Solving Matrix Sensing to Optimality under Realistic

Settings

Ziye Ma

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-18
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-18.html

April 24, 2024




Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Solving Matrix Sensing to Optimality under Realistic Settings
by

Ziye Ma

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Engineering - Electrical Engineering and Computer Sciences
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Somayeh Sojoudi, Chair
Professor Javad Lavaei
Professor Kameshwar Poolla

Spring 2024



Solving Matrix Sensing to Optimality under Realistic Settings

Copyright © 2024
by
Ziye Ma



Abstract

Solving Matrix Sensing to Optimality under Realistic Settings
by

Ziye Ma
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Somayeh Sojoudi, Chair

Matrix sensing represents a critical, non-convex challenge within the domain of
mathematical optimization, distinguished by its wide-ranging practical applications—
such as medical imaging, recommender systems, and phase retrieval-—as well as its
significant theoretical contributions, particularly its equivalence to training a two-
layer quadratic neural network. The ability to efficiently solve this problem to op-
timality promises substantial benefits not only for its direct applications but also
provides a crucial benchmark that aids in navigating the increasingly intricate non-
convex landscapes characteristic of contemporary machine learning systems. While
prior research predominantly focuses on scenarios abundant in observations and char-
acterized by a low Restricted Isometry Property (RIP) constant, thereby facilitat-
ing optimal solutions through either convex relaxation methods, including nuclear-
norm minimization, or local search strategies applied to the Burer-Monteiro factor-
ized formulation—thereby accelerating computational processes without compromis-
ing performance guarantees—the research to date remains incomplete. This is par-
ticularly true in real-world settings where acquiring a large volume of observations is
often impractical, thus rendering these guarantees inapplicable.

In this dissertation, we propose innovative strategies, models, and conceptual
frameworks aimed at addressing the matrix sensing problem under conditions of lim-
ited observations and noise corruptions, with the objective of provably reconstructing
the ground truth matrix. Our discussion begins by exploring various methodologies of
over-parametrization as a means to solve this problem, followed by an examination of
alternative solutions in scenarios where over-parametrization is not used. Addition-
ally, we delve into the impact of noise on the extraction of a global solution, offering
insights into how it affects the overall process. This work serves not only as an
elaborate guide to resolving matrix sensing and, by extension, low-rank optimization
problems in less than ideal conditions but also endeavors to enhance our understand-
ing of the complexities involved in non-convex optimization, thereby contributing to
the broader field of mathematical optimization and machine learning.
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Chapter 1

Introduction

1.1 The Low-Rank Recovery Problem

In this dissertation, we mostly focus on the important problem of matrix sensing,
albeit with sections that extends beyond this specific problem and applies to a wider
range of low-rank recovery problems, which matrix sensing is a part of. Therefore,
as a preluding argument, it is beneficial to talk about the general low-rank recovery
problem to start off our discussion.

Low-rank matrix recovery has both direct and indirect applications across vari-
ous fields, exploiting the fact that many real-world data structures can be represented
as low-rank matrices. Direct applications often involve solving problems where the
low-rank structure of the matrix is a central aspect of the data itself or the prob-
lem to be solved. Indirect applications, meanwhile, utilize low-rank matrix recovery
as an intermediate step to facilitate or enhance other processes or analyses. Direct
applications include:

1. Principal Component Analysis (PCA): PCA is a foundational technique in
data science and engineering for dimensionality reduction, enabling the simpli-
fication of data to its most informative components. Low-rank matrix recovery
underpins PCA by extracting the underlying low-dimensional structure from
high-dimensional datasets. This approach is particularly effective against large
errors in structured data, even when traditional PCA fails due to its sensitivity
to sparse, high-magnitude errors [12, 81, 80].

2. Matrix Completion and Sensing: These techniques are pivotal in scenarios
where the goal is to infer or reconstruct a matrix from a subset of its entries.
Matrix completion finds extensive applications in collaborative filtering and
recommender systems, where it aids in predicting user preferences with minimal
initial information. Similarly, matrix sensing is crucial in signal processing
and compressed sensing, where it assists in recovering signals or images from
incomplete or corrupted measurements [15, 16, 72]
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3. Computer Vision and Image Processing: Low-rank matrix recovery is
used to address problems like image compression, noise reduction, and feature
extraction [89, 85, 23].

whereas indirect applications also play important roles in many scenarios:

1. Machine Learning and Signal Processing: In machine learning, low-rank
approximation is employed to simplify models, reduce overfitting, and enhance
computational efficiency. By approximating high-dimensional data with a low-
rank structure, it is possible to speed up algorithms and make them more inter-
pretable. Signal processing benefits similarly, using low-rank matrices to filter
noise from signals, thereby improving the quality and reliability of the data
[84, 90]. Notably, recent advances in large languages models (LLM) also take
advantage of the nature of low-rank matrices to accelerate fine-tuning [30].

2. Network Analysis: Low-rank matrix techniques are also instrumental in an-
alyzing complex networks, such as social networks or biological systems. They
help uncover hidden patterns, predict connections, or deduce the state of a net-
work from incomplete observations, thereby providing insights into the structure
and dynamics of these systems [50].

If we focus on the applications of low-rank matrix recovery problems in machine
learning and data analytics, which is where we hope to apply our new results to, it
also has numerous applications, including collaborative filtering [42], phase retrieval
[75, 8, 74], motion detection [23], and power system state estimation [104, 36]. To get
a better grasp of the problem, we formally define it as follows: Given a measurement
operator A(-) : R™*™2 » R™ returning a m-dimensional measurement vector A (M™)
from a low-rank ground truth matrix M* € R"+*"2 with rank r, the goal is to obtain a
matrix with rank less than equal to r that conforms with the measurements, preferably
the ground truth matrix M*. This problem can be stated as the feasibility problem

find M e R™*" (1.1)
st. AM)=AM*)
rank(M) <.

While the measurement operator .4 can be nonlinear as in the case of one-bit matrix
sensing [20] and phase retrieval [74], matrix sensing and matrix completion that are
widely studied have linear measurement operators [15, 72]. We focus on the matrix
sensing and matrix completion problems throughout this paper. Despite the linear-
ity of A, there are two types of problems depending on the structure of the ground
truth matrix M*. The first type, symmetric problem, consists of a low-rank positive
semidefinite ground truth matrix M* € R™ ", whereas the second type, asymmet-
ric problem, consists of a ground truth matrix M* € R™1*"2 that is possibly sign
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indefinite and non-square. Since each asymmetric problem can be converted to an
equivalent symmetric problem [94], we study only the symmetric problem in this
paper.

The matrix sensing and completion problems have linear measurements; hence,
the first constraint in problem (1.1) is linear. Therefore, the only nonconvexity of the
problem arises from the nonconvex rank constraint. Earlier works on these problems
focused on their convex relaxations by penalizing high-rank solutions [15, 72, 16].
They utilized the nuclear norm of a matrix as the convex surrogate of the rank func-
tion. This led to semidefinite programming (SDP) relaxations, which solve the origi-
nal non-convex problems exactly with high probability based on some assumptions on
the linear measurement operator and the ground truth matrix, such as the Restricted
Isometry Property (RIP) and incoherence conditions. High computational time and
storage requirements of the SDP algorithms incentivized the implementation of the
Burer-Monteiro (BM) factorization approach [10]. This approach factorizes the sym-
metric matrix variable M € R™*" as M = XX7 for some matrix X € R™*", which
obviates imposing the positive semi-definiteness and rank constraints. Although the
dimension of the decision variable reduces dramatically when r is small, the problem
is still non-convex since its objective function is non-convex in terms of the factorized

X.

1.2 Matrix Sensing Problems

In this section, we formally introduce the matrix sensing problem, because this
is the centerpiece of study in this dissertation. As explained in the previous section,
matrix sensing is a special case of low-rank matrix recovery, in the sense that we
only consider linear measurement. When we talk about linear measurements, we are
almost exclusively talking about the following linear operator A(-) : R™*™ 1 R™:

"4<M> = [<A17M>7 <A2,M>, ceey <Am,M>]T VM € Rxn

where {A,}7, € R™ ™ are called sensing matrices. They could also be assumed to be
symmetric without loss of generality, because we could simply replace A; with (A, +
A])/2 without changing the measurements. It is important to note that in all matrix
sensing problems we have access to all sensing matrices. Generally speaking, there are
two ways of dealing with matrix sensing problem, 1) solving via convex semi-definite
programming (SDP) relaxation and 2) solving it directly with BM factorization.
Formally, the SDP formulation of the matrix sensing problem uses the nuclear
norm of the variable, | M|,, to serve as a surrogate of the rank, and replaces the rank
constraint in (1.1) with an objective to minimize |M|,. Due to the symmetricity and
positive semidefiniteness of the variable, the nuclear norm is equivalent to the trace
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of the matrix variable M. Hence, the SDP formulation can be written as

min  tr(M) st. AM)=5b, M =0, (1.2)
MeRnxn
where b = A(M™) is given. Moreover, the matrix completion problem is a special case
of the matrix sensing problem with each sensing matrix measuring only one entry of
M*. We can represent the measurement operator A as Ag : R™*™ = R™*™ for this
special case, which is defined as follows:

M,. if (i,5) € Q

0 otherwise,

where €2 is the set of indices of observed entries. Although being convex, the main
drawback of (1.2) is that its global solution might not be M*, the ground truth
solution we hope to recover. Therefore we could always reach the global solution of
(1.2), but it might be a matrix totally unrelated to the ground truth, and might even
possess a higher rank than M*.

Besides the SDP formulation, the BM factorization formulation of matrix sensing
is attracting increasing attention from the community due to its simplicity in form and
also its reduced computational complexity when compared to the SDP formulation
(1.2). This BM approach will also be the main subject of study in this piece due to
its non-convexity. The optimization landscape of non-convex problems is notoriously
complex to analyze in general due to the existence of an arbitrary number of spurious
solutions (a spurious solution is a second-order critical point that is not a global
minimum). As a result, if a numerical algorithm is not initialized close enough to
a desirable solution, it may converge to one of those problematic spurious solutions.
It may be acceptable (depending on the application) if the algorithm finds a critical
point different from but close to the true solution, while converging to a point faraway
implies the failure of the algorithm. Therefore, as we further the study of matrix
sensing in its factorized form, we also get better ideas of what non-convex landscapes
look like in general and how to better solve them. Formally stated, this problem is

defined as: )
: — T 2

o h(X):= §||A(XX ) —b| (1.3)
where b = A(M™) is a measurement of our desired measurement. Here, we define the
second dimension of X to be the search rank 7., which might differ from M*’s
true rank r. This is because in many applications we do not have prior access to
r, therefore requiring us to overestimate it with r, ., > 7, a practice we usually
refer to as "over-parametrization”. More recently, it is also discovered that such over-
parametrization can lead to better optimization landscapes [97, 76, 51]. Note again
for this dissertation we maintain the assumption that we hope to recover symmetirc
matrices. However, all the techniques presented in this dissertation will also apply
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to non-symmetric matrices since there exist tricks to do so under this factorized
formulation. We leave the details of this conversion to Section 2.2. For the sake of
notational convenience, we further define the function f(-) : R"*" i R:

F(M) = %H/I(M) b VM eRTT — f(XXT) = h(X) (1.4)

The major drawback of (1.3) is that it may have an arbitrary number of spurious
solutions, which cause ubiquitous local search algorithms to potentially end up with
unwanted solution. Therefore, there has been an extensive investigation of the non-
convex optimization landscape of (1.3), and the centerpiece notion is the restricted
isometry property (RIP), defined below.

Definition 1 (RIP [15]) Given a natural number p, the linear map A : R™*™ —» R™
is said to satisfy 6,-RIP if there is a constant §,, € [0,1) such that

(1 =38, [MF < JAM)|? < (1+0,)|M|%
holds for matrices M € R™ "™ satisfying rank(M) < p.

Intuitively speaking, a smaller RIP constant means that the problem is easier
to solve. For instance, if d,. = 0, then A(-) becomes the identity operator with
b = vec(M™), which makes the problem trivial to solve for M*. Traditionally, the
RIP constant is tightly tied with the number of observations m under the assump-
tion that the sensing matrices are sampled randomly, most commonly from Gaussian
distribution. In the classic work [14], the authors showed that ¢@(1/§%) number of
random Gaussian measurements are required to ensure J-RIP,,.. Therefore to achieve
a good (low) RIP constant, large number of measurements are required, which might
not be accessible. Additionally, for certain parts of this dissertation, we might adopt
an equivalent characterization to RIP, which are the Restricted Strong Smoothness
(RSS) and Restricted Strong Convexity (RSC) constants. This alternative definition
better captures the asymmetry in the upper and lower bounds, because using one
variable 9, might not capture that asymmetry. Here we formally introduce it

Definition 2 (RSS and RSC) The linear operator A : R™*™ - R™ satisfies the
(L4, p)-RSS property and the (ag, p)-RSC property if
LS
f(M) = f(N) < (M = N,Vf(N)) + Z*|M = N|%
as
f(M) = f(N) 2 (M = N, VF(N)) + M = N
are satisfied, respectively for all M, N € R™ with rank(M),rank(N) < p. Note that

RSS and RSC provide a more expressible way to represent the RIP property, with
6, = (Ls - as)/(Ls + as)'

p
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In the next section, we provide a review of how RIP plays a central role in determin-
ing the optimization landscape of the non-convex problem (1.3), and explain why this
problem still needs a further investigation even with the abundance of literature ded-
icated to this topic. To further streamline our presentation, we divide our discussion
into two parts: 1) Ideal scenarios (noiseless and RIP being smaller than 1/2) and 2)
Non-ideal cases (with noise, or RIP being greater than 1/2). By discussing the prior
works in this fashion, we hope to convey to the readers the necessities of building
guarantees and techniques to deal with less ideal cases, especially because these less
ideal cases align much better with real-life problems and could offer us better insights
into non-convex optimization in general.

1.3 Related Works

The matrix sensing and matrix completion problems have been extensively stud-
ied, with a significant focus on understanding the optimization landscape of the non-
convex Burer-Monteiro (BM) formulation and the convex semidefinite programming
(SDP) relaxation. In this section, we review the related works, organized into three
main categories: (1) the ideal regime where the restricted isometry property (RIP)
constant is smaller than 1/2 and no noise exists, (2) the regime where the RIP con-
stant is larger than 1/2, and (3) the regime where our measurements are corrupted
by noise.

1.3.1 Ideal Cases

The attention to the RIP constant was first popularized by the study of using
a convex semidefinite programming (SDP) relaxation to solve the matrix sensing
problem [72, 16]. It was proven that as along as 05, < 1/10, the SDP relaxation was
tight and M* could be recovered exactly.[11] later improved this bound to 1/2 for the
convex SDP relaxation formulation.

Subsequently, [5, 24] analyzed the factorized problem (1.3) and concluded that
as long as d,,. < 1/5, all second-order critical points (SOPs) of (1.3) are ground
truth solutions. [105, 46] also proved that d,,. < 1/5 is sufficient for the global
recovery of M* under an arbitrary objective function (instead of the least-squares one
in (1.3)). Later, by using a "certification of in-existence” technique, [101] established
that 0y, = 1/2 was a sharp bound when we constrain our search rank to be r,
meaning that as long as d,, < 1/2, all problem instances of (1.3) are free of spurious
solutions, and once d,, > 1/2, it is possible to establish counter-examples with SOPs
not corresponding to ground truth solutions [94]. This aforementioned approach is
important because it quantifies how restrictive RIP needs to be in order to ensure a
benign landscape.
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Furthermore, when the RIP constant is small enough, various desirable proper-
ties hold, including fast convergence [48, 82] and spectral contraction [76, 34].

1.3.2 RIP Constant Larger than 1/2

When the RIP constant of the problem is larger than or equal to 1/2, the opti-
mization landscape of the BM problem becomes highly non-convex, and counterex-
amples can be found with SOPs that are not global solutions [94]. Few works have
attempted to provide limited mathematical guarantees in this regime.

Benign Landscape Near M*:[101] proved that when d,, > 1/2 for r = 1, the
absence of spurious solutions can be ensured in a local region close to M*, depending
on the RIP constant and the size of M*x. [93] expanded this analysis to the general
r case, demonstrating the ubiquity of this phenomenon.

Over-parametrization with r .., > r: This line of work investigates the
case where the search rank r,., ., is greater than the true rank r, leading to increased
algorithmic complexity. [97] proved that if r,,., > r[(1+9,)/(1—4,) — 1]?/4, with
r* < r < n, then every SOP X satisfies XX = M*. [51] derived a similar result for
the ¢, loss under an RIP-type condition. Despite the superiority of guarantees since
the bound can go over 1/2; the power of the stated over-parametrization is limited.
The reason is that 7., cannot be greater than n and therefore it is impossible to
satisfy the condition in practical cases where RIP constant is large. This calls for a
new framework that accommodates an arbitrarily large degree of parametrization.

1.3.3 Noisy Environments

By noisy environments, we refer to the case where our measurement b is influ-
enced by noise and become b with

b=b+w, w~D,E[|w|?]<oo

with w being sampled from some finite-variance family 2 that admits valid concen-
tration inequalities. For the noisy problem, the relation ZZ' = M* is unlikely to
be satisfied, where Z denotes a global minimizer of problem (1.3). However, in this
situation, ZZ " should be close to the ground truth M* if the noise w is small. As a
generalization of the above-mentioned results for the noiseless problem, it is natural
to study whether all local minimizers, including the global minimizers, are close to
the ground truth M* under the RIP assumption. One such result is presented in [5]
and given below.

Theorem. Suppose that w ~ N(0,021,.) and A(-) has the §-RIP,, property with
§ < 1/10. Then, with probability at least 1 —10/n?, any local minimizer X of problem
(1.3) satisfies the inequality

_ 1
IRRT M|, < 204/ 22,

w*
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Theorem 31 in [24] further improves the above result by replacing the §-RIP,,
property with the 0-RIP,, property. [47] studies a similar noisy low-rank matrix
recovery problem with /; norm.

Furthermore, [102] proves that all local minima are close to the ground truth
when 6 < 1/35 for a general objective, which is an extremely strong assumption on
. Furthermore, [102] requires the RIP condition to be satisfied for the noisy problem
rather than its noiseless counterpart, which is impossible to verify beforehand due to
the unknown noise.

1.4 Summary of Contributions

This dissertation centers on demystifying the solving of this non-convex problem
of matrix sensing under more realistic settings. By realistic settings, we mostly focus
on two scenarios, 1) the under-sampled regime, where the RIP constant is high, and
2) when the observation is complicated by random noise.

1.4.1 Under-Sampled Regime

This regime represents a very realistic setting where we only have access to a
small number of observations, which under a random Gaussian assumption, leads
to high RIP constants. This regime also encompasses cases where the measurement
matrices are deterministic, and are known to have high RIP constant, like those
mentioned in [88]. Given the literature review given above, we have the basic under-
standing that when d,, < 1/2, both the SDP approach (1.2) and the BM approach
(1.3) have nice gaurantees. The SDP approach can directly recover M*, while the BM
landscape is free of spurious solutions, paving way for saddle-escaping algorithms to
reach the global solution in polynomial time [33]. Therefore, this dissertation specifi-
cally investigates improved guarantees and new strategies to tackle the matrix sensing
problem when d,,. > 1/2; in the hope to get better solve this problem to optimality.

Chapter 3, Improved SDP Guarantee:

Papers like [100, 94] showcased that when using the BM factorization with
Tsearch = Ts 0o, Was a sharp threshold, meaning that instances of matrix sensing can
be found with spurious solutions as soon as d,,. = 1/2, giving practitioners a clear-cut
line. However, when it comes to the SDP approach, the best bound was only proven
to be sufficient, and not necessary. Given the more computationally expensive nature
of this approach, we hope to better its theoretical guarantees to see if it has improved
guarantees compared to the BM approach. Indeed, in this dissertation, we prove that
there exists a lower bound ¢;;, on the RIP constant J to guarantee convergence to the

ground truth solution by using a proof technique called the in-existence of incorrect
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solution [101]. We aim to find a linear measurement operator A with the smallest RIP

constant such that the SDP formulation converges to a wrong solution. We found

that contrary to the BM method which exhibits the same performance independent

of the rank of the unknown solution, the success of the SDP method is correlated to

the rank of the solution and improves as the rank increases. This bound §;, can go

well over the previously known tightest 1/2, and could even approach 1 when n ~ 2r.
This chapter is mostly based on part of this AAAI’23 oral paper [88].

Chapter 4, Lifted Framework via Tensors:

In the previous chapter, we have proved that by using the SDP approach, which
is inherently an over-parametrized model, we could achieve better guarantees than
the exact-parametrized BM model. Over-parametrized BM with 7.4, > 7 like
those mentioned in Section 1.3.2 offer a nice starting point, but still lacks applica-
bility in certain cases. Therefore, in this chapter we propose an innovative over-
parametrization technique that lifts our search space from matrices to tensors. This
can also be seen as a way to apply Burer-Monteiro factorization on various levels of
SDP problems induced by dual of Sum-of-Squares (SOS) optimization. This contrasts
with the existing over-parametrization technique where the search rank is limited by
the dimension of the matrix and it does not allow a rich over-parametrization of an
arbitrary degree. We show that although the spurious solutions of the problem remain
stationary points through the hierarchy, they will be transformed into strict saddle
points (under some technical conditions) and can be escaped via local search meth-
ods. We also derive a bound on how much over-parametrization is required to enable
the elimination of spurious solutions. Furthermore, we show that with sufficiently
small initialization scale, gradient descent applied to this lifted problem results in
approximate rank-1 tensors and critical points with escape directions. Our findings
underscore the significance of the tensor parametrization of matrix sensing, in com-
bination with first-order methods, in achieving global optimality in such problems.

This chapter is based on this ICML’23 oral paper [56] and this NeurIPS’23 paper
[55].

Chapter 5, Higher-Order Loss Function:

In the previous two chapters, we talked about how an increased parametrization
can lead to better guarantees in reaching the ground truth matrix. However, due
to many real-world constraint, it is possible that such over-parametrization might
not be possible in many cases. Thus, in this chapter, we prove that under certain
conditions, critical points sufficiently distant from the ground truth matrix exhibit
favorable geometry by being strict saddle points rather than troublesome local min-
ima. Moreover, we introduce the notion of higher-order losses for the matrix sensing
problem and show that the incorporation of such losses into the objective function am-
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plifies the negative curvature around those distant critical points. This implies that
increasing the complexity of the objective function via high-order losses accelerates
the escape from such critical points and acts as a desirable alternative to increasing
the complexity of the optimization problem via over-parametrization. By elucidat-
ing key characteristics of the non-convex optimization landscape, this work makes
progress towards a comprehensive framework for tackling broader machine learning
objectives plagued by non-convexity.
This work is based on this AISTATS 24 oral paper [54].

1.4.2 Noisy Regime

This regime represents another realistic consideration that our observations, ir-
respective of its quantity m, could be affected by random noise. This scenario is
relevant in applications such as state estimation, which is crucial for the functioning
of power grids and can be conceptualized through matrix sensing [36]. In this context,
each data point is derived from a physical device, and the incorporated noise accounts
not only for errors inherent to the sensors but also for discrepancies between the ac-
tual system’s behavior and its theoretical model, alterations due to cyber-attacks,
mechanical failures, and more. From a mathematical standpoint, when we apply the
BM approach, we encounter a problem that is slightly altered by noise, represented
as:

; _ 1 ™ _F12 7 —
epn hoy(X) = §||/I(XX )—=0bll*, b=b—w, w~D
where 2 denotes any distribution with finite variance. The introduction of noise
complicates matters by potentially shifting the global solution of Equation (6.1) away
from the ground truth matrix M*. This indicates that reaching the global solution
does not guarantee proximity to the desired matrix. Under this critical premise, the
dissertation demonstrates that the same RIP constant, which prevents the emergence
of spurious solutions in the absence of noise, ensures that every second-order point
(SOP) lies within a narrow margin of M*, the sought-after true solution.

Chapter 6, Noisy Matrix Sensing:

In this chapter, we propose a global guarantee on the maximum distance between
an arbitrary local minimizer and the ground truth under the assumption that the
RIP constant is smaller than 1/2. We show that this distance shrinks to zero as the
intensity of the noise reduces. Our new guarantee is sharp in terms of the RIP constant
and is much stronger than the existing results. We then present a local guarantee
for problems with an arbitrary RIP constant, which states that any local minimizer
is either considerably close to the ground truth or far away from it. Next, we prove
the strict saddle property, which guarantees the global convergence of the perturbed
gradient descent method in polynomial time. The developed results demonstrate how
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the noise intensity and the RIP constant of the problem affect the landscape of the
problem. Moreover, we further extend these results to the over-parametrized regime,
where 1, > T

This chapter is based on this AAAT’22 paper [52] and its journal extension
published at the INFORMS Journal on Optimization [53].

Chapter 7, Noisy General Low-Rank Optimization:

This chapter serves as a further extension of the previous chapter, in which we
discuss the effects of noise on a more general low-rank recovery problem introduced
as (1.1). In this chapter, we introduce new guarantees on solving the general problem
(1.1) with BM factorization with a far less restrictive RIP constant. We prove that as
long as the RIP constant of the noiseless objective is less than 1/3, any spurious local
solution of the noisy optimization problem must be close to the ground truth solution.
By working through the strict saddle property, we also show that an approximate
solution can be found in polynomial time. We characterize the geometry of the
spurious local minima of the problem in a local region around the ground truth in
the case when the RIP constant is greater than 1/3.

This chapter is based on this AISTATS’23 oral paper [57].

1.4.3 Overall Framework

The series of results introduced above gave us new approaches to solving matrix
sensing in more realistic settings and outlined their respective guarantees. Combined
with the previous works in this field, we now have a rather complete picture of how
to solve matrix sensing problems in general, outlined in this following figure:

Guarantees

All SOPs close to ground
truth

} Exact recovery with § <

1. .
5 < 3 Noisy or noiseless

P
n+(n—2r)(z[%]—5)

All SOPs close to ground
truth

] Enhanced escape direction

Spurious solutions can be
converted to strict saddles

§ = 1,rsmall
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Chapter 2

Mathematical Prior

2.1 Notation

e Matrices and Vectors:

- A

I,,: The identity matrix of size n X n.

M > 0: Denotes that M is a symmetric and positive semidefinite matrix.
o,(M): The i-th largest singular value of matrix M.

A;(M): The i-th largest eigenvalue of matrix M.

Omin (M) /00 (M): The least /largest non-zero singular value of M.

M)A

|v|: The Euclidean norm of vector v.

M): The least/largest non-zero eigenvalue of M.

min( max(

|M |z and [|M],: The Frobenius norm and induced , norm of matrix M,
respectively, for p > 2. If unspecified, we default | M| = |M]|,

(A, B) = tr(A"B): The inner product of matrices A and B of the same
size.

A @ B: The Kronecker product of matrices A and B.
ol stands for the shorthand of repeated cartesian product x --- x for [ times.

® denotes tensor outer product.

e Vectorization and Matrix Operations:

vec(M): The vectorization of matrix M, stacking its columns into a vector.
mat(v): Converts a vector v € R™ to a square matrix.

matg(v) = (M + MT")/2: Converts v to a symmetric matrix, where M
satisfies v = vec(M).
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e Statistical Distributions:

— N(p, X): The multivariate Gaussian distribution with mean p and covari-
ance matrix .

e Differential Calculus:

— Vf(-) and V2f(-): The gradient and Hessian of a function f : R™*" = R,
respectively.
— For a function with matrix as input f(-) : R™*"2 R, its Hessian is

N , : 2 _ X
a four-dimensional tensor, with the notation [V*f(X)]; ; x;, = 9K, ;0%

This Hessian can be regarded as a quadratic form whose action on any
two matrices K, L € R"1*"2 ig given by

0% f
2FX)K,L) = ——— (XK, L.
[v f( )]( ) ) ‘ Z_ axaxkl< ) 17kl
i,7,k,0=1 )
e Miscellaneous:

— [n]: The integer set {1,...,n}.
— [-] and [-]: The ceiling and floor operators, respectively.
— |8|: The cardinality of set §.
— S%: The set of n x n positive semidefinite matrices.

— = denotes "asymptotic to”, meaning that the two terms on both sides of
this symbol have the same order of magnitude.

We also characterize the distance of an arbitrary factorized point X € R™ " to
a rank-r positive semidefinite matrix M with the function dist(X, M), defined as:

dist(X, M) = min | X — Z| g,
ZeZ
Z={ZeR™" | M=2Z"}.
Given a matrix X € R™*" define X € R™*"" to be the matrix satisfying
X vec(U) = vee(XUT +UXT), VU e R,

Define P, (M) of an arbitrary matrix M to be the projection of M on a low-rank
manifold of rank at most r:

‘SDT<M) = argmin ”Mr o M”Fu
M,.eM
M :={M € S"*"|rank(M) <r,M > 0}

Lastly, in some cases, the bolded A € R™*"” is defined such that A vec(M) = A(M).
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2.2 Useful Tools

General Identities

In this section we provide some basic algebraic facts for matrices that will aid
the understanding of our results. For a more complete review, please refer to this
universally acclaimed book [67].

e If A, B > 0 are both PSD matrices, then we have

(A,B) > A\, (A) tr(B)

min
e For an arbitrary matrix A € R™*™2 and two vectors x € R™1,y € R™2, we have

(A,zy")y =2 Ay

ATA), called the spectral norm.

max (

e For any arbitrary matrix A, |Aly, = /A

e For any arbitrary matrix A € R™*"2,

Tq,Ng

[AI7 = > A7, =l vec(A)]3
%]

Rnxk

e For any orthonormal basis U € and any vector x € R*, [Uz]|, = |z|, .

e For any orthonormal basis U € R"** we have |U|» < Vk.

e For symmetric matrix A, we have 0,,;,(A) = min,__, 2z Az and ||A|, > 2" Az.

e For any matrix A, we have |Al, < |A|z
(R)~.

e For any square and invertible matrix R € R™*", we have |R71|, = 0,5,

e For any matrix A € R"1*"2 and vector x € R™2, we have that ||A[y > || Az||,.
e For any matrix A € R™1%"2,
|AAT], = AT A,

e For any vector z € R",
lzlly < )y < Vol
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Matrix Sensing Facts

There are some other useful identities specifically tied to the BM formulation of
matrix sensing (1.3). To be more specific, we could put bounds on the r*® singular
value of critical points of (1.3). This property will prove itself to be very useful, and
appearing multiple times in this dissertation.

Lemma 1 ([57]) For any SOP X of (1.3) satisfying RSS with constant L, for arbi-

trary rank, define G as G := —\,;,(VF(XXT)), and L, be the RSS constant. Then
it holds that o
G < M\(XXT)L,

where 1 is the search rank of (1.3).

Lemma 2 Given an FOP X of (1.3) satisfying RSS and RSC with constants L, o
for arbitrary rank, it holds that

LS
Vra,

Proof 1 (Proof of Lemma 2) Proof of Lemma 6 of [94] states that given matriz
X € R™™" such that it is FOP of (1.3), one can write

A(XXT) <

[ M~ (2.1)

0=(VAXXT),XXT) > a | XXT|F — LM p| XX 5

Therefore this means that
LS”M*”F > as”XXT”F

Then realizing

LS
Vra,

as XX can have at most r etgenvalues due to its factorized form.

[ XXTE = rA (XXT)? = A (XXT) < (ZA

Although this dissertation focuses on the symmetric case, meaning that the ma-
trix of interest M is assumed to be symmetric and positive semidefinite, our analysis
techniques are all valid for the case where M € R™*™ for arbitrary numbers m and n.
To explain this generalization as per [78], we first need to deal with the redundancy
of global optima induced by the asymmetry. This can be achieved by solving the
following optimization problem with a regularization term instead of the original one:

~ T Pt vTv2
Ueu%nxg,ugeuamxrf(ljv ,w) + 4HU U—-V'V|3. (2.2)
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where ¢ is an arbitrary penalization constant. As per [7], solving (2.2) is equivalent
to:

min £, (XX, w) (2.3)
XER(ner)xr

where X = [UT V]

satisfies: i(p V4 F(P )
Py P12:| 11, W) + 92, W
a y W) = +
J <{P21 Py ) 2

€ RM™+™)*7 and the function f,(-,w) : Rmxntm) R

¢
1 PulE + P2l = 1Prol7 = [Pl )

where P € R™", P, € R, Py, € R™*™, Py, € R™*™ are just partitioned
blocks of XX " of appropriate dimensions corresponding to UU ", UV T VU, VVT,
respectively. The equivalence between the asymmetric problem and its symmetric
counterpart (2.3) implies that the results of this paper obtained for this dissertation
can be restated for the original asymmetric problem. Note that in this section we
have assumed that the objective could be noisy, and if there are no noise, one can
simply set w = 0 and it does not change this argument at all.

