Improving Output in Generative Models

Tarun Amarnath
S. Shankar Sastry, Ed.

=i

WL REFLELL

i
']
|

i
i|

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-171
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-171.html

August 9, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Improving Output in Generative Models

by

Tarun Amarnath

A thesis submitted in partial satisfaction of the
requirements for the degree of
Masters of Science
in
Electrical Engineering and Computer Science

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor S. Shankar Sastry, Chair
Professor Koushil Sreenath

Summer 2024

Improving Output in Generative Models

by Tarun Amarnath

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor S. Shankar Sastry
Research Advisor

P |3 2ok

(Date)

Kook ok sk ok ock ok

St

Professor Koushil Sreenath
Second Reader

8/7/2024

(Date)

Improving Output in Generative Models

Copyright 2024
by
Tarun Amarnath

Abstract
Improving Output in Generative Models
by
Tarun Amarnath
Masters of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor S. Shankar Sastry, Chair

Generative models have proven widely successful in creating language and image responses
to prompts. These techniques have been extended to video creation, robotics, and personal
assistants, among other use cases. However, as their pervasiveness grows, a major issue
arises: they have no guarantees of correctness. The networks themselves are encapsulated
into black boxes, making them difficult to interpret. This work instead aims to improve their
output in the pre- and post-processing stages, increasing overall accuracy. The problem is
approached through 3 projects: Drone Diffuser (a diffusion-based path planner for drones),
RAG Alignment (checking for factual generation of text data in Retrieval-Augmented Gen-
eration systems), and IMAGINE (improving output of RAG-based image retrieval).

Drone Diffuser Diffusion models have been successful in image and video generation, lever-
aging massive amounts of data to achieve remarkable results. Recently, these models have
been adapted for the robotics domain, demonstrating advantages such as better performance
in long-horizon contexts and more stable training processes. This research extends the ap-
plication of diffusion models to aerial vehicles. The task is to generate high-level path plans
to a goal position denoted by a gate, akin to racing scenarios, in a receding-horizon man-
ner. Two policies are trained: the first, 7(A), utilizes state information as conditioning to
characterize the goal, while the second, 7(I), directly uses FPV images from a drone. These
policies mimic a privileged expert that employs RRT* to generate near-optimal paths. The
reverse diffusion process has no guarantees in its output. As a result, both the training data
given for imitation and the output from the policy are fit to a polynomial trajectory using
minimum snap optimization to ensure dynamic feasibility for quadrotors. The state-based
policy performs exceptionally well, achieving a 100% accuracy on every plan in the testing
set, whereas the image-based policy requires further refinement. Future work can focus on
translating these findings to real-world systems.

RAG Alignment In order to better align Retrieval-Augmented Generation (RAG) systems
with intended behaviors and factual consistency, we propose the notion of Fact-Bearing

Terms (FBTSs) as the terms in a sentence upon which its factuality rests, such as proper nouns
or direct objects. Applying this notion of FBTSs, we demonstrate significant performance
improvements over both encoding- and part-of-speech- based approaches to text retrieval in
RAG systems using sources from a custom dataset created for this task outside of the training
distribution of most large-scale models. In addition, we use this metric to demonstrate a
visible boost in performance on HyDE (hypothetical document embeddings)-based retrieval
after fine-tuning the HyDE model. We show several practical applications of Fact-Bearing
Terms, such as warning users of higher risks of hallucination or citing sources.

IMAGINE Within the language domain, HyDE and other techniques prompting the model
to retrieve with a guess or estimate of a desired output demonstrate incredible improve-
ments over standard RAG. Selecting the most relevant images to an abstract user input
can be a far more challenging task because there can be a large semantic gap between the
user’s query and desired output: image similarity may not strongly correlate to semantics for
many user contexts. In order to better align image RAG systems with intended behaviors,
we propose the IMAGINE system, which creates hypothetical outputs and performs retrieval
based on those responses. Depending on the user context and resources available, we present
IMAGINE-T (text-based) and IMAGINE-I (diffusion-based) multimodal retrieval mecha-
nisms. We present the CameraRollQA benchmark based on real-world images to evaluate
both IMAGINE solutions and demonstrate improved performance over CLIP RAG baselines.

To my family, whose unwavering support has been the foundation for everything I have
done.

i

Contents
[Contents| ii
[List of Figures| iv
IList of Tables| vi
1 Drone Diffuser: Diffusion-Based Path Planning for Drones| 1
[L1 Tntroductionl 1
[.2 Related Workl 4
.3 Methods 15
(1.4 Experiments 24
[L5_Conclusion and Further Workl 26
2 RAG Alignment| 28
2.1 Problem Statement 28
22 Related Workl 29
[2.3 Proposed Solution|.o 31
2.4 Methods 33
R5 Resulfs o oo 35
2.6 Conclusion and Future Work 38
3 IMAGINE: Improved Multimodal Augmented Generation through Imag- |
| ined Neural Embeddings 40
[3.1 Problem Statement 40
3.2 Related Workl 42
[3.3 Proposed Solution|. 43
3.4 Methods 45
BS Resulfs o v 47
3.6 Future Work|. 48
B.7 _Conclusionl. 49
4 Conclusion 50

(Bibliography/|

[A Drone Diffuser Appendix]
[A.1 Hyperparameters for RRT

X

[A.2 Hyperparameters for the Drone Diffusion Policy

(B RAG Alignment Appendix]|

[C IMAGINE Appendix]
(C.1 Language Model Prompts . .
[C.2 Evaluations

(D Supplemental Work: RL-MOG|
[D.1_Introductionl

[D.4 Experimental Setup|.
[D.5 Experiments and Results . . .

[D.6 Limitations and Future Workl

il

52

59
99
60

61

List of Figures

v

1.1 Illustrated diffusion process. Image taken from Ho et. al. |15] 4
1.2 The training and sampling algorithms from 15/ 8
1.3 Classifier guidance [20] Lo 8
[1.4 An Unreal Engine environment loaded with the multirotor vehicle from AirSim. 17
(1.5 An example gate placed in the blocks environment.| 18
1.6 An example path generated using the RRT* algorithm.| 20
1.7 A scaled-down visual of the RRT-generated path (solid line) and the path that |

the drone follows after minimum-snap trajector optimization (dotted line).| . . . 21
[1.8 An image of the goal gate taken with the FPV camera on the drone. 22
[1.9 Visualization of the reverse diffusion process. The figure depicts the path gen- |
| erated after 25%, 50%, 75%, and 100% of the reverse diffusion steps. The path |
| becomes more refined and imitates the training set as noise is removed. The |

drone begins at (0, 0, -10) and travels to (36, 7, -6). Note the scale on the axes.] 25
1.10 Path to (40, 1,-5)] 25
1.11 Path to (20, 10, -14). A scatterplot is used to depict the waypoints generated |

and illustrate the distribution of points reducing in variance from the final path. 25
T2 Path to (24, 7, 12) .« « o o oo o 25
2.1 FBT vs Embedding Similarity as questions leave dataset distribution on Fine- |
| Tuned GPT-3.5] 36
2.2 Chat-Bot RAG performance with HyDE and Base GPT-3.5 37
2.3 Chat-Bot RAG performance with HyDE and Fine-Tuned GPT-3.5 37
[2.4 Chat-Bot Warning user due to Low FBT similarity 39
[3.1 The naive baseline attempts to retrieve CLIP embeddings based on the embedding |
| of the user input. Due to the notion of indirect retrieval and desired output |
| sparsity mentioned earlier, we observe that the desired output images can fall |
| very from the user input in the CLIP embedding vector space. 44
[3.2 The IMAGINE-I architecture embeds multiple imagined guesses of what the user’s |
| desired imagines created with previously described image diffusion techniques. |
| These embeddings are used to retrieve the most similar images to the stored |
| image data, in the context of the user query. 45

[3.3 The IMAGINE-T architecture embeds multiple imagined guesses of what the |
| user’s desired images may look like, with no knowledge of the target distribution.| 46
[3.4 The IMAGINE-T architecture retrieves based on the imagined embeddings as |
| opposed to the direct question. This can help address issues of desired output |
| sparsity for this more indirect retrieval problem.). 47

(B.1 FBT vs Embedding Similarity as questions leave dataset distribution on Fine- |

| luned Mistral-7Bl 61
[B.2 Chat-Bot RAG performance with HyDE and Base M7B| 62
[B.3 Chat-Bot RAG performance with HyDE and Fine-Tuned M7B|. 62

D.1 The RL-MOG system executing a grasp on a cluster to grasp. (1) A cluster is
identified containing 2 or more objects; (2) the gripper grasps the two or more
objects that will be transported to the bin; (3) the objects are transported to the

L bind ... 79
[D.2 Cluttered workspaces with blocks in grouped in configuration of groups of 1, 2 |
| and 3, (left to right, respectively) 83

[D.3 This is an example output of the combined one hot encoded masks. Realistically, |
| each of the separately polygons has its own layer and mask. However we combine |

| them for stylistic and visual purposes., 83
[D.4 This is an example of the full pushing action from end to end, where a block is |
| pushed to another block. o 86
ID.5 The reward (left) and success (right) for each Sigmoid rollout and iteration . . . 89
[D.6 The reward (top) and success (bottom) for each Pure Pick rollout and iteration 89
D he reward for each Pure Push rollout and iteration. Successes were not measured

| as pushing does not clear the workspace.| 90

[D.8 This is an example of the polygons to be used in future work for RL-MOG. This |
| will aim to make the agent more robust, as it can act regardless of the polygon |
| shapes and edges.| 91

vi

List of Tables

[3.1 Retrieval accuracy for various retrieval tests within the CameraRollQA context.| 48

[A.1 Hyperparameters for RRT* 59
[A.2 Drone Diffusion Policy Hyperparameters| 60

vil

Acknowledgments

I owe a significant amount of my academic and professional progress to Professor Shankar
Sastry, without whom this thesis would not have been possible. Thank you for being my
teacher in EECS C106A right after the pandemic. Thank you for guiding me when I took
over as head TA of this very class (and its subsequent offering, C106B). And thank you for
agreeing to become my advisor for this 5th Year Masters, which has been monumental to
discovering my interests and developing my mindset both inside and outside of academics.
It was a pleasure to also be advised by Professor Koushil Sreenath, whose steady presence
kept C106A on track. I will always be grateful for your reliable mentorship.

My collaborators on projects this year are exceptional individuals who have opened my
eyes to new fields - Devan Shanker, Josh Barron, Shrey Aeron, Moaaz Akbar, Anish Gol-
lakota, and Joel Jaison. Without all of you, I would not have discovered new areas of
robotics, machine learning, or safety. Thank you for the effort you put in to make our vision
a reality.

I would also like to acknowledge my fellow lab members of Cory 337 - C.K. Wolfe,
Eric Berndt, Valmik Prabhu, Adith Sundram, Addison Kalanther, Emma Stephan, Nima
Rahmanian, Chris Lai, and Daniel Bostwick. We have found joy in our struggle together.
Your steady presence at meetings is always appreciated, and I am glad we were able to bring
some vibrant life to our time in the lab. Thanks for your technical, logistical, and emotional
support while we all juggled so many different projects.

Thank you to my fellow course staff members who made C106AB such a pleasure to teach
- Shrey Aeron, Kirthi Kumar, Kaylene Stocking, Eric Berndt, Mingyang Wang, Michael
Psenka, Nima Rahmanian, Karim El-Refai, Daniel Bostwick, Anuj Raichura, Charles Xu,
Chris Lai, and Martin Zeng. Your dedication to educate students and open up the world of
robotics inspired me to put so much of my life into these classes. They ran exceptionally
well, and the legend of banana gibbons will live on in the halls of Cory 105. Also, thank you
to my fellow JamCoders TAs for showing me the joy of the service we do. Education is one
of the most valuable activities I have been involved in and will always hold great significance
in my life.

The people around me throughout the years have been my support system, and there
are far too many of you to list. You have been invaluable in both forming the wonderful
experiences I have had and supporting me during the low points. To all of my friends
- whenever and wherever I may have met you, your story has contributed to mine in an
incredibly positive way.

Rohit, Anirban, Saajid, Bryan - thank you for being the hilarious, friendly, supportive
people you are. Derek, Rob, Ava - odes to Bonita Base Bouse will be sung for generations.
Devan and Ana - I cannot fully express how much both of you mean to me, but I think you
understand. Finally, my family - thank you for being the bedrock of my growth. This thesis
would not have happened without any of you.

Chapter 1

Drone Diffuser: Diffusion-Based Path
Planning for Drones

1.1 Introduction

Background

Generative models have made significant advancements in the creation of text and visual
data. Diffusion models in particular have found success in the image and video domains after
training on the massive corpus of data available on the Internet. The technique particularly
excels at replicating complex data distributions and creating diverse outputs, which are
desirable in visual contexts but applicable to other areas as well [1].

The field of robotics has adapted the method for path planning. Approaches with diffu-
sion vary. Some modify camera images to create subgoals that can be tracked using a classical
reinforcement learning planner [2], while others generate trajectories based on conditioning
data that can be followed either directly or in a receding-horizon manner [3][4].

