.26) and the correctness
of the dual-mode randomized trapdoor claw-free hash function (Definition 2.15). The
proofs of the remaining three lemmas mostly follow from the prior work of [Bar21], and
we show this formally in Section 4.5.3.

Definition 4.27. Let MM𝜆 be the predicate that takes as input a set of bits {{𝑏𝑖,𝑡}𝑡∈[𝜆]}𝑖, and
outputs the bit

MM𝜆({{𝑏𝑖,𝑡}𝑡∈[𝜆]}𝑖) := Maj
(︀{︀

Maj
(︀
{𝑏𝑖,𝑡}𝑡∈[𝜆]

)︀}︀
𝑖

)︀
.

Lemma 4.28 (Completeness). The protocol ΠCV (Fig. 8) with 𝑟(𝜆) = 𝜆2 and 𝑘(𝜆) = 𝜆 satis-
fies completeness, which stipulates that for any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘ 𝑄𝜆}𝜆∈N is
pseudo-deterministic and sequence of inputs {𝑥𝜆}𝜆∈N,

Pr

⎡⎢⎢⎢⎢⎣ VCV
Ver(𝑄, 𝑥, sp, 𝜋) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧

MM𝜆({{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1) = 𝑃 (𝑄(𝑥))
:

(ℬ1, . . . ,ℬ𝑟)← PCV
Prep(1

𝜆, 𝑄, 𝑥)
(pp, sp)← VCV

Gen(1
𝜆, 𝑄)

{𝑦𝑖,𝑗, 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] ← PCV
Prove(ℬ1, . . . ,ℬ𝑟, pp)

{𝑏𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] ← PCV
Meas(ℬ1, . . . ,ℬ𝑟)

𝜋 := {𝑏𝑖,𝑗, 𝑦𝑖,𝑗, 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]

⎤⎥⎥⎥⎥⎦
= 1− negl(𝜆).

Lemma 4.29 (Soundness). The protocol ΠCV (Fig. 8) with 𝑟(𝜆) = 𝜆2 and 𝑘(𝜆) = 𝜆 satisfies
soundness, which stipulates that for any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘𝑄𝜆}𝜆∈N is pseudo-
deterministic, sequence of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it holds that

Pr

[︂
VCV
Ver(𝑄, 𝑥, sp, 𝜋) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧

MM𝜆({{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1) = 1− 𝑃 (𝑄(𝑥)) :
(pp, sp)← VCV

Gen(1
𝜆, 𝑄)

𝜋 ← A(pp)

]︂
= negl(𝜆).
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Lemma 4.30 (𝐷in if accept). The protocol ΠCV (Fig. 8) with 𝑟(𝜆) = 𝜆2 and 𝑘(𝜆) = 𝜆 satisfies the
following property. For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘𝑄𝜆}𝜆∈N is pseudo-deterministic,
sequence of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it holds that

Pr

⎡⎣ VCV
Ver(𝑄, 𝑥, sp, 𝜋) ̸= ⊥ ∧

𝑤 /∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥))]
:

(pp, sp)← VCV
Gen(1

𝜆, 𝑄)
𝜋 ← A(pp)

𝑤 := TestRoundOutputs[sp](𝜋)

⎤⎦ = negl(𝜆).

Lemma 4.31 (𝐷out if accept wrong output). The protocol ΠCV (Fig. 8) with 𝑟(𝜆) = 𝜆2 and
𝑘(𝜆) = 𝜆 satisfies the following property. For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘𝑄𝜆}𝜆∈N is
pseudo-deterministic, sequence of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it holds that

Pr

⎡⎣ VCV
Ver(𝑄, 𝑥, sp, 𝜋) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧

MM𝜆({{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1) = 1− 𝑃 (𝑄(𝑥)) ∧
𝑤 /∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥))]

:
(pp, sp)← VCV

Gen(1
𝜆, 𝑄)

𝜋 ← A(pp, sp)
𝑤 := TestRoundOutputs[sp](𝜋)

⎤⎦ = negl(𝜆).

Note that in this final lemma, A𝜆 is given access to sp, so this does not trivially follow
from soundness.

4.3.4 Public verification

Next, we compile the above protocol into a publicly-verifiable protocol for quantum parti-
tioning circuits in the oracle model. We will use the following ingredients in addition to
ΠCV (Protocol 8).

• An X-measurable commitment XMC = (XMC.Gen,XMC.Com,XMC.Open,XMC.Dec,
XMC.OpenX,XMC.DecX) that satisfies string binding with public decodability (Defini-
tion 4.4).

• A strongly unforgeable signature token scheme Tok = (Tok.Gen,Tok.Sign,Tok.Verify)
(Definition 2.23).

• A pseudorandom function 𝐹𝑘 secure against superposition-query attacks [Zha12].

Theorem 4.32. The protocol ΠPV (Fig. 9) satisfies Definition 4.21 and Definition 4.22.

Proof. We argue completeness (Definition 4.21) and soundness (Definition 4.22).

Completeness. Consider some circuit𝑄, input 𝑥, and sample (vk, |pk⟩ ,PK)← PV.Gen(1𝜆, 𝑄).
By the correctness of Tok (Definition 2.20), we know that the call to CVGen during

PV.ProvePK(|pk⟩ , 𝑄, 𝑥)

only outputs ⊥ with negl(𝜆) probability. Also, by the security of the PRF, we can answer
this query using uniformly sampled random coins 𝑠 in place of 𝐹𝑘2(𝑥, 𝑐, 𝜎).
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Publicly-verifiable protocol ΠPV = (PV.Gen,PV.Prove,PV.Ver,PV.Out)

Parameters: Let 𝜆 be the security parameter and define parameters (ℓ, 𝑟, 𝑘) as in ΠCV (Fig. 8).

• PV.Gen(1𝜆, 𝑄)→ (vk, |pk⟩ ,PK):

– Sample {(rk𝑖,𝑗 , |ck𝑖,𝑗⟩ ,CK𝑖,𝑗)← XMC.Gen(1𝜆)}𝑖∈[𝑟],𝑗∈[ℓ].

– Sample (vkTok, |skTok⟩)← Tok.Gen(1𝜆).

– Sample PRF keys 𝑘1, 𝑘2 ← {0, 1}𝜆.

– Define the functionality H(·) := 𝐹𝑘1 (·), which will be used as the random oracle 𝐻 in ΠCV.

– Define the functionality CVGen(·) as follows, where its input is parsed as (𝑥, 𝑐, 𝜎).

* If Tok.Verify(vkTok, (𝑥, 𝑐), 𝜎) = ⊤ then continue, and otherwise return ⊥.

* Compute (pp, sp) := VCV
Gen(1

𝜆, 𝑄;𝐹𝑘2 (𝑥, 𝑐, 𝜎)) and output pp.

– Set vk := (𝑄, 𝑘1, 𝑘2, vkTok, {rk𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]), |pk⟩ := (|skTok⟩ , {|ck𝑖,𝑗⟩}𝑖∈[𝑟],𝑗∈[ℓ]), and PK :=
(H,CVGen, {CK𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]).

• PV.ProvePK(|pk⟩ , 𝑄, 𝑥)→ 𝜋:

– Prepare |𝜓1⟩ℬ1 , . . . , |𝜓𝑟⟩ℬ𝑟 ← PCV
Prep(1

𝜆, 𝑄, 𝑥).

– For each 𝑖 ∈ [𝑟], 𝑗 ∈ [ℓ] apply XMC.ComCK𝑖,𝑗 (ℬ𝑖,𝑗 , |ck𝑖,𝑗⟩)→ (ℬ𝑖,𝑗 ,𝒰𝑖,𝑗 , 𝑐𝑖,𝑗) (see Definition 4.1).

– Set 𝑐 := (𝑐1,1, . . . , 𝑐𝑟,ℓ), compute 𝜎 ← Tok.Sign((𝑥, 𝑐), |skTok⟩), and compute pp := CVGen(𝑥, 𝑐, 𝜎).

– Apply PCV
Prove(ℬ1, . . . ,ℬ𝑟, pp)→ (ℬ1, . . . ,ℬ𝑟, {𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]), and define 𝑇 := H(𝑦1,1, . . . , 𝑦𝑟,ℓ)

– For each 𝑖 : 𝑇𝑖 = 0, 𝑗 ∈ [ℓ], apply XMC.Open(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗)→ 𝑢𝑖,𝑗 .

– For each 𝑖 : 𝑇𝑖 = 1, 𝑗 ∈ [ℓ], apply XMC.OpenX(ℬ𝑖,𝑗 ,𝒰𝑖,𝑗)→ 𝑢𝑖,𝑗 .

– Set 𝜋 := (𝑐, 𝜎, {𝑢𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]).

• PV.Ver(vk, 𝑥, 𝜋)→ {{{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1} ∪ {⊥}:

– Parse vk := (𝑄, 𝑘1, 𝑘2, vkTok, {rk𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]) and 𝜋 := (𝑐, 𝜎, 𝜇).

– If Tok.Verify(vkTok, (𝑥, 𝑐), 𝜎) = ⊤, then set (pp, sp) := VCV
Gen(1

𝜆, 𝑄;𝐹𝑘2 (𝑥, 𝑐, 𝜎)), and let {ℎ𝑖}𝑖∈[𝑟] be the string
of basis choices defined by sp. Otherwise, return ⊥.

– Parse 𝜇 as {𝑢𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ], and define 𝑇 := 𝐹𝑘1 (𝑦1,1, . . . , 𝑦𝑟,ℓ).

– For all 𝑖 : 𝑇𝑖 = 0, 𝑗 ∈ [ℓ], compute 𝑏𝑖,𝑗 := XMC.Dec(rk𝑖,𝑗 , 𝑐𝑖,𝑗 , 𝑢𝑖,𝑗), and return ⊥ if 𝑏𝑖,𝑗 = ⊥.

– For all 𝑖 : 𝑇𝑖 = 1, 𝑗 ∈ [ℓ] such that ℎ𝑖,𝑗 = 1, compute 𝑏𝑖,𝑗 := XMC.DecX(rk𝑖,𝑗 , 𝑐𝑖,𝑗 , 𝑢𝑖,𝑗), and return ⊥ if
𝑏𝑖,𝑗 = ⊥.

– For all 𝑖 : 𝑇𝑖 = 1, 𝑗 ∈ [ℓ] such that ℎ𝑖,𝑗 = 0, set 𝑏𝑖,𝑗 = 0.

– Let ̃︀𝜋 := {𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] and return {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 := VCV
Ver(𝑄, 𝑥, sp, ̃︀𝜋).

• PV.Combine ≡ MM𝜆 (see Definition 4.27).

Figure 9: Publicly-verifiable non-interactive classical verification of quantum partition-
ing circuits.
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Now, imagine sampling 𝑠 and fixing (pp, sp) := VCV
Gen(1

𝜆, 𝑄; 𝑠) before computing

PV.ProvePK(|pk⟩ , 𝑄, 𝑥).

Then, since pp no longer depends on 𝑐, we can move the application of each

XMC.ComCK𝑖,𝑗(ℬ𝑖,𝑗, |ck𝑖,𝑗⟩)

past the computation of pp, and thus right before PCV
Prove(ℬ1, . . . ,ℬ𝑟, pp). Moreover, since

both XMC.Com and PCV
Prove are classically controlled on registers ℬ1, . . . ,ℬ𝑟, and otherwise

operate on disjoint registers, we can further commute each XMC.Com past PCV
Prove.

Then, the bits {𝑏𝑖,𝑗}𝑖,𝑗 for 𝑖 : 𝑇𝑖 = 0 computed during PV.Ver(vk, 𝑥, 𝜋) are now com-
puted by applying XMC.Com,XMC.Open, and XMC.Dec in succession to ℬ𝑖,𝑗 , and the bits
{𝑏𝑖,𝑗}𝑖,𝑗 for 𝑖 : 𝑇𝑖 = 1, ℎ𝑖,𝑗 = 1 computed during PV.Ver(vk, 𝑥, 𝜋) are now computed by
applying XMC.Com,XMC.OpenX, and XMC.DecX in succession to ℬ𝑖,𝑗 . Thus, by the cor-
rectness of XMC (Definition 4.2), we can replace these operations by directly measuring
ℬ𝑖,𝑗 in the standard (resp. Hadamard) basis. Now, completeness follows directly from the
completeness of ΠCV (Lemma 4.28), since the remaining bits {𝑏𝑖,𝑗}𝑖,𝑗 for 𝑖 : 𝑇𝑖 = 1, ℎ𝑖,𝑗 = 0
(which are arbitrarily set to 0 in PV.Ver) are ignored by VCV

Ver, and the rest of ̃︀𝜋 is now com-
puted by applying PCV

Prove followed by PCV
Meas to ℬ1, . . . ,ℬ𝑟.

Soundness. Before getting into the formal proof, we provide a high-level overview. We
will go via the following steps.

• A1: Begin with an adversary A1 that is assumed to violate soundness of the protocol.
Thus, with non-negl(𝜆) probability, it’s final (classical) output consists of an input 𝑥*

and a proof 𝜋* such that PV.Ver(vk, 𝑥*, 𝜋*) ̸= ⊥ and PV.Out(PV.Ver(vk, 𝑥*, 𝜋*), 𝑃 ) ̸=
𝑃 (𝑄(𝑥*)).

• A2: Replace 𝐹𝑘2 with a random oracle, and call the resulting oracle algorithm A2.

• A3: Apply Measure-and-Reprogram (Lemma 2.9) to obtain a two-stage adversary
A3, where the first stage outputs 𝑥*, a XMC commitment 𝑐*, and a token signature
𝜎*, and the second stage outputs the remainder 𝜇* of the proof 𝜋* := (𝑐*, 𝜎*, 𝜇*).
The parameters (pp𝑥*,𝑐*,𝜎* , sp𝑥*,𝑐*,𝜎*) for ΠCV are re-sampled at the beginning of the
second stage.

• A4: Use the strong unforgeability of the signature token scheme (Definition 2.23) to
argue that during the second stage of A3, all queries to PV.Ver except for (𝑥*, 𝑐*, 𝜎*)
can be ignored. Call the resulting adversary A4.

• 𝐷out[𝑃, 𝑃 (𝑄(𝑥
*))]: Appeal to Lemma 4.31 to show that whenever A4 breaks sound-

ness, its output yields a proof ̃︀𝜋 for ΠCV such that

TestRoundOutputs[sp𝑥*,𝑐*,𝜎* ](̃︀𝜋) ∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥
*))].
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• ℋ0, . . . ,ℋ𝑝: Define a hybrid for each of the 𝑝 = poly(𝜆) queries that the second stage
of A4 makes to PV.Ver. In each hybrid 𝜄, begin answering query 𝜄 with ⊥, and let
Pr[ℋ𝜄 = 1] be the probability that A4 still breaks soundness.

• Pr[ℋ0 = 1] = non-negl(𝜆): This has already been proven, by assumption that A1

breaks soundness with non-negl(𝜆) probability, and the hybrids above.

• Pr[ℋ𝑝 = 1] = negl(𝜆): This is implied by the soundness of ΠCV (Lemma 4.29) because
in this experiment, A4 does not have access to sp𝑥*,𝑐*,𝜎* before producing its final
proof.

• Pr[ℋ𝜄 = 1] ≥ Pr[ℋ𝜄−1 = 1]− negl(𝜆): This is proven in two parts.

1. By Lemma 4.30, we can say that since A4 does not have access to sp𝑥*,𝑐*,𝜎* before
preparing its 𝜄’th query, each classical basis state in the query superposition that
is not answered with ⊥ yields a proof ̃︀𝜋 for ΠCV such that

TestRoundOutputs[sp𝑥*,𝑐*,𝜎* ](̃︀𝜋) ∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥
*))].

2. We appeal to the string binding with public decodability of XMC (Definition 4.4)
to show that replacing these answers with ⊥ only affects the probability that
A4 breaks soundness by a negligible amount.
This follows because any part of the query that contains XMC openings for a
string in 𝐷in[𝑃, 𝑃 (𝑄(𝑥

*))] cannot have noticeable overlap with the part of the
state (after running the rest of A4) that contains XMC openings for a string in
𝐷out[𝑃, 𝑃 (𝑄(𝑥

*))]. Otherwise, we can prepare an adversarial committer, where
the part of A4 up to query 𝜄 is the “Commit” stage, and the remainder of A4 is
the “Open” stage. Crucially, since all queries to PV.Ver except (𝑥*, 𝑐*, 𝜎*) are
ignored during the Open stage, we do not have to give the Open stage access
to the receiver’s Hadamard basis decoding functionalities on the indices that
are checked by 𝐷in[𝑃, 𝑃 (𝑄(𝑥

*))] and 𝐷out[𝑃, 𝑃 (𝑄(𝑥
*))], which are all standard

basis positions with respect to the parameters (pp𝑥*,𝑐*,𝜎* , sp𝑥*,𝑐*,𝜎*).

• This completes the proof, as the previous three bullet points produce a contradic-
tion.

Now we provide the formal proof. Suppose there exists 𝑄,𝑃 and A
PK,PV.Ver[vk]
1 that

violates Definition 4.22, where we have dropped the indexing by 𝜆 for convenience. Our
first step will be to replace the PRF 𝐹𝑘2(·) with a random oracle 𝐺. Note that A1 only has
polynomially-bounded oracle access to this functionality, so this has a negligible affect on
the output of A1 [Zha12]. This defines an oracle algorithm A𝐺2 based on A

PK,PV.Ver[vk]
1 that

operates as follows.

• Sample (vk, |pk⟩ ,PK) as in PV.Gen(1𝜆, 𝑄), except 𝐹𝑘2(·) is replaced with 𝐺(·).
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• Run A
PK,PV.Ver[vk]
1 (|pk⟩), forwarding calls to 𝐺 (which occur as part of calls to CVGen

and PV.Ver[vk]) to the external random oracle 𝐺.

• Measure A1’s output (𝑥*, 𝜋*), parse 𝜋* as (𝑐*, 𝜎*, 𝜇*) and output 𝑎 := (𝑥*, 𝑐*, 𝜎*) and
aux := (𝜇*, vk).

Functionalities used in the proof of Theorem 4.32

Fixed parameters: Security parameter 𝜆, circuit 𝑄, and predicate 𝑃 .

• PV.Ver[vk](𝑥, 𝜋): Same as PV.Ver(vk, 𝑥, 𝜋).

• PV.Ver[vk, 𝑠](𝑥, 𝜋): Same as PV.Ver[vk](𝑥, 𝜋) except that 𝑠 is used instead of 𝐹𝑘2(𝑥, 𝑐, 𝜎) when
generating (pp, sp) := VCV

Gen(1
𝜆, 𝑄; 𝑠).

• PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)](𝑥, 𝜋): Same as PV.Ver[vk, 𝑠](𝑥, 𝜋), except that after the input is parsed
as 𝑥 and 𝜋 := (𝑐, 𝜎, 𝜇), output ⊥ if

(𝑥, 𝑐, 𝜎) ̸= (𝑥*, 𝑐*, 𝜎*).

• PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), in](𝑥, 𝜋): Same as PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)](𝑥, 𝜋) except that after ̃︀𝜋 :=
{𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] has been computed, output ⊥ if

TestRoundOutputs[sp] (̃︀𝜋) /∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥))].

• PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), out](𝑥, 𝜋): Same as PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)](𝑥, 𝜋) except that after ̃︀𝜋 :=
{𝑏𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] has been computed, output ⊥ if

TestRoundOutputs[sp] (̃︀𝜋) /∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥))].

• 𝑉 (𝑎, 𝑠, aux):

– Parse 𝑎 := (𝑥*, 𝑐*, 𝜎*) and aux := (𝜇*, vk).

– Compute 𝑞 := PV.Ver[vk, 𝑠](𝑥*, (𝑐*, 𝜎*, 𝜇*)).

– Output 1 iff 𝑞 ̸= ⊥ and PV.Out(𝑞, 𝑃 ) = 1− 𝑃 (𝑄(𝑥)).

• 𝑉 [out](𝑎, 𝑠, aux):

– Parse 𝑎 := (𝑥*, 𝑐*, 𝜎*) and aux := (𝜇*, vk).

– Compute 𝑞 := PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), out](𝑥*, (𝑐*, 𝜎*, 𝜇*)).

– Output 1 iff 𝑞 ̸= ⊥ and PV.Out(𝑞, 𝑃 ) = 1− 𝑃 (𝑄(𝑥)).

Figure 10: Description of functionalities used in the proof of Theorem 4.32.

Note that A2 makes 𝑝 = poly(𝜆) total queries to 𝐺, since A1 makes poly(𝜆) queries.
Now, define 𝑉 as in Fig. 10. Then since A1 breaks soundness,

Pr
[︀
𝑉 (𝑎,𝐺(𝑎), aux) = 1 : (𝑎, aux)← A𝐺2

]︀
= non-negl(𝜆).
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Next, since 𝑝 = poly(𝜆), by Lemma 2.9 there exists an algorithm A3 := Sim[A2] such
that

Pr

⎡⎣𝑉 ((𝑥*, 𝑐*, 𝜎*), 𝑠, (𝜇*, vk)) = 1 :
((𝑥*, 𝑐*, 𝜎*), st)← A3

𝑠← {0, 1}𝜆
(𝜇*, vk)← A3(𝑠, st)

⎤⎦ = non-negl(𝜆).

Moreover, A3 operates as follows.

• Sample 𝐺 as a 2𝑝-wise independent function and (𝑖, 𝑑)← ({0, . . . , 𝑝− 1} × {0, 1}) ∪
{(𝑝, 0)}.

• Run A2 for 𝑖 oracle queries, answering each query using the function 𝐺.

• When A2 is about to make its (𝑖 + 1)’th oracle query, measure its query register in
the standard basis to obtain 𝑎 := (𝑥*, 𝑐*, 𝜎*). In the special case that (𝑖, 𝑑) = (𝑝, 0),
just measure (part of) the final output register of A2 to obtain 𝑎.

• Receive 𝑠 externally.

• If 𝑑 = 0, answer A2’s (𝑖 + 1)’th query with 𝐺. If 𝑑 = 1, answer A2’s (𝑖 + 1)’th query
instead with 𝐺[(𝑥*, 𝑐*, 𝜎*)→ 𝑠].

• Run A2 until it has made all 𝑝 queries to 𝐺. For queries 𝑖+ 2 through 𝑝, answer with
𝐺[(𝑥*, 𝑐*, 𝜎*)→ 𝑠].

• Measure A2’s output aux := (𝜇*, vk).

Recall that A3 is internally running A1, who expects oracle access to H, CVGen, {CK𝑖,𝑗}𝑖,𝑗
and PV.Ver[vk]. These oracle queries will be answered by A3. Next, we define A4 to be the
same as A3, except that after (𝑥*, 𝑐*, 𝜎*) is measured by A3, A1’s queries to PV.Ver[vk] are
answered instead with PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)] from Fig. 10.

Claim 4.33.

Pr

⎡⎣𝑉 ((𝑥*, 𝑐*, 𝜎*), 𝑠, (𝜇*, vk)) = 1 :
((𝑥*, 𝑐*, 𝜎*), st)← A4

𝑠← {0, 1}𝜆
(𝜇*, vk)← A4(𝑠, st)

⎤⎦ = non-negl(𝜆).

Proof. We can condition on Tok.Ver(vkTok, (𝑥
*, 𝑐*), 𝜎*) = ⊤, since otherwise 𝑉 would out-

put 0. Then, by the strong unforgeability of Tok (Definition 2.23), once (𝑥*, 𝑐*, 𝜎*) is mea-
sured, A1 cannot produce any query that has noticeable amplitude on any (𝑥, 𝑐, 𝜎) such
that

(𝑥, 𝑐, 𝜎) ̸= (𝑥*, 𝑐*, 𝜎*) and Tok.Ver(vkTok, (𝑥, 𝑐), 𝜎) = ⊤.
But after (𝑥*, 𝑐*, 𝜎*) is measured and 𝑠 is sampled, PV.Ver[vk] and PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)]
can only differ on (𝑥, 𝑐, 𝜎) such that

(𝑥, 𝑐, 𝜎) ̸= (𝑥*, 𝑐*, 𝜎*) and Tok.Ver(vkTok, (𝑥, 𝑐), 𝜎) = ⊤.
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Thus, since A1 only has polynomially-many queries, changing the oracle in this way can
only have a negligible affect on the final probability, which completes the proof.

Next, we claim the following, where 𝑉 [out] is defined in Protocol 10.

Claim 4.34.

Pr

⎡⎣𝑉 [out]((𝑥*, 𝑐*, 𝜎*), 𝑠, (𝜇*, vk)) = 1 :
((𝑥*, 𝑐*, 𝜎*), st)← A4

𝑠← {0, 1}𝜆
(𝜇*, vk)← A4(𝑠, st)

⎤⎦ = non-negl(𝜆).

Proof. First, if we replace the PRF 𝐹𝑘1(·) with an external random oracle𝐻 , then the proba-
bilities in Claim 4.33 and Claim 4.34 remain the same up to a negligible difference [Zha12].
Next, note that the only event that differentiates Claim 4.33 and Claim 4.34 is when A4

outputs (𝑥*, 𝑐*, 𝜎*, 𝜇*) such that

𝑞 ̸= ⊥ ∧ Out𝜆[𝑃 ](𝑞) = 1− 𝑃 (𝑄(𝑥*)) ∧ TestRoundOutputs[sp](̃︀𝜋) /∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥
*))],

where (pp, sp) := VCV
Gen(1

𝜆, 𝑄; 𝑠), ̃︀𝜋 := {𝑏𝑖,𝑗, 𝑦𝑖,𝑗, 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] is computed during

PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)](𝑥*, (𝑐*, 𝜎*, 𝜇*)),

and 𝑞 := VCV
Ver(𝑄, 𝑥

*, sp, ̃︀𝜋). If this event occurs with noticeable probability, there must be
some fixed 𝑥* such that it occurs with noticeable probability conditioned on 𝑥*. However,
this would contradict Lemma 4.31. Thus, the difference in probability must be negligible,
completing the proof.

Finally, we will define a sequence of hybrids {ℋ𝜄}𝜄∈[0,𝑝] based on A4. Hybrid ℋ𝜄 is
defined as follows.

• Run ((𝑥*, 𝑐*, 𝜎*), st)← A4.

• Sample 𝑠← {0, 1}𝜆.

• Run (𝜇*, vk) ← A4(𝑠, st) with the following difference. Recall that at some point,
A4 begins using the oracle 𝐺[(𝑥*, 𝑐*, 𝜎*) → 𝑠] while answering A1’s queries. For the
first 𝜄 times that A1 queries PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)] after this point, respond using
the oracle 𝑂⊥ that outputs ⊥ on every input.

• Output 𝑉 [out]((𝑥*, 𝑐*, 𝜎*), 𝑠, (𝜇*, vk)).

Note that Claim 4.34 is stating exactly that Pr[ℋ0 = 1] = non-negl(𝜆). Next, we have
the following claim.

Claim 4.35. Pr[ℋ𝑝 = 1] = negl(𝜆).
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Proof. First, if we replace the PRF 𝐹𝑘1(·) with an external random oracle 𝐻 , then the prob-
ability remains the same up to a negligible difference [Zha12]. Now, the claim follows
by a reduction to the soundness of ΠCV (Lemma 4.29). Note that A4 never needs to know
the sp such that (pp, sp) := VCV

Gen(1
𝜆, 𝑄; 𝑠), since all of the (at most 𝑝) calls that A1 makes

to PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)] once 𝐺 is programmed so that 𝐺[(𝑥*, 𝑐*, 𝜎*) → 𝑠] are answered
with 𝑂⊥. Thus, we can view A𝐻4 as an adversarial prover for ΠCV, where the first stage
of A𝐻4 outputs 𝑥*, and the second stage receives pp and outputs ̃︀𝜋 := {𝑏𝑖,𝑗, 𝑦𝑖,𝑗, 𝑧𝑖,𝑗}𝑖,𝑗
(which can be computed from 𝜇*). By the definition of the predicate 𝑉 [out], the prob-
ability that ℋ𝑝 = 1 is at most the probability that MM𝜆[𝑃 ](𝑞) = 1 − 𝑃 (𝑄(𝑥)), where
𝑞 := VCV

Ver(𝑄, 𝑥
*, sp, ̃︀𝜋), which by Lemma 4.29 must be negl(𝜆).

Finally, we prove the following Claim 4.36. Since 𝑝 = poly(𝜆), this contradicts Claim 4.34
and Claim 4.35, which completes the proof.

Claim 4.36. For any 𝜄 ∈ [𝑝], Pr[ℋ𝜄 = 1] ≥ Pr[ℋ𝜄−1 = 1]− negl(𝜆).

Proof. Throughout this proof, when we refer to “query 𝜄” in some hybrid, we mean the
𝜄’th query that A1 makes to PV.Ver[vk, 𝑥, (𝑥*, 𝑐*, 𝜎*)] after A4 has begun using the oracle
𝐺[(𝑥*, 𝑐*, 𝜎*)→ 𝑠] (if such a query exists).

Now, we introduce an intermediate hybridℋ′𝜄−1 which is the same asℋ𝜄−1 except that
query 𝜄 is answered with the functionality PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), in] defined in Proto-
col 10.

So, it suffices to show that

• Pr
[︀
ℋ′𝜄−1 = 1

]︀
≥ Pr[ℋ𝜄−1 = 1]− negl(𝜆), and

• Pr[ℋ𝜄 = 1] ≥ Pr
[︀
ℋ′𝜄−1 = 1

]︀
− negl(𝜆).

We note that the only difference between the three hybrids is how query 𝜄 is answered:

• Inℋ𝜄−1, query 𝜄 is answered with PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)].

• Inℋ′𝜄−1, query 𝜄 is answered with PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), in].

• Inℋ𝜄, query 𝜄 is answered with 𝑂⊥.

Now, the proof is completed by appealing to the following two claims.

Claim 4.37. Pr
[︀
ℋ′𝜄−1 = 1

]︀
≥ Pr[ℋ𝜄−1 = 1]− negl(𝜆).

Proof. First, if we replace the PRF𝐹𝑘1(·) with an external random oracle𝐻 , then Pr[ℋ𝜄−1 = 1]
and Pr

[︀
ℋ′𝜄−1 = 1

]︀
remain the same up to negligible difference [Zha12]. Now, this follows

from a reduction to Lemma 4.30. Indeed, note that if |Pr
[︀
ℋ′𝜄−1 = 1

]︀
− Pr[ℋ𝜄−1 = 1]| =

non-negl(𝜆), then in ℋ𝜄−1, A1’s 𝜄’th query must have noticeable amplitude on (𝑥*, 𝜋* =
(𝑐*, 𝜎*, 𝜇*)) such that

𝑞 ̸= ⊥ ∧ TestRoundOutputs[sp](̃︀𝜋) /∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥
*))],
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where (pp, sp) := VCV
Gen(1

𝜆, 𝑄; 𝑠), ̃︀𝜋 := {𝑏𝑖,𝑗, 𝑦𝑖,𝑗, 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ] is computed during

PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)](𝑥*, (𝑐*, 𝜎*, 𝜇*)),

and 𝑞 := VCV
Ver(𝑄, 𝑥

*, sp, ̃︀𝜋). However, A4 never needs to know sp prior to this query, since
all of the calls that A1 makes to PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)] once 𝐺 is programmed so that
𝐺[(𝑥*, 𝑐*, 𝜎*)→ 𝑠] are answered with𝑂⊥. Thus, we can view A𝐻4 has an adversarial prover
for ΠCV, where the first part of A𝐻4 outputs 𝑥*, and the second part receives pp and outputs̃︀𝜋 := {𝑏𝑖,𝑗, 𝑦𝑖,𝑗, 𝑧𝑖,𝑗}𝑖,𝑗 (which can be computed from 𝜇*). Then, by Lemma 4.30, the above
event occurs with negligible probability.

Claim 4.38. Pr[ℋ𝜄 = 1] ≥ Pr
[︀
ℋ′𝜄−1 = 1

]︀
− negl(𝜆)

Proof. We will show this by reduction to the string binding with public decodability prop-
erty of XMC. Recall from Section 4.3.3 that based on any (pp, sp) ∈ VCV

Gen(1
𝜆, 𝑄), we define a

subset of indices 𝑆 := {𝑆𝑖}𝑖∈[𝑟] ⊂ [𝑟]× [ℓ] by the subsets {𝑆𝑖}𝑖∈[𝑟] defined by sp. This subset
𝑆 is used in turn to define the predicates 𝐷in[𝑃, 𝑏] and 𝐷out[𝑃, 𝑏]. Throughout this proof,
we will always let 𝑆 be defined based on (pp, sp) := VCV

Gen(1
𝜆, 𝑄; 𝑠), where the coins 𝑠 will

always be clear from context. We also define 𝑚 := |𝑆|, which we assume is the same for
all coins 𝑠.

Now we define an oracle-aided operation C as follows.

• C takes as input {|ck𝜏 ⟩}𝜏∈[𝑚], where {rk𝜏 , |ck𝜏 ⟩ ,CK𝜏 ← XMC.Gen(1𝜆)}𝜏∈[𝑚].

• C samples 𝑠 ← {0, 1}𝜆 and sets (pp, sp) := VCV
Gen(1

𝜆, 𝑄; 𝑠). For (𝑖, 𝑗) /∈ 𝑆, sample
rk𝑖,𝑗, |ck𝑖,𝑗⟩ ,CK𝑖,𝑗 ← XMC.Gen(1𝜆). Let 𝑓 : [𝑚] → 𝑆 be an arbitrary bijection, and
re-define {rk𝜏 , |ck𝜏 ⟩ ,CK𝜏}𝜏∈[𝑚] as {rk𝑓(𝜏), |ck𝑓(𝜏)⟩ ,CK𝑓(𝜏)}𝜏∈[𝑚].

• C runs A4 as defined by ℋ′𝜄−1 until right before query 𝜄 is answered. All queries
to CK𝑖,𝑗 , XMC.Dec[rk𝑖,𝑗], or XMC.DecX[rk𝑖,𝑗] for (𝑖, 𝑗) ∈ 𝑆 are forwarded to external
oracles.

That is, we can write the operation of C as

|𝜓⟩ ← CCK,XMC.Dec[rk],XMC.DecX[rk](|ck⟩),

where CK is the collection oracles CK1, . . . ,CK𝑚, |ck⟩ = (|ck1⟩ , . . . , |ck𝑚⟩), XMC.Dec[rk] is
the collection of oracles XMC.Dec[rk1], . . . ,XMC.Dec[rk𝑚], and XMC.DecX[rk] is the collec-
tion of oracles XMC.DecX[rk1], . . . ,XMC.DecX[rk𝑚].

Next, we define an oracle-aided unitary U as follows.

• U takes as input the state |𝜓⟩ output by C.
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• It coherently runs the remainder of A4 as defined by ℋ′𝜄−1. Any queries to CK𝑖,𝑗 or
XMC.Dec[rk𝑖,𝑗] for (𝑖, 𝑗) ∈ 𝑆 are forwarded to external oracles. Note that this portion
of A4 does not require access to the Hadamard basis decoding oracles XMC.DecX[rk𝑖,𝑗]
for (𝑖, 𝑗) ∈ 𝑆. This follows because for each such (𝑖, 𝑗), ℎ𝑖,𝑗 = 0, which means that
PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), in] only requires access to the standard basis decoding ora-
cles at these positions.

That is, we can write the operation of U as

|𝜓′⟩ := UCK,XMC.Dec[rk](|𝜓⟩).

Now, we give a name to three registers of the space operated on by U, as follows.

• 𝒬 is the query register for A1’s 𝜄’th query. That is, the state |𝜓⟩ contains a superposi-
tion over strings (𝑥, 𝜋) on register 𝒬.

• 𝒜 holds classical information (vk, 𝑠, 𝑥*, 𝑐*, 𝜎*) that has been sampled previously by
C. Thus, the state |𝜓⟩ contains a standard basis state on register 𝒜, and U is classi-
cally controlled on this register.

• 𝒱 is the register that is measured to produce the string 𝜇* output at the end of A4’s
operation. Thus, the state |𝜓′⟩ contains a superposition over 𝜇* on register 𝒱 .

We also define ̃︀U to be identical to U except that it runs the remainder of A4 as defined
by ℋ𝜄. Note that the only difference between U and ̃︀U is how query 𝜄 is answered at the
very beginning.

Next, we define the following two projectors.

Π𝒬,𝒜in :=
∑︁

(𝑥, 𝜋), (vk, 𝑠, 𝑥*, 𝑐*, 𝜎*) s.t.
PV.Ver[vk, 𝑠, (𝑥*, 𝑐*, 𝜎*), in](𝑥, 𝜋) ̸= ⊥

|(𝑥, 𝜋), (vk, 𝑠, 𝑥*, 𝑐*, 𝜎*)⟩⟨(𝑥, 𝜋), (vk, 𝑠, 𝑥*, 𝑐*, 𝜎*)|

Π𝒜,𝒱out :=
∑︁

(vk, 𝑠, 𝑥*, 𝑐*, 𝜎*), 𝜇* s.t.
𝑉 [out]((𝑥*, 𝑐*, 𝜎*), 𝑠, (𝜇*, vk)) = 1

|(vk, 𝑠, 𝑥*, 𝑐*, 𝜎*), 𝜇*⟩⟨(vk, 𝑠, 𝑥*, 𝑐*, 𝜎*), 𝜇*|

Now, observe that

Pr
[︀
ℋ′𝜄−1 = 1

]︀
= E

CK,rk,|ck⟩

[︂⃦⃦⃦
Π𝒜,𝒱out U

CK,XMC.Dec[rk] |𝜓⟩
⃦⃦⃦2

: |𝜓⟩ ← CCK,XMC.Dec[rk],XMC.DecX[rk](|ck⟩)
]︂
,

and

Pr[ℋ𝜄 = 1] = E
CK,rk,|ck⟩

[︂⃦⃦⃦
Π𝒜,𝒱out

̃︀UCK,XMC.Dec[rk] |𝜓⟩
⃦⃦⃦2

: |𝜓⟩ ← CCK,XMC.Dec[rk],XMC.DecX[rk](|ck⟩)
]︂
.
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Furthermore, for any state |𝜓⟩ output by C, we can write |𝜓⟩ := |𝜓in⟩ + |𝜓⊥in⟩, where
|𝜓in⟩ := Π𝒬,𝒜in |𝜓⟩. Notice that for any such |𝜓⊥in⟩, it holds that U |𝜓⊥in⟩ = ̃︀U |𝜓⊥in⟩, since query
𝜄 is answered with ⊥ on both states and U and ̃︀U are otherwise identical. Thus, defining

Πout,U :=
(︀
UCK,XMC.Dec[rk]

)︀†
Πout

(︀
UCK,XMC.Dec[rk]

)︀
,

Πout,̃︀U :=
(︁̃︀UCK,XMC.Dec[rk]

)︁†
Πout

(︁̃︀UCK,XMC.Dec[rk]
)︁
,

we have that for any |𝜓⟩ := |𝜓in⟩+ |𝜓⊥in⟩,

⃦⃦⃦
Πout,U(|𝜓in⟩+ |𝜓⊥in⟩)

⃦⃦⃦2
−
⃦⃦⃦
Πout,̃︀U(|𝜓in⟩+ |𝜓⊥in⟩)

⃦⃦⃦2
= ⟨𝜓in|Πout,U |𝜓in⟩+ ⟨𝜓in|Πout,U |𝜓⊥in⟩+ ⟨𝜓⊥in |Πout,U |𝜓in⟩
− ⟨𝜓in|Πout,̃︀U |𝜓in⟩ − ⟨𝜓in|Πout,̃︀U |𝜓⊥in⟩ − ⟨𝜓⊥in |Πout,̃︀U |𝜓in⟩

≤ 3
⃦⃦⃦
Πout,U |𝜓in⟩

⃦⃦⃦
+ 3
⃦⃦⃦
Πout,̃︀U |𝜓in⟩

⃦⃦⃦
.

So, we can bound Pr
[︀
ℋ′𝜄−1 = 1

]︀
− Pr[ℋ𝜄 = 1] by

E
CK,rk,|ck⟩

[︂
3
⃦⃦⃦
Πout,U |𝜓in⟩

⃦⃦⃦
+ 3
⃦⃦⃦
Πout,̃︀U |𝜓in⟩

⃦⃦⃦
:
|𝜓⟩ ← CCK,XMC.Dec[rk],XMC.DecX[rk](|ck⟩)

|𝜓⟩ := |𝜓in⟩+ |𝜓⊥in⟩

]︂
,

and thus it suffices to show that

E
CK,rk,|ck⟩

[︂⃦⃦⃦
ΠoutU

CK,XMC.Dec[rk]Πin |𝜓⟩
⃦⃦⃦2

: |𝜓⟩ ← CCK,XMC.Dec[rk],XMC.DecX[rk](|ck⟩)
]︂
= negl(𝜆),

and

E
CK,rk,|ck⟩

[︂⃦⃦⃦
Πout

̃︀UCK,XMC.Dec[rk]Πin |𝜓⟩
⃦⃦⃦2

: |𝜓⟩ ← CCK,XMC.Dec[rk],XMC.DecX[rk](|ck⟩)
]︂
= negl(𝜆).

The rest of this proof will be identical in either case, so we consider U. Towards prov-
ing this, we first recall that 𝑠 is sampled uniformly at random at the very beginning of C,
and the rest of C and U are classically controlled on 𝑠. So, let C𝑠 be the same as C except
that it is initialized with the string 𝑠. Then it suffices to show that for any fixed 𝑠,

E
CK,rk,|ck⟩

[︂⃦⃦⃦
ΠoutU

CK,XMC.Dec[rk]Πin |𝜓⟩
⃦⃦⃦2

: |𝜓⟩ ← CCK,XMC.Dec[rk],XMC.DecX[rk]
𝑠 (|ck⟩)

]︂
= negl(𝜆).

Now, we observe that the register 𝒜 output by C contains a standard basis state hold-
ing (vk, 𝑠, (𝑥*, 𝑐*, 𝜎*)), where 𝑐* := {𝑐*𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]. Define commitments c := {𝑐*𝑖,𝑗}(𝑖,𝑗)∈𝑆 and
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write the output of C𝑠 as (|𝜓⟩ , c) to make these commitments explicit. Then, define the
following predicates, where 𝑓 is the bijection from [𝑚]→ 𝑆 defined earlier.

̃︀𝐷in[rk, c]:

• Take as input (𝑏, 𝜋), where 𝜋 is parsed as (·, ·, {𝑢𝑖,𝑗, 𝑦𝑖,𝑗, 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ]).

• Output 1 if for some𝑤 ∈ 𝐷in[𝑃, 𝑏] and all (𝑖, 𝑗) ∈ 𝑆,𝑤𝑓−1(𝑖,𝑗) = XMC.Dec(rk𝑖,𝑗, 𝑐
*
𝑖,𝑗, 𝑢𝑖,𝑗).̃︀𝐷out[rk, c]:

• Take as input (𝑏, 𝜇*), where 𝜇* is parsed as {𝑢𝑖,𝑗, 𝑦𝑖,𝑗, 𝑧𝑖,𝑗}𝑖∈[𝑟],𝑗∈[ℓ].

• Output 1 if for some𝑤 ∈ 𝐷out[𝑃, 𝑏] and all (𝑖, 𝑗) ∈ 𝑆,𝑤𝑓−1(𝑖,𝑗) = XMC.Dec(rk𝑖,𝑗, 𝑐
*
𝑖,𝑗, 𝑢𝑖,𝑗).

Next, we define the following two projectors.

Π𝒬,𝒜rk,c,in :=
∑︁

(·, 𝜋), (·, ·, 𝑥*, ·, ·) s.t.̃︀𝐷in[rk, c](𝑃 (𝑄(𝑥
*)), 𝜋) = 1

|(·, 𝜋), (·, ·, 𝑥*, ·, ·)⟩⟨(·, 𝜋), (·, ·, 𝑥*, ·, ·)|

Π𝒜,𝒱rk,c,out :=
∑︁

(·, ·, 𝑥*, ·, ·), 𝜇* s.t.̃︀𝐷out[rk, c](𝑃 (𝑄(𝑥
*)), 𝜇*) = 1

|(·, ·, 𝑥*, ·, ·), 𝜇*⟩⟨(·, ·, 𝑥*, ·, ·), 𝜇*|

Note that Π𝒬,𝒜in ≤ Π𝒬,𝒜rk,c,in and Π𝒜,𝒱out ≤ Π𝒜,𝒱rk,c,out, and thus it suffices to show that

E
CK,rk,|ck⟩

[︂⃦⃦⃦
Π𝒜,𝒱rk,c,outU

CK,XMC.Dec[rk]Π𝒬,𝒜rk,c,in |𝜓⟩
⃦⃦⃦2

: (|𝜓⟩ , c)← CCK,XMC.Dec[rk],XMC.DecX[rk]
𝑠 (|ck⟩)

]︂
= negl(𝜆).

Finally, for each 𝑏 ∈ {0, 1}, we define

Π𝒬rk,c,in,𝑏 :=
∑︁

(·,𝜋): ̃︀𝐷in[rk,c](𝑏,𝜋)=1

|(·, 𝜋)⟩⟨(·, 𝜋)| , Π𝒱rk,c,out,𝑏 :=
∑︁

𝜌*: ̃︀𝐷out[rk,c](𝑏,𝜇*)=1

|𝜇*⟩⟨𝜇*| .