2.3 Optimization Basics

Since this dissertation mostly focuses on the optimization landscape of matrix
problems, we first hope to review some basic concepts about optimization theory. In
general, optimization problems for a general function f can be written in this form

min f(x), f(-): E—R
reE

where FE is just some arbitrary Euclidean space. If this problem admits an optimal
solution, we (in this review) denote it as

Top = argmin f(x)
zeE
When the objective function is convex, then an optimal solution always exists, and
furthermore if this objective function is strictly convex, it will admit a unique solution.
We further note that the optimal solution may be non-unique when the objective
function is non-convex. Recall that a function f is convex if and only if

fOz+ (1 =Ny <Af(z) + (A=A f(y), Vz,yedom(f), Ae(0,1)

It is called strictly convex if the above inequality is made strict except for when
x = y. The above definition is called the zeroth-order definition of convex functions.
Equivalent first and second order definitions also exist for differentiable and twice-
differentiable functions, which can be found in this book [9].
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Gradient Descent for Convex Functions

Assuming that our objective function f is differentiable, the most basic and
universal method to solve any optimization problem is through the use of (vanilla)
gradient descent (GD) algorithm, with the update rule

rttt =2t —pVf(at), t=0,1,..

where z! denotes the t* iteration of this algorithm, and we assume some initial
point z¥ is fed into this algorithm. Here, n > 0 is the step-size of the algorithm, or
sometimes referred to as the ”learning rate” in many deep learning contexts. As an
NP-hard problem, non-convex optimization in general does not have any guarantee
for any algorithm to always reach to its global solution provably. However, when con-
strained only to convex optimization, it can be shown that the vanilla GD algorithm
can converge to the solution z,, at a linear rate. This linear convergence is said
to happen if the distance of any iterate z* to .y, [ — 2,52, converges to 0 as a
geometric series with the progression of t. Before giving a formal result, we introduce
two new prior conditions that the function has to satisfy in order to achieve linear
convergence:

Definition 3 (Strong Convexity) A twice continuously differentiable function f :
R™ = R is said to be a-strongly convex in a set B if

V2f(z) = al, VrxeB

Definition 4 (Smoothness) A twice continuously differentiable function f : R™ —
R is said to be B-smooth in a set B if

V2 f(@@)|<B vVzeB
Now we can introduce our convergence result:

Lemma 3 (Linear Convergence with GD) Suppose that f is a-strongly conver and
B-smooth in a local set B () around the optimum x,, with

BC(xopt> = ||I‘ - xopt||2 S Ca $0 S BQ(‘Topt)
If we choose the step-size n =1/, then

«
”xt_xopt”Q < <1_B>t”x0_$opt”27 Vtzo’l’

We omit the proof here for simplicity as it can be found in many standard optimization
textbooks. A nice proof can also be found in Section 2.1 of [18]. The one thing to
note about this lemma is that we did not assume f to be convex in general. We only
assumed that f was strongly convex and smooth in a region around any second-order
point. Therefore, this convergence analysis also applies to convergence to any local
solution in non-convex objectives, provided that the landscape is benign around that
local solution (strongly convex and smooth), and that the algorithm was initialized
in that region.
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Critical Points and Optimality Condition

Besides the important GD algorithm that is widely used and analyzed in this
dissertation, another critical concept in optimization landscape is the existence of
critical points. An iterative algorithm like GD often converges to one of its fixed
points, no matter the objective being convex or not, and we call the associated fixed
points critical points or first-order points (FOP) of the objective function, defined as

Definition 5 A first-order point (stationary point, critical point) T of f is any point
that satisfies
Vf(z)=0

For readers who have heard of the "KKT” condition, the above condition is actually a
subset of the KKT conditions. KKT conditions are actually necessary conditions for
Z to be FOPs in constrained optimization. Since in this dissertation we mostly deal
with unconstrained optimization, our KKT condition is reduced to only requiring the
gradient to be zero, which is also sufficient in this case.

Interestingly, for any first-order point, it can only be one of three things: 1) a
local minimum, 2) a local maximum, and 3) a saddle point. If f is twice continuously
differentiable (which it is under the scope of this dissertation), then any first order
point Z can be completed characterized by its Hessian matrix:

1. If V2f(Z) = 0, then Z is a local minimum;
2. If V2f(%) < 0, then Z is a local maximum;

3. If A\, (V2f(Z)) = 0, then Z is either a local minimum or a degenerate saddle
point (saddle point with no escape direction).

4. Tf A\ (V2£(2)) < 0, then 7 is a strict saddle point, possessing a valid escape
direction.

Based on this characterization, we can further define second-order points (SOP):

Definition 6 A second-order point & of f is any point that satisfies
Vf(z)=0, V*f(2)>=0

We also often call second-order points as local minimums. For strongly convex func-
tions/strictly convex functions, only one SOP exists and that is the global solution.
For general convex functions, SOPs exists in a contiguous region, and from a ge-
ometric perspective, you can think of it as a region of "flatness”. For non-convex
objectives, infinite number of SOPs may exist, and we classify them as global solu-
tions and spurious solutions. A spurious solution is a SOP that does not attain
the globally minimum value. In this dissertation spurious solution is an important
concept to grasp.

When restricted to the matrix sensing problem at hand, we can further drive
the necessary and sufficient conditions for matrices to be FOP and SOPs of (1.3).
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Lemma 4 Given a general matriz function f(-) : 87 +— R that takes in a symmetric
matrix variable M, if we only optimize over low-rank Ms by utilizing BMfactorzzatzon
to explicitly factorize M = XX, where X € R™*"scareh | then the matriz X e R g
a second-order point (SOP) of problem

i T
XeRr}Ll}EGGKI‘Ch f(XX ) (24)
if and only if -

and
UV [(XXT),UUT) + [V2f(XXD(XUT+UXT,XUT+UX")>0  (2.6)

for allU € R™searen . Furthermore X € R saren is a first-order point (FOP) of (2.4)
if and only if it satisfies (2.5). When constrained to the case when f takes the form
of (1.4), therefore when (2.5) is equivalent to the matriz sensing problem (1.3), we
can further show that:

VHXXT) = im XXT - M)A, (2.7a)

=1

m
VA XXT)XUT+UXT,XUT+UXT) =) (A, UXT + XUT)? (2.7b)
=1
The proof to the above lemma is ubiquitous in many matrix optimization literature
like [98, 94] and derived directly from multivariate calculus, thus omitted here for
simplicity. Note that (2.5) and (2.6) are first and second-order conditions for general
matrix objectives, and when constrained to the matrix sensing problem on which in
dissertation is centered, we can further simplify V f and V2 f as shown above, due to
our knowledge of the sensing matrices, which serves as the cornerstone for most of
the analysis done in this dissertation.

Global optimization landscape

Since this dissertation would focus on the characterization of the optimization
landscape, and talk extensively about spurious solution, global solution, and strict
saddles; we hope to give the readers a flavor of this kind of analysis before delving
into the real results. Therefore, we adapt section 3.2 of [18] to offer a nice case study.
One key objective of most of our works is prove that either 1) all SOPs of (1.3) is
indeed the global solution or 2) all SOPs are close to the global solution. Consider
this toy example of matrix sensing

1
min —Hx:z: — M*||% (2.8)

zeR™ 2
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where we know r = 1, and that A(+) is simply the identity operator. This corresponds
to d,, = 0, the most ideal case possible. We will proceed to show that all SOPs of
(2.8) are global optima, and the rest of the critical points are either local maxima or
strict saddle points.
We first characterize its critical points (FOPs), in which we require V f(z) = 0,
in this case means that
Mz = |ol3a

which means that z is either 0 or eigenvectors of M* scaled by square root of the
respective eigenvalue, meaning

Z € {0, £V Muy, £/ Agus, o £V A0, )

where \;,u; are the i eigen-pair of M*. Following the procedures given above, we
hope to characterize these FOPs using their Hessian information. From elementary
calculus, or if you so choose to apply Lemma 4, we get that

V2f(z) = 2|x|31, + dzx” — 2M*
which means that
V2 (£ Nu,) = Z 20N — N\jujuj + 4\uul
J#i
Therefore depending on the FOPs under consideration,

L. If 2 = +4/Auy, V2f = 0 due to the above derivation, therefore they both are
SOPs.

2. If = £/ \u; for i > 2, we can show that \_; (V2f) < 0, therefore they are
strict saddle points.

3. If 2 =0, V2f = —2M* < 0, which is indeed negative semidefinite, thereby
either a local maximum or a degenerate saddle point (if admits zero eigenvalues).

This shows that (2.8) only has two SOPs, which have the same value, therefore are all
global solutions. Other critical points are either strict saddle points or local maxima,
and will not cause great concern for gradient based optimization techniques [33]. The
rest of this dissertation will revolve around this same problem with higher » and more
complex A, of course with more advanced theoretical tools than plain algebra.
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Chapter 3

Convex Relaxation

3.1 Background and Related Work

It is widely known that the SDP formulation (1.2) can be used to solve the
matrix sensing problem if the sensing matrices are sampled independently from a
sub-Gaussian distribution and the number of measurements d is large enough [72, 73].
This is also a sufficient condition for the sensing matrices to satisfy the RIP condition
with high probability, which is defined below:

The RIP constant d, represents how similar the linear operator A is to an
isometry, and various upper bounds on ¢, have been proposed to serve as sufficient
conditions for the exact recovery (meaning that one can recover the ground truth
M* by solving the SDP problem). A few notable ones include &,, < v2 — 1 in
[13], 65, < 0.607,65, < 0.472 in [60], and d,, < 1/2,d5,. < 1/3 in [11]. On the
other hand, when the sensing matrices are not sampled independently from a sub-
Gaussian distribution or when the RIP condition is not met, the SDP formulation
may still recover the ground truth matrix with a high probability. This is the case
for MC problems for which RIP fails to hold while SDP works as long as entries of
observation follow an independent Bernoulli model [15, 16].

However, recent works have shown that if we use the B-M method instead of the
SDP approach, we can still recover the ground truth matrix via first-order methods
under similar RIP or coherence assumptions in both the matrix sensing and matrix
completion cases [24, 5, 65, 103, 106, 101, 93, 6, 27, 107, 95]. Namely, the state-of-
the-art result states that as long as 5rsemh +r < 1/2 for the matrix sensing problem,
there exists no spurious local minima for an over-parametrized B-M formulation and
the gradient descent algorithm can recover M* exactly [95]. If we know the value of
r, we can set 7y, to 7, making the B-M approach enjoy the same RIP guarantee
as the SDP approach. Since the B-M approach enjoys far better scalability, it has
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become an increasingly popular tool for solving the matrix sensing problem.

Thus, it is important to investigate whether with the increased parametrization
space (n? vs NTue), SDP can enjoy better theoretical guarantees. This study is
timely since specialized sparse SDP algorithms have become more efficient in recent
years, making the SDP method more practical than before [99, 92, 91]. In this chapter,
we show that the SDP approach is more powerful than the B-M method as far as the

RIP measure is concerned.

3.2 Sharper RIP bound for SDP

Since the SDP method is more powerful than the B-M factorization for certain
classes of MC and MS problems as shown in the previous section and since specialized
SDP algorithms can solve large-scale MC and MS problems, it is useful to further
study the SDP method through the lens of the well-known RIP notion. We will
derive a strong lower bound §;;, on the RIP constant § to guarantee convergence to
the ground truth solution by using a proof technique called the inexistence of incorrect
solution [101]. We aim to find a linear measurement operator A with the smallest
RIP constant such that the SDP formulation converges to a wrong solution. To do
so, we need to solve the optimization problem

e
st. AM) = AM*) (3.1)

tr(M) < tr(M*)
A satisfies the d,,-RIP property,

where M # M*. The condition tr(M) < tr(M*) guarantees that SDP cannot
uniquely recover M*. Checking the RIP constant for a linear measurement oper-
ator is proven to be NP-hard [77]. Therefore, it is difficult to solve the problem (3.1)
analytically. To simplify the problem, we will introduce some notations. We use a
matrix representation of the measurement operator A as follows:

A = [vec(A,),vec(Ay), ..., vec(A,)]T € REx*,

Then, A vec(M) = A(M) for every matrix M € R™*". We define H = AT A, which
is the matrix representation of the kernel operator A = AT A to simplify the last
constraint of the problem (3.1).

To derive a RIP bound, we consider the following optimization problem given M
and M*, where M is the global solution of (1.2) and M* is the ground truth solution:

min 0
5, H
st. e’He=0 (3.2)

H is symmetric and satisfies the d,,-RIP,
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where
e = vec(M* — M).

For this fixed M and M*, we assume that M # M* and that rank(M* — M) > 2r,
since if rank(M* — M) < 2r, the relation M = M* holds automatically by definition
of d,,-RIP for any J since it implies strong convexity. Denote the optimal value to
(3.2) as d(e), which is a function of e. It is desirable to find

0% = min i(e).
e:tr(M)<tr(M*)

By the logic of in-existence of counterexample, we know that if a problem H = AT A
has d,,-RIP with 6 < ¢*, then the solution to (1.2) will be M*, which is the ground
truth solution. However, since the last constraint of (3.2) is non-convex, it is useful
to replace it with a surrogate condition that allows solving the problem analytically.
The following problem helps to achieve this goal:

min ¢
6,H
s.t. eTHe < 2|e | + 2(1 — 3)d]le.|? (3.3)

(1— 8L <H < (1+0)L,.

Here, | = [n/r] and we define {e;}!_, and e, in the following fashion. First, consider
the eigendecomposition of M* — M and assume that the eigenvalues are ordered in
terms of their absolute values, namely, |A\;| > |[\y| > -+ > |\, |. Let u,’s denote the
corresponding orthonormal eigenvectors:

matg(e) = M*— M = Z ApUpur .
k=1

Then, we define:

min{ixr,n}
e, = vec 5 Aguiur |
k

=(i—1)*r+1

e, = e, +e,, and e, = Zl 5 €;. The next proposition allows us to replace (3.2)

with (3.3) because the optimzﬁ value of the (3.3), d;;(e), gives a lower bound on d(e).

Proposition 1 The optimal objective value of the problem (3.3), 0;,(e), is always less
than or equal to the optimal objective value of the problem (3.2), i.e., d;(e) < d(e).

The proof of this proposition is central to the construction of the sufficiency bound,
which is based on using a convex program to serve as an estimate of the non-convex
problem. After we extend the RIP,, constraint in (3.3) to be RIP,, (thus making it
convex), it is necessary to somehow preserve the information that the near isometric
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property of H should only apply to low-rank matrices. This is achieved by changing
the first constraint so that e does not need to be completely in the null space of H.
(3.3) approximately requires that H only maps a certain low-rank sub-manifold to
0. The full proof can be found in the Appendix. As a result of Proposition 1, it
immediately follows that

o = i 4] < 0.

b= i) )
In fact, we can obtain a lower bound on the value d;, by solving the problem (3.3)
analytically. The following lemma quantifies a lower bound on ;.

Lemma 5 It holds that 5
r

> .
on = n+ (n—2r)(20 —5)

The best-known sufficiency bound presented in [11] is independent of n and r. This
sufficiency lower bound on the RIP constant presented in Lemma 5 can be tighter
than 1/2 depending on the size of the problem n and the rank of the ground truth
matrix r. For instance, the SDP formulation converges to ground truth solution
whenever RIP constant § is close to 1 as » — n/2. On the other hand, whenever
r/n is ratio is small, e.g. rank-1 matrix sensing problem with large n, 6 < 1/2 is a
stronger guarantee for recovery of the ground truth matrix. Combined with the 1/2
sufficiency bound that works for both the symmetric and asymmetric cases [11], we
obtain the following result:

Theorem 1 The global solution of the SDP formulation (1.2) will be the ground truth
matrix M* if the sensing matriz A satisfies the RIP condition with the RIP constant
0q, Satisfying the inequality:

2r
1/2
52T<max{ / ’n+(n—2r)<zz—5>}’

r

where | = [n/r].

Compared with the existing sufficiency RIP bounds, this new result has a striking
advantage. The bound §,,. < 1/2 has already been proven to be the sharpest for the
B-M formulation, which is independent of the search rank. In contrast, Theorem 1
shows that the RIP bound for SDP exceeds this bound and approaches 1 as the rank
T increases.

In this section, we have shown that as opposed to the popular belief that B-
M enjoys very similar RIP guarantees as the SDP approach, there are real benefits
to switching to the SDP formulation, making it a more competitive option since
specialized SDP solvers are becoming more efficient in recent years.



CHAPTER 3. CONVEX RELAXATION 26

3.3 Summary

In this chapter, we conducted a comparison between two main approaches to
the matrix completion and matrix sensing problems: a convex relaxation that gives
an SDP formulation and the B-M factorization method. It is well-known that both
of these methods enjoy mathematical guarantees for the recovery of the ground truth
matrix whenever the RIP assumption is satisfied with a sufficiently small §. We dis-
covered classes of problems for which B-M factorization fails while the SDP recovers
the ground truth matrix, namely in the regime in which d,, > 1/2. The fact that
specialized SDP algorithms are improved in recent years and can compete with simple
first-order descent algorithms inspired us to investigate sharper bounds on sufficient
conditions for the SDP formulation. We provided RIP bounds for the SDP formu-
lation that depend on the rank of the solution and are automatically satisfied for
high-rank problems, unlike the B-M method. As a result, we conclude that none of
the methods outperforms the other one whenever the sufficiency guarantees are not
met. The parameters of the problem, such as dimension, rank, and linear measure-
ment operator, determine which solution method performs better. Consequently, it
is prudent to apply both solution methods in case the RIP and incoherence are not
satisfied.
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3.A Missing Details of Chapter 3

Proof 2 (Proof of Proposition 1) To prove Proposition 1, we study intermediary

problem.
min ¢
5,H
s.t. 8THe < (1+0)]e]? +2(1— 3)de,|? (3.4)
(1—0)I,: <H =< (1+06)I,.,
where

é =PTe, PeRV4” = pg P,
and P € R™?" js defined to be

where ;s are orthonormal eigenvectors of M* — M so that PTP = 1. Denote the
optimal solution to (3.4) as d0p(e). Then, the following two lemmas will suffice to
prove Proposition 1.

Lemma 6 Given a fixed vector e € R"™*, we have

dp(e) < d(e). (3.5)
Lemma 7 Given a fixed vector e € [R”Q, we have

op(e) < dp(e). (3.6)

Proof 8 (Proof of Lemma 6) It suffices to show that for any feasible pair (5, H)
of (3.2), we can construct a feasible solution (6, H) to (3.4) characterized as below

§=45, H=PTHP,

which directly proves the lemma. We can verify the feasibility of (5,ﬂ) as follows.
The feasibility of the first constraint is certified by the following arqgument:

éTHe = e’PPTHPP e,
By the definition of P, one can write
PPTe = (PPT ® PPT)e = vec(PPT(M* — M)PPT) = e, + e, = e,,,

Since e"He = 0 and H is symmetric, H admits a factorization H = AT A, making

Ae = 0. Also, we know that e = ey, + €., meaning that

AGQT — _A.ec.
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Therefore,

THa — of He. — ol B )T
e He = e; He,, =e.He, = E H( E e;)
i= =3

Since H satisfies 0,,-RIP, for every (i,4) such that i # j, we have:
(e; +e,) He; +e;) < (L+0)]e; +e)* = (1+0)(lle* + lley[). (3.7)
where the last equality follows from the facts that e;fpej =0 and

(e;+¢;)"H(e; +e;) = e He, +2e] He,; + el He; > 2e] He,; + (1—6)([le;|* + [e,]?).
Combining (3.7) and (3.8) yields that &
el He; < d(le;|* +lle;?) Vi

Therefore,

l

l
eTHe = () _e)"H(> e;) < (1+44) ZHe 12) +26(1—3 ZHe 12)
1=3

=3 1=3
= (L+9)]e.?* +25(1 = 3)[e.>.

The above inequality directly verifies the satisfaction of the first constraint. For the
second constraint, consider an arbitrary vector € € R4, Then,

eTHe = TPTHPé = 87 (PT @ PT)H(P ® P)é
= vec(P mat (&) PT)"H vec(P mat(&) PT).

By orthogonal projection, we know that P mat(e )PT R™ ™ has rank 2r. Therefore,
the following holds by the 0,,-RIP property of H:

(1—9)| P mat(e) PT|% < vec(P mat(e )PT)THvec(Pmat( )PT) < (146)|| P mat(e) PT|%
(3.9)
and since

| P mat(8)PT|2 = tr(P mat(8)” PT P mat(&)PT)
= tr(Pmat(&)? mat(e)PT)
= tr(PT P mat(8)” mat(&))
= tr(mat(€)” mat(€))

= [&3,

(3.9) automatically implies the satisfaction of the second constraint.
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Proof 4 (Proof of Lemma 7) It suffices to show that for any feasible pair (4, H)
of (3.4), we can construct a feasible solution (5, H) to (3.3) characterized as

§=0, H=PHPT + (1-6)(I,.—PPT).

n2 =

To prove the lemma, it is enough to verify that the above pair (§,H) is feasible to
(3.3). We first verify the second constraint. Given an arbitrary vector e € R™, we
have that R

e’He = e’ PHP e + (1 —§) [eTe — e'PPT¢]

and defining & := PTe € R, we obtain:
¢"PHP”e+(1-6) [e"e — e"PP"e] > (1-6)[8[3+(1—d)[lel3 &3] = (1—6)]e]3.
Also, since |€||3 < |e|3 and P is a projection matriz, one can write:
(L+0)[lel — 3] > (1 —d)[lel3 — €[],
which further implies that
e"PHP e+ (1-6) [e"e — e"PPTe] < (1+6)[&[3+(1+6)[lel3—[&]3] = (1+3)[el3.
Combining the above equations, we recover the second constraint of (3.3):
(1—d)lel3 < e"He < (1 +d)[els3.
To study the first constraint, we have that

¢"He = 8"Haé + (1 —0) [[le|3 — ]3]
< (1+0)llecl3 + 201 = 3)dllec]3 + (1= 0)le.[3
= 2le |3+ 2(1 — 3)le. 3.

Note that ||e||§ — ||é||§ = HecHg due to

n 2r
lel3=> "2, ez =) A%
i=1 =1

The proof of Proposition 1 follows directly from combining Lemma 6 and 7.

Proof 5 (Proof of Lemma 5) We aim to solve (3.3) analytically to obtain a suffi-
cient RIP bound for problem (1.2). This amounts to deriving a closed-form expression
for oy (e). We consider a simpler problem to solve (3.3):

max 7
n,H

~ 1— 1
s.t. eTHe < 7702 + + nd2 (3.10)

2
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with ¢ = 2(1 — 3)|e
the tuple

2 and d? = 2|e.|3. Given any feasible solution (§,H) to (3.3),

1—6 1
<1+5’1+6H>

is a feasible solution to problem (3.10). Therefore, if we denote the optimal value of
(3.10) as n(e), then it holds that

el

1 —dy(e) 1—n(e)
21535 (o) > . 11
n(e) > 1+ 6,(0) = Op(e) > T (o) (3.11)
We use the dual problem to solve for n(e):
' Y2 g2
g, 00+ 3+ )
st tr(Uy) + %(02 ) =1 (3.12)

’YeeT:Ul_UQ, U17U2 EO, 720

Since Slater’s condition holds for the convex program (3.10), the optimal solution to
(3.12) is equivalent to that of (3.10), which is n(e). Using a Lagrangian argument,
n(e) can be solved as follows:

2 2
_ . V2 g2 c“+d . o T
n(e) = maxmin ¢ f(1 - 5(c* —d) +y——7—+ min  [tx(U; —vee’) — Ftr(U,)]
U, —veeT>0
2 2
_ . Y2 2 c+d . - - 2
= max min Bl— S —d*) +r—5—+ foin, (1= 8)tr(Uy) —vlle|l3]

Ul—'yeeTtO
i T2 2 c? +d 2 2
= maxmin 4 A1 — (2 %) + 75— + (1 = )lel; ~ 7lel3

= o {3 mig S 35T 1o}

B<1 v>0 2 N 2
c? +d? c? — d? 9
= M — > 0
max {6 5 B( 5+ lef3) > }

e c?+d?
=min< 1, ,
2[e[3 + ¢ — a?

where the first equality uses the Lagrangian argument by introducing the Lagrange
multiplier B, and the second equality constraints < 1 since (1 — B)tr(U;) will be
unbounded otherwise. The third equality results from the obvious choice of U, = veel
given that (1 — ) is nonnegative. The fifth equality results from the choice of v =0
constrained to the requirement that its coefficient must be nonnegative.
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Substituting n(e) = 1 into (7.31) results in the trivial lower bound o (e) of 0,
which means that the lower bound indeed will not be negative. Hence, we will focus

on QHGHC;J:F% from now on. We know from (7.31) that in order to obtain a lower
2

bound on &y, we need to derive an upper bound on n(e). Note that

Frd el 0-2eds
2fel3 +2—d ~ 2[eBB+20—DleB  Tex I3+ (- 3)leclB

The last equality follows from the relations
lel3 = llec + e, [3 = lles, [5 + [lecl3-

If we fiz |ey, |3, then we can mazimize (3.13) with respect to |e,|3 first. In this case,
taking the derivative of (3.13) yields that

9 ( (1= 2)le.|3 ) _ o (U=2)lec]a]lex |
ecls \llea, 3 + (1 = 3)]e.3 (lea, 13 + (1= 3)le.[3)

Therefore, (3.13) is mazimized when |e_||3 is set to be as large as possible. Before we
derive the mazimum value of |e_|3 in terms of |le||3 and |e5|3, we introduce one key
lemma.

S > 0.

Lemma 8 Consider two PSD matrices M and M* such that tr(M) < tr(M*) and
rank(M*) = r. Then,

‘7(1)(M* — M) +---+0(TJ(M* —M) > 0(r+1)(M* — M) + o

(M — M), (3.14)

n

where o; denote the i-th largest singular value of the matriz M* — M.
Proof 6 For each matriz A, we denote the i™ eigenvalue as Aiiy(+), meaning that
A (A) Z Ag)(A) == A, (A).
By Weyl’s inequality, we know that
Aigjo1)(M™ = M) < A (M*) + A (=M).

Hence,
Ay (M* = M) < Xpyy (M7) + Ay (=M) <0

since M* is of rank-r and M > 0. Therefore, we know that M* — M has at most r
positive eigenvalues. Also, since tr(M* — M) > 0, it holds that

Ay (M* = M)+ Ay (M* = M) = =Xy (M — M) — = A (M* = M),

n
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which implies that
Ay (M= M)A Ay (M =M)| = [N yoy) (M* = M) [+ Ay (MT=M)[ (3.15)
since Ay (M* — M) <0 for all k > r. According to the definition, we have

AL(M? = M)| -+ A (M = M) = Ay (M = M)| -+ A (M" — M)|7
Ny (M* = M)+ [y (M = M) 2 [, 4 (M* — M)+ . [\, (M7 — M)
(3.16)
since \y(M* — M), ..., \,(M* — M) are ordered with respect to their absolute values.

As per the main text, we abbreviate \;(M* — M) as \; for the sake of brevity for any
i € [n]. Combining (3.15) with (3.16) proves the original lemma.

Denote S, Zr |A;| and Sy = ZZ vip [Nl Given Sy, since [A;] < |A,| as
long as © > r, we lmow that Z i1 A\? is mazimized when every absolute value is
chosen to be as large as possible, namely

st oo P isa il = ol Posrsy ol = Sa = LS/ I IA L= X <A

Therefore,

n - A
SN2 < SN N2+ R < [Sy/ IR + a2 = B2y

i=r+1 ‘)\ | " ‘)\ | r
As a result,
Sy S S? 7“”91H2
N, ‘A% Sol A < SplA SS1T§71§TQZ||91”%7

where the last inequality follows from Cauchy-Schwartz. Combining the above 2 in-
equalities, we obtain

> A2 < ey 3 (3.17)

t=r+1

Furthermore, since |\, > - > |\,|, one can write:

edi= > <t 3

1=2r+1 i=r+1
with equality holding if and only if |A\,..,| = - = |\,|. Combined with (3.17), we
obtain .
,
leclz < ——leul- (3.18)
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Consequently,

n—2r

lecll3 <

It results from (3.18) and (3.19) that

_ (1—2)]e.|3
max  n(e) = 5 5
estr(M)<tr(M*) etr(M)<tr(M*) |eq,[5 + (I — 3)|e.l5

(1= 2)le.|3
eld + 75 lleclz + (0= 3)lecl3

n—2r

(I —2)n=2r

n—r

B 1+(n—r2r+l_3>7;__—2:

(= 2)(n—2r)
" n+(n—2r)(1—3)

Thus,

5> a 1—d(e) 2r
X = .
b= ew<um 14+6(e)  n+ (n—2r)(20—5)

,
L (ool + lecld) = leal = ——le. 3.

33

(3.19)
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Chapter 4

Lifted Tensor Model

4.1 Background and Related Work

As we have extensively talked in Section 1.3, the solving of our main question
of interest (1.3) depends on the RIP constant, which we restate here for clarity

: _ 1 T 2

XeR™ Tacarch X)) 1= §||A(XX )0l
The line of work [101, 6, 94] has shown that if (1.3) satisfies the RIP condition with
dq, < 1/2, every local minimizer X of (1.3) will satisfy the relation XXT = M,
precisely in the noiseless scenario. It has also been proven that J,, < 1/2 is a
sharp bound, meaning that there are counterexamples such that XXT #+ M* once
dy, > 1/2. This also falls in line with a prior result that d,, < 1/2 is sufficient for
recovering M* using specialized methods directly applied to our SDP formulation
(1.2)[72, 14, 11].

The bound d,, < 1/2 is sharp, and RIP conditions are difficult to satisfy and
verify except for isometric Gaussian observations. In many applications, such as
power system analysis, the RIP constant does not exist or is above 0.99 [100]. Yet, it
is highly desirable to transfer the scalability benefits of the BM factorization approach
to these practical cases as well. Hence, it is essential to investigate how to handle
problems that do not satisfy the RIP property with a constant smaller than 1/2,
using BM-type techniques. Towards this end, an active line of research has studied
the relationship between the complexity of recovering the global optimum and the
degree of (over-) parametrization in (1.3) [96, 97, 44|, and the results are promising.

The current idea of over-parametrization in matrix sensing consists of enlarging
the search space of X from R™" to R"™*7search  where r, 4, € [r,n). The above-

mentioned papers have shown that as 7., increases, stronger guarantees for the
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recovery of M* can be obtained (although it requires stricter assumptions). One of
the main results in this area will be stated below.

Theorem 2 (Theorem 1.1 of [97]) Assume that (1.3) satisfies the (L, ,n)-RSS
(Restricted Strong Smoothness) and (az,n)-RSC (Restricted Smooth Convezity) prop-
erties. If

2

1 (L

T search =~ Z (a_s - 1) r, r< Tsearch < T (41)
s

then every second-order point (SOP) X € R Tsearn of (1.3) satisfies that XXT = M*.

Note that X is an SOP if it satisfies the first-order and second-order necessary op-
timality conditions. The above theorem replaces the RIP condition with the similar
conditions of RSS and RSC, which will be formally defined in the next section. The
power of this theorem is in dealing with the scenario where d,, > 1/2, by selecting a
search rank 7, .., > 7.

Despite the superiority of setting 7., > 7 over setting 7., = r under
the setting of (1.3), the power of over-parametrization is limited. The reason is
that r.,., cannot be greater than n and therefore it is impossible to satisfy the
condition (4.1) in practical cases where L/a is large. This calls for a new framework
that accommodates an arbitrarily large degree of parametrization (as opposed to
Tsearch < M), which would be effective in the regime of high L,/ay values. In this
paper, we address this problem by proposing a tensor-based framework and analyzing
its optimization landscape.

Overall, over-parametrization is a powerful idea since the inclusion of extra vari-
ables reshapes the landscape of the problem. Outside the realm of matrix sensing,
the idea of constructing an infinite hierarchy of non-convex problems of increasing di-
mensions has been applied to the Tensor PCA problem [83]. The empirical evidence
of deep learning practice shows the advantage of using overparametrized models for
both convergence properties during training [64, 109, 22, 2] and generalization perfor-
mance of the trained model [1, 62, 59, 4]. Practitioners also design their own hierarchy
of machine learning models, to satisfy the scaling laws [37, 29, 58]. The cornerstone
idea on the theoretical side of this field comes from the development of a hierarchy
of convex problems, called the Sum-of-Squares hierarchy.