In the latter case, several advantages can be seen when using diffusion over classical
control or reinforcement learning. Because the technique performs sampling over the gra-
dient field of the action score function, it inherently sees greater success representing the
multimodal distributions often present when creating path plans [5][6]. Evaluating the loss
of the gradient also achieves more stable training. Additionally, diffusion models for robot
action generation perform better in long-horizon contexts, necessary for robotic planning, as
the error of full trajectories are evaluated rather than calculating single-step rewards. Diffu-
sion models can compose multiple tasks together, thereby using training data effectively to
generalize to new situations.

Path planning with diffusion has not yet been extended to aerial vehicles, which this work
aims to do. Quadrotors in rescue scenarios, for example, are left to human experts who can
deftly fly through obstacles without compromising the safety of the payload or the drone.
An effective autonomous controller would have the capability to generalize to different loca-
tions, seamlessly adapting to various environmental conditions and obstacle configurations.

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 2

This would involve not only precise maneuvering skills but also real-time decision-making,
ensuring the feasibility, safety, and efficiency of accomplishing the mission in diverse and un-
predictable scenarios. Diffusion models in conjunction with provable optimization techniques
have the potential to make this happen.

One situation with UAVs where autonomous controllers work very effectively is the field
of racing. Several methods have been proposed to fly a quadrotor through multiple gates as
quickly as possible before reaching the finish line [7][8]. None use diffusion models, both be-
cause of the novelty of the technique and because they require millisecond-level computation
times. Some papers separate perception and control, with one or both parts of the pipeline
performed with classical approaches, while others leverage end-to-end networks that directly
translate sensor inputs into action space commands [9] [10]. This chapter experiments with
diffusion-based planning with both a separate perception preprocessing stack and a combined
sensor-to-output network.

Diffusion models perform well with a large, diverse training set, as seen in the efficacy of
image models like DALL-E [11]. Collecting data for Drone Diffuser has several limitations if
performed in the real world. The intensive effort required, poor sample efficiency because of
limited variance in training data generation, and resulting difficulty in dealing with variance
of the goal make empirical data collection unsuitable to the task. As a result, Drone Diffuser
makes use of domain randomization within a high-fidelity simulator |12] to generate a training
dataset.

A major issue with diffusion models is an absence of true guarantees in their output; we
have no certainty that, even if trained on many examples of drone trajectories, the output
of a drone diffusion policy will be feasible by a quadrotor. This does not pose a problem
for the robot paths performed in earlier work, as inverse kinematics solvers can calculate
joint angles to achieve any position in the reachable workspace. Diffusion policies do have
the advantage of temporal locality [3], meaning they can make decisions about the action
at a given timestep while considering the actions at both the next and previous timesteps;
however, this still does not guarantee feasibility.

A key insight in the physics of quadrotors is their differential flatness property |13]. This
implies that all states and control inputs are expressible using a fully controllable output
and its derivatives. In the context of drones, Mellinger and Kumar prove that the position
and heading can be used as these flat outputs. Additionally, they show that a polynomial
trajectory that minimizes snap, the fourth derivative of position, generates smooth and
dynamically feasible paths. A minimum snap optimization can be layered on top of a higher-
level path planner to guarantee viability on the physical system.

Approach

This chapter proposes a method to perform diffusion-based path planning for aerial vehicles
while taking into consideration the feasibility of those trajectories. The objective is to
generate a high-level path plan (composed of x, y, z, and yaw displacements) from a starting
position to a goal denoted by a gate, akin to those in drone racing environments, for which

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 3

control inputs can be calculated and tracked in a receding-horizon manner. While racing
scenarios serve as a reasonable starting point for development, the overarching goal is not
to achieve the fastest lap time but to determine whether diffusion is viable as a planner for
quadrotors. The technique’s strength is generalizing to novel situations, which would show
up more dramatically in real-world settings like rescue operations.

Conditioning Data

Drone Diffuser generates output based on two modalities of conditioning data (incorporated
into the policy using FiLM conditioning).

e The first type contains state information that directly characterizes the goal, which
specifically is displacement of the drone body frame from the gate at the time of the

query.

e The second kind is FPV images taken from the drone. The AirSim simulation environ-
ment [12] allows for collection of high-fidelity training data, moving a virtual quadrotor
through space and collecting images from its onboard camera. An encoding generated
by a different but similar policy, DroNet |14], transforms the image into vector space
for conditioning Drone Diffuser.

Privileged Expert

The training data for paths comes from a privileged path planning expert with access to full
state information. Specifically, an RRT* planner generates paths from the starting position
to the center of the gate. To incorporate feasibility of drone trajectories into this model, the
waypoints generated by RRT* are optimized using minimum snap trajectory generation.

Policy Outputs

Drone Diffuser outputs paths in a receding-horizon manner, effectively planning to replan;
given a conditioning input, it generates waypoints for the next 8 timesteps, after which
another observation is taken and further waypoints are returned. The results created by the
diffusion planner are also optimized to fit a polynomial that minimizes snap, translating to
feasibility on a physical quadrotor model.

Contributions

The contributions of this work are

e Translating diffusion-based trajectory generation to quadrotors by performing behav-
ioral cloning of an RRT*-based privileged expert

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 4

e Developing and testing conditioning based on a) state information fed to the model
and b) FPV images

e Guaranteeing dynamic feasibility through minimum snap optimization

1.2 Related Work

Diffusion

Diffusion [15], which began as a concept in thermodynamics, [16], allows for high-quality
samples in high-dimensional spaces that have intractable distributions to sample, such as
images. The algorithm iteratively adds noise to a known sample in the form of a Markov
chain. Then, a network is taught to remove the noise to retrieve the source image in an
iterative process. The model learns to estimate the original data distribution.

Pol(Xe—1|x¢)
Oy 0 0 ~Cp

----- >

g(x¢|xe-1) A

Figure 1.1: Hlustrated diffusion process. Image taken from Ho et. al.

The Forward Diffusion

The forward diffusion process is a fixed, known Markov chain. The forward diffusion kernel
is defined by a transition function ¢(z;|x;_1). Gaussian noise is added at each timestep in the
Markov chain to z;_; to produce a new latent variable x;. The Gaussian noise added at each
step of the chain is based on a variance scheduler with (either learned or fixed) constants

Bi...0r. Specifically,
Q<xt’$t71) = N(%; V1= B, 5t[)

The PDF of our full forward diffusion process can be defined as

T

q(z1:7|m0) = H q(z|ze1)

t=1

Intuitively, we can model this same process as Gaussian noise slowly being added through
our Markov chain according to variance scheduler 3:

T = /1= B+ Bz

where z; is sampled from N (0, I).

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 5

Naturally, because we know the parameters of each step in our diffusion throughout the
Markov chain and we know that they are Gaussian, we come to the conclusion that we
do not actually have to step through the chain and can instead sample directly using the
reparameterization trick:

oy =1-0
d O?t=Hf-:1az'
(] GZNN(O,[)

Redefining our forward process using our new notation, we have

T = oy + V1 — e

= /oy 1Ti_9 + \/(1 —) + (1 — 4_1)€_o, summing up the variances

= Ve + V1 — qye

We have (1 as hyperparameters, allowing us to compute our a7, @1 7 and thereby
the results of the diffusion at any arbitrary timestep. Finding the 3 vector tends to be done
using linear interpolation, cosine interpolation, or in a learned manner [17].

Reverse Diffusion

Overview

The reverse diffusion process aims to move our noisy data back into the initial distri-
bution. The reverse of a Gaussian diffusion process can also be modeled as a Gaussian for
sufficiently small variance f; [18]. As a result, we model each step of the reverse diffusion
process as

Pe(ﬂft*l\ﬂft) = N(xtfﬁ Me(-ft, 75), Ze(xu t))

1g and Yy are learned parameters. The distribution for the full reverse diffusion process
then becomes

T
po(zor) = po(zr) H (e1]we)

Loss Function

The goal is to train a model to recover the parameters of this reverse diffusion process
while conditioning on timestep t to ensure we get the correct outputs. Specifically, we want
to maximize the likelihood (or log likelihood) of our training data. We can accomplish this
alternatively by minimizing the negative log likelihood. Our loss therefore takes the form

L = —log(pe(x0)), pe(xo) = /Pe(zo:T)dl“l:T

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 6

This integral is intractable, however. Instead, we use the following inequalities to reformulate
our objective:

Po (xO:T)

E[—log po(z0)] < E, [— log q<=751:T|330>:| =E,

e - S 2]

t>1 VCALTRY

This equality holds because a Gaussian PDF must be < 1. A more formal justification
for this can be found using Jensen’s inequality or by breaking the problem down using KL-
divergence (a measure calculating the distance between two probability distributions). A
full proof is available in the original papers or in [19]. We reformulate our expectation to
the following;:

E, | Dicr(q(@rzo)llp(xr)) + D Dicr(a(wia|ar, zo)l|po(xe1]a:)) — 1nge(l’o|$1)]

t>1
T-1

Ly +) L+ Ly

t=1

where we define each of the L terms as

L1 = Dxr(q(xr|zo)|[p(27))
Ly = DKL(Q(%*HCL},950)||P9($t71\£€t))
Lo = —log pg(zo|z1)

Reversing the Steps

Recall that we can approximate our reverse diffusion steps also as a normal distribution.
Specifically, we can calculate q(x;_1|xs, z9) as a normal distribution. Intuitively, it should
make sense that we are conditioning on zy because we need to know where we are trying to
reach in the long term. Here are the mean and standard deviation terms for that reverse
diffusion Gaussian:

q(@o_1|x, 20) = N (2413 fie (4, 20), B
\/ 1B Vou(l — ay_q)
o 1—ay
~ 1—a
Bt = 1— - lﬁt

We saw above that we can define x; in terms of Zp, which means we can also define

[t (ﬂUu 950) t

1

(2 — V1 — aye), e ~ N(0,1)

o =

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 7

As a result, we can define [as

fir(ze) = L (l’t - LG)
va\" T Ta
Learning the Reverse Diffusion Process
We could approximate fi;(x;) directly to get the expected value for a step of the reverse
diffusion (i.e. the mean for x;_;). However, we know z; at both training and test time; the
only thing we do not know is the noise term (we are trying to slowly remove noise to get to

the original, and we want our network to predict this noise). As a result, we use our neural
network to predict noise. We reformulate our mean to be the following:

Our network predicts the noise term e directly - the noise that we would have to remove
in order to get to the next step of the algorithm. We sample x;_; using this noise term as
the mean value. Recall though that the reverse diffusion process is a normal distribution,
so we must also calculate variance. The variance above (3, works, but Ho et. al. find that
simply using [; as the variance works just as well.

To train the model, we have some z(from our training set. We add noise to it according
to € at some uniformly random step of the diffusion process. Then, we have the network
predict the noise it has to remove, minimizing the loss function.

In the loss function, we can ignore the Ly term because it’s constant due to our variance
schedule. We will ignore L for our reverse diffusion process because the Ho et. al. calculate
the final step separately from the rest of the process. We are just left with L;_;, which equals
the following:

1
Lis =By | llitensza) = o) +€

Subtracting out the constant term and simplifying due to the fact that our network is
now predicting €, we get

2
Eyp.e {B—tHe — eo(Varrg + V1 — aye, t)||2}

20204 (1 — ay)

The authors find that sample quality improves if we remove the constant term in the
front and used the following loss:

Lsimple(e) = Et,zo,e [HG - 69(\/5[_151'0 + v 1 - O_5t€> t)||2]

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR

DRONES 8
Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: xr ~ N(0,1)
2: Xo ~ q(xo0) 2 fort="T,...,1do
21 t~ Ij{;l(l(f)OIII)n({l’ T} 3 z~N(0,I)ift > 1, elsez =0
Doen , _a
5: Take gradient descent step on 4 Xp-1= \/% (Xt - ﬁﬁe (Xt,t)) + oz
v0||€—€0(\/0_7txo+m€,t)||2 5: end for
6: until converged 6: return xo

Figure 1.2: The training and sampling algorithms from [15]

Conditional Diffusion

Generally, we want to perform reverse diffusion given a particular conditioning value. Math-
ematically, we are trying to maximize py(zoly), where y is our conditioning variable.
Classifier-Guided Diffusion

We can train a second classifier to predict the probability that the given image is the class
that we want it to be, fs(y|xs).

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (ug(z+), Xg(z+)), classi-
fier py(y|z+), and gradient scale s.

Input: class label y, gradient scale s
z7 < sample from N (0, I)
for all ¢ from 7" to 1 do
K, Y+ ,LL@(.’I?t), Ee(mt)
z¢—1 « sample from N'(p + sX V,, log ps (y|z+t), X)
end for
return z;

Figure 1.3: Classifier guidance [20)]

Increasing s improves sample quality at the cost of diversity. We could (in addition to
classifier guidance, and perhaps more intuitively) also train a diffuser that predicts pg(z|y),
which improves results further.

Classifier-Free Guidance

Classifier-free guidance does not require a secondary classification model trained, which has
natural limitations in terms of creating text classification [21]. Instead, it uses a normal

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 9

conditioned diffusion model along with 10-20% dropout during training, where the label is
replaced with the null label (effectively the training for an unconditional model). Then, for
sampling, the model is guided toward some caption ¢ using the following expression:

€o(wi|c) = ep(w:|0) + 5 - (o (1]c) — €o(:[0)

Generative Models for Robotics

Generative models have been used in conjunction with robotics. Different authors approach
this challenge in unique ways. Some diffusion policies generate sub-goals for the robot with
image editing models, such as [2], but this project aims to predict the trajectory directly,
which will be the focus of this section.