In fact, these projectors now only operate on the sub-registers of𝒬 and 𝒱 that hold the
strings

{𝑢𝑖,𝑗}(𝑖,𝑗)∈𝑆 = {𝑢𝑓(𝜏)}𝜏∈[𝑚].

Naming these sub-registers 𝒬′ = (𝒬1, . . . ,𝒬𝑚) and 𝒱 ′ = (𝒱1, . . . ,𝒱𝑚), we can write

90



Π𝒬
′

rk,c,in,𝑏 :=
∑︁

𝑤∈𝐷in[𝑃,𝑏]

⎛⎝⨂︁
𝜏∈[𝑚]

Π𝒬𝜏rk𝜏 ,𝑐*𝜏 ,𝑤𝜏

⎞⎠ , Π𝒱
′

rk,c,out,𝑏 :=
∑︁

𝑤∈𝐷out[𝑃,𝑏]

⎛⎝⨂︁
𝜏∈[𝑚]

Π𝒱𝜏rk𝜏 ,𝑐*𝜏 ,𝑤𝜏

⎞⎠ ,

where

Πrk𝜏 ,𝑐*𝜏 ,𝑤𝜏
:=

∑︁
𝑢:XMC.Dec(rk𝜏 ,𝑐*𝜏 ,𝑢)=𝑤𝜏

|𝑢⟩⟨𝑢| .

Now, to complete the proof, we note that

E
CK,rk,|ck⟩

[︂⃦⃦⃦
Πrk,c,outU

CK,XMC.Dec[rk]Πrk,c,in |𝜓⟩
⃦⃦⃦2

: (|𝜓⟩ , c)← CCK,XMC.Dec[rk],XMC.DecX[rk]
𝑠 (|ck⟩)

]︂
≤ E

CK,rk,|ck⟩

[︂⃦⃦⃦
Πrk,c,out,0U

CK,XMC.Dec[rk]Πrk,c,in,0 |𝜓⟩
⃦⃦⃦2

: (|𝜓⟩ , c)← CCK,XMC.Dec[rk],XMC.DecX[rk]
𝑠 (|ck⟩)

]︂
+ E

CK,rk,|ck⟩

[︂⃦⃦⃦
Πrk,c,out,1U

CK,XMC.Dec[rk]Πrk,c,in,1 |𝜓⟩
⃦⃦⃦2

: (|𝜓⟩ , c)← CCK,XMC.Dec[rk],XMC.DecX[rk]
𝑠 (|ck⟩)

]︂
,

and by the string binding with public decodability of XMC (Definition 4.4), and the
fact that 𝐷in[𝑃, 𝑏] and 𝐷out[𝑃, 𝑏] are disjoint sets of strings, we have that for any 𝑏 ∈ {0, 1},

E
CK,rk,|ck⟩

[︁⃦⃦⃦
Πrk,c,out,𝑏U

CK,XMC.Dec[rk]Πrk,c,in,𝑏 |𝜓⟩
⃦⃦⃦
: (|𝜓⟩ , c)← CCK,XMC.Dec[rk],XMC.DecX[rk]

𝑠 (|ck⟩)
]︁

= negl(𝜆).

4.3.5 Application: Publicly-verifiable QFHE

Now, we apply our general framework for verification of quantum partitioning circuits
to the specific case of quantum fully-homomorphic encryption (QFHE). First, we define
the notion of publicly-verifiable QFHE for pseudo-deterministic circuits. We write the
syntax in the oracle model, where the parameters used for proving and verifying include
an efficient classical oracle PP. Such a scheme can be heuristically instantiated in the plain
model by using post-quantum indistinguishability obfuscation to obfuscate this oracle.

Definition 4.39 (Publicly-verifiable QFHE for pseudo-deterministic circuits). A publicly-
verifiable quantum fully-homomorphic encryption scheme for pseudo-deterministic circuits con-
sists of the following algorithms (Gen,Enc,VerGen,Eval,Ver,Dec).

• Gen(1𝜆, 𝐷) → (pk, sk): On input the security parameter 1𝜆 and a circuit depth 𝐷, the key
generation algorithm returns a public key pk and a secret key sk.
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• Enc(pk, 𝑥) → ct: On input the public key pk and a classical plaintext 𝑥, the encryption
algorithm outputs a ciphertext ct.

• VerGen(ct, 𝑄) → (|pp⟩ ,PP): On input a ciphertext ct and the description of a quan-
tum circuit 𝑄, the verification parameter generation algorithm returns public parameters
(|pp⟩ ,PP), where PP is the description of a classical deterministic polynomial-time func-
tionality.

• EvalPP(ct, |pp⟩ , 𝑦) → (̃︀ct, 𝜋): The evaluation algorithm has oracle access to PP, takes as
input a ciphertext ct, a quantum state |pp⟩, and a classical string 𝑦, and outputs a ciphertext̃︀ct and proof 𝜋.

• VerPP(𝑦, ̃︀ct, 𝜋)→ {⊤,⊥}: The classical verification algorithm has oracle access to PP, takes
as input a string 𝑦, a ciphertext ̃︀ct, and a proof 𝜋, and outputs either ⊤ or ⊥.

• Dec(sk, ct) → 𝑥: On input the secret key sk and a classical ciphertext ct, the decryption
algorithm returns a message 𝑥.

These algorithms should satisfy the following properties.

• Correctness. For any family {𝑄𝜆, 𝑥𝜆, 𝑦𝜆}𝜆∈N where 𝑄𝜆 takes two inputs, {𝑄𝜆(𝑥𝜆, ·)}𝜆∈N is
pseudo-deterministic, and 𝑄𝜆 has depth 𝐷 = 𝐷(𝜆), it holds that

Pr

⎡⎢⎢⎣ VerPP(𝑦, ̃︀ct, 𝜋) = ⊤ ∧
Dec(sk, ̃︀ct) = 𝑄(𝑥, 𝑦)

:

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 𝑥)

(|pp⟩ ,PP)← VerGen(ct, 𝑄)
(̃︀ct, 𝜋)← EvalPP(ct, |pp⟩ , 𝑦)

⎤⎥⎥⎦ = 1− negl(𝜆).

• Security. For any QPT adversary {A𝜆}𝜆∈N, depth𝐷 = 𝐷(𝜆), and messages {𝑥𝜆,0, 𝑥𝜆,1}𝜆∈N,⃒⃒⃒⃒
Pr

[︂
A(pk, ct) = 1 :

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 𝑥0)

]︂
− Pr

[︂
A(pk, ct) = 1 :

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 𝑥1)

]︂ ⃒⃒⃒⃒
= negl(𝜆)

• Soundness. For any QPT adversary {A𝜆}𝜆∈N, depth 𝐷 = 𝐷(𝜆), and family {𝑄𝜆, 𝑥𝜆}𝜆∈N,
where 𝑄𝜆 takes two inputs and {𝑄𝜆(𝑥𝜆, ·)}𝜆∈N is pseudo-deterministic,

Pr

⎡⎢⎢⎣ VerPP(𝑦, ̃︀ct, 𝜋) = ⊤ ∧
Dec(sk, ̃︀ct) ̸= 𝑄(𝑥, 𝑦)

:

(pk, sk)← Gen(1𝜆, 𝐷)
ct← Enc(pk, 𝑥)

(|pp⟩ ,PP)← VerGen(ct, 𝑄)
(𝑦, ̃︀ct, 𝜋)← APP(ct, |pp⟩)

⎤⎥⎥⎦ = negl(𝜆).

We will now construct publicly-verifiable QFHE for pseudo-deterministic circuits from
the following ingredients.
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• A quantum fully-homomorphic encryption scheme (QFHE.Gen,QFHE.Enc,QFHE.Eval,
QFHE.Dec) (Section 2.2.3).

• A protocol for publicly-verifiable non-interactive classical verification of quantum
partitioning circuits in the oracle model (PV.Gen,PV.Prove,PV.Verify,PV.Combine)
(Section 4.3.4).

Our construction goes as follows.

• PVQFHE.Gen(1𝜆, 𝐷): Same as QFHE.Gen(1𝜆, 𝐷).

• PVQFHE.Enc(pk, 𝑥): Same as QFHE.Enc(pk, 𝑥).

• PVQFHE.VerGen(ct, 𝑄):

– Define the quantum circuit 𝐸[ct] : 𝑦 → QFHE.Eval(𝑄(·, 𝑦), ct).
– Sample (PV.vk, |PV.pk⟩ ,PV.PK)← PV.Gen(1𝜆, 𝐸[ct]).

– Let VK(𝑦, 𝜋) be the following classical functionality. First, run PV.Ver(PV.vk, 𝑦, 𝜋).
Output ⊥ if the output was ⊥. Otherwise, parse the output as (ct1, . . . , ct𝑚),
compute ̃︀ct := QFHE.Eval(PV.Combine, (ct1, . . . , ct𝑚)), and output ̃︀ct.26

– Output |pp⟩ := |PV.pk⟩ ,PP := (PV.PK,VK) .

• PVQFHE.EvalPP(ct, |pp⟩ , 𝑦):

– Run 𝜋 ← PV.ProvePV.PK(|pp⟩ , 𝐸[ct], 𝑦).
– Compute ̃︀ct = VK(𝑦, 𝜋), and output (̃︀ct, 𝜋).

• PVQFHE.VerPP(𝑦, ̃︀ct, 𝜋): Output ⊤ iff VK(𝑦, 𝜋) = ̃︀ct.
• PVQFHE.Dec(sk, ct): Same as QFHE.Dec(sk, ct).

Theorem 4.40. The scheme described above satisfies Definition 4.39.

Proof. Correctness follows immediately from the evaluation correctness of QFHE (Defi-
nition 2.18) and the completeness of PV (Definition 4.21). Security follows immediately
from the semantic security of QFHE (Definition 2.17). Soundness follows immediately
from the correctness of QFHE (Definition 2.18) and soundness of PV (Definition 4.22),
since QFHE.Dec(sk, ·) ∘ 𝐸[ct] is pseudo-deterministic and the VK oracle is nothing but the
PV.Ver[vk] oracle plus post-processing.

26Here, we are using the fact that QFHE.Eval is a deterministic classical functionality when evaluating a
deterministic classical functionality.
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4.4 Obfuscation

4.4.1 Construction

In this section, we construct ideal obfuscation for pseudo-deterministic quantum circuits
(Definition 2.10) from any publicly-verifiable QFHE for pseudo-deterministic circuits in
the oracle model (Gen,Enc,VerGen,Eval,Ver,Dec) (Definition 4.39).

The construction is given in Fig. 11.

Obfuscation scheme (QObf,QEval) for pseudo-deterministic quantum circuits

• QObf(1𝜆, 𝑄):

– Let 𝑈 be the universal quantum circuit that takes as input the description of a circuit of
size |𝑄| and an input of size 𝑛, where 𝑛 is the length of an input to 𝑄. Let 𝐷 be the depth
of 𝑈 .

– Sample (pk, sk)← Gen(1𝜆, 𝐷), ct← Enc(pk, 𝑄), and (|pp⟩ ,PP)← VerGen(ct, 𝑈).

– Let DK(𝑥, ̃︀ct, 𝜋) be the following functionality. First, run VerPP(𝑥, ̃︀ct, 𝜋). If the output was
⊥, then output ⊥, and otherwise output Dec(sk, ̃︀ct).

– Output ̃︀𝑄 := (ct, |pp⟩) , 𝑂 := (PP,DK).

• QEval𝑂( ̃︀𝑄, 𝑥):
– Parse ̃︀𝑄 as ct, |pp⟩ and 𝑂 as PP,DK.

– Compute (̃︀ct, 𝜋)← EvalPP(ct, |pp⟩ , 𝑥).
– Output 𝑏 := DK(𝑥, ̃︀ct, 𝜋).

Figure 11: Obfuscation for pseudo-deterministic quantum circuits.

Theorem 4.41. (QObf,QEval) described in Fig. 11 is an ideal obfuscator for pseudo-deterministic
quantum circuits, satisfying Definition 2.10.

Proof. First, correctness follows immediately from the correctness of the publicly-verifiable
QFHE scheme (Definition 4.39). Note that even though the evaluation procedure may in-
clude measurements, an evaluator could run coherently, measure just the output bit 𝑏,
and reverse. By Gentle Measurement (Lemma 2.3), this implies the ability to run the
obfuscated program on any poly(𝜆) number of inputs.

Next, we show security. For any QPT adversary {A𝜆}𝜆∈N, we define a simulator
{S𝜆}𝜆∈N as follows.

• Sample (pk, sk)← Gen(1𝜆, 𝐷), ct← Enc(pk, 0|𝑄|), and (|pp⟩ ,PP)← VerGen(ct, 𝑈).

• Run APP,DK
𝜆 (ct, |pp⟩), answering PP calls honestly, and DK calls as follows.

– Take (𝑥, ̃︀ct, 𝜋) as input.
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– Run VerPP(𝑥, ̃︀ct, 𝜋). If the output was ⊥ then output ⊥.

– Otherwise, forward 𝑥 to the external oracle 𝑄, and return the result 𝑏 = 𝑄(𝑥).

• Output A𝜆’s output.

Now, for any circuit 𝑄, we define a sequence of hybrids.

• ℋ0: Sample (ct, |pp⟩ ,PP,DK)← QObf(1𝜆, 𝑄) and run APP,DK
𝜆 (1𝜆, ̃︀𝑄).

• ℋ1: Same asℋ0, except that calls to DK are answered as in the description of S𝜆.

• ℋ2: Same asℋ1, except that we sample ct← Enc(pk, 0|𝑄|, 𝑈). This is S𝜆.

We complete the proof by showing the following for any QPT distinguisher {D𝜆}𝜆∈N.

• |Pr[D𝜆(ℋ0) = 1] − Pr[D𝜆(ℋ1) = 1]| = negl(𝜆). Suppose otherwise. Then there must
exist some query made by A𝜆 to DK with noticeable amplitude on (𝑥, ̃︀ct, 𝜋) such that
DK does not return ⊥ but Dec(sk, ̃︀ct) ̸= 𝑄(𝑥). Thus, we can measure a random one
of the poly(𝜆) many queries made by A𝜆 to obtain such an (𝑥, ̃︀ct, 𝜋), which violates
the soundness of the publicly-verifiable QFHE scheme (Definition 4.39).

• |Pr[D𝜆(ℋ1) = 1] − Pr[D𝜆(ℋ2) = 1]| = negl(𝜆). Since sk is no longer used in ℋ1 to re-
spond to DK queries, this follows directly from the security of the publicly-verifiable
QFHE scheme (Definition 4.39).

4.4.2 Application: Functional encryption for BQP

We sketch an application of our obfuscation scheme to functional encryption for pseudo-
deterministic quantum functionalities. Let (QObf,QEval) be an ideal obfuscation scheme
for pseudo-deterministic quantum circuits,27 let (Gen,Enc,Dec) be a (post-quantum) public-
key encryption scheme, and let (Setup,Prove,Verify) be a (post-quantum) statistically sim-
ulation sound non-interactive zero-knowledge proof system (SSS-NIZK). We refer the
reader to [GGH+13] for preliminaries on SSS-NIZK, and for definitions of functional en-
cryption.

Consider the following construction of functional encryption for pseudo-deterministic
quantum functionalities.

• FE.Setup(1𝜆): Sample (pk1, sk1)← Gen(1𝜆), (pk2, sk2)← Gen(1𝜆), crs← Setup(1𝜆), and
output pp := (pk1, pk2, crs) and msk := sk1.

27For this application, we technically only require the weaker notion of indistinguishability obfuscation
(see Definition 2.10).
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• FE.KeyGen(msk, 𝑄): On input the master secret key msk and the description of a
pseudo-deterministic quantum circuit 𝑄, define the following pseudo-deterministic
quantum circuit 𝐶[𝑄, crs, sk1].

– Take (ct1, ct2, 𝜋) as input.

– Check that 𝜋 is a valid SSS-NIZK proof under crs that there exists (𝑚, 𝑟1, 𝑟2)
such that ct1 = Enc(pk1,𝑚; 𝑟1) and ct2 = Enc(pk2,𝑚; 𝑟2).

– If so, output 𝑄(Dec(sk1, ct1)), and otherwise output ⊥.

Finally, sample and output sk𝑄 ← QObf(1𝜆, 𝐶[𝑄, crs, sk1]).

• FE.Enc(pp,𝑚): Sample 𝑟1, 𝑟2 ← {0, 1}𝜆, compute ct1 := Enc(pk1,𝑚; 𝑟1), ct2 := Enc(pk2,𝑚; 𝑟2),
compute a SSS-NIZK proof 𝜋 that there exists (𝑚, 𝑟1, 𝑟2) such that ct1 = Enc(pk1,𝑚; 𝑟1)
and ct2 = Enc(pk2,𝑚; 𝑟2), and output ct := (ct1, ct2, 𝜋).

• FE.Dec(sk𝑄, ct): Run the obfuscated program sk𝑄 on input ct to obtain the output.

It is straightforward to extend the definitions and proofs in Section 6 of [GGH+13]
to consider functional encryption and obfuscation of pseudo-deterministic quantum cir-
cuits. As a result, we obtain the following theorem.

Theorem 4.42 (Corollary of [GGH+13] Section 6 and Theorem 4.41). The above construc-
tion is a functional encryption scheme satisfying indistinguishability security for the class of
polynomial-size pseudo-deterministic quantum functionalities.

4.5 Deferred proofs

4.5.1 Proofs from Section 4.2.1

Lemma 4.43. Any X-measurable commitment that satisfies single-bit binding with public de-
codability also satisfies string binding with public decodability.

Proof. For this proof, we will need a couple of different binding definitions, as well as a
couple of imported theorems.

Definition 4.44 (Collapse binding). An X-measurable commitment (Gen,Com,Open,Dec,OpenX,
DecX) satisfies collapse binding if the following holds. For any adversary A := {(C𝜆,U𝜆)}𝜆∈N,
where each of C𝜆 and U𝜆 are oracle-aided quantum operations that make at most poly(𝜆) oracle
queries, define the experiment ExpACB(𝜆) as follows.

• Sample rk, |ck⟩ ,CK← Gen(1𝜆).

• Run C
CK,Dec[rk],DecX[rk]
𝜆 (|ck⟩) until it outputs a commitment 𝑐 and a state on registers (ℬ,𝒰 ,𝒜).

• Sample 𝑏← {0, 1}. If 𝑏 = 0, do nothing, and otherwise measure (ℬ,𝒰) with {Πrk,𝑐,0,Πrk,𝑐,1}.28

28These projectors are defined in Definition 4.3.
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• Run U
CK,Dec[rk]
𝜆 (ℬ,𝒰 ,𝒜) until it outputs a bit 𝑏′. The experiment outputs 1 if 𝑏 = 𝑏′.

We say that A is valid if the state on (ℬ,𝒰) output by C𝜆 is in the image of Πrk,𝑐,0 + Πrk,𝑐,1.
Then, it must hold that for all valid adversaries A,⃒⃒⃒⃒

Pr
[︀
ExpACB(𝜆) = 1

]︀
− 1

2

⃒⃒⃒⃒
= negl(𝜆).

Definition 4.45 (Unique message binding). An X-measurable commitment (Gen,Com,Open,
Dec,OpenX,DecX) satisfies unique message binding if for any polynomial 𝑚(𝜆) and any ad-
versary {(C𝜆,U𝜆)}𝜆∈N, where each of C𝜆 and U𝜆 are oracle-aided quantum operations that make at
most poly(𝜆) oracle queries, the following experiment outputs 1 with probability negl(𝜆).

• Sample {rk𝑖, |ck𝑖⟩ ,CK𝑖 ← Gen(1𝜆)}𝑖∈[𝑚].

• Run C
CK,Dec[rk],DecX[rk]
𝜆 (|ck⟩) until it outputs a commitment c := (𝑐1, . . . , 𝑐𝑚), a message

𝑥1 ∈ {0, 1}𝑚, and a state on registers (ℬ1,𝒰1, . . . ,ℬ𝑚,𝒰𝑚,𝒜).

• For each 𝑖 ∈ [𝑚], apply Πrk𝑖,𝑐𝑖,𝑥1,𝑖 to (ℬ𝑖,𝒰𝑖) and abort and output 0 if this projection rejects.

• Run U
CK,Dec[rk]
𝜆 (ℬ1,𝒰1, . . . ,ℬ𝑚,𝒰𝑚,𝒜) until it outputs a message 𝑥2 ∈ {0, 1}𝑚, and a

state on registers (ℬ1,𝒰1, . . . ,ℬ𝑚,𝒰𝑚). If 𝑥1 = 𝑥2, abort and output 0.

• For each 𝑖 ∈ [𝑚], apply Πrk𝑖,𝑐𝑖,𝑥2,𝑖 to (ℬ𝑖,𝒰𝑖) and abort and output 0 if this projection rejects.
Otherwise, output 1.

Imported Theorem 4.46 ([LMS22]). Any commitment that satisfies collapse binding also satis-
fies unique message binding.

Imported Theorem 4.47 ([DS23]). Let D be a projector, Π0,Π1 be orthogonal projectors, and
|𝜓⟩ ∈ Im (Π0 +Π1). Then,

‖Π1DΠ0 |𝜓⟩ ‖2 + ‖Π0DΠ1 |𝜓⟩ ‖2 ≥
1

2

(︀
‖D |𝜓⟩ ‖2 −

(︀
‖DΠ0 |𝜓⟩ ‖2 + ‖DΠ1 |𝜓⟩ ‖2

)︀)︀2
.

Given these imported theorems, the proof of our lemma is quite straightforward.

• First, we establish using Imported Theorem 4.47 that any X-measurable commit-
ment that satisfies single-bit binding also satisfies collapse binding. To see this, sup-
pose there exists an adversary (C,U) that breaks collapse binding, let Π0 = Πrk,𝑐,0,
Π1 = Πrk,𝑐,1, let D be a projective implementation of UCK,Dec[rk], and let |𝜓⟩ be the
state of the collapse binding experiment that is output by CCK,Dec[rk],DecX[rk]. Then the
RHS of Imported Theorem 4.47 is half the squared advantage of the adversary in
the collapse binding game. This implies that at least one of the terms on the LHS is
non-negligible, which immediately implies that this adversary can be used to break
the single-bit binding game.
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• Next, appealing to Imported Theorem 4.46, we see that any X-measurable commit-
ment that satisfies single-bit binding also satisfies unique message binding.

• Finally, suppose there is An X-measurable commitment that is single-bit binding,
but there exists an adversary that breaks the string binding of this commitment for
some pair of disjoint sets 𝑊0,𝑊1. We define an experiment where we insert a mea-
surement of Dec(rk, c, ·) applied to the state Πrk,c,𝑊0 |𝜓⟩, which by definition will
return some string 𝑥0 ∈ 𝑊0. By the collapse binding of the commitment, inserting
this measurement will only have a negligible affect on the experiment. But now,
since 𝑊0 and 𝑊1 are disjoint sets, this adversary breaks the unique message binding
of the commitment. This completes the proof.

4.5.2 Proofs from Section 4.2.3

In this section, we prove the following theorem.

Theorem 4.48. Let 𝑛,𝑚, 𝑑 ∈ N, 𝜖 ∈ (0, 1/8) be such that 𝑑 ≥ 2 and 𝑛−𝑑+1 > 10 log(1/𝜖)+6.
Let U𝒳 ,𝒴 be any (2𝑛+𝑚)-dimensional unitary, where register 𝒳 is 2𝑛 dimensions and register 𝒴 is
2𝑚 dimensions. Let 𝒜 be the set of 𝑑-dimensional balanced affine subspaces 𝐴 = 𝐴0 ∪ 𝐴1 of F𝑛2 ,
where 𝐴0 is the affine subspace of vectors in 𝐴 that start with 0 and 𝐴1 is the affine subspace of
vectors in 𝐴 that start with 1. For any 𝐴 = 𝐴0 ∪ 𝐴1, let

Π𝐴0
:=
∑︁
𝑣∈𝐴0

|𝑣⟩⟨𝑣|𝒳 ⊗ I𝒴 , Π𝐴1
:= U†

(︃∑︁
𝑣∈𝐴1

|𝑣⟩⟨𝑣|𝒳 ⊗ I𝒴
)︃
U.

Let ℛ be the set of pairs (𝐴,𝐵) of 𝑑-dimensional affine subspaces of F𝑛2 such that dim(𝐴0 ∩
𝐵0) = 𝑑 − 2 and dim(𝐴1 ∩ 𝐵1) = 𝑑 − 2. Then for any set of states {|𝜓𝐴⟩}𝐴 such that for all
𝐴 ∈ 𝒜, |𝜓𝐴⟩ ∈ Im(Π𝐴0), and ‖Π𝐴1 |𝜓𝐴⟩ ‖ ≥ 𝜖,

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] <
1

2
− 𝜖13.

We will first simplify the problem by reducing to the case where each𝐴 is two-dimensional,
consisting of just four vectors. This case is proven later (Theorem 4.49). In the reduction,
which follows below, we begin with the observation that each (𝐴,𝐵) ∈ ℛ consists of six
cosets of a particular (𝑑 − 2)-dimensional subspace 𝑆. Then, we partition ℛ based on
this underlying subspace, and prove the claim separately for each 𝑆. Finally, the pro-
cess of sampling (𝐴,𝐵) from ℛ conditioned on an underlying subspace 𝑆 can be seen as
sampling 𝐴 and 𝐵 as two-dimensional spaces in the subspace of cosets of 𝑆.

Proof. (of Theorem 4.48) First, note that for any (𝐴,𝐵) ∈ ℛ, 𝐴0 ∩ 𝐵0 is an intersection of
affine subspaces, so is an affine subspace itself. So, we write 𝐴0 ∩ 𝐵0 = 𝑆 + 𝑣0 for some
(𝑑 − 2)-dimensional subspace 𝑆. Since all vectors in 𝑆 + 𝑣0 start with 0, it must be the
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case that all vectors in 𝑆 start with 0 and 𝑣0 starts with 0. Moreover, 𝐴 = 𝐴0 ∪ 𝐴1 and
𝐵 = 𝐵0 ∪𝐵1 are both cosets of superspaces of 𝑆, and thus we can write

𝐴 = (𝑆 + 𝑣0)∪ (𝑆 +𝑤0)∪ (𝑆 + 𝑣1)∪ (𝑆 +𝑤1), 𝐵 = (𝑆 + 𝑣0)∪ (𝑆 + 𝑢0)∪ (𝑆 + 𝑣1)∪ (𝑆 + 𝑢1)

for 𝑣0, 𝑤0, 𝑢0 that start with 0, 𝑣1, 𝑤1, 𝑢1 that start with 1, and where 𝑣0 + 𝑤0 = 𝑣1 + 𝑤1 and
𝑣0 + 𝑢0 = 𝑣1 + 𝑢1.

Now, for any (𝑑−2)-dimensional subspace 𝑆 := span(𝑧1, . . . , 𝑧𝑑−2) such all vectors in 𝑆
start with 0, let 𝑧𝑑−1, . . . , 𝑧𝑛 be such that (𝑧1, . . . , 𝑧𝑛) is an orthonormal basis of F𝑛2 and 𝑧𝑑−1
is the only basis vector that starts with 1. Define the subspace co(𝑆) := span(𝑧𝑑−1, . . . , 𝑧𝑛).
Furthermore, let co(𝑆)0 be the subspace of vectors in co(𝑆) that start with 0, and let co(𝑆)1
be the affine subspace of vectors in co(𝑆) that starts with 1.

Then we can sample fromℛ by first sampling a random (𝑑−2)-dimensional subspace
𝑆 such that all vectors in 𝑆 start with 0, then sampling distinct 𝑣0, 𝑤0, 𝑢0 ← co(𝑆)0 and
distinct 𝑣1, 𝑤1, 𝑢1 ← co(𝑆)1 such that 𝑣0 + 𝑤0 = 𝑣1 + 𝑤1 and 𝑣0 + 𝑢0 = 𝑣1 + 𝑢1, and finally
setting

𝐴 = (𝑆 + 𝑣0)∪ (𝑆 +𝑤0)∪ (𝑆 + 𝑣1)∪ (𝑆 +𝑤1), 𝐵 = (𝑆 + 𝑣0)∪ (𝑆 + 𝑢0)∪ (𝑆 + 𝑣1)∪ (𝑆 + 𝑢1)

For any subspace 𝑆, let ℛ[𝑆] be the set of (𝐴,𝐵) ∈ ℛ such that 𝐴0 ∩ 𝐵0 is a coset of 𝑆.
Thus, it suffices to prove that for each fixed 𝑆,

E
(𝐴,𝐵)←ℛ[𝑆]

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] <
1

2
− 𝜖13.

Now consider any fixed 𝑆. For each 𝐴 that could be sampled byℛ[𝑆], we write

𝐴 = (𝑆 + 𝑣0) ∪ (𝑆 + 𝑤0) ∪ (𝑆 + 𝑣1) ∪ (𝑆 + 𝑤1)

for 𝑣0, 𝑤0 ∈ co(𝑆)0 and 𝑣1, 𝑤1 ∈ co(𝑆)1 such that 𝑣0 + 𝑤0 = 𝑣1 + 𝑤1. Moreover, we
can express 𝑣0, 𝑤0 as (0, 𝑣′0), (0, 𝑤

′
0) ∈ F𝑛−𝑑+2

2 and 𝑣1, 𝑤1 as (1, 𝑣′1), (1, 𝑤
′
1) ∈ F𝑛−𝑑+2

2 in the
(𝑧𝑑−1, . . . , 𝑧𝑛)-basis. Thus we can associate each 𝐴 with vectors 𝑣′0, 𝑤′0, 𝑣′1, 𝑤′1 ∈ F𝑛−𝑑+1

2 such
that 𝑣′0 + 𝑤′0 = 𝑣′1 + 𝑤′1.

Let U𝑆,co(𝑆) be the unitary that implements the change of basis (𝑒1, . . . , 𝑒𝑛)→ (𝑧1, . . . , 𝑧𝑛),
where the 𝑒𝑖 are the standard basis vectors, and let

̃︀U :=
(︀
U𝑆,co(𝑆) ⊗ I𝒴

)︀
U𝒳 ,𝒴

(︁
U†𝑆,co(𝑆) ⊗ I𝒴

)︁
.

Then, re-defining

| ̃︀𝜓𝐴⟩ := U𝑆,co(𝑆) |𝜓𝐴⟩ ,̃︀Π𝐴0
:= I⊗𝑑−2 ⊗ |0⟩⟨0| ⊗ (|𝑣′0⟩⟨𝑣′0|+ |𝑤′0⟩⟨𝑤′0|)⊗ I𝒴 ,̃︀Π𝐴1
:= ̃︀U† (︀I⊗𝑑−2 ⊗ |1⟩⟨1| ⊗ (|𝑣′1⟩⟨𝑣′1|+ |𝑤′1⟩⟨𝑤′1|)⊗ I𝒴

)︀ ̃︀U,
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we have that | ̃︀𝜓𝐴⟩ ∈ Im(̃︀Π𝐴0) and ‖̃︀Π𝐴1 | ̃︀𝜓𝐴⟩ ‖ ≥ 𝜖 for all 𝐴 that could be sampled
by ℛ[𝑆]. Moreover, we can replace the projections on the 𝑑 − 1’st qubit with identities,
defining

̃︀Π′𝐴0
:= I⊗𝑑−1 ⊗ (|𝑣′0⟩⟨𝑣′0|+ |𝑤′0⟩⟨𝑤′0|)⊗ I𝒴 ,̃︀Π′𝐴1
:= ̃︀U† (︀I⊗𝑑−1 ⊗ (|𝑣′1⟩⟨𝑣′1|+ |𝑤′1⟩⟨𝑤′1|)⊗ I𝒴

)︀ ̃︀U,
and still have that | ̃︀𝜓𝐴⟩ ∈ Im(̃︀Π′𝐴0

) and ‖̃︀Π′𝐴1
| ̃︀𝜓𝐴⟩ ‖ ≥ 𝜖 for all 𝐴 that could be sampled

by ℛ[𝑆]. Thus, we have reduced this problem to the “two-dimensional” case, which is
covered in the next section. Since 𝑛− 𝑑+ 1 > 10 log(1/𝜖) + 6, Theorem 4.49 implies that

E
(𝐴,𝐵)←ℛ[𝑆]

[| ⟨ ̃︀𝜓𝐴| ̃︀𝜓𝐵⟩ |] < 1

2
− 𝜖13,

which implies that

E
(𝐴,𝐵)←ℛ[𝑆]

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] <
1

2
− 𝜖13,

completing the proof.

Theorem 4.49. Let 𝑛,𝑚 ∈ N, 𝜖 ∈ (0, 1/8) be such that 𝑛 > 10 log(1/𝜖)+6. Let U𝒳 ,𝒴 be a (2𝑛+𝑚)-
dimensional unitary, where register 𝒳 is 2𝑛 dimensions and register 𝒴 is 2𝑚 dimensions. Let𝒜 be
the set of pairs of sets ({𝑣0, 𝑤0}, {𝑣1, 𝑤1}) such that 𝑣0, 𝑤0, 𝑣1, 𝑤1 ∈ F𝑛2 and 𝑣0 + 𝑤0 = 𝑣1 + 𝑤1.29

We will write any 𝐴 ∈ 𝒜 as 𝐴 := (𝐴0, 𝐴1), where 𝐴0 := {𝑣0, 𝑤0} and 𝐴1 = {𝑣1, 𝑤1}. For any
such 𝐴, let

Π𝐴0
:= (|𝑣0⟩⟨𝑣0|+ |𝑤0⟩⟨𝑤0|)𝒳 ⊗ I𝒴 , Π𝐴1

:= U†
(︁
(|𝑣1⟩⟨𝑣1|+ |𝑤1⟩⟨𝑤1|)𝒳 ⊗ I𝒴

)︁
U.

Let ℛ be the set of pairs (𝐴,𝐵) such that |𝐴0 ∩ 𝐵0| = 1 and |𝐴1 ∩ 𝐵1| = 1. Then for any set
of states {|𝜓𝐴⟩}𝐴 such that for all 𝐴 ∈ 𝒜, |𝜓𝐴⟩ ∈ Im(Π𝐴0) and ‖Π𝐴1 |𝜓𝐴⟩ ‖ ≥ 𝜖,

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] <
1

2
− 𝜖13.

First, we provide a high-level overview the proof. We note that it is easy to show that

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] ≤
1

2
,

29Note that this theorem is not strictly the two-dimensional version of Theorem 4.48, since 𝒜 is not ex-
actly defined to be the set of two-dimensional affine subspaces. Rather it consists of pairs of two sets
{𝑣0, 𝑤0}, {𝑣1, 𝑤1} where the vectors are arbitrary but satisfy 𝑣0 + 𝑤0 = 𝑣1 + 𝑤1. That is, 𝑣0, 𝑤0, 𝑣1, 𝑤1 here
play the role of 𝑣′0, 𝑤′

0, 𝑣
′
1, 𝑤

′
1 in the proof of Theorem 4.48, and in particular 𝑣0, 𝑤0 do not necessarily start

with 0 and 𝑣1, 𝑤1 do not necessarily start with 1.
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which only requires the condition that for all 𝐴 ∈ 𝒜, |𝜓𝐴⟩ ∈ Im(Π𝐴0). Adding the con-
dition that ‖Π𝐴1 |𝜓𝐴⟩ ‖ ≥ 𝜖 should intuitively only decrease this expected inner product,
since many of the Π𝐴1 are orthogonal. In particular, for any 𝐴0, all the Π𝐴1 such that
(𝐴0, 𝐴1) ∈ 𝒜 are orthogonal. To formalize this intuition, we proceed by contradiction,
and assume that

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] ≥
1

2
− 𝜖13.

For each 𝐴 = ({𝑣0, 𝑤0}, {𝑣1, 𝑤1}), we will write |𝜓𝐴⟩ as

|𝜓𝐴⟩ := 𝛼𝑣0𝐴 |𝑣0⟩
𝒳 |𝜑𝑣0𝐴 ⟩

𝒴 + 𝛼𝑤0
𝐴 |𝑤0⟩𝒳 |𝜑𝑤0

𝐴 ⟩
𝒴 ,

and note that

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] ≤ E
(𝐴,𝐵)←ℛ

[|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | · | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |],

where {𝑣𝐴,𝐵} := 𝐴0 ∩𝐵0.
Then, we proceed via the following steps.

1. If we only require that |𝜓𝐴⟩ ∈ Im(Π𝐴0), then one way to obtain the maximum ex-
pected inner product of 1/2 is to set each |𝛼𝑣0𝐴 | = 1/

√
2 and for each 𝑣0, let all |𝜑𝑣0𝐴 ⟩ be

the same vector. Then, each |𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | = 1/2 and each | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | = 1. We
show that this way of defining the 𝛼𝑣0𝐴 is “robust” in the sense that if the expected
inner product is close to 1/2, then for many of the (𝐴,𝐵), |𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | is close to 1/2
(Claim 4.50).

2. We show that Step 1 implies that this way of defining |𝜑𝑣0𝐴 ⟩ is also “robust”, in the
sense that for many of the (𝐴,𝐵), | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | is close to 1 (Claim 4.51). Thus, this
property must be satisfied if our expected inner product is at least 1/2− 𝜖13.

3. By analyzing the graph of “connections” induced by ℛ between the elements of
𝒜, we show that Step 2 implies that there must exist some 𝐴*0 = {𝑣*0, 𝑤*0} with the
following property. There any many (exponential in 𝑛) states{︁

|𝜓(𝐴*
0,𝐴1)⟩ := 𝛼

𝑣*0
(𝐴*

0,𝐴1)
|𝑣*0⟩ |𝜑

𝑣*0
(𝐴*

0,𝐴1)
⟩+ 𝛼

𝑤*
0

(𝐴*
0,𝐴1)
|𝑤*0⟩ |𝜑

𝑤*
0

(𝐴*
0,𝐴1)
⟩
}︁
𝐴1:(𝐴*

0,𝐴1)∈𝒜

such that the {|𝜑𝑣
*
0

(𝐴*
0,𝐴1)
⟩} are all close to each other, and the {|𝜑𝑤

*
0

(𝐴*
0,𝐴1)
⟩} are all close

to each other (Claim 4.52).

4. Step 3 implies that there exists a large (exponential in 𝑛) collection of states |𝜓(𝐴*
0,𝐴1)⟩

such that (i) all |𝜓(𝐴*
0,𝐴1)⟩ are close to the same two-dimensional subspace, and (ii) each

|𝜓(𝐴*
0,𝐴1)⟩ has 𝜖 overlap with a different orthogonal subspace Π𝐴1 . We complete the proof

by showing that this is impossible when 𝑛 is large enough compared to 1/𝜖. This
relies on a Welch bound, which bounds the number of distinct vectors of some mini-
mum distance from each other that can be packed into a low-dimensional subspace.
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Proof. (of Theorem 4.49) Assume that

E
(𝐴,𝐵)←ℛ

[| ⟨𝜓𝐴|𝜓𝐵⟩ |] ≥
1

2
− 𝜖13.

Using the fact that each |𝜓𝐴⟩ ∈ Im(Π𝐴0), write each

|𝜓𝐴⟩ := 𝛼𝑣0𝐴 |𝑣0⟩
𝒳 |𝜑𝑣0𝐴 ⟩

𝒴 + 𝛼𝑤0
𝐴 |𝑤0⟩𝒳 |𝜑𝑤0

𝐴 ⟩
𝒴 ,

where 𝐴0 = {𝑣0, 𝑤0}. For any (𝐴,𝐵) ∈ ℛ, define {𝑣𝐴,𝐵} = 𝐴0 ∩ 𝐵0. Then, we have the
following series of inequalities.

1

2
− 𝜖13 ≤ E

(𝐴,𝐵)←ℛ
[| ⟨𝜓𝐴|𝜓𝐵⟩ |]

= E
(𝐴,𝐵)←ℛ

[|𝛼𝑣𝐴,𝐵𝐴

*
𝛼
𝑣𝐴,𝐵
𝐵 ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |]

≤ E
(𝐴,𝐵)←ℛ

[|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | · | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |]

≤ E
(𝐴,𝐵)←ℛ

[|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 |].

Next, we show the following.

Claim 4.50.
Pr

(𝐴,𝐵)←ℛ

[︂
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | ≥ 1

2
− 2𝜖2

]︂
≥ 1− 𝜖6.

Proof. First, note that for any (𝐴,𝐵) ∈ ℛwhere𝐴 = ({𝑣0, 𝑤0}, {𝑣1, 𝑤1}) and𝐵 = ({𝑣0, 𝑢0}, {𝑣1, 𝑢1}),
the set 𝐶 = ({𝑤0, 𝑢0}, {𝑤1, 𝑢1}) ∈ 𝒜. This follows because

𝐴 ∈ 𝒜 =⇒ 𝑣0 + 𝑤0 = 𝑣1 + 𝑤1 =⇒ 𝑤0 = 𝑣0 + 𝑣1 + 𝑤1

𝐵 ∈ 𝒜 =⇒ 𝑣0 + 𝑢0 = 𝑣1 + 𝑤1 =⇒ 𝑢0 = 𝑣0 + 𝑣1 + 𝑢1,

so 𝑤0 + 𝑢0 = 𝑤1 + 𝑢1 =⇒ 𝐶 ∈ 𝒜.

This means that each (𝐴,𝐵) ∈ ℛ uniquely define a 𝐶 ∈ 𝒜 such that all

(𝐴,𝐵), (𝐵,𝐶), (𝐶,𝐴) ∈ ℛ.

Thus, we will imagine sampling (𝐴,𝐵)← ℛ as follows. First, sample distinct 𝑣0, 𝑤0, 𝑢0 ←
F𝑛2 . Then, sample 𝑣1, 𝑤1, 𝑢1 such that

𝐶1 := ({𝑣0, 𝑤0}, {𝑣1, 𝑤1}), 𝐶2 := ({𝑣0, 𝑢0}, {𝑣1, 𝑢1}), 𝐶3 := ({𝑤0, 𝑢0}, {𝑤1, 𝑢1}) ∈ 𝒜.

Let (𝐶1, 𝐶2, 𝐶3)← 𝒮 denote this sampling procedure. Finally, choose

(𝐴,𝐵)← ℛ[𝐶1, 𝐶2, 𝐶3] := {(𝐶1, 𝐶2), (𝐶2, 𝐶3), (𝐶3, 𝐶1)}.
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Let
𝐸[𝐶1, 𝐶2, 𝐶3] := E

(𝐴,𝐵)←ℛ[𝐶1,𝐶2,𝐶3]

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 |

]︀
.

Then,

E
(𝐴,𝐵)←ℛ

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 |

]︀
= E

(𝐶1,𝐶2,𝐶3)←𝒮
[𝐸[𝐶1, 𝐶2, 𝐶3]] ≥

1

2
− 𝜖13 > 1

2
− 𝜖12.

Now, given any (𝐶1, 𝐶2, 𝐶3) and corresponding

|𝜓𝐶1⟩ := 𝛼𝑣0𝐶1
|𝑣0⟩ |𝜑𝑣0𝐶1

⟩+ 𝛼𝑤0
𝐶1
|𝑤0⟩ |𝜑𝑤0

𝐶1
⟩ ,

|𝜓𝐶2⟩ := 𝛼𝑣0𝐶2
|𝑣0⟩ |𝜑𝑣0𝐶2

⟩+ 𝛼𝑢0𝐶2
|𝑢0⟩ |𝜑𝑢0𝐶2

⟩ ,
|𝜓𝐶3⟩ := 𝛼𝑤0

𝐶3
|𝑤0⟩ |𝜑𝑤0

𝐶3
⟩+ 𝛼𝑢0𝐶3

|𝑢0⟩ |𝜑𝑢0𝐶3
⟩ ,

we have that

𝐸[𝐶1, 𝐶2, 𝐶3] ≤
1

3

(︀
|𝛼𝑣0𝐶1
| · |𝛼𝑣0𝐶2

|+ |𝛼𝑤0
𝐶1
| · |𝛼𝑤0

𝐶3
|+ |𝛼𝑢0𝐶2

| · |𝛼𝑢0𝐶3
|
)︀
.

By Fact 4.55, 𝐸[𝐶1, 𝐶2, 𝐶3] ≤ 1/2, so by Markov,

Pr
(𝐶1,𝐶2,𝐶3)←𝒮

[︂
1

2
− 𝐸[𝐶1, 𝐶2, 𝐶3] ≥ 𝜖6

]︂
≤ 𝜖6 =⇒ Pr

(𝐶1,𝐶2,𝐶3)←𝒮

[︂
𝐸[𝐶1, 𝐶2, 𝐶3] ≥

1

2
− 𝜖6

]︂
≥ 1−𝜖6.

Moreover, whenever 𝐸[𝐶1, 𝐶2, 𝐶3] ≥ 1/2− 𝜖6, we have that

|𝛼𝑣0𝐶1
| · |𝛼𝑣0𝐶2

|+ |𝛼𝑤0
𝐶1
| · |𝛼𝑤0

𝐶3
|+ |𝛼𝑢0𝐶2

| · |𝛼𝑢0𝐶3
| ≥ 3

2
− 6𝜖6

2
,

so by Fact 4.55,

|𝛼𝑣0𝐶1
| · |𝛼𝑣0𝐶2

|, |𝛼𝑤0
𝐶1
| · |𝛼𝑤0

𝐶3
|, |𝛼𝑢0𝐶2

| · |𝛼𝑢0𝐶3
| ≥ 1

2
− 2𝜖2,

which completes the proof of the claim.