4.1.1 Sum-of-Squares Optimization

One of the most prominent over-parametrization frameworks for polynomial op-
timization is the framework of Sum-of-Squares (SOS) hierarchy of optimization prob-
lems [66, 43]. SOS optimization is essentially an optimization framework that lever-
ages deep results in algebraic geometry to construct a hierarchy of convex problems
of increasing qualities, solving each of which obtains a lower-bound certificate on the
minimum value of the polynomial optimization problem of interest. Since (1.3) is
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also a polynomial optimization problem, SOS can be applied to handle the problem
through a highly parametrized setting. Moreover, instead of using the usual SOS
framework that finds a sequence of lower bounds on the optimal value of (1.3), we
could use its dual problem, since the minimum value of (1.3) is 0 by construction.
To construct the dual SOS problem, define kK > 1 to be an integer such that 2k is
equal to or larger than the maximum degree of f(v) in (1.3), where v := vec(X).
Here for simplicity please assume r = 1. Furthermore, define [v],, € R® to be a vector
containing the standard monomials of v up to degree x, with s := (" "). We then
build the moment matrix D := [v],[v]] with its entries being all standard monomials
up to degree 2k. As a result, it is possible to rewrite f(v) (i.e., f(X)) as a linear
function of D, namely
f(v) = (F, D)

for some constant matrix F' € R%*5. Therefore, optimizing (F, D) is equivalent to
optimizing f(v) given that D is rank-1 and positive-semidefinite. However, the rank-1
constraint is non-convex and its elimination leads to the dual SOS problem with the
following form:

min (F, D) s.t. £(D) = 0,D > 0 (4.2)

DeSs
The linear operator £ captures the so-called consistency constraints, as some entries
in D may be identical due to being the outer product of monomial vectors. For
example, if n = 2,k = 2, we have
[U]m = [17 U1, U2, U% U1U2; 'Ug]T

meaning that D5 = Dyg = 0,0, Diy = Doy = v2, Dyy = Dor = v3vy, Dyg =
Dys = vyv3, and so on. The dual SOS problem (4.2) has some nice properties:
it is convex and its optimal value asymptotically reaches that of (1.3) as k grows
to infinity (under generic conditions), which enables solving the non-convex (1.3)
with an arbitrary accuracy [43]. However, the problem (4.2) also presents daunting
challenges.

First, it has poor scalability properties because it requires solving costly SDP
problems. The idea behind this paper is related to applying the BM factorization to
(1.3) (without dealing with SDPs) via a lifting technique similar to (4.2). Currently,
there is no guarantee that local minimizers of the BM formulation will translate
to the minimizer of the convex problem (4.2). The state-of-the-art result regarding
the BM factorization states that this correspondence can be established only when
r(r+1)/2 > m, where m is the number of linear constraints [8]. In matrix sensing,
since r is small and m is large, this result cannot be applied.

Second, it is difficult to gauge how large x needs to be in order for the convex
relaxation to be exact, meaning that one may need to use significant computational
resources to solve an instance of (4.2) corresponding to some value of k, only to
discover that its solution does not provide useful information about the optimal so-
lution of the original problem, promoting to repeat the process for a larger value of
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k. This also prevents the practical application of SOS as it is common to miscalcu-
late in advance how computationally challenging it can be to solve (1.3) via the SOS
framework.

4.1.2 Related Works

Algorithm regularization in over-parametrized matrix sensing. [48, 108]
prove that the convergence to global solution via GD is agnostic of 7y, in that it
only depends on initialization scale, step-size, and RIP property. [51] demonstrates
the same effect for an /; norm, and further showed that a small initialization nullifies
the effect of over-parametrization. Besides these works, [76] refined this analysis,
showing that via a sufficiently small initialization, the GD trajectory will make the
solution implicitly penalize towards rank-r matrices after a small number of steps. [34]
took it even further by showing that the GD trajectory will first make the matrix rank-
1, rank-2, all the way to rank-r, in a sequential way, thereby resembling incremental
learning.

Implicit bias in tensor learning. The line of work [70, 71, 25] demonstrates
that for a class of tensor factorization problems, as long as the initialization scale is
small, the learned tensor via GD will be approximately rank-1 after an appropriate
number of steps. Our paper differs from this line of work in three meaningful ways:
1) The problem considered in those works are optimization problems over vectors,
not tensors, and therefore the goal is to learn the structure of a known tensor, rather
than learning a tensor itself; 2) Our proof relies directly on tensor algebra instead
of adopting a dynamical systems perspective, providing deeper insights into tensor
training dynamics while dispensing with the impractical assumption of an infinitesi-
mal step-size.

4.2 The Tensor Framework

In this paper, we build upon some of the core ideas of SOS optimization in order
to construct a new framework for over-parametrization that addresses the current
issues with (4.2). The key observation is that [v], is highly similar to a symmetric
rank-1 tensor, namely

[v],, ~ v®F € R™"

with the only difference being that v®* contains some terms appearing more than
once, which implies that (4.2) could also be casted as an SDP based on the outer
product of v®% with itself. Shortly after, we will provide a brief introduction to
tensor facts and definitions for clarification. Instead of solving a non-scalable SDP
problem for the optimal D over §°; we propose to apply local search over R™* for
v®%, and will analyze when it converges to the global optimum.
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For illustration purposes, we first focus on the problem of rank-1 matrix sensing
presented in the BM formulation:
m%?n |A(xzT —22")|3 (4.3)
xeR™
where M* = zz' is the ground truth rank-1 matrix. The objective is to solve (4.3)
using a lifted or over-parametrized framework. This means that instead of optimizing

over the original vector space R™, the goal is to optimize over a tensor space, namely
R™! for some [ > 2. Note that (4.3) aims to find a vector = such that

Alxz") = AM*) = A(zz") = b.

Therefore, it is also desirable to achieve {A(zz ") }®! = b® € R™!. With the repeated
application Lemma 4.2.1, we have

{A(xz")}® = (A, 2% @ 2®) (4.4)

where the tensor A € R™*D*(n%) ig defined as A m, = H;Zl ®vec(4,, ). There-
fore, one can write the lifted objective similarly to (4.3) as:

min || (A, WQRW — Z®l ® Z®l>ml+1 .ml4n2l H% (4.5)
weRn! e

The above derivations can give readers a basic idea of how to construct our lifted
tensor objective when r = 1. However, when r > 1, things become more complicated.
A natural extension to general r requires that instead of optimizing over X € R™*",
we optimize over R"*7l° tensors, and simply making tensor outer products between w
to be inner products. However, such a tensor space is non-cubical, and subsequently
not symmetric. This is the higher-dimensional analogy of non-square matrices, which
lacks a number of desirable properties, as per the matrix scenario. In particular, it is
necessary for our approach to optimize over a cubical, symmetric tensor space since
in the next section we prove that there exists an implicit bias of the gradient descent
algorithm under that setting. Note that in this lifted framework r is the true rank,
since the framework itself already offers rich over-parametrization.

In order to do so, we simply vectorize X € R™*" into vec(X) € R™", and optimize
over the tensor space of R™°!, which again is a cubical space. In order to convert
a tensor w € R"™! back to RI™*"Il to use a meaningful objective, we introduce a
new 3-way permutation tensor P € R™ " ™" that "unstacks” vectorized matrices.
Specifically,

(P,vec(X))3 =X VX R n,reZ"

Such P can be easily constructed via filling appropriate scalar ”1”s in the tensor. Via
Lemma 4.2.1, we also know that

(P&, vec(X)®) g,y = (P, vec(X))3)® = X&! (4.6)
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where [I] denotes the integer set [1,...,[], and ¢ * [I] denotes [c, 2¢, ..., ¢ x [] for some
¢ € Z". For notational convenience, we abbreviate (P®l,w>3*m as P(w) for any
arbitrary z-dimensional tensor w where z can be broken down into the product of
two positive integers. Thus, using (4.6), we define our new lifted objective in tensor
space:

min (A% (P(w),P(W))q.p) — 0¥ (General lifted formulation) — (4.7)

weRn Tl
Let us formally define A, f'(-) : R**# = R and A'(-) : RV 1 R

A € R™M st Ay = (Ay)i; Yk € [m], (i,4) € [n] x [n]
f1(M) = [(A®], M) — b3
hl(W) = fl(<W7 W)z*[z])

with V£1(-) = V fi(-) and VA!(-) = V  A(+).

Note that the idea of this lifted formulation (4.7) is that instead of optimiz-
ing over a matrix in (1.3), we now optimize over tensors, and the tensor decision
variable serves as a surrogate for our original matrix decision variable. When this ob-
jective is solved (via whatever optimization algorithm of choice), we perform tensor
PCA on this tensor to recover its rank-1 component and extract the underlying low-
dimensional matrix/vector. Later in this chapter we show that when using gradient
descent, the final tensor will be predominantly rank-1, making this process very easy.
Now we offer some basic introduction to tensor definition and basic identities

4.2.1 Tensor Introduction

Definition 7 (Tensor) As a generalization of the way vectors are used to parametrize
finite-dimensional vector spaces, we use arrays to parametrize tensors generated from
product of finite-dimensional vector spaces, as per [19]. In particular, we define an
l-way array as such:

a:{a 1Sikgnk,lgkgl}E[Rnlx"'an

iliQ...il|
Note that in this paper tensors and arrays can be regarded as synonymous since there
exists an isomorphism between them. Moreover, if ny = --- = n;, then we call this
tensor(array) an l-order(way), n-dimensional tensor. For the convenience of tensor
representation, we use the notation R™ with nol :=mn x - x n. In this work, tensors
are denoted with bold variables, and other fonts are reserved for matrices, vectors,
and scalars unless specified otherwise.

Definition 8 (Symmetric Tensor) Similar to the definition of symmetric matri-
ces, for an order-l tensor a with the same dimensions (i.e., ny = - =n;), also called
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a cubic tensor, it is said that the tensor is symmetric if its entries are invariance
under any permutation of their indices:

a; . =a Vo, iy, €{1,...,n}

Lo(1)" Te(l) Tyely

where 0 € G, denotes a specific permutation and G, is the symmetric group of per-
mutations on {1,...,1}. We denote the set of symmetric tensors as S'(R").

Definition 9 (Rank of Tensors) The rank of a cubic tensor a € R™! is defined as

-
rank(a) = min{r|a = Z u; @ v; @ - @ wy )
i—1
for some vector u;, ..., w;, € R™. Furthermore, according to [41], if a is a symmetric
tensor, then it can be decomposed as:

a= ;Au ® - ®u; = 2Aiu;®l

and the rank is conveniently defined as the number of nonzero \;’s, which is very
similar to the rank of symmetric matrices indeed. The most important concept in our
paper is rank-1 tensors, and for any tensor a, a necessary and sufficient condition for
it to be rank-1 is that

a=u

for some u € R™.

Definition 10 (Tensor Multiplication) Outer product is an operation carried out
on a pair of tensors, denoted as ®. The outer product of 2 tensors a and b, respectively
of orders | and p, is a tensor of order | + p, denoted as c = a® b such that:

Ciroriiviaody = iy 04y,
When the 2 tensors are of the same dimension, this product is such that @ : R™! x

R™P — R™+P) - Henceforth, we use the shorthand notation

a® - ®a:=a®
I times
We also define an inner product of two tensors. The mode-q inner product between
the 2 aforementioned tensors having the same q-th dimension is denoted as (a,b),,.
Without loss of generality, assume that ¢ =1 and
’I’Lq
[(a, b>q] g drdaedy = Z a’aig...ilbajZ...jp
a=1
Note that when we write (-, ->q, we count the q-th dimension of the first entry. Indeed,
this definition of inner product can also be trivially extended to multi-mode inner
products by just summing over all modes, denoted as (a,b),

’S'
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Lemma 9 (Section 10.2 [67]) For four arbitrary matrices A, B, C', D of compatible
dimensions, it holds that

4.3 Optimization Landscape of Tensor Formulation

We analyze (4.7) and study the global optimization landscape of this problem.
Namely, we will prove that spurious solutions far away from ground truth can be
converted into strict saddles with a large enough lifting level . Note that when [ = 1,
this problem reduces to the original problem (1.3). We start with the characterization
of FOPs and SOPs of (4.7). All proofs to this section be can found in Appendix 4.A.

Lemma 10 The tensor w € R™™! is an SOP of (4.7) if and only if

(VFPE), P(W))guy)), P(W))guy = 0, (4.92)
2(V (P (W), P(W))g,), (P(A), P(A)) g+

(A (P&).P(AY)org + (PN PGB 20 VARt )

with (4.9b) being a necessary and sufficient condition for W to be a FOP.

Now, we turn to showcasing the relationship between the FOPs of (4.7) and those
of (1.3), which also have a one-to-one correspondence in the symmetric rank-1 regime.
This is the reason why it is necessary to introduce (4.7) despite the extra complication,
as rank-1 components tensors in R”*"1°l are not lifted versions of X € R™*".

Theorem 3 For the lifted formulation (4.7), the first-order condition Vh'(Ww) = 0
holds for a symmetric rank-1 tensor w if and only if

~

W = vec(X)®!
where X € R is an FOP of (1.3).

Theorem 3 establishes a robust connection between the first-order critical points of
the lifted formulation and those of the unlifted formulation. This implies that when
first-order methods approach a critical point in (4.7), valuable information about
an FOP of (1.3) can also be readily extracted. However, the primary challenge in
optimizing (1.3) stems from spurious solutions, which cannot be escaped by first or
even second-order algorithms. Consequently, it becomes crucial to examine whether
the Hessians of the FOPs of (4.7), especially those that correspond to the spurious
solutions of (1.3), exhibit any unique properties. As it turns out, the non-global
FOPs of (4.7) display some highly favorable characteristics: they no longer constitute
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second-order critical points of (4.7) and are transformed into strict saddles when the
parametrization level [ is sufficiently large.

To motivate our analysis of conversion from spurious solutions to strict saddle
points, we first offer a closer analysis to the SOPs of the unlifted problem (1.3),
which also serves as the key intuition into our main results in this section. The main
observation is that, for a spurious SOP X and any ground truth Z with XX # ZZT,
although they all obey conditions (2.5) and (2.6), they still have intrinsic differences
that can be amplified via over-parametrization. To illustrate this phenomenon in
more detail, we will introduce the following Lemma:

Lemma 11 For an arbitrary FOP X € R™" of (1.3) satisfying the (a,,r)-RSC
property, the following inequality holds:
| XXT — M|

Now let us recall (2.6), which can be stated equivalently as
A VAXXT)) > —[V2AXXD(XUT+UXT,XUT +UXT) VU

By using the (L, r)-RSS property and the assumption that the sensing matrices are
symmetric, we can further lower-bound the right-hand side of the above inequality as

—[V2AXXDIXUTHUXT, XUTHUXRT) > —A[V2A(XXT)(XUT) = 4L XU

Therefore, it is easy to see that a sufficient condition for the spurious SOPs to
disappear is L
| XX — M*|%
5 2tr(M¥)
which means that the L, and o, parameters should be benign, and this essentially
constitutes the main proof strategy in the existing literature showing in-existence of
spurious solutions under benign RIP or RSS/RSC conditions [101, 94, 93, 52, 57].
Therefore, it is natural to ask, in the case when L, and «, do not satisfy (4.11),
whether one can systematically over-parametrize the problem so that the LHS of
(4.11) eventually becomes bigger than the RHS. We know that if we just raise both the
RHS and LHS to arbitrary powers, the sign of the inequality will not flip. Therefore,
the key insight is that if we keep the constant 4 unchanged, and lift the other terms
to arbitrary powers, we can eventually satisfy (2.6). In general terms, we take the
following steps in order to establish a strong result regarding the conversion of spurious
solutions to strict saddle points:

> 4L | XUT|% VU (4.11)

1. Proving that (V/((P(R),P(W)), A ® A) > [A,., (VA XX )| for some ap-
propriately chosen point A € R



CHAPTER 4. LIFTED TENSOR MODEL 43

2. Proving that [(A®', (P(w), P(A))g.) + (P(A), P(W))y 7 < 4L XU
for some appropriately chosen points A € R and U € R™*"

3. Finding the smallest [ that converts the spurious solution to strict saddle point,
under mild technical conditions.

Now we turn to the main result of the general-rank scenario, which concerns the
conversion of spurious solutions to strict saddle points. We present the formal results
below.

Theorem 4 Consider an SOP X € R™ " of (1.3) of general rank r < n with vy, ., =
r, such that XX T #+ M*, and assume that (1.3) satisfies the RSC and RSS conditions.
ThenWw = vec(X)® is a strict saddle of (4.7) with a rank-1 symmetric escape direction
if X satisfies the inequality

N )’ .
M — XXT|2 > 22\ (XXT) tr(M¥) (4.12)
aS

and | is odd and is large enough so that

1

l -
~ 1= log, (25)

(4.13)

where (B is defined as o
L tr(M*)N,.(XXT)
oM — XXT3
Here, L, and o are the respective RSS and RSC constants of (1.3).

B

Up to this point, we have shown that by lifting the optimization problem (1.3)
into tensor spaces, we could convert spurious local solutions into strict saddle points.
However, it is also important that we could distinguish the true ground truth solutions
Z € R™" with ZZ" = M* from the spurious ones. This requires that the true
solutions Z will remain SOPs after lifting, which we indeed prove in the following
theorem:

Theorem 5 Assume that Z € R™ " is a ground truth solution of (1.3) such that
ZZ" = M*. Thenvec(Z)® remains an SOP of (4.7) regardless of the parametrization
level I, and without the need for (1.3) to satisfy the RSC or RSS conditions.

4.4 Implicit Bias in Tensor Optimization

As the readers have observed, the rank-1 constraint on the decision variable w in
Theorem 4 is non-trivial, since finding the dominant rank-1 component of symmetric
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tensors is itself a non-convex problem in general, and requires a number of assumptions
for it to be provably correct [40, 87]. This does not even account for the difficulties of
maintaining the symmetric properties of tensors, which also has no natural guarantees.
Therefore, although this lifted formulation may be promising in the pursuit of global
minimum, there are still major questions to be answered. Most importantly, it is
desirable to know whether the symmetric, rank-1 condition is necessary, and if so,
how to achieve it without explicit constraints?

The necessity of the condition in question can be better understood through
insights from [44]. The authors argue that over-parametrizing non-convex optimiza-
tion problems can reshape the optimization landscape, with the effect being largely
independent of the cost function and primarily determined by the parametrization.
This notion is consistent with [56], which contends that over-parametrizing vectors
into tensors can transform spurious local solutions into strict saddles. However, [44]
specifically examines the parametrization from vectors/matrices to tensors, conclud-
ing that stationary points are not generally preserved under tensor parametrization,
contradicting [56]. This implies that the symmetric, rank-1 constraints required in
Theorem 4 are crucial for the conversion of spurious points.

It is essential to devise a method to encourage tensors to be near rank-1, with
implicit regularization as a potential solution. There has been a recent surge in ex-
amining the implicit regularization effects in first-order optimization methods, such
as gradient descent (GD) and stochastic gradient descent (SGD) [45], which has been
well-studied in matrix sensing settings [76, 34, 51, 48]. This intriguing observation has
prompted us to explore the possible presence of similar implicit regularization in ten-
sor spaces. Our findings indicate that when applying GD to the tensor optimization
problem (4.7), an implicit bias can be detected with sufficiently small initialization
points. This finding does not directly extend from its matrix counterparts due to
the intricate structures of tensors, resulting in a scarcity of useful identities and well-
defined concepts for even fundamental properties such as eigenvalues. Furthermore,
we show that when initialized at a symmetric tensor, the entire GD trajectory remains
symmetric, completing the requirements.

In this section, we study why and how applying gradient descent to (4.7) will
result in an implicit bias towards to rank-1 tensors. Prior to presenting the proofs,
we shall elucidate the primary intuition behind how GD contributes to the implicit
regularization of (1.3). This will aid in comprehending the impact of implicit bias on
(4.7), as they share several crucial observations, albeit encountering greater technical
hurdles. Consider the first gradient step of (1.3), initialized at a random point X, €
R*Tsearch = € X with [ X|% =1 and 7y a0, > 7

searc.

X, =Xy —nVh(Xy) = (I +n[A*AM)]) X, — [A*A(XX])] X,
= +n[AAM)) Xy — € [AAXXT)] X,
= (I +n[A*AM*)]) X, + O(€)
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where 7 is the step-size. Therefore, if € is chosen to be small enough, we have that
X, ~ (I +nA*AM*))X, ase—0

Again, according to the symmetric assumptions on A, we can apply spectral theorem
on A*A(M*) = z;l A\;v;0; for which the eigenvectors are orthogonal to each other.
It follows that X, ~ (37, (1+nX,) v0] ) X,

In many papers surveyed above on making an argument of implicit bias, it is
assumed that there is very strong geometric uniformity, or under the context of this
paper, it means that L /o, ~ 1. Under this assumption, we have f(M) ~ f(N) +
(M —N,Vf(M))+|M—N|%/2, leading to the fact that V2f(M) = A*A ~ I. This
immediately gives us A*A(M*) ~ M* sothat A, ,..., A, ~ 0as M* is by assumption
a rank-r matrix. This further implies that X, ~ (Z:Zl(l + 1)) 'v;v] ) X, which will
become a rank-r matrix, achieving the effect of implicit regularization, as X is now
over-parametrized by having r ., > 7.

However, when tackling the implicit regularization problem in tensor space, one
key deviation from the aforementioned procedure is that L,/a, will be relatively
large, as otherwise there will be no spurious solutions, even in the noisy case [101, 53],
which is also the motivation for using a lifted framework in the first place. Therefore,
instead of saying that A*A(M*) ~ M*, we aim to show that the gap between the
eigenvalues of a comparable tensor term will enlarge as we increase [, making the
tensor predominantly rank-1. This observation demonstrates the power of the lifting
technique, while at the same time eliminates the critical dependence on a small L/«
factor that is in practice often unachievable due to requiring sample numbers m in
the asymptotic regime [14].

Therefore, in order to establish an implicit regularization result for (4.7), there
are four major steps that need to be taken:

1. Proving that a point on the GD trajectory w, admits a certain breakdown in
the form w, = (Z,, w,) — E, for some Z, and E,.

2. Proving that the spectral norm (equivalence of largest singular value) of E, is
small (scales with initialization scale €)

3. Proving that (Z,,w,) has a large separation between its largest and second
largest eigenvalues using a tensor version of Weyl’s inequality.

4. Showing that, with the above holding true, w, is predominantly rank-1 after
some step t,.

Lemmas 17, 18, 13, and Theorem 6 correspond to the above four steps, respectively.
The reader is referred to Appendix 4.B for the results and for more details.
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4.4.1 A Primer on Tensor Algebra and Maintaining Symmet-
ric Property

We start with the spectral norm of tensors, which resembles the operator norm
of matrices [69].

Definition 11 Given a cubic tensor w € R™, its spectral norm || - ||g is defined
respectively as:

[wlls = sup {|(w, u®)] Jul, = 1,u € R"}

There are many definitions for tensor eigenvalues [68], and in this paper we introduce
a novel variational characterization of eigenvalues that resembles the Courant-Fisher
minimax definition for eigenvalues of matrices, called the v-Eigenvalue. We denote the
ith v-Eigenvalue of w as A\Y(w). Note this is a new definition that is first introduced
in this paper and might be of independent interest outside of the current scope.

Definition 12 (Variational Eigenvalue of Tensors) For a given tensorw € R™,
we define its k' variational eigenvalue (v-Eigenvalue) \%(w) as

[{w, )|

k € [n]

MW= mex W R
dim(S)=k

where S is a subspace of R™! that is spanned by a set of orthogonal, symmetric,
rank-1 tensors. Its dimension denotes the number of orthogonal tensors that span
this space. It is apparent from the definition that |w|g = A}(w).

Next, since most of our analysis relies on the symmetry of the underlying tensor,
it is desirable to show that every tensor along the optimization trajectory of GD on
(4.7) remains symmetric if started from a symmetric tensor. Please find its proof in
Appendix 4.B.

Lemma 12 If the GD trajectory of (4.7) {w,}$2, is initialized at a symmetric rank-1
tensor w, then {w,}2°, will all be symmetric.

4.4.2 Main Ideas and Proof Sketch

In this subsection, we highlight the main ideas behind implicit bias in GD.
Lemma 17 and 18 details the first and second step, and are deferred to Appendix
4.B. The proofs to the results of this section can also be found in that appendix.
The lemmas alongside with their proofs are highly technical and not particularly
enlightening, therefore omitted here for simplicity. However, the most important
takeaway is that for the t*" iterate along the GD trajectory of (4.7), we have the
decomposition

Wi = (2, wo) —Ep =W, — B,



CHAPTER 4. LIFTED TENSOR MODEL 47

for some Z, and E, such that |E,|s = O(e3). This essentially means that by scaling
the initialization w; to be small in scale, the error term E, can be ignored from a
spectral standpoint, and scales with € at a cubic rate. This will soon be proven to be
useful next.

Lemma 13 Given w, along the GD trajectory of (4.7), its first two v-eigenvalues,
as defined in definition 12, satisfy the relation

Aswe) _ lzolla(+nob(U) + [Blls/e _ oly(1+no5(U)" + O(e?)

AN(wy) = ol zoll(1+ o (U) — B llg/e  |v] xoH(1 4+ nok(U))t — O(e?) (4.14)

where o, (U) and o45(U) denote the first and second singular values of U = (AXA, M*) €
R™™™" and vy, vy are the associated singular vectors.

Lemma 13 showcases that when € is small, the ratio between the largest and sec-

ond largest v-eigenvalues of w is dominated by (||zo|l5(1 + nob(U)))/(Jv] 2ol (1 +
l U t

1ol (U))").

Now, if either ||z} is large or |v{ z,|' approaches 0 in value, then the ratio
may be relatively large, contradicting our claim. However, this issue can be easily
addressed by letting x, = v; + g € R™, where g is a vector with each entry being
i.i.d sampled from the Gaussian distribution N (0, p). Note that since U = (A, ),
we can calculate U and v, directly. Lemma 19 in Appendix 4.B.2 shows that with
this initialization, |v{ z,|' = O(1) and ||z,]} = O(1) with high probability if we select
p = O(1/nr). Therefore, the t'" iterate along the GD trajectory of (4.7) satisfies

AS(w,) _ (1 nob(0))"
N(w,) " (L4 ol (0));

(4.15)

with hight probability if p is small. This implies that "the level of parametrization
helps with separation of eigenvalues”, since increasing [ will decrease ratio A§(w,)/A}(w,).
Furthermore, regardless of the value of o,(U), a larger ¢t will make this ratio expo-
nentially smaller, proving the efficacy of algorithmic regularization of GD in tensor
space.

By combining the above facts, we arrive at a major result showing how a small
initialization could make the points along the GD trajectory penalize towards rank-1
as ¢ increases

Theorem 6 Given the optimization problem (4.7) and its GD trajectory over some
finite horizon T, i.e., {w,}_o with w,.; = w, —nVh!(w,), where n is the stepsize,
then there exist t(k,1) > 1 and k < 1 such that

5(wy)

i(wy)

>

< K, vVt € [t(k, 1), tp] (4.16)

>
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if Wy is initialized as wy = e:c%bl with a sufficiently small €, where t(k,1) is expressed

as
] 1+ ot (U))
t(k,01) = |In ”:UTOHQ In +770l1( ) (4.17)
K] x| 14+ noy(U)
By using the initialization introduced in Lemma 19, we can improve the result of

Theoerem 6, which does not need e to be arbitrarily small. The full details are
presented in Corollary 1 in Appendix 4.B, stating that as along as

t = In (1/k)In (14 0ot (U)/(1 + nob(0)) "

w, will be k-rank-1, as long as € is chosen as a function of U,r,n, L., and k. Note

that we say a tensor w is "k-rank-1" if A (w)/A}(w) < k.

S

4.4.3 Approximate Rank-1 Tensors are Benign

Now that we have established the fact that performing gradient descent on (4.7)
will penalize the tensor towards rank-1, it begs the question whether approximate
rank-1 tensors can also escape from saddle points, which is the most important ques-
tion under study in this paper. Please find the proofs to the results in this section in
Appendix 4.B.

To do so, we first introduce a major spectral decomposition of symmetric tensors
that is helpful.

Proposition 2 Given a symmetric tensor w € R, it can be decomposed into two
terms, namely a term consisting of its dominant component and another term that is
orthogonal to this direction:

w =N (W)w® +wli=w, +wl, w, €R", |uwy,=1 (4.18)

S

where (w, w®) = \V(w) and (w',w®) = 0. Furthermore, if w is a k-rank-1 tensor,
then [wills < kAY(w,).

Next, we characterize the first-order points of (4.7) with approximate rank-1 tensors
in mind. Previously, we showed that if a given FOP of (4.7) is symmetric and rank-1,
it has a one-to-one correspondence with FOPs of (1.3). However, if the FOPs of (4.7)
are not exactly rank-1, but instead k-rank-1, it is essential to understand whether
they maintain the previous properties. This will be addressed below.

Proposition 3 Assume that a symmetric tensor w € R" ! is an FOP of (4.7),
meaning that (4.9a) holds. If it is a k-rank-1 tensor with k < O(1/|M*|%), then it
admits a decomposition as

w = £V (W) ® + wi

with mat(w) € R™" being an FOP of (1.3) and |w'||g < kXY (W) by definition.
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The proposition above asserts that for any given FOP of (4.7), if it is k-rank-1 rather
than being truly rank-1, it will consist of a rank-1 term representing a lifted version
of an unlifted FOP, as well as a term with a small spectral norm. Referring to (4.55),
it is possible to achieve a significantly low s through a moderate number of iterations.
This result, considered the cornerstone of this paper, demonstrates that the use of
gradient descent with small initialization will find critical points that are lifted FOPs
of (1.3) with added noise, maintaining a robust association between FOPs of (4.7)
and (1.3). This finding also facilitates this subsequent theorem:

Theorem 7 Assume that a symmetric tensor W € R" is an FOP of (4.7) that
is k-rank-1 with k < O(1/|M*|%). Consider its major spectral decomposition W =
AgZ® +WT with & € R™, then it has a rank-1 escape direction z'f)z' = mat(Z) satisfies
the inequality

~

IM* — XXT|2 > 23N (XXT) tr(M*) + O(re/h (4.19)
[0

S

where 1 is odd and large enough so that | > 1/(1 —log,(28)) and j is defined as

5 L tr(MHM(XXT)
a,|M* = XXT|3 - O(rs'/t)

This theorem conveys the message that by running GD on (4.7), all critical points
have escape directions as long as the point is not close to the ground truth solution.

4.5 Numerical Experiments

4.5.1 A Motivating Example

In this section, we study a class of benchmark matrix sensing instances that have
many spurious local minima, where each instance A is defined as

M,., if(i,j) e
A (M), o= 4 iy 0 €82 (4.20)
pM,;, otherwise

where () is a measurement set such that
Q= {(i,1), (4,2k), (2k,4)| Vi€ [n],k € [[n/2]]}

[88] has proved that each such instance has @(2/"/2] —2) spurious local minima, while
it satisfies the RIP property with d,, = (1 — p)/(1 + p) for some sufficiently small p.

To study whether our lifted framework can reshape the optimization landscape
of the problem, we analyze the spurious local minima of the unlifted problem (4.3).



CHAPTER 4. LIFTED TENSOR MODEL 50

Given any spurious local minimum z, it is essential to understand whether its lifted
counterpart 2®' behaves differently in (4.5), or more precisely whether z®' is still
a spurious solution. To get some insight into this question, we conduct numerical
experiments to first find the spurious solutions of (4.3) for the measurement matrices
given in (4.20), and then find the smallest eigenvalue of the Hessian of (4.5) at the
lifted counterpart of each spurious solution. We summarize the findings in Table 4.1
for p = 0.3. Note that due to the structure of (4.20), the numbers of spurious local
minimizers are equal for two cases n and n+ 1 if [n/2] = [(n+ 1)/2], and therefore
the results for n = 4 and n = 6 are omitted.

Table 4.1: The smallest eigenvalue of the Hessian of lifted SOPs of (4.3)

n L VA IVRIE) e Auin(VER(2%) - A (V2RH(E21))
3 1 0 0 3.99 2.67
3 2 0 0.003 3.99 0.61
3 3 0.004 0.002 3.99 0.24
3 4 0.006 0.004 3.99 -0.17
5 1 0 0 4.18 1.87
5 2 0.002 0 4.56 -0.81
7 1 0.002 0 4.35 1.89
72 0041 0 5.16 -1.64

It can be observed that, for a given spurious local minimizer z of (4.3), two
properties hold: (i) 2® is still a critical point as the gradient of the corresponding
objective function h' is small (its nonzero value is due to the early stopping of the
numerical algorithm), (ii) the Hessian at this point becomes smaller as [ increases.
This means that as the degree of over-parametrization increases, the unlifted spurious
local minima will become less of a local minima and more of a strict saddle point.
This can be seen for n = 3, as every increase in the parametrization leads to a
reduced smallest eigenvalue and finally, 2® becomes a saddle point with a negative
eigenvalue at level [ = 4, meaning that there is a viable escape direction for gradient
descent algorithms. This trend can also be clearly observed for n = 5 and n = 7,
implying that the transformation of the geometric properties at %! is not an isolated
phenomenon.