Transformers and RL

The first steps to apply a generative model lens to reinforcement learning use the transformer
architecture [22]. Rewards-to-go, actions, and states are fed into a causal transformer, which
then outputs the next action to take. The transformer is trained on offline data and compared
to an offline reinforcement learning approach (TD learning using CQL). It is also compared
to direct behavioral cloning. The results show success in matching, or in some environments
exceeding, state-of-the-art methods in the field.

-%-%

causal transformer

T @I%'@

Simultaneously, Janner et. al. propose a different version of a transformer-based sequence
planner called Trajectory Transformer [23]. The ideas from natural language processing are
directly translated into sequence planning, and the architecture maintains a very similar
structure. This paper performs a beam search, selecting the most likely state/action value,
and then evaluates the highest-reward trajectories. The probabilities are calculated using
a sequence transformer. The desired final state in the trajectory is actually placed at the
start of the input sequence to guide the transformer into choosing to move in the correct
direction without modifying the underlying architecture. These authors discretize the state,
action, and reward space because of the nature of the transformer model. This effectively
performs offline RL with behavior cloning with some goal conditioning. The authors show
that it demonstrates success in long-horizon, sparse-reward tasks.

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR

DRONES 10
Pt | R |
Trajectory Transformer]

1 1 1 1 1 1 1

Another transformer-based generative model for trajectories called BeT (Behavioral Trans-
formers) applies k-means clustering to discretize actions. An extra head is then added to
the transformer to make the actions continuous using an offset from the cluter centers. This
is built upon in the following months with C-BeT, or Conditional Behavioral Transformers
. The new paper combines the ideas of the behavioral transformer with previous work on
conditioning. The sequence model takes in the most recent observations as well as desired
observations and, in a sequence-to-sequence manner intrinsic to the architecture, generates
an action trajectory meant to move from the observations to the goals. A diffusion-based
extension of this paper attempts to imitate human behavior with the idea of k-means and a

residual)

Oc:cth Ogig+h'

Target frame Target demonstration

Diffuser

Diffuser introduces diffusion to trajectory planning . The general design of the planner is
as follows:

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR

DRONES 11
| / local receptive field |
1 1 1 1 1
20 coo Sto St S St St oo | T
iz al al al al a!
S t-2 t-1 t t+1 t+2
ko IN /1IN /1IN /1IN /] /
J [Diffuser j
0 0 0 0 0
Sto St S St St
o000 0 0 0 0 0 o000
2, A a, t+1 2

planning horizon ——

The authors highlight four main properties of a diffusion-based model that makes it
superior for trajectory planning: 1) long-horizon scalability (because the model trains for
trajectories over single steps), 2) task compositionability (compose multiple rewards), 3)
temporal compositionability (stepping ahead of classical behavioral cloning by combining
multiple sequences), and 4) non-greedy planning (like above, generalizing to sparse-reward,
long-term sequences).

The model used in the paper has a few advantages over existing works. First is the idea of
temporal ordering, in that unlike model-based methods, the full trajectory must be generated
at once (instead of working autoregressively, generating one state at a time). Temporal
consistency is enforced; by expanding the receptive field of the generation of a single timestep
to include the prior and subsequent steps, the model can enforce local consistency, which,
when extrapolated, creates global consistency. The design of the inputs and the outputs of
the model are a two-dimensional array (a trajectory equivalent to standard image diffusion
models), with the timesteps across the first dimension and the concatenated state/action
pair along the second.

A key insight of the paper comes from the method to maximize the reward function. A
binary indicator random variable Oy is set to equal 1 if timestep t of a trajectory is optimal.
We want to sample optimal trajectories, so we have

P@(T) = P(7'|01;T == 1)
Reformulating with Bayes Rule, we end up with

Py(1) < P(T)P(O1.7 = 1|7)

This follows the form of conditional diffusion.

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 12

For reasons described in [27], we set P(O; = 1) = exp(r(s:, a¢)). For classifier-guided
conditioned diffusion, we add an additional term that depends on the log probability of the
classifier The gradient is taken:

thlogP¢(y|xt) = VTZOQP(OI:TlT)

T

= Z Va7 (e, a)
=0

=VJ

As a result, the classifier guidance is the gradient of the reward function, for which a
separate model is trained. New reward functions are easily incorporated. Actuation is done
in a receding-horizon fashion. Constraints on the trajectory come from setting states to the
desired values after every iteration in the denoising process.

The authors highlight a few key properties of diffusion planners. First, because planning
and sampling are merged, predicting and planning in a long-horizon manner are coupled.
Additionally, the generative process can create new trajectories by merging known trajecto-
ries. The length of the trajectories generated is variable. New reward functions can be easily
incorporated into the formulation of the model.

A few different experiments are given: maze solving, block stacking, and offline RL. One
conclusion drawn is that Diffuser’s effectiveness comes from coupled modeling and planning,
not prediction accuracy.

Diffusion Q-Learning

Wang et. al. [28] introduce Diffusion Q-learning as a way to perform policy regularization
in offline reinforcement learning in an alternate manner to Janner et. al. The deviation of
generated policies from the training set is regularized, preventing significant divergence from
exhibited behavior (contrasting from the Janner paper, which does everything from a model-
based planning perspective as opposed to a model-free policy-optimization perspective). The
loss function for the diffusion model contains two parts: one to mimic the training set
(effectively the training data, becoming the regularization term) and one to sample high-
value actions from a learned critic.

Decision Diffuser

Ajay et. al. [29] use conditional diffusion models, where constraints and skills are the con-
ditioning variables, to perform trajectory generation, stitching together sub-optimal trajec-
tories to create an optimal output, potentially performing dynamic programming implicitly.
The model is trained with a dataset of reward-labeled trajectories. They perform classifier-
free guidance. Their work can combine skills and constraints in novel situations.

A classifier-free conditional diffusion is set up with the condition y(7) being some infor-
mation about the trajectory, such as return, constraint, or skill it satisfies. Because states

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 13

are more continuous than actions, the authors decide to diffuse only states; actions between
consecutive states are interpolated using some inverse dynamics model (learned with the
same offline data as diffusion). To determine y(7), the authors consider training a model
to predict rewards from the trajectory, but they choose not to because of its complex-
ity, instead conditioning on the returns in the offline dataset. Classifier-free guidance with
low-temperature sampling extracts high-likelihood trajectories that correspond to the best
behaviors. Receding-horizon control is used. The authors also mention that y(7), instead of
being the expected rewards, can be a one-hot encoding of constraints satisfied.

The paper’s results are excellent. They outperform Diffuser on and surpass some offline
RL algorithms as well.

AdaptDiffuser

AdaptDiffuser allows for better generalization to new tasks [30]. The methods are very
similar to Diffuser |3]. The authors improve the original paper by using the diffusion model
to create many trajectories using different reward functions, generating synthetic data. Not
all of this data is necessarily a) physically possible, or b) high-reward. Therefore, these
generated trajectories are plugged into a rule-based discriminator before being added to the
training set.

To deal with the feasibility of state tracking, only states are generated through the
diffusion model. Then, an inverse dynamics model derives executable actions a;, and the
next state is revised to s;. Trajectories with too large of a difference between the original s;
and §; are discarded. Reward is calculated using the remaining ones, and only those with
high reward are kept in the dataset.

Diffusion Model

/ J Initialize
7% == -2
\ @ I1. Model (re—)tralmng
(A
Goal Poin

Dlverse Goal Point

L. Offline Trajectories guug & N _(_|
(Single Goal)) ' A eward

ar ‘ @)@ w Guidance
) R a—
- @ I11. Guided Trajectory

IV. Diverse synthetic data Generation

Selection b;
Discriminator

Diffusion Policy

Similar to prior work, this paper uses diffusion to create actions for a robot. The reverse
diffusion process is transformed using FiLLM conditioning with visual data and does not utilize
a reward function gradient like Diffuser or AdaptDiffuser. The policy does not predict future
states, which speeds up diffusion and improves the accuracy of generated actions.

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 14

The authors experiment with two different architectures for predicting €:

1. CNN-based: This follows from [3|, and observation conditioning is added using FiLM
(a technique that involves modifying the output of each layer of the CNN using a
predicted affine function [31]). However, it does not work very well for high-frequency
action sequences, such as velocity commands.

2. Transformer: The minGPT transformer is used for action prediction. Input tokens
(the current actions with noise) and the positional embeddings are passed in, and the
observation encoding is used as the input feature.

Diffusion Policy achieves state-of-the-art results, and the architecture is the basis for this
chapter’s reverse diffusion codebase.

Drone Navigation
Minimum Snap Trajectory Generation

Mellinger and Kumar [13] propose minimum snap trajectory generation and control as a
method to guarantee convergence and stability of quadrotor paths when a CLF cannot be
formulated or a linearized model is not fully controllable. They explicitly move beyond the
small angle approximations common to drone controllers up until that point for motion in
three dimensions that require significant deviations from the hover state. Their algorithm
satisfies constraints on system-specific input limits as well as obstacles present in the envi-
ronment.

The basis for the work rests on the differential flatness of quadrotors. Specifically, states
and control inputs can be formulated in terms of flat outputs and their derivatives; these
outputs are [x,y, z,1], where 1 represents the yaw angle of the drone. These outputs are
solved for using a quadratic program whose cost function minimizes snap, or the fourth
derivative of position. Once the values for the outputs are returned, the remaining states
and control inputs can be calculated. While the optimization problem can take a significant
number of cycles, future research [32] has worked on reducing computation time of the
algorithm.

Racing Approaches

Autonomous drone racing has seen many different approaches to the problem [9]. The
problem has many different aspects to it, including drone modeling, perception, planning,
and control.

The classical stack breaks down perception, planning, and control into different submod-
ules and tackles each one individually. On the planning front, a majority of approaches
fall into the categories sampling-based and combinatorial methods, both of which take ad-
vantage of the differential flatness of quadrotors. Minimizing snap starts off supreme, but

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 15

racing teams have experimented with other methods that are more optimal to fast lap times
as opposed to dynamic feasibility of waypoints.

More recent learning-based approaches employ neural network architectures for percep-
tion, planning, and control. Different papers combine portions of the stack in different
ways. Some leave all three separate [33][34][35], some combine perception and planning
[36][37][38][39], and others join planning and control [40][41][42], including the state-of-the-
art racing algorithm [8]. End-to-end learning, where networks take sensor data as input and
output control inputs, are rare because reliable methods exist for parts of the pipeline, and
relying on an ML black box does not necessarily promise success. Some however have made
the algorithm work [43][44][10].

Other Path Planning Techniques

Other path planning papers that have inspired this work include forming methods for high
speed flight in novel environments, avoiding obstacles while following a given vector as best
as possible [37]. This paper uses depth images in conjunction with the current state of the
drone to construct a series of waypoints for the quadrotor to follow. These are projected
onto the space of polynomial trajectories based on minimum snap optimization, and a model
preditive controller tracks the paths.

Other key papers map environment images to paths. Dai et. al. use a CNN architecture
to predict a steering angle and collision probability from environment pictures [45]. They
then transform the steering angle to a yaw angle to best avoid obstacles. Bhattacharya et.
al. employ vision transformers, key components of generative networks today [46]. Depth
images of the environment, along with the current state of the drone, are passed to a policy,
which is learned using behavioral cloning, that outputs linear velocity commands for the
drone. A minimum-snap trajectory is formed from these velocity waypoints that is then
tracked with a geometric controller. The paper’s overarching goal is to build a reactive
policy that can fly through obstacles in a straight line, establishing a proof-of-concept for
ViTs as quadrotor planners; they do not aim to race as fast as possible, making the work
most comparable to Drone Diffuser.

1.3 Methods

Task Formulation

Inspired by the AirSim Drone Racing Lab [47], which is designed to provide a racing testbed
in the AirSim simulator, the goal for this chapter is to navigate a drone to a virtual gate in
the environment. The task formulation derives from [46], [8], and [4].

A privileged expert Texpert(St; g) = s, takes as input the starting state of the quadrotor
s; along with the location of the goal frame with respect to the quadrotor body frame
g. It returns a near-optimal and feasible trajectory for the quadrotor to follow through

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 16

the environment. A dataset D is collected following the expert policy, with each state
St = Texpert(St, g)r- The image from the quadrotor is recorded at each position in time, im,.
Two different student policies are trained. The first 7(A) takes as input the displacement
from the quadrotor body frame to the goal at a particular instance in time, with the as-
sumption that a separate thread calculates this value based on either SLAM or ground-truth
input from a controller network. The second 7(I) takes as input a single FPV image taken by
the quadrotor at that moment in time. The policy, operating as a receding-horizon planner,
outputs displacement actions for the next 8 timesteps, a7, in the form of [dz, dy, 6z, dyaw].

This is learned from the privileged expert in a behavioral cloning fashion using MSE loss:
T—

1
T

—_

L(0) = E-vpl [1expert (t) = Oprea(t;)13
t=
Both the inputs by the privileged expert and the outputs from Drone Diffuser are passed

through a minimum snap trajectory optimizer for feasibility guarantees.