Claim 4.51.
Pr

(𝐴,𝐵)←ℛ

[︀
| ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | ≥ 1− 𝜖6

]︀
≥ 1− 2𝜖6.

Proof. First, note that the proof of Claim 4.50 also shows that

E
(𝐴,𝐵)←ℛ

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 |

]︀
≤ 1

2
,

since each 𝐸[𝐶1, 𝐶2, 𝐶3] ≤ 1/2.
By our assumption that

E
(𝐴,𝐵)←ℛ

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | · | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |

]︀
≥ 1

2
− 𝜖13
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and linearity of expectation,

E
(𝐴,𝐵)←ℛ

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | ·

(︀
1− | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |

)︀]︀
≤ 𝜖13.

Now, assume for contradiction that

Pr
(𝐴,𝐵)←ℛ

[︀
| ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | < 1− 𝜖6

]︀
> 2𝜖6 =⇒ Pr

(𝐴,𝐵)←ℛ

[︀
1− | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | > 𝜖6

]︀
> 2𝜖6.

By Claim 4.50, this implies that

Pr
(𝐴,𝐵)←ℛ

[︂(︀
1− | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | > 𝜖6

)︀
∧
(︂
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | ≥ 1

2
− 2𝜖2

)︂]︂
≥ 𝜖6.

But then,

E
(𝐴,𝐵)←ℛ

[︀
|𝛼𝑣𝐴,𝐵𝐴 | · |𝛼𝑣𝐴,𝐵𝐵 | ·

(︀
1− | ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ |

)︀]︀
> 𝜖6 · 𝜖6 ·

(︂
1

2
− 2𝜖2

)︂
≥ 𝜖12

4
> 𝜖13,

whenever 𝜖 < 1/4.

Claim 4.52. There exists an 𝐴*0 = {𝑣*0, 𝑤*0} and two unit vectors |𝜏 𝑣*0 ⟩ , |𝜏𝑤*
0⟩ such that the fol-

lowing holds. Let{︁
|𝜓(𝐴*

0,𝐴1)⟩ := 𝛼
𝑣*0
(𝐴*

0,𝐴1)
|𝑣*0⟩ |𝜑

𝑣*0
(𝐴*

0,𝐴1)
⟩+ 𝛼

𝑤*
0

(𝐴*
0,𝐴1)
|𝑤*0⟩ |𝜑

𝑤*
0

(𝐴*
0,𝐴1)
⟩
}︁
𝐴1:(𝐴*

0,𝐴1)∈𝒜

be the set of 2𝑛−1 states indexed by 𝐴1 such that (𝐴*0, 𝐴1) ∈ 𝒜.30 Then there exists a set 𝒜*1 of size
at least 2𝑛−2 such that for all 𝐴1 ∈ 𝒜*1,

| ⟨𝜑𝑣
*
0

(𝐴*
0,𝐴1)
|𝜏 𝑣*0 ⟩ | ≥ 1− 2𝜖3 and | ⟨𝜑𝑤

*
0

(𝐴*
0,𝐴1)
|𝜏𝑤*

0⟩ | ≥ 1− 2𝜖3.

Proof. For each ordered pair (𝑣0, 𝑤0) where 𝑣0 ̸= 𝑤0 ∈ F𝑛2 , define

ℛ[(𝑣0, 𝑤0)] := {(𝐴,𝐵) ∈ ℛ : 𝐴0 = {𝑣0, 𝑤0} ∧ 𝑣𝐴,𝐵 = 𝑣0} .

Then Claim 4.51 implies that there exists some set {𝑣*0, 𝑤*0} such that

Pr
(𝐴,𝐵)←ℛ[(𝑣*0 ,𝑤

*
0)]

[︁
| ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | = | ⟨𝜑𝑣

*
0
𝐴 |𝜑

𝑣*0
𝐵 ⟩ | ≥ 1− 𝜖6

]︁
≥ 1− 4𝜖6, and

Pr
(𝐴,𝐵)←ℛ[(𝑤*

0 ,𝑣
*
0)]

[︁
| ⟨𝜑𝑣𝐴,𝐵𝐴 |𝜑𝑣𝐴,𝐵𝐵 ⟩ | = | ⟨𝜑𝑤

*
0

𝐴 |𝜑
𝑤*

0
𝐵 ⟩ | ≥ 1− 𝜖6

]︁
≥ 1− 4𝜖6.

30Note that there are 2𝑛−1 possible states because the 𝐴1 partition of the set F𝑛
2 into disjoint unordered

pairs of vectors, where each pair {𝑣1, 𝑤1} is such that 𝑣1 + 𝑤1 = 𝑣*0 + 𝑤*
0 .

104



Let 𝐴*0 = {𝑣*0, 𝑤*0}, let 𝒜1 := {{𝑣1, 𝑤1}}𝑣1+𝑤1=𝑣*0+𝑤
*
0

be the set of 𝐴1 such that (𝐴*0, 𝐴1) ∈
𝒜, let {︁

|𝜓(𝐴*
0,𝐴1)⟩ := 𝛼

𝑣*0
(𝐴*

0,𝐴1)
|𝑣*0⟩ |𝜑

𝑣*0
(𝐴*

0,𝐴1)
⟩+ 𝛼

𝑤*
0

(𝐴*
0,𝐴1)
|𝑤*0⟩ |𝜑

𝑤*
0

(𝐴*
0,𝐴1)
⟩
}︁
𝐴1∈𝒜1

,

and let
𝒜×21 = {{𝐴1, 𝐴

′
1}}𝐴1 ̸=𝐴′

1∈𝒜1
.

Note that by the definition of 𝒜1, for any {𝐴1, 𝐴
′
1} ∈ 𝒜×21 , it holds that 𝐴1 ∩ 𝐴′1 = ∅. Now,

we will argue that there exists a vector |𝜏 𝑣*0 ⟩ and a set 𝒜𝑣
*
0

1 of size at least 3
4
2𝑛−1 such that

for all 𝐴1 ∈ 𝒜*1,

| ⟨𝜑𝑣
*
0

(𝐴*
0,𝐴1)
|𝜏 𝑣*0 ⟩ | ≥ 1− 2𝜖3.

Consider any {𝐴1, 𝐴
′
1} ∈ 𝒜×21 , where 𝐴1 = {𝑣1, 𝑤1} and 𝐴′1 = {𝑣′1, 𝑤′1}. There are

exactly four 𝐵 such that

((𝐴*0, 𝐴1), 𝐵) ∈ ℛ[(𝑣*0, 𝑤*0)] and ((𝐴*0, 𝐴
′
1), 𝐵) ∈ ℛ[(𝑣*0, 𝑤*0)],

which are31

𝐵 ∈

⎧⎪⎪⎨⎪⎪⎩
({𝑣*0, 𝑣*0 + 𝑣1 + 𝑣′1}, {𝑣1, 𝑣′1}),
({𝑣*0, 𝑣*0 + 𝑤1 + 𝑤′1}, {𝑤1, 𝑤

′
1}),

({𝑣*0, 𝑣*0 + 𝑣1 + 𝑤′1}, {𝑣1, 𝑤′1}),
({𝑣*0, 𝑣*0 + 𝑤1 + 𝑣′1}, {𝑤1, 𝑣

′
1})

⎫⎪⎪⎬⎪⎪⎭ .

Define
ℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴

′
1}] := {((𝐴*0, 𝐴1), 𝐵)}𝐵 ∪ {((𝐴*0, 𝐴′1), 𝐵)}𝐵

where the indexing is over the four 𝐵 such that

((𝐴*0, 𝐴1), 𝐵) ∈ ℛ[(𝑣*0, 𝑤*0)] and ((𝐴*0, 𝐴
′
1), 𝐵) ∈ ℛ[(𝑣*0, 𝑤*0)].

Note that for any two {𝐴1, 𝐴
′
1} ≠ { ̃︀𝐴1, ̃︀𝐴′1} ∈ 𝒜×21 , the sets ℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴

′
1}] and

ℛ[(𝑣*0, 𝑤*0), { ̃︀𝐴1, ̃︀𝐴′1}] are disjoint, which can be seen by noting that 𝐵1 always includes one
vector from 𝐴1 and one from 𝐴′1.

Next, we claim that

ℛ[(𝑣*0, 𝑤*0)] =
⋃︁

{𝐴1,𝐴′
1}∈𝒜

×2
1

ℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴
′
1}],

which follows from a counting argument. First,⃒⃒⃒⃒ ⋃︁
{𝐴1,𝐴′

1}∈𝒜
×2
1

ℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴
′
1}]
⃒⃒⃒⃒
= 8 ·

(︂
2𝑛−1

2

)︂
= 22𝑛 − 2𝑛+1.

31Note that 𝑣*0+𝑣1+𝑣′1 ̸= 𝑤*
0 since otherwise 𝑤1 = 𝑣1+(𝑣*0+𝑤

*
0) = 𝑣′1 and 𝑤′

1 = 𝑣1+(𝑣*0+𝑤
*
0) = 𝑣1 which

would mean that 𝐴1 = 𝐴′
1. Thus, for the first 𝐵 listed, ((𝐴*

0, 𝐴1), 𝐵) ∈ ℛ[(𝑣*0 , 𝑤*
0)], and a similar argument

holds for the rest of the 𝐵.
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Then, counting |ℛ[(𝑣*0, 𝑤*0)]| directly, we can choose from any of the 2𝑛−1 possible 𝐴1, any
2𝑛 − 2 of the possible 𝐵0, and then, given 𝐵0, the two possible 𝐵1 that intersect 𝐴1. Thus,⃒⃒

ℛ[(𝑣*0, 𝑤*0)]
⃒⃒
= 2𝑛−1 · (2𝑛 − 2) · 2 = 22𝑛 − 2𝑛+1.

This establishes that the sets

{ℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴
′
1}]}{𝐴1,𝐴′

1}∈𝒜
×2
1

partitionℛ[(𝑣*0, 𝑤*0)] equally into sets of size 8. Thus,32

Pr
{𝐴1,𝐴′

1}←𝒜
×2
1

[︁
∀(𝐴,𝐵) ∈ ℛ[(𝑣*0, 𝑤*0), {𝐴1, 𝐴

′
1}], | ⟨𝜑

𝑣*0
𝐴 |𝜑

𝑣*0
𝐵 ⟩ | ≥ 1− 𝜖6

]︁
≥ 1− 32𝜖6,

which means that there exists some 𝐴*1 = {𝑣*1, 𝑤*1} such that

Pr
𝐴1←𝒜1∖{𝐴*

1}

[︁
∀(𝐴,𝐵) ∈ ℛ[(𝑣*0, 𝑤*0), {𝐴*1, 𝐴1}], | ⟨𝜑

𝑣*0
𝐴 |𝜑

𝑣*0
𝐵 ⟩ | ≥ 1− 𝜖6

]︁
≥ 1− 32𝜖6 ≥ 7

8
,

which holds for all 𝜖 ≤ 1/8.
Let 𝒜𝑣

*
0

1 be the set of 𝐴1 such that

∀(𝐴,𝐵) ∈ ℛ[(𝑣*0, 𝑤*0), {𝐴*1, 𝐴1}], | ⟨𝜑
𝑣*0
𝐴 |𝜑

𝑣*0
𝐵 ⟩ | ≥ 1− 𝜖6,

and note that |𝒜𝑣
*
0

1 | ≥ 7
8
(2𝑛−1 − 1) > 3

4
2𝑛−1.

Now consider any𝐴1 = {𝑣1, 𝑤1} ∈ 𝒜
𝑣*0
1 , and note that for𝐵 = ({𝑣*0, 𝑣*0+𝑣*1+𝑣1}, {𝑣*1, 𝑣1}),

we have that
((𝐴*0, 𝐴

*
1), 𝐵), ((𝐴*0, 𝐴1), 𝐵) ∈ ℛ[(𝑣*0, 𝑤*0), {𝐴*1, 𝐴1}].

Thus, we know that

| ⟨𝜑𝑣
*
0

(𝐴*
0,𝐴

*
1)
|𝜑𝑣

*
0
𝐵 ⟩ | ≥ 1− 𝜖6, and | ⟨𝜑𝑣

*
0

(𝐴*
0,𝐴1)
|𝜑𝑣

*
0
𝐵 ⟩ | ≥ 1− 𝜖6,

so by Fact 4.54,

| ⟨𝜑𝑣
*
0

(𝐴*
0,𝐴1)
|𝜑𝑣

*
0

(𝐴*
0,𝐴

*
1)
⟩ | ≥ (1− 𝜖6)2 −

√
2𝜖6 ≥ 1− 2𝜖3.

Then if we set |𝜏 𝑣*0 ⟩ := |𝜑𝑣
*
0

(𝐴*
0,𝐴

*
1)
⟩, we have that for all 𝐴1 ∈ 𝒜

𝑣*0
1 ,

| ⟨𝜑𝑣
*
0

(𝐴*
0,𝐴1)
|𝜏 𝑣*0 ⟩ | ≥ 1− 2𝜖3.

32Here, we show that there exists a large fraction of {𝐴1, 𝐴
′
1} such that all (𝐴,𝐵) ∈ ℛ[(𝑣*0 , 𝑤*

0), {𝐴1, 𝐴
′
1}]

are “good”, meaning that | ⟨𝜑𝑣𝐴,𝐵

𝐴 |𝜑𝑣𝐴,𝐵

𝐵 ⟩ | ≥ 1 − 𝜖6. As we will see later, it would have sufficed to prove
the slightly weaker claim that there exists a large fraction of {𝐴1, 𝐴

′
1} such that at least 5/8 of the (𝐴,𝐵) ∈

ℛ[(𝑣*0 , 𝑤*
0), {𝐴1, 𝐴

′
1}] are good. This is because for each such {𝐴1, 𝐴

′
1}, we will just need a single 𝐵 (rather

that all four) such that ((𝐴*
0, 𝐴1), 𝐵) and ((𝐴*

0, 𝐴
′
1), 𝐵) are good.
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Finally, repeating the analysis for ℛ[(𝑤*0, 𝑣*0)], there exists a |𝜏𝑤*
0⟩ and a set 𝒜𝑤

*
0

1 of size
at least 3

4
2𝑛−1 such that for all 𝐴1 ∈ 𝒜

𝑤*
0

1 ,

| ⟨𝜑𝑤
*
0

(𝐴*
0,𝐴1)
|𝜏𝑤*

0⟩ | ≥ 1− 2𝜖3.

Thus, setting 𝒜*1 := 𝒜
𝑣*0
1 ∩ 𝒜

𝑤*
0

1 (which has size ≥ 2𝑛−2) completes the proof.

Finally, we can reach a contradiction by using the fact that for any fixed 𝐴*0, all of the
Π𝐴1 such that (𝐴*0, 𝐴1) ∈ 𝒜 are orthogonal, which follows from the definition of the Π𝐴1 .

Now, define the rank-two projector

Π* := |𝑣*0⟩
⃒⃒
𝜏 𝑣

*
0
⟩︀⟨︀
𝜏 𝑣

*
0

⃒⃒
⟨𝑣*0|+ |𝑤*0⟩

⃒⃒
𝜏𝑤

*
0
⟩︀⟨︀
𝜏𝑤

*
0

⃒⃒
⟨𝑤*0| .

By Claim 4.52 and the assumption of the theorem, for each 𝐴1 ∈ 𝒜*1 we know that

‖Π* |𝜓(𝐴*
0,𝐴1)⟩ ‖ ≥ 1− 2𝜖3 and ‖Π𝐴1 |𝜓(𝐴*

0,𝐴1)⟩ ‖ ≥ 𝜖.

For each 𝐴1 ∈ 𝒜*1, define

|𝜓*𝐴1
⟩ :=

Π* |𝜓(𝐴*
0,𝐴1)⟩

‖Π* |𝜓(𝐴*
0,𝐴1)⟩ ‖

.

Thus, since | ⟨𝜓*𝐴1
|𝜓(𝐴*

0,𝐴1)⟩ | ≥ 1 − 2𝜖3 and ‖Π𝐴1 |𝜑(𝐴*
0,𝐴1)⟩ ‖ ≥ 𝜖, by Fact 4.54 (second

part) it holds that
‖Π𝐴1 |𝜓*𝐴1

⟩ ‖ ≥ 𝜖(1− 2𝜖3)− 2𝜖3/2 ≥ 𝜖

2
,

which holds for all 𝜖 ≤ 1/8.
Consider the following algorithm, which will eventually select all {|𝜓*𝐴1

⟩}𝐴1∈𝒜*
1
.

1. Set 𝑖 = 1.

2. Select an arbitrary (not yet selected) |𝜓*𝐴1
⟩, and define |𝜓𝑖⟩ := |𝜓*𝐴1

⟩.

3. Select all (not yet selected) |𝜓*𝐴1
⟩ such that | ⟨𝜓*𝐴1

|𝜓𝑖⟩ | ≥ 1− 𝜖4.

4. Set 𝑖 = 𝑖+ 1 and go back to Step 2.

First, we claim that in each invocation of Step 3, we select at most 16/𝜖2 vectors. To
see this, note that for each |𝜓*𝐴1

⟩ selected in Step 3 during the 𝑖’th loop of the procedure,
| ⟨𝜓*𝐴1

|𝜓𝑖⟩ | ≥ 1− 𝜖4 and ‖Π𝐴1 |𝜓*𝐴1
⟩ ‖ ≥ 𝜖/2. Thus, by Fact 4.54 (second part),

‖Π𝐴1 |𝜓𝑖⟩ ‖ ≥
𝜖

2
(1− 𝜖4)−

√
2𝜖2 ≥ 𝜖

4
,

which holds for all 𝜖 ≤ 1/8. Since the Π𝐴1 are all orthogonal, and |𝜓𝑖⟩ has a component of
at least 𝜖2/16 squared norm on each, we conclude that there can be at most 16/𝜖2 such 𝐴1.
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Second, let 𝐼 be the value of 𝑖 when the procedure terminates. Note that the {|𝜓𝑖⟩}𝑖∈[𝐼]
are all in the image of a two-dimensional subspace Im(Π*), and for all 𝑖 ̸= 𝑗, | ⟨𝜓𝑖|𝜓𝑗⟩ | <
1− 𝜖4.

Now, we use a Welch bound.

Imported Theorem 4.53 ([Wel74]). Let {𝑥1, . . . , 𝑥𝐼} be unit vectors in C𝑑, and define 𝑐 =
max𝑖 ̸=𝑗 | ⟨𝑥𝑖|𝑥𝑗⟩ |. Then for every 𝑘 ∈ N,

𝑐2𝑘 ≥ 1

𝐼 − 1

(︃
𝐼(︀

𝑘+𝑑−1
𝑘

)︀ − 1

)︃
.

Setting 𝑑 = 2 and 𝑘 = 𝐼/2− 1, we have that

1

𝐼 − 1
≤ (1− 𝜖4)𝐼−2 ≤ 𝑒−𝜖

4(𝐼−2) =⇒ 1

𝜖4
≥ 𝐼 − 2

ln(𝐼 − 1)
≥
√
𝐼 =⇒ 𝐼 ≤ 1

𝜖8
.

Putting these two facts together, we have that the size of𝒜*1 is at most 16/𝜖10, meaning
that

2𝑛−2 ≤ 16

𝜖10
=⇒ 2𝑛 ≤ 64

𝜖10
,

and contradicting the fact that 𝑛 > 10 log(1/𝜖) + 6.

Finally, we record some facts that were used in the preceding proof.

Fact 4.54. Let |𝜑𝑎⟩ , |𝜑𝑏⟩ be complex unit vectors such that | ⟨𝜑𝑎|𝜑𝑏⟩ | ≥ 1−𝛼. Then the following
hold.

1. If |𝜑𝑐⟩ is a complex unit vector such that | ⟨𝜑𝑏|𝜑𝑐⟩ | ≥ 𝛽, then | ⟨𝜑𝑎|𝜑𝑐⟩ | ≥ 𝛽(1−𝛼)−
√
2𝛼.

2. If Π is a projector such that ‖Π |𝜑𝑏⟩ ‖ ≥ 𝛽, then ‖Π |𝜑𝑎⟩ ‖ ≥ 𝛽(1− 𝛼)−
√
2𝛼.

Proof. To show the first part, write |𝜑𝑎⟩ = 𝑒𝑖𝜃(1 − 𝛼) |𝜑𝑏⟩ +
√
2𝛼− 𝛼2 |𝜑⊥𝑏 ⟩ for some 𝜃 and

|𝜑⊥𝑏 ⟩ orthogonal to |𝜑𝑏⟩. Then

| ⟨𝜑𝑎|𝜑𝑐⟩ | = |𝑒𝑖𝜃(1− 𝛼) ⟨𝜑𝑏|𝜑𝑐⟩+
√
2𝛼− 𝛼2 ⟨𝜑⊥𝑏 |𝜑𝑐⟩ |

≥ |𝑒𝑖𝜃(1− 𝛼) ⟨𝜑𝑏|𝜑𝑐⟩ | −
√
2𝛼− 𝛼2

≥ 𝛽(1− 𝛼)−
√
2𝛼.

To show the second part, define

|𝜑𝑐⟩ :=
Π |𝜑𝑏⟩
‖Π |𝜑𝑏⟩ ‖

,

and note that

| ⟨𝜑𝑏|𝜑𝑐⟩ | =
⟨𝜑𝑏|Π |𝜑𝑏⟩
‖Π |𝜑𝑏⟩ ‖

=
‖Π |𝜑𝑏⟩ ‖2

‖Π |𝜑𝑏⟩ ‖
= ‖Π |𝜑𝑏⟩ ‖ ≥ 𝛽.
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Thus,
‖Π |𝜑𝑎⟩ ‖ ≥ ‖ |𝜑𝑐⟩⟨𝜑𝑐| |𝜑𝑎⟩ ‖ = | ⟨𝜑𝑎|𝜑𝑐⟩ | ≥ 𝛽(1− 𝛼)−

√
2𝛼,

where the first inequality follows because |𝜑𝑐⟩ ∈ Im(Π) and the second inequality follows
from the first part.

Fact 4.55. Let

𝑢1 :=

⎛⎝𝑎1𝑎2
0

⎞⎠ , 𝑢2 :=

⎛⎝𝑏10
𝑏2

⎞⎠ , 𝑢3 :=

⎛⎝ 0
𝑐1
𝑐2

⎞⎠
be three unit vectors in R3

≥0. Then,

𝑢1 · 𝑢2 + 𝑢1 · 𝑢3 + 𝑢2 · 𝑢3 ≤
3

2
.

Moreover, for any 𝛿 ∈ [0, 1/2], if

𝑢1 · 𝑢2 + 𝑢1 · 𝑢3 + 𝑢2 · 𝑢3 ≥
3

2
− 𝛿3

2
,

then
𝑢1 · 𝑢2 ≥

1

2
− 𝛿, 𝑢1 · 𝑢3 ≥

1

2
− 𝛿, and 𝑢2 · 𝑢3 ≥

1

2
− 𝛿.

Proof. We begin with the first part of the claim. Let 𝑣1 := (𝑎1 𝑎2 𝑏1 𝑏2 𝑐1 𝑐2) and 𝑣2 :=
(𝑏1 𝑐1 𝑎1 𝑐2 𝑎2 𝑏2). Then,

𝑢1 · 𝑢2 + 𝑢1 · 𝑢3 + 𝑢2 · 𝑢3 =
1

2
𝑣1 · 𝑣⊤2 ≤

1

2
(𝑎21 + 𝑎22 + 𝑏21 + 𝑏22 + 𝑐21 + 𝑐22) =

3

2
,

where the inequality is Cauchy-Schwartz.
Now, we prove the “moreover” part. This is trivial when 𝛿 = 1/2, so suppose that

𝑢1 · 𝑢2 = 1/2− 𝛿 for some 𝛿 ∈ [0, 1/2). We will show that this implies that

𝑢1 · 𝑢2 + 𝑢1 · 𝑢3 + 𝑢2 · 𝑢3 ≤
3

2
− 𝛿3

2
,

which, by symmetry, would complete the proof.
Define the value

𝑚 := max
𝑢1, 𝑢2, 𝑢3,

𝑢1 · 𝑢2 = 1/2− 𝛿

{𝑢1 · 𝑢3 + 𝑢2 · 𝑢3} ,

and let 𝑎1 =
√
1− 𝑥, 𝑎2 =

√
𝑥, 𝑏1 =

√
1− 𝑦 and 𝑏2 =

√
𝑦 for some 𝑥, 𝑦 ∈ [0, 1). Then,
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𝑚 = max
𝑥,𝑦∈[0,1),

√
1−𝑥
√
1−𝑦=1/2−𝛿

{︀√
𝑥𝑐1 +

√
𝑦𝑐2
}︀

≤ max
𝑥,𝑦∈[0,1),

√
1−𝑥
√
1−𝑦=1/2−𝛿

{︀√
𝑥+ 𝑦

√
𝑐1 + 𝑐2

}︀
= max

𝑥,𝑦∈[0,1),
√
1−𝑥
√
1−𝑦=1/2−𝛿

{︀√
𝑥+ 𝑦

}︀
,

where the inequality is Cauchy-Schwartz.
Next, we solve for

𝑦 = 1−
(1
2
− 𝛿)2

1− 𝑥
,

and see that

𝑚2 = max
𝑥∈[0,1)

{︂
𝑥+ 1−

(1
2
− 𝛿)2

1− 𝑥

}︂
= max

𝑥∈[0,1)

{︃
2− 2

1− 𝑥

(︃
(1− 𝑥)2 +

(︀
1
2
− 𝛿
)︀2

2

)︃}︃

≤ 2− 2

(︂
1

2
− 𝛿
)︂

= 1 + 2𝛿,

where the inequality is AM-GM.
Thus, to complete the proof it suffices to show that

1

2
− 𝛿 +

√
1 + 2𝛿 ≤ 3

2
− 𝛿3

2
.

If 𝛿 = 0, then both sides are 1, so now assume that 𝛿 > 0. Then

1

2
− 𝛿 +

√
1 + 2𝛿 ≤ 3

2
− 𝛿3

2
⇐⇒

√
1 + 2𝛿 ≤ 1 + 𝛿 − 𝛿3

2

⇐⇒ 1 + 2𝛿 ≤ 1 + 2𝛿 + 𝛿2 − (1 + 𝛿)𝛿3 +
𝛿6

4

⇐⇒ 𝛿 + 𝛿2 − 𝛿4

4
≤ 1,

which is true for all 𝛿 ∈ (0, 1/2).
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4.5.3 Proofs from Section 4.3.3

In this section, we prove Lemma 4.29, Lemma 4.30, and Lemma 4.31. We proceed via
three steps.

1. Compile the information-theoretic protocol ΠQV from Section 4.3.2 into a 4-message
quantum “commit-challenge-response” protocol ΠCCR with a classical verifier. This
compilation is achieved via the use of Mahadev’s measurement protocol [Mah18b].
As argued in [Bar21], the resulting protocol satisfies a “computationally orthogonal
projectors” property, which was first described by [ACGH20].

2. Apply parallel repetition to ΠCCR to obtain Πparl, and observe that the parallel repeti-
tion theorem of [Bar21] implies that the analogues of Lemma 4.29, Lemma 4.30, and
Lemma 4.31 hold in Πparl.

3. Apply Fiat-Shamir to Πparl to obtain the protocol ΠCV from Protocol 8, and observe
that Measure and Re-program (Lemma 2.9) implies that Lemma 4.29, Lemma 4.30,
and Lemma 4.31 must also hold with respect to ΠCV.

Proof. (of Lemma 4.29, Lemma 4.30, and Lemma 4.31)

Step 1. We first describe the syntax of a generic commit-challenge-response protocol be-
tween a quantum prover P and a classical verifier V.

• Commit: P(1𝜆) and V(1𝜆; 𝑟) engage in a two-message commitment protocol, where
𝑟 are the random coins used by V to generate the first message of the protocol, and
the prover responds with a classical commitment string.

• Challenge: V samples a random bit 𝑑← {0, 1} and sends it to P.

• Response: P computes a (classical) response 𝑧 and sends it to V.

• Output: V receives 𝑧 and decides to either accept and output ⊤ or reject and output
⊥.

Consider any QPT adversarial prover P*, and let |𝜓P*

𝜆,𝑟⟩
𝒜,𝒞 be the (purified) state of the

prover after interacting with V(1𝜆; 𝑟) in the commit phase, where 𝒞 holds the (classical)
prover message output during this phase, and 𝒜 holds its remaining state.

The remaining strategy of the prover can be described by family of unitaries
{︀
UP*

𝜆,0,U
P*

𝜆,1

}︀
𝜆∈N,

where UP*

𝜆,0 is applied to |𝜓P*

𝜆,𝑟⟩ on challenge 0 (followed by a measurement of 𝑧), and UP*

𝜆,1

is applied to |𝜓P*

𝜆,𝑟⟩ on challenge 1 (followed by a measurement of 𝑧).
Let V𝜆,𝑟,0 denote the accept projector applied by the verifier to the prover messages

when 𝑑 = 0, and define V𝜆,𝑟,1 analogously. Then define the following projectors on regis-
ters (𝒜, 𝒞).

ΠP*

𝜆,𝑟,0 := UP*

𝜆,0

†
V𝜆,𝑟,0U

P*

𝜆,0, ΠP*

𝜆,𝑟,1 := UP*

𝜆,1

†
V𝜆,𝑟,1U

P*

𝜆,1.
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Commit-challenge-response protocol ΠCCR = (VCCR
Gen ,P

CCR
Com,P

CCR
Prove,V

CCR
Ver )

Parameters: Number of qubits ℓ = ℓ(𝜆) in the prover’s state.

• VCCR
Gen (1

𝜆, 𝑄) → (pp, sp): Sample (ℎ, 𝑆) ← VQV
Gen(1

𝜆, 𝑄) and {(pk𝑗 , sk𝑗) ← TCF.Gen(1𝜆, ℎ𝑗)}𝑗∈[ℓ],
and set

pp := {pk𝑗}𝑗∈[ℓ], sp := (ℎ, 𝑆, {sk𝑗}𝑗∈[ℓ]).

• PCCR
Com(1

𝜆, 𝑄, 𝑥, pp) → (ℬ,𝒵, 𝑦): Prepare the state |𝜓⟩ ← PQV(1𝜆, 𝑄, 𝑥) on register ℬ =
(ℬ1, . . . ,ℬℓ), which we write as

|𝜓⟩ :=
∑︁

𝑣∈{0,1}ℓ

𝛼𝑣 |𝑣⟩ℬ ,

and then for each 𝑗 ∈ [ℓ], apply TCF.Eval[pk𝑗 ](ℬ𝑗)→ (ℬ𝑗 ,𝒵𝑗 ,𝒴𝑗), resulting in the state∑︁
𝑣∈{0,1}ℓ

𝛼𝑣 |𝑣⟩ℬ |𝜓pk1,𝑣1⟩
𝒵1,𝒴1 , . . . , |𝜓pkℓ,𝑣ℓ⟩

𝒵ℓ,𝒴ℓ .

Finally, measure registers 𝒴1, . . . ,𝒴ℓ in the standard basis to obtain string 𝑦 := {𝑦𝑗}𝑗∈[ℓ].

• The verifier samples a random bit 𝑑← {0, 1}, and sends 𝑑 to the prover.

• PCCR
Prove(ℬ,𝒵, 𝑑) → 𝑧: If 𝑑 = 0, the prover measures registers ℬ,𝒵 in the standard basis to obtain
𝑧 := {𝑏𝑗 , 𝑧𝑗}𝑗∈[ℓ]. If 𝑑 = 1, the prover applies 𝐽(·) coherently to each register 𝒵𝑗 and then
measures registers ℬ,𝒵 in the Hadamard basis to obtain 𝑧 := {𝑏𝑗 , 𝑧𝑗}𝑗∈[ℓ].

• VCCR
Ver (𝑄, 𝑥, sp, 𝑦, 𝑑, 𝑧)→ {{𝑞𝑡}𝑡∈[𝜆]} ∪ {⊤,⊥}:

– Parse 𝑦 := {𝑦𝑗}𝑗∈[ℓ] and 𝑧 := {𝑏𝑗 , 𝑧𝑗}𝑗∈[ℓ].

– If 𝑑 = 0, for each 𝑗 ∈ [ℓ] compute TCF.Check(pk𝑗 , 𝑏𝑗 , 𝑧𝑗 , 𝑦𝑗). If any are ⊥, then output ⊥,
and otherwise output ⊤.

– If 𝑑 = 1, do the following for each 𝑗 ∈ [ℓ].

* If ℎ𝑗 = 0, compute TCF.Invert(0, sk𝑗 , 𝑦𝑗), abort and output ⊥ if the output is ⊥, and
otherwise parse the output as (𝑚𝑗 , 𝑥𝑗).

* If ℎ𝑗 = 1, compute TCF.Invert(1, sk𝑗 , 𝑦𝑗), abort and output ⊥ if the output is ⊥, and
otherwise parse the output as (0, 𝑥𝑗,0), (1, 𝑥𝑗,1). Then, check TCF.IsValid(𝑥𝑗,0, 𝑥𝑗,1, 𝑧𝑗)
and abort and output ⊥ if the result is ⊥. Next, set 𝑚𝑗 := 𝑏𝑗 ⊕ 𝑧𝑗 · (𝐽(𝑥𝑗,0)⊕ 𝐽(𝑥𝑗,1)).

Then, let𝑚 := (𝑚1, . . . ,𝑚ℓ) and compute VQV
Ver(𝑄, 𝑥, ℎ,𝑚). Output⊥ if the result is⊥, and

otherwise output {𝑞𝑡}𝑡∈[𝜆] := 𝑚[𝑆].

Figure 12: A quantum “commit-challenge-response” protocol for verifying quantum
partitioning circuits.

Definition 4.56. A commit-challenge-response protocol has computationally orthogonal
projectors if for any QPT prover {P*𝜆}𝜆∈N,

E
𝑟

[︀
⟨𝜓P*

𝜆,𝑟|ΠP*

𝜆,𝑟,0Π
P*

𝜆,𝑟,1Π
P*

𝜆,𝑟,0 |𝜓P*

𝜆,𝑟⟩
]︀
= negl(𝜆).
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Now, consider running protocol ΠCCR with some fixed circuit 𝑄 and input 𝑥, and sup-
pose that 𝑃 is a predicate such that 𝑃 (𝑄(·)) is pseudo-deterministic. We define the verifier
acceptance predicates as follows.

• V𝜆,𝑟,0 runs VCCR
Ver on 𝑑 = 0.

• V𝜆,𝑟,1 runs VCCR
Ver on 𝑑 = 1 to obtain either ⊥ or {𝑞𝑡}𝑡∈[𝜆]. In the latter case, it outputs

⊤ if Maj
(︀
{𝑃 (𝑞𝑡)}𝑡∈[𝜆]

)︀
= 1− 𝑃 (𝑄(𝑥)) and ⊥ otherwise.

Then, by [Bar21, Lemma 4.4], which uses the soundness of ΠQV (Imported Theo-
rem 4.26) and the soundness of the measurement protocol ([Mah18b]), we have the fol-
lowing claim.

Claim 4.57. For any {P*𝜆}𝜆∈N attacking ΠCCR (Protocol in Fig. 12), it holds that

E
𝑟

[︀
⟨𝜓P*

𝜆,𝑟|ΠP*

𝜆,𝑟,0Π
P*

𝜆,𝑟,1Π
P*

𝜆,𝑟,0 |𝜓P*

𝜆,𝑟⟩
]︀
= negl(𝜆),

where the verifier acceptance predicates V𝜆,𝑟,0,V𝜆,𝑟,1 used to define ΠP*

𝜆,𝑟,0 and ΠP*

𝜆,𝑟,1 are as described
above.

Step 2. In this step, we will use the following imported theorem.

Imported Theorem 4.58 ([Bar21], Theorem 3.1). Let 𝜖 > 0 and 0 < 𝛿 < 1 be constants. Let
Π be a commit-challenge-response protocol with computationally orthogonal projectors, and where
the verifier’s 𝑑 = 0 acceptance predicate is publicly computable given the verifier’s first message.
Let Πparl be the 𝜆1+𝜖 parallel repetition of Π, where the verifier’s challenge string 𝑇 is sampled as a
uniformly random 𝜆1+𝜖 bit string with Hamming weight 𝜆. Then for any QPT adversarial prover
P* attacking Πparl, the probability that the verifier accepts all rounds 𝑖 such that 𝑇𝑖 = 0 and≥ 𝛿 ·𝜆
rounds 𝑖 such that 𝑇𝑖 = 1 is negl(𝜆).

Now, we define the protocol Πparl = (Vparl
Gen,P

parl
Com,P

parl
Prove,V

parl
Ver ) to be the 𝜆2 parallel repe-

tition of ΠCCR, where the verifier’s challenge string 𝑇 is sampled as a uniformly random
𝜆2 bit string with Hamming weight 𝜆. Then, we can prove the following lemmas about
Πparl.

Lemma 4.59 (Πparl analogue of Lemma 4.29). For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘
𝑄𝜆}𝜆∈N is pseudo-deterministic, sequence of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it
holds that

Pr

⎡⎢⎢⎢⎣ Vparl
Ver (𝑄, 𝑥, sp, 𝑦, 𝑇, 𝑧) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧

MM𝜆

(︀
{{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1

)︀
= 1− 𝑃 (𝑄(𝑥)) :

(pp, sp)← Vparl
Gen(1

𝜆, 𝑄)
𝑦 ← A(pp)

𝑇 ← {0, 1}(
𝜆2

𝜆 )

𝑧 ← A(𝑇 )

⎤⎥⎥⎥⎦ = negl(𝜆),

where A maintains an internal state, which we leave implicit above.
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Proof. We have to rule out a prover that makes the verifier of ΠCCR accept each of the
𝜆2 − 𝜆 rounds where 𝑇𝑖 = 0, and, for a majority of the rounds 𝑖 where 𝑇𝑖 = 1, accepts and
outputs {𝑞𝑖,𝑡}𝑡∈[𝜆] such that Maj

(︀
{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]

)︀
= 1−𝑃 (𝑄(𝑥)). This is directly ruled out by

Claim 4.57 and Imported Theorem 4.58 with 𝜖 = 1 and 𝛿 = 1/2.

Lemma 4.60 (Πparl analogue of Lemma 4.30). For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘
𝑄𝜆}𝜆∈N is pseudo-deterministic, sequence of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it
holds that

Pr

⎡⎢⎢⎢⎢⎢⎣ Vparl
Ver (𝑄, 𝑥, sp, 𝑦, 𝑇, 𝑧) ̸= ⊥ ∧

𝑤 /∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥))]
:

(pp, sp)← Vparl
Gen(1

𝜆, 𝑄)
𝑦 ← A(pp)

𝑇 ← {0, 1}(
𝜆2

𝜆 )

𝑧 ← A(𝑇 )
𝑤 := TestRoundOutputs[sp](𝑦, 𝑇, 𝑧)

⎤⎥⎥⎥⎥⎥⎦ = negl(𝜆),

where A maintains an internal state, which we leave implicit above, and where TestRoundOutputs
is defined as in Section 4.3.3, except that string 𝑇 is explicitly given rather than being computed
by a random oracle 𝐻 .

Proof. First, we make the following observation. For every 𝑖 ∈ [𝜆2], the strings {𝑞𝑖,𝑡}𝑡∈[𝜆]
that the verifier would output conditioned on accepting and on 𝑇𝑖 = 1 are already de-
termined by the prover’s first message 𝑦𝑖 := (𝑦𝑖,1, · · · , 𝑦𝑖,ℓ) and the secret parameters sp.
Indeed, recall from the description of ΠQV that the bits in {𝑞𝑖,𝑡}𝑡∈[𝜆] are computed from
indices 𝑗 ∈ [ℓ] where the basis ℎ𝑖,𝑗 = 0 (that is, they are the result of standard basis mea-
surements). Moreover, when ℎ𝑖,𝑗 = 0, pk𝑖,𝑗 defines an injective function, which follows
from Definition 2.15, correctness properties (a) and (c). Thus, each string 𝑦𝑖,𝑗 either has
one or zero pre-images. If it has zero, the verifier would never accept when 𝑇𝑖 = 1, and if
it has one, the verifier would only accept the first bit 𝑏𝑖,𝑗 of the pre-image.

So, we can define {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖∈[𝜆2] based on the prover’s first message {𝑦𝑖}𝑖∈[𝜆2]. Then,

• Let 𝑎 be the fraction of {𝑞𝑖,𝑡}𝑡∈[𝜆] such that Maj
(︀
{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]

)︀
= 𝑃 (𝑄(𝑥)) over 𝑖 ∈ [𝜆2].

• Let 𝑏 be the fraction of {𝑞𝑖,𝑡}𝑡∈[𝜆] such that Maj
(︀
{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]

)︀
= 𝑃 (𝑄(𝑥)) over 𝑖 : 𝑇𝑖 =

1.

By the definition of 𝐷in[𝑃, 𝑃 (𝑄(𝑥))],

𝑤 /∈ 𝐷in[𝑃, 𝑃 (𝑄(𝑥))] =⇒ 𝑎 ≤ 3

4
+

1

𝜆
.

Moreover, by Claim 4.57 and Imported Theorem 4.58 with 𝜖 = 1 and 𝛿 = 1/5,

Pr

[︂
Vparl
Ver (𝑄, 𝑥, sp, 𝑦, 𝑇, 𝑧) ̸= ⊥ ∧ 𝑏 <

4

5

]︂
= negl(𝜆).

Thus, the proof is completed by showing that
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Pr

[︂
𝑏− 𝑎 ≥ 4

5
−
(︂
3

4
+

1

𝜆

)︂
>

1

30

]︂
≤ 𝑒−2(𝜆/30)

2

= negl(𝜆),

where the expression inside the probability holds for large enough 𝜆, and the inequality is
Hoeffding’s inequality (using the case where the random variables are sampled without
replacement).

Lemma 4.61 (Πparl analogue of Lemma 4.31). For any family {𝑄𝜆, 𝑃𝜆}𝜆∈N such that {𝑃𝜆 ∘
𝑄𝜆}𝜆∈N is pseudo-deterministic, sequence of inputs {𝑥𝜆}𝜆∈N, and QPT adversary {A𝜆}𝜆∈N, it
holds that

Pr

⎡⎢⎢⎢⎢⎢⎣
Vparl
Ver (𝑄, 𝑥, sp, 𝑦, 𝑇, 𝑧) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧

MM𝜆

(︀
{{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1

)︀
= 1− 𝑃 (𝑄(𝑥)) ∧

𝑤 /∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥))]
:

(pp, sp)← Vparl
Gen(1

𝜆, 𝑄)
𝑦 ← A(pp, sp)

𝑇 ← {0, 1}(
𝜆2

𝜆 )

𝑧 ← A(𝑇 )
𝑤 := TestRoundOutputs[sp](𝑦, 𝑇, 𝑧)

⎤⎥⎥⎥⎥⎥⎦
= negl(𝜆),

where A maintains an internal state, which we leave implicit above, and where TestRoundOutputs
is defined as in Section 4.3.3, except that string 𝑇 is explicitly given rather than being computed
by a random oracle 𝐻 .

Proof. We again define {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖∈[𝜆2] based on the prover’s first message {𝑦𝑖}𝑖∈[𝜆2], and

• Let 𝑎 be the fraction of {𝑞𝑖,𝑡}𝑡∈[𝜆] such that Maj
(︀
{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]

)︀
= 1 − 𝑃 (𝑄(𝑥)) over

𝑖 ∈ [𝜆2].

• Let 𝑏 be the fraction of {𝑞𝑖,𝑡}𝑡∈[𝜆] such that Maj
(︀
{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]

)︀
= 1 − 𝑃 (𝑄(𝑥)) over

𝑖 : 𝑇𝑖 = 1.

By the definition of 𝐷out[𝑃, 𝑃 (𝑄(𝑥))],

𝑤 /∈ 𝐷out[𝑃, 𝑃 (𝑄(𝑥))] =⇒ 𝑎 ≤ 1

3
+

1

𝜆
.

Thus, the proof is completed by showing that

Pr

[︂
𝑏− 𝑎 ≥ 1

2
−
(︂
1

3
+

1

𝜆

)︂
>

1

10

]︂
≤ 𝑒−2(𝜆/10)

2

= negl(𝜆),

which again follows from Hoeffding’s inequality. Note that this argument is entirely sta-
tistical, and holds even if A𝜆 has sp.
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Step 3. Note that the protocol ΠCV is exactly Fiat-Shamir applied to Πparl. That is, take
Πparl and let the verifier’s challenge 𝑇 be computed by applying a random oracle 𝐻 to
the prover’s first message 𝑦. This results in exactly the protocol ΠCV, where we have re-
defined the prover operations (Pparl

Com,P
parl
Prove) as (PCV

Prep,P
CV
Prove,P

CV
Meas). Then, straightforward

applications of Measure-and-Reprogram (Lemma 2.9) show that Lemma 4.59, Lemma 4.60,
and Lemma 4.61 imply Lemma 4.29, Lemma 4.30, and Lemma 4.31 respectively.