Then we proceed to show the difference in optimization trajectories in both the
unlifted and lifted formulations. We choose p = 0.3 in the numerical experiment,
which translates to the RIP constant of d,, = 0.52, going beyond the known sharp
threshold of § < 1/2, and may create spurious solutions. By the special structure
of (4.20), it is easy to verify that there are theoretically 4 SOPs in total, and they
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(a) Convergence trajectories of (b) Convergence trajectories of
unlifted formulation. lifted formulation with [ = 3.

Figure 4.1: The convergence trajectories of (4.20), with n = 3,p = 0.3. Random
gaussian initialization with o = 0.01, u = 0. 40 Trials in total.

converge to the following 4 points as p becomes sufficiently small, which are:

1 1 —1 —1
Ty~ |0, 29~ | 0|, 29~ |0 |,2y~ |0 |.
1 —1 1 —1

in which Z; and Z, are ground truth solutions as Z,%; = 7,7, = M*. The other
SOPs z, and 4 are spurious solutions.

To empirically verify that p = 0.3 is indeed small enough, we simply start
from random Gaussian initialization, and apply optimization algorithms to check
to what point(s) the algorithm will eventually converge to. We use the standard
ADAM optimizer [39] with the hyper-parameter Ir = 0.02, and the 3D convergence
trajectories are plotted in Figure 7.2(a) for 40 different trials with independently
sampled initial points. In this plot, the ground truth z; and z, are labeled with big
red dots, and Z, and Z are labeled with black crosses. One can easily observe that
the theoretically derived SOPs are indeed correct, as the plot shows that regardless of
initialization, the algorithm will always converge to one of the 4 points given above,
which means that p = 0.3 is already small enough to deteriorate the landscape. Upon
a closer scrutiny, one can further realize that all 4 SOPs are equally attractive, and it
is impossible to differentiate between ground truth solutions and spurious solutions.
In particular, the success rate of applying ADAM to (4.3) with (4.20) is 57.5%. This is
highly undesirable in practice because the user will constantly obtain different results
by running the same algorithm, leading to confusion as to which result is correct,
which exactly represents the inherent difficulty of a highly non-convex optimization
problem like (4.20).
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Thus, at a high level, it is necessary to show that by using the lifted frame-
work (4.5), we can avoid converging to 23’ and 25’ since with this over-parametrized
framework, it is possible that they have become saddle points instead of spurious so-
lutions, as suggested by Theorem 4. To this end, we plot the optimization trajectory
of (4.5) with [ = 3 and (4.20) in Figure 7.2(b), where the optimizer of choice is still
ADAM, since it has the ability to escape saddle points and it makes the comparison
with Figure 7.2(a) meaningful. The reason that we chose | = 3 instead of [ = 2 is
because Theorem 4 only applies to odd values of [. However, one caveat is that since
the optimization is performed in tensor space, it is impossible to visualize. To address
this issue, instead of showing the full tensor, we perform tensor PCA along each step
of the trajectory, and plot the 3D vector that can be transformed to the dominant
rank-1 symmetric tensor via tensor outer product. In particular, given a tensor w on
the trajectory, we plot w € R3 such that:

w = arg min |w — w®|
w

meaning that w is the best projection of w onto R3. This is why Figure 7.2(b)
seems more complicated than Figure 7.2(a), as an extra layer of approximation is
applied. Nevertheless, the message of Figure 7.2(b) is unchanged, as now instead of
converging to all 4 points equally, the lifted formulation only converges to the ground
truth solutions, as no trajectory leads to the black crosses. This indicates that by
converting :Tc?l and :E?l to saddle points via over-parametrization, we gain real benefits
by avoiding spurious solutions, especially compared side-by-side with Figure 7.2(a).

4.5.2 More Experiments

In this subsection, after we run a given algorithm on (4.7) to completion and
obtain a final tensor w,., we then apply tensor PCA (detailed in Appendix 4.C) on
wp to extract its dominant rank-1 component and recover X, € R™ " such that
(Wp), = A, vec(Xp)®. Since wg will be approximately rank-1, the success of this
operation is expected [40, 87]. We consider a trial to be successful if the recovered X,
satisfies | XX ] — M*| < 0.05. We also initialize our algorithm as per Lemma 19.

Perturbed Matrix Completion

As the next step, we apply both lifted and unlifted formulations to (4.20) with
p = 0.01, yielding d,,. ~ 1. We test different values of n and e, using a lifted level
of [ = 3. We ran 10 trials each to calculate success rate. If unspecified in the plot,
we default n = 10, e = 10~7. Figure 4.2 reveals a higher success rate for the lifted
formulation across different problem sizes, with smaller problems performing better as
expected (since larger problems require a higher lifting level). Success rates improve
with smaller €, emphasizing the importance of small initialization. We employed
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customGD, a modified gradient descent algorithm with heuristic saddle escaping.
This algorithm will deterministically escape from critical points utilizing knowledge
from the proof of Theorem 4. For details please refer to Appendix 4.C.

Success Rate for Varying n Success Rate for Varying Initialization Scale
1.0/ 1.0/ Legend
0.8 o8l unlifted
[ o ] lifted
- -
© @©
X 0.6 Legend X 0.6
H —— unlifted H
S 0.4 lifted S 0.4
v v
3 3
n n
0.2 0.2
0.0 0.0
5 8 10 12 1le-3 le-a le-5 le-6 le-7
Problem Size Init Scale

Figure 4.2: Success rate of the lifted formulation versus the unlifted formulation
against varying n and e.

Additionally, we examine different algorithms for (4.7), including customGD,
vanilla GD, perturbed GD ([33], for its ability to escape saddles), and ADAM [39].
Figure 4.3 suggest that ADAM is an effective optimizer with a high success rate
and rapid convergence, indicating that momentum acceleration may not hinder im-
plicit regularization and warrants further research. Perturbed GD performed poorly,
possibly due to random noise disrupting rank-1 penalization.

Success Rate for Different Algorithms Loss Trajectory
1.0 30 | Legend
—— CustomGD

0 08 25 @
E Legte"d ah 20/ PerturbedGD
ﬁ 0.6 1 — éus om @ —— ADAM
H 015
v 0.41 —— PerturbedGD -l
::':; —— ADAM 10

0.2 5/

0.0 0 L

le-3 le-a 1le-5 le-6 le-7 0 250 500 750 10001250 15001750 2000
Initilization Scale Iteration

Figure 4.3: Performance of different algorithms applied to the lifted formulation (4.7).

Shallow Neural Network Training with Quadratic Activation

It has long been known that the matrix sensing problem (1.3) includes the train-
ing of two-layer neural networks (NN) with quadratic activation as a special case [48].
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In summary, the output of the neural network y € R™ with respect to m inputs
{d;}™, € R™ can be expressed as y; = 1"7q(X"d,;), which implies y; = (d;d}, XX ),
where ¢(+) is the element-wise quadratic function and X € R™*" in (1.3) represents the
weights of the neural network. Thus r represents the number of hidden neurons. In
our experiment, we demonstrate that when m is small, the lifted framework (4.7) out-
performs standard neural network training in success rate, yielding improved recovery
of the true weights. We set the hidden neurons number to be n for the standard net-
work training, thereby comparing the existing over-parametrization framework with
the lifted one. We employ the ADAM optimizer for both methods. Table 4.3 show-
cases the success rate under various problem and sample sizes. Sampling both data
and true weights Z € R™" from an i.i.d Gaussian distribution, we calculate the
observations y and attempt to recover Z using both approaches. As the number of
samples increases, so does the success rate, with the lifted approach offering signif-
icantly better accuracy overall, even when the standard training has a 0% success
rate.

Rate | m = 20 | m=30 | m=40 Rate | m = 30 | m=40 | m=50
n=8 | 0.9(0) | 1(0.3) | 0.9(0.5) n=8 | 0.3(0) | 0.3(0) | 0.8(0)
n=10 | 0.2(0) | 0.6(0) | 0.8(0) n=10 | 0.3(0) | 0.4(0) | 0.2(0)
n=12 | 0.1(0) | 0.4(0) | 0.8(0) n=12 0(0) 0(0) | 0.2(0)

(a) Ground truth weight with r =1 (b) Ground truth weight with r = 2

Table 4.3: Success rate of NN training using (4.7) and original formulation. The
number inside the parentheses denotes the success rate of the original formulations.
e=10"%and [ = 3.

4.5.3 “Rank-1"ness of Tensors along Optimization Trajectory

In this section, we provide some additional experiments to showcase the algo-
rithmic regularization of GD algorithm in tensor problems like (4.7).

This section involves the decomposition of tensors along the optimization trajec-
tory using a known algorithm, SSHOPM, as outlined in [40]. The S-HOPM algorithms
extract the dominant rank-1 component of a given tensor, so as a first step, we ap-
ply this to tensors on the trajectory, and obtain w;. Subsequently, this component
was subtracted from the original tensor, and the extraction procedure was repeated
on the resultant tensor w — w; to obtain a new component w,. This allows us to
Hg;”; , in the hope to approximate Aj(w,)/AY(w,) for some given ¢
in the trajectory. Note that this procedure mirrors the definition of the variational
eigenvalue of tensors defined in Definition 12. The main source of inaccuracy is that
the S-HOPM algorithm may not find the real dominant rank-1 component, as spec-
ified in the original paper. Therefore, the metric we show below only serves as an

directly compute
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approximation of \§(w,)/\}(w,).

For a practical illustration, we focused on a problem defined in Section 6.1,
characterized by a parameter n = 8. We were particularly interested in observing the
evolution of the aforementioned ratio along the optimization trajectory during the
process of gradient descent optimization. The results of this analysis are tabulated
below:

iteration | 20 | 40 | 60 80 100 120 140 | 160 | 180

e=10"|1.16 [ 0.95 | 0.82 | 0.05 | 0.03 | 0.018 | 0.026 | 0.028 | 0.013
e=10"310.13]0.43|0.44 | 0.031 [ 0.036 | 0.0008 | 0.034 | 0.028 | 0.022
e=0.1 ]0.14]0.02 {0.05|0.034 | 0.031 | 0.026 | 0.022 | 0.034 | 0.037

This table exhibits a notable trend where the tensor gradually exhibits more of
a "rank-1" nature, aligning with the assertions made in Theorem 1. Interestingly,
this behavior is observed across varying initialization scales (€), indicating that the
phenomenon is not restricted to smaller scales, thus broadening the potential appli-
cability of our findings.

This ratio provides meaningful insights into the training dynamics, which further
substantiates the claims made under Theorem 6.

4.6 Summary

This chapter proposed a powerful method to deal with the non-convexity of the
matrix sensing problem via the popular BM formulation. Since the problem has sev-
eral spurious solutions in general and local search methods are prone to be trapped
in those points, we developed a new framework via a SOS-type lifting technique to
address the issue. We show that although the spurious solutions remain stationary
points through the lifting, if a sufficiently rich over-parametrization is used, those
spurious solutions will be transformed into strict saddle points (under technical as-
sumptions) and are escapable. This establishes the first result in the literature prov-
ing the conversion of spurious solutions to saddle points, and it quantifies how much
over-parametrization is needed to break down the complexity of the problem.

Our study also highlights the pivotal role of gradient descent in inducing implicit
regularization within tensor optimization, specifically in the context of the lifted ma-
trix sensing framework. We reveal that GD can lead to approximate rank-1 tensors
and critical points with escape directions when initialized at an adequately small
scale. This work also contributes to the usage of tensors in machine learning models,
as we introduce novel concepts and techniques to cope with the intrinsic complexities
of tensors.
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4.A Missing Details of Section 4.3

Proof 7 (Proof of Lemma 10) We have
V(M) = (A%, M — M(vec(Z)®)), A®), 4 1 (4.21)
where the new map M : R s R™2 js defined as
M(w) = (P(w), P(W))o.q,

and its total derivative at w is the linear map D M : R" s R™2L given below:

DM (v) = (P(v), P(W))a.p) + (P(W), P(V))s.p- (4.22)
Combining (4.21) and (4.22) gives that
D, hl(v) = (A®, D M (v))T{A® M (w) — M(vec(Z)®)) (4.23)

The sensing matrices A, Yk € [m] are assumed to be symmetric, and therefore
(A%, D M (v)) = 2(A%, (P(v), P(W))a,q))-

Therefore, since the first-order optimality condition for (4.7) is that Dy,h'(v) =
0 Vv € R™ it can be equivalently written as

((AZLP(W)) g, (AP M (w) — M (vec(2)*)))1 5 211 =0, (4.24)

and left-hand side of the above equation yields (4.9a) after rearrangements.

For the second-order optimality condition, one can directly take the derivative of
Dy h!(v), but there is an easier way since we are only concerned the expression of its
quadratic form evaluated at some tensor A € R, For a brief moment, assume that
we aim to optimize over X € R™*"L for which

Vhl<X) = 2<Vfl(<X, X>2*[l])7 X)Q*[Z] € IR[nXT]Ol

Therefore, if we instead take the derivate of g(P(w)) with respect to w, we can simply
use the chain rule and arrive at

thl(P(W>) = <Vhl(X>»P®l>1,2,4,5,...,3z—1,3l (4.25)

Hence, if we take the derivate of Vh! and evaluate it at X in the direction of U €
Rl e obtain that

DxVhH(U) = 2(V f((X, XD 2u1))s U)o + (A% (X, U)oy + (U, X) o) (A®' W)y 5 311)
+ (A% (X, U)oy + (U, X)ou) (A®T w)s 6 a1)
Combined with (4.25), we conclude that
(V2 P(w))(v, v) = 2(VF (M (w)), (V) + (AL, DIE(v)), (A%, D M (V)
= 2V M (W), M(v)) + [(A®, D M (v)) |
which yields (4.9b) directly.
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Proof 8 (Proof of Theorem 3) When W = vec(X)®, Lemma 4.2.1 and (4.9a)
together imply that

<Vfl(<f(®l,X®l>2*[z])aj(®l>2*[z] = (VAXXT)X)® =0 (4.26)

which is equivalent to

which is exactly (2.5).
Proof 9 (Proof for Lemma 11) According to [94], Vf(M) can be assumed to be
symmetric without loss of generality. Hence, one can select uw € R™ such that
w' V(@2 u= N, (Vf(ZZ")). Then via the definition of RSC we have

v v v v v v X1 v % *

FIM7) 2 fXXT) + (VAXXT), M" = XXT) + 2| XXT = M7
Given that X is also an FOP, we have that
(VAHXXT),XXT)=0

according to (2.5) and since f(XX ) — f(M*) >0, one can write that

v v * Qg ian *
(VHRET). 0 < %218 -

after rearrangements. Furthermore, since both Vf()A()?T) and M* are assumed to be
positive semidefinite for the above-mentioned reasons, we have that

(VAXXT), M) 2 A\ (VF(XXT)) tr(M7)

which implies that

7 %12
X7

)‘mm(Vf(XXT)) < —Q 2tr(M*)

(4.27)

This completes the proof.
Proof 10 (Proof of Theorem 4) By Lemma 11, we select u € R™ such that
I VHXXu = X (VFXXT))

with X, (Vf(XXT)) <0. Now define G := —\,;,(VF(XXT)) > 0. If we label

min

Cy = (VAXXT),UUT), Cy:=[V2f(XXT)(XUT,XUT)
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Then we have that C; = —G. Also, since the sensing matrices A, can be assumed be
to symmetric, we have that

[V2A(XXOXUT +UXT,XUT +UXT) = 4[V2f(XX)(XUT, XUT).
Additionally we choose ¢ € R" to be the r-th singular value of X, with
||XQ||2 = UT(X)» lgllz =1

and define U € R™" = uq'. Subsequently, the RSS condition can be used to show
that

[V2F(XXD)XUT +UXT,XUT +UX") < L |XUT +UX"|3%
= L Ju(Xq)" + (Xq)u [} = 2L, Xq|} + 2L (¢" (X)) = 2L\, (XXT)
since X Tu =0 according to the first-order condition (2.5). Therefore,

1 .
CZ < §Ls)‘T<XXT)

Now, if we choose A = vec(U)® for the aforementioned U € R™ ", the LHS of
(4.9b) can be expressed as:

LHS = 2({A, XXT>;,3<A> UUT>2,3)l —2((A, M*);’?)(A, UUT>2,3)l + 4(||I(A, XUT>2,3”§)I

= 2C] 4 4C}
(4.28)
where the inequality follows from:

a—=b"<(a—b)", Vb>a>0

Here, since a —b = C <0, the above inequality can be used. As a result,

2 ~ ~
LHS of (4.9b) < —2G!+ LI\ (XXT)!
Part 1 2

Part 2

We know since G > 0, Part 1 is always negative assuming | is odd, and Part 2 is
always positive. Therefore, it suffices to find an order | such that

Gl > (1/29HLIA (XX T (4.29)

To derive a sufficient condition for (4.29), we first need a lower bound on G, and
Lemma (11) conveniently provides this bound, giving that

G IM*— XX (4.30)

S L,
= S tr(MY)
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Therefore, if
N !
—SM*_XXTQ 1 2l—1 Ll XXTZ
(02! ) > /2 I (R,
we can conclude that (4.29) holds, which implies that the LHS of (4.9b) is negative,

directly proving that X®! is not an SOP anymore. Elementary manipulations of the
above equation give that a sufficient condition is

o L o
IM*— XX T2 > 222N (XX T) tr(M*) (4.31)
as
We now consider (4.12), which means that

o

MEXXT) < —— | M*— XXT|? 4.32
Subsequently, define a constant v such that
~ ~ o ~ ~
LAN(XXT) =y(—2—|M*—XXT|?
MEXT) =2l I3)

Then, according to Lemma 1 and (4.30), we can conclude that v > 1. Moreover,
(4.32) also means that v < 2. With this new definition, the sufficient condition (4.31)

becomes
~

2(l-1)/1
Since we already know that 1 < v < 2, there always exists a large enough | such
that (4.33) holds, which in turn implies that LHS of (4.9b) is negative, proving that
vee(X)® is a saddle point with the escape direction vec(U)®, proving the claim.

Next, we aim to study how large | needs to be in order for (4.33) to hold. Again,
we know that

1> (4.33)

2L tr(MON(XXT) 28
o[ M* — XXT|3.

and that B < 1 due to assumption (4.12). Therefore, for (4.33) to hold true, it is
enough to have

o
1 —log,(25)

Proof 11 (Proof of Theorem 5) Let us start with the first-order optimality con-
dition. Consider the linear map in the proof of Lemma 10 M : R*! s R7°2

[—1
U=/t > 23 — — > log,(28) = | >

M(w) = (P(w), P(W))s.q,
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Again, it is apparent that

.....

Therefore, at the point M = M(vec(Z)®), we know that V f{(M (vec(Z)®)) =
0. Consequently, the LHS of (4.9a) is equal to zero since it is a product between
VUM (vec(Z)%)) and P(vec(Z)®).

Next, we turn to the second-order optimality condition. Again, recall from the
proof of Lemma 10 that

LHS of (4.9b) = 2(Vf{(M(w)), M(A)) + [{A®, D, M (A)) %
Part 1 Part 2

By the above arguments, we have V f{(M(w)) = 0 when w = vec(Z)®!, meaning that
Part 1 equals to zero. This implies that

LHS of (4.9b) = |(A®, D, M (A))|% > 0, VA

regardless of the values of A or w = vec(Z)®!.

4.B Missing Details of Section 4.4

4.B.1 More Tensor Algebra

Definition 13 Given a cubic tensor w € R™!, its spectral norm | - ||g and nuclear
norm | - ||, are defined respectively as

|w|, = inf{z INlew =D N wyl, =1,w; € uen}
j=1 j=1
[wls = sup {[(w,u®)| [lul, = 1,u € R"}
From the definition, it also follows that
Iwls < [wl.

The above definitions are similar to those for their matrix counterparts. However,
unlike the spectral norm of matrices, the spectral norm of tensors are not tensor
norms, namely that they do not obey

[{w, v)ls < [wlslvils

in general. Conversely, the nuclear norm is a valid tensor norm, and we have the
following property:
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Lemma 14 (Theorem 2.1, 3.2 [69]) For tensors w and v of appropriate dimen-
sions (if doing inner product, the dimensions along which the multiplication is per-
formed must have matching size), we have

[{w, vils < Iwlslvi.
[(w, V). < [wl.]vl.

Moreover, they have a dual norm relationship:

Lemma 15 (Lemma 21 [49]) The spectral norm | - |g is the dual norm to the
nuclear norm || - |, namely given an arbitrary tensor w, we have that

[wls = sup [(w,v)|
vl.<1

with v having the same dimensions as w.

Next, we introduce the notion of eigenvalues for tensors. There are many related
definitions, like outlined in [68]. However, we introduce a novel variational charac-
terization of eigenvalues that resembles the Courant-Fisher minimax definition for
eigenvalues of matrices, stated in Definition 12. Note this is a new definition that
is first introduced in this paper, and may be of independent interest outside of the
current scope.

It is apparent from the definition that |w| g = A}(w). Note that our definition
of v-Eigenvalues of tensors can only define n eigenvalues at most, which is not the
maximum amount of H- or Z-Eigenvalues a tensor can have [68], and it is well known
that even with symmetric tensors, its rank can go well beyond n [19]. We also
note that this definition exactly coincides with the definition of Hermitian tensor
eigenvalues (introduced here [63]) when constrained to Hermitian tensors [17]. We
also conjecture that this definition coincides with the top-n Z-Eigenvalues for even-
order symmetric real tensors [68], but it is an open question for now.

Using the definition of v-Figenvalues, we can also obtain an equivalent charac-
terization, just like the Courant-Fisher definition for matrix eigenvalues, which helps
us in proving a tensor version of Weyl’s inequality:

Proposition 4 For an integer k in [1,...,n], the k" wvariational eigenvalue (v-
Figenvalue) X} (w) of a tensor w satisfies:

[(w, w)| _ [{w, )|

max min

N(w) = mi
k(W) mn o Imax &X N8
dim(S)=k

2
dim(T)en—ks1 "5 lul%

Proof 12 (Proof of Proposition 4) We prove the proposition by contradiction.
Assume that the two formulations claimed to be identical in Proposition 4 are not the
same. We further assume that S is spanned by symmetric, rank-1 tensors {uy, ... ,u;},
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and that T is spanned by symmetric, rank-1 tensors {U_(, ki1, -, U_1}, meaning
that

<W7 uk:> 7& <W7 uf(nfk+1)>
assuming that wy, and u_,_ 1) are the inner argmin and argmaz of their respective
formulations with norm 1. Since they have to be rank-1 tensors (if not we can

decrease the proportion of orthogonal elements with higher or lower |(w,u)| values),
it is possible to denote

_ ,,®l _ 9l n
W = Uy Uy 1) = Uy i) where up, u_(,_ji1) € R

We also know that uy, and u_, 1) are linearly independent, as otherwise uy, and
U_(,_j11) will have the same inner product with w. Thus, assume
Up = §U_(n py1) T €2u£(n7k+1)7 & # 0.

It follows that

u, = Siu(§én_k+1) + fé(uf(n_kﬂ))@l +

other non-symmetric terms

Denote (uf(nfkﬂ))@l = Uy, q. Now, it follows from definition that

uk+1 1 {111, 7uk71}

and also
uk+1 ¢ Span{uf(n,k), ,1171}

as otherwise the outer maximization formulation affecting the choice of u; will make
& =0, contradicting our claim. By definition we have

Span{ula 7uk} m Span{u—(n—k)7 7u—1} = {(D}

In summary we have that gy L u_,_pq), {uy, o, u b {u_(,_g), -, u_q }, mean-
ing that we have obtained n + 1 symmetric rank-1 and n-dimensional tensors all
orthogonal to each other, which is apparently not possible, thus refuting our initial
claim.

With this new definition equipped, we proceed to show a tensor version of Weyl’s
inequality, which is key in our proof as promised.

Lemma 16 (Tensor Weyl’s) Consider two tensors w and v of the same dimension.
It holds that
AL(W) + AV (V) > A (W +v) > A0 (W) — AY(v) (4.34)

The proof of Lemma 16 is highly similar to that of Theorem 2 in [17], only substituting
for our new definition of v-Eigenvalues, thus omitted for simplicity.
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4.B.2 Main Results and Their Proofs

Note that in this section some tensor inner products will be written as if they
were matrices for clarity of writing, and some subscripts for inner-products will be
dropped when obvious. If two tensors in R™"™% are multiplied together, then the even
dimensions of the first tensor will be inner-producted with the odd dimensions of the
second tensor. When a tensor in R™"°2\ multiplies with a tensor in R™, then the
even dimensions of the first tensor will be inner-producted with all the dimensions of
the second tensor.

We start with the proof to Lemma 12.

Proof 13 (Proof of Lemma 12) We proceed with the proof by induction. First,
assume that wo = 2§ for some xy € R". One can write

Vh! (wo) = (((Z, D12 A)®la WO)Q*[Z]v <A®lv M(wq) — M<VeC(Z>®l)>>1,3,...,2171 (4.35)

where M (+) is defined per proof of Lemma 10. The difference between this formulation
and (4.24) is that we have replaced (A®', P(Wq)) g,y with (1.0 2 A)®', W) a,p, which
are equivalent, just with the second tensor having the dimensions nr,m,...,nr,m so
that Vh!(w,) has the dimensions nr, ... ,nr. Note that @ denotes the usual kronecker
product, which can be thought of a reshaped version of tensor outer product. @ 5
denotes the kronecker product only happening with respect to the first 2 dimensions of
A. From now on, we denote A, =1, Q5 A.
Now, according to the above formulation and Lemma 4.2.1, we have

Vhl(Wo) = (<Ar7 (A, mat(z,) mat(%)T - M >>3,6,...,3l 330) (4.36)
= ((ArA, mat(xy) mat(zg) " — M*) z4)®
where
(AL)*Al:= ((A,)®1 A®l) 5 5 € Rinmxnmxmxnkel (4.37)

Now, (A*A,mat(xy) mat(xy)" — M*) is an nr x nr matriz, so the above tensor is
simply a vector outer product, being symmetric by definition. Consequently, w,; =
w, —nVhl(wy) is still symmetric, since the addition of symmetric tensors maintains
symmetric property. This completes the proof of the initial step.

Then, we proceed to show the induction step. Assume that w,_; is symmetric,
meaning that

T'm.
_ t—1\®1 t—1 nr
Wtfl—Z)\j((lfj )® i €R
Jj=1
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where r,, is the symmetric rank of w,_,. This means that

m”'ﬂmar
Vh (w, ) = Y A AN ((AZA mat(zf!) mat(x

J17j27]3

t—1\T\ .t—1\®!
g2 ) 15 )T

D, ((ATA, M)l )

which again is a weighted sum of rank-1 symmetric tensors, thus being symmetric.
This shows that w, = w, | —nVh'(w, ;) is also symmetric, concluding the induction
step, thereby proving the claim.

Next, we show the breakdown of tensors along the GD trajectory

Lemma 17 The GD trajectory of (4.7) {w,}22, admits the following breakdown for
an arbitrary t:

where
Zy = (T 4+ n((AL)* AL, (M*)®))!

:Z ‘7+77 Al * Al (M*>®l>)t zE

=1

=n(((AL)*A!, (P(w zfl)aP(Wz‘fl)>2*[l]>vWifl>2*[l}

and where (AL)*Al := ((A,)®, A®),

operator.

.

4 € RInmxmrxnxnlel gnq 7 s the identity

.....

Proof 14 (Proof of Lemma 17) For this proof, we will proceed by induction. For
t =1, we have that

wy = (7 +n((AL)* AL (M*)® — (P(w,), P(wy))))w,
= (7 +n{(AL)*AL (M*)®) )wy — n{(AL)*AL, (P(wy), P(wy))) wy
=(Zy,w,) — E;

Then, we move on to the induction step, while first assuming that it holds for some
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t. One can write

= (7 +n{(A})*Al, (M*)®)) (Wt - Zt:(j +n((AL)* A (M*)®l>)t_fEi) ~E.,
=W — Zt:(j +n((AL) AL (M)®)*H1E, - E,

i=1
t+1

=Wy — ) (7 + (AL AL (M))) R,
i=1

=W — By

Following the second step in the main outline, we aim to bound the spectral
norm of E,, via the next lemma.

Lemma 18 Given a tensor B, defined in Lemma 17, assume that w, = exS', where
€ € R s the initialization scale. For everyt <t,,

8 -
|Edls < 7773 (nLy)" 2 (1 + 10, (U))* g2 (4.39)
ryoy(U)
with
gt (U)r} xdvg|!
: (STZL£/2|)$gl|3 | T(L)l/z‘ ) —2hn(9
to=1 0 > ; ] (4.40)
2In(1 + noy(U))

where U = (AXA, M*) € R " r being the rank of U, and 7 = rtm. o(U)
denotes the largest singular value of U, and v, being its associated singular vector.

Proof 15 (Proof of Lemma 18) From Lemma 14 and the definition in Lemma 17,
it is apparent that

[l < X 10T +n{(AL) AL (7)) o[ (4.41)

We proceed to derive upper bounds on the norm terms separately, and then combine
them together later. We first deal with |E,;|,. By Lemma 14, we have that

[B,], < nl{((AL*AL (P(w,_), P(wi )DL Iwi .
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Now, assume that w;_; admits the following breakdown
—1
Wi 1= Z)\j(fﬁﬁ‘fl)@)lv 2t e R, 2l =1 (4.42)

where |[w; 4|, = Zj |A\;|. Therefore,

(P(w; ,).P 121 A A, (P ()2, P((xih)eh),
leading to
(AL)'AL (P(w, ,).P 12 A A (AL AL (P((2i )2l P((xih)2h)).

For given indices j,, j, index, it follows from Lemma 4.2.1 that

(AL AL (P((25 1)), P((z5;1)®)) = (ATA, mat (2} ") mat(zj; 1) )™

J1 J2

Now, according to the definition of A, := I, @y 9 A, where @ denotes the kronecker
product (a reshaped tensor vector product, where the subscript denotes the dimension
with which kronecker pmduct 18 applied with respect to A ), we know that

(A7A mat(z} )mat( ) ) =1, ® (A*A, mat(z’ )mat( 121)T>
Hence, the ezgenvalues of the LHS are just r copies of that of the RHS [67]. This

further implies
[{AFA, mat (2 ) mat (27 1) ") |, = r|(A*A, mat(z] ") mat (i) "),
< PRI(A A, mat(z ;-f)mat( i) e
< ry/nLg|mat(zf ") mat(zi ) T g
=ry/nL,

where the second last inequality follows from the RSS property, and the last equality
follows from (4.42). Next, we apply Lemma 14 again with
[{((ADAL (P((25 1)), P((z],1)*)]. < ((ATA, mat (2] ) mat(z), ") T)],)" < r'(nL,)"?
which leads to

[{((AL)* AL (P(w;_y), P(w;_))).