Environment Creation

AirSim

Testing of Drone Diffuser takes place within Microsoft AirSim [12|. Environments can be
made using Unreal Engine and loaded into the simulator. A vehicle, by default either a
multirotor (used for this project) or a car, is placed at a defined starting position. The
physics engine calculates interactions with the environment as the vehicle moves through
space. AirSim provides APIs designed to monitor and control the vehicle. Get methods
include measuring speed, evaluating position, and querying camera data located either on

the multirotor or from a 3rd person point of view. Set methods allow for programmatically
defining the vehicle’s speed, position, or rotation values.

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 17

Preparing Mesh Dist
Preparing Mesh Car

\Airsirmsetings json

Figure 1.4: An Unreal Engine environment loaded with the multirotor vehicle from AirSim.

Blocks Environment

The environment being used for this project is a modification of the default Blocks Unreal
Engine environment distributed by the AirSim library. It is chosen because of its uniform
structure outside of the objects of interest for the task at hand. Confounding variables as
a result of the environment, such as non-uniform lighting, can lead to positive results in
a visual policy without an understanding of the actual goal. The existing blocks in the
environment are removed, to be replaced by new obstacles and the goal.

Diffusion Policy

The backbone code for the dataset parser and diffusion process is adapted from Diffusion
Polic[4]. The input to the policy consists of the current state observation, or the condition-
ing value. The output is the series of actions that the robot, or in our case, the drone, is to
perform for the next T, steps. The actions start as noise, similar to general image diffusion
models; the policy uses the observation conditioning to diffuse this noise into a reasonable
sequence of actions.

Prior to being passed through the diffusion process, the conditioning value is normalized.
The network for predicting each diffusion step follows a U-Net architecture, with each block
of the network downsampling and upsampling consisting of convolutional neural network-
based predictors. FiLM conditioning [31] is applied on the conditioning value at each layer
to influence the output depending on the current state. A separate model maintains an

Thttps://github.com /real-stanford /diffusion_policy

https://github.com/real-stanford/diffusion_policy

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 18

Figure 1.5: An example gate placed in the blocks environment.

exponential moving average of the model weights as training happens to increase stability
of the results values. Hyperparameters used for the policy are included in

Data Generation Pipeline

Takeoff Dataset

The initial experiment serves as a sanity check for both the dataset generator and the
diffusion policy code using a straightforward task. AirSim includes a built-in takeoff sequence
for its multirotor aircraft model. The drone takes off from its starting location and hovers
approximately b meters above the ground. The simulator offers functionality to record data
from any sequence of actions at user-specified intervals. For this experiment, data from
a takeoff-then-land sequence is recorded every 0.01 seconds, capturing velocity, positional
data, and image data. This recorded data forms the initial dataset for training the diffusion
model.

Gate Creation

In typical drone racing scenarios, gates take the form of virtual rectangles that quadrotors
must fly through in succession in the fastest possible time. Rather than working with the
complexity of a succession of gates, for exploratory purposes, a singular gate is placed at a
random location 20-40 meters ahead of the starting position, up to 10 meters left or right,
and 5-15 meters above ground level. The variability of the gate position allows for the
creation of a diverse training set. The passable area of the gate is 4x4 meters, comparable
to typical sizes in similar scenarios. The color is a bright green to distinguish the gate from
the surrounding environment; typical gates have green, red, or blue checkered patterns.

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 19

The drone begins 10 meters above ground level and must use Drone Diffuser to fly through
the gate. Checking whether the quadrotor has successfully reached the target is done using
the following process:

Assume we use the following notation to represent points along the rectangular prism of
the gate:

e P;: bottom-left-front
o P5: bottom-left-back
e P;: bottom-right-front
e P,: top-left-front

We define the following vectors between those points:

.U:PQ—Pl
.’U:P3—P1
ow=P"P—-PFP

Additionally, say the position of the drone is d. If all of the following conditions hold
true, then the drone has successfully reached the gate:

e u-Ph>d u>u-P
e v-Py>d-u>u-P

e w-Pi>d-u>u-P

Privileged Expert

In order to build a drone diffusion policy, which can generalize to new trajectories, we require
sample paths to train on. Past work, including Diffusion Policy, has relied upon imitating the
movements of a human. While transferable to flying a multirotor as well, a more consistent
and generalizable method is desirable to allow for both more iterations and a larger dataset.

Higher-Level Planner

Initially, sample paths are generated using the RRT (rapidly-exploring random trees) algo-
rithm [48]. The position of the quadrotor and the center of the gate are given as inputs
for the start and goal. RRT is particularly well-suited for this task due to its ability to
efficiently explore high-dimensional spaces and find feasible paths in complex environments.
The algorithm works by incrementally building a tree that explores the space by randomly
sampling points and extending the nearest existing tree node towards the sample point. This

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 20

results in a tree structure that rapidly covers the search space, providing a path from the
start to the goal.

The algorithm to sample paths is then changed to RRT*, an extension of the original RRT
algorithm that guarantees asymptotic optimality [49]. Unlike RRT, which focuses on finding
any feasible path quickly, RRT* aims to find the optimal path by continuously improving
the quality of the path as more samples are added.

RRT* works by not only extending the tree towards the random samples but also by
rewiring the tree to ensure that the path cost from the start to the new sample point is
minimized. This rewiring process involves checking the potential new paths through each
neighbor and updating the tree to include the most cost-effective routes. Over time, it
ensures that the path taken by the drone is near-optimal in terms of length and smoothness.
This is crucial for high-speed navigation, where minimizing travel time and avoiding sharp
turns can greatly enhance performance and safety.

Parameters for the RRT* algorithm are included in [A.1]

60
50

40
30
20

Figure 1.6: An example path generated using the RRT* algorithm.

Feasible Trajectories

While the RRT* algorithm generates a reasonable path plan, the trajectories need to be
optimized for quadrotor motion. Because quadrotors are differentially flat systems, given
the flat outputs of the system (specifically x, y, z, and yaw), the necessary control inputs
(thrust and moments) can be computed. As a result, we can work directly with these outputs
to determine our trajectories.

Mellinger and Kumar propose an algorithm [13] to create smooth and dynamically fea-
sible trajectories by minimizing the integral of snap, the fourth derivative of the position,

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 21

[2.00
1.75
- 1.50
- 1.25
T 1.00
T 0.75
- 0.50
- 0.25
- 0.00

2.00
1.75
135"
O'OQ),Z% 1.06

.50 0.75

0'751.00l - 0.50
“7150 0.25
75, 000.00

Figure 1.7: A scaled-down visual of the RRT-generated path (solid line) and the path that
the drone follows after minimum-snap trajector optimization (dotted line).

along the path taken by the quadrotor. The RRT* algorithm generates waypoints from the
starting position to the goal. A quadratic program computes the optimal trajectory given
the waypoint constraints and the snap-based cost function. This step smooths the RRT*
trajectories and ensures training inputs into the diffusion model match those feasible by a
quadrotor. The quadratic program additionally outputs thrust and moments, but the ad-
justed position and yaw data are used as inputs for the diffusion model, as it is meant to be
a higher-level planner.

The diffusion itself has no guarantees of generating feasible outputs, although by pre-
processing training data with the quadratic program, the process is more likely to mimic
dynamically smooth trajectories. In order to guarantee that the quadrotor can perform
the path generated by the drone diffusion policy, however, paths generated are also passed
through the minimum snap optimizer.

Implementations for the RRT* planner and the minimum snap trajectory generation
module are based on the Quadrotor-Simulation repository published by Bharath Irigireddyﬂ.

Zhttps://github.com/Bharath2/Quadrotor-Simulation

https://github.com/Bharath2/Quadrotor-Simulation

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 22

Image-Based Trajectory Planning
Retrieving Path Images

The data pipeline up until this point allows for generation of trajectories using ground truth
information about the gate’s position with respect to the quadrotor. In order to generalize to
new scenarios, creating a foundation model for quadrotor movement, an image-based policy
is necessary.

The steps above take place to generate a gate at a random position and calculate a
smooth path to that position using the combination of RRT* and minimizing snap. This
happens without using AirSim. The simulator then provides the functionality to capture
images at specified intervals or upon an API call. Trajectories generated to random gate
positions are performed in the simulator, and the associated image at each waypoint is added
to the training dataset. This picture comes from the forward-facing camera of the quadrotor
with a field of view of 120 degrees.

Figure 1.8: An image of the goal gate taken with the FPV camera on the drone.

Encoding Images

Because the drone diffusion network uses the FiLM conditioning method to modify its out-
puts depending on the inputs, image inputs cannot directly be used in the policy. Instead,
the pictures must have some encoding applied.

Transfer learning in robotics has clearly shown superiority for learning new tasks, as
opposed to training a model from scratch [50]. Leveraging prior knowledge with some re-

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 23

training for a new scenario, similar to the way humans learn, should intuitively also perform
better than beginning with random noise, or square one.

For this project, an encoding is transferred from a visual policy called DroNet [14]. The
original version of this task is a transfer learning problem itself; the authors use the plethora
of data available from ground vehicles to train a drone policy that predicts steering angle from
visual information. The output of DroNet is a vector in R? that includes the steering angle
and a probability of collision. The encoding being transferred is the output of a previous
layer once the result of the convolutional layers is flattened, which is in R%272,

DroNet is trained on an old version of TensorFlow and can no longer be inferenced using
the version of Python necessary for the drone diffusion policy. Additionally, the computation
requires versions of adjacent libraries, including numpy, from the initial training date of the
network. As a result, in order to make use of this encoding, a separate conda environment
is created. To interface with Drone Diffuser, a Flask application handles input containing
images from AirSim, queries the model, and returns the encoding.

Other models were considered prior to choosing DroNet, including ones trained on more
recent data and with newer techniques, including Vision Transformers and Autoencoders.
These include [51], [52], [53], and [54]. However, because these models are trained on data
from other robotics applications, not quadrotors, they likely have very little to no similarity
with the task at hand, a distributional shift issue that the additional training by Drone
Diffuser is unlikely to overcome. An examination of existing drone image-to-policy models
such as [55], [56], or [10] either have no open-source code to reference or require significant
compute for retraining.

Representing Rotations

The yaw angle of the quadrotor is predicted in radians. While this works for many tasks,
Euler angle representations are by nature discontinuous (as shown by the directional limits
0 = m and 6 = —7), increasing difficulty for neural networks to directly predict them [57].
Quaternions and other common representations, including the axis-angle method, have the
same issue. Zhou et. al. propose using a continuous representation of the rotation space
using SO(n) for networks to output while dropping the last column, both to avoid excessive
data and because orthonormalization is necessary in either case. They show prediction
performance improvements on scenarios including inverse kinematics and pose estimation.

In this chapter, because the output only includes yaw, we can generate predictions in
SO(2). The rotation matrix about the z-axis follows the form

cos() —sin(f) 0
R.(0) = |sin(0) cos(@) 0O
0 0 1

The final row and column are dropped because they remain constant. Additionally, the
second column is dropped because it can be derived through Gram-Schmidt orthonormaliza-

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 24

tion from the first. Additional experiments are conducted to determine whether this change
of basis improves results of the diffusion process.

1.4 Experiments

Initial Testing

The initial sanity test for the drone diffusion model involves executing the simple takeoff and
landing sequence described above. The observation consists of the current location, and the
action diffused is the next 8 positions for the drone, performed in receding-horizon fashion.
Because the dataset consists of a single example of this sequence, the policy is fully overfit
to the sample, which means a successful result implies a nearly exact imitation of this action
executed. The model converges in 5 epochs, confirming the code works as expected.

Gate Displacement Policy

The gate-delta policy m(A,) takes as conditioning input the relative pose of the gate with
respect to the body frame of the quadrotor. It returns the positional and angular displace-
ments for the quadrotor for the next 8 timesteps in a receding-horizon manner. Pose is
defined as a vector in R* comprised of (x,y, z, yaw), with the positional displacement values
measured in meters and the angular displacement measured in radians.

400 uniformly random gate locations are sampled within the bounds described in
RRT* and minimum snap optimization are used to generate trajectories from the start-
ing position to the gate. While recorded data consists of absolute values of position and
orientation, it is converted to displacement in a postprocessing step.

The gate-delta policy converges in about 10 epochs. It is evaluated with 30 gate locations
sampled at the uniform random distribution as the training set, and the policy successfully
navigates the quadrotor to the gate with a 100% accuracy. The positions are located at
different places than those in the training set, although they are within the same uniform
distribution; the policy adjusts to account for the difference.

The quadrotor is also flown to gates located at out-of-distribution positions. This works
successfully for some cases within a small range of the training distribution margins, but it
struggles at further positions.

Visual Conditioning Policy
Yaw for Rotations

The visual conditioning policies 7([) use image encodings from DroNet as conditioning
to predict displacements for the quadrotor. Similar to the Gate Displacement Policies, the
training set comprises of paths to 400 uniformly random gate locations generated with RRT*
and smoothed with minimum snap optimization.

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 25

Figure 1.9: Visualization of the reverse diffusion process. The figure depicts the path gener-
ated after 25%, 50%, 75%, and 100% of the reverse diffusion steps. The path becomes more
refined and imitates the training set as noise is removed. The drone begins at (0, 0, -10) and
travels to (36, 7, -6). Note the scale on the axes.