In more detail, suppose that Lemma 4.29 is false, and fix 𝑃,𝑄, 𝑥, and an adversary A
that breaks that claim. Define a predicate 𝑉 that takes as input 𝑦, 𝐻(𝑦), the rest of the
transcript of the protocol, and the verifier’s secret parameters sp, and outputs whether

VCV
Ver(𝑄, 𝑥, sp, 𝜋) = {{𝑞𝑖,𝑡}𝑡∈[𝜆]}𝑖:𝑇𝑖=1 ∧ MM𝜆({{𝑃 (𝑞𝑖,𝑡)}𝑡∈[𝜆]}𝑖:𝑇𝑖=1) = 1− 𝑃 (𝑄(𝑥)).

Define adversary B𝐻 to run an interaction between A and the verifier VCV, forwarding
random oracles calls to an external oracle 𝐻 , and output 𝑦 along with auxiliary informa-
tion aux that includes the rest of the transcript and sp. Then we have that

Pr
[︀
𝑉 (𝑦,𝐻(𝑦), aux) = 1 : (𝑦, aux)← B𝐻

]︀
= non-negl(𝜆).

Since B makes poly(𝜆) queries to 𝐻 , Lemma 2.9 implies that there exists a simulator
Sim such that

Pr

⎡⎢⎣𝑉 (𝑦, 𝑇, aux) = 1 :

(𝑦, st)← Sim[B]

𝑇 ← {0, 1}(
𝜆2

𝜆 )

aux← Sim[B](𝑇, st)

⎤⎥⎦ = non-negl(𝜆).

Moreover, by definition (Lemma 2.9), Sim[B] runs B honestly except that it simulates𝐻
and measures one of B’s queries to 𝐻 . Thus, Sim[B] can be used as an adversarial prover
interacting in Πparl, where 𝑦 is sent to the verifier as the prover’s first message, and 𝑇 is
sampled and given in response. Thus, Sim[B] can be used to violate Lemma 4.59.

Finally, the fact that Lemma 4.60 implies Lemma 4.30 and Lemma 4.61 implies Lemma 4.31
can be shown in exactly the same way, by defining the appropriate predicate 𝑉 . This com-
pletes the proof.
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5 Quantum State Obfuscation

In this section, we present our construction of quantum state obfuscation in the classical
oracle model. We begin with a technical overview, extending the discussion from Sec-
tion 1.3. In Section 5.2 we construct publicly-verifiable linearly-homomorphic authenti-
cation of quantum data, a key tool in our obfuscation scheme. Then, in Section 5.3, we dis-
cuss a compiler for quantum computation that outputs what we call a “linear+measurement”
quantum program, which has a convenient form that we take advantage of in our obfus-
cation construction. Finally, in Section 5.4 we construct and prove the security of our
quantum state obfuscation scheme.

5.1 Technical overview

During this overview, we’ll slowly build up to our construction of quantum state obfus-
cation, highlighting the main ideas along the way. But first, it may be useful to convey a
high level feel for the construction. To obfuscate a quantum program (|𝜓⟩ , 𝐶) that imple-
ments the computation 𝑥→ 𝑄(𝑥), we first encode the state

| ̃︀𝜓⟩ ← Enc𝑘 (|𝜓⟩)

using a novel quantum authentication scheme (QAS) that we design with particular prop-
erties in mind. Next, we compile 𝐶 into what we call a "linear + measurement", or LM,
quantum program. Such programs consist solely of operations that can be performed
on data authenticated with our QAS. Finally, we prepare a sequence of classical oracles
F1, . . . ,F𝑡,G, where 𝑡 is the number of "measurement layers" in the LM quantum pro-
gram. The oracles F1, . . . ,F𝑡 are designed to help the evaluator implement an encrypted
sequence of adaptive measurements. They output random labels encoding the measure-
ment results, which are then fed into downstream oracles. The oracle G is designed to
return the output 𝑄(𝑥) if the evaluation was performed honestly. The final obfuscation
then consists of the state | ̃︀𝜓⟩ and the oracles F1, . . . ,F𝑡,G. We will describe each of these
pieces and how they fit together in more detail.

We begin this technical overview by presenting our quantum authentication scheme
(Section 5.1.1). Next, we discuss the notion of LM quantum programs, and describe a
compiler that writes any quantum program as an LM quantum program (Section 5.1.2).
Next, we show how to use these building blocks to construct a garbling scheme and then
a full-fledged obfuscation scheme for quantum computation (Section 5.1.3), and mention
a couple of key ideas behind proving security. We defer a more detailed proof overview
to Section 5.4.2.

5.1.1 Quantum authentication from random subspaces

Encode-encrypt authentication. Our starting point is the notion of an “encode-encrypt”
authentication scheme, as defined by Broadbent, Gutoski and Stebila [BGS13]. Such
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schemes are parameterized by a family of CSS codes C , and operate as follows. To en-
code a qubit |𝜓⟩, sample a random code 𝐶 ← C from the family, sample a quantum
one-time pad key (𝑥, 𝑧), and output the “encoded-and-encrypted” state 𝑋𝑥𝑍𝑥𝐶 |𝜓⟩. As
discussed by [BGS13], various choices of the code family give rise to popular quantum au-
thentication schemes (QAS), e.g., the polynomial scheme used for multi-party quantum
computation [BOCG+06] and verifiable delegation [ABOEM18], and the trap code used
for quantum one-time programs [BGS13] and zero-knowledge proofs for QMA [BJSW16].

Our instantiation. A crucial aspect of obfuscation that does not arise in these other set-
tings is the need to preserve security when we allow the adversary to access the verifier
of the authentication scheme an a-priori unbounded number of times. Indeed, the oracles
released as part of our obfuscation scheme include subroutines that perform checks on
authenticated data, and hence implicitly give the adversary reusable access to the veri-
fier. This requirement of “public-verifiability” is not always satisfied by encode-encrypt
schemes: for example, the trap code is completely insecure in this setting, as it is possible
to learn the location of the traps via repeated queries to the verifier.

While certain flavors of public-verifiability have been considered previously in the
quantum authentication literature (e.g. [DS18, GYZ17]), we find that a particularly simple
instantiation of the encode-encrypt framework suffices for us: sample a random subspace
𝑆, a random shift ∆, and use the CSS code defined by the isometry 𝐸𝑆,Δ that maps |0⟩ →
|𝑆⟩ , |1⟩ → |𝑆 +∆⟩.33 That is, to encode an 𝑛-qubit state |𝜓⟩, sample a key 𝑘 = (𝑆,∆, 𝑥, 𝑧)
where 𝑆 is a 𝜆-dimensional subspace of F2𝜆+1

2 , ∆ ∈ F2𝜆+1
2 ∖ 𝑆, and 𝑥, 𝑧 ∈ {0, 1}𝑛·(2𝜆+1), and

output
| ̃︀𝜓⟩ = 𝑋𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ |𝜓⟩ := Enc𝑘(|𝜓⟩).

Beyond satisfying a natural notion of public-verifiability (which will be discussed be-
low), the resulting QAS satisfies the following desirable properties: (i) linear-homomorphism,
and (ii) classically-decodable standard and Hadamard basis measurements (that is, a clas-
sical machine can decode the results of standard and Hadamard basis measurements per-
formed on authenticated data). We note that these latter properties are in fact endemic
to encode-encrypt schemes (see discussion in [BGS13]), but we confirm them here for
completeness.

Useful properties. First, since 𝑆 is a subspace, one can confirm that CNOTs are transver-
sal for this scheme as long as the same (𝑆,∆) is used to encode each qubit. That is, apply-
ing 2𝜆+ 1 CNOT gates qubit-wise to an encoding of 𝑏1 and 𝑏2 yields

𝑋𝑥1,𝑥2𝑍𝑧1,𝑧2 |𝑆 + 𝑏1 ·∆⟩ |𝑆 + 𝑏2 ·∆⟩ → 𝑋𝑥1,𝑥1⊕𝑥2𝑍𝑧1⊕𝑧2,𝑧2 |𝑆 + 𝑏1 ·∆⟩ |𝑆 + (𝑏1 ⊕ 𝑏2) ·∆⟩ ,

which is indeed an encoding of the output of the CNOT operation using quantum one-
time pad keys (𝑥1, 𝑧1⊕ 𝑧2) and (𝑥1⊕𝑥2, 𝑧2). Thus, an evaluator can apply any sequence of

33Here, we use the standard subspace state notation: for an (affine) subspace 𝑆, |𝑆⟩ ∝
∑︀

𝑠∈𝑆 |𝑠⟩.

118



CNOT gates, which we refer to as a "linear"34 function, to authenticated data, as long as
the decoder performs the analogous updates to their one-time pad keys.

Next, we note that standard basis measurements of an encoded qubit 𝑋𝑥𝑍𝑧(𝛼 |𝑆⟩ +
𝛽 |𝑆 +∆⟩) can be decoded classically. Indeed, any vector in 𝑆 + 𝑥 can be interpreted as a
0, while any vector in 𝑆 +∆+ 𝑥 can be interpreted as a 1.

Finally, we check that the results of a Hadamard basis measurement can also be de-
coded classically. To do so, we’ll define the "primal" codespace 𝑆Δ := 𝑆 ∪ (𝑆 + ∆), and
define the "dual" codespace to consist of ̂︀𝑆 := 𝑆⊥Δ and ̂︀𝑆 + ̂︀∆, where ̂︀∆ is such that̂︀𝑆̂︀Δ := ̂︀𝑆 ∪ (̂︀𝑆 + ̂︀∆) = 𝑆⊥ .

Then, it is not hard to check and confirm that

𝐻⊗(2𝜆+1)𝑋𝑥𝑍𝑧 (𝛼 |𝑆⟩+ 𝛽 |𝑆 +∆⟩) = 𝑋𝑧𝑍𝑥

(︂
𝛼 + 𝛽√

2
|̂︀𝑆⟩+ 𝛼− 𝛽√

2
|̂︀𝑆 + ̂︀∆⟩)︂ .

Thus, any vector in ̂︀𝑆 + 𝑧 can be interpreted as a 0 measurement result in the Hadamard
basis, and any vector in ̂︀𝑆 + ̂︀∆ + 𝑧 can be interpreted as a 1 measurement result in the
Hadamard basis.

Reusable security. Now we turn to the security of our scheme. Intuitively, we want to
capture the fact that no adversary can successfully tamper with authenticated data, even
given the ability to verify authenticated data. In more detail, given an authentication key
𝑘 = (𝑆,∆, 𝑥, 𝑧), where 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑧 = (𝑧1, . . . , 𝑧𝑛), we define the following classical
functionalities, which are parameterized by the key 𝑘 and a choice of bases 𝜃 ∈ {0, 1}𝑛.

• Dec𝑘,𝜃(̃︀𝑣): On input a tuple of vectors ̃︀𝑣 parsed as (̃︀𝑣1, . . . , ̃︀𝑣𝑛), the decoding algorithm
defines 𝑣 ∈ {0, 1}𝑛 as follows. For each 𝑖 ∈ [𝑛]:

if 𝜃𝑖 = 0 : 𝑣𝑖 =

⎧⎪⎨⎪⎩
0 if ̃︀𝑣𝑖 ∈ 𝑆 + 𝑥𝑖

1 if ̃︀𝑣𝑖 ∈ 𝑆 +∆+ 𝑥𝑖

⊥ otherwise
if 𝜃𝑖 = 1 : 𝑣𝑖 =

⎧⎪⎨⎪⎩
0 if ̃︀𝑣𝑖 ∈ ̂︀𝑆 + 𝑧𝑖

1 if ̃︀𝑣𝑖 ∈ ̂︀𝑆 + ̂︀∆+ 𝑧𝑖

⊥ otherwise
.

If 𝑣𝑖 = ⊥ for some 𝑖, then output ⊥, and otherwise output 𝑣.

• Ver𝑘,𝜃(̃︀𝑣): On input a tuple of vectors ̃︀𝑣 parsed as (̃︀𝑣1, . . . , ̃︀𝑣𝑛), the verification algo-
rithm defines 𝑣 ∈ {⊤,⊥}𝑛 as follows.

if 𝜃𝑖 = 0 : 𝑣𝑖 =

{︃
⊤ if ̃︀𝑣𝑖 ∈ 𝑆Δ + 𝑥𝑖

⊥ otherwise
if 𝜃𝑖 = 1 : 𝑣𝑖 =

{︃
⊤ if ̃︀𝑣𝑖 ∈ ̂︀𝑆̂︀Δ + 𝑧𝑖

⊥ otherwise
.

If 𝑣𝑖 = ⊥ for some 𝑖, then output ⊥, and otherwise output ⊤.
34Of course, all quantum gates are linear with respect to the ambient Hilbert space of exponential dimen-

sion. Here, linearity specifically refers to the fact that any sequence of CNOT gates applies a linear function
over F2 to each standard basis vector.
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That is, the verification algorithm just checks whether its inputs lie in the primal (resp.
dual) codespace, while the decoding algorithm additionally computes the logical bits en-
coded by its inputs. We show that for any state |𝜓⟩, sequence of measurement bases
𝜃 ∈ {0, 1}𝑛, and adversarial measurement Adv that samples

̃︀𝑣 ← AdvVer𝑘,·(·)
(︀
𝑋𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ |𝜓⟩

)︀
,

the decoded value 𝑣 ← Dec𝑘,𝜃(̃︀𝑣) is either ⊥, or its distribution is very close in total vari-
ation distance to the distribution that results from directly measuring |𝜓⟩ in the bases
𝜃.

In fact, we also consider the possibility that the adversary is supposed to homomor-
phically apply some sequence of CNOT gates (that is, a linear function 𝐿) to the authenti-
cated data before measuring. Thus, in full generality we also parameterize the decoding
Dec𝑘,𝜃,𝐿 and verification Ver𝑘,𝜃,𝐿 algorithms by a linear function 𝐿, which determines an
updated sequence of one-time pad keys (𝑥𝐿,1, . . . , 𝑥𝐿,𝑛), (𝑧𝐿,1, . . . , 𝑧𝐿,𝑛) to be used in the
decoding and verification.

A word on the proof of security. Our proof combines two useful tricks from the liter-
ature: superspace sampling ([Zha19, CLLZ21]) and the Pauli twirl [ABOEM18]. Briefly,
our first step is to sample random (say, (3𝜆/2 + 1)-dimensional) superspaces 𝑅 ⊃ 𝑆Δ,̂︀𝑅 ⊃ ̂︀𝑆̂︀Δ and use (𝑅, ̂︀𝑅) in lieu of (𝑆Δ, ̂︀𝑆̂︀Δ) in the definition of the oracle Ver𝑘,·,·(·). Since 𝑅
and ̂︀𝑅 are random and small enough compared to the ambient space, the adversary can-
not notice this change except with negligible probability. Next, we imagine sampling each
one-time pad vector in two parts: for 𝑥𝑖 we sample an 𝑥𝑖,𝑅 ← 𝑅 and an 𝑥𝑖,co(𝑅) ← co(𝑅),
where co(𝑅) is a set of coset representatives of 𝑅, and define 𝑥𝑖 = 𝑥𝑖,𝑅 + 𝑥𝑖,co(𝑅), and for
𝑧𝑖 we sample a 𝑧𝑖, ̂︀𝑅 ← ̂︀𝑅 and a 𝑧𝑖,co( ̂︀𝑅) ← co( ̂︀𝑅), and define 𝑧𝑖 = 𝑧𝑖, ̂︀𝑅 + 𝑧𝑖,co( ̂︀𝑅). Finally, we
consider the following experiment:

• Sample 𝑅, ̂︀𝑅, {𝑥𝑖,co(𝑅), 𝑧𝑖,co( ̂︀𝑅)}𝑖∈[𝑛] and give this information to the adversary in the
clear. Note that this is now sufficient to implement the oracle Ver𝑘,·,·(·).

• Sample random 𝑆,∆ such that ̂︀𝑅⊥ ⊂ 𝑆 ⊂ 𝑆Δ ⊂ 𝑅 and {𝑥𝑖,𝑅, 𝑧𝑖, ̂︀𝑅}𝑖∈[𝑛] to complete
the description of the authentication key (𝑆,∆, 𝑥, 𝑧). Send 𝑋𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ |𝜓⟩ to the ad-
versary, who mounts its attack.

At this point, we use the Pauli twirl over the space in between ̂︀𝑅⊥ and 𝑅 to show that
any adversarial operation can be decomposed into a fixed linear combination of Pauli
attacks. To conclude, we use the randomness of 𝑆,∆ to show that any fixed Pauli attack
will either be rejected with overwhelming probability or act as the identity on the encoded
qubit, which completes the proof. See Section 5.2 for the full details of our definitions,
construction, and security proofs.
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5.1.2 Linear + measurement quantum programs

Next, we discuss our quantum program compiler. We start with any quantum circuit
written using the {CNOT, 𝐻, 𝑇} universal gate set, where 𝐻 is the Hadamard gate, and
𝑇 applies a phase of 𝑒𝑖𝜋/4. With the help of magic states, we compile the circuit into an
alternating sequence of layers of CNOT gates (i.e. linear functions) and partial standard
and Hadamard basis measurements, which we refer to as "ZX measurements".35 We refer
to the resulting program as a linear + measurement (LM) quantum program. We note that
the measurements are in fact partial in two aspects: (i) they may only operate on a subset
of the qubits, and (ii) the measurement operators are projectors with rank potentially
greater than 1. Furthermore, we allow the measurements to be adaptive, that is, their
description may depend on previous measurement results (and the classical input to the
computation).

More specifically, our goal will be to write each of the 𝐻 and 𝑇 gates as a sequence of
CNOT gates, ZX measurements, and Pauli corrections derived from these measurement
results. Then, the Pauli corrections can be commuted past future CNOT gates using the
update rule (𝑥1, 𝑧1), (𝑥2, 𝑧2)→ (𝑥1, 𝑧1⊕𝑧2), (𝑥1⊕𝑥2, 𝑧2), and incorporated into the descrip-
tion of future ZX measurements.

Handling the 𝐻 gate. Following [BGS13], we prepare the two-qubit magic state

|𝜑𝐻⟩ ∝ |00⟩+ |01⟩+ |10⟩ − |11⟩ ,

and perform the Hadamard gate as shown in Fig. 15 (Page 144), using one CNOT gate and
Pauli corrections derived from a standard basis and a Hadamard basis measurement. As
remarked in [BGS13], it might seem strange at first that we are replacing a Hadamard gate
with a circuit that nonetheless performs a Hadamard basis measurement. However, in
our setting this does represent real progress: our authentication scheme does not support
applying Hadamard gates directly to authenticated data,36 but does support the decoding
of Hadamard basis measurements.

Handling the 𝑇 gate. As we show on the bottom left of Fig. 16 (Page 146), the 𝑇 gate
can be implemented using the two magic states

|𝜑𝑇 ⟩ ∝ |0⟩+ 𝑒𝑖𝜋/4 |1⟩ and |𝜑𝑃𝑋⟩ ∝ 𝑖 |0⟩+ |1⟩ ,

a CNOT gate, a classically controlled CNOT gate, and Pauli corrections.
Unfortunately, controlled CNOT is a "multi-linear" operation that we don’t know how

to directly implement on data authenticated with our authentication scheme. Therefore,

35Here, ZX is not meant to denote the composition of the Z and X operators, rather, it is meant as a
shorthand for “standard + Hadamard basis”.

36At least, while preserving its linear-homomorphism. Applying a Hadamard gate transversally to au-
thenticated data would result in an encoding with respect to the dual subspace, which would no longer
support transversal CNOTs with data encoded using the primal subspace.
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taking inspiration from the "encrypted CNOT" operation introduced in [Mah18a],37 we
replace the controlled CNOT operation with a projective measurement Γ𝑐 controlled on the
classical control bit 𝑐, where

• Γ0 = {|00⟩⟨00| + |10⟩⟨10| , |01⟩⟨01| + |11⟩⟨11|}. That is, it measures its second input in
the standard basis and has no effect on its first input.

• Γ1 = {|00⟩⟨00| + |11⟩⟨11| , |01⟩⟨01| + |10⟩⟨10|}. That is, it measures the XOR of its two
inputs, partially collapsing both.

Note that Γ1 can roughly be seen as applying CNOT “out of place”, writing the result
to a third register, and then measuring it. We also remark that both of these measurements
are diagonal in the standard basis, and thus can be performed on our authenticated data.

In the implementation of the 𝑇 gate shown on the bottom left of Fig. 16, the 𝑐-CNOT
operation is applied to the two magic states, followed by a measurement of the second
magic state wire in the standard basis, and finally a 𝑍 correction to the first magic state
wire conditioned on both 𝑐 and the measurement outcome. One can show that the result
of these operations is identical to what is shown on the bottom right of Fig. 16: measure Γ𝑐
on the two magic state wires, then measure the second magic state wire in the Hadamard
basis, and finally apply a 𝑍 correction to the first magic state wire conditioned on both
𝑐 and the XOR of the two measurement results. We make this precise in the proof of
Claim 5.17, showing that our Γ𝑐-based implementation of the 𝑇 gate works as expected.

Formalizing LM quantum programs. By combining these observations, we are able to
specify any quantum program with 𝑡 many 𝑇 gates using an 𝑛-qubit state |𝜓⟩ (which in
particular includes all of the necessary magic state) along with a sequence

𝐿1,𝑀𝜃1,𝑓
(·)
1
, . . . , 𝐿𝑡,𝑀𝜃𝑡,𝑓

(·)
𝑡
, 𝐿𝑡+1,𝑀𝜃𝑡+1,𝑔(·)

where

• Each 𝐿𝑖 is a sequence of CNOT gates.

• Each 𝑀
𝜃𝑖,𝑓

(·)
𝑖

(and 𝑀𝜃𝑖,𝑔(·)) describes a partial ZX measurement in the following way:

– 𝜃𝑖 ∈ {0, 1,⊥}𝑛 defines a partial set of measurement bases. We define Φ𝑖,0 :=
{𝑗 : 𝜃𝑖,𝑗 = 0} to be the set of registers measured in the standard basis and
Φ𝑖,1 := {𝑗 : 𝜃𝑖,𝑗 = 1} to be the set of registers measured in the Hadamard basis,
and define Φ𝑖 := (Φ𝑖,0,Φ𝑖,1) to be the total set of registers on which the 𝑖’th
measurement is performed.

37Those familiar with [Mah18a]’s encrypted CNOT may notice the parallels: in [Mah18a]’s setting, these
two measurements correspond to the two types of “claws” generated by the lattice-based encryption of 𝑐.
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– Each 𝑓
(·)
𝑖 is a function that assigns measurement outcomes to basis states. The

superscript indicates that its description may depend on previously generated
information, i.e. the classical input 𝑥 to the computation and previous mea-
surement results.

– To be precise,𝑀
𝜃𝑖,𝑓

(·)
𝑖

can be described by the following measurement operators:⎧⎪⎨⎪⎩𝐻Φ𝑖,1

⎛⎜⎝ ∑︁
𝑚:𝑓

(·)
𝑖 (𝑚Φ𝑖)=𝑦

|𝑚⟩⟨𝑚|

⎞⎟⎠𝐻Φ𝑖,1

⎫⎪⎬⎪⎭
𝑦

,

where 𝐻Φ𝑖,1 applies a Hadamard gate to each qubit in the set Φ𝑖,1, and 𝑚Φ𝑖 is
the substring of 𝑚 consisting of the indices in Φ𝑖.

Thus, we have written our quantum program as an alternating sequence of linear
operations and partial ZX measurements. We formalize this notion of an "LM quantum
program" in Definition 5.13, and provide an example diagram of an LM quantum program
in Fig. 14.

However, looking ahead, it will be convenient to apply our obfuscator not to a com-
pletely arbitrary LM quantum program, but rather to an LM quantum program that sat-
isfies a particular structural property. This property is described in Definition 5.14, and
satisfied by LM quantum programs output by our compiler described above. In order to
formalize such programs (and our obfuscator), it will be necessary to introduce some fur-
ther notation. For the purpose of this technical overview, we will introduce the notation
and show how it is applied to the concrete compiler described above, but defer further
details and a formalization of the property given by Definition 5.14 to the body.

It may be helpful to refer to Fig. 16 (our implementation of the 𝑇 gate) and Fig. 14
(the example LM quantum program) while reading what follows. We begin by specifying
(disjoint) sets 𝑉1, . . . , 𝑉𝑡+1 and (disjoint) sets 𝑊1, . . . ,𝑊𝑡 with the following properties.

• Φ1 = (𝑉1,𝑊1),Φ2 = (𝑉1, 𝑉2,𝑊2), . . . ,Φ𝑡 = (𝑉1, . . . , 𝑉𝑡,𝑊𝑡),Φ𝑡+1 = (𝑉1, . . . , 𝑉𝑡+1) =
[𝑛].

• 𝑉𝑖 are the set of registers that are fully collapsed in the standard or Hadamard basis
by the 𝑖’th measurement. Concretely, 𝑉𝑖 consists of the 3rd wire of the (𝑖 − 1)’th
𝑇 -gate circuit (Fig. 16), 1st and 2nd wires of any 𝐻-gate circuit (Fig. 15) in the 𝑖’th
layer, and 1st wire of the 𝑖’th 𝑇 -gate circuit (Fig. 16).

• 𝑊𝑖 are the set of registers that are partially collapsed by the 𝑖’th measurement. Con-
cretely, 𝑊𝑖 consists of the two magic state wires used for the 𝑖’th 𝑇 gate circuit. In-
deed, the 𝑖’th measurement applies the controlled measurement Γ𝑐𝑖 to these wires,
which only partially collapses them.

Then, we are able to specify further details about the 𝑓 (·)
𝑖 and 𝑔(·) measurements.
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• Each 𝑓 (·)
𝑖 takes as input some sequence (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖) and outputs 𝑣𝑖 (fully collapsing

the 𝑉𝑖 registers) along with a bit 𝑟𝑖 (partially collapsing the 𝑊𝑖 registers).

• In order to compute the bit 𝑟𝑖, the function 𝑓
(·)
𝑖 first needs to compute the 𝑖’th con-

trol bit 𝑐𝑖, which may depend on the input 𝑥 and all previous measurement results
(𝑣1, . . . , 𝑣𝑖, 𝑟1, . . . , 𝑟𝑖−1). While we are able to provide 𝑓 (·)

𝑖 with the values 𝑣1, . . . , 𝑣𝑖−1
on registers 𝑉1, . . . , 𝑉𝑖−1 (which have been collapsed by previous measurements),
this is not the case for the bits 𝑟1, . . . , 𝑟𝑖−1, since the 𝑊1, . . . ,𝑊𝑖−1 registers may have
been computed on since previous measurements. To handle this, we remember the
previous results 𝑟1, . . . , 𝑟𝑖−1, and paramaterize 𝑓𝑥,𝑟1,...,𝑟𝑖−1

𝑖 by the input 𝑥 and previ-
ously generated bits 𝑟1, . . . , 𝑟𝑖−1. Thus, the actual measurements are specified adap-
tively using the previously generated bits 𝑟1, . . . , 𝑟𝑖−1.

• In a similar manner, the function 𝑔𝑥,𝑟1,...,𝑟𝑡 is parameterized by the input 𝑥 and pre-
viously generated bits 𝑟1, . . . , 𝑟𝑡. It takes as input some sequence (𝑣1, . . . , 𝑣𝑡+1) and
instead of performing an intermediate measurement, it computes the final output
𝑦 = 𝑄(𝑥).

Finally, we have set up enough notation to start discussing our actual obfuscation
construction, which follows.

5.1.3 Obfuscation construction

So far, we have discussed a method for authenticating quantum states | ̃︀𝜓⟩ = Enc𝑘(|𝜓⟩)
using key 𝑘 = (𝑆,∆, 𝑥, 𝑧), and a method for writing any quantum program as

|𝜓⟩ , 𝐿1,𝑀𝜃1,𝑓
(·)
1
, . . . , 𝐿𝑡,𝑀𝜃𝑡,𝑓

(·)
𝑡
, 𝐿𝑡+1,𝑀𝜃𝑡+1,𝑔(·)

where |𝜓⟩ consists of a quantum state that was part of the description of the original
program, as well as some magic states.

Garbling via encrypted measurements. We will build up to our full obfuscation con-
struction by first describing how to garble quantum circuits using our approach. That is,
we’ll suppose that the evaluator is only interested in computing the output on a particular
input 𝑥, and show how to design oracles F1[𝑥], . . . ,F𝑡[𝑥],G[𝑥] that, along with the authenti-
cated state | ̃︀𝜓⟩ = Enc𝑘(|𝜓⟩), allow the evaluator to perform the entire computation on top
of authenticated data, and eventually obtain 𝑄(𝑥) without learning anything else about
the program’s implementation.

The basic idea is to implement the measurement 𝑀
𝜃𝑖,𝑓

(𝑥,·)
𝑖

on authenticated data using
an oracle F𝑖[𝑥], that, instead of outputting the results (𝑣𝑖, 𝑟𝑖) in the clear, outputs the en-
coded version ̃︀𝑣𝑖 of 𝑣𝑖 (that is, ̃︀𝑣𝑖 is in the support of the authenticated state that encodes
the logical string 𝑣𝑖) along with a random label ℓ𝑖 representing the bit 𝑟𝑖. We will always
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denote vectors that result from measuring authenticated states (but not decoding) with a
tilde (e.g. ̃︀𝑣𝑖).

Roughly F𝑖[𝑥] will be implemented as follows. It takes as input vectors ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖
from the support of authenticated states (obtained from authenticated wires 𝑉1, . . . , 𝑉𝑖,𝑊𝑖),
as well as labels ℓ1, . . . , ℓ𝑖−1 that encode the results 𝑟1, . . . , 𝑟𝑖−1 of previous measurements.
It first decodes its inputs, and then uses the decoded values to compute the next mea-
surement results (𝑣𝑖, 𝑟𝑖). Finally, it outputs the encodings (̃︀𝑣𝑖, ℓ𝑖) where ℓ𝑖 is a label for 𝑟𝑖
computed via a random oracle 𝐻 .

We will implement G[𝑥] in exactly the same way, except that it directly outputs the
result 𝑦. Sketches of these oracles follow.

F𝑖[𝑥](̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)
1. (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖)← Dec𝑘,𝜃𝑖,𝐿𝑖...𝐿1(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖).38 Abort if the output is ⊥.

2. For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),
and let 𝑟𝜄 be the bit such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 , or abort if there is no such bit.

3. Compute (𝑣𝑖, 𝑟𝑖) = 𝑓
𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖).

4. Set ℓ𝑖 := 𝐻(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (̃︀𝑣𝑖, ℓ𝑖).
G[𝑥](̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡)

1. (𝑣1, . . . , 𝑣𝑡+1)← Dec𝑘,𝜃𝑖,𝐿𝑡+1...𝐿1(̃︀𝑣1, . . . , ̃︀𝑣𝑡+1). Abort if the output is ⊥.

2. For each 𝜄 ∈ [𝑡], let

ℓ𝜄,0 = 𝐻(̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),
and let 𝑟𝜄 be the bit such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 , or abort if there is no such bit.

3. Compute and output 𝑦 = 𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1).

Proving the security of this garbled program consists of two main steps: (1) a “sound-
ness” argument establishing that no adversary, given | ̃︀𝜓⟩ and oracle access to F1[𝑥], . . . ,F𝑡[𝑥]
should be able to output classical strings (̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) such that G[𝑥](̃︀𝑣1, . . . , ̃︀𝑣𝑡+1,
ℓ1, . . . , ℓ𝑡) /∈ {𝑄(𝑥),⊥}, and (2) a “simulation” argument establishing that the F1[𝑥], . . . ,F𝑡[𝑥]
oracles can be simulated using a verification oracle Ver𝑘,·,·(·) for the authentication scheme
instead of the decoding functionality Dec𝑘,·,·(·). Indeed, a common theme throughout our

38Recall the description of the decoding oracle Dec from Section 5.1.1. We additionally parameterize
the oracle with a concatenation of the linear functions 𝐿𝑖 . . . 𝐿1, which determines the sequence of Pauli
one-time-pad keys to be used during the decoding.
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proof strategy is understanding how we can replace Dec𝑘,·,·(·) with Ver𝑘,·,·(·) so that we
can then appeal to the security of the authentication scheme. Further discussion on these
two steps can be found in our proof intuition section, Section 5.4.2. Here, we just men-
tion that the main idea for the soundness argument is an inductive strategy, where we
perform the first measurement and appeal to soundness of a garbled program with one
fewer measurement layer.

From garbling to obfuscation via signature tokens. To complete our construction of
full-fledged obfuscation, it remains to show how to grant the evaluator the ability to ex-
ecute the circuit on any input 𝑥 of its choice, without risking any other leakage on the
description of the program. A natural idea is to re-define F1, . . . ,F𝑡,G so that they ad-
ditionally take 𝑥 as input, and include 𝑥 in the hashes 𝐻(𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖) that
define the output labels. We intuitively want to sample different output labels for each 𝑥
so that the resulting obfuscation scheme can roughly be seen as a “concatenation” of in-
dependently sampled garbling schemes for each 𝑥 (that share the same initial authenticated
state). However, it turns out that this is not yet enough to ensure security.

Indeed, nothing is preventing the adversary from applying a type of “mixed input” at-
tack, where they evaluate honestly on an input 𝑥, but at some point insert a measurement
implemented by the oracle F𝑖(𝑥

′, ·) on some input 𝑥′ ̸= 𝑥. That is, at layer 𝑖, the adver-
sary would first implement F𝑖(𝑥′, ·) (and ignore the output labels) to collapse the state in
some way before continuing with their honest evaluation procedure using F𝑖(𝑥, ·). Unfor-
tunately, this rogue call to F𝑖(𝑥

′, ·) wouldn’t destroy the current state enough to cause the
remaining oracle calls to F𝑖(𝑥, ·), . . . ,F𝑡(𝑥, ·),G(𝑥, ·) to abort, but might collapse the state in
a manner inconsistent with an honest evaluation on input 𝑥, eventually allowing the ad-
versary to break the “soundness” of the scheme by finding an input to G(𝑥, ·) that results
in an output 𝑦 ̸= 𝑄(𝑥).

Taking inspiration from [BKNY23] who faced a similar issue, we solve our problem
via the use of signature tokens [BS16]. This quantum cryptographic primitive consists of a
quantum signing key |sk⟩ that may be used to produce a classical signature 𝜎𝑥 on any sin-
gle message 𝑥 but never two signatures 𝜎𝑥, 𝜎𝑥′ on two different messages 𝑥, 𝑥′ simultane-
ously. We include a quantum signing key |sk⟩ as part of our obfuscation construction, and
re-define the oracles F1, . . . ,F𝑡,G to take 𝑥 and a signature 𝜎𝑥 as input, abort if the signa-
ture is invalid, and otherwise include both in the hashes 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖)
that define the output labels.

Intuitively, this prevents the above attack. Once the adversary has begun an honest
evaluation on some input 𝑥, it must “know” some valid signature 𝜎𝑥, preventing it from
querying the oracles on any input that starts with (𝑥′, 𝜎𝑥′). That is, if it actually want
to evaluate on 𝑥′, it must uncompute everything it has computed so far to return to |sk⟩
before it can produce a signature 𝜎𝑥′ and begin evaluating on 𝑥′.

We provide more details about this approach in the proof intuition section, Section 5.4.2.
Of note is the fact that we crucially use a purified random oracle [Zha19] in order to ex-
tract a signature token on 𝑥 from any adversary who has begun evaluating the obfuscated
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program on 𝑥. Formalizing this approach is one of trickier aspects of the proof, and we
describe a toy problem in Section 5.4.2 that may provide some intuition for the actual
proof.

5.2 Publicly-verifiable quantum authentication

In this section, we introduce the notion of a “publicly-verifiable linearly-homomorphic
QAS (Quantum Authentication Scheme) with classically-decodable ZX measurements.”
We then provide a construction and security proof.

5.2.1 Definitions

The following notation will be heavily referenced both throughout this section, and through-
out the remainder of the paper.

Partial ZX measurements. Given a string 𝜃 ∈ {0, 1,⊥}𝑛, define sets

Φ𝜃 := {𝑖 : 𝜃𝑖 ̸= ⊥}, Φ𝜃,0 = {𝑖 : 𝜃𝑖 = 0}, Φ𝜃,1 = {𝑖 : 𝜃𝑖 = 1}, Φ𝜃,⊥ := {𝑖 : 𝜃𝑖 = ⊥}.

We will often write Φ,Φ0,Φ1,Φ⊥ instead of Φ𝜃,Φ𝜃,0,Φ𝜃,1,Φ𝜃,⊥ when the choice of 𝜃 is clear
from context. The string 𝜃 will be used to denote the basis of a partial measurement on
𝑛 qubits, where the 0 indices are measured in the standard basis and the 1 indices are
measured in the Hadamard basis. We will also need the following notation.

• Given a string 𝑚 ∈ {0, 1}𝑛 and a set Φ ⊆ [𝑛], let 𝑚Φ denote the substring of 𝑚
consisting of bits {𝑚𝑖}𝑖∈Φ.

• Given 𝜃 ∈ {0, 1,⊥}𝑛 and a set Φ ⊆ [𝑛], define 𝜃[Φ] to be equal to 𝜃 on indices in 𝑉
and ⊥ everywhere else.

• Given a register ℳ, an operation 𝑈 on ℳ, and a subset Φ ⊆ [𝑛], let 𝑈Φ be the
operation onℳ⊗𝑛 that applies 𝑈 to the 𝑖’th copy ofℳ for each 𝑖 ∈ Φ.

For any 𝜃 ∈ {0, 1,⊥}𝑛 and classical function 𝑓 : {0, 1}|Φ| → {0, 1}*, let 𝑀𝜃,𝑓 be the
projective measurement on 𝑛 qubits defined by the operators⎧⎨⎩𝐻Φ1

⎛⎝ ∑︁
𝑚:𝑓(𝑚Φ)=𝑦

|𝑚⟩⟨𝑚|

⎞⎠𝐻Φ1

⎫⎬⎭
𝑦

.

For any 𝑛-qubit registerℳ, we write

𝑀𝜃,𝑓 (ℳ)→ℳ, 𝑦

to refer to the operation that measuresℳ according to 𝑀𝜃,𝑓 and then writes the classical
result 𝑦 to a new register. Sometime we will write𝑀𝜃,𝑓 (ℳ)→ 𝑦 to denote just the classical
measurement result 𝑦.
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Linear operations. We will use 𝐿 to denote a sequence of CNOT gates on 𝑛 qubits,
which we refer to as a linear operation. While all quantum gates are linear with respect to
the ambient Hilbert space of exponential dimension, here linearity specifically refers to
the fact that any sequence of CNOT gates applies a linear function over F2 to each stan-
dard basis vector. In an abuse of notation, 𝐿 will either refer to the classical description of
a series of CNOT gates or to the actual unitary operation that applies these gates. Which
case should be clear from context.

Syntax. A publicly-verifiable, linearly-homomorphic quantum authentiation scheme (QAS)
with classically-decodable ZX measurements has the following syntax. Let 𝑝 = 𝑝(𝜆) be a
polynomial.

• Gen(1𝜆, 𝑛) → 𝑘: The key generation algorithm takes as input a security parameter
1𝜆 and number of qubits 𝑛 = poly(𝜆), and outputs an authentication key 𝑘.

• Enc𝑘(ℳ)→ 𝒞: The encoding algorithm is an isometry parameterized by an authen-
tication key 𝑘 that maps a state on an 𝑛-qubit registerℳ :=ℳ1⊗· · ·⊗ℳ𝑛 to a state
on an 𝑛𝑝-qubit register 𝒞 := 𝒞1 ⊗ · · · ⊗ 𝒞𝑛, where each 𝒞𝑖 is an 𝑝-qubit register.

• LinEval𝐿(𝒞) → 𝒞: The linearly-homomorphic evaluation procedure is a unitary pa-
rameterized by a linear operation 𝐿 that operates on register 𝒞.

• Dec𝑘,𝐿,𝜃 (𝑐) → 𝑚 ∪ {⊥}: The classical decoding algorithm is parameterized by an
authentication key 𝑘, a linear operation 𝐿, and a choice of bases 𝜃 ∈ {0, 1,⊥}𝑛. It
takes as input a string 𝑐 ∈ {0, 1}|Φ|·𝑝 and outputs either a classical string𝑚 ∈ {0, 1}|Φ|
or ⊥.

• Ver𝑘,𝐿,𝜃(𝑐) → {⊤,⊥}: The classical verification algorithm is identical to Dec except
that whenever Dec outputs an 𝑚 ̸= ⊥, Ver outputs ⊤.

Partial ZX measurements on authenticated states. First, given the parameter 𝑝, define

̃︀Φ :=
⋃︁
𝑖∈Φ

{(𝑖− 1)𝑝+ 1, . . . , 𝑖𝑝} ⊆ [𝑛𝑝].

That is, ̃︀Φ contains the 𝑖’th chunk of 𝑝 indices for each 𝑖 ∈ Φ. Define ̃︀Φ0, ̃︀Φ1, ̃︀Φ⊥ analogously.
For any 𝜃 ∈ {0, 1,⊥}𝑛, classical function 𝑓 : {0, 1}|Φ| → {0, 1}*, authentication key 𝑘, and
linear operation 𝐿, let ̃︁𝑀𝜃,𝑓,𝑘,𝐿 be the projective measurement on 𝑛𝑝 qubits defined by the
operators⎧⎪⎨⎪⎩𝐻 ̃︀Φ1

⎛⎜⎝ ∑︁
𝑐:𝑓(Dec𝑘,𝐿,𝜃(𝑐̃︀Φ))=𝑦

|𝑐⟩⟨𝑐|

⎞⎟⎠𝐻
̃︀Φ1

⎫⎪⎬⎪⎭
𝑦

∪

⎧⎪⎨⎪⎩𝐻 ̃︀Φ1

⎛⎜⎝ ∑︁
𝑐:Dec𝑘,𝐿,𝜃(𝑐̃︀Φ)=⊥

|𝑐⟩⟨𝑐|

⎞⎟⎠𝐻
̃︀Φ1

⎫⎪⎬⎪⎭ .
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For any 𝑛𝑝-qubit register 𝒞, we write

̃︁𝑀𝜃,𝑓,𝑘,𝐿(𝒞)→ 𝒞, 𝑦

to refer to the operation that measures 𝒞 according to 𝑀𝜃,𝑓,𝑘,𝐿 and then writes the classical
result 𝑦 to a new register. Sometimes we will write ̃︁𝑀𝜃,𝑓,𝑘,𝐿(𝒞) → 𝑦 to denote just the
classical measurement result 𝑦.

Correctness. Our definition of correctness roughly states that encoding, applying a lin-
ear homomorphism, and then applying a partial measurement to the encoded state is
equivalent to first applying the linear operation, applying the partial measurement, and
then encoding. This definition supports composition of multiple partial measurements
on encoded data, which will be necessary for our application to obfuscation.

Definition 5.1 (Correctness). A publicly-verifiable linearly-homomorphic QAS with classically-
decodable ZX measurements is correct if the following holds. For any linear operation 𝐿, bases
𝜃 ∈ {0, 1,⊥}𝑛, 𝑓 : {0, 1}|Φ| → {0, 1}*, and 𝑘 ∈ Gen(1𝜆, 𝑛),

LinEval†𝐿 ∘ ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘ LinEval𝐿 ∘ Enc𝑘 = Enc𝑘 ∘ 𝐿† ∘𝑀𝜃,𝑓 ∘ 𝐿.

Note that both sequences of operations above mapℳ→ (𝒞, 𝑦), whereℳ is an 𝑛-qubit register,
𝒞 is an 𝑛𝑝-qubit register, and 𝑦 is a classical measurement outcome.

Security Next, we formalize two security properties. The first roughly states that no
adversary with access to the verification oracle can change the distribution resulting from
a partial measurement on the encoded state.

Definition 5.2 (Security). A publicly-verifiable linearly-homomorphic QAS with classically-
decodable ZX measurements is secure if the following holds. For any linear operation 𝐿, bases
𝜃 ∈ {0, 1,⊥}𝑛, 𝑓 : {0, 1}|Φ| → {0, 1}*, and oracle-aided adversary 𝐴 : 𝒞 → 𝒞, there exists an
𝜖(𝜆) ∈ [0, 1] such that for any 𝑛-qubit state |𝜓⟩,

{︂
𝑦 :

𝑘 ← Gen(1𝜆, 𝑛)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘ 𝐴Ver𝑘,·,·(·) ∘ Enc𝑘(ℳ)

}︂
≈2−Ω(𝜆) (1−𝜖(𝜆)) {𝑦 : 𝑦 ←𝑀𝜃,𝑓 ∘ 𝐿(ℳ)}+𝜖(𝜆){⊥}.

Remark 5.3. Although the adversary 𝐴 is defined as a (oracle-aided) general quantum map from
𝒞 → 𝒞, we can without loss of generality take it to be a (oracle-aided) unitary that additionally
operates on some workspace register𝒜 initialized to |0⟩. We leave the workspace register𝒜 implicit
when writing 𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘ 𝐴Ver𝑘,·,·(·) ∘ Enc𝑘(ℳ), and note that ̃︁𝑀𝜃,𝑓,𝑘,𝐿 only operates on 𝒞.