Ti—1"i-1

< Z [ I, (AL AL (P (2 1)), P (25, ) ®)],
J15J2

Tl(an)l/Q Z I/\j1||Aj2|=7’l(an)”2||Wz-71||3

j17j2
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This directly gives
I1E,]l, < U(Tans)l/zHWi—ﬂE

Since our goal is to bound |E,|g, we focus on ||(T +n{(AL)* Al (M*)®))=| 4. Using
binomial formula, we obtain that

@ alanal oy =3 (1)) At al e

k=0

where ((AL)* AL (M*)®) € R"2 and (-)* just denotes repeated multiplications along
the even dimensions of the tensor, as explained in the disclaimer. To upper-bound
the spectral norm of (7 4+ n{(AL)* Al (M*)®))=t it is necessary to upper-bound the
spectral norm of (((AL)*AL (M*)®Y))*. To do so, we use Lemma 15 to reformulate

[((AL)* AL (M*)®) g = sup [((AL)* AL, (M*)®)F,v)|

Ivl.<1

Assume that the above supremum is achieved at v*, with nuclear norm decomposition

of

rv
VIS D AT @@y g, 1, ERY, 1 oy =1 p € [21]
Ju=1
with Z [A; [ =[v*l. < 1. Note that this decomposition is due to the fact that v is
not necessamly symmetric. Again, by Lemma 4.2.1,

(AL AL (M*)ehk = [(AzA, M*)H®

b

directly leading to

[{(A7)" AL, (M) Z A H% pe2(ATA ML) i

Ju=1
Since

<A*A M*> _] k241 < Ulf(U)

g ,p*2
this means that

[{(AL)"AL (M*)#)E] g = (o7 (U))" i: A, < ot'(U)
Going back to (7 4+ n{(AL)*Al, (M*)®!))t—

t

i

[(7 +n((AL)" AL (M)

i

("5 ) rnccabyal ey

-~
Iy

IA

("5 ot = oty

T
o
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Before further upper-bounding |E,||g, we define t, in such a way that

where W, is defined in (4.38). We will later justify the existence of t, and derive a
lower bound. If the above inequality holds true, we also have

Wil < Wil + 1w, — well, < 2[Wwl..
Recall the binomial formula again and decompose W, into
Lot
= 3 (Al AL ar (440
k=0
Therefore, it follows from Lemma 14 that,
i1l
Wil < (Z (")l a <M*>®l>’f|\*) wol. — (445)
k=0

for all v <t. With the repeated application of Lemma 1/, we have

[((AL* AL (M)EYE|, < (JUI)M < (rhol (0))"

Therefore, substituting back into (4.45) gives

k=0

il < (Z (1) <r’rbai<U>>k> fwoll. = (1 + 7o} (U)ol
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Nezxt, plugging the above preparatory results into (4.41), we have that

t
[Edls <Y1 +n0t () n(r?nL,) w2

s
~
—_

(1 + 0oy (U) " n(r*nL,) 28w, 4 |
t . .
Z (14 ot (U)' " n(r*nLy )2 (1 + o (U))* w2

< 8¢%(r’nL,)"? Z(l +1ijo1 (U)) (1 + Ry (U))*

i=1
t
= 8e*af |3n(r?nL )2 (1 + ot (U)! 1 Y (1 4 Fjot (U)) %~
0 1

(1470 (U))* —

(1+ 1704 (U))? -

< 83§ |12n(r*nLy )2 (1 + fiot (U))1(1 + fiot (U))*
81 3,9 1/2 ~ ®l

~ (r*nL )2 (1 + 7ot (U))* =3

ot (U) ' 0
rt8

— 3Ll/21+~lU3t ®l)3
7’%]0%((])6 (TL s) ( 7701< )) ”xo H*

= 8¢’ag [In(r*nL)"?(1 + foy (U) (geometric sum)

<

proving the original claim of this lemma (4.39). Now, we give a lower bound on t,.
By recalling the breakdown (4.44), we have

il > [l > (.05
t
oy () T(AZA, M*)eg,|)'
k=0
t
¢ (4.46)
=Y () el
k=0

t

t
3 ()l el ol = lofaol'1 + ot ()
k=0

with vy being the first singular vector of I, QU . Since the sensing matrices are assumed
to be symmetric, U is also symmetric, hence the singular vectors of U* coincide with
those of U. By (4.39), we also know

W, —w,ll, '8

o (L i (U)
fl. = motan® ol

(o) (L4 ot (U))!

ella§
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Therefore, for (4.43) to hold true, we need the RHS of the above equation to be smaller
than 1, meaning that

I 1l T

~ rpoi(U) (o] zp)’ !
3tIn(1 4 7oy (U)) <In (87‘162Li/2||a:6®l|]§’ nl/2 +tIn(1 +noy(U))

This further implies that for (4.43) to hold, t should satisfy

n rlUUl1(U> (UImo)l In TéJUl1<U) (UIxo)l
srie2L?|ag!|s n'/? < _\BrieLafl nt
< ~ ~
3In(1 + 7ol (U)) — In(1 + nat (U)) 2In(1 + 70t (U))

which after rearrangement gives (4.40).

Now, we present the proof of Lemma 13.

Proof 16 (Proof of Lemma 13) Using the tensor Weyl’s inequality (Lemma 16),
we have that

Ap(wy) < A3(Wy) + [Eq (4.47)

AM(wy) > AT (W) — [ Eqls (4.48)
The only remaining part of the proof is the characterization of A} (W,) and A\§(Ww,).
The first term is easy because we already have the characterization from the proof of
Lemma 18, with (4.46) giving rise to

[wlls = elv] zo|' (1 + 7o (U))!

Also, by the definition of v-eigenvalues and (4.44), we have that

t

~ . t * * !

Ay (w,) = max Iy e E (k)nk ([T (AXA, M*)Fz|]
dim(V)=2 |v|,=1 #=0

t
. t Ty
—claglh, mx min 3 () ) TUr
dim(V)=2 Jv],=1 k=0 0li2

t
. t
<claly mpx mip () ) U
dim(V)=2 [Jv|,=1 k=0

t
t
—clanls 3 () les e
k=0
t

—claals 3 ()0

k=0
= €|z l5(1 + nob(U))*

where vy is the singular vector associated with o§(U) Vk € [t]. Finally, combining
the above equations yields (4.14) after rearrangements.
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Next, we present a supporting lemma which explains that Gaussian concentra-
tion is suited for our purpose.

Lemma 19 Let xy = vy + g € R™, where g is a vector with each entry being i.i.d
sampled from Gaussian distribution N (0, p). For some universal constant C, the
follwoing inequalities hold:

P (o] 2o = (1= 0(/p)'] =1 —2exp(—=C/p),
P [zl < (V14 p?nr + 0(p%2))] > 1= 2exp(—C/p)

Proof 17 (Proof of Lemma 19) We know that
o120 = [T+ vigl > 1= |v] x|

Theorem 2.6.3 of [19] (general Hoeffding’s) gives that with probability at least 1 —

2exp(—12/p?),
gl <t Vo, =1

which leads to the first concentration bound after substituting t = O(\/p) with some
constant ¢,. Then, Theorem 3.1.1 in [79] gives

P [|H$0||2 —V1+p*nr| < t] > 1 —2exp(—cyt?/p?)

for g ~ N(0,pl,,) and some constant cy. This is because E[|zol3] = 1 + p?nr.
Substituting t = O(p>/?) yields that

P [”%”2 < V1+pPnr+ (9(103/2>] > 1—2exp(—cy/p)
which results in the second bound. Now, we choose C' = min{cy, ¢y }.

Then, we prove our main theorem of this section.

Proof 18 (Proof of Theorem 6) First, set 2 = k, implying that { < 1/2. We
aim to derive sufficient conditions for the following inequalities to hold:

A() < SA (), (1.49)
[Bi], < SAi(w,) (4.50)

By recalling Lemma 13, a sufficient condition for (4.49) is that

¢
elzola(1 4+ nos(U))" < Sefofmo| (1 +no (U))!
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implying that

t

dnlt (Lo (0]
Clojaolt — \1+noh(U)

which after rearrangements gives t > t((, 1), as defined in (4.17). Then, we obtain a

sufficient condition for (4.50), which by Lemma 18 is

&t

2
-3 Ll/21 ~ Ul3t ®l3<_ T ll lUt 4.51
o () A Aoy (U)) < Gl (ol @) (45)

contingent on the fact that t <t,. Therefore, before going further, we need to verify
that t(C, 1) < t, for some small enough €. (4.40) implies that a sufficient condition is

l l IR ( o} (U)rly |x3v1|l>
In ( 2”5(30”2 ) In <1 + 7]0’1(U>> < STLLZS/QHI%l”Eez nl/2
Clvy @' 1+nok(U)) =  2In(1+70L(U))

Additionally, by leveraging the identity x/(1 + x) < In(1 + x) < x, we derive the
following identity

In(1 + 7o (1)) rp(L+not(U)
In (1+no§(U)>1 = 1 (0y(U) /oy (U)) T 452)

Hence,

21n<2||w0||a>5<1n< ot (U)ry |x§v1|l>

o o)l |agu,l ( 2|l > ) (4.53)
= 8(r2nL )2 283 \ Clof 2!

Notice that all of the above terms are independent of €, and are positive. Therefore, a
small enough € exists. Also notice that a smaller step-size n will yield a loser bound
on € through the dependence of Z. Now, consider (4.51) again. Since T is finite, a
sufficient condition for (4.51) is

2 <

T
16(r2nL,) 72 a2 \ (14 0y (U)1)? |

which can again be achieved by setting a small enough €, since all other terms are
positive and not dependent on it. In summary, if we choose a small constant €
satisfying both (4.53) and (4.54), and if t, > to (which again can be achieved via a
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sufficiently small €), it is already sufficient for both (4.49) and (4.50) to hold, thereby
giving:
A3(We) + |Eq s
Al (W)

<<

If ¢ < 1/2, this further implies
3 V ({; 1 V({; U (R
M (W) > 2X05(W,y) + 2[Efls = [Eqfs < 5)\1(“’1:) — A5(wy) <

As a result,

Ay (W) Ao (Wy) + Bl s < (AT (W) _
AT(wy) AT (wy) — IElls — )‘11}6"70/2

which proves (4.16).
Theorem 6 can also be improved via Lemma 19 as stated below.

Corollary 1 (Corollary to Theorem 6) Consider the optimization problem and
the GD trajectory given in Theorem 6. If additionally xy = v, + g € R"™ and
g~ N(0,pI,,), then

-1

i?ggii <k for tx<In <%> In (ig—:égg;) (4.55)
provided that
€= \/_ 2 (£)32/2, where == ry(1+ 103(U)) (4.56)
r2nL l/4 4 ’ 1 —(05(U) /o1 (U))!

with probability at least 1 — 2exp(—C/p) for some universal constant C' as p — 0,
where o(U) and o4(U) are the first two singular values of U = (A,,b)s, with vy
being the associated singular vector of o(U) (< denotes “asymptotic to”, meaning
that the two terms of both sides of this symbol are of the same order of magnitude).

Proof 19 (Proof of Corollary 1) The proof is similar to that of Theorem 6 (note
¢ = k/2), and therefore we only highlight the difference. We know that (4.26) holds

true if
2]z ! 14 ot (U)
t>1In (T—021> In (—}) ;
Clog ] 1+no(U)
Ul1<U>T%J |9Ug"’1|l ( 2”%”[2 )H

€2 <
= 8(r2nL )2 |z 3 \Clof zl
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It results from Lemma 19 that for our choice of initialization, we have that
lzolly = i 2ol < 1

with probability at least 1 —2exp(—C/p). Thus, as lOng as

t=In (%) In G j: ZZ; ;) (4.57)
oy 1/2 —E/2
‘= 2(\/5(((:2)an)£/4 @) (4.58)

(4.26) will hold with high probability. Next, in order for (4.50) to hold fort < t,, we
know that .
< rpo(U)' Jo] @) ( 1+N77‘7l1<U> > )
16(r*nL )" |2 \ (1 + 7oy (U)")?
Via the same order of magnitude argument, we know that the following condition is

sufficient for (4.50):

= \/— Y2 (140t (U)
= r2nL I A+ 50, ()P

( 1+ noy(U) )
(1 + 7o, (U)1)?

t./2

Now,

2
3 2 In(1 + o, (U))
= exp (Eln(z) In (1+no§1(U)> )

where the second equality follows from the substitution of t,, and the last inequality
follows from (4.52). As a result,

N S (450
A(r nL l/4 '
Therefore, taking the minimum of (4.58) and (4.59), we know that
€= \/_ )2 C)35/2 (4.60)
r2nL l/4 2 '

is sufficient for (4.49) and (4.50), leading to (4.55) via the same steps in the proof of
Theorem 6.
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4.B.3 Additional Details for Properties of Approximate Rank-
1 Tensors
We start with the proof of Proposition 2.

Proof 20 (Proof of Proposition 2) Given a symmetric tensor w, it can be de-

composed as
rw
i=1

where r,, is W’s symmetric rank. Now, consider the vector wy, € R™ that attains the
spectral norm, meaning that (w,w®') = \Y(w). One can decompose each af;?l mnto a
parallel component and an orthogonal component. To be more specific,

2l—1
l
v=aftof = 2 = @)+ ) 1 @81 r 8 8]
j=1 f -

J l—j

and it is apparent that the second term is orthogonal to w®' via Lemma 4.2.1. There-

fore, we just organize all components w®' together and all orthogonal components

together. By definition, the parallel component has the magnitude \j(w). Also, by
the definition of v-eigenvalues, |[w'|g < Ay(w,) since otherwise the dominant direc-
tion of wi will just become the second eigenvector of w.

We now provide the proof of Proposition 3.

Proof 21 (Proof of Proposition 3) According to (4.9a), the gradient of (4.7) with
respect to w can be expressed as

ViR (w) = (((A])* AL, (P(W), P(W))s. — (M)®), W)y (4.61)
where (AL)*Al is defined in (4.37). In light of (4.18), one can write

(P(w), P(W>>2*[l] = <<P®l7 P®l>2*ma wQ® W>3,4,7,8,...,4l—1,4z
= ((P®,P®) w, @w,) +2 ((P®, P®) w, @ wl) + (P® P®) wi®wl)

a; az as

where w, = \Y(w)w®. Note that we have dropped the subscripts from the second line
and henceforth for sake of simplicity. By using this logic, (4.61) can be written as

Vhi(w) = (((AL)*Al (a, — (M*)®)), w,) +h,

hy =(((A})" A% ay), wh) + (((A})* A% ay), w,) + (((AL)" Al ay), wi)+
(A7) Al ag), w,) + (((AL)"Al ag), wi) — (((A7)" AL, (M*)®), wi)
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The first term can be analyzed as
(((AL)* A% ay), wi) = ((A))" AL (PE, P¥), w, ® w, ® wT))
and by Lemma 14, we have that
[{((AL)* Al ay), wh] s < [(PEP), w, @ w, ® wh)|s[(A])"A],

= [(P(w,),P(w,)) ® wl|g(AL)* A", (4.62)
< A (W) wis[ (AL)* AT, < kAT (w)*r!|A*AL

The second inequality follows form that for all uy € R™ and uy € R™ such that

lurllz =1 and |luy |, = 1:

[(P(w,), P(w,)) ® wi|g = max((P(w,), P(w,)) ® W', uf* @ uf")

mat())* w5

max (

Repeating this process leads to
Ihslls < (35 + 36 + K% + K[ M) AT (w) r! | A* AL (4.63)

Similarly, |hyllg = OAY(w)3r|A*A|L). Now, if we assume that w is an FOP of
(4.7), it means that Vhi(w) = 0, further implying |[Vh'(w)|g = 0, and by reverse
triangle inequality,

0= [VhI(W)[s = [Ihy]ls — [hs] 5|

which means that ||hy||g = |hy|g. Since there always exits a small enough k such that
|hs|lg = c|lhy|g with ¢ < 1, and therefore the only possibility that the above inequality
holds true is that |hy|g = |hy|g = 0. This implies

(hy,u®) = ((A, mat(w,) mat(w,) " — M*)T(A, mat(w,) mat(u) ")) =0 VuecR"™

which is equivalent to the FOP condition for (1.3), which is (2.6), meaning that
mat(wgy) € R™" is an FOP of (1.3). Note that we can always scale A and b together
so that |A*A|L can be normalized to 1.

Finally, we prove the main result of this paper.

Proof 22 (Proof of Theorem 7) We consider the SOP condition for (4.7), which
is (4.9b) for some rank-1 tensor A. We can express it as
V2RI (W)[A, A] =2 (VL (P (W), P(W)) ), (P(A), P(A))g. +
a; (W)
[(A®!, (P (W), P(A)) g, + (P(A), P(W)) o) | F

as(w)
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Let A be defined identically to that in the proof of Theorem j, meaning that A =
vec(U)® := u®. By the same logic of (4.61), we have that

a, (W) = (((A})* AL (P(W), P(W)) — (M*)®'), A® A)
(AD-AL (PP Pe) W@ W @ A®A)) —((A))"AL (M) @ A® A))

Since W is a k-rank-1 tensor, by denoting A\gz®' := w,, we represent

o’

b, =((AL*AL (P?, P w, @ W, ® A ® A))+
2 ((AL)"AL ((P®LP®) w, @ Wl @ A® A)) +
Cy
(AL)*AL ((P®LP®) Wi @Wwl @ A® A))

Co

Hence,
a;(w) =a;(w,) +2c; + ¢,y

Now, we turn to ay(W). Since the sensing matrices are assumed to be symmetric, by
(4.28), we have

a,(W) = 4(((A;)" A, (P(W),P(A)), A® W)
=4 ((AL)*AL ((P®, P®) w ® A W A))
b,

again following the procedures in (4.61). Given the decomposition of W, we decompose
b, similarly to by :

b, =((AL)*AL (P®,P®), w, @ AQw, ® A))+

r

(AL*AL (PP, P¥) w, @ A@W @ A+ Wi @ A@w, ® A)) +

T

((AL)*AL (P2 P®) Wi @ A@W!® A))

Cyq

Combining everything together, we have

V2R (W)[A, Al = a;(w,) + 2¢, + ¢y + ay(w,) + 4eg + 4cy
= V2hl(w,)[A, A] + 2¢c; + ¢y + 4eg + 4cy

In addition, following the same procedures in (4.62),

2C1 + C2 + 4C3 + 4C4 <1OH ‘I‘ 5/‘4, ))\2 ZHA*AHZ
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Now, since w, is a lifted version of FOP for (1.3) (via Proposition 2),

2 ~ ~
v2hl<W0>[A, A] < _2Gl + ﬁLiAT(XXT)l

where X = mat(2) and G := —X,,, (VF(XXT)) > 0. Remember that the choice of
A is identical. Therefore, a sufficient condition for V2h!(W)[A, A] < 0 is that

9 .
2G! > FLZSAT(XXT)Z + (10 + 52) A3t | A* AL
We can derive another sufficient condition to the above inequality, which is
_ 55 21 1 A x
G > 2V L A (XXT) + (5k + 5k2/2)V/ A | A7 A,

since (a+b)1/l < a'' b1 fora,b > 0. Following the steps of the proof of Theorem 4,
we obtain that

~ ~ L ~ ~
IM* — XX T2 > 20220 (XX T) tr(M*) + O(rst/h)
«

S

is sufficient. Note that |A*A|, can be rescaled to 1 easily. Following the same steps,

we can set A
L tr(MHA(XXT)

[0 — XXT|3 - 0(rstlh)

and this leads to the desirable result.

b=
as

4.C Custom Algorithms
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Algorithm 1: CustomGD Algorithm

1 Input: learning rate, n, r, I, prob_ params, loss, g_thres, buffer, beta,
gamma, eta_ 0

2 Initialize variables: A, b, escape_saddle, buffer limit, buffer step

3 Function init (starting point, Ir)

4 if Ir #+ 0 then
5 ‘ learning_rate <— Ir // Update learning rate if specified
6 end
7 return {'curr_iter’ : 0,/t_noise’ : 0, curr_w’ : starting point}
8 Function update (gradients, opt_state)
9 curr__iter <— opt_ state['curr_iter’] + 1
10 t_ noise < opt_ state['t_ noise’]
11 curr_w < opt_ state[’curr_ w’|
12 if ||gradients| < g_thres and curr_iter > 100 then
13 if escape_saddle then
14 t__noise < curr_iter
15 w_s < find rank 1 component of curr_w using tensor PCA
16 direction <— find the escape direction of w_s // According to
Theorem 7
17 this eta < eta_ 0
18 while loss(curr_w + this_eta * direction) > loss(curr_w) + beta
* this_eta * inner_product(gradients, direction) do
19 this_eta < this_eta * gamma // Update eta using gamma,
backtracking line search
20 end
21 updates < this eta * direction
22 escape_saddle + False
23 end
24 else
25 buffer step < buffer step + 1
26 if buffer step == buffer_limit then
27 escape_saddle < True
28 buffer step < 0
29 end
30 updates < -learning_rate * gradients
31 end
32 end
33 else
34 escape_saddle < False
35 updates < -learning rate * gradients
36 end
37 return updates, {'curr_iter’ : curr_iter," t_noise’ : t_noise,” curr_w’ :
curr_w + updates}
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Algorithm 2: Tensor PCA Algorithm

1 Input: tensor, Ir, epochs, gradnorm_ epsilon, lambd_ v, key
2 Function tensor_PCA(tensor, Ir, epochs, gradnorm__epsilon, lambd_v, key)

3

© 0 g O A

10
11
12
13
14
15
16
17
18
19
20

21
22
23

Function loss(eigenval eigenvec, tensor)
lambd, v < eigenval eigenvec
k < len(tensor.shape)
for each element in tensor.shape do
| tensor <— inner(tensor, v)
end
first_ term < square(lambd) * power(norm(v), 2*k)
res < first term - 2*lambd*tensor
return res

s < tensor.shapel0]
if lambd v is None then
v < random.normal(shape=(s,)) / sqrt(s)
lambd < 0.001 * random.normal()
end
else
‘ lambd, v < lambd_ v
end
loss, grads, lambd_ v < adam_optimize((loss, (lambd, v), tensor), Ir,
epochs, gradnorm,__epsilon)
lambd, v < lambd_ v
sign < sign(lambd)

return sign * power(abs(lambd), 1 / len(tensor.shape)) *

A%
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Chapter 5
Modified Loss

5.1 Background and Related Work

The optimization landscape of non-convex problems is notoriously complex to
analyze in general due to the existence of an arbitrary number of spurious solutions
(a spurious solution is a second-order critical point that is not a global minimum).
As a result, if a numerical algorithm is not initialized close enough to a desirable
solution, it may converge to one of those problematic spurious solutions. It may
be acceptable (depending on the application) if the algorithm finds a critical point
different from but close to the true solution, while converging to a point faraway
implies the failure of the algorithm. In this chapter, we study this issue by focusing
on (1.3), and provide an analysis of what can be done without the introduction of
drastic over-parametrization like those elaborated in the previous two chapters.

The matrix sensing problem (1.3) is a canonical problem bearing many important
applications, such as the matrix completion problem/netflix problem [15, 16], the
compressed sensing problem [21], the training of quadratic neural networks [48], and
an array of localization/estimation problems [104, 36, 75, 8, 74, 23]. As a result, a
better understanding of (1.3) not only helps with the above applications, but also
paves the way for the analysis of a broader range of non-convex problems. This is due
in part to the fact that any polynomial optimization can be converted into a series of
matrix sensing problems under benign assumptions [61].

As previous discussed, the major drawback of (1.3) is that it may have an arbi-
trary number of spurious solutions, which cause ubiquitous local search algorithms to
potentially end up with unwanted solution. Therefore, there has been an extensive
investigation of the non-convex optimization landscape of (1.3), and the centerpiece
notion is the restricted isometry property (RIP) given in Definition 1. Intuitively
speaking, a smaller RIP constant means that the problem is easier to solve. For in-
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stance, if d,, = 0, then A(-) becomes the identity operator with b = vec(M™*), which
makes the problem trivial to solve for M*.

5.1.1 Related Works

In this section, we delve into the optimization landscape of the non-convex prob-
lem delineated in equation (1.3), highlighting the pivotal role played by the Restricted
Isometry Property (RIP). Despite the extensive literature addressing this topic, we
argue for the necessity of further investigation. We structure our discussion around
two scenarios: the RIP constant being less than 1/2 and greater than 1/2, to provide
a clearer and more organized review.

The significance of the RIP constant in influencing the optimization landscape
was first brought to light through the application of convex semidefinite programming
(SDP) relaxations in matrix sensing challenges, as evidenced by seminal works [72, 16].
These studies demonstrated that a condition of §;, < 1/10 guarantees the exact
recovery of M* via SDP relaxation. Further exploration by [5] on the factorized
version of the problem, represented in (1.3), revealed that a tighter RIP constraint,
dy, < 1/5, ensures that all second-order critical points (SOPs) are indeed the true
solutions. This was corroborated by subsequent research [105, 46], which extended the
sufficiency of this RIP constraint to arbitrary objective functions for global recovery of
M*. A novel approach by [101], employing a "certification of in-existence” technique,
established d,, = 1/2 as a critical threshold. This finding indicates that below this
threshold, (1.3) is devoid of misleading solutions, whereas exceeding it introduces
potential counter-examples with SOPs that diverge from the true solutions. These
results are achieved in the exact-parametrized space, namely when ry,.4, = 7.

The complexity of the problem escalates significantly as the RIP constant sur-
passes the 1/2 threshold. [101]’s investigation into cases where d,, > 1/2 demon-
strated that spurious solutions can be avoided locally around M*, with the feasibility
dependent on the RIP constant and the dimensions of M*. An alternative strategy,
over-parametrization, involves setting 7,4, > 7, and was proven by [97] to ensure
that every SOP X satisfies XXT = M*. This is contingent upon choosing r such
that it satisfies a specific relation with r and the RIP constant. Further insights into
addressing the challenges presented by high RIP constants in under-sampled scenarios
are provided through innovative methods such as SDP relaxation and tensor space
lifting, detailed in Chapters 3 and 4 respectively.

Despite these advancements, the optimization landscape of (1.3) under a high
RIP constant remains a complex issue. The proposed solutions either necessitate sig-
nificantly increased algorithmic complexity (via methods such as over-parametrization,
SDP relaxation, or tensor optimization) or require initialization near the true solu-
tion, M*. This observation leads us to question: Can we achieve global guarantees
for (1.3) with 6 > 1/2 without substantially escalating the computational complexity?
This chapter seeks to provide a partial affirmative response through the introduction
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of high-order losses.

5.2 Global Landscape of Matrix Sensing

As discussed previously, the optimization landscape of (1.3) is benign (in the
sense of having no spurious solutions) if J,, < 1/2 and benign in a region close to
M* if §,, > 1/2. In this section, we study the landscape far away from M* in the
problematic case d,, > 1/2. To do so, we focus on the first-order critical points, and
study the eigenvalues of the Hessian at these points because if they exhibit negative
eigenvalues, it means that these first-order critical points are strict saddles, possessing
escape directions. Please recall Lemma 4 for the definition and form of the FOPs and
SOPs of this problem. Focusing on (2.6), it is apparent that for a first-order critical
point X satisfying VA(X) = 0, the Hessian V2h(X)[U,U] can be broken down into
the summation of two terms:

m

Ty:=> (A, UXT+XUT)? = |AUXT + XUT)|3,
i=1

Tpi= ) (A4, XXT = M)(A,,2007)
=1

=2(Vf(XXT),UUT)

Assuming that the problem (1.3) satisfies the RIP condition with some constant 4,
for p > 2r, one can write

T, < (1+6,)|[UXT + XUT|%,

which means that T} can be upper-bounded naturally since U can be assumed to have
a unit scale without loss of generality. Therefore, if we can somehow show that there
exists U € R™*"searct to0 make T, negative with a sufficiently large magnitude, then X
becomes a saddle point. Combining the RIP condition and mean value theorem, we
know that

FOM) > f(XXT) + (VA(XXT), M* = XXT)
1—6, ~ A
FSRIRRT - A
Given VA(X) = 0 and the expression in (2.5), we obtain that
IR 1—6, -~
(VAERET). M) < 1 PR -

since f(XXT) > f(M*) by definition. This implies that there exist directions that
make T, have large negative values when XX is far away from M*. Expanding on
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this simple observation, we formally establish Theorem 8, serving as the cornerstone
of all results in this paper. A detailed proof can be found in the Appendix.

Theorem 8 Assume that (1.3) satisfies the RIP, ., property with constant § €

[0,1). Given a first-order critical point X € R Tsaren of (1.3), if it satisfies the
inequality
1496

1—9
then X is not a second-order critical point and is a strict saddle point with Vgh()?)
having a strictly negative eigenvalue not larger than

»  |XXT — M3(1—9)
tr(M*)
Theorem 8 states that if a first-order critical point is far from the ground truth,
it cannot be a spurious solution, and always exhibits an escape direction with its
magnitude proportional to the squared distance between XX and M*. This further
elucidates the fact that even if (1.3) is poorly initialized, it is possible to converge to

a vicinity of M* with saddle-escaping algorithms, which we will numerically illustrate
in Section 5.4.

[XXT = M2 > 200 te(M)o, (X2, (5.1)

2(1 4 0)o,.(X)

(5.2)

5.3 Higher-Order Loss Functions

Although Theorem 8 proves that critical points far away from the ground truth
are strict saddle points, the time needed to escape such points depends on the local
curvature of the function [24, 33]. Therefore, it is essential to understand whether the
curvatures at saddle points could be enhanced to reshape the landscape favorably. In
this section, we provide an affirmative answer to this question by using a modified
loss function.

Our main goal in matrix sensing is to recover the ground truth matrix M* via m
measurements, and we minimize a mismatch error in (1.3) to achieve this goal. An [,
loss function is used in (1.3) due to its smooth and nonnegative properties, which is
the most common objective function in the machine learning literature. However, in
this work, we introduce a high-order loss function as penalization, namely an [, loss
function with p > 2, and show that this will reshape the landscape of the optimization
problem. To be concrete, we propose to optimize over this modified problem:

min A} (X) = h(X) + ARY(X) (5.3)

X ER™*Tsearch

where

=
ks
i

1
7IAXXT) =0l (5.4a)

=

=

=
i

1A o (5.4b)
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where [ > 2 is an even natural number to ensure the non-negativity of the loss
function and A > 0 is a penalty coefficient. The intuition behind using a high-order
objective can be easily demonstrated via the scalar example:

1
min g(z) := (22 — a)’ (5.5)
z€eR )
for some constant @ € R and an even number [ > 2. This problem is a scalar analogy
of h!(X) with A4(-) being the identity operator. In this example, the derivatives are

z(x? —a) !,

(¢ —a) 2 [(1— 1)22? + (2 — a)]

It can be observed that as [ increases, the first- and second-order derivatives will
be amplified, provided that (z? — a) is larger than one (i.e., our point is reasonably
distant from the ground truth a). However, there is an issue with optimizing g(z)
directly, and we need to use h (X) instead of h!(X). If we directly minimize h!(X)
with [ > 2, the Hessian at any point X with the property X X7 = M* becomes zero,
which makes the convergence extremely slow as approaching the ground truth (with
a sub-linear rate). This is because the local convergence rate of descent numerical
algorithms depends on the condition number of the Hessians around the solution
[86]. Conversely, when using the original objective (1.3), we see from (2.6) that even
if XX is close to M*, the Hessian is positive semidefinite, and therefore adding
h'Y(X) to the objective of (1.3) will not change the sign of the Hessian around the
solution.

Secondly, if [ is large and | XX T — M*| ; is less than one, the term (A4,, XX —
M*)'=1 appearing in the gradient of h!(X) (see Lemma 20 in Appendix) is very small
due to its exponentiation nature. This means that minimizing h!(X) alone will suffer
from the vanishing issue and slow growth rate in a local region around M™*.

Due to the above reasons, we mix h!(X) with the original objective in (1.3) and
use the parameter A\ to control the effect of the penalty term, in an effort to balance
local rate of convergence to M* and prominent eigenvalues of the Hessian at points
far away from M*. By using (5.3), we can arrive at a similar result to Theorem 8

Theorem 9 Assume that the operator A(-) satisfies the RIP, .. property with
constant § € [0,1). Consider the high-order optimization problem (5.3) such that
[ > 2 is even. Given a first-order critical point X € R™*"scaren of (5.3), if

(146) + A1 —1)(1+6)"/2D!"2
(1—26)/2+ AC(I)(1 — 6)1/2D=2’

D? > tr(M*)o2(X) (5.6)

then X is a strict saddle point with Vzh(f() having a strictly negative eigenvalue not
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larger than

SR D?*(1—9)
l2(1+5) (X) —tr(M*> }+ -

AD2 [2(1 L )2(1 — 1o, (R)2 — 21T ‘”WO(ZW]

tr(M*)

where R
D= |XXT = M|,

C(l) 1= m2-0/2 ( 2 - 1 1) (5.8)

Theorem 9 serves as a direct generalization of Theorem 8, as it recovers the statements
of Theorem 8 when [ is set to 2 or A is set to 0. By comparing (5.7) to (5.2),
the bound on the smallest eigenvalue of the Hessian has an additional term that is
amplified by | XX — M* 1552, As a result, X has a more pronounced escape direction
in (5.3) compared to (1.3) when |XXT — M*| is large. Concerning the tightness
of the bounds in Theorem 8 and Theorem 9, they depend on three factors: the RIP
constant, the Frobenius norm of M*, and the smallest non-zero singular value of X.
While the RIP constant indicates problem difficulty and is immutable, knowing that
X has a minimal singular value (which is computable), suggests that the bounds can
be very tight. This implies that if X is a second-order point, it will be very close to
M*. Recent studies [76, 34] have shown that a small random initialization can lead
to small " eigenvalues during the optimization process, resulting in tight bounds for
our new Theorems.