Figure 1.11: Path to (20, 10, -14). A scatterplot is used to depict the waypoints generated
and illustrate the distribution of points reducing in variance from the final path.

Figure 1.12: Path to (24, -7, -12)

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 26

While initial tests work with the full DroNet encodings, memory limitations on the hard-
ware available prevent the vectors from being usable as conditioning. As a result, a down-
sampling layer is added after the final convolution layer, and a compressed version of the
encodings is derived.

Drone Diffuser fails to work for this experiment. While training and validation loss
go down over the course of training, the mean squared error increases significantly. The
trajectories evaluated during the testing stage do not move the drone towards the gate; the
quadrotor spins randomly and moves in seemingly arbitrary directions.

Rotation Transformation

The same image dataset is used, but instead of having Drone Diffuser output yaw values, the
policy instead returns the first column of the z-axis rotation matrix to preserve continuity.
The attempt does not yield any significant improvement, as issues in image encoding likely
overshadow any other potential enhancements to the Drone Diffuser itself.

1.5 Conclusion and Further Work

This chapter shows that diffusion-based path planning has the potential to work for drones.
Generative methods that make use of diffusion have clear advantages over optimization and
RL planners, including better long-horizon planning, improved adaptability to new scenarios
within the training distribution, and stability during the gradient descent process.

While the reverse diffusion process in and of itself has no feasibility guarantees, supplying
training data with paths that a quadrotor can fly as well as taking a postprocessing step to
ensure the outputs are doable allows for successful trajectory generation.

Providing goal state information has shown to result in high success values in simulation
for scenarios in which the quadrotor must navigate to a designated rectangular gate, akin
to drone racing competitions. The conditioning values are assumed to have come from a
separate part of the onboard processing pipeline, perhaps from a central communication
server, incorporation of SLAM, or a different network altogether.

For obstacle avoidance and more generic situations, such as rescue operations, however,
an image-based method must still be proven to reliably work. The visual encoding chosen
for this project likely falls short of the quality necessary to guide drone flight. Further
experimentation can use an encoder-decoder model or involve vision transformers, which
have shown success in end-to-end drone navigation [46].

To implement Drone Diffuser in a real quadrotor will likely take some specialized com-
puting resources, advancements in existing hardware, or techniques that identify the most
salient parts of the network to compress it. The reverse diffusion process by nature takes
time to run, and Drone Diffuser specifically generates paths on the order of seconds. The
speed issues make the technique impractical for path planning in real-time scenarios like
racing or danger zones, although it has the current potential to operate successfully in less

CHAPTER 1. DRONE DIFFUSER: DIFFUSION-BASED PATH PLANNING FOR
DRONES 27

time-critical environments. Other further experimentation can attempt alternative diffusion-
based path planning techniques, such as modifying the current image to a goal state and
training an RL planner to reach that position.

In the long-term, an aerial vehicle foundation model that can take as input some specified
task (ex. pass through the gate, find missing people, photograph a monument from an angle)
and can predict a trajectory that performs this motion would significantly advance the field
of autonomous systems. Processes that would ensure this motion is performed in a safe,
reliable, and feasible manner are necessary prior to rollout into the public domain.

28

Chapter 2
RAG Alignment

2.1 Problem Statement

When training language models on large volumes of data, significant chunks of information
and skills can be lost, and it can be difficult for models to effectively store and retrieve the
contents of the entire dataset from the weights directly. As a result, Retrieval-Augmented
Generation aims to improve the factual correctness and reliability of model outputs by
providing the model with a vector database of ground truth. Retrieving from this database
and providing data elements to the language model when prompting it can produce more
accurate and consistent model outputs, allowing the model to even answer questions that
may fall outside of its original training distribution.

But even with access to exact the training data, retrieval documents, or model weights,
language model behavior can be extremely difficult to predict and interpret. For instance,
language models can demonstrate unpredictable or unsafe behavior when user questions fall
outside of the training distribution. If the data available to a language model contains all
the information it needs to answer a user input, the model may still not include all of that
information or convey it accurately depending on the extent to which it weighs different
sources and its own training knowledge base.

Fine-tuning is one technique applied to better understand and control the behavior of a
language model in specific contexts. The general fine-tuning process involves adjusting the
parameters of a pretrained model for a specific set of tasks or data. Despite the effectiveness
of fine-tuning in achieving performance improvements on certain tasks, it can result in several
unintended outcomes that pose risks to users or systems implementing fine-tuned language
models. The behavior of the models may be more controllable or better understood across a
specific subset of inputs, but fine-tuning can result in unintentional forgetting, training data
memorization, and degradation of model alignment and safety. Additionally if information

Disclaimer: This section of the thesis is work collaboratively done with co-authors Devan Shanker
(devanshanker@berkeley.edu) and Josh Barron (josh-ee@berkeley.edu). To ensure proper credit is given to
all contributors, please do not cite this thesis for this particular project. For accurate referencing and further
information, please contact us directly.

CHAPTER 2. RAG ALIGNMENT 29

needs to be added or removed from the models knowledge base, a new fine-tuning is required,
the cost of which can quickly become unmanageable depending on the rate that information
needs to be added. Taking into account the risk of hallucinations and the price of repeated
fine-tuning, it is viable to have a hybrid approach that equips a fine-tuned model with
Retrieval-Augmented Generation.

Issues with Retrieval-Augmented Generation for both pretrained and fine-tuned models
can pose tremendous risks to the safety of users interacting with a model. Models may
hallucinate and risk presenting inaccurate or misleading information to users without any
warning or justification. In addition, language models rarely demonstrate warnings when
asked to complete tasks far outside their original training distributions, often resulting in
hallucinations for fine-tuned models. When working with fine-tuned models, it can be diffi-
cult to assess the relative effectiveness of a specific fine-tuning. Overall, the concerns with
hallucination and factual inaccuracies of retrieval-based language models motivate a sys-
tem for detecting hallucinations and other inconsistencies between retrieved data and model
outputs.

2.2 Related Work

Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) [58] is an approach to augmenting the quality of
external language models by retrieving the most relevant information from an additional
datastore, before providing it as additional context to the language model. After creat-
ing vector embeddings for all text chunks stored in a vector database, the most similar
stored chunks of data can be retrieved by embedding the model input with the same ap-
proach. Retrieval-Augmented Generation allows a language model to draw from knowledge
and answer questions outside of its original training distribution, supporting the convenient
addition, removal, and updating of data stored in the RAG database as required by the
overarching system. Depending on the quality of the embeddings and the nature of the
user input, retrieval-augmented generation systems may fail to find the most relevant and
appropriate sources to generate a response to a user input. In addition, contradictory or
outdated sources may confuse the model, increasing the probability of a hallucination or
factually incorrect output.

Hypothetical Document Embeddings

Hypothetical Document Embeddings (HyDE) [59] intend to improve upon the performance
of traditional RAG systems by attempting to shift the embeddings of the user input closer
to the distribution of data contained in the vector database. For instance, if we asked the
model to name the president of the United States (based on data in the vector database),
formulating a hypothetical answer (“the president of the United States is Dan Hendrycks”)

CHAPTER 2. RAG ALIGNMENT 30

may more closely match relevant data in the retrieval data distribution (“the president of the
U.S.A. is Barack Obama”) than the original question (“who is the president of the United
States”). Even if the hypothetical answer itself is incorrect, the changes in language, sentence
structure, and vocabulary used to formulate an answer can all help shift the embeddings
closer to the embeddings of potential answers. Hypothetical Document Embeddings for RAG
have demonstrated significant performance improvements over standard RAG systems, and
play a critical role in allowing language models to draw from additional data distributions
and external knowledge bases.

Efficient Fine-Tuning

The fine-tuning process involves adapting the weights of a pretrained model to better fit a
particular set of tasks and corresponding data distribution. Parameter-Efficient Fine-Tuning
(PEFT) [60] is a line of work that attempts to fine-tune by modifying only a small proportion
of the model parameters, resulting in a more efficient fine-tuning process. Recent work
in Low-Rank Adaptation of Large Models (LoRA) [61] demonstrates how the pre-trained
model matrices can be reduced into low-rank decomposition matrices for each layer of the
Transformer architecture. LoRA is a type of PEFT that enable extremely computationally
efficient model fine-tuning, allowing for the deployment of domain-specific language models
with far less computational resources than previously required. Quantized LoRA (QLoRA)
[62], a variation of LoRA, introduces quantization to further reducing the memory and
computation overhead of fine-tuning. Several recent works find risks associated with fine-
tuning that may go unnoticed. For instance, fine-tuning can result in data memorization that
may compromise the factual accuracy of certain generations. In addition, fine-tuning can
result in unintentional forgetting of specific data elements or pieces of factual information.

Language Model Alignment

Recent work in the space of language model alignment has focused on creating safer and more
usable models for humans to interact with on an everyday basis. However, results find that
language model alignment to provide clearer replies, discourage unsafe content generation,
and prevent generation of misinformation often involve more brittle or weak safeguards.
Few production models provide warnings about hallucinations, and models may provide
incorrect or outdated information without any indication or warning to users. Though
several papers have explored the extent to which models understand their own training and
input distributions, models tend to treat all inputs the same and most often fail to warn
users about domains or topics that fall outside of the typical training distribution.

Model Hallucination

Even within a retrieval-augmented generation system architecture, language model halluci-
nations are an often unpredictable phenomenon that can be difficult to prevent or detect.

CHAPTER 2. RAG ALIGNMENT 31

Though certain attacks can be used to elicit a mode of hallucination from language models
at a higher rate, language models can demonstrate more subtle hallucinations and factual
inaccuracies stemming from unintentional forgetting or retrieval issues. If a model retrieves
a text chunk with the exact information the user is looking for, it may still omit this informa-
tion from the completion. Language models can hallucinate when the training data contains
outdated or contradictory information about a certain topic. However, models also demon-
strate no awareness or warnings about the situations and domains that may fall further from
their training distribution, even for individuals with access to the full weights and training
data. Several existing approaches to hallucination detection involve classification of factual
accuracy, faithfulness to a source document, or separation into types of hallucination errors
[63]. However, these solutions often fail to scale or fit easily into consumer-facing language
models.

2.3 Proposed Solution

The factors previously mentioned all directly contribute to challenges related to the deploy-
ment of customer-facing LLM-based chatbots and conversational tools. In light of these
factors, we propose a solution to address these challenges through:

e Determining source utilization by the chatbot

Detecting out-of-distribution (OOD) user questions

Quantifying fine-tuning effectiveness with regards to factual statements

Providing meaningful hallucination warnings for OOD questions and completions with
low source utilization

We use the term “RAG Alignment” to refer to the process of addressing these challenges
to support the deployment of user and customer-facing conversational agents. Our proposed
solution to the issue of RAG Alignment problem is comprised of a robust method for factual
similarity comparisons between text.

To more closely align Retrieval Augmented Generation systems with user definitions of
factual correctness, we propose the notion of a fact-bearing term (FBT). Based on this
concept, we define a similarity formula supporting the comparison of a generated output
against each retrieved data item used to generate it. Applying this comparison, we propose
an algorithm designed to detect hallucinations and verify the truthfulness of a generated
output against source data.

Fact-Bearing Terms

We define fact-bearing terms to be those that carry the factuality of the sentence. Chang-
ing or removing these words would completely modify the meaning of the statement. For

CHAPTER 2. RAG ALIGNMENT 32

instance, in the sentence, “The first president of the US is George Washington,” the name
George Washington is the fact-bearing term. Meanwhile, in the sentence “The printing
press was invented in 14407, the year 1440 is fact-bearing. After local experiments involving
a RAG-equipped LLM, we identify named entities (including, but not limited to, proper
nouns), direct object nouns, and verbs as fact-bearing terms.

Similarity Scores Calculation
Step 1: Extract FBTs from Answer & Source

In order to perform the similarity score calculation that computes the relevance of a particular
source and the accuracy of the answer with respect to that source, we must first extract the
Fact-Bearing Terms from each source and the answer.

Step 2: Calculate Similarity Score
Part 1: Per Key Similarity Score Calculation For each key k € {ent, direct_object, verb}:
e Let Ay and By represent the sets of terms for key £ in dict, and dict,, respectively.

e After removing exceptions:

Al = A \ Exceptions,, Bj, = By \ Exceptions,,

e The similarity score per key, Scorey, is computed as:

|A}. N By
Scorey, = k|A;c| LA

| A} \ Byl " |SubWords (A}, \ B;,) N SubWords(B;y, \ A7)
| Al | |SubWords (A}, \ By)|

where SubWords(S) denotes the set of sub-words obtained by splitting the terms in
set S.