Next, we describe a weaker security property that is immediately implied by Defini-
tion 5.2, but will be convenient to use in our application to obfuscation.
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Definition 5.4 (Mapping Security). For any linear operation 𝐿, bases 𝜃 ∈ {0, 1,⊥}𝑛, 𝑓 :
{0, 1}|Φ| → {0, 1}*, 𝑛-qubit state |𝜓⟩, and set 𝐵 ⊂ {0, 1}* such that

Pr[𝑦 ∈ 𝐵 : 𝑦 ←𝑀𝜃,𝑓 ∘ 𝐿(|𝜓⟩)] = 0,

it holds that for any oracle-aided adversary 𝐴 : 𝒞 → 𝒞,

Pr

[︂
𝑦 ∈ 𝐵 :

𝑘 ← Gen(1𝜆, 1𝑛)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘ 𝐴Ver𝑘,·,·(·) ∘ Enc𝑘(|𝜓⟩)

]︂
= 2−Ω(𝜆).

Finally, we define a notion of privacy, which states that any two encoded states are
indistinguishable, even given the verification oracle.

Definition 5.5 (Privacy). For any 𝑛-qubit states |𝜓0⟩ , |𝜓1⟩ and oracle-aided binary outcome
projector 𝐷,⃒⃒⃒⃒

Pr
𝑘←Gen(1𝜆,𝑛)

[︀
1← 𝐷Ver𝑘,·,·(·) ∘ Enc𝑘(|𝜓0⟩)

]︀
− Pr

𝑘←Gen(1𝜆,𝑛)

[︀
1← 𝐷Ver𝑘,·,·(·) ∘ Enc𝑘(|𝜓1⟩)

]︀ ⃒⃒⃒⃒
= 2−Ω(𝜆).

5.2.2 Construction

Paulis and updates. We specify several notational conventions regarding sets {𝑥𝑖}𝑖∈[𝑛], {𝑧𝑖}𝑖∈[𝑛]
that describe Pauli corrections on 𝑛 registers.

• As 𝑛 will be clear from context, let 𝑥 := (𝑥1, . . . , 𝑥𝑛) and 𝑧 := (𝑧1, . . . , 𝑧𝑛).

• Given a linear operation 𝐿 on 𝑛 qubits, let 𝐿(𝑥, 𝑧) := (𝑥𝐿, 𝑧𝐿) be the result of starting
with (𝑥, 𝑧), and, for each CNOT gate in 𝐿, sequentially applying the CNOT update
rule (𝑥𝑖, 𝑧𝑖), (𝑥𝑗, 𝑧𝑗) → (𝑥𝑖, 𝑧𝑖 ⊕ 𝑧𝑗), (𝑥𝑖 ⊕ 𝑥𝑗, 𝑧𝑗). Note that this is yet another inter-
pretation for 𝐿, which in another context could refer to the unitary that applies the
sequence of CNOT gates.

• Let 𝐿−1 be the inverse of 𝐿, and note that 𝐿−1(𝑥𝐿, 𝑧𝐿) = (𝑥, 𝑧).

• Given 𝑥 = (𝑥1, . . . , 𝑥𝑛) or 𝑥𝐿 = (𝑥𝐿,1, . . . , 𝑥𝐿,𝑛) and a subset Φ ⊆ [𝑛], let 𝑥Φ := {𝑥𝑖}𝑖∈Φ
and 𝑥𝐿,Φ := {𝑥𝐿,𝑖}𝑖∈Φ. Given disjoint sets Φ0,Φ1 ⊂ [𝑛], we let 𝑥Φ0 , 𝑥Φ1 refer to the
union {𝑥𝑖}𝑖∈Φ0 ∪ {𝑥𝑖}𝑖∈Φ1 .

Subspaces. Given a 𝜆-dimensional subspace 𝑆 ⊂ F2𝜆+1
2 and a vector ∆ ∈ F2𝜆+1

2 ∖ 𝑆,
define the (𝜆+ 1)-dimensional subspace

𝑆Δ := 𝑆 ∪ (𝑆 +∆).

Let the dual subspace of 𝑆Δ be ̂︀𝑆 := 𝑆⊥Δ; note that

• ̂︀𝑆 is 𝜆-dimensional; and
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• since 𝑆Δ ⊃ 𝑆, its dual subspace ̂︀𝑆 := 𝑆⊥Δ ⊂ 𝑆⊥.

Let ̂︀∆ be an arbitrary choice of a vector such that 𝑆⊥ = ̂︀𝑆 ∪ (̂︀𝑆 + ̂︀∆), and define

̂︀𝑆̂︀Δ := 𝑆⊥ = ̂︀𝑆 ∪ (̂︀𝑆 + ̂︀∆) .

Given a subspace 𝑆, define the state

|𝑆⟩ := 1√︀
|𝑆|

∑︁
𝑠∈𝑆

|𝑠⟩ ,

and note that
𝐻⊗2𝜆+1 |𝑆⟩ = |𝑆⊥⟩ .

Next, given any 𝜆-dimensional subspace 𝑆 and ∆ /∈ 𝑆, define the isometry 𝐸𝑆,Δ from
1 qubit to 2𝜆+ 1 qubits that maps |0⟩ → |𝑆⟩ and |1⟩ → |𝑆 +∆⟩.

Publicly-verifiable linearly-homomorphic QAS with classically-decodable ZX
measurements

• Gen(1𝜆, 𝑛): Sample a uniformly random 𝜆-dimensional subspace 𝑆 ⊂ F2𝜆+1
2 , vector Δ ←

F2𝜆+1
2 ∖ 𝑆, and 𝑥𝑖, 𝑧𝑖 ← F2𝜆+1

2 for each 𝑖 ∈ [𝑛]. Output 𝑘 := (𝑆,Δ, 𝑥, 𝑧).

• Enc𝑘 = 𝑋𝑥𝑍𝑧𝐸⊗𝑛
𝑆,Δ.

• LinEval𝐿(𝒞): Parse register 𝒞 = 𝒞1⊗ · · · ⊗ 𝒞𝑛, where each 𝒞𝑖 is a (2𝜆+1)-qubit register. For each
CNOT in 𝐿 from qubit 𝑖 to 𝑗, apply CNOT⊗2𝜆+1 from register 𝒞𝑖 to 𝒞𝑗 .

• Dec𝑘,𝐿,𝜃(𝑐): Parse 𝑐 = {𝑐𝑖}𝑖∈Φ. Define {𝑚𝑖}𝑖∈Φ as follows.

∀𝑖 ∈ Φ0 : 𝑚𝑖 =

⎧⎪⎨⎪⎩
0 if 𝑐𝑖 ∈ 𝑆 + 𝑥𝐿,𝑖

1 if 𝑐𝑖 ∈ 𝑆 +Δ+ 𝑥𝐿,𝑖

⊥ otherwise
∀𝑖 ∈ Φ1 : 𝑚𝑖 =

⎧⎪⎨⎪⎩
0 if 𝑐𝑖 ∈ ̂︀𝑆 + 𝑧𝐿,𝑖

1 if 𝑐𝑖 ∈ ̂︀𝑆 + ̂︀Δ+ 𝑧𝐿,𝑖

⊥ otherwise

If any 𝑚𝑖 = ⊥, then output ⊥, and otherwise output 𝑚 = {𝑚𝑖}𝑖∈Φ.

• Ver𝑘,𝐿,𝜃(𝑐):a Parse 𝑐 = {𝑐𝑖}𝑖∈Φ. For each 𝑖 ∈ Φ0, output ⊥ if 𝑐𝑖 /∈ 𝑆Δ + 𝑥𝐿,𝑖. For each 𝑖 ∈ Φ1,
output ⊥ if 𝑐𝑖 /∈ ̂︀𝑆̂︀Δ + 𝑧𝐿,𝑖. Otherwise, output ⊤.

aThis procedure is already determined by Dec𝑘,𝐿,𝜃(𝑐), but we write it explicitly for clarity in the
proof.

Figure 13: Our construction of a publicly-verifiable linearly-homomorphic QAS with
classically-decodable ZX measurements.

Theorem 5.6. The QAS described in Protocol 13 satisfies correctness (Definition 5.1).

Proof. First, we show two key claims.
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Claim 5.7. For any 𝑆 and ∆, it holds that 𝐻⊗2𝜆+1𝐸̂︀𝑆,̂︀Δ = 𝐸𝑆,Δ𝐻 .

Proof. We show that the maps are equivalent by checking their behavior on the basis
{|+⟩ , |−⟩}. First,

𝐻⊗2𝜆+1𝐸̂︀𝑆,̂︀Δ |+⟩ = 𝐻⊗2𝜆+1 |̂︀𝑆̂︀Δ⟩ = |𝑆⟩ = 𝐸𝑆,Δ |0⟩ = 𝐸𝑆,Δ𝐻 |+⟩ .

Next,

𝐻⊗2𝜆+1𝐸̂︀𝑆,̂︀Δ |−⟩ = 𝐻⊗2𝜆+1
(︁
|̂︀𝑆⟩ − |̂︀𝑆 + ̂︀∆⟩)︁ = 𝐻⊗2𝜆+1𝑍Δ |̂︀𝑆̂︀Δ⟩ = |𝑆 +∆⟩ = 𝐸𝑆,Δ |1⟩ = 𝐸𝑆,Δ𝐻 |−⟩ .

Claim 5.8. For any 𝑆,∆, and 𝐿, LinEval𝐿𝐸⊗𝑛𝑆,Δ = 𝐸⊗𝑛𝑆,Δ𝐿

Proof. We show this for the case where 𝐿 contains a single CNOT gate, and the full proof
follows by applying the argument sequentially. We show that the maps are equivalent by
checking their behavior on the basis {|𝑏1, 𝑏2⟩}𝑏1,𝑏2∈{0,1}.

CNOT⊗2𝜆+1𝐸⊗2𝑆,Δ |𝑏1, 𝑏2⟩
= CNOT⊗2𝜆+1 |𝑆 + 𝑏1 ·∆⟩ |𝑆 + 𝑏2 ·∆⟩

=
1

2𝜆
CNOT⊗2𝜆+1

∑︁
𝑠1∈𝑆

|𝑠1 + 𝑏1 ·∆⟩
∑︁
𝑠2∈𝑆

|𝑠2 + 𝑏2 ·∆⟩

=
1

2𝜆

∑︁
𝑠1∈𝑆

|𝑠1 + 𝑏1 ·∆⟩
∑︁
𝑠2∈𝑆

|(𝑠1 + 𝑠2) + (𝑏1 + 𝑏2) ·∆⟩

= |𝑆 + 𝑏1 ·∆⟩ |𝑆 + (𝑏1 + 𝑏2) ·∆⟩
= 𝐸⊗2𝑆,ΔCNOT |𝑏1, 𝑏2⟩ .

Now, define measurements 𝑀 ′
𝜃,𝑓 ,
̃︁𝑀 ′
𝜃,𝑓,𝑘,𝐿 so that

𝑀𝜃,𝑓 = 𝐻Φ1𝑀 ′
𝜃,𝑓𝐻

Φ1 , and ̃︁𝑀𝜃,𝑓,𝑘,𝐿 = 𝐻
̃︀Φ1𝑋𝑥𝐿,Φ0

,𝑧𝐿,Φ1̃︁𝑀 ′
𝜃,𝑓,𝑘,𝐿𝑋

𝑥𝐿,Φ0
,𝑧𝐿,Φ1𝐻

̃︀Φ1 .

To be concrete,

𝑀 ′
𝜃,𝑓 :=

⎧⎨⎩ ∑︁
𝑚:𝑓(𝑚Φ)=𝑦

|𝑚⟩⟨𝑚|

⎫⎬⎭
𝑦

,

132



and

̃︁𝑀 ′
𝜃,𝑓,𝑘,𝐿 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁

𝑚:𝑓(𝑚Φ)=𝑦

⎛⎜⎜⎜⎝ ∑︁
𝑐:{𝑐𝑖∈𝑆+𝑚𝑖·Δ}𝑖∈Φ0

,

{𝑐𝑖∈̂︀𝑆+𝑚𝑖·̂︀Δ}𝑖∈Φ1

|𝑐⟩⟨𝑐|

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭
𝑦

∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁

𝑐:∃𝑖∈Φ0 s.t. 𝑐𝑖 /∈𝑆Δ

∨∃𝑖∈Φ1 s.t. 𝑐𝑖 /∈̂︀𝑆̂︀Δ

|𝑐⟩⟨𝑐|

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Observe that

̃︁𝑀 ′
𝜃,𝑓,𝑘,𝐿

(︁
𝐸
⊗|Φ⊥∪Φ0|
𝑆,Δ ⊗ 𝐸⊗|Φ1|̂︀𝑆,̂︀Δ

)︁
=
(︁
𝐸
⊗|Φ⊥∪Φ0|
𝑆,Δ ⊗ 𝐸⊗|Φ1|̂︀𝑆,̂︀Δ

)︁
𝑀 ′

𝜃,𝑓 .

Then,

LinEval†𝐿
̃︁𝑀𝜃,𝑓,𝑘,𝐿LinEval𝐿Enc𝑘

= LinEval†𝐿
̃︁𝑀𝜃,𝑓,𝑘,𝐿LinEval𝐿𝑋

𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ

= LinEval†𝐿
̃︁𝑀𝜃,𝑓,𝑘,𝐿𝑋

𝑥𝐿𝑍𝑧𝐿LinEval𝐿𝐸
⊗𝑛
𝑆,Δ

= LinEval†𝐿
̃︁𝑀𝜃,𝑓,𝑘,𝐿𝑋

𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 (Claim 5.8)

= LinEval†𝐿𝐻
̃︀Φ1𝑋𝑥𝐿,Φ0

𝑧𝐿,Φ1̃︁𝑀 ′
𝜃,𝑓,𝑘,𝐿𝑋

𝑥𝐿,Φ0
,𝑧𝐿,Φ1𝐻

̃︀Φ1𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿

= LinEval†𝐿𝐻
̃︀Φ1𝑋𝑥𝐿,Φ0

𝑧𝐿,Φ1̃︁𝑀 ′
𝜃,𝑓,𝑘,𝐿𝑋

𝑥𝐿,Φ⊥𝑍𝑧𝐿,Φ⊥ ,𝑧𝐿,Φ0
,𝑥𝐿,Φ1𝐻

̃︀Φ1𝐸⊗𝑛𝑆,Δ𝐿

= LinEval†𝐿𝐻
̃︀Φ1𝑋𝑥𝐿,Φ⊥ ,𝑥𝐿,Φ0

,𝑧𝐿,Φ1𝑍𝑧𝐿,Φ⊥ ,𝑧𝐿,Φ0
,𝑥𝐿,Φ1̃︁𝑀 ′

𝜃,𝑓,𝑘,𝐿𝐻
̃︀Φ1𝐸⊗𝑛𝑆,Δ𝐿

= LinEval†𝐿𝑋
𝑥𝐿𝑍𝑧𝐿𝐻

̃︀Φ1̃︁𝑀 ′
𝜃,𝑓,𝑘,𝐿𝐻

̃︀Φ1𝐸⊗𝑛𝑆,Δ𝐿

= LinEval†𝐿𝑋
𝑥𝐿𝑍𝑧𝐿𝐻

̃︀Φ1̃︁𝑀 ′
𝜃,𝑓,𝑘,𝐿

(︁
𝐸
⊗|Φ⊥∪Φ0|
𝑆,Δ ⊗ 𝐸⊗|Φ1|̂︀𝑆,̂︀Δ

)︁
𝐻Φ1𝐿 (Claim 5.7)

= LinEval†𝐿𝑋
𝑥𝐿𝑍𝑧𝐿𝐻

̃︀Φ1

(︁
𝐸
⊗|Φ⊥∪Φ0|
𝑆,Δ ⊗ 𝐸⊗|Φ1|̂︀𝑆,̂︀Δ

)︁
𝑀 ′

𝜃,𝑓𝐻
Φ1𝐿

= LinEval†𝐿𝑋
𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐻

Φ1𝑀 ′
𝜃,𝑓𝐻

Φ1𝐿

= 𝑋𝑥𝑍𝑧LinEval†𝐿𝐸
⊗𝑛
𝑆,Δ𝑀𝜃,𝑓𝐿

= 𝑋𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ𝐿
†𝑀𝜃,𝑓𝐿

= Enc𝑘𝐿
†𝑀𝜃,𝑓𝐿.

5.2.3 Proof of security

Theorem 5.9. The QAS described in Protocol 13 satisfies security (Definition 5.2).

Proof. We begin by modifying the Gen procedure and Ver𝑘,·,·(·) oracle, and arguing that the
output of the experiment remains (almost) unaffected. In particular, we will "expand" the
verification oracle with random superspaces𝑅 ⊃ 𝑆Δ and ̂︀𝑅 ⊃ ̂︀𝑆̂︀Δ. Consider the following
procedures.
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• Gen′(1𝜆, 𝑛): Sample a uniformly random 𝜆-dimensional subspace 𝑆 ⊂ F2𝜆+1
2 , vector

∆ ← F2𝜆+1
2 ∖ 𝑆, and 𝑥𝑖, 𝑧𝑖 ← F2𝜆+1

2 for each 𝑖 ∈ [𝑛]. Sample uniformly random
(3𝜆/2+1)-dimensional subspaces𝑅, ̂︀𝑅 ⊂ F2𝜆+1

2 conditioned on 𝑆Δ ⊂ 𝑅 and ̂︀𝑆̂︀Δ ⊂ ̂︀𝑅.
Output 𝑘 := (𝑆,∆, 𝑥, 𝑧) along with (𝑅, ̂︀𝑅).

• Ver′
𝑘,𝑅, ̂︀𝑅,𝐿,𝜃(𝑐): Parse 𝑐 = {𝑐𝑖}𝑖∈Φ. For each 𝑖 ∈ Φ0, output ⊥ if 𝑐𝑖 /∈ 𝑅 + 𝑥𝐿,𝑖. For each

𝑖 ∈ Φ1, output ⊥ if 𝑐𝑖 /∈ ̂︀𝑅 + 𝑧𝐿,𝑖. Otherwise, output ⊤.

Claim 5.10. For any 𝐿, 𝜃, 𝑓, 𝐴, and |𝜓⟩, it holds that{︂
𝑦 :

𝑘 ← Gen(1𝜆, 𝑛)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘ 𝐴Ver𝑘,·,·(·) ∘ Enc𝑘(|𝜓⟩)

}︂
≈2−Ω(𝜆)

{︃
𝑦 :

(𝑘,𝑅, ̂︀𝑅)← Gen′(1𝜆, 𝑛)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘ 𝐴
Ver′

𝑘,𝑅, ̂︀𝑅,·,·(·) ∘ Enc𝑘(|𝜓⟩)

}︃
.

Proof. Note that these distributions can be sampled by a reduction given oracle access to
either (𝑂[𝑆Δ], 𝑂[̂︀𝑆̂︀Δ]) or (𝑂[𝑅], 𝑂[ ̂︀𝑅]). Now, for any fixed (𝜆 + 1)-dimensional subspaces
𝑆Δ, ̂︀𝑆Δ and any vector 𝑣,

Pr
𝑅, ̂︀𝑅[𝑣 ∈ 𝑅 ∖ 𝑆Δ ∪ ̂︀𝑅 ∖ ̂︀𝑆̂︀Δ] ≤ |𝑅 ∖ 𝑆Δ|

|F2𝜆+1
2 ∖ 𝑆Δ|

+
| ̂︀𝑅 ∖ ̂︀𝑆̂︀Δ|
|F2𝜆+1

2 ∖ ̂︀𝑆̂︀Δ| = 2 · 2
3𝜆/2+1 − 2𝜆+1

22𝜆+1 − 2𝜆+1
= 2−Ω(𝜆),

where the probability is over sampling random (3𝜆/2 + 1)-dimensional subspaces 𝑅, ̂︀𝑅
conditioned on 𝑆Δ ⊂ 𝑅 and ̂︀𝑆̂︀Δ ⊂ ̂︀𝑅. Then the claim follows by noting that (𝑂[𝑆Δ], 𝑂[̂︀𝑆̂︀Δ])
and (𝑂[𝑅], 𝑂[ ̂︀𝑅]) are identical outside of 𝑅 ∖ 𝑆Δ and ̂︀𝑅 ∖ ̂︀𝑆Δ, and applying Lemma 2.8 (a
standard oracle hybrid argument).

Now, fix any (3𝜆/2 + 1)-dimensional subspaces 𝑅, ̂︀𝑅 such that ̂︀𝑅⊥ ⊂ 𝑅, and consider
the following procedure.

• Gen′
𝑅, ̂︀𝑅(1𝜆, 𝑛): Sample a uniformly random subspace 𝑆 ⊂ F2𝜆+1

2 conditioned on ̂︀𝑅⊥ ⊂
𝑆 ⊂ 𝑅, sample a uniformly random vector ∆ ← 𝑅 ∖ 𝑆, and sample uniformly
random 𝑥𝑅𝑖 , 𝑧

̂︀𝑅
𝑖 ← (𝑅, ̂︀𝑅) for each 𝑖 ∈ [𝑛]. Set 𝑥𝑅 = (𝑥𝑅1 , . . . , 𝑥

𝑅
𝑛 ), 𝑧

̂︀𝑅 = (𝑧
̂︀𝑅
1 , . . . , 𝑧

̂︀𝑅
𝑛 )

and output (𝑆,∆, 𝑥𝑅, 𝑧 ̂︀𝑅).
Next, let co(𝑅) be an arbitrary set of coset representatives of𝑅, let co( ̂︀𝑅) be an arbitrary

set of coset representatives of ̂︀𝑅, and fix any

𝑥co(𝑅) =
(︁
𝑥
co(𝑅)
1 , . . . , 𝑥co(𝑅)

𝑛

)︁
, 𝑧co(

̂︀𝑅) =
(︁
𝑧
co( ̂︀𝑅)
1 , . . . , 𝑧co(

̂︀𝑅)
𝑛

)︁
,

where each 𝑥
co(𝑅)
𝑖 ∈ co(𝑅) and 𝑧

co( ̂︀𝑅)
𝑖 ∈ co( ̂︀𝑅). Then the proof of the theorem follows

by combining Claim 5.10 with the following claim. Notice that the adversary 𝐴 in the
following claim no longer requires access to the "expanded" oracle Ver′

𝑘,𝑅, ̂︀𝑅,·,·(·), since 𝐴 is

allowed to depend on
(︁
𝑅, ̂︀𝑅, 𝑥co(𝑅), 𝑧co(

̂︀𝑅)
)︁

, which suffice to implement Ver′
𝑘,𝑅, ̂︀𝑅,·,·(·).

134



Claim 5.11. Fix any 𝑅, ̂︀𝑅, 𝑥co(𝑅), 𝑧co(
̂︀𝑅). Then for any 𝐿, 𝜃, 𝑓 , and unitary 𝐴,39 there exists an

𝜖 = 𝜖(𝜆) ∈ [0, 1] such that for any |𝜓⟩,

⎧⎪⎪⎪⎨⎪⎪⎪⎩𝑦 :

(︁
𝑆,∆, 𝑥𝑅, 𝑧

̂︀𝑅)︁← Gen′
𝑅, ̂︀𝑅(1𝜆, 𝑛)

𝑥 := 𝑥𝑅 + 𝑥co(𝑅), 𝑧 := 𝑧
̂︀𝑅 + 𝑧co(

̂︀𝑅)

𝑘 := (𝑆,∆, 𝑥, 𝑧)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘ 𝐴 ∘ Enc𝑘(|𝜓⟩)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≈2−Ω(𝜆) (1− 𝜖) {𝑦 : 𝑦 ←𝑀𝜃,𝑓 ∘ 𝐿(|𝜓⟩)}+ 𝜖 {⊥} .

Proof. Let 𝒟 be the distribution described by the LHS of the statement in the claim. Next,
define 𝑥co(𝑅)

𝐿 , 𝑧
co( ̂︀𝑅)
𝐿 := 𝐿(𝑥co(𝑅), 𝑧co(

̂︀𝑅)), and define the distribution 𝒦𝐿 as follows.

𝒦𝐿 :=

⎧⎪⎪⎨⎪⎪⎩(𝑆,∆, 𝑥𝐿, 𝑧𝐿) :

(︁
𝑆,∆, 𝑥𝑅, 𝑧

̂︀𝑅)︁← Gen′
𝑅, ̂︀𝑅(1𝜆, 𝑛)

𝑥𝑅𝐿 , 𝑧
̂︀𝑅
𝐿 := 𝐿(𝑥𝑅, 𝑧

̂︀𝑅)
𝑥𝐿 := 𝑥𝑅𝐿 + 𝑥

co(𝑅)
𝐿 , 𝑧𝐿 := 𝑧

̂︀𝑅
𝐿 + 𝑧

co( ̂︀𝑅)
𝐿

⎫⎪⎪⎬⎪⎪⎭ .

Observe that the distribution over 𝑘 = (𝑆,∆, 𝑥, 𝑧) as sampled by 𝒟 is equivalent
to the distribution that results from sampling (𝑆,∆, 𝑥𝐿, 𝑧𝐿) ← 𝒦𝐿 and setting (𝑥, 𝑧) =
𝐿−1(𝑥𝐿, 𝑧𝐿). Thus, we can write 𝒟 equivalently as

𝒟 =

⎧⎪⎪⎨⎪⎪⎩𝑦 :

(𝑆,∆, 𝑥𝐿, 𝑧𝐿)← 𝒦𝐿
(𝑥, 𝑧) := 𝐿−1(𝑥𝐿, 𝑧𝐿)

𝑘 := (𝑆,∆, 𝑥, 𝑧)

𝑦 ← ̃︁𝑀𝜃,𝑓,𝑘,𝐿 ∘ 𝐴 ∘ Enc𝑘(|𝜓⟩)

⎫⎪⎪⎬⎪⎪⎭ .

Moreover, the vectors (𝑥𝐿, 𝑧𝐿) obtained by sampling (𝑆,∆, 𝑥𝐿, 𝑧𝐿) ← 𝒦𝐿 are such that
𝑥𝐿 and 𝑧𝐿 are uniformly random over an affine subspaces, namely,

𝑥𝐿 ← 𝑅⊕𝑛 + 𝑥
co(𝑅)
𝐿 , and 𝑧𝐿 ← ̂︀𝑅⊕𝑛 + 𝑧

co( ̂︀𝑅)
𝐿 .

This follows because 𝐿 is full rank, and the vectors 𝑥𝑅, 𝑧 ̂︀𝑅 = (𝑥𝑅1 , . . . , 𝑥
𝑅
𝑛 ), (𝑧

̂︀𝑅
1 , . . . , 𝑧

̂︀𝑅
𝑛 )

obtained by sampling (︁
𝑆,∆, 𝑥𝑅, 𝑧

̂︀𝑅)︁← Gen′
𝑅, ̂︀𝑅(1𝜆, 𝑛)

are such that each 𝑥𝑅𝑖 is uniformly random over 𝑅 and each 𝑧 ̂︀𝑅
𝑖 is uniformly random over̂︀𝑅. The fact that 𝑥𝐿 and 𝑧𝐿 are uniform over affine subspaces will be used later in the proof

when we apply the Pauli twirl over affine subspaces (Lemma 2.5).
Next, we introduce some more notation.

39As noted in Remark 5.3, by introducing a sufficiently large workspace register 𝒜 initialized to |0⟩, we
can assume without loss of generality that the adversary 𝐴 is unitary. This additional workspace register𝒜
is left implicit in the description of the claim and proof.
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• For each 𝑦 ∈ range(𝑓), define

𝑉𝑦 :=
⋃︁

𝑚:𝑓(𝑚Φ)=𝑦

(︃⨂︁
𝑖∈Φ0

(𝑆 +𝑚𝑖 ·∆)
⨂︁
𝑖∈Φ1

(︁̂︀𝑆 +𝑚𝑖 · ̂︀∆)︁)︃ ,
and define

𝑉⊥ := {0, 1}(2𝜆+1)𝑛 ∖
⋃︁

𝑦∈range(𝑓)

𝑉𝑦.

For 𝑦 ∈ range(𝑓) ∪ {⊥}, define |𝑉𝑦⟩ :=
∑︀

𝑣∈𝑉𝑦 |𝑣⟩.

• Define the unitary 𝐵 := 𝐴 ∘ LinEval†𝐿. Note that the "honest" 𝐴 operation just applies
LinEval𝐿, so in this case 𝐵 is the identity.

• For any pure state |𝜑⟩, define Mx[|𝜑⟩] := |𝜑⟩⟨𝜑| .

Now, given any (𝑆,∆, 𝑥𝐿, 𝑧𝐿) ∈ 𝒦𝐿, which defines (𝑥, 𝑧) = 𝐿−1(𝑥𝐿, 𝑧𝐿), and any 𝑦 ∈
range(𝑓) ∪ {⊥}, we can write the probability that 𝒟 outputs 𝑦 as

⃦⃦⃦
Π[𝑉𝑦]𝑋

𝑥𝐿,Φ0
,𝑧𝐿,Φ1𝐻

̃︀Φ1𝐴Enc(𝑆,Δ,𝑥,𝑧) |𝜓⟩
⃦⃦⃦2

=
⃦⃦⃦
Π[𝑉𝑦]𝑋

𝑥𝐿,Φ0
,𝑧𝐿,Φ1𝐻

̃︀Φ1𝐵LinEval𝐿𝑋
𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ |𝜓⟩

⃦⃦⃦2
=
⃦⃦⃦
Π[𝑉𝑦]𝐻

̃︀Φ1𝑋𝑥𝐿,Φ0𝑍𝑧𝐿,Φ1𝐵𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
⃦⃦⃦2

=
⃦⃦⃦
Π[𝑉𝑦]𝐻

̃︀Φ1𝑋𝑥𝐿𝑍𝑧𝐿𝐵𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
⃦⃦⃦2
,

where in the last line, we have inserted Pauli 𝑋 operations on registers that are either
measured in the Hadamard basis or not measured at all and Pauli 𝑍 operations on regis-
ters that are either measured in the standard basis or not measured at all. Doing this has
no effect on the outcome. Thus, we can write the distribution 𝒟 concisely as

𝒟 =
∑︁

𝑦∈range(𝑓)∪{⊥}

|𝑦⟩⟨𝑦| 1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)∈𝒦𝐿

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝐵𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
]︁
|𝑉𝑦⟩ .

To complete the proof, we will decompose 𝐵 as a sum of Paulis, and factor out terms
that will cause 𝒟 to output ⊥ (with high probability). Eventually, we’ll be left with terms
that do not affect the outcome of directly measuring 𝐿 |𝜓⟩. To begin with, let

𝒫 :=
{︀
𝑋𝑥𝑍𝑧 : 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ {0, 1}(2𝜆+1)𝑛

}︀
,

and define the subsets
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𝒫⊥ :=
{︁
𝑋𝑥𝑍𝑧 : ∃𝑖 ∈ Φ0 s.t. 𝑥𝑖 /∈ 𝑅 or ∃𝑖 ∈ Φ1 s.t. 𝑧𝑖 /∈ ̂︀𝑅}︁ , 𝒫⊤ = 𝒫 ∖ 𝒫⊥.

Then we can write 𝐵 as

𝐵 =
∑︁
𝑃∈𝒫⊤

𝛼𝑃𝑃 +
∑︁
𝑃∈𝒫⊥

𝛼𝑃𝑃 := 𝐵⊤ +𝐵⊥,

for some coefficients 𝛼𝑃 .
Note that for any 𝑦 ∈ range(𝑓), (𝑆,∆, 𝑥𝐿, 𝑧𝐿) ∈ 𝒦𝐿, and 𝑃 ∈ 𝑃⊥,

⟨𝑉𝑦|𝐻
̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑃𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩ = 0,

which follows by definition of 𝑉𝑦, since 𝑆Δ ⊂ 𝑅 and ̂︀𝑆̂︀Δ ⊂ ̂︀𝑅. Thus there exists an 𝜖⊥ such
that

𝒟 =
∑︁

𝑦∈range(𝑓)∪{⊥}

|𝑦⟩⟨𝑦| 1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝐵⊤𝑋
𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩

]︁
|𝑉𝑦⟩+𝜖⊥ |⊥⟩⟨⊥| .

Next, we define the following.

• Let 𝐶 ≃ 𝑅/ ̂︀𝑅⊥ be a subspace of coset representatives of ̂︀𝑅⊥ in 𝑅.

• Let ̂︀𝐶 ≃ ̂︀𝑅/𝑅⊥ be a subspace of coset representatives of 𝑅⊥ in ̂︀𝑅.

• Define the set of Paulis

𝒫𝐶, ̂︀𝐶 :=

{︃
𝑋𝑥𝑍𝑧 :

{︀
𝑥𝑖 ∈ 𝐶, 𝑧𝑖 = 02𝜆+1

}︀
𝑖∈Φ0

,
{︁
𝑥𝑖 = 02𝜆+1, 𝑧𝑖 ∈ ̂︀𝐶}︁

𝑖∈Φ1

,{︀
𝑥𝑖 = 02𝜆+1, 𝑧𝑖 = 02𝜆+1

}︀
𝑖∈Φ⊥

}︃
.

Now, for any (𝑥, 𝑧) = (𝑥1, . . . , 𝑥𝑛, 𝑧1, . . . , 𝑧𝑛) such that 𝑃 = 𝑋𝑥𝑍𝑧 ∈ 𝒫⊤, define (𝑥′, 𝑧′) =
(𝑥′1, . . . , 𝑥

′
𝑛, 𝑧
′
1, . . . , 𝑧

′
𝑛) such that 𝑋𝑥′𝑍𝑧′ ∈ 𝒫𝐶, ̂︀𝐶 as follows.

• For 𝑖 ∈ Φ0, let 𝑥′𝑖 ∈ 𝐶 be the representative of 𝑥𝑖’s coset (recall that 𝑥𝑖 ∈ 𝑅 by
definition of 𝒫⊤), and let 𝑧′𝑖 = 02𝜆+1.

• For 𝑖 ∈ Φ1, let 𝑧′𝑖 ∈ ̂︀𝐶 be the representative of 𝑧𝑖’s coset (recall that 𝑧𝑖 ∈ ̂︀𝑅 by defini-
tion of 𝒫⊤), and let 𝑥′𝑖 = 02𝜆+1.

• For 𝑖 ∈ Φ⊥, let 𝑥′𝑖 = 02𝜆+1, 𝑧′𝑖 = 02𝜆+1.
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Then note that for all 𝑦 ∈ range(𝑓) ∪ {⊥} and (𝑆,∆, 𝑥𝐿, 𝑧𝐿) ∈ 𝒦𝐿, it holds that

⟨𝑉𝑦|𝐻
̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑋𝑥𝑍𝑧𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩ = ⟨𝑉𝑦|𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑋𝑥′𝑍𝑧′𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩ ,

which follows by definition of 𝑉𝑦 and the fact that 𝑆, ̂︀𝑆 are always sampled so that̂︀𝑅⊥ ⊂ 𝑆 and 𝑅⊥ ⊂ ̂︀𝑆.
That is, we have identified for any 𝑃 ∈ 𝒫⊤ a canonical 𝑃 ′ ∈ 𝒫𝐶, ̂︀𝐶 for which 𝑃 ′ will

have the same behavior as 𝑃 over all (𝑆,∆, 𝑥𝐿, 𝑧𝐿) ∈ 𝒦𝐿. Thus, we can replace 𝐵⊤ in the
expression for 𝒟 with ∑︁

𝑃∈𝒫
𝐶, ̂︀𝐶

𝛼𝑃𝑃

for some coefficients 𝛼𝑃 , and write 𝒟 as

∑︁
𝑦∈range(𝑓)∪{⊥}

|𝑦⟩⟨𝑦| 1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx

⎡⎣𝐻 ̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿

⎛⎝ ∑︁
𝑃∈𝒫

𝐶, ̂︀𝐶
𝛼𝑃𝑃

⎞⎠𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩

⎤⎦ |𝑉𝑦⟩
+ 𝜖⊥ |⊥⟩⟨⊥|

=
∑︁

𝑦∈range(𝑓)∪{⊥}

|𝑦⟩⟨𝑦|
∑︁

𝑃0,𝑃1∈𝒫𝐶, ̂︀𝐶
𝛼𝑃0𝛼

*
𝑃1

1

|𝒦𝐿|⎛⎝ ∑︁
(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|𝐻
̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑃0𝑋

𝑥𝐿𝑍𝑧𝐿Mx
[︀
𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩

]︀
𝑍𝑧𝐿𝑋𝑥𝐿𝑃 †1𝑋

𝑥𝐿𝑍𝑧𝐿𝐻
̃︀Φ1 |𝑉𝑦⟩

⎞⎠
+ 𝜖⊥ |⊥⟩⟨⊥|

Now, we are finally ready to apply the the Pauli twirl over affine subspaces (Lemma 2.5).
To do so, we make the following observations.

• As noted above, 𝑥𝐿 ← 𝑅⊕𝑛 + 𝑥
co(𝑅)
𝐿 , and 𝑧𝐿 ← ̂︀𝑅⊕𝑛 + 𝑧

co( ̂︀𝑅)
𝐿 are uniformly random

over affine subspaces of 𝑅⊕𝑛 and ̂︀𝑅⊕𝑛 respectively.

• Consider any 𝑋𝑥0𝑍𝑧0 ̸= 𝑋𝑥1𝑍𝑧1 ∈ 𝒫𝐶, ̂︀𝐶 . If 𝑥0 ̸= 𝑥1, then there exists some index
𝑖 ∈ [𝑛] such that 𝑥0,𝑖 ⊕ 𝑥1,𝑖 /∈ ̂︀𝑅⊥ and thus, 𝑥0 ⊕ 𝑥1 /∈ ( ̂︀𝑅⊕𝑛)⊥. Otherwise, 𝑧0 ̸= 𝑧1, and
there exists some index 𝑖 ∈ [𝑛] such that 𝑧0,𝑖 ⊕ 𝑧1,𝑖 /∈ 𝑅⊥ and thus, 𝑧0 ⊕ 𝑧1 /∈ (𝑅⊕𝑛)⊥.

Then by Lemma 2.5, all the cross-terms 𝑃0 ̸= 𝑃1 are killed in the above expression for
𝒟, which we can now write as

∑︁
𝑦∈range(𝑓)∪{⊥}

|𝑦⟩⟨𝑦|
∑︁

𝑃∈𝒫
𝐶, ̂︀𝐶

𝛼𝑃𝛼
*
𝑃

1

|𝒦𝐿|

⎛⎝ ∑︁
(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑃𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
]︁
|𝑉𝑦⟩

⎞⎠
+ 𝜖⊥ |⊥⟩⟨⊥| ,
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Finally, since 𝑆,∆ are chosen uniformly at random conditioned on ̂︀𝑅⊥ ⊂ 𝑆Δ ⊂ 𝑅, we
have that for any fixed 𝑃 ∈ 𝒫𝐶, ̂︀𝐶 ∖ ℐ,

∑︁
𝑦∈range(𝑓)∪{⊥}

1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿𝑃𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
]︁
|𝑉𝑦⟩

≤ |𝑆Δ ∖ ̂︀𝑅⊥|
|𝑅 ∖ ̂︀𝑅⊥| + |

̂︀𝑆̂︀Δ ∖𝑅⊥|
| ̂︀𝑅 ∖𝑅⊥| = 2 · 2𝜆+1 − 2𝜆

23𝜆/2+1 − 2𝜆
= 2−Ω(𝜆).

Thus, 𝒟 is within 2−Ω(𝜆) total variation distance of

(1− 𝜖⊥)
∑︁
𝑦

|𝑦⟩⟨𝑦| 1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝑍𝑧𝐿𝑋𝑥𝐿ℐ𝑋𝑥𝐿𝑍𝑧𝐿𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
]︁
|𝑉𝑦⟩+ 𝜖⊥ |⊥⟩⟨⊥|

= (1− 𝜖⊥)
∑︁
𝑦

|𝑦⟩⟨𝑦| 1

|𝒦𝐿|
∑︁

(𝑆,Δ,𝑥𝐿,𝑧𝐿)

⟨𝑉𝑦|Mx
[︁
𝐻

̃︀Φ1𝐸⊗𝑛𝑆,Δ𝐿 |𝜓⟩
]︁
|𝑉𝑦⟩+ 𝜖⊥ |⊥⟩⟨⊥|

= (1− 𝜖⊥)
∑︁
𝑦

|𝑦⟩⟨𝑦|

⎛⎝ ∑︁
𝑚:𝑓(𝑚)=𝑦

⟨𝑚|

⎞⎠Mx
[︀
𝐻Φ1𝐿 |𝜓⟩

]︀⎛⎝ ∑︁
𝑚:𝑓(𝑚)=𝑦

|𝑚⟩

⎞⎠+ 𝜖⊥ |⊥⟩⟨⊥|

= (1− 𝜖⊥){𝑦 : 𝑦 ←𝑀𝜃,𝑓 ∘ 𝐿(|𝜓⟩)}+ 𝜖⊥{⊥},

which completes the proof.

Theorem 5.12. The QAS described in Protocol 13 satisfies privacy (Definition 5.5).

Proof. First, recalling the definitions of Gen′,Ver′ in the proof of Theorem 5.9, and applying
the oracle indistinguishability argued during the proof of Claim 5.10, it suffices to show
that

⃒⃒⃒⃒
Pr

𝑘,𝑅, ̂︀𝑅←Gen′(1𝜆,𝑛)

[︁
1← 𝐴

Ver′
𝑘,𝑅, ̂︀𝑅,·,·(·) ∘ Enc𝑘(|𝜓0⟩)

]︁
− Pr
𝑘,𝑅, ̂︀𝑅←Gen′(1𝜆,𝑛)

[︁
1← 𝐴

Ver′
𝑘,𝑅, ̂︀𝑅,·,·(·) ∘ Enc𝑘(|𝜓1⟩)

]︁ ⃒⃒⃒⃒
= 0.

To see this, we’ll show that we can give enough information to 𝐴 for it to implement
Ver′

𝑘,𝑅, ̂︀𝑅,·,·(·) while preserving sufficient randomness to one-time pad the input state.
Consider the following equivalent description of Gen′(1𝜆, 𝑛).

Gen′(1𝜆, 𝑛):

• Sample a uniformly random 𝜆-dimensional subspace 𝑆 ⊂ F2𝜆+1
2 , vector ∆← F2𝜆+1

2 ∖
𝑆, and uniformly random (3𝜆/2 + 1)-dimensional subspaces 𝑅, ̂︀𝑅 ⊂ F2𝜆+1

2 condi-
tioned on 𝑆Δ ⊂ 𝑅 and ̂︀𝑆̂︀Δ ⊂ ̂︀𝑅.
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• Let 𝐻Δ be the 2𝜆-dimensional subspace perpendicular to ∆ and 𝐻̂︀Δ be the 2𝜆-
dimensional subspace perpendicular to ̂︀∆. For each 𝑖 ∈ [𝑛], sample 𝑥𝑖,Δ ← 𝐻Δ, 𝑏𝑖 ←
{0, 1}, 𝑧𝑖,̂︀Δ ← 𝐻̂︀Δ, 𝑐𝑖 ← {0, 1}, and define 𝑥𝑖 = 𝑥𝑖,Δ + 𝑏𝑖 ·∆ and 𝑧𝑖 = 𝑧𝑖,̂︀Δ + 𝑐𝑖 · ̂︀∆.

• Output (𝑆,∆, 𝑥, 𝑧), 𝑅, ̂︀𝑅.

Now, fix any choice of 𝑆,∆, 𝑅, ̂︀𝑅, 𝑥Δ, 𝑧̂︀Δ sampled during the procedure Gen′(1𝜆, 𝑛),

where 𝑥Δ := (𝑥1,Δ, · · · , 𝑥𝑛,Δ) and 𝑧̂︀Δ :=
(︁
𝑧1,̂︀Δ, · · · , 𝑧𝑛,̂︀Δ

)︁
, and consider the following pro-

cedure that completes the sampling of the key.

Gen′
𝑆,Δ,𝑅, ̂︀𝑅,𝑥Δ,𝑧̂︀Δ(1𝜆, 𝑛):
• For each 𝑖 ∈ [𝑛], sample 𝑏𝑖, 𝑐𝑖 ← {0, 1}, and define 𝑥𝑖 = 𝑥𝑖,Δ+𝑏𝑖·∆ and 𝑧𝑖 = 𝑧𝑖,̂︀Δ+𝑐𝑖· ̂︀∆.

• Output (𝑆,∆, 𝑥, 𝑧).