Theorem 9 contrasts well with our approach introduced in Chapter 4. The-
orem 4 states that by lifting the search space to the regime of tensors, a higher
degree of parametrization can amplify the negative curvature of Hessian. In contrast,
Theorem 9 offers similar benefits by using a more complex objective function. This
means that without resorting to massive over-parametrization, similar results can be
achieved via using a more complex loss function. Having said that, the technique
presented in [56] can amplify the negative curvature of those points X that satisfy

1+06

[XXT = M7 = 75 tr(M")o7(X)

where in comparison to (5.6) the multiplicative factor to tr(M*)o2(X) becomes

(1+8)+ A1 —1)(1+6)/2D\=2
(1—0)/2+AXC(I)(1 —6)V/2Dl=2’

which is on the order of magnitude of

() 69)")
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B2 A(VPRX) A (VPRUX)) X (V2FHX7)) M (VX))
5 0.429 3.898 0.54 4.72
5 0.5 0421 4.106 0.54 4.72
5 5  0.385 9.117 0.54 4.72
5 50 0.354 69.816 0.54 472
7 0 0516 3.642 0.72 5.08
7 05 0.502 4.122 0.72 5.08
7 5 0.456 10.006 0.72 5.08
7 50 0.433 75.786 0.72 5.08
9 0  0.609 3.930 0.90 5.44
9 0.5 0.601 4.315 0.90 5.44
9 5  0.557 10.915 0.90 5.44
9 50 0.528 84.002 0.90 5.44

Table 5.1: The smallest eigenvalue of the Hessian at a spurious local minimum X and
ground truth X*, with ¢ = 0.3 and additional high-order loss function [ = 4 (note
that X is not too far from X* since Theorem 8 shows that there are no such spurious
solutions). The problem satisfies the RIP,,  -property with § = }—;i = 0.538 >
1/2, and hence has spurious local minima.

making the region for which this amplification can be observed smaller if [ is large.
This means that by utilizing a high-order loss, we can recover some of the desir-
able properties of an over-parametrized technique, but a gap still exists due to the
smaller parametrization. Combining a high-order loss function and a modest level of
parametrization is left as future work.

5.4 Numerical Experiments

This section serves to provide numerical validation for the theoretical findings
presented in this paper. We will begin by investigating the behavior of the Hessian
matrix when utilizing high-order loss function. Subsequently, we will showcase the
remarkable acceleration in escaping saddle points achieved by employing Perturbed
Gradient Descent in conjunction with high-order loss functions compared to the stan-
dard optimization problem (1.3). Lastly, we will provide a comparative illustration of
the landscape both with and without the incorporation of high-order loss functions.

We first focus on a benchmark matrix sensing problem with the operator A

defined as (i) € Q
M. . if (4,7) €
L= 7’37 ’
AG(M)” { eM... otherwise '’ (5.9)

17

where Q = {(4,1), (4,2k), (2k,7) | Vi € [n],k € [[n/2]]}, 0 < e < 1. [88] has
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= (1—¢)/(1+¢), this problem
has O (2("/ 2l — 2) spurious local minima. In order to analyze the influence of high-
order loss functions on the optimization landscape, we conduct an analysis of the
spurious local minima and of the ground truth matrix for both the vanilla problem
(1.3) and the altered problem (5.3) with | = 4. We consider a spurious local minimum
X (note that such points cannot be too far away from M* due to Theorem 8). The
findings of this study are presented in Table 5.1, while the ratio between the largest
and smallest eigenvalues at the spurious local minimum X is plotted in Figure 5.1.

proved that while satisfying RIP property with ds,.

search

R
o~ ;W

102 4

Amax/Amn( P F(X))

10!

A

Figure 5.1: The ratio between the largest and smallest eigenvalue of Hessian at the
spurious local minimum A, /A, (VZh! (X)) with respect to A under different size
n.

min

Table 5.1 shows that as the intensity of high-order loss function increases via
A, the behavior of the Hessian eigenvalues exhibits distinct characteristics across
different points in the optimization landscape. Specifically, the smallest and the
largest eigenvalues of the Hessian at the ground truth matrix remain constant. In
contrast, the smallest eigenvalue of the Hessian at the spurious local minimum, which
is initially positive, decreases as A increases. This decreasing trend facilitates the
differentiation of spurious local minima from the global minimum, as they become
less favorable. Simultaneously, the largest eigenvalue of the Hessian matrix at the
spurious local minimum increases at a significantly faster rate. This suggests that the
incorporation of high-order loss functions amplifies the magnitude of the eigenvalues in
the Hessian matrix at spurious local minima, increasing the ratio between the largest
and smallest eigenvalues, while having no impact on those at the ground truth.

Following that, we will present the acceleration in effectively navigating away
from saddle points. For randomly generated zero-mean Gaussian sensing matrices
with i.i.d. entries, we apply small initialization and perturbed gradient descent which
adds small Gaussian noise when the gradient is close to zero. In Figure 5.2, we
compare the evolution of the distance from the ground truth matrix | X X7 — M*|
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and the value of the objective function hl()? ). Although Figure 5.2 demonstrates
the behavior for a single problem, we observed the same phenomenon for many dif-
ferent trials. By incorporating a high-order loss function (specifically, with [ = 4),
the optimization process exhibits enhanced convergence compared to the standard
vanilla problem. This accelerated convergence can be attributed to the presence of
a substantial negative eigenvalue of the Hessian matrix, which effectively facilitates
the algorithm’s escape from regions proximate to spurious local minimum.

2.05 x 10*
1= A=1
100 4 A=1 2% 10
w 195x 101 — A=0 y
w A=0 = . /
= s 1.9x 10
s 101 | 185 x 10
I 5 3] — /
. 3 18x10 S
1 <
L S = 175 x10%
= 10744 Py 17% 10!
.
T T T T T T 0 2000 4000 6000 8000 10000
0 2000 4000 6000 8000 10000
1 102 A — A=1
10 —_— -1 _\ -
\ =
104 A A=0 —
s 1004 T
& 1077 -
b
10-12 4 Teniad, 1072 A
ﬁ t.’ﬂ
10713 4 I *
: : : : : : 0 2000 4000 6000 8000 10000
0 2000 4000 6000 8000 10000 Iteration Steps

Iteration Steps
(b) A = 0 converges to a spurious so-

(a) A =0 converges to ground truth lution around the ground truth

Figure 5.2: The evolution of the objective function and the error between the ob-
tained solution X X7 and the ground truth M* during the iterations of the perturbed
gradient descent method, with a constant step-size. In both cases, high-order loss
functions accelerate the convergence.

Finally, we explore the optimization landscape in terms of the distance from the
ground truth matrix and the intensity of high-order loss functions. We explore both
random Gaussian sensing matrices with size m = 20,n = 20, and the problem (5.9)
with the parameters n = 21 and [ = 4. The result is plotted in Figure 5.3, where the
x-axis and y-axis are two orthogonal directions from the critical point to the ground
truth. By looking horizontally across the figure, we can observe that increasing the
parameter A leads to the amplification of the least negative eigenvalue of the Hessian
matrix at saddle points. As A increases, the least eigenvalue of the Hessian at this
saddle point, which is initially negative, decreases further. This reduction in the
magnitude of the negative eigenvalue makes it easier to escape from this saddle point
during optimization.

This example could also directly corroborate Theorem 9 (Thereby Theorem 8).
For instance, when A = 0.5, the minimum eigenvalue of Hessian matrix at the
first-order critical point X is A, (V2h!(X)) = —3.201, which is smaller than the

min
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Figure 5.3: The value of the minimum eigenvalue of the Hessian around saddle points:
The first row is for randomly generated Gaussian matrix with m = 20, n = 20, and the
second row is for problem (5.9) with n = 21,e = 0.1. A = 0 (left column), A = 0.5
(middle column), A = 5 (right column), with x-axis and y-axis as two orthogonal
directions from the critical point to the ground truth.

eigenvalue-bound —2.274; the distance from the ground truth matrix is D := | XX T —
M*||p = 11.0, larger than the distance bound in (5.6), validating Theorem 9.

5.5 Summary

This chapter theoretically establishes favorable geometric properties in those
parts of the space far from the globally optimal solution for the non-convex matrix
sensing problem. We introduce the notion of high-order loss functions and show that
such losses reshape the optimization landscape and accelerate escaping saddle points.
Our experiments demonstrate that high-order penalties decrease minimum Hessian
eigenvalues at spurious points while intensifying ratios. Secondly, perturbed gradient
descent exhibits accelerated saddle escape with the incorporation of high-order losses.
Collectively, our theoretical and empirical results show that using a modified loss
function could make non-convex functions easier to deal with and achieve some of the
desirable properties of a lifted formulation without enlarging the search space of the
problem exponentially.
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5.A Missing Details of Chapter 5

Lemma 20 Given the problem (5.3), its gradient and Hessian are given as

(VRI(X — Z A XXT — MHEY AL UXT + XUT) YU € R Tsearan - (5.10)
and
VIR (X)[U, U =D (A, XX — M2
=1
(1= D)(A, UXT + XUT)2 +(A;, XXT — M*)(A,,20U0")] YU € R searen
(5.11)

Lemma 21 Given the problem (5.4b), its gradient, Hessian and high-order deriva-
tives are equal to

(A, M — M*)'=1A,, (5.12a)
=1
V2fU(M)[N,N] = (1—1)Y (A;, M — M*)'"%(4,,N)> VN € R™*", (5.12b)
=1
l ( 1)' S 1—
VP fY(M)[N,...,N] = 0 p)'Z<AZ,M M*'P(A;, NY? VYN € R™"™ (5.12¢)
p times 1=1

Proof to both lemmas are simply multivariate calculus, thus obviated here for sim-
plicity.

Proof 23 (Proof of Theorem 8) Via the definition of RIP, we have that
. . . 1—6 ~ -
FOM) 2 f(XXT) +(VAXXT), M* = XXT) + —— XX — M}

Given that X is a first-order critical point, it means that it must satisfy first-order
optimality conditions, which means

leading to
. 1—8 ~ ~
(VAXXT), M) < ——— | XX — M|
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since f()?)z'T) — f(M*) > 0 via the construction of the objective function. Fur-
thermore, as it is without loss of generality to assume the gradient of h(M) to be
symmetric [94], and the fact that M* is positive-semidefinite, we have that

(VARXT), M) 2 Ayin(VAXXT)) (M)

This leads to the fact that

o v *||2
(- OIXLT - _

/\m1n<vf(XXT>) < - 2tI'<M*)

(5.13)

Given the optimality conditions, we know that for X to be a strict saddle, we must
prove that there exists a direction A € R™*"searen such that

2AVF(XXT),AAT) + [V2f(XXT)] (XAT + AXT, XAT+AXT) <0 (5.14)

P(A)

If we choose
A=uq", Julylaly =1, 1Xaly = 0,(X), uTVARE = A (VAR X)),
then it follows from the RIP condition that
(1+0)|XAT + AXT|%
(1+6)|u(Xq)" + (Xq)u |}
21+ 0)I Xally + 21+ 6) (¢ (XTw)’
2(1 + 6)o,.(X)?

P(A) <

because of XTu=0 due to the first-order optimality condition. Therefore,
AVF(XXT),AAT) + P(A) < 2(f(XXT),AAT) +2(1 + 6)o,(X)?
— AVS(RRT),uuT) +2(1 + 0)o,(X)?
= 20" V(XX )u +2(1 4 6)0,.(X)?
=2 (Aain(VAXXT)) + (14 8)0,(X)?)

(1—8)| XX — M|}
tr(M*)

<21+ 6)0,(X)% —

Therefore, in order to make (5.14) hold, we simply need

1+96 5

[XXT = M7} > 20— tr(M")o, (X)?

which concludes the proof.
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Before proceeding to the main proof, we first present a technical lemma:
Lemma 22 Given a vector x € R™, we have that
2], < nt/P= ez, ¥ q=p (5.15)

Proof 24 (Proof of Lemma 22) By applyz'ng Holder’s inequality, we obtain that

1_2 P
n n q n q
S =3 a1 < (z ) Z) (zu ) - (z qu)
=1 =1 i=1 =1

Then

3

1/p

nxnpz(zw) <((z) ) =(zm|q) WA = plefag,
=1 =1 =1

Proof 25 (Proof to Theorem 9) First, we define
FA(M) = (M) + Af'(M)

Then, focusing on h'(-), using Taylor’s theorem with remainder, we get

PO =f(RXT) 4 (VARRT),A) + V2R A, A] 4

1 L 1 3 (5.16)
5vi“:fl(XXT) [A, A A] + - + ﬁVlfI(M) A, ..., A]
where M is a convex combination of M* and XXT and
A=M—XXT.
Using Lemma 21, we know that
1 PPN l -1 &
HVPfZ(XXT) A, ..., A] = 'p, Z AV Vpe[2,1—1],
lvlfluw) (A _ (=D lim A VM e R
Il (L =) 4 A )= —

Hence, it is possible to rewrite
!
P = PR+ (VARET)A) + 3 LSy
aa aa N e (=1
= FURXT) 4+ (VAR A) + 3 (4,40 3

 ARRT) 4+ (VARRT), M — R8T+ (L

— DJAXXT — M)
(5.17)
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By Lemma 22, if l > 2, it holds that
[AXXT — M|} 2 [AXXT = M) [hm 20/
Furthermore, combining this with the RIP property gives rise to
[AXXT — M9} = (1= 6)2|XXT — M |fpm @172 (5.18)
Therefore we know that
FHUM*) = fHEXT) +(VAEXT), M = XXT) + (1= 8)PC) XX T — M(*HZF |
5.19

if we summarize constant relevant tol as C(l). Thus, using the above inequality twice,
once with | =1 and another with general [, we get
P = F(M) + AL (M) > XX+ (VAKXXT), M= XXT) + L (5.20)
in which
L= 2000 = RETIR 4 21— 820 — XX,

[f)z' is a first-order critical point, a repeated application of (5.10) yields that

VAKXXNHX =0 = (VAXXT),XXT)=0
which after rearrangement leads to

(VAKX M) < [00) = (XXT)] — 1 (5.21)
<-—L

where the second inequality follows from the fact that M* is the global minimizer
of (5.3). Since the sensing matrices can be assumed to be symmetric without loss
of generality [94], VFY(XXT) can be assumed to be symmetric according to (5.12a).
This means that

(VAKXXT), M) > tr(M*) Ay (VA(XXT))

which further leads to

. L
; HXXT) < — 22
Now, we turn to the Hessian of fi(-), which given (20) is
V2RA(X)[U, U =Y [MI—1)(A;, XXT — M2 + 1] (A, UXT + XUT)?
=1

B

+ Z [A(Ai,XXT — M*>l—1 + <Ai,XXT _ M*>] <Ai7 2UUT> VU € R™XTscarch

=1

A
(5.23)
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Since
(A, UXT+ XUTY? <) (A, UXT + XUT? < (1+0)|UXT+ XUT|3 Vi
i—1
then if we choose U such that
U= un7 ||u||27 ||Q||2 = 17 ||XQ|‘2 = 0-7"()2)7 uval<XXT)u = Amm(vfg\(XXT»v
it can be shown that
I+ OIUXT + XUTE = (1+ 0)u(Xg) " + (Xq)u [
5 o - 2
=2(1+8)|Xql% +2(1+6) (¢" (X))
= 2(1+ 6)o,(X)?

since (Xq)uT =0 as u is an eigenvector of fo\(XXT), which is orthogonal to X as
required by (5.10). This further implies that

B< i (A= 1)(A;, XXT — M*=2(A, UXT + XUT)?| 4 2(1 + 6)0,(X)?

<201+ 6)0.(X)? [AMI—1)) (A4, XXT —M*)2+1

1
|AXXT — M=% +1]
(JAXXT — M*)[,)2 +1]
<v1+6||XXT M| )" =2 + 1]
(

(5.24)
Also, given (5.12a) and our choice of U, it is apparent that

A=2uTV (XX )u=2X,,(VI(XXT)) (5.25)

Therefore, given (5.24), (5.25) and (5.22), by substituting them back into (5.23), we
arrive at

V2RH(X)[U, U] < 20,(X)? (A1 = 1)(1 + 6)Y2| XXT — M52 + (1 + 6) ) —2L/ tr(M*)
(5.26)
so the right-hand side of the above equation is strictly negative if (5.6) is satisfied.



Part 11

The Noisy Regime

96



97

Chapter 6

Noisy Matrix Sensing

6.1 Background and Related Work

In this chapter, we turn our attention to matrix sensing problems that are cor-
rupted by noise. As preluded in the introduction section, we aim to solve a problem
in this form

min  hy (X) = SJAXXT) B2, b=b-w, w~D (6.1)
X ER™*Tsearch 2

for the exact definitions of .4 and our motivations to solve this problem please refer
to Section 1.2 for a more in-depth, detailed review. While the notation b € R™ is
oftentimes used to represent general measurements, in this work we use b to specif-
ically represent the noiseless, perfect measurements, i.e., b = A(M*), where M* is
the ground truth matrix we hope to recover. We model the noise w separately in the
objective function of (6.1). Random noise w is assumed to be a general, unknown
noise, and our only requirement is that it come from a finite-variance family. From
the user’s perspective, w is hidden in the measurements and the user can only observe
b — w, which is the vector of corrupted measurements.

In this chapter, due to the presence of noise, it is impossible to assert that
the global solution will remain M* due to the perturbations. Therefore, we instead
quantify the distance between any arbitrary local minimizer X and the ground truth
in terms of the Frobenius distance | XX — M*| through the lens of restricted
isometry property (RIP). In particular, we upper-bound the Frobenius distance using
the problem’s RIP constant. This work offers the tightest known bound in terms of
RIP constant in the noisy and over-parametrized regime. Additionally, although we
focus on the symmetric matrix sensing problem, our results can also be applied to the
asymmetric problem in which M* is allowed to be rectangular. This is due to the fact
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that every asymmetric problem can be equivalently transformed into a symmetric one
[24]. For detailed introduction please refer to Section 2.2.

6.1.1 Related works

It is widely known that the RIP condition may guarantee some desirable proper-
ties for the geometric optimization landscape of (6.1), namely that is has no spurious
local minimizers [24, 5, 65, 103, 106, 101, 93, 6, 27, 107, 95]. Please find introduction
to RIP conditions and related concepts in Section 1.2. However, the majority of the
existing results have focused on the noiseless, exact-parametrized regime, in which
w =0 and 7, = 7. Although these problems results offer strong theoretical guar-
antees, they cannot be applied to many real-world problems due to using a simplistic
noiseless model and making assumptions on the availability of . Thus, this work
aims to address this issue.

There are some recent papers that specifically study the overparametrized prob-
lem (6.1) in the noiseless setting, namely when w = 0. In particular, both [48, 76]
analyze the convergence behavior of (6.1) with a small initialization. In particular,
these papers state that as long as the initialization and step size are small enough,
the vanilla gradient descent algorithm applied to noiseless (6.1) will converge to the
ground truth solution M* after a sufficient number of steps. Aside from the lack of
consideration of noise, these results differ from our work in two main aspects. First,
these results require that the initialization be small in magnitude, while our work
studies the global optimization landscape of the problem using the strict saddle prop-
erty that is agnostic of initialization. Since an initial point with a small magnitude
may be far from the true solution, this could seriously affect the convergence time.
Therefore, it is important to allow initializing the algorithm at any provided estimate
of the solution rather than zero. Second, the RIP bounds needed in both of the above
paper scale with 1/4/7, the condition number of M*, and an unknown constant that
could be potentially tiny. These bounds are greatly reduced in our work to only
scale with 1/4/7/7qaren, Which is much better than 1/4/r. On the other hand, [95]
developed a sharp bound on the absence of spurious local minima for problem (6.1) in
the noiseless case. The paper states that if the measurement operator A satisfies the
(0, T'seqren + 7)-RIP property with 6 < 1/(1 4 \/7/7searcn), then the gradient descent
algorithm can be applied to solve the problem with enough iterations. In the exact
parametrized case, this simplifies to 6 < 1/2, which is a sharp bound due to the
counterexample given in [98] that has spurious local minima under § = 1/2.

When we consider the effect of the noise, the problem becomes highly compli-
cated since the global minimizer X* of (6.1) does not satisfy the equation X*X*T =
M* anymore as the noise deteriorates the landscape of (6.1). Therefore, instead of
ensuring that there exists no spurious local minima, we study the distance between
any local minimizer X and the ground truth under the presence of RIP assumption.
One important result in the noisy and exact-parametrized regime is as follows:
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Theorem 10 (/5], Theorem 3.1) Suppose that w ~ N (0,021, ), r =r and A(-)

search —

has the (8, 4r)-RIP property with § < 1/10. Then, with probability at least 1 —10/n?,
every local minimizer X of problem (6.1) satisfies the inequality

log(n)

XX — M| < 20

w*

Theorem 31 in [24] further improves the above result by replacing the (8, 4r)-RIP
property with the (6, 2r)-RIP property. [47] studies a similar noisy low-rank matrix
recovery problem with the [; norm.

In the noisy and overparametrized regime, [108] also offers some local guarantees.
In that work, the authors proved that if the gradient descent algorithm is initialized
close to M* and that n is large enough, the projection of XX ' onto the rank-r sub-
manifold is close to M* after enough steps. Although both the above paper and
our work both focus on the noisy and overparametrized regime, there are two ma-
jor differences. First, the above paper only focuses on sub-Gaussian sensing matrix,
whereas our work can be applied to all sensing matrices that satisfy the RIP condi-
tion. Although the sub-Gaussian sensing matrix meets the RIP requirement when
the number of measurements is large enough, there are many problems satisfying
the RIP condition which are not sampled from sub-Gaussian distributions. Second,
the abovementioned work only analyzes local convergence, while we will prove the
absence of spurious local minima and global strict-saddle property which can ensure
a polynomial-time global convergence with an arbitrary initialization.

In the noisy and overparametrized regime the existing literature lacks a global
guarantee similar to Theorem 10 to characterize the optimization landscape regard-
less of initialization. This issue will be addressed in this paper by showing that a
major generalization of Theorem 10 holds for the noisy problem in both the exact
parametrized and the overparametrized regimes, provided that the same RIP assump-
tion needed for the noiseless problem holds. Table 7.1 briefly summarizes our result
compared with the existing literature.

Earlier works such as [107, 31, 7] established the strict saddle property for the
noiseless and exact parametrized problem, which essentially states that any matrix
whose gradient is small and whose Hessian is almost positive semidefinite (gradient
and Hessian of the objective function evaluated at this matrix) must be sufficiently
close to a global minimizer. This property, together with certain local regularity prop-
erty near the ground truth, implies the global linear convergence for the perturbed
gradient descent method. In other words, the algorithm will return a solution X sat-
isfying | XX T — M*|» < e after O(log(1/e)) number of iterations [31]. In this paper,
we prove a similar strict saddle property for the noisy problem in both the exact
parametrized and the overparametrized cases. However, in the noisy problem, even
if the local search algorithm finds the global minimum, it cannot recover the ground
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Paper Noise RIP Parametrization Initialization

5] Gaussian J<1/10 Tsearch = T Arbitrary

[95] Noiseless § < 1/\/T/Tsarets Tearch = T Arbitrary

[48] Noiseless § < O(1)(k3/rlog’n)) Tsearch = T 1 Xolp < O(1/n)

76 Noiseless  6< O(1/(+*v7)) Pecarch > 7 IXolr < 0(552)

[108]  General Noise sub-Guassian A Teoarch = T X0 Xg =M,
m > O(nlog’ n) < 0O(o,.(M7))

Ours  General Noise & < 1//7/Tsaren Tsearch = T Arbitrary

Table 6.1: Comparison between our result and the existing literature. x :=
[M*|y/0,(M*) is defined to be the condition number of the ground truth.
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Figure 6.1: The evolution of the error between the found solution XXT and the
ground truth M* during the iterations of the gradient descent method for a noisy
problem with the RIP constant 6 < 1/2.

truth exactly. As such, it is no longer meaningful to discuss the convergence rate
because the error between the found solution and the ground truth has two sources:
the difference between X*X*" and the ground truth M* where X* denotes an exact
global minimizer of the problem, and the difference between XXT and X*X*T where
X denotes the approximate solution found by the algorithm. Using our strict saddle
property, we can characterize the time point when the errors induced by the above
two sources are roughly equal. As demonstrated via an example in Fig. 6.1, it is
almost futile to run the algorithm beyond a certain number of iterations since the
error will be dominated by the former one after some time.
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6.2 Global Optimization Landscape under Noise

We first present the global guarantee on the local minimizers of the problem
(6.1). To simplify the notation, we use a matrix representation of the measurement
operator A as follows:

A = [vec(A,),vec(Ay), ..., vec(A, )T € Rm*"*,
Then, A vec(M) = A(M) for every matrix M € R™"*™.

Theorem 11 Given arbitrary positive integers 7,4, and v such that vy .. > 7,
assume that the linear operator A satisfies the (0,7 4oren, + 7)-RIP property with § <
1/ (14 /T[T souren)- For every e > 0 and every arbitrary local minimizer X € R Tscarcn
of problem (6.1) satisfying:

VR, (X)| =0, VZh,(X) =0,
Zf Ursearch()z) S \% ﬁ’ then
E\/ Tsearch + \/Ezrsearch - 16(1 - 5)6\/ 7asearch”]\4>’< ”F

and conversely if arsemh()?) > /155, then
1—96 . \/T/Tsearch ”XXT_M*”F <
1+ 2+ \% ’r/’rsearch (63>

267 +2¢/26(T+ )(IXXT — Me|}? + o] ),

all with probability at least P(|ATw| < €) in both cases.

Note that (6.3) is a quadratic inequality of [XXT — M* ||;/2, so it can be easily
arranged such that [ XXT — M* ||},/2 is on the LHS of the inequality with a constant
on the RHS, just as (6.2). The reason that (6.3) is presented in the current form is
because the closed-form expression will be overly complicated, and we recommend
solving the quadratic inequality with parameters plugged in.

The reason for the existence of two inequalities in Theorem 11 is the split of its
proof into two cases. The first case is associated with the r,., ,-th smallest singular
value of X being small and the second case is the opposite, which are respectively
handled by Lemma 24 and Lemma 25.

Theorem 11 is a major extension of the state-of-the-art result stating that the
noiseless problem has no spurious local minima under the same assumption of the
(0, Tsouren, + 7)-RIP property with § < 1/(1 + \/7/rgaren)- The reason is that in
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the case when the noise w is equal to zero, one can choose an arbitrarily small e
in Theorem 11 to conclude from the inequalities (6.2) and (6.3) that XX = M*
for every local minimizer X. Moreover, when the RIP constant & further decreases
from 1/(1+4 /T /T qneets), the upper bound on | XX T — M*|» will also decrease, which
means that a local minimizer found by local search methods will be closer to the
ground truth M*. This suggests that the RIP condition is able to not only guarantee
the absence of spurious local minima as shown in the previous literature but also
mitigate the influence of the noise in the measurements.

Compared with the existing results such as Theorem 10, our new result has two
advantages even when specialized to the exact parametrized case 7,4, = 7. First,
by improving the RIP constant from 1/10 to 1/2, one can apply the results on the
location of spurious local minima to a much broader class of problems, which can
often help reduce the number of measurements. For example, in the case when the
measurements are given by random Gaussian matrices, it is proven in [13] that to
achieve the (d, 2r)-RIP property the minimum number of measurements needed is on
the order of O(1/62). By improving the RIP constant in the bound, we can signifi-
cantly reduce the number of measurements while still keeping the benign landscape.
In applications such as learning for energy networks, there is a fundamental limit on
the number of measurements that can be collected due to the physics of the prob-
lem [35]. Finding a better bound on RIP helps with addressing the issues with the
number of measurements needed to reliably solve the problem. Second, Theorem 10
is just about the probability of having all spurious solutions in a fixed ball around
the ground truth of radius O(o,,) instead of balls of arbitrary radii, and this fixed
ball could be a large one depending on whether the noise level o, is fixed or scales
with the problem. On the other hand, in Theorem 11, we consider the probability
P(|ATw| <€) for any arbitrary value of e. By having a flexible €, our work not only
improves the RIP constant but also allows computing the probability of having all
spurious solutions in any given ball.

In the special case of rank 7., = r = 1, the conditions (6.2) and (6.3) in
Theorem 11 can be substituted with a simpler condition as presented below.

Theorem 12 Consider the case r,,,,., =T = 1 and assume that the linear operator
A satisfies the (6,2)-RIP property with 6 < 1/2. For every € > 0, with probability at
least P(|ATw| <€), every arbitrary local minimizer X € R s of problem (6.1)
satisfies

3(1+v2)e(1 + 0

XXT — M| <

(6.4)

In the case when the RIP constant ¢ is not less than 1/(1 + \/7/Twaren)s it 8
not possible to achieve a global guarantee similar to Theorem 11 or Theorem 12 since
it is known that the problem may have a spurious solution even in the noiseless case
[101, 95].Instead, we turn to local guarantees by showing that every arbitrary local
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minimizer X of problem (6.1) is either close to the ground truth M* or far away from
it in terms of the distance | XX — M*||z.

Theorem 13 Assume that the linear operator A satisfies the (0,7 4o, + 7)-RIP
property for some § € [0,1). Consider arbitrary constants € > 0 and 7 € (0,1) such
that § < /1 — 7. Every local minimizer X € R™*"scarch of problem (6.1) satisfying

IRRT = M|y < TA (M) (6.5)
will satisfy

6\/ T search + \/€2rsearch - 16<1 - 5)6\/ I’nsearch||]\4>’< “F

XXT - M*|p < .
| I < s (6.6)
if arsemh()?) < /155, and will satisfy
. 1+ 6)32C(r, M*
HXXT — M|y < Vel +9) (7, ) (6.7)

vVi—71—-9§
if arsemh(f() > /15, all with probability at least P(|ATw| <€) in both cases. Here,

C (1, M*) = \/2(\ (M*) 4+ T\, (M*)).

The upper bounds in (6.5), (6.6) and (6.7) define an outer ball and an inner ball
centered at the ground truth M*. In particular, the radius of the outer ball is the
RHS of (6.5), and the radius of the inner ball is either the RHS of (6.6) or (6.7), and
for convenience’s sake it can be assumed to be the larger of the two. Theorem 13
states that there is no local minimizer in the ring between the two balls, which means
that bad local minimizers are located outside the outer ball. Note that the problem
could be highly non-convex when ¢ is close to 1, while this theorem shows a benign
landscape in a local neighborhood of the solution. Furthermore, similar to Theorem 11
and Theorem 12, as € approaches zero, the inner ball shrinks to the ground truth.
Hence, when the problem is noiseless, Theorem 13 shows that every local minimizer X
satisfying (6.5) must have XXT = M*. It is true that most well-posed problems will
exhibit a benign landscape close to their global minimizer. However, depending on
the nature of the problem, this local neighborhood can be arbitrarily small in general.
What Theorem 13 does is that we characterize the size of this neighborhood using the
RIP constant and noise intensity. In the noiseless and exact parametrized case, this
exactly recovers Theorem 5 in [93]. Our theorem significantly generalizes the previous
result by showing that the same conclusion also holds in the overparametrized regime.

As a remark, all the theorems in this section are applicable to arbitrary noise
models since they make no explicit use of the probability distribution of the noise. The
only required information is the probability P(|ATw| < €), which can be computed
or bounded when the probability distribution of the noise is given, as illustrated in
Section 6.4. The proof to all Theorems presented in this section can also be found in
Appendix 6.A.
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6.3 Strict Saddle and Convergence under Noise

The results presented above are all about the locations of the local minimizers.
They do not automatically imply the global convergence of local search methods
with a fast convergence rate. To provide performance guarantees for local search
methods, the next theorem establishes a stronger property for the landscape of the
noisy problem that is similar to the strict saddle property in the literature [24], which
essentially states that all approximate second-order critical points are close to the
ground truth.

Theorem 14 Given arbitrary positive integers v pq.c, and v such that v .., > T,
assume that the linear operator A satisfies the (3,7 o4, + 7)-RIP property with § <

)7 searc

/(L4 \/T/7eqren)- For every e >0, k > 0 and every matriz X € R Tsearn satisfyying

HVhw(ff)H < KXy V2hy(X) = —xI

Zf O-Tsearch(X) S \/ ﬁ?’ th@n

\/ T search + \/C T search — 16(1 - )C\/ search”M ||F

(:=€e+K/2 (6.8)

search’

XX 2 < s (6.9)
and conversely if Ursemn<X> > %, then
1—9¢ \V/ A
B T/Tsearch ||XXT_M*||F < C\/;
1+ 2+ V 7ﬂ/’r‘seamh (61())

oo «1/2 «1/2
+ 20/ A+ OIXXT — M2 4 M),
all with probability at least P(|ATw| < €) in both cases.