Part 2: Total FBT Similarity Score Calculation

e Define the discount factor:
DF =07

e The total number of terms in A is computed with a weighting scheme:

NumAll, = lenAqy; + (IenA%?)+ (IenA%2))

noun verb

e The final FBT similarity score, FBT Score, is calculated using a recursive weighted
reduction of scores:

FBT_Score = Scoregy+(1—Scoreey)- DF-(Scoreyoun + (1 — Scoreyoun) - DE - Scoreye)

CHAPTER 2. RAG ALIGNMENT 33

Step 3: Repeat for Each Source

Algorithm 1 Similarity Calculation Per Inference

1: function SIMILARITY (question_str, response_str, sources_list)
2 question_fbts < EXTRACTFBTS(question_str)

3 exceptions = question_fbts

4 response_fbts «— EXTRACTEF BTS(response_str, exceptions)
5: sitmilarity <— empty list

6 for each source_str in sources_list do

7 source_fbt < EXTRACTFBTS(source_str, exceptions)

8 Append FBT_SCORE(response_fbts, source_fbt) to similarity
9: end for

10: return F'BT _Score

11: end function

2.4 Methods

Data

Data Sourcing

To perform RAG experiments, we must utilize a database that has not been indexed by
standard language models to verify the success of our algorithm. We settle on two sources
that take the form of questions and answers, making them more conducive to testing. First,
we use information from the 1921 Ford user manual that contains some specific instructions
on how to operate the car. Second, we find an old Colorado school charter that has some
specific answers without necessarily using archaic terms or proper nouns. In order to identify
promising data sources for retrieval evaluation, we prioritize data sources with highly specific
Q/A contents irrelevant to more general knowledge settings from at least one hundred years
ago.

Data Cleaning

Though the data is likely unindexed and presents itself in a form for straightforward testing,
significant preprocessing is required to clean the text such that it is more readable in a
human context. For the Model T manual, we find the data in the form of an HTML page.
We parse the information and extract the relevant details, dividing the data into topics. The
Colorado school charter similarly contains extraneous textual artifacts, which are removed,
and the data is split based into questions and their respective answers.

CHAPTER 2. RAG ALIGNMENT 34

Database

The RAG pipeline has two steps, the vector database creation and then retrieval at inference
time. For our database, we are using the open source project Chroma DB ['| To create our
Chroma Vector DB for the RAG system, we parse all of the scraped data from our chosen
sources, split each source into chunks, and then embed the chunks.

The parameters that gave us the best results are as follows:

e Embedding Model: GIST-small-Embedding-v0
e Normalize Vectors: True
e Max Chunk Size: 512

The Create_Vector DB.py code loops through all our scraped sources and fills the
RAG_ALL Vector DB according to the above parameters.

FBT Experiments
Information Extraction

We use the small Spacy model to extract the most important pieces of information from the
text. This allows us to parse through verbs, proper nouns, objects, emails, numbers, dates,
and other important pieces of information that comprise fact-bearing terms.

RAG

Sources from the database are scored based on the similarity of their vector embeddings to
the prompt. After sorting, the ones with the highest scores are added to the prompt, which
gives the language model context for the output.

HyDE

The language model is requested to first return an answer based on its understanding of the
query without any sources. Instead of the question, the answer is used for vector embedding
comparison to find relevant sources.

Fine-Tuning

We also fine-tune our language model to improve the HyDE model as well as increase the
accuracy of our generated results. This new feature OpenAl provides allows us to train GPT-
3.5 for a few more iterations using our dataset specifically. We use gpt-3.5-turbo-0125
fine-tuned for 3 epochs.

Thttps://www.trychroma.com

https://www.trychroma.com

CHAPTER 2. RAG ALIGNMENT 35

Additionally, we repeated the experiment with Mistral-7B-Instruct-v0.2 running lo-
cally on a M2-Max equipped MacBook Pro with 32GB of RAM. Fine-tuning of Mistral-
7B-Instruct-v0.2 was done utilizing the mlx-examples library [64]. Specifically, we created
a 32-layer LoRA which was trained for 1000 iterations. The LoRA was created with the
exact same train-test split as the GPT-3.5 fine-tuning. Figures in the result are generated
from GPT-3.5 to demonstrate the generalizability of the approach. The Mistral-7B plots
accompanying our own fine-tuning of a local model can be found in the appendix

2.5 Results

To determine the effectiveness of FBT similarity RAG Alignment, we construct four eval-
uations based on the question-answer dataset created from the 1921 Ford Model T user
manual.

Determining Source Utilization

To determine a baseline for source utilization, we decided upon using the same Lo similarity
calculation performed by the ChromaDB upon retrieval. Specifically:

512
12_distance = Z(input [i] — source[i])?
i=1
embedding_similarity = e~ 1>-distance

Where input and source are the respective 512-dimension embedding vectors.

For the baseline, we embed the final chat-bot answer and then compute the embed-
ding_similarity for each source. These are the triangles in all the result figure plots. To
compare FBT effectiveness, we compute the FBT similarity score as outlined in Algorithm
and plot that as the plus symbol in all the result plots.

Each symbol is colored according to its source, displaying blue for source 1, red for source
2, and green for source 3.

Detecting out of distribution (OOD) questions

To test for OOD questions we constructed a test set of 30 questions where the first 10 are
directly in the 1921 Ford user manual, the next ten (10-20) are questions that were in the
test set (not fine-tuned on), and 20-30 are questions that are car related but not in the 1921
Ford user manual and thus are out of distribution.

To visualise the drop in FBT score as the questions leave RAG distribution we added a
Second-degree polynomial line of best fit for the highest FBT score in each question, which
are distinguishable by a black square.

Analyzing Figure we collect a couple of key takeaways.

CHAPTER 2. RAG ALIGNMENT 36

Question Distribution Plot Fine-Tuned GPT-3.5

1.00 1 A i & A A A A A A
A B A A 8 a
. ® ;]) : A @ B @ A
N]] ®
0.75 4 * N e
R T A S I .
A A B g ¥ A
0.50 +
g
o
o
n -
@ 0.25 A +
% 4+
lg 0.00 + + 8 4 -
G + 4 * v, +
< + PR
e 0251 + . I 1 W Max Similarity
4+ . PR
+ + + A Embedding Similarity
-0.50 1 & + FBT Similarity
. * + ® Sourcel
* * ® Source?2
-0.75
® Source 3

0 5 10 15 20 25 30
Question Number

Figure 2.1: FBT vs Embedding Similarity as questions leave dataset distribution on Fine-
Tuned GPT-3.5

1. Order of FBT Similarity matches with embedding

2. Once questions leave data distribution, both FBT Similarity and Embedding Similarity
drop

3. FBT Similarity has much higher variance

Quantifying effectiveness of fine-tuning with regard to factual
statements

To determine if FBT Similarity could be used to provide a numerical answer to the effec-
tiveness of fine-tuning we run the same experiment on the base and fine-tuned versions of
our models. For the experiment we enable HyDE and then ask the chat-bot every question
in the 1921 Ford user manual.

In this experiment, we decided to add a additional point on the plot for a “Weighted
Score” represented by a star which is calculated:

weighted score = 1 + w1l x emb_score + w2 X fbt_score

For our experiments, we set weight 1 (wl) and weight 2 (w2) equal to 0.5.

Since the questions are chosen from the Ford user manual, we know which source was
the “correct” source when we ask the question. Knowing this, we are able to detect when
the correct source was returned and in which spot it was returned (source 1, 2, or 3). To

CHAPTER 2. RAG ALIGNMENT 37

visualize this, we add vertical lines that correspond to when the correct source is returned
with the color of which location it was returned in.

FBT Avg=0.35, Base GPT-3.5
102/140 Correct: Source 1=78, Source 2=13, Source 3

50 | [] I
. v il i
* |x « Y L 1 ||.
CAllENE sk | I
15 . y
* 1
. | !
&‘ Y|) Kx ¥ I !'l
W " H
® N * * 4 [
S 101 | i i,
@ a A l | !
s ‘ i
5 ‘ A I !”l |I "
S os A ; :‘ H |
3
£ +
£ A
o +
g 00 .*: ¢ + A Embedding Similarity
: : " K =+ * Weighted Score
- I
. | il + FBT Similarity
os * + h L ® Sourcel
' s @ Source 2
® Source 3
0 20 40 60 80 100 120 140

Question Number

Figure 2.2: Chat-Bot RAG performance with HyDE and Base GPT-3.5

FBT Avg: Train=0.53, Test=0.71, Fine-Tuned GPT-3.5
114/140 Correct: Source 1=92, Source 2 11, Source 3= 11

20 | -||| |”|||I||| “||||||||||||II|||I || ||l\||| ||||\||”|||||||||||| || ||| ||||||| ||||] i”l”l“'
"' ' dIk 11 UF
il SR
Tl I
" ;\ || ’ ,.l ||I|||=‘||““|‘| ||| Il: i|
il | A Al I!i
I' Mgt III i |||||| il ,; Il ',ll | iI!!,I}&
5 4
CREL ""'I||"" i u]u!!"l""""'v.s;ii. .,snl ,!u oW li:"ah!!lh'
E 05 I”|“|'l||lll|'||i|l|||||ll|||||lll| IIIH -|||” | ““ I!"H!iun“n ”
£ [l H Ml H |
I |
£ .l ’llhl.l..ull il .. u ||H ‘ || A= g bl
i “ '””I ”““”l ||| || || |||"||| + Weighted Score
| ' N ' | | | Il + FeT simitarity
ks |' fttetn &1l
-05 | ” InIIII ||||!.||| | ||| ”' [M)||| e source1 |
. | ” || ' [+ ® Source?2
L e Al A 1

0 20 40 so 80 100 120 140
Question Number

Figure 2.3: Chat-Bot RAG performance with HyDE and Fine-Tuned GPT-3.5

Analyzing Figure we see that the chatbot returns the correct source 102 times out of
the 140 questions; additionally we see that a majority of the time (78) the correct source is
returned first (Source 1).

CHAPTER 2. RAG ALIGNMENT 38

Figure uses the same fine-tuned GPT-3.5 HyDE and Answering model. Additionally,
since we perform a train-test split during fine-tuning, we mark those questions with an
additional thin black vertical line. The high FBT Avg in the test set is unexpected and not
observed in the Mistral Model (see [B).

Comparing Figure to [2.3] we see that fine-tuning our model has two major benefits
of better RAG performance and improved factual alignment.

Better RAG performance is clear when comparing the number of correct sources returned
between the figures. The fine-tuned version returns the correct answer 114 times compared
to 102, and the correct source is returned as the Source 1 more often. Having the correct
source being first is advantageous, as it may reduce the requirement for RAG Rerankers.

The improved factual alignment is clearly visible in the higher average FBT score (0.35
vs 0.53), which demonstrates that the word selection for the Answering LLM is closer to the
sources.

Providing Meaningful Hallucination Warnings

Combining all the information gathered from the above experiments, we are able to create a
chat-bot that warns the user of possible hallucinations for OOD questions and answers with
low source utilization.

By observing our dataset we see that generally, when sum of FBT similarity score fails
to go above (.1, the model does not have the correct source. We can use this as a threshold
to warn the user. This scenario is demonstrated in Figure where how to paint the car
is not in the dataset and thus the hallucination warning is triggered. Additionally, we think
it would be helpful to cite the FBTs in the answer to help the user investigate the answer
when desired.

This example Ul is created with Chainlit and is just a sample. If desired, it is possible
to provide multiple types of warnings depending on the individual FBT score. Overall, we
are pleased with the progress towards making chatbots more reliable.

2.6 Conclusion and Future Work

In this work, we present the notion of a Fact-Bearing Term, a term in a sentence bearing the
load of factual correctness of the sentence. We identify named entities, direct object nouns,
and verbs as FBTs that hold the weight of truth of a sentence.

Based on the known limitations of retrieval-augmented generation systems, we first pro-
pose an algorithm that computes a measure of similarity between a generated output and
one of the retrieved sources used to generate it. This algorithm allows for the detection of
questions that fall outside of the training or fine-tuning distribution we have specified. In
addition, these metrics can be used to benchmark RAG systems and different fine-tunings.

CHAPTER 2. RAG ALIGNMENT 39

<&» Chainlit Chat Readme @ New Chat e

V7. 11 1epiacing ue pusi 1ou uoes now ygive e proper ciedidice, Uie vaive srnouiu disv be repiaced. 1u1s not
recommended to draw out the valve stem as it requires experience and the cost of the new part does not
warrant the time and expense necessary to properly do the work.
Always use cold or lukewarm water---never
] hot water. If a hose is used, don't turn on the
water at full force, as this drives the dirt into

Source 0 - 4

the varnish and injures the finish. After the
° You surplus mud and grime have been washed off
How do | paint the car? take a sponge and clean the body and
running gear with a tepid solution of water
Took 1step ~ and Ivory or linseed oil soap. Rinse off with

cold water; then rub and polish the body with

a chamois skin. A body or furniture polish of
e retrieve good quality may be used to add luster to the
car. Grease on the running gear may be
removed with a gasoline-soaked sponge or
rag. The nickeled parts may be polished with

o Chatbot any good metal polish.

Always use cold or lukewarm water to wash off any dirt and grime from the car's body and running gear.
Clean with a tepid solution of water and Ivory or linseed oil soap, rinse with cold water, and then polish the
body with a chamois skin {Source: 0}. You can use a body or furniture polish to add luster to the car. Grease
on the running gear can be removed with a gasoline-soaked sponge or rag. The nickeled parts can be
polished with any good metal polish. Remember to follow these steps to maintain the appearance of your
Ford Model T.

| Retrieved the following sources: Source 0, Source 1, Source 2

L3
Caution: Possible Hallucination Detected

o T Y PAINTING THE CAR
IS NOT MENTIONED
IN THE DOCUMENT

»
)

Figure 2.4: Chat-Bot Warning user due to Low FBT similarity

Most importantly, the measure of FBT-based similarity allows for hallucination detection
and citation of sources at inference time. This allows for an efficient, scalable implementation
of context-specific hallucination warnings within a larger scale language model pipeline.