Since the oracle Ver′
𝑘,𝑅, ̂︀𝑅,·,·(·) can be implemented given just the fixed information

𝑆,∆, 𝑅, ̂︀𝑅, 𝑥Δ, 𝑧̂︀Δ, it suffices to show that for any 𝑆,∆, 𝑅, ̂︀𝑅, 𝑥Δ, 𝑧̂︀Δ and any adversary 𝐴
(whose description may depend on this information), it holds that⃒⃒⃒⃒

Pr
𝑘
[1← 𝐴(Enc𝑘(|𝜓0⟩))]− Pr

𝑘
[1← 𝐴(Enc𝑘(|𝜓1⟩))]

⃒⃒⃒⃒
= 0,

where the probability is over 𝑘 ← Gen′
𝑆,Δ,𝑅, ̂︀𝑅,𝑥Δ,𝑧̂︀Δ(1𝜆, 𝑛). Since

Enc𝑘 = 𝑋𝑥𝑍𝑧𝐸⊗𝑛𝑆,Δ = 𝑋𝑥Δ𝑍𝑧̂︀Δ𝑋𝑏1·Δ...𝑏𝑛·Δ𝑍𝑐1···̂︀Δ...𝑐𝑛·̂︀Δ𝐸⊗𝑛𝑆,Δ = 𝑋𝑥Δ𝑍𝑧̂︀Δ𝐸⊗𝑛𝑆,Δ𝑋𝑏1...𝑏𝑛𝑍𝑐1...𝑐𝑛 ,

this follows from the quantum one-time pad [AMTDW00]. That is, we use the fact that∑︁
𝑏1,...,𝑏𝑛,𝑐1,...,𝑐𝑛

Mx
[︀
𝑋𝑏1,...,𝑏𝑛𝑍𝑐1,...,𝑐𝑛 |𝜓0⟩

]︀
=

∑︁
𝑏1,...,𝑏𝑛,𝑐1,...,𝑐𝑛

Mx
[︀
𝑋𝑏1,...,𝑏𝑛𝑍𝑐1,...,𝑐𝑛 |𝜓1⟩

]︀
.

5.3 Linear + measurement quantum programs

In this section, we show that any quantum program with classical input and output (Def-
inition 2.2) can be implemented using a "linear + measurement" (LM) quantum program.

In slightly more detail, we make use of magic states in order to write any quantum
circuit as an alternating sequence of linear operations 𝐿𝑖 (by which we mean a sequence
of CNOT gates) and partial ZX measurements𝑀𝜃𝑖,𝑓𝑖 , where the description of each 𝑓𝑖 may
depend on the classical input 𝑥 as well as previous measurement results. We encourage
the reader to review our notation for partial ZX measurements 𝑀𝜃𝑖,𝑓𝑖 described at the
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beginning of Section 5.2.1. We remark here that these measurements are "partial" in two
aspects: (i) they may only operate on a subset of the qubits, and (ii) each measurement
outcome may be associated with multiple basis vectors, meaning that the input qubits
are not necessarily fully collapsed. We also remark that for the purpose of this paper,
we restrict attention to circuits with classical inputs and outputs, but note that one could
consider circuits with quantum inputs and outputs as well.

5.3.1 Definition

We first formally define LM quantum programs, and accompany this with a diagram in
Fig. 14.

Definition 5.13 (LM quantum program). An LM quantum program with classical input and
output is described by:

• A quantum state |𝜓⟩ on 𝑛 qubits.

• Linear operations 𝐿1, . . . , 𝐿𝑡+1, where each 𝐿𝑖 is a sequence of CNOT gates.

• Partial ZX measurements 𝑀
𝜃1,𝑓

(·)
1
,𝑀

𝜃2,𝑓
(·)
2
, . . . ,𝑀

𝜃𝑡,𝑓
(·)
𝑡

,𝑀𝜃𝑡+1,𝑔(·) defined by sets of bases

{𝜃𝑖}𝑖∈[𝑡+1] and classical functions {𝑓 (·)
𝑖 }𝑖∈[𝑡], 𝑔(·), which will be parameterized by the input

𝑥 as well as previous measurement results. In line with the notation introduced in Sec-
tion 5.2.1, for each 𝑖 ∈ [𝑡+ 1], we define Φ𝑖 ⊆ [𝑛] be the set of wires such that 𝜃𝑖 ̸= ⊥. That
is, Φ𝑖 is the set of wires on which the 𝑖’th partial measurement operates.

Now, we will find it useful to introduce further notation drawing attention to which wires are
simply measured in either the standard or Hamadard basis by the 𝑖’th partial ZX measurement,
and which are not fully collapsed. In particular, we define disjoint sets 𝑉1, . . . , 𝑉𝑡+1 and sets
𝑊1, . . . ,𝑊𝑡 with the following properties.

• Φ1 = (𝑉1,𝑊1),Φ2 = (𝑉1, 𝑉2,𝑊2), . . . ,Φ𝑡 = (𝑉1, . . . , 𝑉𝑡,𝑊𝑡),Φ𝑡+1 = (𝑉1, . . . , 𝑉𝑡+1) = [𝑛].

• The 𝑖’th measurement takes previously collapsed wires 𝑉1, . . . , 𝑉𝑖−1 as input, "fully" col-
lapses wires 𝑉𝑖, and "partially" collapses wires 𝑊𝑖. This will be made precise by the evalu-
ation procedure defined below, where the 𝑣𝑖 are inputs from the 𝑉𝑖 wires and 𝑤𝑖 are inputs
from the 𝑊𝑖 wires.

• Each𝐿𝑖 does not operate on {𝑉𝑗}𝑗<𝑖. That is, fully collapsed registers are no longer computed
on.

Finally, given an input 𝑥 ∈ {0, 1}𝑚, let LMEval
(︀
𝑥, |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔

)︀
→ 𝑦

be the formal evaluation procedure, defined as follows:

• Initialize an 𝑛-qubit registerℳ with |𝜓⟩.

• Compute ((𝑣1, 𝑟1),ℳ)←𝑀𝜃1,𝑓𝑥1
∘ 𝐿1(ℳ), where 𝑓𝑥1 (𝑣1, 𝑤1) = (𝑣1, 𝑟1).

141



• Compute ((𝑣2, 𝑟2),ℳ)←𝑀𝜃2,𝑓
𝑥,𝑟1
2
∘ 𝐿2(ℳ), where 𝑓𝑥,𝑟12 (𝑣1, 𝑣2, 𝑤2) = (𝑣2, 𝑟2).

• . . .

• Compute ((𝑣𝑡, 𝑟𝑡),ℳ)←𝑀𝜃𝑡,𝑓
𝑥,𝑟1,...,𝑟𝑡−1
𝑡

∘𝐿𝑡(ℳ), where 𝑓𝑥,𝑟1,...,𝑟𝑡−1

𝑡 (𝑣1, . . . , 𝑣𝑡, 𝑤𝑡) = (𝑣𝑡, 𝑟𝑡).

• Compute output 𝑦 ←𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡 ∘ 𝐿𝑡+1(ℳ), where 𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1) = 𝑦.

Observe that any alternating sequence of linear operations and partial ZX measure-
ments may be written in the form introduced in the above definition, by simply defining
each of the sets 𝑉𝑖 to be empty, and writing each function as 𝑓𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑤𝑖) → 𝑟𝑖 (that is,
we can always choose not to treat any of the wires as fully collapsed in the above formal-
ism). So, why did we bother explicitly defining the 𝑉𝑖 and 𝑊𝑖 sets? The reason is that
we will actually be interested in a “subclass” of LM quantum programs whose partially
collapsed wires (the 𝑊𝑖 wires) have a particularly simple structure. The diagram shown
in Fig. 14 is indeed an example of such an LM quantum program.

Definition 5.14 (LM quantum program with standard-basis-collapsible 𝑊 wires). An LM
quantum program has standard-basis-collapsible 𝑊 wires if:

• 𝑊1, . . . ,𝑊𝑛 consist of only standard basis indices, that is, 𝜃𝑖,𝑗 = 0 for 𝑖 ∈ [𝑡] and 𝑗 ∈ 𝑊𝑖.

• For 𝑖 ∈ [𝑡], 𝑊𝑖 is disjoint from Φ1 ∪ · · · ∪ Φ𝑖−1, and the operations 𝐿1, . . . , 𝐿𝑖−1 are either
classically controlled on or do not operate on 𝑊𝑖. In particular, for each 𝑖 ∈ [𝑡], the entire
operation of the LM program up to and including the 𝑖’th measurement is diagonal in the
standard basis on the wires 𝑊𝑖.

This standard-basis-collapsible 𝑊 wires property ensures that if one were to measure
("collapse") the 𝑊1, . . . ,𝑊𝑛 wires in the standard basis before executing the program, the
𝑊𝑖 wires would remain completely unaffected throughout the execution of the program
up to and including the 𝑖’th measurement (though they could be affected after the 𝑖’th mea-
surement). Note that this is not a correctness property, indeed, collapsing the 𝑊1, . . . ,𝑊𝑛

wires at the beginning of the computation would likely completely change the desired
functionality. However, it turns out that this property will be crucial for arguing the
security of our obfuscation scheme in the following sections (in particular, refer to the
"Collapsing the F oracles" discussion in the proof intuition section, Section 5.4.2).

5.3.2 Compiler

Theorem 5.15. Any quantum program (|𝜓⟩ , 𝐶) (Definition 2.2) can be compiled into an equiva-
lent LM quantum program (|𝜓′⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔) with standard-basis-collapsible
𝑊 wires, where {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔 only depend on the description of 𝐶 (and not
|𝜓⟩). Moreover, the compiler runs in polynomial time in the size of its input (|𝜓⟩ , 𝐶).
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𝑟1 𝑟2

|𝜓⟩ 𝐿1

𝐿2

𝐿3

𝑀𝜃3,𝑔𝑥,𝑟1,𝑟2

𝑦

𝑀𝜃2,𝑓
𝑥,𝑟1
2

𝑀𝜃1,𝑓𝑥1

𝑣2

𝑣1 𝑣1

𝑉3

𝑊2

𝑊1 𝑉2 𝑉2

𝑉1 𝑉1 𝑉1

Figure 14: Diagram of an LM quantum program. We use some non-standard quan-
tum circuit notation, so we provide some explanation. Each partial ZX measurement
𝑀

𝜃1,𝑓
(·)
1
,𝑀

𝜃2,𝑓
(·)
2
,𝑀𝜃3,𝑔(·) is applied to the wires coming from the left of the correspond-

ing box, some of which may be classical. Some wires (namely, 𝑉1, 𝑉2, and 𝑉3) are fully
collapsed by the measurement, producing classical output wires coming from the right.
Other wires (namely, 𝑊1 and 𝑊2) are only partially collapsed, so their corresponding out-
put wires are still quantum. Additional classical outputs (namely, 𝑟1 and 𝑟2) are produced
by these measurements, which are denoted by classical wires coming out of the bottom.
Note that the description of later measurements depend on 𝑟1, 𝑟2. Finally, we remark that
one could instead introduce explicit ancillary wires for the input 𝑥 and intermediate mea-
surement results 𝑟1, 𝑟2, but writing the circuit in the manner above is visually suggestive
of the structure of our eventual obfuscation scheme.
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|𝜓⟩ 𝐻

|𝜑𝐻⟩
𝑍 𝑋 𝐻 |𝜓⟩

Figure 15: Implementation of the𝐻 gate with the𝐻-magic state |𝜑𝐻⟩ ∝ |00⟩+ |01⟩+ |10⟩−
|11⟩.

Proof. We will use a circuit representation very similar to that described in [BGS13], except
for a key difference in how we implement the 𝑇 gate, inspired by the encrypted CNOT op-
eration introduced in [Mah18a]. We write the quantum circuit 𝐶 using the {CNOT, 𝐻, 𝑇}
universal gate set, where 𝑇 is the gate that applies a phase of 𝑒𝑖𝜋/4. Given magic states,
we’ll show how to implement 𝐻 and 𝑇 gates using only CNOT gates and Pauli (𝑋 and
𝑍) gates controlled on the results of partial ZX measurements. Then, we will observe that
the Pauli gates can be subsumed into the description of the measurements, leaving only
layers of CNOT gates and partial ZX measurements.

First, we’ll describe our implementations of the 𝐻 and 𝑇 gates and prove that they
are correct. Then, we’ll complete the proof with an inductive argument, showing how to
build an LM quantum program one gate at a time.

Implementing the 𝐻 gate. Following [BGS13], we use a two-qubit magic state

|𝜑𝐻⟩ ∝ |00⟩+ |01⟩+ |10⟩ − |11⟩

to implement the Hadamard gate, via the circuit in Figure 15. For completeness, we show
that the circuit indeed implements the Hadamard gate.

Claim 5.16. The circuit in Figure 15 implements the Hadamard gate.

Proof. Write |𝜓⟩ = 𝛼 |0⟩+ 𝛽 |1⟩. After the CNOT gate, the joint state of all three qubits can
be written as

𝛼 |000⟩+𝛼 |001⟩+ 𝛼 |010⟩ − 𝛼 |011⟩+ 𝛽 |100⟩ − 𝛽 |101⟩+ 𝛽 |110⟩+ 𝛽 |111⟩

=
(︁
(𝛼 + 𝛽) |+⟩ |00⟩+ (𝛼− 𝛽) |+⟩ |01⟩

)︁
+
(︁
(𝛼 + 𝛽) |+⟩ |10⟩ − (𝛼− 𝛽) |+⟩ |11⟩

)︁
+
(︁
(𝛼− 𝛽) |−⟩ |00⟩+ (𝛼 + 𝛽) |−⟩ |01⟩

)︁
+
(︁
𝛼− 𝛽) |−⟩ |10⟩ − (𝛼 + 𝛽) |−⟩ |11⟩

)︁
After the Hadamard basis measurement on the first wire resulting in a bit 𝑥 and the stan-
dard basis measurement on the second wire resulting in a bit 𝑧, the resulting state on the
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third wire is

(𝛼 + 𝛽) |0⟩+ (𝛼− 𝛽) |1⟩ = 𝐻 |𝜓⟩ if 𝑥 = 0 and 𝑧 = 0

(𝛼 + 𝛽) |0⟩ − (𝛼− 𝛽) |1⟩ = 𝑍𝐻 |𝜓⟩ if 𝑥 = 0 and 𝑧 = 1

(𝛼− 𝛽) |0⟩+ (𝛼 + 𝛽) |1⟩ = 𝑋𝐻 |𝜓⟩ if 𝑥 = 1 and 𝑧 = 0

(𝛼− 𝛽) |0⟩ − (𝛼 + 𝛽) |1⟩ = 𝑍𝑋𝐻 |𝜓⟩ if 𝑥 = 1 and 𝑧 = 1

Applying the 𝑍 and 𝑋 corrections now gives the state 𝐻 |𝜓⟩.

Implementing the 𝑇 gate. We will use two magic states

|𝜑𝑇 ⟩ ∝ |0⟩+ 𝑒𝑖𝜋/4 |1⟩ and |𝜑𝑃𝑋⟩ ∝ 𝑖 |0⟩+ |1⟩

and the circuit on the bottom right of Figure 16. First, we clarify notation in the figure. Γ𝑐
is a projective measurement controlled on the bit 𝑐 from the first wire, and is defined as
follows.

• Γ0 = {|00⟩⟨00| + |10⟩⟨10| , |01⟩⟨01| + |11⟩⟨11|}. That is, it measures its second input in
the standard basis.

• Γ1 = {|00⟩⟨00| + |11⟩⟨11| , |01⟩⟨01| + |10⟩⟨10|}. That is, it measures the XOR of its two
inputs.

The measurement Γ𝑐 is applied to the second and third wires, which remain quantum
wires, and produces a classical bit 𝑟 indicating which of the two measurement results was
observed. In this figure, this bit 𝑟 is carried on the classical wire coming from the right
of Γ𝑐. In an abuse of notation, we will also use Γ𝑐 as a function to define measurement
outcomes:

Γ0(00) = Γ0(10) = 0, Γ0(01) = Γ0(11) = 1,

Γ1(00) = Γ1(11) = 0, Γ1(01) = Γ1(10) = 1

The control logic for the 𝑍 gate is 𝑐 · (𝑟 ⊕ ℎ), where 𝑐 is the result of measuring the
first wire, 𝑟 is the result of measuring Γ𝑐, and ℎ is the result of measuring the third wire
in the Hadamard basis. We will now confirm this representation of the 𝑇 gate works as
expected.

Claim 5.17. The bottom right circuit in Figure 16 implements the 𝑇 gate.

Proof. Write |𝜓⟩ = 𝛼 |0⟩+ 𝛽 |1⟩. Applying the first CNOT yields

𝛼 |00⟩+ 𝑒𝑖𝜋/4𝛽 |01⟩+ 𝛽 |10⟩+ 𝑒𝑖𝜋/4𝛼 |11⟩
= |0⟩ (𝛼 |0⟩+ 𝑒𝑖𝜋/4𝛽 |1⟩) + |1⟩ (𝛽 |0⟩+ 𝑒𝑖𝜋/4𝛼 |1⟩).
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|𝜓⟩

|𝜑𝑇 ⟩ 𝑃𝑋 𝑇 |𝜓⟩

+
|𝜓⟩ 𝑍 𝑋 𝑃𝑋 |𝜓⟩

|𝜑𝑃𝑋⟩
⇒

|𝜓⟩

|𝜑𝑇 ⟩ 𝑍 𝑋 𝑇 |𝜓⟩

|𝜑𝑃𝑋⟩

𝑃𝑋

⇒

⊕

|𝜓⟩

|𝜑𝑇 ⟩

Γ𝑐

𝑍 𝑋 𝑇 |𝜓⟩

|𝜑𝑃𝑋⟩ 𝐻

"M" layer

Figure 16: Implementation of the 𝑇 gate. First, we combine an implementation of the 𝑇
gate using the 𝑇 -magic state |𝜑𝑇 ⟩ ∝ |0⟩ + 𝑒𝑖𝜋/4 |1⟩ (upper left) with an implementation
of the 𝑃𝑋 gate using the 𝑃𝑋-magic state |𝜑𝑃𝑋⟩ ∝ 𝑖 |0⟩ + |1⟩ (upper right) to obtain the
circuit on the bottom left. This circuit includes a classically controlled CNOT gate, which
is not supported by LM quantum programs. We replace the classically controlled CNOT
with a classically controlled projective measurement to arrive at the circuit on the bottom
right. Here, Γ𝑐 represents a measurement controlled on the bit 𝑐 from the first wire to be
applied to the second and third wires. These wires are only partially collapsed by this
measurement, so they remain quantum wires. However, Γ𝑐 also produces a measurement
result 𝑟, which is carried on the classical wire coming from the right. The final 𝑍 gate is
controlled on the bit 𝑐 · (𝑟 ⊕ ℎ), where ℎ is the result of measuring the third wire in the
Hadamard basis. The dashed box will eventually become a measurement layer in our
implementation of an LM circuit (though we remark that the input for this measurement
will also include wires from previous 𝐻-gate and 𝑇 -gate circuits).
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If the result of measuring the first wire is 𝑐 = 0, the state on the second wire is already

𝛼 |0⟩+ 𝑒𝑖𝜋/4𝛽 |1⟩ = 𝑇 |𝜓⟩ .

In this case, we measure Γ0, which only collapses the third wire, and neither the 𝑍 nor 𝑋
corrections is applied to the second wire, which remains in the state 𝑇 |𝜓⟩.

If the result of measuring the first wire is 𝑐 = 1, then the second wire is in the state

𝛽 |0⟩+ 𝑒𝑖𝜋/4𝛼 |1⟩ .

In this case, we measure Γ1 on

(𝛽 |0⟩+ 𝑒𝑖𝜋/4𝛼 |1⟩)(𝑖 |0⟩+ |1⟩).

If the result is 𝑟 = 0, the state has collapsed to

𝑖𝛽 |00⟩+ 𝑒𝑖𝜋/4𝛼 |11⟩
= 𝑒𝑖𝜋/4𝛽 |00⟩+ 𝛼 |11⟩
=
(︀
𝑒𝑖𝜋/4𝛽 |0⟩+ 𝛼 |1⟩

)︀
|+⟩+

(︀
𝑒𝑖𝜋/4𝛽 |0⟩ − 𝛼 |1⟩

)︀
|−⟩

= 𝑋𝑇 |𝜓⟩ |+⟩+ 𝑍𝑋𝑇 |𝜓⟩ |−⟩ ,

so applying the 𝑍 correction controlled on 𝑐 · (𝑟⊕ ℎ) = ℎ followed by the 𝑋 correction
results in 𝑇 |𝜓⟩. If the result is 𝑟 = 1, the state has collapsed to

𝛽 |01⟩+ 𝑖𝑒𝑖𝜋/4𝛼 |10⟩
= 𝑒𝑖𝜋/4𝛽 |01⟩ − 𝛼 |10⟩
=
(︀
𝑒𝑖𝜋/4 |0⟩ − 𝛼 |1⟩

)︀
|+⟩ −

(︀
𝑒𝑖𝜋/4𝛽 |0⟩+ 𝛼 |1⟩

)︀
|−⟩

= 𝑍𝑋𝑇 |𝜓⟩ |+⟩ − 𝑍𝑇 |𝜓⟩ |−⟩ ,

so applying the𝑍 correction controlled on 𝑐·(𝑟⊕ℎ) = 1⊕ℎ followed by the𝑋 correction
results in 𝑇 |𝜓⟩.

Inductive argument. In order to carry out an inductive argument, we will first general-
ize the notion of an LM quantum program to support quantum output. We will actually
allow the output to be correct up to some Pauli errors that can be computed by measur-
ing some ancillary registers in the standard or Hadamard basis and applying a classical
function to the measurement results.

First, we fix some notation. Throughout the proof, we’ll keep track of disjoint sets of
wires 𝑉1, . . . , 𝑉𝑡, 𝑉 *𝑡+1, 𝑂, where 𝑉1 ∪ · · · ∪ 𝑉𝑡 ∪ 𝑉 *𝑡+1 ∪ 𝑂 = [𝑛]. We will also keep track of
strings 𝑣, ̂︀𝑥, ̂︀𝑧 ∈ {0, 1,⊥}𝑛, where 𝑣 denotes a subset of measurement results (from wires
𝑉1 ∪ · · · ∪ 𝑉𝑡 ∪ 𝑉 *𝑡+1), and ̂︀𝑥, ̂︀𝑧 denote Pauli corrections to be applied to the wires in 𝑂. For
any set 𝑉 , we let 𝑣(𝑉 ) (resp. ̂︀𝑥(𝑉 ), ̂︀𝑧(𝑉 )) be the string restricted to indices in the set 𝑉 . In
particular, for an index 𝑖 ∈ [𝑛], 𝑣(𝑖) is just the 𝑖’th entry of 𝑣. Finally, for each 𝑖 ∈ [𝑡], we
define 𝑣𝑖 := 𝑣(𝑉𝑖), and we define 𝑣*𝑡+1 := 𝑣(𝑉

*
𝑡+1).
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Definition 5.18 (LM quantum program with Pauli-encoded quantum output). An LM
quantum program with Pauli-encoded quantum output is defined like a standard LM quantum
program (Definition 5.13), except for the following differences.

• There is no final measurement 𝑀𝜃𝑡+1,𝑔(·) , and thus 𝜃𝑡+1 and 𝑔(·) are undefined.

• The set [𝑛] ∖ (𝑉1 ∪ · · · ∪ 𝑉𝑡) consists of disjoint sets 𝑉 *𝑡+1 and 𝑂, where 𝑂 contains the
Pauli-encoded output. We will refer to 𝑂 as the "active" set of wires.

• There is a string 𝜃*𝑡+1 ∈ {0, 1,⊥}𝑛 that is 0 or 1 on 𝑉 *𝑡+1 (determining whether these registers
are measured in the standard or Hadamard basis) and ⊥ everywhere else.

• There is a classical function ℎ(𝑥, 𝑣1, . . . , 𝑣𝑡, 𝑣
*
𝑡+1, 𝑟1, . . . , 𝑟𝑡) → {0, 1}2|𝑂| that operates on

the program input 𝑥 and previous measurement results, and outputs Pauli correctionŝ︀𝑥(𝑂), ̂︀𝑧(𝑂) ∈ {0, 1}|𝑂| to be applied to the 𝑂 registers.

Note that the program is defined by a state |𝜓⟩ along with {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡], {𝑓 (·)
𝑖 }𝑖∈[𝑡], 𝜃*𝑡+1, ℎ.

First, the following claim will confirm that it suffices to compile the quantum program
(|𝜓⟩ , 𝐶) into an LM quantum program with Pauli-encoded quantum output.

Claim 5.19. Consider any LM quantum program with Pauli-encoded quantum output that com-
putes a classical output functionality. That is, the (Pauli encoding of the) output we are interested
in is determined by measuring the 𝑂 registers in the standard basis. Then, this program can be
written as a standard LM quantum program (Definition 5.13).

Proof. It suffices to define the final measurement 𝑀𝜃𝑡+1,𝑔(·) . Set 𝜃𝑡+1 ∈ {0, 1}𝑛 to be equal
to 𝜃𝑡 on the sets 𝑉1, . . . , 𝑉𝑡, equal to 𝜃*𝑡+1 on the set 𝑉 *𝑡+1 and equal to 0 on the set 𝑂. Let
𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1) be defined as follows. Parse 𝑣𝑡+1 as (𝑣*𝑡+1, 𝑦

′), compute ℎ(𝑥, 𝑣1, . . . , 𝑣𝑡,
𝑣*𝑡+1, 𝑟1, . . . , 𝑟𝑡) = (̂︀𝑥(𝑂), ̂︀𝑧(𝑂)), and output 𝑦 = 𝑦′ ⊕ ̂︀𝑥(𝑂).

Now, we show how to compile any quantum program (|𝜓⟩ , 𝐶) into an LM quantum
program with Pauli-encoded quantum output. We proceed by induction over the number
of gates ℓ in 𝐶.

Base case. Suppose that 𝐶 contains 0 gates. That is, there is no state |𝜓⟩ and the func-
tionality is just the identity applied to input 𝑥. In this case, 𝑛 = |𝑥|, 𝑡 = 0, 𝐿1 is empty,
𝜃*1 = ⊥𝑛, and the LM quantum program is defined by (|0𝑛⟩ , ℎ), where ℎ(𝑥) = (𝑥, 0𝑛).

Inductive step. Consider a quantum program (|𝜓⟩ , 𝐶) with ℓ + 1 gates, and begin by
writing 𝐶 as (𝐶ℓ, 𝐺), where 𝐶ℓ contains the first ℓ gates, and 𝐺 ∈ {CNOT, 𝐻, 𝑇} is the final
gate. By the inductive hypothesis, we know that (|𝜓⟩ , 𝐶ℓ) can be written as an LM quan-
tum program with Pauli-encoded quantum output: |𝜓′⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡], {𝑓 (·)

𝑖 }𝑖∈[𝑡], 𝜃*𝑡+1, ℎ,
where 𝑡 is the number of 𝑇 gates in 𝐶ℓ. Now, we consider three cases corresponding to
the gate𝐺, which by definition will be applied to one (or two) wire(s) in the "active" set𝑂.
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In each case, we describe how to update the description of the LM quantum program for
(|𝜓⟩ , 𝐶ℓ) so that it now has the same functionality as the full quantum program (|𝜓⟩ , 𝐶).
The fact that these updates implement the desired functionality follow from Claim 5.16
and Claim 5.17 above.

• CNOT from wire 𝑖 to 𝑗: Append the description of this gate to the end of 𝐿𝑡+1 and
append the operation (̂︀𝑥(𝑖), ̂︀𝑧(𝑖)), (̂︀𝑥(𝑗), ̂︀𝑧(𝑗)) → (̂︀𝑥(𝑖), ̂︀𝑧(𝑖) ⊕ ̂︀𝑧(𝑗)), (̂︀𝑥(𝑖) ⊕ ̂︀𝑥(𝑗), ̂︀𝑧(𝑗)) to the
end of ℎ.

• 𝐻 on wire 𝑖: Refer to Fig. 15.

– Introduce two new wires (𝑛+ 1, 𝑛+ 2) and append |𝜑𝐻⟩ to |𝜓′⟩.
– Append the description of a CNOT gate from wire 𝑖 to 𝑛+ 1 to the end of 𝐿𝑡+1.

– Remove wire 𝑖 from and add wire 𝑛+ 2 to 𝑂.

– Add wires 𝑖 and 𝑛+ 1 to 𝑉 *𝑡+1.

– For 𝜏 ∈ [𝑡], define 𝜃𝜏,𝑛+1 = 𝜃𝜏,𝑛+2 = ⊥. Define 𝜃*𝑡+1,𝑖 = 1, 𝜃*𝑡+1,𝑛+1 = 0, and
𝜃*𝑡+1,𝑛+2 = ⊥.

– Update ℎ to ℎ′ as follows. The function ℎ′ will now take two additional in-
put bits 𝑣(𝑖), 𝑣(𝑛+1) as part of 𝑣*𝑡+1 and its output will now include (̂︀𝑥(𝑛+2), ̂︀𝑧(𝑛+2))
rather than (̂︀𝑥(𝑖), ̂︀𝑧(𝑖)), computed as follows. Let ̂︀𝑥(𝑂), ̂︀𝑧(𝑂) = ℎ(𝑥, 𝑣1, . . . , 𝑣𝑡, 𝑣

*
𝑡+1, 𝑟1, . . . , 𝑟𝑡)

be the output of the original ℎ, which includes (̂︀𝑥(𝑖), ̂︀𝑧(𝑖)). Then the output of ℎ′

includes ̂︀𝑥(𝑛+2) := 𝑣(𝑖) ⊕ ̂︀𝑧(𝑖) and ̂︀𝑧(𝑛+2) := 𝑣(𝑛+1) ⊕ ̂︀𝑥(𝑖).
• 𝑇 on wire 𝑖: Refer to Fig. 16.

– Introduce two new wires (𝑛+ 1, 𝑛+ 2) and append |𝜑𝑇 ⟩ |𝜓𝑃𝑋⟩ to |𝜓′⟩.
– Append the description of a CNOT gate from wire 𝑛+ 1 to 𝑖 to the end of 𝐿𝑡+1.

– Remove wire 𝑖 from and add wire 𝑛+ 1 to 𝑂.

– Define 𝑉𝑡+1 := 𝑉 *𝑡+1 ∪ {𝑖} and define 𝑊𝑡+1 := {𝑛+ 1, 𝑛+ 2}.
– For 𝜏 ∈ [𝑡], define 𝜃𝜏,𝑛+1 = 𝜃𝜏,𝑛+2 = ⊥. Define 𝜃𝑡+1 to be equal to 𝜃𝑡 on the sets
𝑉1, . . . , 𝑉𝑡, equal to 𝜃*𝑡+1 on the set 𝑉 *𝑡+1, equal to 0 on index 𝑖, and equal to ⊥
everywhere else.

– Define a function 𝑓𝑥,𝑟1,...,𝑟𝑡𝑡+1 (𝑣1, . . . , 𝑣𝑡+1, 𝑤𝑡+1) as follows, where 𝑣𝑡+1 = (𝑣*𝑡+1, 𝑣
(𝑖)).

First, compute (̂︀𝑥(𝑂), ̂︀𝑧(𝑂)) = ℎ(𝑥, 𝑣1, . . . , 𝑣𝑡, 𝑣
*
𝑡+1, 𝑟1, . . . , 𝑟𝑡), which includes (̂︀𝑥(𝑖), ̂︀𝑧(𝑖)).

Then, set 𝑐 = 𝑣(𝑖) ⊕ ̂︀𝑥(𝑖), and output (𝑣𝑡+1,Γ𝑐(𝑤𝑡+1)). This defines measurement
𝑀

𝜃𝑡+1,𝑓
(·)
𝑡+1

.

– Initialize 𝑉 *𝑡+2 := {𝑛+ 2}, 𝜃*𝑡+2 to be equal to 1 at index 𝑛+ 2 and ⊥ everywhere
else, and 𝐿𝑡+2 to be empty.
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– Update ℎ to ℎ′ as follows. The function ℎ′ will now take an additional input
bit 𝑣(𝑖) as part of 𝑣𝑡+1, an additional input bit 𝑣(𝑛+2) as part of 𝑣*𝑡+2, and an ad-
ditional input bit 𝑟𝑡+1. Its output will now include (̂︀𝑥(𝑛+1), ̂︀𝑧(𝑛+1)) rather than
(̂︀𝑥(𝑖), ̂︀𝑧(𝑖)), computed as follows. Let ̂︀𝑥(𝑂), ̂︀𝑧(𝑂) = ℎ(𝑥, 𝑣1, . . . , 𝑣𝑡, 𝑣

*
𝑡+1, 𝑟1, . . . , 𝑟𝑡)

be the output of the original ℎ, which includes (̂︀𝑥(𝑖), ̂︀𝑧(𝑖)). Then the output of ℎ′

includes ̂︀𝑥(𝑛+1) := 𝑣(𝑖) ⊕ ̂︀𝑥(𝑖) and ̂︀𝑧(𝑛+1) := (𝑣(𝑖) ⊕ ̂︀𝑥(𝑖)) · (𝑣(𝑛+2) ⊕ 𝑟𝑡+1).

This completes the description of the compiler. Observe that the 𝑊𝑖 wires consist of
the two magic state wires used to implement the 𝑖’th 𝑇 gate (one initialized with |𝜑𝑇 ⟩ and
the other initialized with |𝜑𝑃𝑋⟩). The |𝜑𝑇 ⟩ wire is used as the control for a single CNOT
gate just prior to the 𝑖’th measurement, and the |𝜑𝑃𝑋⟩ wire is not touched until the 𝑖’th
measurement. Thus, since Γ𝑐 is a standard basis projector, all the requirements of the
standard-basis-collapsible 𝑊 wires property (Definition 5.14) are fulfilled.

5.4 Obfuscation

5.4.1 Construction

Our construction of quantum state obfuscation in the classical oracle model makes use of
the following ingredients.

• Publicly-verifiable, linearly-homomorphic QAS with classically-decodable ZX mea-
surements (Gen,Enc, LinEval,Dec,Ver), defined in Section 5.2.

• Signature token (TokGen,TokSign,TokVer), defined in Section 2.2.4.

• A pseudorandom function 𝐹𝑘 secure against superposition-query attacks [Zha12].

For any polynomials 𝑛 = 𝑛(𝜆), 𝑚 = 𝑚(𝜆), and 𝑚′ = 𝑚′(𝜆), let{︀
|𝜓unv
𝜆,𝑛,𝑚,𝑚′⟩ , 𝐶unv

𝜆,𝑛,𝑚,𝑚′

}︀
𝜆∈N

be the family of universal (𝑛,𝑚,𝑚′) quantum programs. That is, for any family of quan-
tum programs {|𝜑𝜆⟩ , 𝐶𝜆}𝜆∈N where |𝜑𝜆⟩ has at most 𝑛 qubits, 𝐶𝜆 has as most 𝑛 gates, and
𝑄 : {0, 1}𝑚 → {0, 1}𝑚′ , it holds that for all 𝜆 and inputs 𝑥,

𝐶unv
𝜆,𝑛,𝑚,𝑚′

(︀
|𝑥⟩ |𝐶𝜆⟩ |𝜑𝜆⟩ |𝜓unv

𝜆,𝑛,𝑚,𝑚′⟩
)︀
= 𝐶𝜆 (|𝑥⟩ |𝜑𝜆⟩) .

By Theorem 5.15, for any (𝑛,𝑚,𝑚′) family {|𝜑𝜆⟩ , 𝐶𝜆}𝜆∈N, we can write each quantum
program

|𝐶𝜆⟩ |𝜑𝜆⟩ |𝜓unv
𝜆,𝑛,𝑚,𝑚′⟩ , 𝐶unv

𝜆,𝑛,𝑚,𝑚′

as an LM quantum program(︀
|𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔

)︀
150



that satisfies the standard-basis-collapsible 𝑊 wires property (Definition 5.14), where we
have dropped the indexing by 𝜆 to reduce notational clutter. Note that Theorem 5.15
guarantees that |𝜓⟩ contains the complete description of (|𝜑𝜆⟩ , 𝐶𝜆), and that the classical
part of the program ({𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔) only depends on 𝐶unv

𝜆,𝑛,𝑚,𝑚′ . Thus, we
consider everything but |𝜓⟩ to be public, and our obfuscator will take as input a quantum
state |𝜓⟩, and its goal is to hide |𝜓⟩. Finally, we assume without loss of generality that each
𝑟𝑖 (being part of the output of 𝑓𝑖) is a single bit, which is convenient (though not strictly
necessary) for describing the construction and proof, and is satisfied by the output of the
compiler given in Theorem 5.15.

The construction is given in Protocol 17, and incorporates the following public param-
eters:

• Security parameter 𝜆.

• Classical part of the LM quantum program {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔. This in-
formation determines the number of qubits 𝑛 = poly(𝜆) in the input state |𝜓⟩, classi-
cal input size 𝑚 = poly(𝜆), and classical output size 𝑚′(𝜆). Recall from Section 5.2.1
that each 𝜃𝑖 defines subsets

Φ𝜃𝑖 ,Φ𝜃𝑖,0,Φ𝜃𝑖,1,Φ𝜃𝑖,⊥,
̃︀Φ𝜃𝑖 ,

̃︀Φ𝜃𝑖,0,
̃︀Φ𝜃𝑖,1,

̃︀Φ𝜃𝑖,⊥,

and in what follows we drop the 𝜃 and write these subsets as

Φ𝑖,Φ𝑖,0,Φ𝑖,1,Φ𝑖,⊥, ̃︀Φ𝑖, ̃︀Φ𝑖,0, ̃︀Φ𝑖,1, ̃︀Φ𝑖,⊥.

• Derived security parameter 𝜅 := max{𝜆, 𝑛4} = poly(𝜆).

We will also make use of the following notation. Given a register 𝒳 and classical
functionality F, we let

(𝑦,𝒳 )← F(𝒳 )
denote the result of initializing a new register 𝒴 , coherently applying the map

|𝑥⟩𝒳 |0⟩𝒴 → |𝑥⟩𝒳 |F(𝑥)⟩𝒴 ,

and then measuring register 𝒴 to obtain output 𝑦.

Theorem 5.20. The scheme described in Fig. 17 is a quantum state obfuscator that satisfies cor-
rectness (Definition 2.13).

Proof. Fix the classical part of an LM quantum program {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔,
and let 𝑥, |𝜓⟩ be such that there exists 𝑦 such that

Pr
[︀
LMEval

(︀
𝑥, |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔

)︀
→ 𝑦

]︀
= 1− negl(𝜆).

Technically, we mean an infinite family of programs, inputs, states, and outputs, param-
eterized by the security parameter 𝜆, but we keep this implicit. We will show via a se-
quence of hybrids that
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Quantum State Obfuscation

QSObf
(︀
1𝜆, |𝜓⟩

)︀
:

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Sample 𝑘′ ← {0, 1}𝜆 for PRF 𝐹𝑘′ : {0, 1}* → {0, 1}𝜅 and let 𝐻(·) := 𝐹𝑘′(·).

• For each 𝑖 ∈ [𝑡], define the function F𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥. Otherwise, for each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℎ𝜄,𝑟𝜄 .

– Compute (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) and output ⊥ if the result is ⊥.

– Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖).

– Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (̃︀𝑣𝑖, ℓ𝑖).
• Define the function G(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡):

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥. Otherwise, for each 𝜄 ∈ [𝑡], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

– Compute (𝑣1, . . . , 𝑣𝑡+1) = Dec𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1
(̃︀𝑣1, . . . , ̃︀𝑣𝑡+1) and output ⊥ if the result is ⊥.

– Output 𝑦 = 𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1).

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1, . . . ,F𝑡,G) .

QSEval𝑂
(︁
𝑥, | ̃︀𝜓⟩)︁:

• Sample 𝜎𝑥 ← TokSign(𝑥, |sk⟩).

• Initialize a register 𝒞 with |𝜓𝑘⟩, and do the following for 𝑖 ∈ [𝑡]:

– 𝒞 ← 𝐻
̃︀Φ𝑖,1LinEval𝐿𝑖

(𝒞).

– Measure
(︁̃︀𝑣𝑖, ℓ𝑖, 𝒞̃︀Φ𝑖

)︁
← F𝑖

(︁
𝑥, 𝜎𝑥, 𝒞̃︀Φ𝑖

, ℓ1, . . . , ℓ𝑖−1

)︁
.

– 𝒞 ← 𝐻
̃︀Φ𝑖,1(𝒞).

• 𝒞 ← 𝐻
̃︀Φ𝑡+1,1LinEval𝐿𝑡+1(𝒞)

• Measure 𝑦 ← G
(︁
𝑥, 𝜎𝑥, 𝒞̃︀Φ𝑡+1

, ℓ1, . . . , ℓ𝑡

)︁
and output 𝑦.

Figure 17: Construction of quantum state obfuscation.
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Pr

[︃
𝑦* = 𝑦 :

| ̃︀𝜓⟩ , 𝑂 ← QSObf(1𝜆, |𝜓⟩)
𝑦* ← QSEval𝑂

(︁
𝑥, | ̃︀𝜓⟩)︁

]︃
= 1− negl(𝜆).

Each hybrid will describe a distribution over 𝑦*, beginning with the distribution above,
which we denoteℋ0.

• ℋ1: This is the same as ℋ0 except that 𝐻(·) is defined to be a uniformly random
function with range {0, 1}𝜅 rather than the PRF 𝐹𝑘′ .

• ℋ2: This is the same as ℋ1 except that the functions F1, . . . ,F𝑡,G ignore their input
𝜎𝑥 and don’t apply TokVer.

• ℋ3: This is the same as ℋ2 except that instead of inputting and outputting the la-
bels ℓ𝜄, the functions 𝐹1, . . . , 𝐹𝑡, 𝐺 directly input and output the bits 𝑟𝜄. That is, these
functions are defined as follows.

F𝑖(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, 𝑟1, . . . , 𝑟𝑖−1):
– Compute (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) and output ⊥ if the result

is ⊥.

– Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖).

– Output (̃︀𝑣𝑖, 𝑟𝑖).
G(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, 𝑟1, . . . , 𝑟𝑡) :

– Compute (𝑣1, . . . , 𝑣𝑡+1) = Dec𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1(̃︀𝑣1, . . . , ̃︀𝑣𝑡+1) and output⊥ if the result
is ⊥.

– Output 𝑦 = 𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1).

• ℋ4: This is the same as ℋ3 except that the functions F1, . . . ,F𝑡 output 𝑣𝜄 rather thañ︀𝑣𝜄. That is, these functions are defined as follows.

F𝑖(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, 𝑟1, . . . , 𝑟𝑖−1):
– Compute (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) and output ⊥ if the result

is ⊥.

– Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖).

– Output (𝑣𝑖, 𝑟𝑖).

G(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡, ̃︀𝑣𝑡+1, 𝑟1, . . . , 𝑟𝑡) :

– Compute 𝑣1, . . . , 𝑣𝑡+1 = Dec𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1(̃︀𝑣1, . . . , ̃︀𝑣𝑡+1) and output ⊥ if the result
is ⊥.
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– Output 𝑦 = 𝑔𝑥,𝑟1,...,𝑟𝑡(𝑣1, . . . , 𝑣𝑡+1).

To complete the proof, we combine the following observations.

• ℋ0 ≈negl(𝜆) ℋ1: This follows from the (superposition-query) security of the PRF.

• ℋ1 ≡ ℋ2: This follows from the correctness of the signature token (Definition 2.20).

• ℋ2 ≈negl(𝜆) ℋ3: The only difference between these hybrids occurs if in ℋ2, a query
to F𝑖 or G outputs ⊥ due to the fact that ℓ𝜄,0 = ℓ𝜄,1. Since 𝐻 is a uniformly random
function, each ℓ𝜄,0 = ℓ𝜄,1 with probability 1/2𝜅 = negl(𝜆), and the observation follows
because 𝑡 = poly(𝜆).

• ℋ3 ≡ ℋ4: Starting with ℋ4, in which the logical measurements of 𝑣1, . . . , 𝑣𝑡+1 are
performed, we can imagine, after the 𝑖’th measurement, further collapsing the 𝑉𝑖
register to obtain the outcome ̃︀𝑣𝑖 as inℋ3. This has no effect on the rest of the compu-
tation, since these registers are no longer computed on after the 𝑖’th measurement,
and will continue to decode to 𝑣𝑖.

• ℋ4 ≡ LMEval
(︀
𝑥, |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔

)︀
: This follows from the correct-

ness of the authentication scheme (Definition 5.1). Indeed, for a given key 𝑘 ∈
Gen(1𝜅, 𝑛), we can write the distribution sampled byℋ4 as follows:

– Initialize register 𝒞 to Enc𝑘(|𝜓⟩).

– Compute ((𝑣1, 𝑟1), 𝒞)← ̃︁𝑀𝜃1,𝑓𝑥1 ,𝑘,𝐿1 ∘ LinEval𝐿1(𝒞).
– . . .

– Compute ((𝑣𝑡, 𝑟𝑡), 𝒞)← ̃︁𝑀𝜃𝑡,𝑓
𝑥,𝑟1,...,𝑟𝑡−1
𝑡 ,𝑘,𝐿𝑡...𝐿1

∘ LinEval𝐿𝑡(𝒞).

– Compute output 𝑦 ← ̃︁𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡 ,𝑘,𝐿𝑡+1...𝐿1 ∘ LinEval𝐿𝑡+1(𝒞).

Now, we apply the expression in the definition of correctness (Definition 5.1) to the
first measurement to obtain an equivalent sampling procedure:

– Initialize registerℳ to |𝜓⟩.
– Compute ((𝑣1, 𝑟1),ℳ)← 𝐿†1 ∘𝑀𝜃1,𝑓𝑥1

∘ 𝐿1(ℳ).

– Compute 𝒞 ← Enc𝑘(ℳ)

– Compute ((𝑣2, 𝑟2), 𝒞)← ̃︁𝑀𝜃2,𝑓
𝑥,𝑟1
2 ,𝑘,𝐿2𝐿1

∘ LinEval𝐿2𝐿1(𝒞).
– . . .