Note that (6.10) is a quadratic inequality of ||)A()A(T — M*H}J/Z, so it can be easily
arranged such that [ XXT — M* H;ﬂ is on the LHS of the inequality with a constant
on the RHS, just as (6.9). The reason that (6.10) is presented in the current form
is because the closed-form expression will be overly complicated, and we recommend
solving the quadratic inequality with parameters plugged in. By Theorem 14, the
error | XXT — M*| in both (6.9) and (6.10) is induced by the measurement noise
characterized by €, together with the inaccuracy of the local search algorithm captured
by k. XXT will be close to the ground truth if € and x are relatively small, and
the contribution from k to the bounds is exactly half of that from e. Since € is a
constant which cannot be decreased during the iterations, it is reasonable to design
an algorithm to find an approximate solution X satisfying (6.8) with e = k/2 to strike
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a balance between the probabilistic lower bound and the required number of iterations.
To simplify the analysis, our strict saddle property in Theorem 14 is different from
the traditional ones [7, 24] which are usually stated as that | XX T — M*||, is small if
X satisfies

search’
for a sufficiently small £ > 0. In [31], it is proven that the perturbed gradient descent
method with an arbitrary initialization will find a solution X satisfying (6.11) with
a high probability in O(poly(1/<)) iterations. Using the assumption that » > 0 and
thus 0,,,, is not the ground truth, in the proof of the next theorem, we will see that
the conditions in (6.11) will imply the ones in (6.8) if & is chosen appropriately. This
establishes the global convergence for the noisy low-rank matrix recovery problems
in both the exact parametrized regime and the overparametrized regime.

Theorem 15 Let D € (0,1] and Ay > 0 be constants such that

Ain (V2ho (X)) < =,

min (

holds for every matriz X € R scarch with HXHQ < D, where hy is the noiseless objective

function, i.e. the function h in (6.1) satisfying w = 0. Assume that the linear operator
A satisfies the (6,7 g0pen, + 7)-RIP property with § < 1/(1 4+ \/7/Tguren)- For every
€ € (0,)y), the perturbed gradient descent method will find a solution X satisfying
either of the two inequalities (6.2) and (6.3) with probability at least P(|ATw| < €/2)
in O(poly(1/€)) number of iterations.

Note that the constants D and A, can be directly calculated after the mea-
surement operator A is explicitly given. As an additional remark, the O(poly(1/¢))
number of iterations does not directly imply that a larger € will lead to fewer itera-
tions, since this mostly describes the rate of scaling with € when € is very small. As
per the proof, it can be that K = A\; — €, meaning that a larger € will lead to more
iterations in certain cases. The proof to all Theorems presented in this section can
also be found in Appendix 6.A.

6.4 Numerical Illustrations

In the next section, we will empirically study the developed probabilistic guar-
antees and demonstrate the distance | XX T — M*||z between any local minimizer X
and the ground truth M* as well as the value of the RIP constant § required to be
satisfied by the linear operator A, in both the exact parametrized regime and the
overparametrized regime.

Before delving into the numerical illustration, note that the probability P(|A Tw|| <
€) used in our theorems can be exactly calculated as long as the distribution of the
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Figure 6.2: Comparison of the upper bounds given by Theorem 11 for the distance
||X XT— M~ | with X being an arbitrary local minimizer

noise w is explicitly given. On the other hand, if we only have partial information
for the distribution of w, a lower bound for the probability P(JJATw| < €) can still
be obtained using certain tail bounds. For example, if w is a o-sub-Gaussian vector,
then applying Lemma 1 in [32] leads to

2

1— 2 Teme? < P(Ju] < wy) < P(JATw| < e),

where wy, = €¢/|A]5.

For numerical illustration, assume that n = 50, m = 10 and |A|, < 2, while the
noise w is a 0.05-sub-Gaussian vector. We also assume that the search rank r ., .,
is 10, |M*|p = 3.3, the largest eigenvalue of M* is 1.5 and its smallest nonzero
eigenvalue is 1.

First, we explore the two inequalities (6.2) and (6.3) in Theorem 11 to obtain
two upper bounds on | XX — M*|, where X denotes any arbitrary (worst) local
minimizer. For both the exact parametrized case with 7., = 7 = 10 and the

overparametrized case with r,, ., = 10 and r = 2, Fig. 6.2 gives the contour plots of
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the two upper bounds on |XXT — M*|, which hold with the probability given on
the y-axis and the RIP constant d from 0 to 1/(1 + +/7/r ) given on the x-axis.

search
Regardless of the parameterization type, when ¢ is close to the maximum allowable

value 1/(1 4 \/7/Tsearen), (6.2) usually dominates the bound, and as § decreases to 0,
(6.3) dominates instead. Furthermore, in the overparametrized regime, (6.3) leads to
a tighter bound, while (6.2) remains the same. A similar visualization of the upper
bounds given by Theorem 13 for the distance |XXT — M*| is also presented in
Fig. 6.3. We only show the exact parametrized case here because the result is the
same for the overparametrized one. It can be observed that (6.7) dominates the bound
when § is closer to 1 and (6.6) dominates when ¢ is closer to 0.
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Figure 6.3: Comparison of the upper bounds given by Theorem 13 under 7 = 0.2 for
the distance | XX — M*| with X being an arbitrary local minimizer

Next, we compare the bounds given by Theorem 11 and Theorem 13. Fig. 7.1
shows the contour plots of the maximum RIP constant  that is necessary to guarantee
that each local minimizer X (satisfying the inequality (6.5) when Theorem 13 is
applied) lies within a certain neighborhood of the ground truth (measured via the
distance |XXT — M*||, on the z-axis) with a given probability on the y-axis, as
implied by the respective global and local guarantees. Fig. 7.1 clearly shows how a
smaller RIP constant § leads to a tighter bound on the distance | XX — M*| 5 with
a higher probability. In addition, the local guarantee generally requires a looser RIP
assumption as it still holds even when § > 1/2. However, as the parameter 7 in
Theorem 13 increases, the local bound also degrades quickly.

6.5 Summary

In this chapter, we develop global and local analyses for the locations of the local
minima of the low-rank matrix recovery problem with noisy linear measurements in
both the exact parametrized and the over-parametrized regimes. For the class of
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Figure 6.4: Comparison of the maximum RIP constants ¢ allowed by Theorem 11 and
Theorem 13 to guarantee a given maximum distance | XX — M*|  for an arbitrary
local minimizer X satisfying (6.5) with a given probability

noisy problems, regardless of their RIP constants, it is now possible to characterize
the worst-case quality of the local minimizers. The major innovation of this work
lies in the new proof techniques developed to deal with the over-parameterization
and the handling of the random noise via an easy-to-compute concentration bound.
Unlike the existing results, the guarantees in our results are distribution-agnostic,
meaning that the distribution can be unknown as long as the concentration bound
is possible to obtain. The developed results encompass the state-of-the-art results
on the non-existence of spurious solutions in the noiseless case. Last but not least,
we prove a certain form of the strict saddle property, which guarantees the global
convergence of the perturbed gradient descent method in polynomial time regardless
of parameterization. Our analyses show how the value of the RIP constant and the
intensity of noise affect the landscape of the non-convex learning problem and the
locations of the local minima relative to the ground truth.
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6.A Missing Details of Chapter 6

Before presenting the proofs, we first compute the gradient and the Hessian of
the objective function f(X) of the problem (6.1):

Vh,(X)=XTAT(Ae + w),
V2h,(X)=2I,  ®matg(AT(Ae+w)) +XTATAX,
where L
e=vec( XX — M*),
and X € R"**"7searen s the matrix satisfying
X vec(U) = vee(XUT +UXT), YU € R" 7 scaren,

The first step in the proofs of Theorem 11 and Theorem 14 is to derive necessary
conditions for a matrix X € R™*searen to be an approximate second-order critical
point, which depend on the linear operator A, the noise w € R™, the solution X , and
the parameter x characterizing how close X is to a true second-order critical point.

Lemma 23 Given k > 0, assume that X € R™<Tscarch satisfies

VA (X < KXz V2ho(X) = =K,

search”
Then, it must also satisfy the following inequalities:
|X He| < (2JATw| + #)[|X],, (6.12a)

2,  @matg(He) + X HX = —(2|ATw| + )1, (6.12b)

T T

search search’

where H= ATA.
Proof 26 (Proof of Lemma 23) To obtain condition (6.12a), notice that |[Vh,(X)| <
k| X |y implies that
[X"He| < XA w| + [ Vh,(X)| < [X[|ATw] + £ X, < (2]A w] + £)| X[,
in which the last inequality is due to
[Xvec(U)| = [XUT + UXT|p < 2| XUl p,
for every U € R Tscren . Similarly, V2h,, (X) = —kl,,  implies that

QITsearch, ® matg(He) + XTHX > _2[Tscarch, ® matS(ATw) — K/Inrsearch,.

On the other hand, the eigenvalues of I, & matg(ATw) are the same as those of

search

matg(ATw), and each eigenvalue \;(matg(ATw)) of the latter matriz further satisfies
[Ai(matg(ATw))| < [matg(ATw)|p < [ATw],

which proves condition (6.12b).



CHAPTER 6. NOISY MATRIX SENSING 110

If X is a local minimizer of the problem (6.1), Lemma 23 shows that X satisfies
the inequalities (6.12a) and (6.12b) with x = 0. Similarly, Theorem 11 can also
be regarded as a special case of Theorem 14 with k = 0. The proofs of these two
theorems consist of inspecting two cases. The following lemma deals with the first

case in which X is an approximate second-order critical point with o, (X)) being
close to zero.

Lemma 24 Assume that the linear operator A satisfies the (0,7 oqren, + 1) -RIP prop-
erty. Given X € R"*"search and arbitrary constants € > 0 and k > 0, the inequalities

- €+ Kk/2 - - -
Tr e X) SN T VA < KX, V2h(X) = =kl

and |ATw| < e will together imply the inequality (6.9).

Proof 27 (Proof of Lemma 24) Let G = matg(He) and u € R™ be a unit eigen-
vector of G corresponding to its minimum eigenvalue, i.e.,

lu| =1, Gu=\_,(G)u.

min(

In addition, let v € R" be a singular vector of)z' such that
(X).
Let U = vec(uv'). Then, ||U|| <1 and (6.12b) imply that

[l =1, | X = o,

search

—2¢—k <2UT (I, ®matg(He))U+ UTXTHXU
< 2tr(vu" Guo) + (1 4+ 8)| Xou” +uv" XT||%
< 22, (G) +4(1 4 6)o,  (X)?
< 22,10 (G) + d€ + 25, (6.13)

On the other hand,
(1—0)|XXT — M*|% < e'He = vec(XX ") "He — vec(M*) He
= %VGC(X)TXTHG — (M*, matg(He))
< SIXIAX Hel + (3¢ 5 ) ur(ar)
< (e+5) IR+ (36 4 37”) te(M),

in which the second last inequality is due to (6.13). In particular, we have that
—(M*,G) = (=G, M*) < A\ ox(=G)||M*|,., which gives the desired inequality given
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Aax(—G) = =i (G) and |M*|, = tr(M*). The last inequality is due to (6.12a).
Furthermore, the right-hand side of the above inequality can be relaxed as

5 3
(e+5) 1K+ (36 + 7'{) tr(M*)
< (e+5) Vil XX T+ (364 5 ) VML,

< (6+5) Vil X = Mol (e 5) M + (364 5 ) VAIMC[
/{‘ ~ ~
= (4 5) VIl KT = Ml 4 (4 26) Pl M,

which leads to the inequality (6.9).

The remaining case with

5 €+ K/2
X >V 755

will be handled in the following lemma using a different method.

Tsearch

Lemma 25 Assume that the linear operator A satisfies the (0,1 upmep, + 7)-RIP prop-
erty with § < 1/(1 4 \/7/7seurer)- Given X € R"*Tscorch and arbitrary constants € > 0
and k > 0, the inequalities

NN T ; A b o
O ) >N T VAN < 8IX],, Vo (X) = =L,

and |ATw| < e will together imply the inequality (6.10).

The proofs of both Lemma 25 and the local guarantee in Theorem 13 later
generalize the proof of the absence of spurious local minima for the noiseless problem
n [101]. Our innovation here is to develop new techniques to analyze approximate
optimality conditions for the solutions because unlike the noiseless problem the local
minimizers of the noisy one are only approximate second-order critical points of the
distance function |A(XXT) —b|2. For a fixed matrix X and fixed constants € > 0
and x> 0, one can find an operator 4 satisfying the (8, 7. .o, +7)-RIP property with
the smallest possible & such that X and A satisfy the conditions (6.12a) and (6.12b)
stated in Lemma 23 (with ||ATw| replaced by €). Let 6*(X) be the RIP constant of the
found measurement operator A in this worst-case scenario. Then, for any instance
of the problem (6.1) with the linear operator A satisfying the (6, Tearch + 7)-RIP
property and the noise w satisfying |ATw| < e, if X is an approximate second-order
critical point to this instance satisfying the conditions listed in Lemma 25, we can
ensure that § > 6*(X) by the definition of 6*(X). As we will elaborate in the proof
below, since 6*(X) can be lower-bounded analytically in terms of | X X — M*| , this

will lead to an upper bound on the distance | XX — M*| .



CHAPTER 6. NOISY MATRIX SENSING 112

Proof 28 (Proof of Lemma 25) The variable §*(X) defined above is the optimal
value of the following optimization problem:

min o
5 H
s.t. |[XTHe| < (2¢ + 5)| X],,

21 ® mat g(He) + X THX = —(2¢ + x)I,,,

Tsearch

(6.14)

search’

~

H is symmetric and satisfies the (5,7 pgren, + 7)-RIP property.

[an X 'I’L2

Here, a matriz H € is said to satisfy the (8,7 .4, + 7)-RIP property if

(1—0)|U|2 < UTHU < (1 +0)|U|?

holds for every matrizx U € R™™ with rank(U) < 74pen + 7 and U = vec(U).
Obviously, for a linear operator A, H = AT A satisfies the (0,7 gouren,+1)-RIP property
defined above if and only if A satisfies the (6,7 g0n + 7)-RIP property. By the
discussion above, we have § > 6*(X).

However, since the problem (6.14) is non-convezr due to the RIP constraint, we
may not be able to solve for 5*()2) exactly, and therefore we provide a lower bound
instead. To achieve this goal, we introduce the following lemma:

Lemma 26 If n* ()A() 1s the optimal value of the following convex optimization prob-

lem:
max 7
n,H

st [ATHe| < (2¢ + #)| X[,

. 2 (6.15)
2Irseu1'ch ® matS(He) + HTH t _(26 + ,{)Inrsearch,
nInz j ﬁ j [n27
then R
1—n"(X N
L= ) %) <o, (6.16)
1+ 7%(X)

where 6*(X) is the optimal value of the problem (6.14).

Therefore, the above lemma directly implies that

o 1=0(X)_1-90
* > — > . .
n(X)_1+5%X)_1+5 (6.17)

Furthermore, since n*(X) is the optimal value of the problem (6.15), a semidefinite
program_in a rather simple form, we could further derive an analytical upper bound
for n*(X) using its Lagrangian dual, which is embodied in the following lemma:
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Lemma 27 The optimal value of (6.15), n*(X), satisfies
. Vv 2 2/(2 1+0)|X
17*<X> < T/Tsearch + ( E+"£>\/?+ \/( €+/i)( + )” ||2
2+ \% 7ﬂ/rsearch ”e”

Finally, our desired inequality (6.10) is a direct consequence of (6.17), (6.18) and the
inequality

(6.18)

S >oTnl/2 o «111/2 «111/2
| X < |XXT2 < [XXT — M2 + | M2

With the proofs of Lemma 26 and Lemma 27 given below, this completes the proof of
this lemma.

Proof 29 (Proof of Lemma 26) Consider a convex reformulation of (6.14) by en-
forcing the RIP constraint over all ranks:
min ¢
5,H
s.t. | XTHe| < (2 + #) X |,
21,  ®matg(He) + X HX = —(2¢+ )],

(1—0) . <H=<(1+6)I,..

(6.19)

Tsearch’

Lemma 14 in [6] proves that the problem (6.14) and the problem (6.19) have the same
optimal value. The remaining step is to solve the optimization problem (6.19) for
given X, € and k. To make the ensuing proof easier, we aim to further rewrite (6.19)
by simplifying its second and third constraints. First, we convert the last constraint
of (6.19) to (1—10)1,2/(14+6) <H/(1+ ) < 1,2, and realize that one could replace
(1 —19)/(1+ 0) with another variable n, with a smaller § leading to a bigger n and
vice versa, and replace H with H = H/(1 + 0).

Therefore, instead of optimizing for the smallest possible §, we can now optimize
Jor the largest possible n. To exactly satisfy the second and third constraints after the
change of variables, we introduce (6.15) and denote its optimal value as n*(X), which
is repeated here for the sake of convenience:

max 7n
n,H
s.t. [HTHe| < (26 + 5)|X]],

T]In2 j ﬁ j Ing.

Tsearch’

Observe that given any feasible solution (9, I:I) to (6.19), the tuple

8 1—6 1 -
(1) = (155 17558)
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is a feasible solution to the problem (6.15). We prove this statement by checking all
the three constraints one by one. For the first constraint,

Y S 1 - -
T _ T
|H " He| = i +5)2||X He| < i +5)2(26+/<)||X||2 < (2e + R)[ X]-
For the second constraint,
2I,  @matg(He) + XX - FIrseamh ® matg(He) + 1—MXTHX
2¢ + K

search

Finally, the third constraint is satisfied automatically. Now, since (1—6*(X))/(1+
(X)) is a feasible value for (6.15), we have

o 1-6(X
%)z 0

1+ 6%(X)
which further implies (6.16).

Proof 30 (Proof of Lemma 27) The proof of the upper bound (6.18) can be com-
pleted by finding a feasible solution to the dual problem of (6.15):

jmin - tr(Uy) + (XTX, W) 4 (26 + &) tr(W) + (26 + £)2| X |2\ + t2(G)
1C’¥7)\2:y ’

Xy —w)e! +e(Xy—w)" = U, —U,,

G —y
{_yT A} =0, (6.20)
W1,1 ng

o | =0,

Before describing the choice of the dual feasible solution, we need to represent
the error vector e in a different form. Let P € R™*™ be the orthogonal projection
matriz onto the range of X, and P, € R™*"™ be the orthogonal projection matrixz onto
the orthogonal complement of the range of X. Furthermore, let Z € R™ 7 search be q
matriz satisfying ZZ' = M*. Then, rank(Z) = r, and Z can be decomposed as
Z=PZ+ P, Z, so there exists a matriz R € R™" such that PZ = XR. Note that
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Thus, if we choose

~ 1~ 1~ R ~
Y=oX- 5XRRT — P, ZR", g=vec(Y), (6.21)

then it can be verified that

XYT4+YXT—P 27"P =XX"—2Z7,

RPT VR 227 ) =0, (6:22)
Moreover, we have
IXYT+VXT|2 = 2tr():(T):ﬁ:/T1:/) - tr(XTf/)A(:Tf/)A%— tr(YTXYTX) 6.23)
>2tr(XTXY'TY) > QJTSWM(X)QHYH%,
in which the first inequality is due to
tr(XTYXTY) = itr((X'T)A((Irmmh — RR"))?) = i“‘«XUrmh — RRTXT)2) > 0.

Assume first that Z| = P | Z # 0. The other case will be handled at the end of
this proof. In the case when Z, # 0, we also have XY T + Y X" # 0. Otherwise,
the inequality (6.23) and the assumption o, (X) > 0 imply that Y = 0. The

orthogonality and the definition off/ in (6.21) then give rise to
X—XRR" =0, P, ZR"=0.

The first equation above implies that r,,,.;, is invertible since X has full column rank,
which contradicts Z | # 0. Now, define the unit vectors

. X . vec(Z,Z])
Uy == Uy =S
Then, uy L uy and
e =|e|(V1—a?u; — au,) (6.24)
with .
AW
__1zzllr (6.25)
| XXT = ZZ7|

We first describe our choices of the dual variables W and y (which will be rescaled
later). Let

XTX =QSQ", Z Z] =PGPT,
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with orthogonal matrices Q, P and diagonal matrices S, G such that S;; = o,

Fiz a constant v € [0, 1] that is to be determined and define

V, = kY2GYPPE,QT, Vie{l,..,r},
W = Zvec vec(V))T, vy =1y,

with § defined in (6.21) and

e B SV et o
lellZz.Z]| le]|X7]

116

~

(X)2.

Here, E,; is the elementary matriz of size n X 7yyq,0, with the (i, j)-entry being 1. By

our construction, )A(TVZ = 0, which implies that

(XTX, W) = |IXVT + VX2 =2 (X XV,'V)
=1 =1

- bear(,h Z Gy =267,

with

/6 — Ao-isca'r‘ch (X)Q tr(ZLZI) .
|XXT = ZZMplZ, Z] | r
In addition,

Z||V||F = kZG = ktr(Z,2]) < ﬁ

and , .
w=> vec(W,;) => V,V;' =kZ Z].
i— i—1
Therefore,
~ 1 . .
Xy —w = = (V1 =72t —7iy),

el

which together with (6.24) implies that

lellXy —w| =1, (e,Xy—w) =va+/1-72V1—-a%=14(y).

Nezt, the inequality (6.23) and the assumption on O-rsearch(X ) imply that

V1 —~2(4e 4 2k) < 2¢/(2e + k) (1 +9)
V2o, (X)le| ~ lel '

(4e +2r) [yl <

search

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)
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Define R R
M= (Xy—we' +eXy—w),

and decompose M as M = [M], — [M]_ in which both [M], = 0 and [M]_ > 0. Let
0 be the angle between e and Xy —w. By Lemma 14 in [101], we have

tr([M].) = le[|Xy —w|(1+cosd), tr([M]_) = ]| Xy — w|(L — cos ).

Now, one can verify that (Uy, Uy, W*, G*, \*, y*) defined as

Yi=nony YTy VT
VEwemy VT vz, ¢ WYY

forms a feasible solution to the dual problem (6.20) whose objective value is equal to

tr([M]_) + (XTX, W) + (26 + &) tr(W) + (4e + 25)[| X 5| |
tr([M],) '

Substituting (6.26), (6.28), (6.29), and (6.30) into the above equation, we obtain

(R < 2687 +1— (7)) + ((2e + &)V +2/(2e + &) (1 4+ 6)[ X]5) /| ]
= 1+ 9(v)
287 +1—1p(y) . (2¢ + k)T +21/(2¢ + 1) (1 +0)| X |,
1+¢(7) le] '

Choosing the best value of the parameter v € [0,1] to minimize the far right-side of
the above inequality leads to

2By +1—4(y) 5
with
1—vV1—a? i 6> 1o}
no(X) = d LHVI—a? T 1+vV1-a?
1 — Ba 1+vV1—a?

Here, a and [ are defined in (6.25) and (6.27), respectively. In the proof of Theo-
rem 1.2 in [95], it is shown that

1_770(5() > 1
1 +770<X) B 1 + T/Tsea'rch
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for every X with XX + ZZT and rank(Z) = r. Therefore,

v V r/rsearch

Mo(X) <
2+ T/Tsearch

Y

which gives the upper bound (6.18).

Finally, we still need to deal with the case when P, Z = 0. In this case,
we know that Xj = e with § defined in (6.21). Then, it is easy to check that
(U, U3, W*, G*, X", y*) defined as

T ~

ee Y
U*:_a U*:Oa y*:—a
o lel 2 2[e?
A ; ly”| R S
Wr=0, M=t G =y
(2¢ + 1) X2

forms a feasible solution to the dual problem (6.20) whose objective value is (4e +
26)| X|olly* |- By the inequality (6.23), we have

e+ )Xy _ Vet r)A+0)IX],
V2o, (X)lel e

Hence, the upper bound (6.18) still holds in this case.

(X)) < (de +25) | X2 ly7] <

search

Finally, Theorem 14 is a direct consequence of Lemma 24 and Lemma 25. The-
orem 11 is a special case of Theorem 14 with Kk = 0, and the global convergence in
Theorem 15 is also a corollary of Theorem 14.

Proof 31 (Proof of Theorem 15) Assume that |ATw| < €/2 holds. Since

V2h,(X) =21, @matg(AT(Aetw))+XTATAX = V2hy(X)+2I,  @matg(ATw),

search

and
® matg(A ' w))| < [matg(ATw)|p < JATw| <

DO ™

‘;\Illa)(('l}

as shown in the proof of Lemma 23, by the assumption it holds that

search

_)\O > )\min<v2h0 (X)> n(v2h’w()2)) o 2)\max<Irsmmh ® matS<ATw)>

> A
- . (6.31)
> )‘min(v2hw(X)) —€

for every matric X € R Tsarn with | X||, < D. The perturbed gradient descent
method in [31] will find a solution X satisfying (6.11) with

Kk =min{\; — €, De}
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in O(poly(1/e€)) number of iterations. The inequality (6.31) and the second condi-
tion in (6.11) together imply that | X|, > D, and thus the conditions in (6.8) are
automatically satisfied for X with k = €, which gives the desired result after we apply
Theorem 14 with the original € in Theorem 14 replaced with €/2 and k replaced with
€.

The proof of Theorem 12 is similar to the above proof of Lemma 25 in the
situation with k = 0, and we will only emphasize the difference here.

Proof 32 (Proof of Theorem 12) In the case when X # 0, after constructing the
feasible solution to the dual problem (6.20), we have

1—6 o tr((M]) 4+ (XTX, W) 4 2e tr(W) + 4| X 1€y

—— <n*(X) < 6.32
s =TS el [M],) (632
Note that in the rank-1 case, one can write armh(f() = |X|, and
[9] 1
lyll < <

lelIXgl — v2IX]]el

in which the last inequality is due to (6.23). Substituting (6.26), (6.28), (6.29) and
the above inequality into (6.32) and choosing an appropriate v as shown in the proof
of Lemma 25, we obtain

1=0 _ o0 28v+1—9(y)+ (2 + 2v/2¢)/|e|
15 =X s 1+9(7)
- 1+ 2 + 2\/567
3 le]

which implies inequality (6.4) under the probabilistic event that |ATw| < e.
In the case when X =0, (Uf,Us, W* G*, \*, y*) with

eeT

Ul =135, U;=0 =0

e 2T YT
zZz"

=0 N =0, G =
2el?

forms a feasible solution to the dual problem (6.20), which shows that

1—
—+

(=%

~ €
<n(X) < .
le]

—_
(=%}

The above inequality also implies inequality (6.4) under the probabilistic event that
[ATw] <e.
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Now, we turn to the proof of the local guarantee in Theorem 13.

Proof 33 (Proof of Theorem 13) Similar to the proof of Theorem 11, we assume
that the probabilistic event |ATw| < € occurs and also break down the analysis into
two cases. Consider the case when

S €

X
(X) > 1446’

Tsearch
otherwise it is already handled by Lemma 24 that leads to the inequality (6.6). Here,
we further relax the optimization problem (6.15) in Lemma 25 with k = 0 by removing
the constraint corresponding to the second-order optimality condition, which gives rise
to the optimization problem

max 7
n,H
s.t. [XTHe| < 2¢[ X, (6.33)

nInz j I:I j In2
By denoting the optimal value of (6.33) as 77;'2()?), it holds that

~ ~ 1 —
mp(X) 2n"(X) =2 7 5 (6.34)

>

Without loss of generality, we can assume that X is in the block form

X

0
with X, € R™" being invertible. Otherwise, there exists an orthogonal matriz
Q € R™™ such that QT X satisfies this requirement. We can then replace X and

M* with QT)A( and QT M*Q respectively due to the invariance of (6.33) under the
transformation. Moreover, we select a matriv Z € R™Tsarch such that ZZ' = M*

and Z is in the form
zZ7 0
zZ5 0

with Z{ € R, Z3 € R""%7. Then, | Z5(Z3) T3 2 X.((Z7) T Z)1 Z5]%, and

A((Z3)127) = N ((27) " 27 + (23) ' 25) — M ((23) 1 Z5)
> M(272) = 125(25)" | (6.35)
> (1 =7)A.(M7) >0,
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in which the last inequality is due to the assumption O < 7 < 1 and the second last
inequality is due to

125(23) "Il p < (127(20) T = Xy XT3 + 2023(23) 1% + 125(23) TI%) /2

oL 6.36
= |XXT = ZZ7|p < 7A(M"). (639

To prove the inequality (6.7), we need to bound 77;2()2) from above, which can be
achieved by finding a feasible solution to the dual problem of (6.33) given below:

min tr(U,) 4 4¢2|| X|2\ + tr(G)

U,,Uy,G,\y
s.t. tr(Uy) =1,
(Xy)e" +e(Xy)" =U, —U,, (6.37)
G -y
[—yT A] =0

U, =0, U,>0.

If we choose Y and §j = vec(l}) as (6.21) in the proof of Lemma 25, and let 6 be the
angle between Xy and e, then (6.22) implies that

X — el PIZZTP |2

in2g — 1XU 2e|| _ 17, %
el |IXXT —ZZT|2

_ 125(Z3) " | % _

1Z3(Z}) T — X0 X1 %+ 2125(Z3) "% + 125(Z3) %

Following an argument similar to the one at the end of the proof of Lemma 7 in [93]
and using (6.35) and (6.36), we can obtain

sin? <

<. 6.38
To<s (6.35)
Define R R

M= (Xpe" +e(Xy)',
and then decompose M as M = [M|, — [M]_ with [M], = 0 and [M]_ = 0. Then,
it is easy to verify that (Uy,Us, G*, X", y*) defined as

o oML
Vo T w2 woay
A0 N )
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forms a feasible solution to the dual problem (7.32) with the objective value

tr([M]_) + 46l Xol9]

(6.39)
tr([M],)
Furthermore, it follows from the Wielandt—Hoffman theorem that
A (XXT) =\ (M)] < | XXT = M| p < 7A (M),

Thus, using the above inequality, the inequality (6.23) and the assumption ono, (X),

we have

Al 2R OEOOOIN RN _ g gy, 15

IXyll V2o, (X) ¢ ¢

(6.40)

Next, according to Lemma 14 of [101], one can write

tr([M],) = ID:QJIIHGII(l + cos0),
tr([M]) = [Xylllle] (1 — cos 6).

Substituting the above two equations and (7.35) into the dual objective value (7.33),
one can obtain

() < 1—cos@+2/e(146)C(r, M*)/|e|
f = 1+ cos6 ’

which together with (7.31) implies that
lel < ve(1+6)32C (T, M*)(cos§ — §)71.

The inequality (6.7) can then be proved by combining the above inequality and (6.38).
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Chapter 7

Noisy General Low-Rank Recovery

7.1 Background and Related Work

The investigation of noise influence on our standard matrix sensing objective
(1.3) performed in Chapter 6 inspires us to further generalize our results to a wider
range of low-rank matrix problems. In this chapter, we focus on the problem of
general noisy matrix optimization:

MIenuaivI}Xn f(M,w) s.t. rank(M) <r,M >0, (7.1)
where the objective f takes in two input variables: a low-rank, positive semidefinite
matrix M € R™*" and a random variable w € R™ that represents some corruption to
the objective function. The noise can come from any arbitrary distribution as long
as it has a finite variance. We denote the maximum rank of the variable M to be
r. We optimize (7.1) only with respect to the first variable M, while w is assumed
to be hidden to the user. The randomness of the parameter w comes from the stage
prior to solving (7.1), which accounts for uncertainty in the model/data or external
factors. Therefore, when the non-convex low-rank optimization is performed, w will
not change anymore even though it is unknown to the user. Let M™ be a rank-
r matrix that minimizes the function f(M,0) subject to the constraints in (7.1).
This problem has a wide range of applications, the most notable ones being matrix
sensing [72], matrix completion [15], and robust PCA [12]. This formulation also has
extensive applications in recommender systems [42], motion detection [23, 3], phase
synchronization/retrieval 75, 8, 74], and power system estimation [104]. The matrix
M* is called the ground truth solution since the objective function is set up to be
nonnegative and that f(M*,0) = 0 for most of the above-mentioned applications.
The goal is to find the matrix closest to M* in terms of Frobenius norm under the
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rank constraint. However, the influence of noise is not well studied in the literature
due to the complications it may bring.