We are excited about the opportunities that FBT-based and similar hallucination detec-
tion systems and hope Fact-Bearing Terms play a useful role in future evaluations of language
model outputs and fine-tunings. More specifically, we hope to see a more precise and in-
tuitive mathematical formalization of the per-key similarity score calculation. In addition,
it would be interesting to see a deeper linguistics-inspired study of the most effective parts
of speech, as well as the feasibility of training a model to detect and compare fact-bearing
terms across sources automatically.

40

Chapter 3

IMAGINE: Improved Multimodal
Augmented (Generation through
Imagined Neural Embeddings

3.1 Problem Statement

In addition to information retrieval, transformer-based conversational models are quickly
rising in popularity for usage involving image and multimodal data retrieval tasks. In order to
augment language models with the capacity to understand and operate on images according
to user instructions, RAG techniques involve retrieving the data with embeddings most
similar to the embedding of target user inputs. Due to their reliance on embedding distances,
RAG systems can be severely performance constrained by the quality of embedding models
and the semantic distances between user inputs and desired retrieved data outputs. This
phenomenon can have an even harsher impact on retrieval-based image systems as a result of
the context sensitivity of many image-related use cases and the known limitations of image
and multimodal embedding models.

In the context of retrieval systems, text chunks may often contain more consistent contex-
tual meanings and factual uses across different user queries and use cases. More specifically,
we propose it can be much more difficult to predict what questions a user may ask about a
specific collection of pixels than a specific collection of words. We highlight this through a
real-world use case that will serve as a guiding example for the benchmarks proposed later
on in the paper. Suppose we want to create a conversational agent that lets a user chat
with their camera roll. For this example, we consider the retrieval data distribution to be a
collection of images (i.e. your camera roll from the last month). From these distributions,
we hope to retrieve the most relevant images that help us answer the question, “what did

Disclaimer: This section of the thesis is work collaboratively done with co-author Devan Shanker
(devanshanker@berkeley.edu). To ensure proper credit is given to all contributors, please do not cite this
thesis for this particular project. For accurate referencing and further information, please contact us directly.

CHAPTER 3. IMAGINE: IMPROVED MULTIMODAL AUGMENTED GENERATION
THROUGH IMAGINED NEURAL EMBEDDINGS 41

[the user] do over spring break?”

We highlight three key issues with a naive embedding-based approach to image retrieval
in the image space. (1) The CLIP embedded notion of spring break in the user input
may fall extremely semantically far from embeddings of target images of the user dancing,
skiing, or relaxing on the beach. We define the term indirect retrieval to highlight this
distance between a more abstract input and concrete desired outputs. (2) Multiple correct
images may exist and fall very far apart from each other in the embedding space. Unlike
three pictures of different dogs, pictures of us reading a book on the beach and hiking
through nature are fairly different. We refer to this challenge as desired output sparsity. (3)
Depending on additional user and environment information, the notion of a term like spring
break can contain dramatically different meanings. If a seven-year-old user gained access
to our system, we may desire our expected distributions of embeddings of images to fall
further from exotic destinations and closer to pictures of the park or crayons. We use the
term contextual sensitivity to highlight the possibility of differing output distributions for
the same input embedding when provided with additional information. The third issue of
contextual sensitivity only applies in specific cases when additional information is available.
However, the risks of indirect retrieval tasks and desired output sparsity can occur for all
users across a variety of inputs for image retrieval models.

One promising line of research in improving retrieval systems in other domains focuses
on bringing search embeddings for retrieval closer to the distribution of the data. In the
context of text, the notion of Hypothetical Document Embeddings (HyDE) aims to bridge
the distributional gaps between user inputs and desired retrieved data by forming a guess
(hypothetical embedding) to the user query. HyDE demonstrates impressive performance
improvements over RAG in the language domain. However, many production vision LM
and multimodal retrieval systems tend to rely on naive RAG implementations that simply
retrieve CLIP embeddings or human-written captions for stored images. This leads us to
the question, can we apply the notion of hypothetical embeddings to image and multimodal
tasks for improved retrieval accuracy and model performance?

In order to evaluate the feasibility of imagined image embeddings against naive and
baseline RAG implementations, we propose a benchmark for indirect vision RAG tasks.
Each use case operates on a collection of real-world images and only accepts a single user
text input. This benchmark, the CameraRollQA task, involves question and answer tasks
on 50 hand-picked images forming a camera roll that elicit unique replies to highly specific
questions when the right information is retrieved. One example CameraRollQA task is the
user input, “Do I have any dietary restrictions?”.

Based on these evaluations, we present the following contributions:

e The IMAGINE-I and IMAGINE-T caption-based and diffusion-based imagined image
embedding systems for improved indirect sparse image retrieval

e A simple formulation of multi-top-k image embedding similarity to ensure more robust
outputs in indirect retrieval contexts with larger desired output sparsities

CHAPTER 3. IMAGINE: IMPROVED MULTIMODAL AUGMENTED GENERATION
THROUGH IMAGINED NEURAL EMBEDDINGS 42

e An end-to-end conversational camera roll chat implementation freely available that
completes CameraRollQA tasks for any language model and collection of images

e An open-source augmentation of pretrained multimodal models with abilities to visu-
alize & verbalize as they answer user questions and the capacity to interact with and
search over visual datasets

3.2 Related Work
RAG and HyDE

For a detailed overview of Retrieval-Augmented Generation and Hypothetical Document
Embeddings, see 2.2l Through observing textual visualization outputs of IMAGINE-T, we
hypothesize the set of adjusted stylistic characteristics in text has an image analog including
references to environment, shape, size, movement, color, and lighting. Several examples
suggest that hypothetical embeddings implicitly weight emphasis on different aforementioned
visual style features depending on the task.

Vision Language and Multimodal Model Alignment

Recent work in the space of transformer model alignment has focused on creating safer and
more usable models for humans to interact with on an everyday basis. Vision language
models demonstrate notable performance on a growing set of tasks including image/video
captioning, visual question answering, and image-text matching. However, models operating
over less strictly defined multimodal training distributions can struggle to deliver safe and
consistent outputs to users. In addition, model alignment and fine-tuning on a task such as
spatial image reasoning can have an unpredictable impacts on other model capabilities. As a
result, we aim to demonstrate an improvement on image retrieval tasks that can be applied
to pretrained models with unknown weights. For this purpose, we use the large multimodal
model (LMM) GPT-4 Turbo with Vision, capable of answering basic questions about the
contents of input images. GPT-4V is trained with and involves reinforcement learning in the
training process to demonstrate improved performance on VQA and image captioning tasks.

CLIP Embeddings

The CLIP system, developed by OpenAl, addresses the classical computer vision challenge
of describing images via natural language, rather than restricting them to a strict set of
categories |65]. CLIP embeddings place text and images into the same vector space, creat-
ing better correlations between an image and its contents. The authors demonstrate clear
transferability of their results, achieving state-of-the-art success in ImageNet classification
without utilizing any of the original training examples. In this work, we leverage CLIP
embeddings to streamline the operations between the image and text space and allow for

CHAPTER 3. IMAGINE: IMPROVED MULTIMODAL AUGMENTED GENERATION
THROUGH IMAGINED NEURAL EMBEDDINGS 43

consistent benchmarking between our proposed IMAGINE methodology and comparable
baselines.

Image Diffusion and Generation

A background on diffusion networks is presented in detail in [I.2] In this work, we leverage
image diffusion and generation to create imagined images, embedded and compared against
camera roll embeddings (stored image data) in the IMAGINE-I approach.

3.3 Proposed Solution

The factors mentioned above discuss ways in which generation can be improved in the lan-
guage domain. We seek to apply similar ideas in the image domain in order to augment gener-
ation and improve retrieval of photos that a user supplies from their camera roll. Specifically,
we compare a few different approaches that are image analogues to text HyDE to determine
the best way to find relevant images from a user’s photo library for the prompt that they

supply. See for prompts.

Naive Baseline: Direct CLIP Embedding RAG

As a baseline, we used a standard RAG technique to determine which images end up being
retrieved corresponding to a user prompt. The user query is embedded using a CLIP model,
and the CLIP embeddings of the images are compared with that of the prompt using cosine
similarity to establish the top-k matches. These are returned for further postprocessing. We
observe that the naive CLIP baseline involves no analysis or filtering of the original CLIP
input based on the desired user task.

Augmented Baseline: LM Prompt Modification

We propose the LM Prompt Modification (augmente baseline) to provide a more holistic
evaluation of the effectiveness of imagined embeddings, especially for the CameraRollTrans-
form task. A user query may have extra elements that push the CLIP embedding away
from the space that encompasses the desired images to be retrieved. For example, in the
prompt, “turn the house into a cartoon”, only “the house” describes the images that must be
searched for in the database for modification. Similarly, in the sentence, “Find pictures for
my time on the beach”, “the beach” is our indicator term. We use a language model query to
modify the prompt, narrowing down the fact-bearing portions of the statement. The CLIP

"'We originally referred to this as the improved baseline due to its markedly higher performance on the
CameraRollTransform task. The naive baseline was far from usable for this task in comparison. We change
the name to augmented baseline in light of evaluation metrics in comparison to the naive baseline under this
experimental configuration.

CHAPTER 3. IMAGINE: IMPROVED MULTIMODAL AUGMENTED GENERATION
THROUGH IMAGINED NEURAL EMBEDDINGS 44

Hiking in
Utah

Saw some
cool art

“What did we even
do over spring break”

Ended up
in Vegas

Figure 3.1: The naive baseline attempts to retrieve CLIP embeddings based on the embed-
ding of the user input. Due to the notion of indirect retrieval and desired output sparsity
mentioned earlier, we observe that the desired output images can fall very from the user
input in the CLIP embedding vector space.

embeddings of these portions are calculated, and the top-k images are found, similar to the
baseline.

IMAGINE-I

IMAGINE-I extends the notion of imagined embeddings to the image domain. In the text
domain, HyDE generates a guess solution before RAG retrieves the relevant solution, which
tends to significantly improve results. In this preliminary application to imagined embed-
dings of pixels, we use diffusion to generate hypothetical (imagined) images that may cor-
responding to the user request as an analog. Specifically, the pipeline follows the following
steps:

1. Generate text prompts for photorealistic images corresponding to the user’s request
with no prior knowledge of the camera roll.

2. Use a diffusion model to generate images corresponding to these prompts.
3. Embed the generated images using CLIP.

4. Search for the database using these new embeddings and retrieve the multi—top—kﬂ
matches.

2Please refer to the Future Work for a more thorough discussion of the implications of multi-top-k
embedding retrieval and opportunities to further enhance IMAGINE retrieval results.

CHAPTER 3. IMAGINE: IMPROVED MULTIMODAL AUGMENTED GENERATION

THROUGH IMAGINED NEURAL EMBEDDINGS 45
@ User Query —> Laag:;:lge e @ Sys Output
What type
of art do | like? | N
N2 |

@ | mﬂ:’:‘n":‘ - A Sources _ a Top-K Most

< Embedding

Database Similar Sources

Source 001

g Embedding 0.83* e
= Source 002 = artljpg
e Embedding 0.79*
= Source 003 E art5.jpg
o Embedding 0.72*

000

ne similarity of source embedding to HyDE embedding

Figure 3.2: The IMAGINE-I architecture embeds multiple imagined guesses of what the
user’s desired imagines created with previously described image diffusion techniques. These
embeddings are used to retrieve the most similar images to the stored image data, in the
context of the user query.

IMAGINE-T

IMAGINE-T extends HyDE into the image domain using text generation instead of image
generation. Specifically, a language model is tasked to generate captions for the image the
user wants retrieved or modified. For improved performance, these captions are expressed
in the form of hypothetical DALL-E 3 prompts that would generate hypothetical images of
the desired nature. These captions are embedded using CLIP, and the multi-top-k matches
from the database corresponding to any of these embeddings are returned. See for the
corresponding text prompts.

3.4 Methods

Data

Data Sourcing

To perform RAG experiments, we wanted to utilize a dataset that has not been indexed by
any language or diffusion model. We also wanted to apply our method in a practical use case
with real users. As a result, we test on ourselves, uploading about 50 pictures from from

CHAPTER 3. IMAGINE: IMPROVED MULTIMODAL AUGMENTED GENERATION
THROUGH IMAGINED NEURAL EMBEDDINGS 46

A historical trip

involving art and

architecture
A retreat from the
city into nature

“What did we even do /

over spring break”

/

A fun night out on
the town with
good friends

A relaxing time
sleeping in at home

Figure 3.3: The IMAGINE-T architecture embeds multiple imagined guesses of what the
user’s desired images may look like, with no knowledge of the target distribution.

our camera roll into the database. While the images take many different forms, including
pictures of art, food, and lifestyle, we do curate our collection to target specific questions
whose answers we know are available in the database so that we can evaluate our method
over baseline retrieval.

Database

We create our own simple image database class rather than using off-the-shelf libraries de-
veloped for RAG applications. Our database is optimized for image and embedding access
as well as retrieving the top-k matches for a particular prompt.