– Compute ((𝑣𝑡, 𝑟𝑡), 𝒞)← ̃︁𝑀𝜃𝑡,𝑓
𝑥,𝑟1,...,𝑟𝑡−1
𝑡 ,𝑘,𝐿𝑡...𝐿1

∘ LinEval𝐿𝑡(𝒞).

– Compute output 𝑦 ← ̃︁𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡 ,𝑘,𝐿𝑡+1...𝐿1 ∘ LinEval𝐿𝑡+1(𝒞).

By applying the expression iteratively for each measurement, we obtain:
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– Initialize registerℳ to |𝜓⟩.

– Compute ((𝑣1, 𝑟1),ℳ)← 𝐿†1 ∘𝑀𝜃1,𝑓𝑥1
∘ 𝐿1(ℳ).

– Compute ((𝑣2, 𝑟2),ℳ)← 𝐿†1𝐿
†
2 ∘𝑀𝜃2,𝑓

𝑥,𝑟1
2
∘ 𝐿2𝐿1(ℳ).

– . . .

– Compute ((𝑣𝑡, 𝑟𝑡),ℳ)← 𝐿†1 . . . 𝐿
†
𝑡 ∘𝑀𝜃𝑡,𝑓

𝑥,𝑟1,...,𝑟𝑡−1
𝑡

∘ 𝐿𝑡 . . . 𝐿1(ℳ).

– Compute output 𝑦 ←𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡 ∘ 𝐿𝑡+1 . . . 𝐿1(ℳ).

By canceling 𝐿†𝑖𝐿𝑖 = ℐ, we obtain LMEval
(︀
𝑥, |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔

)︀
:

– Initialize registerℳ to |𝜓⟩.
– Compute ((𝑣1, 𝑟1),ℳ)←𝑀𝜃1,𝑓𝑥1

∘ 𝐿1(ℳ).

– Compute ((𝑣2, 𝑟2),ℳ)←𝑀𝜃2,𝑓
𝑥,𝑟1
2
∘ 𝐿2(ℳ).

– . . .

– Compute ((𝑣𝑡, 𝑟𝑡),ℳ)←𝑀𝜃𝑡,𝑓
𝑥,𝑟1,...,𝑟𝑡−1
𝑡

∘ 𝐿𝑡(ℳ).

– Compute output 𝑦 ←𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡 ∘ 𝐿𝑡+1(ℳ).

5.4.2 Proof intuition

We begin by discussing three main ideas used in our proof. This will not be a step-by-
step outline of the proof, rather, it will try to convey the main intuitive ideas. Broadly
speaking, we will want to simulate the oracles F1, . . . ,F𝑡,G so that they no longer require
access to the decoding functionality of the authentication scheme, and G can get by with
just oracle access to the induced functionality 𝑄. Once this is done, we can appeal to
privacy of the authentication scheme (Definition 5.5) in order to switch |𝜓⟩ to |0𝑛⟩, thus
removing all information about the input state.

The first idea below will help us simulate the G oracle, the second will us help simulate
the F oracles, and the third is a way to extract signature tokens from the adversary using
a purified random oracle, which we will use when proving the indistinguishability of the
simulated oracles.

Proving soundness by induction. As mentioned in the technical overview (Section 5.1.3),
one of the main steps in our proof of security is to show the following soundness guar-
antee. Fix any input 𝑥*. Then we would like to show that, given |𝜓⟩ and oracle access
to F1, . . . ,F𝑡,G, the adversary cannot prepare a "bad" query (𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡)
with the property that

G(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) /∈ {𝑄(𝑥*),⊥}.
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That is, if G does not abort on an input that starts with 𝑥*, then it better be the case that it
returns the correct output 𝑄(𝑥*).

To simplify the discussion for now, let’s consider the simpler case of a garbled pro-
gram, which only allows the adversary to evaluate on a single input 𝑥*. That is, suppose
we hard-code 𝑥* into the oracles F1[𝑥

*], . . . ,F𝑡[𝑥
*],G[𝑥*], which now only accept inputs

that begin with 𝑥*.
Our goal will be to show that the adversary is “forced” to follow an honest evaluation

path on input 𝑥*. Since the honest evaluation path actually branches at each measure-
ment, we will essentially analyze each of these possible branching executions. To do so,
let’s suppose by induction that the soundness condition holds for any program with 𝑡− 1
measurement layers. Then, for each possible outcome (𝑣1, 𝑟1) of the first measurement
(using input 𝑥*) that occurs with non-zero probability, define Π[𝑥*, 𝑣1, 𝑟1] to be the projec-
tor onto the space of initial states |𝜓⟩ that produce that outcome. Thus, we can write

|𝜓⟩ =
∑︁
𝑣1,𝑟1

Π[𝑥*, 𝑣1, 𝑟1] |𝜓⟩ ,

and analyze each component | ̃︀𝜓[𝑥*, 𝑣1, 𝑟1]⟩ := Enc𝑘(Π[𝑥
*, 𝑣1, 𝑟1] |𝜓⟩) separately.

The key step is to show that, if the adversary is initialized with | ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩ for some
(𝑣*1, 𝑟

*
1), then we can hard-code the measurement results (𝑣*1, 𝑟*1) into the oracles F1[𝑥

*], . . . ,F𝑡[𝑥
*]

without the adversary noticing. That is, we define oracles F1[𝑥
*, 𝑣*1, 𝑟

*
1], . . . ,F𝑡[𝑥

*, 𝑣*1, 𝑟
*
1]

that operate like F1[𝑥
*], . . . ,F𝑡[𝑥

*], except that F1[𝑥
*, 𝑣*1, 𝑟

*
1] always outputs the label repre-

senting 𝑟*1, and F2[𝑥
*, 𝑣*1, 𝑟

*
1], . . . ,F𝑡[𝑥

*, 𝑣*1, 𝑟
*
1] use (𝑣*1, 𝑟

*
1) instead of decoding their inputs̃︀𝑣1 and ℓ1.

We will prove the indistinguishability of F1[𝑥
*], . . . ,F𝑡[𝑥

*] and F1[𝑥
*, 𝑣*1, 𝑟

*
1], . . . ,F𝑡[𝑥

*, 𝑣*1, 𝑟
*
1]

by reducing to security of the authentication scheme. Note that distinguishing these ora-
cles requires the adversary to find a differing input to one of the oracles. Now, assuming
that the oracles can be simulated using Ver𝑘,·,·(·) instead of Dec𝑘,·,·(·) (which we have yet
to argue, but will address in the following section), this means that it suffices to show that
the adversary cannot map

| ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩ → | ̃︀𝜓[𝑥*, 𝑣1, 𝑟1]⟩
for some (𝑣1, 𝑟1) ̸= (𝑣*1, 𝑟

*
1) just given access to the verification oracle Ver𝑘,·,·(·). However,

doing so would certainly imply that the adversary can change the measurement results
of an authenticated state (given the verification oracle), which violates the security of the
authentication scheme.

Finally, we view the state | ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩ and oracles F1[𝑥
*, 𝑣*1, 𝑟

*
1], . . . ,F𝑡[𝑥

*, 𝑣*1, 𝑟
*
1] as an

example of a garbled (𝑡−1)-layer program, and finish the proof of soundness by appealing
to the induction hypothesis.

The formal inductive argument is given in Section 5.4.5.

Collapsing the F oracles. Now, we address the claim made above that the F oracles can
be simulated given Ver𝑘,·,·(·) instead of Dec𝑘,·,·(·). Note that we can only hope that this
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simulation is indistinguishable to an adversary with no access to the G oracle, since the
real F oracles can be used to actually implement the computation 𝑥 → 𝑄(𝑥), while the
simulated oracles cannot since they don’t actually decode their inputs. However, it turns
out that this suffices for us, since we can simulate the G oracle when we need to apply
this indistinguishability.

The main idea is to “collapse” the oracles F1, . . . ,F𝑡, showing that the adversary cannot
distinguish them from oracles FSim1, . . . ,FSim𝑡 that always output either the “zero” label

𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0)
or ⊥. These oracles now do not have to actually run 𝑓

𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤𝑖) to compute
the bit 𝑟𝑖, meaning that the decoding operation in F𝑖 can be replaced with a verification
operation.

But how do we show that the oracles can be collapsed? Again, we will use the idea of
splitting |𝜓⟩ up into orthogonal components and analyzing each component separately.
Here is where we make use of the standard-basis-collapsible 𝑊 wires property of the LM
quantum program (Definition 5.14). In particular, we will define the orthogonal compo-
nents by measuring the wires 𝑊1, . . . ,𝑊𝑡 in the standard basis. That is, we will write

|𝜓⟩ =
∑︁
𝑤

Π[𝑤] |𝜓⟩ ,

where Π[𝑤] is the projection of wires 𝑊1, . . . ,𝑊𝑡 onto standard basis measurement results
𝑤 = (𝑤1, . . . , 𝑤𝑡).

The point is that if the oracle F𝑖 only receives inputs that include encodings ̃︀𝑤 =
( ̃︀𝑤1, . . . , ̃︀𝑤𝑡) of some fixed𝑤 = (𝑤1, . . . , 𝑤𝑡), then, for each "prefix" (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1),
it will only ever query the random oracle 𝐻 on

either (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0) or (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 1),
where the last bit is a deterministic function of 𝑤 and the prefix. But since each of these
values is distributed as a uniformly random string, this behavior is identical (from the
adversary’s perspective) to, for each prefix, always querying the zero label

𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0).
Thus, it suffices to show, roughly, that given | ̃︀𝜓[𝑤]⟩ := Enc𝑘(Π[𝑤] |𝜓⟩), the adversary

cannot map
| ̃︀𝜓[𝑤]⟩ → | ̃︀𝜓[𝑤′]⟩

for 𝑤′ ̸= 𝑤, given access to the verification oracle Ver𝑘,·,·(·). This again follows directly
from security of our authentication scheme.

The ideas sketched here are used to simulate the F oracles in our main sequence of
hybrids given in Section 5.4.4, and also in lower-level hybrids in Section 5.4.6.
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Extracting signature tokens. Recall that the inductive argument sketched above for
proving the soundness condition assumed that the oracles only respond on a single fixed
input 𝑥*. Unfortunately, as discussed in Section 5.1.3, the situation gets more complicated
when we grant the adversary access to the oracles on any input 𝑥 of their choice. The
reason is that it is no longer clear that the adversary cannot perform the map

| ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩ → | ̃︀𝜓[𝑥*, 𝑣1, 𝑟1]⟩
by using an oracle query on an input 𝑥 ̸= 𝑥*. Indeed, while the (𝑉1,𝑊1) registers of
| ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩ are collapsed to a state that yields a fixed (𝑣*1, 𝑟

*
1) ← 𝑓𝑥

*
1 (𝑉1,𝑊1), applying

𝑓𝑥1 (𝑉1,𝑊1) for some 𝑥 ̸= 𝑥* might disturb the registers 𝑉1,𝑊1 (since 𝑓𝑥*1 and 𝑓𝑥1 might be
different functions!), thus changing the outcome of 𝑓𝑥*1 (𝑉1,𝑊1).

Now, as discussed in Section 5.1.3, we use signature tokens to prevent this potential
attack. Recall that the oracle F1 only responds on input 𝑥 if additionally given a valid
signature token 𝜎𝑥. Thus, we will want to formalize the following claim: if the adver-
sary uses F1(𝑥, . . . ) to perform some "non-trivial" operation on the authenticated state
| ̃︀𝜓[𝑥*, 𝑣*1, 𝑟*1]⟩, it is possible to extract a valid signature 𝜎𝑥 from the adversary. Once this 𝜎𝑥
is extracted, the security of the signature token scheme implies that the adversary won’t
be able to continue evaluating on 𝑥*, and, in particular, we won’t have to worry about the
adversary breaking the soundness condition for input 𝑥*.

We will show this claim by purifying the random oracle [Zha19], introducing a “database”
register that is initialized with a different state in uniform superposition for each input to
𝐻 . Then, we’ll argue that if the adversary has used F𝑖(𝑥, ·) to execute a measurement on
the authenticated state, the database register must be disturbed at some inputs that begin
with (𝑥, 𝜎𝑥). Thus, an extractor can simply measure the database register in the Hadamard
basis, and obtain a signature on 𝑥 by observing which registers were no longer in uniform
superposition.

For the purpose of this overview, we consider a simplified version of this problem
that still conveys the fundamental ideas in our proof. We’ll take the random oracle to
have a single bit of output, only consider the authentication of a single qubit state, and
analyze the concrete authentication scheme based on coset states (though we stress that
our eventual proof just makes use of generic properties of the authentication scheme).
Here is the setup:

• An authentication key 𝑘 = (𝑆,∆, 𝑥, 𝑧) is sampled.

• The adversary 𝐴 is given an authenticated 0 state 𝑋𝑥𝑍𝑧 |𝑆⟩ along with access to
the following oracle 𝑂 that can be used to implement a logical Hadamard basis
measurement:

𝑂(̃︀𝑣) =
⎧⎪⎨⎪⎩
𝐻(0) if ̃︀𝑣 ∈ ̂︀𝑆 + 𝑧

𝐻(1) if ̃︀𝑣 ∈ ̂︀𝑆 + ̂︀∆+ 𝑧

⊥ otherwise
,

where 𝐻 is a random oracle {0, 1} → {0, 1}. 𝐻 will be purified and implemented
using a database register initialized to |++⟩.
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• We claim that the adversary cannot produce any vector in 𝑆+∆+𝑥 (that is, a vector
in the support of an authenticated 1 state) at the same time that the database register
is in the state |++⟩:

E
[︁⃦⃦

(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)𝐴𝑂 (𝑋𝑥𝑍𝑧 |𝑆⟩) |++⟩
⃦⃦2]︁

= negl(𝜆).

To be clear, 𝐴 operates on input state 𝑋𝑥𝑍𝑧 |𝑆⟩ (along with some potential extra
workspace), and the database registers are operated on by 𝑂 when answering 𝐴’s
queries.

Notice that it is easy for the adversary to produce just a vector in 𝑆 + ∆ + 𝑥 (with
constant probability) by using the oracle 𝑂 to honestly to implement a Hadamard basis
measurement. The trick is to show that once they do this, it is impossible for them to
make queries to 𝑂 that return the state of the database to |++⟩, while still remembering
their vector in 𝑆 +∆+ 𝑥.

Our first step is to decompose𝑋𝑥𝑍𝑧 |𝑆⟩ into orthogonal components corresponding to
the authenticated plus and minus state. That is,

𝑋𝑥𝑍𝑧 |𝑆⟩ = 1√
2
𝐻⊗2𝜆+1𝑋𝑧𝑍𝑥 |̂︀𝑆⟩+ 1√

2
𝐻⊗2𝜆+1𝑋𝑧𝑍𝑥 |̂︀𝑆 + ̂︀∆⟩ := |̃︀+⟩+ |̃︀−⟩ .

Then, for 𝑏 ∈ {0, 1}, we define oracles

𝑂[𝑏](̃︀𝑣) = {︃𝐻(𝑏) if ̃︀𝑣 ∈ ̂︀𝑆̂︀Δ + 𝑧

⊥ otherwise
,

that are identical to 𝑂, except that they always query the random oracle on bit 𝑏. Then we
observe that

𝐴𝑂 |̃︀+⟩ ≈negl(𝜆) 𝐴
𝑂[0] |̃︀+⟩ , and 𝐴𝑂 |̃︀−⟩ ≈negl(𝜆) 𝐴

𝑂[1] |̃︀−⟩ .
This follows from the security of the authentication scheme, which implies that 𝐴

cannot map between |̃︀+⟩ and |̃︀−⟩. That is, on input |̃︀+⟩, 𝐴 won’t be able to find any input
on which 𝑂 and 𝑂[0] differ, and on input |̃︀−⟩, 𝐴 won’t be able to find any input on which
𝑂 and 𝑂[1] differ.

Next, we observe that the state of the system that results from using oracle 𝑂[1] is
actually equivalent to the state that results from first swapping the database registers of
𝐻 , using 𝑂[0], and then swapping back. Thus, it holds that
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E
[︁⃦⃦

(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)𝐴𝑂 (𝑋𝑥𝑍𝑧 |𝑆⟩) |++⟩
⃦⃦2]︁

= E
[︁⃦⃦

(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)
(︀
𝐴𝑂 |̃︀+⟩ |++⟩+ 𝐴𝑂 |̃︀−⟩ |++⟩

)︀ ⃦⃦2]︁
≈negl(𝜆) E

[︁⃦⃦
(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)

(︀
𝐴𝑂[0] |̃︀+⟩ |++⟩+ 𝐴𝑂[1] |̃︀−⟩ |++⟩

)︀ ⃦⃦2]︁
= E

[︁⃦⃦
(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)

(︀
𝐴𝑂[0] |̃︀+⟩ |++⟩+ SWAP𝐴𝑂[0] |̃︀−⟩ SWAP |++⟩

)︀ ⃦⃦2]︁
= E

[︁⃦⃦
Π[𝑆 +∆+ 𝑥]

(︀
|++⟩⟨++|𝐴𝑂[0] |̃︀+⟩ |++⟩+ |++⟩⟨++| SWAP𝐴𝑂[0] |̃︀−⟩ SWAP |++⟩

)︀ ⃦⃦2]︁
= E

[︁⃦⃦
Π[𝑆 +∆+ 𝑥]

(︀
|++⟩⟨++|𝐴𝑂[0] |̃︀+⟩ |++⟩+ |++⟩⟨++|𝐴𝑂[0] |̃︀−⟩ |++⟩

)︀ ⃦⃦2]︁
= E

[︁⃦⃦
(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)

(︀
𝐴𝑂[0] |̃︀+⟩ |++⟩+ 𝐴𝑂[0] |̃︀−⟩ |++⟩

)︀ ⃦⃦2]︁
= E

[︁⃦⃦
(Π[𝑆 +∆+ 𝑥]⊗ |++⟩⟨++|)𝐴𝑂[0]𝑋𝑥𝑍𝑧 |𝑆⟩ |++⟩

⃦⃦2]︁
= negl(𝜆),

where the last step follows from security of the authentication scheme, since 𝑂[0] can
be implemented with just the verification oracle of the authentication scheme. Note that
we crucially used the fact that we are projecting back onto |++⟩⟨++| in the step where
we remove the left-most SWAP operation, which follows because SWAP |++⟩ = |++⟩.
Indeed, as discussed above, the claim would not be true without the projection onto
|++⟩⟨++|, since the adversary can obtain a vector in Π[𝑆 + ∆ + 𝑥] while disturbing the
database register.

To conclude, we note that this same logic can be extended to more general measure-
ments on more general authenticated states, which ultimately will be used to extract a
valid signature on 𝑥 from any adversary that is actively using the oracles F1, . . . ,F𝑡,G
to evaluate the computation on input 𝑥. This implies that the adversary cannot launch
mixed input attacks, which is one of the main hurdles to overcome in proving the secu-
rity of our quantum state obfuscator.

The ideas sketched here are used in Section 5.4.6, and in particular in the proof of
Lemma 5.45.

5.4.3 Notation

In this section, we review some important notation and define new notation that will be
used throughout the proof.

• |𝜓⟩ is the 𝑛-qubit input state.

• {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔 is the classical part of the description of an LM quan-
tum program.
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• Parameters: 𝑚 is the size of the classical input, and 𝜅 is a derived security parameter
that is sufficiently larger than 𝜆, 𝑛. We will often use the facts that 𝑛 ≥ 𝑡,𝑚 and
𝜅 = 𝜔(𝑛).

• See Definition 5.13 for the definition of sets (𝑉1, . . . , 𝑉𝑡+1) and (𝑊1, . . . ,𝑊𝑡). The 𝑖’th
measurement for 𝑖 ∈ [𝑡] operates on (𝑉1, . . . , 𝑉𝑖,𝑊𝑖) and the 𝑡 + 1’st measurement
operates on (𝑉1, . . . , 𝑉𝑡+1) = [𝑛]. We will assume that the LM quantum program
has standard-basis-collapsible 𝑊 wires (Definition 5.14) so in particular, 𝜃𝑖,𝑗 = 0 for all
𝑗 ∈ 𝑊𝑖 (that is, 𝑊𝑖 are standard basis registers for the 𝑖’th measurement).

• 𝑘 = (𝑆,∆, 𝑥, 𝑧) is a key for the authentication scheme.

• See Section 5.2.1 for the description of our partial 𝑍𝑋 measurement notation 𝑀𝜃,𝑓

and ̃︁𝑀𝜃,𝑓,𝑘,𝐿. In particular,{︁
𝑀𝜃𝑖,𝑓

𝑥,𝑟1,...,𝑟𝑖−1
𝑖

}︁
𝑖∈[𝑡]

,𝑀𝜃𝑡+1,𝑔𝑥,𝑟1,...,𝑟𝑡

are the sequence of measurements applied by the LM quantum program, and{︁̃︁𝑀𝜃𝑖,𝑓
𝑥,𝑟1,...,𝑟𝑖−1
𝑖 ,𝑘,𝐿𝑖...𝐿1

}︁
𝑖∈[𝑡]

,̃︁𝑀𝜃𝑡+1,𝑔
𝑥,𝑟1,...,𝑟𝑡
𝑖 ,𝑘,𝐿𝑡+1...𝐿1

are the corresponding sequence of measurements applied to qubits authenticated
using the key 𝑘.

• We will often refer to a partial set of measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ] for some 𝜏 ∈
[𝑡+ 1]. Note that in the case 𝜏 = 𝑡+ 1, the value 𝑟*𝑡+1 will always be empty, since the
final measurement of an LM quantum program only outputs 𝑣𝑡+1. We only include
this empty value so that the notation is consistent across each measurement layer.

• Fix any input 𝑥* and partial set of measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ] for some 𝜏 ∈
[𝑡+1]. First, we explicitly define the projectors that constitute the 𝑀 measurements:

𝑀
𝜃𝜏 ,𝑓

𝑥*,𝑟*1 ,...,𝑟
*
𝜏−1

𝜏

:=
{︀
Π𝑥*,𝑟*1 ,...,𝑟

*
𝜏−1 [𝑣𝜏 , 𝑟𝜏 ]

}︀
𝑣𝜏 ,𝑟𝜏

,

𝑀
𝜃𝑡+1,𝑔

𝑥*,𝑟*1 ,...,𝑟
*
𝑡
:=
{︀
Π𝑥*,𝑟*1 ,...,𝑟

*
𝑡 [𝑣𝑡+1]

}︀
𝑣𝑡+1

.

Next, we define a (sub-normalized) initial state for each set of partial measurement
results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]:

|𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩ := 𝐿†1 . . . 𝐿
†
𝜏Π

𝑥*,𝑟*1 ,...,𝑟
*
𝜏−1 [𝑣*𝜏 , 𝑟

*
𝜏 ]𝐿𝜏 . . .Π

𝑥* [𝑣*1, 𝑟
*
1]𝐿1 |𝜓⟩ .
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• During the proof, we will make use of the collapsible 𝑊 wires property, and con-
sider measuring (some subset of) the 𝑊 wires in the standard basis at the beginning
of the computation. For any string of measurement results 𝑤*𝑖 ∈ {0, 1}|𝑊𝑖|, define
corresponding sets

𝑃 [𝑤*𝑖 ] :=
{︀̃︀𝑤𝑖 : Dec𝑘,∅,𝜃𝑖[𝑊𝑖]( ̃︀𝑤𝑖) = 𝑤*𝑖

}︀
, 𝑃 [¬𝑤*𝑖 ] :=

{︀̃︀𝑤𝑖 : Dec𝑘,∅,𝜃𝑖[𝑊𝑖]( ̃︀𝑤𝑖) /∈ {𝑤*𝑖 ,⊥}}︀ ,
where ∅ indicates an empty sequence of CNOT gates, in other words, the identity.
Also recall the notation 𝜃[𝑉 ] defined in Section 5.2.1 indicating a string that is equal
to 𝜃 on the subset of indices 𝑉 and ⊥ everywhere else. Next, define the projectors

Π[𝑤*] := Π[𝑃 [𝑤*𝑖 ]], Π[¬𝑤*] := Π[𝑃 [¬𝑤*𝑖 ]].

Finally, for any set 𝑆 ⊆ [𝑡] and {𝑤*𝑖 }𝑖∈𝑆 where each 𝑤*𝑖 ∈ {0, 1}|𝑊𝑖|, define

Π[{𝑤*𝑖 }𝑖∈𝑆] :=
⨂︁
𝑖∈𝑆

Π[𝑤*𝑖 ], Π[¬{𝑤*𝑖 }𝑖∈𝑆] :=
∑︁
𝑖∈𝑆

Π[¬𝑤*𝑖 ].

5.4.4 Main theorem

Theorem 5.21. For any 𝜖 = 𝜖(𝜆) = negl(𝜆) · 2−2𝑚(𝜆), the scheme described in Protocol 17 is a
quantum state obfuscator that satisfies ideal obfuscation (Definition 2.13) for 𝜖-pseudo-deterministic
families of quantum programs.

Remark 5.22. One might hope that the above theorem could be shown for any 𝜖 = negl(𝜆), and
we leave this open. However, we remark that in the case where the input program has a completely
classical description (e.g. the case handled by [BKNY23]), one can first repeat the circuit poly(𝜆)
times to generically go from negl(𝜆)-pseudo-determinism to negl(𝜆)·2−2𝑚(𝜆)-pseudo-determinism.
Thus, this result captures a strictly more general class of programs than [BKNY23]. Moreover, the
application to best-possible copy-protection [CG24] only requires obfuscating fully deterministic
computation.

Proof. Throughout this proof, we will often drop the dependence of functions and cir-
cuit families on the parameter 𝜆 in order to reduce notational clutter. Let 𝑛,𝑚,𝑚′ be any
polynomials (in 𝜆), and suppose that |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔 is an LM quan-
tum program such that |𝜓⟩ has at most 𝑛 qubits, there are at most 𝑛 gates in the circuit,
and the classical input has 𝑚 bits. Suppose that this LM quantum program is 𝜖-pseudo-
deterministic for a small enough 𝜖 as specified by the theorem statement, and let 𝑄 be the
induced map of this LM quantum program. Consider any QPT40 adversary 𝐴 and distin-
guisher𝐷, and define𝐷[𝐴] to be the procedure that runs𝐴, feeds its output to𝐷, and then

40The only reason that we restrict our adversary to be quantum polynomial-time as opposed to quantum
polynomial-query is the very first step in our proof, where we replace the PRF with a random oracle. If
we allow the obfuscation scheme to use a true random oracle (thus sacrificing the efficiency of the oracles),
then we obtain security against any QPQ (quantum polynomial-query, see Section 2.1) adversary.
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runs 𝐷 to produce a binary-valued outcome. Thus, we can write the "real" obfuscation
experiment as

Pr
[︀
1← 𝐷

(︀
𝐴
(︀
QSObf

(︀
1𝜆, |𝜓⟩

)︀)︀)︀]︀
= E

(| ̃︀𝜓⟩,𝑂)←QSObf(1𝜆,|𝜓⟩)

[︁⃦⃦
𝐷[𝐴]𝑂 | ̃︀𝜓⟩ ⃦⃦2]︁ .

Now, we will consider a sequence of hybrid distributions over (state, oracle) pairs
(| ̃︀𝜓⟩ , 𝑂), beginning with the real distribution QSObf0 := QSObf, and ending with a fully
simulated distribution QSObf6 that no longer needs to take |𝜓⟩ as input (and instead uses
oracle access to 𝑄). Our first step will be to switch the oracle G to a simulated oracle GSim
that verifies rather than decodes the intermediate labels and final authenticated measure-
ment, and uses oracle access to 𝑄 to respond in the case that verification passes. Next,
we’ll "collapse" the oracles F1, . . . ,F𝑡 as described in Section 5.4.2, using a strategy de-
rived from the collapsible 𝑊 wires property of the LM quantum program. Finally, we’ll
replace the input |𝜓⟩with the all zeros input |0𝑛⟩.

The description of these distributions follow (but no claims about indistinguishability
yet). The difference between adjacent distributions are highlighted in red, and whenever
we write 𝑤*, we parse it at 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], where each 𝑤*𝑖 ∈ {0, 1}|𝑊𝑖|.

QSObf1(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• Define F1, . . . ,F𝑡 as in QSObf0.

• Define G as in QSObf0.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1, . . . ,F𝑡,G) .

QSObf2(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• Define F1, . . . ,F𝑡 as in QSObf0.

• Define the function GSim (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) :

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑡], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.
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– Output ⊥ if Ver𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1
(̃︀𝑣1, . . . , ̃︀𝑣𝑡+1) = ⊥.

– Output 𝑄(𝑥).

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1, . . . ,F𝑡,GSim) .

QSObf3(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function F𝑖[𝑤
*] (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

– Compute (𝑣1, . . . , 𝑣𝑖, ·) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) and output ⊥ if the result is ⊥.

– Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟1,...,𝑟𝑖−1

𝑖 (𝑣1, . . . , 𝑣𝑖, 𝑤
*
𝑖 ).

– Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (̃︀𝑣𝑖, ℓ𝑖).
• Define GSim as in QSObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1[·], . . . ,F𝑡[·],GSim) .

QSObf4(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function F𝑖[𝑤
*] (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

– Compute (𝑣1, . . . , 𝑣𝑖, ·) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) and output ⊥ if the result is ⊥.

– For 𝜄 ∈ [𝑖], compute (·, 𝑟𝜄) = 𝑓
𝑥,𝑟1,...,𝑟𝜄−1
𝜄 (𝑣1, . . . , 𝑣𝜄, 𝑤

*
𝜄 ).

– Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (̃︀𝑣𝑖, ℓ𝑖).
• Define GSim as in QSObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1[·], . . . ,F𝑡[·],GSim) .
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QSObf5(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function FSim𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.
– Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) = ⊥.

– Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0), and output (̃︀𝑣𝑖, ℓ𝑖).
• Define GSim as in QSObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1, . . . ,FSim𝑡,GSim) .

QSObf6(1
𝜆):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|0𝑛⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• Define FSim1, . . . ,FSim𝑡 as in QSObf4.

• Define GSim as in QSObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1, . . . ,FSim𝑡,GSim) .

Later, we will use these distributions to define a sequence of hybrids starting with the
real obfuscation experiment and ending with the simulated obfuscation experiment. But
first, we will establish several claims about these distributions that will be useful while
arguing indistinguishability of the hybrids.

This first claim establishes that, once the oracles are simulated, no adversary can map
a state whose𝑊 wires have been collapsed to outcome 𝑤* onto the support of a state with
different outcomes𝑤 ̸= 𝑤*. At the end of this sequence of claims, we will have established
that this property holds even in QSObf2, where the F𝑖 oracles are not yet simulated.

Claim 5.23. For any QPQ (quantum polynomial-query) unitary 𝑈 and any 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it
holds that

E
[︁⃦⃦

Π[¬𝑤*]𝑈𝑂Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , 𝑂 ← QSObf5(1
𝜆, |𝜓⟩)

]︁
= 2−Ω(𝜅).

Proof. The key point is that in QSObf5, none of the oracles FSim1, . . . ,FSim𝑡,GSim require
access to the the decryption oracle Dec𝑘,·,·(·) for the authentication scheme. Rather, they
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can be implemented just given access to the verification oracle Ver𝑘,·,·(·). Now, since the
𝑊 wires are authenticated, the hardness of mapping from the support of 𝑤* to 𝑤 for any
𝑤 ̸= 𝑤* follows directly from the security of the authentication scheme (Theorem 5.9), and
in particular that it satisfies Definition 5.4 (mapping security).

In the proof of the next two claims, we will use the following notation. Fix a key 𝑘 and
𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], and define the following function.

𝑅[𝑘, 𝑤*] : (𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖)→ 𝑟𝑖

• Compute (𝑣1, . . . , 𝑣𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉1,...,𝑉𝑖](̃︀𝑣1, . . . , ̃︀𝑣𝑖) and output ⊥ if the result is ⊥.

• For 𝜄 ∈ [𝑖], compute (·, 𝑟𝜄) = 𝑓𝑥,𝑟1,...,𝑟𝜄−1
𝜄 (𝑣1, . . . , 𝑣𝜄, 𝑤

*
𝜄 ).

• Output 𝑟𝑖.

This function determines the bit 𝑟𝑖 when the 𝑤* outcomes have been hard-coded into
the oracles, and we will use it when showing indistinguishability between QSObf3,QSObf4,
and QSObf5 in the case where the 𝑊 wires of the input state have been collapsed to out-
come 𝑤*.

Claim 5.24. For any (unbounded) distinguisher 𝐷 and any 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that

E
[︁⃦⃦
𝐷F1[𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← QSObf4(1

𝜆, |𝜓⟩)
]︁

= E
[︁⃦⃦
𝐷FSim1,...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : |𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← QSObf5(1

𝜆, |𝜓⟩)
]︁
,

where 𝐷’s input includes the key 𝑘 sampled by QSObf4,QSObf5.

Proof. In QSObf4, we have that

F𝑖[𝑤
*](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1) ∈ {𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑅[𝑘, 𝑤*](̃︀𝑣1, . . . , ̃︀𝑣𝑖)),⊥},

while in QSObf5, we have that

FSim𝑖[𝑤
*](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1) ∈ {𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0),⊥}.

Both implementations of the oracles will always output ⊥ on the same set of in-
puts, since this is true of Dec𝑘,·,·(·) and Ver𝑘,·,·(·) by definition. Finally, their non-⊥ an-
swers are identically distributed over the randomness of the random oracle 𝐻 , since each
(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1) fixes a single choice of bit 𝑅[𝑘, 𝑤*](̃︀𝑣1, . . . , ̃︀𝑣𝑖) ∈ {0, 1}, and
for any (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1),

𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 0) and 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 1)
are identically distributed (each is a uniformly random string).
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Claim 5.25. For any QPQ distinguisher 𝐷 and any 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that⃒⃒⃒⃒
E
[︁⃦⃦
𝐷F1[𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← QSObf3(1

𝜆, |𝜓⟩)
]︁

− E
[︁⃦⃦
𝐷F1[𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← QSObf4(1

𝜆, |𝜓⟩)
]︁ ⃒⃒⃒⃒

= 2−Ω(𝜅),

where 𝐷’s input includes the key 𝑘 sampled by QSObf3,QSObf4.

Proof. Observe that the oracles F𝑖[𝑤
*] in these experiments are identical except for on in-

puts
(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)

such that there exists an 𝜄 ∈ [𝑖− 1] with

ℓ𝜄 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1−𝑅[𝑘, 𝑤*](̃︀𝑣1, . . . , ̃︀𝑣𝜄)).
However, the oracles F𝑖[𝑤

*] in QSObf4 are defined to never output such an ℓ𝜄, and thus
such an input can only be guessed with probability 2−𝜅 over the randomness of 𝐻 . The
claim follows by applying Lemma 2.8 (a standard oracle hybrid argument).

Next, we combine what we have shown so far - the hardness of mapping between
Π[𝑤*] and Π[¬𝑤*] in QSObf5 and the indistinguishability of QSObf3 and QSObf5 - to show
the indistinguishability of QSObf2 and QSObf3 (in the case where the 𝑊 wires are col-
lapsed to some 𝑤*).

Claim 5.26. For any QPQ distinguisher 𝐷 and any 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that⃒⃒⃒⃒
E
[︁⃦⃦
𝐷F1,...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QSObf2(1

𝜆, |𝜓⟩)
]︁

− E
[︁⃦⃦
𝐷F1[𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← QSObf3(1

𝜆, |𝜓⟩)
]︁ ⃒⃒⃒⃒

= 2−Ω(𝜅),

where 𝐷’s input includes the key 𝑘 sampled by QSObf2,QSObf3.

Proof. Observe that the oracles F𝑖,F𝑖[𝑤
*] in these experiments are identical except for on

inputs
(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)

such that ̃︀𝑤𝑖 ∈ 𝑃 [¬𝑤*𝑖 ]. By combining the previous three claims, we see that no QPQ
adversary can find such a ̃︀𝑤𝑖 in QSObf3 except with probability 2−Ω(𝜅). The claim follows
by applying Lemma 2.8 (a standard oracle hybrid argument).

Next, we state a direct corollary of these four claims, which is the hardness of mapping
between Π[𝑤*] and Π[¬𝑤*] even in QSObf2.
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Corollary 5.27. For any QPQ unitary 𝑈 , and any 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that

E
[︁⃦⃦

Π[¬𝑤*𝑖 ]𝑈𝑂Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , 𝑂 ← QSObf2(1
𝜆, |𝜓⟩)

]︁
= 2−Ω(𝜅).

Finally, we consider a sequence of hybrids beginning with the real obfuscation exper-
iment as described at the beginning of the proof, and ending with the simulated experi-
ment using a simulator that we define below.

• The real experiment:

ℋ0 = E
[︁⃦⃦
𝐷[𝐴]F1,...,G | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,G)← QSObf0(1

𝜆, |𝜓⟩)
]︁

• Replace PRF with random oracle:

ℋ1 = E
[︁⃦⃦
𝐷[𝐴]F1,...,G | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,G)← QSObf1(1

𝜆, |𝜓⟩)
]︁

• Simulate the G oracle:

ℋ2 = E
[︁⃦⃦
𝐷[𝐴]F1,...,GSim | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QSObf2(1

𝜆, |𝜓⟩)
]︁

• Split | ̃︀𝜓⟩ into orthogonal components:

ℋ3 = E

[︃∑︁
𝑤*

⃦⃦
𝐷[𝐴]F1,...,GSimΠ[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QSObf2(1

𝜆, |𝜓⟩)

]︃
.

• Hard-code the 𝑤* measurement results:

ℋ4 = E

[︃∑︁
𝑤*

⃦⃦
𝐷[𝐴]F1[𝑤*],...,GSimΠ[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← QSObf3(1

𝜆, |𝜓⟩)

]︃
.

• Simulate the F1, . . . ,F𝑡 oracles:

ℋ5 = E

[︃∑︁
𝑤*

⃦⃦
𝐷[𝐴]FSim1,...,GSimΠ[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← QSObf5(1

𝜆, |𝜓⟩)

]︃
.

• Put | ̃︀𝜓⟩ back together:

ℋ6 = E
[︁⃦⃦
𝐷[𝐴]FSim1,...,GSim | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← QSObf5(1

𝜆, |𝜓⟩)
]︁
.
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• Simulate the state:

ℋ7 = E
[︁⃦⃦
𝐷[𝐴]FSim1,...,GSim | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← QSObf6(1

𝜆)
]︁
.

Now, we are ready to define the simulator Sim𝑄(1𝜆, 𝑛,𝑚,𝑚′) for our obfuscation scheme:

• Sample | ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← QSObf6(1
𝜆).

• Output 𝐴FSim1,...,FSim𝑡,GSim | ̃︀𝜓⟩.
Thus, the simulated experiment is exactly

Pr
[︀
1← 𝐷

(︀
Sim𝑄

(︀
1𝜆, 𝑛,𝑚,𝑚′

)︀)︀]︀
= ℋ7.

The following set of claims then completes the proof.

Claim 5.28. |ℋ0 −ℋ1| = negl(𝜆).

Proof. This follows directly from the security of the PRF against quantum superposition-
query attacks.

Claim 5.29. |ℋ1 −ℋ2| = negl(𝜆).

Proof. Suppose that we sample | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,G)← QSObf1(1
𝜆, |𝜓⟩), and then define the

set

𝐵 = {(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) : G(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) /∈ {𝑄(𝑥),⊥}} .

Observe that the only difference between QSObf1 and QSObf2 is the definition of the or-
acles G,GSim, and that these oracles are identical outside of the set 𝐵. Suppose for con-
tradiction that the claim is false. Then by Lemma 2.8 (which is a standard oracle hybrid
argument), there must exist an adversary that can find an input on which G and GSim
differ with non-negligible probability. That is, there exists a QPQ unitary 𝑈 such that

E
[︁⃦⃦

Π[𝐵]𝑈F1,...,GSim | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QSObf2(1
𝜆, |𝜓⟩)

]︁
= 𝛿(𝜆)

for some 𝛿(𝜆) = non-negl(𝜆). Now, for each input 𝑥, define

𝐵[𝑥] := {(𝑥, ·) : (𝑥, ·) ∈ 𝐵}.

Then by a union bound, there must exist some 𝑥* ∈ {0, 1}𝑚 such that

E
[︁⃦⃦

Π [𝐵[𝑥*]]𝑈F1,...,F𝑡,GSim | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QSObf2(1
𝜆, |𝜓⟩)

]︁
≥ 𝛿(𝜆) · 2−𝑚.
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Next, define Coh-LMEval[𝑥*] to be the unitary that coherently applies the evaluation
procedure LMEval(𝑥*, ·, {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡], 𝑔) for the LM quantum program that
we are obfuscating, and define

|𝜓′𝑥*⟩ := Coh-LMEval[𝑥*]† |𝑄(𝑥*)⟩⟨𝑄(𝑥*)|Coh-LMEval[𝑥*] |𝜓⟩ , |𝜓𝑥*⟩ :=
|𝜓′𝑥*⟩
‖ |𝜓′𝑥*⟩ ‖

.

That is, |𝜓𝑥*⟩ is the result of running the LM quantum program coherently on input 𝑥* and
post-selecting on obtaining the “correct” output 𝑄(𝑥*). By the 𝜖-pseudo-determinism of
𝑄 and Gentle Measurement (Lemma 2.3), there is some 𝛿′(𝜆) = non-negl(𝜆) such that

E
[︁⃦⃦

Π[𝐵[𝑥*]]𝑈F1,...,GSim | ̃︀𝜓𝑥*⟩ ⃦⃦2 : | ̃︀𝜓𝑥*⟩ , (F1, . . . ,F𝑡,GSim)← QSObf2(1
𝜆, |𝜓𝑥*⟩)

]︁
≥ 𝛿′(𝜆) · 2−𝑚 ≥ 𝛿′(𝜆) · 2−𝑛.

However, this violates Lemma 5.36 with 𝜏 = 0, which is proven in the following section.
Indeed, plugging in 𝜅 = 𝑛4, the lemma states that, for some constant 𝑐,

E
[︁⃦⃦

Π[𝐵[𝑥*]]𝑈F1,...,GSim | ̃︀𝜓𝑥*⟩ ⃦⃦2 : | ̃︀𝜓𝑥*⟩ , (F1, . . . ,F𝑡,GSim)← QSObf2(1
𝜆, |𝜓𝑥*⟩)

]︁
= 23𝑛(𝑡+1)−𝑐𝑛4

= 2−Ω(𝑛2) < 𝛿′(𝜆) · 2−𝑛,

which gives us the contradiction.

Claim 5.30. |ℋ2 −ℋ3| ≤ 2−Ω(𝜅).

Proof.

|ℋ2 −ℋ3|

≤ 2𝑛 ·

⎡⎣ ∑︁
𝑤* ̸=𝑤′*

E
[︁⃦⃦

Π[𝑤′
*
]𝐷F1,...,GSim

1 Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QSObf2(1
𝜆, |𝜓⟩)

]︁⎤⎦1/2

≤ 2𝑛 ·

[︃
2𝑛 ·

∑︁
𝑤*

E
[︁⃦⃦

Π[¬𝑤*]𝐷F1,...,GSim
1 Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , (F1, . . . ,F𝑡,GSim)← QSObf2(1

𝜆, |𝜓⟩)
]︁]︃1/2

≤ 22𝑛 · 2−Ω(𝜅) = 2−Ω(𝜅),

where the first inequality follows from Lemma 2.6 (which is an application of Cauchy-
Schwarz) and the third follows from Corollary 5.27 proven above.

Claim 5.31. |ℋ3 −ℋ4| = 2−Ω(𝜅).

Proof. This follows from Corollary 5.27 proven above and Lemma 2.8 (which is a standard
oracle hybrid argument).
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Claim 5.32. |ℋ4 −ℋ5| = 2−Ω(𝜅).

Proof. This follows by combining Claim 5.25 and Claim 5.24 proven above.

Claim 5.33. |ℋ5 −ℋ6| ≤ 2−Ω(𝜅).

Proof.

|ℋ5 −ℋ6|

≤ 2𝑛 ·

⎡⎣ ∑︁
𝑤* ̸=𝑤′*

E
[︁⃦⃦

Π[𝑤′
*
]𝐷FSim1,...,GSim

1 Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ ,F1, . . . ,F𝑡,GSim← QSObf5(1
𝜆, |𝜓⟩)

]︁⎤⎦1/2

≤ 2𝑛 ·

[︃
2𝑛 ·

∑︁
𝑤*

E
[︁⃦⃦

Π[¬𝑤*]𝐷FSim1,...,GSim
1 Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ ,F1, . . . ,F𝑡,GSim← QSObf5(1

𝜆, |𝜓⟩)
]︁]︃1/2

≤ 22𝑛 · 2−Ω(𝜅) = 2−Ω(𝜅),

where the first inequality follows from Lemma 2.6 (which is an application of Cauchy-
Schwarz) and the third follows from Claim 5.23 proven above.

Claim 5.34. |ℋ6 −ℋ7| ≤ 2−Ω(𝜅).

Proof. This follows from privacy of the authentication scheme (Theorem 5.12), since the
oracles inℋ6 can be implemented with oracle access to Ver𝑘,·,·(·) rather than Dec𝑘,·,·(·).

5.4.5 Inductive argument

In this section, we give an inductive proof of Lemma 5.36, which was required by Claim 5.29
above. First, we describe a variant of QSObf that we call ParMeas, which supports hard-
coding an input 𝑥* and the first 𝜏 partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ] into the or-
acles F1, . . . ,F𝑡. When these results are hard-coded, the inputs ̃︀𝑣1, . . . , ̃︀𝑣𝜏 , ℓ1, . . . , ℓ𝜏 are
merely verified rather than decoded by the oracles F1, . . . ,F𝑡, and the hard-coded results
{𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ] are used in place of the decoded results.

We define the distribution to include two additional outputs:

• The set 𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]] contains the "bad" set of inputs that verify properly but
decode to an incorrect output 𝑄(𝑥*), when using the hard-coded values {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ].

• The set𝐶[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]] contains the set of inputs on which the oracles would differ
had the latest measurement (𝑣*𝜏 , 𝑟*𝜏 ) not been hard-coded.
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ParMeas(1𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑥 ̸= 𝑥*, output F𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where F𝑖 is defined as in QSObf.

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [min{𝜏, 𝑖− 1}], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.
– If 𝑖 ≤ 𝜏 :

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) = ⊥.

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟
*
𝑖 ), and output (ℓ𝑖, ̃︀𝑣𝑖).

– If 𝑖 > 𝜏 :

* For each 𝜄 ∈ [𝜏 + 1, 𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉1,...,𝑉𝜏 ](̃︀𝑣1, . . . , ̃︀𝑣𝜏 ) = ⊥.

* Compute (𝑣𝜏+1, . . . , 𝑣𝑖, 𝑤𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉𝜏+1,...,𝑉𝑖,𝑊𝑖](̃︀𝑣𝜏+1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖), and out-
put ⊥ if the result is ⊥.

* Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟*1 ,...,𝑟

*
𝜏 ,𝑟𝜏+1,...,𝑟𝑖−1

𝑖 (𝑣*1 , . . . , 𝑣
*
𝜏 , 𝑣𝜏+1, . . . , 𝑣𝑖, 𝑤𝑖).

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (ℓ𝑖, ̃︀𝑣𝑖).
• Define GSim as in QSObf2.

• Let 𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]] be the set of (𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) such that the output of the
following procedure is /∈ {𝑄(𝑥),⊥}:

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑡], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. If 𝜄 > 𝜏 , let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

– Output ⊥ if Ver𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1[𝑉1,...,𝑉𝜏 ](̃︀𝑣1, . . . , ̃︀𝑣𝜏 ) = ⊥.

– Compute (𝑣𝜏+1, . . . , 𝑣𝑡+1) = Dec𝑘,𝐿𝑡+1...𝐿1,𝜃𝑡+1[𝑉𝜏+1,...,𝑉𝑡+1](̃︀𝑣𝜏+1, . . . , ̃︀𝑣𝑡+1), and output⊥
if the result is ⊥.

– Output 𝑔𝑥,𝑟
*
1 ,...,𝑟

*
𝜏 ,𝑟𝜏+1,...,𝑟𝑡(𝑣*1 , . . . , 𝑣

*
𝜏 , 𝑣𝜏+1, . . . , 𝑣𝑡+1).
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• Let 𝐶[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]] be the set that includes, for any 𝑖 ∈ [𝜏 ], all
(𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1) such that

F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]](𝑥

*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)

̸= F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]](𝑥

*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1),

and all (𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) such that

(𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑡+1, ℓ1, . . . , ℓ𝑡) ∈ 𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]] ∖𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]].

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1[·], . . . ,F𝑡[·],GSim) , 𝐵[·], 𝐶[·].

We now make a few remarks.

• Throughout the remainder of the proof, we will be working with fully-deterministic
LM quantum programs for a given input 𝑥*, i.e.

Pr
[︀
LMEval(𝑥*, |𝜓⟩ , {𝐿𝑖}𝑖∈[𝑡+1], {𝜃𝑖}𝑖∈[𝑡+1], {𝑓𝑖}𝑖∈[𝑡+1], 𝑔)→ 𝑄(𝑥*)

]︀
= 1.

Indeed, recall that we performed a post-selection on the correct outcome 𝑄(𝑥*) dur-
ing the proof of Claim 5.29 above.

• Whenever we reference an input 𝑥* and partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], we
always mean measurement results that occur with non-zero probability, i.e. they are
in the support of the partial evaluation of |𝜓⟩ on input 𝑥*.

• For 𝜏 = 0 (i.e. no partial measurements), the above distribution ParMeas is identical
to QSObf2 augmented with the set 𝐵[𝑥*] as defined in the proof of Claim 5.29 (and
𝐶[𝑥*] is undefined in this case since it requires 𝜏 ≥ 1).

• For any input 𝑥* and full set of measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝑡+1], the set𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝑡+1]]
is empty, by virtue of the fact that these measurement results occur with non-zero
probability, and the program outputs 𝑄(𝑥*) with probability 1.

• In the remainder of the proof, we will make use of the notation |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩
as defined in Section 5.4.3.

Before proving the main inductive lemma of this section, we show the following state-
ment, which essentially says that it is hard to find an element of

𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]] ∖𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]

given the authenticated version of |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩ and the oracles with 𝑥* and {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]
hard-coded. The meat of this proof is actually deferred to the following section, in which
we prove the "hardness of mapping" lemma, Lemma 5.44.
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Lemma 5.35. For any input 𝑥*, 𝜏 ∈ [1, . . . , 𝑡 + 1], measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], and QPQ
unitary 𝑈 , it holds that

⃒⃒⃒⃒
E
[︁⃦⃦

Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏−1]],...,F𝑡[𝑥

*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏−1]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁
− E

[︁⃦⃦
Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],...,F𝑡[𝑥

*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁ ⃒⃒⃒⃒ ≤ 2−Ω(𝜅),

where both expectations are over

| ̃︀𝜓⟩ , (F1[·],F𝑡[·],GSim), 𝐵[·], 𝐶[·]← ParMeas(1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).

Proof. Note that the set 𝐶[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]] includes all elements of

𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]] ∖𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]

and all inputs on which F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]] and F𝑖[𝑥

*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]] differ for any 𝑖 ∈ [𝑡].
Thus, by Lemma 2.8 (a standard oracle hybrid argument) it suffices to show that

E
[︁⃦⃦

Π
[︀
𝐶
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],...,F𝑡[𝑥

*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁ ≤ 2−Ω(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim), 𝐵[·], 𝐶[·]← ParMeas(1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).

Now we consider all possible elements of the set 𝐶[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]. By inspecting the
definition, we see that any element of 𝐶[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]] must fall into one of the following
categories:

• An input to F𝜏 [𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]] that contains a sub-string (̃︀𝑣𝜏 , ̃︀𝑤𝜏 ) such that

𝑓
𝑥*,𝑟*1 ,...,𝑟

*
𝜏−1

𝜏 (𝑣*1, . . . , 𝑣
*
𝜏−1,Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏 ,𝑊𝜏 ](̃︀𝑣𝜏 , ̃︀𝑤𝜏 )) = (·, 1− 𝑟*𝜏 ),

where Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏 ,𝑊𝜏 ](̃︀𝑣𝜏 , ̃︀𝑤𝜏 ) = (𝑣𝜏 , 𝑤𝜏 ) ̸= ⊥.

• An input to F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]] for 𝑖 > 𝜏 or an element of

𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]] ∖𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]

that contains either:

– ̃︀𝑣𝜏 such that Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏 ](̃︀𝑣𝜏 ) /∈ {𝑣*𝜏 ,⊥}, or

– ℓ𝜏 such that ℓ𝜏 = 𝐻(. . . , 1− 𝑟*𝜏 ).
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First, notice that by definition, the oracles F1[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]], . . . ,F𝑡[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]],GSim

never output a label 𝐻(. . . , 1 − 𝑟*𝜏 ). Thus, 𝑈 can only successfully guess an ℓ𝜏 such that
ℓ𝜏 = 𝐻(. . . , 1− 𝑟*𝜏 ) with probability 2−𝜅 over the randomness of the random oracle.

Now, define Π[¬𝑟*𝜏 ] to be the projection onto strings (̃︀𝑣𝜏 , ̃︀𝑤𝜏 ) such that

𝑓
𝑥*,𝑟*1 ,...,𝑟

*
𝜏−1

𝜏 (𝑣*1, . . . , 𝑣
*
𝜏−1,Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏 ,𝑊𝜏 ](̃︀𝑣𝜏 , ̃︀𝑤𝜏 )) = (·, 1− 𝑟*𝜏 ),

where Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏 ,𝑊𝜏 ](̃︀𝑣𝜏 , ̃︀𝑤𝜏 ) = (𝑣𝜏 , 𝑤𝜏 ) ̸= ⊥, and define Π[¬𝑣*𝜏 ] to be the projection
onto strings ̃︀𝑣𝜏 such that

Dec𝑘,𝐿𝜏 ...𝐿1,𝜃𝜏 [𝑉𝜏 ](̃︀𝑣𝜏 ) /∈ {𝑣*𝜏 ,⊥}.
Then, define

Π[¬(𝑣*𝜏 , 𝑟*𝜏 )] := Π[¬𝑟*𝜏 ] + Π[¬𝑣*𝜏 ].

Finally, given the sampled signature token verification key vk, define the projector
onto valid signatures of 𝑥*:

Π[𝑥*, vk] :=
∑︁

𝜎:TokVer(vk,𝑥*,𝜎)=⊤

|𝜎⟩⟨𝜎| ,

and note that any element of 𝐶
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]

]︀
must include a valid signature of 𝑥*.

Now, by the preceding observations, we have that

E
[︁⃦⃦

Π
[︀
𝐶
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],...,F𝑡[𝑥

*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁
≤ E

[︁⃦⃦
(Π[𝑥*, vk]⊗ Π[¬(𝑣*𝜏 , 𝑟*𝜏 )])𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],...,F𝑡[𝑥

*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁+ 2−Ω(𝜅)

≤ 2−Ω(𝜅),

where the first inequality is due to the observation that ℓ𝜏 such that ℓ𝜏 = 𝐻(. . . , 1−𝑟*𝜏 ) can
only be guessed with probability 2−𝜅, and the second inequality is Lemma 5.44 proven in
the next section. This completes the proof.

Now, we show the main lemma of the section.

Lemma 5.36. There exist a constant 𝑐 > 0 such that for any input 𝑥*, 𝜏 ∈ [0, . . . , 𝑡 + 1], mea-
surement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], and QPQ unitary 𝑈 , it holds that

E
[︁⃦⃦

Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],...,F𝑡[𝑥

*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],GSim | ̃︀𝜓⟩ ⃦⃦2]︁ ≤ 23𝑛(𝑡+1−𝜏)−𝑐𝜅,

where the expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim), 𝐵[·], 𝐶[·]← ParMeas(1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).
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Proof. We will show this by induction on 𝜏 , starting with 𝜏 = 𝑡+1 and ending with 𝜏 = 0.
The base case (𝜏 = 𝑡 + 1) is trivial because the set 𝐵[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝑡+1]] is empty, as noted
above.

Now, we will let 𝑐 be a constant such that 2−𝑐𝜅 is an upper bound on the expression
in the statement of Lemma 5.35. For the inductive step, suppose that Lemma 5.36 holds
for some 𝜏 ∈ [𝑡 + 1]. Consider any 𝑥* and measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], and define
the following two distributions over | ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim), 𝐵[·] (dropping the set 𝐶[·]
since we don’t need it for this proof):

• 𝒟 : ParMeas(1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]]⟩).

• 𝒟[𝑣*𝜏 , 𝑟*𝜏 ] : ParMeas(1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).

To show that Lemma 5.36 holds for 𝜏 − 1, we have that

E
| ̃︀𝜓⟩,(F1[·],...,F𝑡[·],GSim),𝐵[·]←𝒟

[︁⃦⃦
Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏−1]],...,GSim | ̃︀𝜓⟩ ⃦⃦2]︁

≤ 2𝑛 ·
∑︁
𝑣*𝜏 ,𝑟

*
𝜏

E
| ̃︀𝜓⟩,(F1[·],...,F𝑡[·],GSim),

𝐵[·]←𝒟[𝑣*𝜏 ,𝑟*𝜏 ]

[︁⃦⃦
Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏−1]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏−1]],...,GSim | ̃︀𝜓⟩ ⃦⃦2]︁

≤ 2𝑛 ·
∑︁
𝑣*𝜏 ,𝑟

*
𝜏

E
| ̃︀𝜓⟩,(F1[·],...,F𝑡[·],GSim),

𝐵[·]←𝒟[𝑣*𝜏 ,𝑟*𝜏 ]

[︁⃦⃦
Π
[︀
𝐵
[︀
𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]

]︀]︀
𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],...,GSim | ̃︀𝜓⟩ ⃦⃦2]︁+ 22𝑛−𝑐𝜅

≤ 22𝑛+3𝑛(𝑡+1−𝜏)−𝑐𝜅 + 22𝑛−𝑐𝜅

≤ 23𝑛(𝑡+1−(𝜏−1))−𝑐𝜅−𝑛 + 22𝑛−𝑐𝜅

≤ 23𝑛(𝑡+1−(𝜏−1))−𝑐𝜅,

where

• The first inequality follows from Lemma 2.7 (an application of Cauchy-Schwarz).

• The second inequality follows from Lemma 5.35 proven above.

• The third inequality follows from Lemma 5.36 for 𝜏 (the induction hypothesis).

• The final inequality follows because the two summands can each be bounded by the
quantity 23𝑛(𝑡+1−(𝜏−1))−𝑐𝜅−1.

176



5.4.6 Hardness of mapping

Our final step is to prove the "hardness of mapping" lemma, Lemma 5.44, that was re-
quired for Lemma 5.35 above. But first, we will need to introduce some "partial simula-
tion" hybrid distributions ParSim𝑖. We let ParSim0 = ParMeas as defined in the preceding
section. We will change the distribution gradually until it corresponds to a simulated
distribution, equivalent to QSObf5 from Section 5.4.4.

ParSim1(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], {𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑥 ̸= 𝑥*, output F𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where F𝑖 is defined as in QSObf.

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [min{𝜏, 𝑖− 1}], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.
– If 𝑖 ≤ 𝜏 :

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) = ⊥.

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟
*
𝑖 ), and output (ℓ𝑖, ̃︀𝑣𝑖).

– If 𝑖 > 𝜏 :

* For each 𝜄 ∈ [𝜏 + 1, 𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}. Otherwise, let 𝑟𝜄 be such that ℓ𝜄 = ℓ𝜄,𝑟𝜄 .

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉1,...,𝑉𝜏 ,𝑊𝑖](̃︀𝑣1, . . . , ̃︀𝑣𝜏 , ̃︀𝑤𝑖) = ⊥.

* Compute (𝑣𝜏+1, . . . , 𝑣𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉𝜏+1,...,𝑉𝑖](̃︀𝑣𝜏+1, . . . , ̃︀𝑣𝑖), and output⊥ if the
result is ⊥.

* Compute (·, 𝑟𝑖) = 𝑓
𝑥,𝑟*1 ,...,𝑟

*
𝜏 ,𝑟𝜏+1,...,𝑟𝑖−1

𝑖 (𝑣*1 , . . . , 𝑣
*
𝜏 , 𝑣𝜏+1, . . . , 𝑣𝑖, 𝑤

*
𝑖 ).

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (ℓ𝑖, ̃︀𝑣𝑖).
• Define GSim as in QSObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1[·], . . . ,F𝑡[·],GSim) .

ParSim2(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.
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• For each 𝑖 ∈ [𝑡], define F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], {𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑥 ̸= 𝑥*, output F𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where F𝑖 is defined as in QSObf.

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.
– If 𝑖 ≤ 𝜏 :

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) = ⊥.

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟
*
𝑖 ), and output (ℓ𝑖, ̃︀𝑣𝑖).

– If 𝑖 > 𝜏 :

* Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉1,...,𝑉𝜏 ,𝑊𝑖](̃︀𝑣1, . . . , ̃︀𝑣𝜏 , ̃︀𝑤𝑖) = ⊥.

* Compute (𝑣𝜏+1, . . . , 𝑣𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉𝜏+1,...,𝑉𝑖](̃︀𝑣𝜏+1, . . . , ̃︀𝑣𝑖), and output⊥ if the
result is ⊥.

* For 𝜄 ∈ [𝜏 +1, 𝑖], compute (·, 𝑟𝜄) = 𝑓
𝑥,𝑟*1 ,...,𝑟

*
𝜏 ,𝑟𝜏+1,...,𝑟𝜄−1

𝜄 (𝑣*1 , . . . , 𝑣
*
𝜏 , 𝑣𝜏+1, . . . , 𝑣𝜄, 𝑤

*
𝜄 ).

* Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑟𝑖), and output (ℓ𝑖, ̃︀𝑣𝑖).
• Define GSim as in QSObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (F1[·], . . . ,F𝑡[·],GSim) .

ParSim3(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function FSim𝑖[𝑥
*](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑥 ̸= 𝑥*, output F𝑖 (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where F𝑖 is defined as in QSObf.

– Output ⊥ if TokVer(vk, 𝑥, 𝜎𝑥) = ⊥.

– For each 𝜄 ∈ [𝑖− 1], let

ℓ𝜄,0 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 0), ℓ𝜄,1 = 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1),

and output ⊥ if ℓ𝜄,0 = ℓ𝜄,1 or ℓ𝜄 /∈ {ℓ𝜄,0, ℓ𝜄,1}.
– Output ⊥ if Ver𝑘,𝐿𝑖...𝐿1,𝜃𝑖(̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖) = ⊥.

– Set ℓ𝑖 := 𝐻(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0), and output (̃︀𝑣𝑖, ℓ𝑖).
• Define GSim as in QSObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1[·], . . . ,FSim𝑡[·],GSim) .

ParSim4(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).
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• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function FSim𝑖[𝑥
*, 𝑤*](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑥 = 𝑥*, output FSim𝑖(𝑥
*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where FSim𝑖 is defined as in

QSObf5.

– If 𝑥 ̸= 𝑥*, output FSim𝑖[𝑤
*](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where FSim𝑖[𝑤

*] is defined
as in QSObf4.

• Define GSim as in QSObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1[·], . . . ,FSim𝑡[·],GSim) .

ParSim5(1
𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function FSim𝑖 as in QSObf5.

• Define GSim as in QSObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1, . . . ,FSim𝑡,GSim) .

Next, before proving the main lemma (Lemma 5.44) of this section, which involves
ParMeas0, we prove several claims about these hybrid distributions, which will allow us
to use the properties of simulated distributions when proving Lemma 5.44. We will es-
sentially "work backwards" from ParSim5 to ParSim0 in order to show the sequence of in-
distinguishability claims we will need. Whenever we write {𝑤*𝑖 }𝑖∈[𝑆] for some set 𝑆 ⊆ [𝑡],
we parse each 𝑤*𝑖 ∈ {0, 1}|𝑊𝑖|.

First, we confirm that the mapping hardness claims we’ll need hold in the fully simu-
lated case of ParSim5.

Claim 5.37. For any QPQ unitary 𝑈 , input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], and
𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that

E
[︁⃦⃦

Π[¬𝑤*]𝑈𝑂Π[𝑤*] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , 𝑂 ← ParSim5(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩)

]︁
= 2−Ω(𝜅)

and

E
[︁⃦⃦

Π[¬(𝑣*𝜏 , 𝑟*𝜏 )]𝑈𝑂Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2 : | ̃︀𝜓⟩ , 𝑂 ← ParSim5(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩)

]︁
= 2−Ω(𝜅),

where Π[¬(𝑣*𝜏 , 𝑟*𝜏 )] is defined in the proof of Lemma 5.35.

Proof. The key point is that in QSObf5, none of the oracles FSim1, . . . ,FSim𝑡,GSim require
access to the decryption oracle Dec𝑘,·,·(·) for the authentication scheme. Rather, they can
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be implemented just given access to the verification oracle Ver𝑘,·,·(·). Thus, these claims
follow directly from the security of the authentication scheme (Theorem 5.9), and in par-
ticular that it satisfies Definition 5.4 (mapping security). Note that in the second claim,
we only collapse the wires {𝑊𝑖}𝑖∈[𝜏+1,𝑡], that is, the𝑊 wires after level 𝜏 , which are disjoint
from (𝑉𝜏 ,𝑊𝜏 ). The claim could have been trivially false if we had collapsed the wires in
(𝑉𝜏 ,𝑊𝜏 ), in particular to an outcome different from (𝑣*𝜏 , 𝑟

*
𝜏 ).

The next two claims establish the indistinguishability of ParSim3,ParSim4, and ParSim5

in the case when all of the 𝑊 wires have been collapsed to some value 𝑤*.

Claim 5.38. For any (unbounded) distinguisher𝐷, input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ],
and 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that

E
[︂⃦⃦
𝐷FSim1[𝑥*,𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1[·], . . . ,GSim)

← ParSim4(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩)

]︂
= E

[︂⃦⃦
𝐷FSim1,...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1, . . . ,GSim)

← ParSim5(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩)

]︂
.

where 𝐷’s input includes the key 𝑘 sampled by ParSim4,ParSim5.

Proof. The proof is exactly the same as the proof of Claim 5.24, except that here we are
only switching oracle inputs on 𝑥 ̸= 𝑥* rather than all 𝑥.

Claim 5.39. For any QPQ distinguisher 𝐷, input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ],
and 𝑤* = {𝑤*𝑖 }𝑖∈[𝑡], it holds that⃒⃒⃒⃒

E
[︂⃦⃦
𝐷FSim1[𝑥*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1[·], . . . ,GSim)

← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩)

]︂
− E

[︂⃦⃦
𝐷FSim1[𝑥*,𝑤*],...,GSim

(︁
𝑘,Π[𝑤*] | ̃︀𝜓⟩)︁ ⃦⃦2 : | ̃︀𝜓⟩ , (FSim1[·], . . . ,GSim)

← ParSim4(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩)

]︂ ⃒⃒⃒⃒
= 2−Ω(𝜅),

where 𝐷’s input includes the key 𝑘 sampled by ParSim3,ParSim4.

Proof. The proof is exacly the same as the proof of Claim 5.25, except that here we are only
switching oracle inputs on 𝑥 ̸= 𝑥* rather than all 𝑥.

This next claim shows that in ParSim3, it is hard to map wires 𝑊𝜏+1, . . . ,𝑊𝑡 collapsed
to 𝑤*𝜏+1, . . . , 𝑤

*
𝑡 to an outcome different from 𝑤*𝜏+1, . . . , 𝑤

*
𝑡 .

Claim 5.40. For any QPQ unitary 𝑈 , input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], and
{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡], it holds that

E
[︁⃦⃦

Π[¬{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]]𝑈
FSim1[𝑥*],...,GSimΠ[{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2]︁ = 2−Ω(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).
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Proof. We write EParSim3 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

we write EParSim5 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1, . . . ,GSim)← ParSim5(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

and, given {𝑤*𝜄 }𝜄∈[𝜏 ], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡], we write 𝑤* = {𝑤*𝜄 }𝜄∈[𝜏 ] ∪ {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]. Then,

E
ParSim3

[︁⃦⃦
Π[¬{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]]𝑈

FSim1[𝑥*],...,GSimΠ[{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2]︁
≤ 2𝑛 ·

∑︁
{𝑤*

𝜄 }𝜄∈[𝜏 ]

E
ParSim3

[︁⃦⃦
Π[¬{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]]𝑈

FSim1[𝑥*],...,GSimΠ[𝑤*] | ̃︀𝜓⟩ ⃦⃦2]︁
≤ 2𝑛 ·

∑︁
{𝑤*

𝜄 }𝜄∈[𝜏 ]

E
ParSim5

[︁⃦⃦
Π[¬{𝑤*𝑖 }𝑖∈[𝜏+1,𝑡]]𝑈

FSim1,...,GSimΠ[𝑤*] | ̃︀𝜓⟩ ⃦⃦2]︁+ 2𝑛 · 2−Ω(𝜅)

= 2−Ω(𝜅)

where

• The first inequality follows from Lemma 2.7 (an application of Cauchy-Schwarz).

• The second inequality follows by combining Claim 5.39 and Claim 5.38 proven
above.

• The third inequality follows from Claim 5.37 proven above.

In the proof of the next two claims, we will use the following notation. Fix a key 𝑘, in-
put 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], and {𝑤*𝜄 }𝑖∈[𝜏+1,𝑡], and define the following
function:

𝑅[𝑘, 𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] : (̃︀𝑣1, . . . , ̃︀𝑣𝑖)→ 𝑟𝑖

• If 𝑖 ≤ 𝜏 , output 𝑟*𝑖 .

• Otherwise, compute (𝑣𝜏+1, . . . , 𝑣𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉𝜏+1,...,𝑉𝑖](̃︀𝑣𝜏+1, . . . , ̃︀𝑣𝑖), and output⊥
if the result is ⊥.

• For 𝜄 ∈ [𝜏 + 1, 𝑖], compute (·, 𝑟𝜄) = 𝑓
𝑥*,𝑟*1 ,...,𝑟

*
𝜏 ,𝑟𝜏+1,...,𝑟𝜄−1

𝜄 (𝑣*1, . . . , 𝑣
*
𝜏 , 𝑣𝜏+1, . . . , 𝑣𝜄, 𝑤

*
𝜄 ).

• Output 𝑟𝑖.
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This function determines the bit 𝑟𝑖 when 𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], and {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡] have been
hard-coded into the oracles in ParSim2. We will use it when showing indistinguishability
between ParSim1,ParSim2, and ParSim3 in the case when the 𝑊𝜏+1, . . . ,𝑊𝑡 wires of the
input state have been collapsed to outcome 𝑤*𝜏+1, . . . , 𝑤

*
𝑡 .

Claim 5.41. For any (unbounded) distinguisher𝐷, input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ],
and {𝑤*𝜄 }𝑖∈[𝜏+1,𝑡], it holds that

E
[︁⃦⃦
𝐷F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ],{𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSim
(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁

= E
[︁⃦⃦
𝐷FSim1[𝑥*],...,GSim

(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁ ,

where the first expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim2(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

the second expectation is over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

and 𝐷’s input includes the keys 𝑘, vk sampled by ParSim2,ParSim3.

Proof. In ParSim2, we have that for inputs that begin with 𝑥*,

F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]](𝑥

*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)
∈ {𝐻(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 𝑅[𝑘, 𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]](̃︀𝑣1, . . . , ̃︀𝑣𝑖)),⊥},
while in ParSim3, we have that for inputs that begin with 𝑥*,

FSim𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]](𝑥

*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)
∈ {𝐻(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1, 0),⊥}.

Both implementations of the oracles are identical on inputs 𝑥 ̸= 𝑥*, and both will al-
ways output ⊥ on the same set of inputs, since this is true of Dec𝑘,·,·(·) and Ver𝑘,·,·(·) by
definition. Finally, their non-⊥ answers on inputs that begin with 𝑥* are identically dis-
tributed over the randomness of the random oracle𝐻 , since each (𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1)
fixes a single choice of bit

𝑅[𝑘, 𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]](̃︀𝑣1, . . . , ̃︀𝑣𝑖).
Indeed, for any (𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ℓ1, . . . , ℓ𝑖−1),

𝐻(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 0) and 𝐻(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 1)
are identically distributed (each is a uniformly random string).
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Claim 5.42. For any QPQ distinguisher 𝐷, input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ],
and {𝑤*𝜄 }𝑖∈[𝜏+1,𝑡], it holds that⃒⃒⃒⃒

E
[︁⃦⃦
𝐷F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ],{𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSim
(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁

− E
[︁⃦⃦
𝐷F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ],{𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSim
(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁ ⃒⃒⃒⃒ = 2−Ω(𝜅),

where the first expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim1(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

and the second expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim2(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

and 𝐷’s input includes the keys 𝑘, vk sampled by ParSim1,ParSim2.

Proof. Observe that the oracles F𝑖[𝑥
*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] in these experiments are

identical except for on inputs

(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1)
such that there exists an 𝜄 ∈ [𝑖− 1] with

ℓ𝜄 = 𝐻(𝑥*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝜄, ℓ1, . . . , ℓ𝜄−1, 1−𝑅[𝑘, 𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]](̃︀𝑣1, . . . , ̃︀𝑣𝜄)).
However, the oracles F𝑖[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], {𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] in ParSim2 are defined to never output
such an ℓ𝜄, and thus such an input can only be guessed with probability 2−𝜅 over the
randomness of 𝐻 . The claim follows by applying Lemma 2.8 (a standard oracle hybrid
argument).

Now, in our final claim before the main lemma of this section, we combine what we
have shown so far to establish the indistinguishability of ParSim0 and ParSim1 in the case
when the 𝑊𝜏+1, . . . ,𝑊𝑡 wires of the input state have been collapsed to some outcome
𝑤*𝜏+1, . . . , 𝑤

*
𝑡 .

Claim 5.43. For any QPQ distinguisher 𝐷, input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ],
and {𝑤*𝜄 }𝑖∈[𝜏+1,𝑡], it holds that⃒⃒⃒⃒

E
[︁⃦⃦
𝐷F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],...,GSim

(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁

− E
[︁⃦⃦
𝐷F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ],{𝑤*

𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSim
(︁
𝑘, vk,Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩)︁ ⃦⃦2]︁ ⃒⃒⃒⃒ = 2−Ω(𝜅),

183



where the first expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim0(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

the second expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim1(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

and 𝐷’s input includes the keys 𝑘, vk sampled by ParSim0,ParSim1.

Proof. Observe that the oracles in these experiments are identical except for on inputs that
include a ̃︀𝑤𝑖 ∈ 𝑃 [¬𝑤*𝑖 ] for some 𝑖 ∈ [𝜏+1, 𝑡]. Thus, by Lemma 2.8 (a standard oracle hybrid
argument), it suffices to show that for any QPQ unitary 𝑈 ,

E
[︁
Π[¬{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]]𝑈

F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ],{𝑤*
𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSimΠ[{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]] | ̃︀𝜓⟩]︁ = 2−Ω(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim1(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).

Write EParSim1 as shorthand for the expectation over

| ̃︀𝜓⟩ , (F1[·], . . . ,FSim𝑡[·],GSim)← ParSim1(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

and write EParSim3 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).

Then,

E
ParSim1

[︁
Π[¬{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]]𝑈

F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ],{𝑤*
𝜄 }𝜄∈[𝜏+1,𝑡]],...,GSimΠ[{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]] | ̃︀𝜓⟩]︁

≤ E
ParSim3

[︁
Π[¬{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]]𝑈

FSim1[𝑥*],...,GSimΠ[{𝑤*𝜄 }𝑖∈[𝜏+1,𝑡]] | ̃︀𝜓⟩]︁+ 2−Ω(𝜅)

≤ 2−Ω(𝜅),

where the first inequality follows by combining Claim 5.42 and Claim 5.41, and the
second inequality follows from Claim 5.40, all proven above.

Now, we prove the main lemma of this section. The proof of Lemma 5.44 combines
some claims proven above with Lemma 5.45 that follows. Lemma 5.45 is a similar claim
but with respect to ParSim3 instead of ParSim0.

Lemma 5.44. For any QPQ unitary 𝑈 , input 𝑥*, and partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ],
it holds that

E
[︁⃦⃦

(Π[𝑥*, vk]⊗ Π[¬(𝑣*𝜏 , 𝑟*𝜏 )])𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],...,GSim | ̃︀𝜓⟩ ⃦⃦2]︁ = 2−Ω(𝜅),
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where the projectors are defined as in the proof of Lemma 5.35, and the expectation is over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParMeas(1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

which, recall, is defined to be the same as

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim0(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).

Proof. Write EParSim0 as shorthand for the expectation over

| ̃︀𝜓⟩ , (F1[·], . . . ,F𝑡[·],GSim)← ParSim1(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

and write EParSim3 as shorthard for the expectation over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).

Then,

E
ParSim0

[︁⃦⃦
(Π[𝑥*, vk]⊗ Π[¬(𝑣*𝜏 , 𝑟*𝜏 )])𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],...,GSim | ̃︀𝜓⟩ ⃦⃦2]︁

≤ 2𝑛 ·
∑︁

{𝑤*
𝜄 }𝜄∈[𝜏+1,𝑡]

E
ParSim0

[︁⃦⃦
(Π[𝑥*, vk]⊗ Π[¬(𝑣*𝜏 , 𝑟*𝜏 )])𝑈F1[𝑥*,{𝑣*𝜄 ,𝑟*𝜄 }𝜄∈[𝜏 ]],...,GSimΠ[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2]︁

≤ 2𝑛 ·
∑︁

{𝑤*
𝜄 }𝜄∈[𝜏+1,𝑡]

E
ParSim3

[︁⃦⃦
(Π[𝑥*, vk]⊗ Π[¬(𝑣*𝜏 , 𝑟*𝜏 )])𝑈FSim1[𝑥*],...,GSimΠ[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2]︁+ 2−Ω(𝜅)

≤ 2−Ω(𝜅),

where

• The first inequality follows from Lemma 2.7 (an application of Cauchy-Schwarz).

• The second inequality follows from combining Claim 5.43, Claim 5.42, and Claim 5.41
proven above.

• The third inequality follows from Lemma 5.45 proven below.

We finally complete the proof of security of our obfuscation scheme with the following
lemma. An overview of the techniques involved in this proof, which include extraction
via a purified random oracle, is given in Section 5.4.2.
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Lemma 5.45. For any QPQ unitary 𝑈 , input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], and
{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡], it holds that

E
[︁⃦⃦

(Π[𝑥*, vk]⊗ Π[¬(𝑣*𝜏 , 𝑟*𝜏 )])𝑈FSim1[𝑥*],...,GSimΠ[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ ⃦⃦2]︁ = 2−Ω(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).

Proof. Recall that the oracles FSim1[𝑥
*], . . . ,FSim𝑡[𝑥

*],GSim output by ParSim3 internally
make use of a random oracle 𝐻 : {0, 1}* → {0, 1}𝜅, and let 𝐾 = poly(𝜆) be an upper
bound on the length of strings that 𝐻 takes as input.

We will purify the random oracle 𝐻 , introducing an oracle register 𝒟 := {𝒟𝑎}𝑎∈{0,1}𝐾 ,
where each 𝒟𝑎 is a 𝜅-qubit register. Define |+𝜅⟩ to be the uniform superposition over all
𝜅-bit strings, and define |+𝐻⟩𝒟 := |+𝜅⟩⊗{𝒟𝑎}𝑎∈{0,1}𝐾 to be the uniform superposition over
all random oracles 𝐻 . Finally, let 𝐴[̸= 𝑥*] := {𝑎 ∈ {0, 1}𝐾 : 𝑎 = (𝑥, ·) for 𝑥 ̸= 𝑥*} be the set
of all random oracle inputs / sub-registers of 𝒟 that do not start with 𝑥*.

Now, the purified random oracle begins by initializing𝒟 to the state |+𝐻⟩. Each time a
query to 𝐻 is made on input register𝒜 and output register ℬ, we apply a unitary defined
by the map

|𝑎⟩𝒜 |𝑏⟩ℬ |𝐻⟩𝒟 → |𝑎⟩
(︀
CNOT⊗𝜅

)︀𝒟𝑎,ℬ |𝑏⟩ℬ |𝐻⟩𝒟 .
For the rest of this proof, we will implement oracle queries to 𝐻 using this purified pro-
cedure, and explicitly introduce the register 𝒟, initialized to |+𝐻⟩, in our expressions.

The central claim we need is the following, which shows that is is hard to map onto
Π[¬(𝑣*𝜏 , 𝑟*𝜏 )] without disturbing the random oracle registers {𝒟𝑎}𝑎∈𝐴[̸=𝑥*]. In other words, at
any point at which the adversary’s state has some overlap with Π[¬(𝑣*𝜏 , 𝑟*𝜏 )], it must be the
case that the adversary currently holds some information about a random oracle output
at (𝑥, . . . ) for some 𝑥 ̸= 𝑥*.

Claim 5.46. For any QPQ unitary 𝑈 , input 𝑥*, partial measurement results {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ], and
{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡], it holds that

E
[︁⃦⃦ (︁

Π[¬(𝑣*𝜏 , 𝑟*𝜏 )]⊗ |+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*]
)︁
𝑈FSim1[𝑥*],...,GSim | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦2]︁
= 2−Ω(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

and
| ̃︀𝜓*⟩ := Π[{𝑤*𝜄 }𝜄∈[𝜏+1,𝑡]] | ̃︀𝜓⟩ .

Proof. First, consider the following distribution, which essentially toggles between ParSim4

and ParSim5.
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Sim[𝑥*](1𝜆, |𝜓⟩):

• Sample 𝑘 ← Gen(1𝜅, 𝑛), and compute |𝜓𝑘⟩ = Enc𝑘(|𝜓⟩).

• Sample a signature token (vk, |sk⟩)← TokGen(1𝜅).

• Let 𝐻 : {0, 1}* → {0, 1}𝜅 be a random oracle.

• For each 𝑖 ∈ [𝑡], define the function FSim𝑖[𝑥
*][𝑧](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1):

– If 𝑧 = ∅, output FSim𝑖(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where FSim𝑖 is defined as in
QSObf5.

– Otherwise, if 𝑧 = 𝑤*:

* If 𝑥 = 𝑥*, output FSim𝑖(𝑥
*, 𝜎𝑥* , ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1).

* If 𝑥 ̸= 𝑥*, output FSim𝑖[𝑤
*](𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1), where FSim𝑖[𝑤

*] is
defined as in QSObf4.

• Define GSim as in QSObf2.

• Output | ̃︀𝜓⟩ = |𝜓𝑘⟩ |sk⟩ , 𝑂 = (FSim1[𝑥
*][·], . . . ,FSim𝑡[𝑥

*][·],GSim) .

Indeed, observe that

| ̃︀𝜓⟩ , (FSim1[𝑥
*][𝑤*], . . . ,FSim𝑡[𝑥

*][𝑤*],GSim)← Sim[𝑥*](1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩)

is equivalent to

| ̃︀𝜓⟩ , (FSim1[𝑥
*, 𝑤*], . . . ,FSim𝑡[𝑥

*, 𝑤*],GSim)← ParSim4(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

while

| ̃︀𝜓⟩ , (FSim1[𝑥
*][∅], . . . ,FSim𝑡[𝑥

*][∅],GSim)← Sim[𝑥*](1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩)

is equivalent to

| ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← ParSim5(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).

Next, recall the definition of 𝑅[𝑘, 𝑤*] from Section 5.4.4:

𝑅[𝑘, 𝑤*](𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖) :
• Compute (𝑣1, . . . , 𝑣𝑖) = Dec𝑘,𝐿𝑖...𝐿1,𝜃𝑖[𝑉1,...,𝑉𝑖](̃︀𝑣1, . . . , ̃︀𝑣𝑖). If the result is ⊥, then output
⊥.

• For 𝜄 ∈ [𝑖], compute (·, 𝑟𝜄) = 𝑓𝑥,𝑟1,...,𝑟𝜄−1
𝜄 (𝑣1, . . . , 𝑣𝜄, 𝑤

*
𝜄 ).

• Output 𝑟𝑖.
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Now, for any 𝑤* = {𝑤*𝜄 }𝜄∈[𝑡], define a unitary Σ[𝑤*] that permutes the registers 𝐴[̸= 𝑥*]
according to the rule that, for 𝑥 ̸= 𝑥*, swaps

(𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 0) and (𝑥, 𝜎𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖, ̃︀𝑤𝑖, ℓ1, . . . , ℓ𝑖−1, 1)
whenever 𝑅[𝑘, 𝑤*](𝑥, ̃︀𝑣1, . . . , ̃︀𝑣𝑖) = 1. By definition of Sim[𝑥*], we have the following fact.

Fact 5.47. For any unitary 𝑈 and

| ̃︀𝜓⟩ , (FSim1[𝑥
*][·], . . . ,FSim𝑡[𝑥

*][·],GSim) ∈ Sim[𝑥*](1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

it holds that

𝑈FSim1[𝑥*][𝑤*],...,GSim | ̃︀𝜓*⟩ |+𝐻⟩𝒟 = Σ[𝑤*]𝑈FSim1[𝑥*][∅],...,GSimΣ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟 ,

where the unitary Σ[𝑤*] is applied to registers {𝒟𝑎}𝑎∈𝐴[̸=𝑥*].

We will also use the following immediate fact.

Fact 5.48. For any 𝑤*,

Σ[𝑤*] |+𝜅⟩⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*] = |+𝜅⟩⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*] .

Now, write EParSim3 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

write EParSim4 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim4(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

write EParSim5 as shorthand for the expectation over

| ̃︀𝜓⟩ , (FSim1, . . . ,FSim𝑡,GSim)← ParSim5(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩),

and write ESim[𝑥*] as shorthand for

| ̃︀𝜓⟩ , (FSim1[𝑥
*][·], . . . ,FSim𝑡[𝑥

*][·],GSim)← Sim[𝑥*](1𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).

Then,

188



E
ParSim3

[︃⃦⃦⃦⃦ (︁
Π[¬(𝑣*𝜏 , 𝑟*𝜏 )]⊗ |+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*]

)︁
𝑈FSim1[𝑥*],...,GSim | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃

= E
ParSim3

[︃⃦⃦⃦⃦∑︁
𝑤*

(︁
Π[¬(𝑣*𝜏 , 𝑟*𝜏 )]⊗ |+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*]

)︁
𝑈FSim1[𝑥*],...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃

= E
ParSim3

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏 )]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*]

)︁
𝑈FSim1[𝑥*],...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃

≤ E
ParSim4

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏 )]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*]

)︁
𝑈FSim1[𝑥*,𝑤*],...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2𝑛 · 2−Ω(𝜅)

= E
Sim[𝑥*]

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏 )]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*]

)︁
𝑈FSim1[𝑥*][𝑤*],...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2−Ω(𝜅)

= E
Sim[𝑥*]

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏 )]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*]

)︁
Σ[𝑤*]𝑈FSim1[𝑥*][∅],...,GSimΣ[𝑤*]Π[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2−Ω(𝜅)

= E
Sim[𝑥*]

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏 )]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*]

)︁
𝑈FSim1[𝑥*][∅],...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2−Ω(𝜅)

= E
ParSim5

[︃⃦⃦⃦⃦
Π[¬(𝑣*𝜏 , 𝑟*𝜏 )]

∑︁
𝑤*

(︁
|+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*]

)︁
𝑈FSim1,...,GSimΠ[𝑤*] | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2−Ω(𝜅)

= E
ParSim5

[︃⃦⃦⃦⃦ (︁
Π[¬(𝑣*𝜏 , 𝑟*𝜏 )]⊗ |+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*]

)︁
𝑈FSim1,...,GSim | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦⃦⃦2]︃
+ 2−Ω(𝜅)

≤ 2−Ω(𝜅),

where

• The first inequality follows from Claim 5.39 proven above.

• The following equality is by definition of Sim[𝑥*].

• The following equality is Fact 5.47.

• The following equality is Fact 5.48.

• The following equality is by definition of Sim[𝑥*].

• The final inequality follows from Claim 5.37 proven above.
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Now, assume for contradiction that the lemma is false. Combined with the fact that
Claim 5.46 is true, this implies that

E
[︁⃦⃦ (︁

Π[𝑥*, vk]⊗
(︁
ℐ − |+𝜅⟩⟨+𝜅|⊗{𝒟𝑎}𝑎∈𝐴[ ̸=𝑥*]

)︁)︁
𝑈FSim1[𝑥*],...,GSim | ̃︀𝜓*⟩ |+𝐻⟩𝒟

⃦⃦2]︁
= 2−𝑜(𝜅),

where the expectation is over

| ̃︀𝜓⟩ , (FSim1[·], . . . ,FSim𝑡[·],GSim)← ParSim3(1
𝜆, |𝜓[𝑥*, {𝑣*𝜄 , 𝑟*𝜄 }𝜄∈[𝜏 ]]⟩).

However, this would violate the security of the signature token scheme, which we
now show. Consider the following reduction that takes as input the signing key |sk⟩ for a
signature token scheme, and has oracle access to TokVer[vk].

• Prepare | ̃︀𝜓*⟩ , |+𝐻⟩, and (FSim1[·], . . . ,FSim𝑡[·],GSim) as in the description of Lemma 5.45,
and run 𝑈FSim1[·],...,GSim | ̃︀𝜓*⟩ |+𝐻⟩, except that TokVer queries are computed by for-
warding them to TokVer[vk].

• Measure the final state of 𝑈 in the standard basis, and parse the outcome as (𝜎𝑥* , ·).

• Measure the final state on registers {𝒟𝑎}𝑎∈𝐴[̸=𝑥*] in the Hadamard basis. If any reg-
ister 𝒟𝑎 gives a result other than 0𝜅, then parse 𝑎 = (𝑥, 𝜎𝑥, ·) for some 𝑥 ̸= 𝑥*.

• Output (𝜎𝑥* , 𝜎𝑥).

Then, by the definition of Π[𝑥*, vk] and the fact that the random oracle 𝐻 is only ever
queried on inputs that begin with (𝑥, 𝜎𝑥) such that TokVer(vk, 𝑥, 𝜎𝑥) = ⊤, we have that
with probability 2−𝑜(𝜅), TokVer(vk, 𝑥*, 𝜎𝑥*) = TokVer(vk, 𝑥, 𝜎𝑥) = ⊤, which violates secu-
rity of the signature token scheme (Definition 2.21). Indeed, note that the signature token
scheme is secure against poly(𝜆) query bounded adversaries that otherwise have unlim-
ited time and space, which is satisfied by the reduction given above.
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