Models

OpenATl’s CLIP embedding model available on HuggingFace is used for all embeddings.
OpenATl’'s GPT-4 API is used for text generation, and StabilityAl’s Stable Diffusion is used
for image generation.

CHAPTER 3. IMAGINE: IMPROVED MULTIMODAL AUGMENTED GENERATION

THROUGH IMAGINED NEURAL EMBEDDINGS 47
Hiking in
Utah
A historical trip /‘
Saw some , involving art and
cool art architecture

A retreat from the
city into nature

Image RAG guesses
bring us closer to the
embeddings of our
target images

A fun night out on
the town with e
good friends

Ended up
in Vegas

A relaxing time
sleeping in at home

Figure 3.4: The IMAGINE-T architecture retrieves based on the imagined embeddings as
opposed to the direct question. This can help address issues of desired output sparsity for
this more indirect retrieval problem.

3.5 Results

Results on the CameraRollQA task show that the IMAGINE-T approach does significantly
improve retrieval for user queries for many examples in both the access and modification con-
texts. However, while IMAGINE-I had comparable results to baseline RAG, we do not find
that it significantly contributes to better outputs. We observe a large amount of variation
and more artistic styling (as opposed to photorealism) of images created through the diffu-
sion process used in IMAGINE-I. We hypothesize these factors likely contribute to the gap
in performance between the diffusion-based IMAGINE-I and the DALL-E 3 prompt-based
IMAGINE-T.

One exciting result of the IMAGINE-I system in comparison to the LM Prompt Modifi-
cation baseline is the much higher consistency of retrieval despite relatively similar average
performances, indicating that IMAGINE-I more consistently captures a portion of the de-
sired retrieved image distribution even with a more loosely defined image diffusion process.
Please refer to Table[3.1]and the appendix for a more detailed overview of results. Overall, we
are extremely excited to see the IMAGINE-T system demonstrated the highest (or tied for
highest) performance across each image and highest overall performance in our evaluations.

CHAPTER 3. IMAGINE: IMPROVED MULTIMODAL AUGMENTED GENERATION

THROUGH IMAGINED NEURAL EMBEDDINGS 48
Art | Pets | Food | Clothing | Interests | Average
Baseline 60% | 100% | 100% | 100% 80% 88%
LM Prompt Modification | 40% | 100% | 0% 0% 80% 44%
IMAGINE-I (ours) 80% | 40% | 40% 40% 40% 48%
IMAGINE-T (ours) 100% | 100% | 100% 100% 80% 96%

Table 3.1: Retrieval accuracy for various retrieval tests within the CameraRollQA context.

3.6 Future Work

We are excited about the opportunities that IMAGINE and hypothetical image embeddings
present for image and multimodal retrieval tasks, and hope to see a broader trend towards
enhanced reasoning and imagination powering visual retrieval systems. In the context of gen-
eral image retrieval, we feel large-scale image and multimodal retrieval benchmarks would
help promote and direct future research into this growing field. There is currently an abun-
dance of retrieval benchmarks in other domains that we hope to see transfer over to the
image domain to accelerate the development of embodied visual agents and safer vision-
based systems. We predict verifiably safe image retrieval systems will play a vital role in the
future of healthcare, mobility, and assistive technology.

Another line of work we hope to see more deeply explored is the notion of indirect retrieval
tasks. Within the image domain, there exists a subset of use cases and problem contexts we
hypothesize even perfect CLIP embeddings can fail to capture in indirect contexts. This is a
fundamental consequence of the fact that due to the inherent complexity of images, the same
image can mean very different things to different people and very different things in different
contexts. As a result, we hope to see a larger-scale benchmark pushing the limits of indirect
retrieval and formalizing the challenges and advantages of taking different approaches to
indirect retrieval problems. Perhaps a better solution adapts based on the profile of the
user, generating context-aware outputs and providing results based on specific backgrounds
and interests.

In addition, we hope to see more precise definitions of the multi-top-k solution that
is used for top-k retrieval from a database with multiple embeddings. For our provided
implementations of IMAGINE-I and IMAGINE-T, we prioritize maximum CLIP embedding
similarities across all top-k matches as the most important indication of retrieved relevance.
However, we hope to see future research explore mathematical modifications to this simpler
approach that may more effectively trade off CLIP embedding match and sparsity of retrieved
outputs.ﬂ This may extend to using other embedding models, as CLIP has known limitations
[66].

3More concretely, suppose we ask for the user’s favorite activities and receive four outputs involving
basketball and one involving squash. Depending on the number of requested images and the desire use case,
we may want to adjust the level of output sparsity to include more similar or more unique images.

CHAPTER 3. IMAGINE: IMPROVED MULTIMODAL AUGMENTED GENERATION
THROUGH IMAGINED NEURAL EMBEDDINGS 49

More broadly, we hope to see a push towards imagination and visualization of thoughts
and reasoning. We observe that IMAGINE-T and IMAGINE-I embeddings place different
levels of emphasis depending on stylistic image elements like environment and color, and
prompts seem to optimize for probable relevance and coverage (maximal sparsity) when gen-
erated together. For instance, when asked about a favorite sport activity for the CameraRol-
1QA task, IMAGINE-I opts to generate a mix of indoor and outdoor, team and individual,
ball and no-ball, day and nighttime sports to maximize coverage the expected distribution of
possible camera roll contents. On the flip side, missing concepts from its diffusion prompts
can highlight image compositional elements the model considers less important or user pref-
erences that the model does not know of.

It would be fascinating to run larger-scale experiments to better understand how agents
with different reasoning capacities exploit the notion of imagined embeddings to optimize
performance. In addition, several techniques including arithmetic operations or averages
over multiple imagined embeddings and/or user inputs may demonstrate interesting results.

3.7 Conclusion

In this work, we present the novel formulation of imagined embeddings for improved imag-
ine retrieval. Through the IMAGINE-I diffusion-based hypothetical embedding system and
IMAGINE-T DALL-E input-based hypothetical embedding system, we demonstrate our im-
age retrieval system can efficiently and effectively be integrated into user-facing composi-
tional systems of pre-trained models. We present CameraRollQA, an evaluation benchmark
for image-retrieval tasks involving user datasets. We make a full implementation of our
system freely availableﬁ and allow users to interact with and manipulate their own camera
rolls by simply uploading a set of images. We hope this work becomes part of a growing
movement to increase levels of imagination and reasoning in image retrieval contexts in order
to create safer and more reliable user-facing systems.

4For the most up-to-date implementation, please refer to the link
github.com/tarunamarnath/Image-RAG, and feel free to contact the authors with any questions.

50

Chapter 4

Conclusion

Neural networks reside in black boxes. Once the structure of the model is set, the inner work-
ings of why a particular parameter is trained or reasoning behind an output is not intuitively
comprehensible. We know that feeding more data improves output and can understand the
mechanisms of broader ideas like attention [67], but beyond a superficial level, generative
models, composed of billions of parameters, remain a mystery. Some papers have attempted
to peel the layers back by studying where attention is applied or guiding LLMs through
reasoning tasks to determine the level to which they succeed with deriving new conclusions
beyond the training data provided [68][69]. While this stops short of true explicability, the
black box has been cracked, ever so slightly.

The work in this thesis discusses pre-processing and post-processing results, suggesting
guardrails beyond the parameters of the network themselves. While the core generation mod-
ule might stay shrouded in darkness for a while, we can ensure that if the outputs are used
for any purpose, they are taken at more than direct face value. Ensuring feasibility guaran-
tees, providing sources, and improving retrieval can all improve results when implemented
in real-world systems.

When Al is placed into the public domain, engineers have a responsibility to understand
the dangers of their implementations and curb negative side-effects of their work. End-to-
end design must take these ramifications into account. One important consideration is the
target audience of any systems; scientists have a duty to collaborate with those whom their
developments can effect. For example, while education stands to benefit from deployment
of personalized study guides and resources become ubiquitous through Al tools, over 90%
of online higher education materials used as training data are sourced from North America
or Europe, which may leave most of the world’s knowledge behind [70]. Social manipulation
and deception, including deepfakes, can target more vulnerable groups in society, spread
false information, and disrupt logical discourse, which is best combated through enforcing
transparency and non-agentic guardrails [71]. Jobs will shift between sectors, and shuf-
fling employment will naturally ferment dissatisfaction |72]. Approaching shifting societal
dynamics with empathy over confrontation and determining a suitable middle ground can
mitigate the effects of the displacement while considering the human factor in this change.

CHAPTER 4. CONCLUSION o1

The widespread use of GPUs has significant environmental consequences as well [73[; climate
change effects have disproportional effects that are more likely to target groups not actively
involved in creating Al systems. Well-meaning engineers have long wielded the vision of
safe AGI as a utopian future on the horizon. However, this promise of a brighter reality
has pushed aside legal and social barriers in favor of building vast all-encompassing systems.
They may work extremely well but do not give second thought to the ideas that power them
and have little representation from groups less involved in building out the models [74].

This technology absolutely has potential as well. Education, transportation, medicine,
and many other fields have space to grow with the productivity brought by AI and even
generative models specifically. Perhaps we will soon understand how the black box of neural
networks work or transition to a different kind of architecture that uses as little energy as our
own brains. Until then, thoroughly studying the consequences involved, clearly defining task
specifications, and establishing necessary guardrails can lead to a safe, sustainable future in
conjunction with the scientific advancements.

52

Bibliography

1]

[11]

[12]

M. Chen, S. Mei, J. Fan, and M. Wang, “An overview of diffusion models: Applications,
guided generation, statistical rates and optimization,” arXiv preprint arXiv:2404.07771,
2024.

K. Black, M. Nakamoto, P. Atreya, et al., Zero-shot robotic manipulation with pre-
trained image-editing diffusion models, 2023. arXiv: 2310.10639 [cs.R0O].

M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine, Planning with diffusion for flexible
behavior synthesis, 2022. arXiv: 2205.09991 [cs.LG].

C. Chi, S. Feng, Y. Du, et al., “Diffusion policy: Visuomotor policy learning via action
diffusion,” arXiv preprint arXiv:2303.04137, 2023.

Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data
distribution,” Advances in neural information processing systems, vol. 32, 2019.

R. M. Neal, “Mcmc using hamiltonian dynamics,” arXiv preprint arXiv:1206.1901,
2012.

P. Foehn, D. Brescianini, E. Kaufmann, et al., “Alphapilot: Autonomous drone racing,”
Autonomous Robots, vol. 46, no. 1, pp. 307-320, 2022.

E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Miiller, V. Koltun, and D. Scaramuzza,
“Champion-level drone racing using deep reinforcement learning,” Nature, vol. 620,
no. 7976, pp. 982-987, 2023.

D. Hanover, A. Loquercio, L. Bauersfeld, et al., “Autonomous drone racing: A survey,”
IEEFE Transactions on Robotics, 2024.

M. Muller, V. Casser, N. Smith, D. L. Michels, and B. Ghanem, “Teaching uavs to race:
End-to-end regression of agile controls in simulation,” in Proceedings of the Furopean
Conference on Computer Vision (ECCV) Workshops, 2018, pp. 0-0.

A. Ramesh, M. Pavlov, G. Goh, et al., Zero-shot text-to-image generation, 2021. arXiv:
2102.12092 [cs.CV]. [Online|. Available: https://arxiv.org/abs/2102.12092.

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical
simulation for autonomous vehicles,” in Field and Service Robotics: Results of the 11th
International Conference, Springer, 2018, pp. 621-635.

https://arxiv.org/abs/2310.10639
https://arxiv.org/abs/2205.09991
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092

BIBLIOGRAPHY 53

[13]

[14]

D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for
quadrotors,” in 2011 IEEFE international conference on robotics and automation, IEEE,
2011, pp. 2520-2525.

A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, “Dronet: Learning
to fly by driving,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1088-1095,
2018.

J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, 2020. arXiv:
2006.11239 [cs.LG].

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsuper-
vised learning using nonequilibrium thermodynamics,” in International conference on
machine learning, PMLR, 2015, pp. 2256—2265.

A. Nichol and P. Dhariwal, Improved denoising diffusion probabilistic models, 2021.
arXiv: 2102.09672 [cs.LG].

W. Feller, On the theory of stochastic processes, with particular reference to applica-
tions, p 403-432, 1949.

L. Weng, “What are diffusion models?” lilianweng. github.io, Jul. 2021. [Online]. Avail-
able: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/.

P. Dhariwal and A. Nichol, Diffusion models beat gans on image synthesis, 2021. arXiv:
2105.05233 [cs.LG].

J. Ho and T. Salimans, Classifier-free diffusion guidance, 2022. arXiv: 2207 . 12598
[cs.LG].

L. Chen, K. Lu, A. Rajeswaran, et al., Decision transformer: Reinforcement learning
via sequence modeling, 2021. arXiv: 2106.01345 [cs.LG].

M. Janner, Q. Li, and S. Levine, Offline reinforcement learning as one big sequence
modeling problem, 2021. arXiv: 2106.02039 [cs.LG].

N. M. M. Shafiullah, Z. J. Cui, A. Altanzaya, and L. Pinto, Behavior transformers:
Cloning k modes with one stone, 2022. arXiv: 2206.11251 [cs.LG].

Z.J. Cui, Y. Wang, N. M. M. Shafiullah, and L. Pinto, From play t