The major innovation of this work is the analysis of the effect of noise, where the
objective function is subject to random corruption that is unknown to the user. This
formulation is important yet oftentimes glossed over due to its challenging mathe-
matical analysis, partly due to the sophisticated relationship between each globally
optimal solution M and the vector w. For instance, consider the canonical example of
the matrix sensing problem (6.1) given in the previous chapter, where b = A(M*) —w
represents perfect measurements on some ground truth M* plus some noise w. The
user only observes b and has no access to noiseless measurements, which means that
the matrix M* of interest is the global minimum of (6.1) only when w = 0. When
w # 0, the global minimum of (6.1) would likely differ from M*. In this case, it is
desirable to study whether local search algorithms can converge to a point that is
close to M* with high probability. Other applications such as matrix completion and
robust PCA also suffer from the same conundrum since they all aim to align a given
matrix to some partially observed matrix that is corrupted by unknown noise. In real-
life problems, the corruptions induced by noise cannot be ignored or circumvented
because they usually come from physical sources. For instance, in the power grid state
estimation problem, which can be formulated as matrix sensing [36], measurements
come from physical devices and the noise can be originated from mechanical failures,
bad weather, and even cyber-attacks.

Due to the existence of a rank constraint, the optimization problem (7.1) is
non-convex. Thus, local search algorithms can potentially converge to poor local
minimizers, defeating the purpose of solving (7.1). Although (7.1) may be solved via
convex relaxations for different classes of f(-,-) to overcome the non-convexity issue
when f(-,0) is quadratic [15, 72, 16], the computational challenge associated with
solving semidefinite programming problems is prohibitive for large-scale problems.
This has inspired many papers to solve (7.1) via the Burer-Monteiro factorization
[10] by factoring M into XX ', where X € R™ ", since M is positive semidefinite and
has rank at most r. By doing so, one can convert the constrained optimization (7.1)
into an unconstrained problem. Specifically, we solve the following problem instead
of (7.1):

min  f(XX", w) (7.2)

XeRnxr

The main issue with (7.2) is that it is still a non-convex problem, despite being more
scalable and easier to deal with computationally. To address this issue, a popular line
of research in the literature is to study the optimization landscape of (7.2). Namely,
the goal is to find the distance between the furthest local minimum and the global
minimum, in addition to studying the convergence rate of local search methods in
terms of the geometry of the optimization landscape. Note here we assume we have
access to the true rank r.
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7.1.1 Related Works

We first discuss the line of work that focuses on certifying the in-existence of
spurious local minima in the noiseless setting (a local minimum that is not a global
minimum is called spurious). [5] analyzes the absence of spurious local minima under
the RIP condition for the matrix sensing problem, or in other words when f(-,w)
is quadratic. This study states that 6 < 1/5 is a sufficient condition. [105, 46]
investigate arbitrary objective functions under the RIP constant § < 1/5. The series
of work [101, 93] show that the bound 6 < 1/2 is a sharp bound for guaranteeing the
absence of spurious local minima in the case when the objective function is quadratic.
The state-of-the-art result for general objective functions is proved in [7]’s paper,
which states that 0 < 1/2 is also sufficient for the absence of spurious local minima.

In the noisy case, [102] proves that all local minima are close to the ground truth
when 6 < 1/35 for a general objective, which is an extremely strong assumption on
. Furthermore, [102] requires the RIP condition to be satisfied for the noisy problem
rather than its noiseless counterpart, which is impossible to verify beforehand due to
the unknown noise. For specific objective functions in the form of (6.1), Chapter 6
shows that 0 < 1/2 is sufficient and necessary for the absence of spurious local
minima, even when w is sampled from an arbitrary finite-variance family. The major
difference between Chapter 6 and this chapter is that we focus on a general objective,
while Chapter 6 only focuses on a quadratic objective (the matrix sensing objective).

In terms of the convergence of local search methods, [82] proves that the gradient
descent algorithm applied to (7.2) converges linearly when the initialization is good,
given that 6 < 1/7. Similarly to [102], this RIP bound is given with respect to the
noisy problem rather than its noiseless version, which is an undesirable feature. For
a general noiseless objective (in the case when w = 0), [7] proves that there exists
a region around M* in which linear convergence can be established. On the other
hand, [7] also proves that a RIP constant of 6 < 1/2 is sufficient for the global
establishment of the strict saddle property for a general noiseless objective function.
As noted in [31], the strict saddle property can lead to a polynomial convergence to a
global optimum with a random initialization. The exact definition of the strict saddle
property can be found in [24], and it basically states that all approximate local optima
must be close to the global optima. In the noisy setting, Chapter 6 demonstrates that
d < 1/2 is necessary and sufficient to the establishment for the strict saddle property
for quadratic objective functions.

To highlight our improvements over the existing results, Table 7.1 lists some
state-of-the-art comparable works to showcase the strength of the guarantees pro-
vided in this paper. Note that when we denote the objective function as "General
Noisy”, it means that the function is in the form of (7.2) and satisfies the RIP prop-
erty. We further denote the objective function of (6.1) as "Quadratic Noisy”, which
is also known as the matrix sensing problem. In particular, according to [14], ©(1/62)
number of random Gaussian measurements are required to ensure 0-RIP,, ., so a RIP
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Table 7.1: Comparison between our result and the prior literature.

Paper Objective function Local Min Strict Saddle Convergence Rate
[102] General Noisy d<1/35 N/A N/A

[82] General Noisy N/A N/A Linear when § < 1/7
Chapter 6 Quadratic Noisy 6 <1/2 d<1/2 N/A

Ours General Noisy §<1/3 d<1/3 Linear with general §

constant of 1/3 vs 1/35 introduces a difference in sample number requirement of
around 35%/3% ~ 100 times. Also since [102] requires §-RIPg,., even more measure-
ments are needed.

7.1.2 Assumptions on the objective function

The assumptions stated in this section serve as the underpinnings of all the
theorems in this paper, and they mainly require that the objective function be smooth
with respect to both the decision variable X and the noise w. To clarify, these
assumptions do not pose any restriction on w, and this parameter can come from any
probability distribution.

Assumption 1. The objective function f(-,-) is twice continuously differentiable
with respect to its first argument M.

Assumption 2. The noiseless objective function f(-,0) satisfies the 6-RIP,,. 5, prop-
erty for some constant § € [0,1).

Assumption 3. The noise w has a finite influence on the gradient and Hessian of
the objective function in the sense that there exist two constants ¢; > 0 and
(o > 0 such that

[(Varf (M, w) =V, f(M,0), K)| <
Glwlla| Kl g,

[V f (M, w) = V3, f(M,0)](K, L)| <
Cllwla| K £ L]

for all matrices M, K, L € R™*™ with rank(M ), rank(K), rank(L) < 2r.

(7.3)
(7.4)
As an example, for the standard matrix sensing problem (6.1) with the sensing

matrix A, if A satisfies the RIP property, then all of these assumptions hold with
¢, = |Al, and ¢, = 0. The 1-bit matrix completion problem is also an example
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that satisfies the above assumptions which will be elaborated in Section 7.4.2. Note
that although in our problem statements we assume M to be symmetric and positive
semidefinite, our framework can also be adapted to deal with non-symmetric and
non-square matrix M. A more detailed discussion is provided in Section 2.2.

7.2 Landscape of General Noisy Problems

7.2.1 When 6 < 1/3

When the RIP constant § is smaller than 1/3, we show that all local minima
(or second-order critical points) of (7.2) are close to the ground truth solution M*.
The proximity to the ground truth is parametrized by the noise intensity defined as
q := ||lw|y. When ¢ = 0, our result (Theorem 16) recovers the results previously

proved in [28, 94].

Theorem 16 Assume that the objective function of (7.2) satisfies Assumptions 1-3

and that f(M,0) satisfies the RIP property with some 0-RIP,, o, constant such that

d < 1/3. For every e € [0, 1/2275), with probability at least P(|w|y < €), every local

minimizer X of (7.2) satisfies:

-~ 2
IRET M€ sl (75)

3(6 + Cye)
This is a powerful theorem stating that as long as § < 1/3, all local minima are
close to the ground truth solution, regardless of the family from which w is sampled.
Previously, the problem needed to satisfy § < 1/35 for similar results to hold. Fur-
thermore, unlike [6], we achieved this result without the BDP assumption or requiring
r = 1. The upper bound in (7.5) is a function of € and §. The bound becomes loser as
e and J increase. Note that (; and ¢, affect € in a linear way and therefore obtaining
non-conservative constants ¢; and ¢, is beneficial.
Our result implies that for a general objective function, geometric uniformity,
captured by the RIP property, can guarantee a benign optimization landscape even
when ¢ is non-trivially larger than 0. However, this comes with a caveat. In particular,

if (5 # 0, meaning that the Hessian is affected by the existence of noise, then there
1/3—6

G2
If the noise intensity goes beyond this hard limit, no high-probability guarantees can

be made in terms of the locations of the local minima. This is expected because
if ¢, is large, it means that the RIP property satisfied for the noiseless problem
cannot enforce any desirable property on the highly noisy problem and the benign
optimization landscape is unlikely to hold.

The proof of Theorem 16 follows from the characterization of the r-th singular
value of an arbitrary local minimizer X. Previous results in the literature successfully

is a hard ”contribution floor” for the noise reflected by the inequality |w], <
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upper-bounded the r-th singular value of X that are far from the ground truth, which
leads to the establishment of a significant escape direction based on its Hessian. The
major innovation in the proof of Theorem 16 is based on the observation that for
every local minimizer X, its r-th singular value can also be lower-bounded in terms of
the smallest eigenvalue of the gradient at X, and the RIP constant. Then we adopt
some existing techniques to also upper-bound the r-th singular value of X to contrast
it with the lower-bound. By doing so, we derive necessary conditions on the value
of | XXT — M*|, since the upper-bounds are carefully crafted to include this term.
We believe that this new method of lower-bounding the r-th singular value of X
could open up a new range of possible techniques for analyzing low-rank optimization
problems, since it provides important complementary information on X. The full
proof is lengthy and deferred to Appendix 7.A.1.

7.2.2 When § > 1/3

Although Theorem 16 is powerful in the case of § < 1/3, it does not provide
any guarantee when 6 > 1/3, especially given the fact that ¢ is intrinsic to the
sensing matrices, which are impossible to change. This is where a local version of the
guarantee comes in handy. We only consider the optimization landscape in a region
around the ground truth and show that local minimizers are all very close to M*.

Theorem 17 Assume that the objective function of (7.2) satisfies assumptions 1-3
with f(M,0) satisfying the §-RIP,, o, property for a constant § € [0,1). Consider an

arbitrary number T € (0,1—62). Every local minimizer X € R™" of (7.2) satisfying:
| XXT — M| < 7A (M), (7.6)
will also satisfy the following inequality with probability at least P(|wly < €):

€(14+ 9+ (ye)C (T, M¥)
V1—7—(e—0

[XXT — M| < (7.7)

for all e < —T, where

) 2\ (M*) + 7N, (M¥))

cln M) = \/ T WITOR
The upper bounds in (7.6) and (7.7) define an outer ball and an inner ball centered
at the ground truth M*. Theorem 17 asserts the absence of local minima in the ring
between the two balls. As € goes to 0, Theorem 17 states that no spurious local
minima exists when | XXT — M*|p < (1 — 62)A,.(M*). Therefore, this is a direct
generalization of the results in [6], which holds only for noiseless objectives. This local
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theorem allows for the analysis of highly non-convex objectives associated with d close
to 1. In particular, Theorem 17 states that even for highly non-convex objectives,
the optimization landscape is benign in the vicinity of M*. This means that if a
good initial point is selected, local search algorithms can solve this highly non-convex
problem and find a satisfactory approximate solution.

The breakthrough of the proof of this theorem relies on the establishment of
Lemma 29, which states that for every local minimizer X of the noisy problem (7.2),
there is a pseudo sensing matrix H such that X is an approximate local minimizer
of a matrix sensing problem with the sensing operator H. This serves as the basis of
the ensuing proof techniques, which follow the idea of certifying the in-existence of
spurious local minima, inspired by [95]. A detailed proof can be found in Appendix

7.A.2.

7.3 Convergence of General Noisy Problems

7.3.1 Linear Convergence with good initialization

To establish linear convergence for the noisy problem (7.2), an additional as-
sumption is required:

Assumption 4. There exists a constant p such that the gradient of the function
f(-,w) with respect to the first argument M is p—restricted Lipschitz continu-
ous, meaning that:

IV f(M,w) =V f(M'w)| g < p|M — M|
for all matrices M, M’ € R™" with rank(M) < r and rank(M") < r.

Assumption 4 is critical for the convergence of local search algorithms since otherwise
we cannot choose a step size small enough to avoid the constant overshoot of the
algorithm. For a standard matrix sensing problem, V,,f(M,w) = AAT vec(M) +
A Tw, hence satisfying Assumption 4 with p = o, (AAT).

We now present our main result in this section, which states that if the initial-
ization is close enough to M™, then the gradient descent algorithm will reach M™ or
a low-rank projection of M™ at a linear rate. Here, M™ is defined to be the unique
global minimum of (7.1) without the rank constraint. Since (7.1) is a strongly convex
problem without the rank constraint, M™ always exists and is unique. Given Theo-
rems 16 and 17, we can in turn guarantee that M™ is close to M*, showing that the
gradient descent algorithm reaches a neighborhood of M* in a satisfactory rate.

Theorem 18 The vanilla gradient descent method applied to (7.2) under Assump-
tions 1-4 converges to P.(M™), the best rank-r approximation of M™, linearly up to
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a difference D,. if the initial point X satisfies:

[1—06—(ye
T w 2 s . o N2
||X0XO M HF < Cw(l ) §26) C, 1o+ <2€Dr, (7.8)

meaning that vanilla gradient descent will reach a point M linearly with ||M —
P.(M™)| g > D,., where

T

= [M* =2, (M¥) g, C,, = \/2v2— 1), (M)
The linear convergence is also contingent on the fized step size n satisfying:
—1
n < (12012 (CV (1= 0+ Ge2 + M) (7.9)
for all € < 122 with probability at least P(|w|, < €), where C = 2(v/2 —1).

C2

The main challenge stemming from the introduction of noise is that the unconstrained
global minimum of (7.1) may not necessarily be of rank-r (the rank of M*) anymore.
Therefore, since the Monteiro-Burer approach (7.2) can only search over matrices of
rank at most r, we can only guarantee the convergence of any algorithm with respect
to a rank-r matrix, which for our purpose we chose to be P_.(M™). Thus, the radius
of linear convergence depends on D,., a constant quantifying how close M™ is to a
rank-r matrix. In the special case that M™ is of rank at most r, D, becomes 0 and
our Theorem can be simplified. We summarize this special case via the following
assumption:

Assumption 5. The objective function f(-,w) of (7.1) has a first-order critical point
M™ for every w such that it is symmetric, positive semidefinite, and rank(M™) <
r.

Assumption 5 may not hold in general, but for specific problems, such as (6.1), this
assumption is satisfied if the set {A vec(N — M*) | rank(N) < r} spans R™. This
is highly likely since m < m?. According to Proposition 1 in [105], if Assumption
5 is met, M™ is the global minimum of (7.1). With this assumption, we can now

introduce a useful Corollary:

Corollary 2 The vanilla gradient descent method applied to (7.2) under Assumptions
1-5 converges to M*™ linearly if the initial point X, satisfies:

[XoXg —M"|p <2(V2=1)(1 =6 = Ge)o, (M™), (7.10)

with fixved step size n satisfying:

n< (120012 (C/TT= G + G2 + M7 )) (7.11)

for all € < =2 with probability at least P(|lw||y < €), where C = 2(v/2 —1).

C2
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Prior to this theorem, it was possible to establish a linear convergence using the
existing literature only when Assumption 5 holds and § < 1/7. Now, Theorem
18 allows for having an arbitrary J, and generalized the guarantee to cases where
Assumption 5 does not hold. Theorem 18 further implies that even starting from an
arbitrary initial point, the gradient descent algorithm has a linear convergence in the
final phase, given that the step size is small enough and that the noise intensity is not
high. This further implies that if a linear convergence is not observed, the user could
decrease the step size until a linear convergence is established. This is confirmed
empirically in Section 7.4.2.

Theorem 18 is inspired by the observation that since we only search on a low-rank
manifold, we may never really reach M™ (even in the asymptotic regime), thus by
constraining the search space away from M™, linear convergence can be established.
The full proof is deferred to Appendix 7.A.3.

7.3.2 Strict Saddle Property

When 6 < 1/3, the noisy problem (7.2) exhibits the strict saddle property,
meaning that all approximate second-order critical points are close to the global
optimum of the optimization problem with high probability:

Theorem 19 Suppose that the objective function of (7.2) satisfies assumptions 1-3
with a §-RIPy, 5, constant of 6 < 1/3 in the noiseless case. Consider the ground
truth solution M* which is of rank r. For a given constant o > 0, there exists a finite
constant € > 0 such that at least one of the three following conditions holds for any
X E R’I’LXT..

diSt<X7 M*) < «, ”th(Xaw)”F > ‘57
Amin (VXX w)) < —2€,

min

with probability at least P(||w|, < %), where C,, == ¢,/ (1/2(v/2 — 1)(0,.(M*))}/2a).

The significance of the establishment of the strict saddle property is that one can
find an approximate local minimum in polynomial time. The perturbed gradient
descent algorithm presented in [31] serves as one of the algorithms achieving this
goal. Coupled with Theorem 18, it means that we could reach M™ with an arbitrary
accuracy in polynomial time via a random initialization, which is also known to be
close to M* according to Theorems 16 and 17.

The proof of this theorem is similar to that of Theorem 7 of [94], and we highlight
the key differences in Appendix 7.A.4 to illustrate how Theorem 19 can be proved.
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Figure 7.1: Comparison of the maximum RIP constants ¢ allowed by Theorem 16
and Theorem 17 to guarantee a given bound on the distance | XX — M*| for an
arbitrary local minimizer X satisfying (7.6) with a given probability.

7.4 Numerical Illustration

In this section, we provide a concrete example to the results derived above!.
We empirically study the proximity of an arbitrary local minimizer X of (7.2) to its
ground truth solution in terms of [ XX — M*| , and analyze the effect of the step
size on the convergence rate.

Assume that w € R™ is a 0.05/y/m-sub-Gaussian vector. According to Lemma
1 in [32], this choice of w satisfies:

62
1—2¢ 167 < Pllul, < o).

ICode wused to produce the results in this section can be found here:
https://github.com/anonpapersbm /Noisy-Low-rank-Matrix-Optimization
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with 0 = 0.05. We refer to the RHS of the above equation as the probability lower-
bound since it says that the event |wl||y < € will happen with probability at least that
number.

7.4.1 Quality of Local Minima

We consider the problem of 1-bit Matrix Completion, which is a low-rank matrix
optimization problem that naturally arises in recommendation systems with binary
inputs [20, 26].

The objective of this 1-bit Matrix Completion problem is:

f(M,w) =— i i((ym + w; ;) M, ; —log(1 + exp(M;;))) (7.12)

i=1 j=1

where M;; is the (i, 7)™ component of M and y;; € [0,1] is a percentage-wise obser-
vation of M, ;. Since y,; are empirical observations, they could very much be subject
to random corruptions, which we explicitly represent by w € R™, with m = n?. It
is straightforward to verify that (7.12) satisfies the assumptions outlined in Section
7.1.2, with (; =1 and (, = 0.

The work [6] shows that for (7.12), the function (M, 0) exhibits the 6-RIPy, ,,.

property for some constant  over the neighborhood |[XXT — M*|» < R for a small
R. We choose M* such that \.(M*) = R. Therefore, we can use the framework
proposed in this paper to analyze the quality of the local minima of (7.12) under
random perturbation.

In Figure 7.1, we numerically demonstrate and compare the bounds given in
Theorem 16 and Theorem 17, for the parameters n = 40, and r = 5. We assume w
comes from the sub-Gaussian distribution described above with o = 0.05. The x-axis
shows the maximum distance between an arbitrary local minimum X and the ground
truth, and unit for the x-axis is A,.(M*). The y-axis delineates the probability lower
bound, which describes a lower-bound on the probability that the event will happen.
The contour plot itself shows the maximum ¢§ that is necessary to guarantee X to be
in the range of [ XX — M*||, < ¢ with £ specified on the x-axis, with probability
greater than the value specified on the y-axis. Figure 7.1 shows that as 7 becomes
smaller, for the same set of (x,y) values, the necessary value of § becomes larger.
This means that if the prior information on X is strong, meaning that it is known
to lie within a neighborhood of the ground truth, then the local minima are tightly
centered around the correct solution with a high probability. Moreover, the global
bound is generally looser than that of the local version when 7 is small, because it
only applies to cases when § < 1/3, but when 7 is large, the global bound could be
better even with the same §, as evident when comparing subfigures (a) and (d) in
Figure 7.1.
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Figure 7.2: The distance to M™ versus iterations for gradient descent with random
initialization.

Readers can refer to Appendix 7.B for more plots regarding the interplay of (;, (,
and o values in Theorem 16. These values may represent a wide range of different
objectives(each objective is characterized by its (; and (, values) and different noise
patterns (characterized by o value since many known distributions are sub-Gaussian).

7.4.2 Convergence Rate

In this section, we demonstrate the convergence rate of the vanilla gradient
descent algorithm applied to an instance of (6.1) satisfying Assumptions 1-5 with
n = 40, m = 190, r = 5. The matrix A used here makes the objective function
satisfy 0.42-RIP,,. 5. We also assume that A, (M*) = 1.5 and A\.(M*) = 1. Note that
(6.1) meets our assumptions with p = |A|3,¢; = ||Ally, and ¢, = 0. We aim to show
how the step size affects the convergence rate, and corroborate the theoretical results
in Theorem 18. Note since Assumption 5 is satisfied, the algorithm will converge to
M™ directly.

In Figure 7.2, we choose two different step sizes, namely 0.001 and 0.0002, and
start from random initialization. It can be observed that in the case of the larger
step size, there is a region of plateauing in which the gradient descent algorithm
makes little progress, while the smaller step size exhibits a linear convergence around
iterations 500-2500 even after the initial phase of a fast descent. This result is in
accordance with Corollary 2, which states that for a small enough step size, the
gradient descent algorithm will achieve a linear convergence in a neighborhood of the
global minimum.
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7.5 Summary

In this chapter, we proposed a unified, yet general framework to analyze the
global and local optimization landscapes of a class of noisy low-rank matrix optimiza-
tion problems. We showed that regardless of the distribution from which the random
noise is sampled, if the noiseless objective satisfies RIP, then there are mathematical
guarantees on the locations of local minima and the convergence rate. This means
that even for general objectives, geometric uniformity can compensate for random
corruption. The results here significantly extends the existing results in the literature
on this general problem, and offers new techniques and insights that can be used to
study other noisy low-rank optimization problems.



CHAPTER 7. NOISY GENERAL LOW-RANK RECOVERY 136

7.A Missing Details of Chapter 7

Before diving into the proofs, we further impose some technical assumptions on
our problem without loss of generality.

Assumption 1 Assume that V ; f(M,w) is symmetric for every M € R™*™,

This assumption always holds since otherwise we could simply optimize for (f(M, w)+
f(MT w))/2 instead. The parameter ¢ is used to represent ||w|, in the following
proofs for the sake of notational simplicity.

We also make the following standard assumption:

Assumption 2 The objective function f(-,0) of (7.1) has a first-order critical point
M* such that it is symmetric, positive semi-definite, and rank(M*) < r.

This assumptions states that the objective in (7.1) can indeed recover the ground
truth low rank matrix M™* when solved to global optimality. Otherwise solving for
(7.1) under low rank constraint will be meaningless.
Note that
Vuf(M*,0)=0 (7.13)

is a consequence of Assumption 2 due to Proposition 1 in [105]. This proposition also
implies that M* is the unique global minimum of (7.1).

7.A.1 Proofs of Section 7.2.1
Lemma 28 If X is a local minimum of (7.2) with M = XX, then

(7.14)

where G = —)\min(VMf(M, w)).

~

Proof 34 (Proof of Lemma 28) First consider the case where rank(M) =r. Un-
der this assumption, consider the singular value decomposition (SVD) of M :

T
T T
M = g o U
i=1

where o;’s are eigenvalues and u; ’s are unit eigenvectors. Let ug be a unit eigenvector
of V f(M,w) such that u ¥V f(M,w)ug = —G. Furthermore, for a constantp € [0,1],
define:

r—1
Mp = Zo-zuzu;r + O-T‘(puG T v 1 _p2ur>(puG T v 1 _p2ur>T‘
i=1



CHAPTER 7. NOISY GENERAL LOW-RANK RECOVERY 137

One can write:

<va(M7 ’U)), Mp — M> = <va<M7 w)»UTPQUGuE
= —Gp?o,.

since Vf(M,w)u; = Vf(M,w) u; =0 Vi € {1,...,r}. This is because X is a local
minimum, and (2.5) is a necessary condition according to Lemma 4. We could choose
a SVD of M such that:

o _ [.1/2 1/2 1/2
X—[al u, 0y Uy .. of ur].

Now, we expand the term | M, — M||3:

|, — M3 =02 tr (pugug + pv/1— pPugul + pyV/1 — p2u,uf, — p*u,u))?)
=0z (p* + p*(1 —p?) + p*(1 —p?) +p?)
=202p?.

where the second equality follows from the fact that ufu; =0 Vi € {1,...,r}. This
is due to the fact that

-1 - T
ugu; = (EVMf(M, w)uG> u; = 0.
This means that (V y, f(M, w), M, — M) = —%”MP — M|%. Neat, we proceed with
the proof by contradiction. First, assume that G > 0,(14+3d+(yq). Then, there exists
a small constant ¢ such that:

(1+0+4¢q) +
2

~ ~ C ~
(Varf (M, w), M, = M) < — |, — M. (7.15)

Second, combining the Taylor expansion of f(M,w) in terms of M at the point M
with the mean-value theorem gives:

f(Mp7w) :f(Maw) + <va(M7w>7Mp - M>+
1 ~ ~ -~
§[V2f(M,w)](Mp - MvMp - M)>

for some matriz M that is a convez combination of M,, and M. Due to the RIP

assumption and (7.4), we have:

1 -
(146 +Ga) +c]|M, — M7,

(7.16)
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for the same small constant ¢ used above. Therefore, by combining (7.15) and (7.16),
we have:

F(M,,w) < f(M,w),

which is a contradiction due to the fact that X s a local minimum since we can adjust
p to make M, arbitrarily close to M = XXT and that M, is a positive semidefinite
matriz of rank r. This further leads to the conclusion that G < o,.(1 + § + (5q),
consequently leading to (7.14).

Then consider the case where rank(M) < r. By [28], we know that M is a
critical point of (7.1), meaning that if rank(M) < r, V,, f(M,w) = 0. Therefore
G =0 and (7.14) is trivially satisfied since X, (M) = 0.

~

Proof 35 (Proof of Theorem 16) Define M := XX and

1

M := DM — Vo f (M, w). (7.17)

Additionally, define ¢(-) as

S(M) = (Vp f (M, w), M — M) + 5 | — M|
Now,
1+5+C2q 12 1+5+C2q > 1 - 2
Sl LY V(PR L T VN SRR VTS )

M — M2 + (V4 f(M,w), M — M) + IV arf (M, w) |13

2
= ¢(M) + constant with respect to M.

(149 + ¢aq)

Define P.(M) of an arbitrary matrizc M to be the projection of M on a low-rank
manifold of rank at most r:

P. (M) =argmin |M, — M|z, M :={M € S"*"|rank(M) <r,M > 0}
M,.eM

Then by the Eckart-Young-Mirsky Theorem, ¢(P,.(M)) achieves the minimum value
of the function ¢(-) over all matrices of rank at most r. Therefore,

—¢(P (M) 2 —¢(M") = (Vy f(M,w), M — M") — w

| M — M]3
(7.18)
Nezxt, we apply the Taylor expansion to f(M,w) at M and combine it with the
RIP property to obtain

1—0—(yq
2

FOM*w) > f(M,w) + (Y f(M,w), M* — M) + |M* — M|%. (7.19)
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Additionally, by expanding at M*, we can also write:

. R 1—§— .
PO w) = (M, w) > (93 fM* ), N = M)+ =22 i g
L f g ) (7.20)
> 120 M — Gl — M

where the second inequality follows from (7.3) and the fact that M* is the ground
truth. Substituting (7.19) into (7.18) gives:

—¢(P,(M)) > f(M,w) = f(M*,w) — (8 + Gq)| M — M|,
and a further substitution of (7.20) into the above equation gives:

- 1—30—3Cq, ~ . - .
~6(2, () 2 SN AP - G M (T2)

We denote
L= w

Next, for the notational simplicity of the ensuing sections, define:

|M — M*|E — CallM — M| p.

1

Ni=—— V{0,

implying that M = M+ N. Then,

o2l yp (VT + N) — ST

—¢(P(M)) = (1+ 5+ (q)(N, P, (M + N) — M)

1 5 ] ~ 2
1 5 ~ 2 2

Since X is a local minimizer of (7.2), it must be a first-order critical point. Therefore,

~

(2.5) holds true, meaning that M and N have orthogonal column/row spaces, leading
to |1 + N3 = |31 + | V| ) )

Furthermore, due to the orthogonal nature of M and N, |P,.(M+ N)|% is simply
the sum of the squares of the mazimal v eigenvalues of M and N combined, which we

~

assume to be \;(M),i € {1,...,k} and \;(N),i € {1,...,r —k}. Therefore,

k r—k

~

|2, (01 + N)IE = SN + 5 A (N
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Subsequently,
3 1 +5+C2q T 2 k r—k )
=1 i=1 i=1
r r—k
=IO SEVIVEES SPNEYD
2 i=kt1 =1
< TEOECA () + (r— BN (V)
Then invoking (7.21) gives:
- 2L G?
— kN (M) < ——F— —k 7.22
= RNOD € e Ny (12)
where G = =X, (Vf(M,w)).
First, assume that k <1 and \.(M) > 0. We have
2
N < — ¢ 2 L (7.23)

(146 +(29)? 1+5+C2q7"—k

Now, recall Lemma 28, which also holds for all local minimizers X. A necessary and
sufficient condition for both Lemma 28 and (7.23) to hold is that:

L <0, (7.24)
subsequently meaning that,
(130 = 3C)| M — M*[[3 — 2¢,q|M — M*|p <0

which directly gives (7.5) after simple rearrangements.
In the case that k =r or \.(M) =0, (7.22) reduces to (7.24) as well, leading to
the same result presented in (7.5).

7.A.2 Proof of Section 7.2.2

Given a matrix X , we aim to find the smallest § such that there is an instance
of the problem with this RIP constant for which X is a local minimizer that is not
associated with the ground truth. For notational convenience, we denote this optimal
value as 6*(X). Namely, 0*(X) is the optimal value to the following optimization
problem:

min ¢
8, f(w)
s.t. X is a local minimizer of f(-,w),

f(-,0) satisfies the 6-RIP,, property.

(7.25)
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By the above optimization problem, we know that § > 6* (X' ) for all local minimizers
X of f(-,w), where § is the best RIP constant of the problem. Since (7.25) is difficult
to analyze, we replace its two constraints with some necessary conditions, thus forming
a relaxation of the original problem with its optimal value being a lower bound on
5*(X).

To find a necessary condition replacing the two constraints, we introduce the
following lemma. This is the first lemma that captures the necessary conditions of a
critical point of (7.2), a problem where random noise is considered.

Lemma 29 Assume that the objective function f(M,w) of (7.2) satisfies all assump-
tions in Section 7.1.2, and that X is a first-order critical point of (7.2). Then, X
must satisfy the following conditions for some symmetric matrix H € R xn® .

1. |XTHe| < 26,4|X],
2. H satisfies the (0 + (3q)-RIPy, 5, property, which means that the inequality
(1 =0 —=Gq)|M[7 <m"Hm < (140 + Gq)| M]3 (7.26)

holds for every matriz M € R™ ™ with rank(M) < 2r, where m = vec(M) and
e=vec( XX — M*). X is defined as per Section 2.1.

Given Lemma 29, we can obtain a relaxation of problem (7.25), namely the following
optimization problem:

min 9§
5. H
s.t. [XTHe| < 2¢q|X],, (7.27)

(1 =6 = G| M3 < m"Hm <
(140 + )| M|%, VM :rank(M) < 2r.

where m = vec(M). Note that since the second constraint is hard to deal with, so

we solve the following problem that has the same optimal value (as proved in Lemma
14 of [6]):

min 0
5, H
s.t. | XTHe| < 2¢q] X5, (7.28)

If the optimal value of (7.28) is denoted as (5}()2), then we know that 5;@()?) <

5*(X) < 6 due to (7.27) being a relaxation of (7.25). By further lower-bounding
¢3(X) with an expression in terms of |XXT" — M*|, we can obtain an upper bound

on |[XXT — M*|p.
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Proof 36 (Proof of Lemma 29) Similar to the last section, we first define M =
XXT'. Since X is a first-order critical point, it follows from (2.5) that V yxh(X,w) = 0.
Thus,

0 = (Vyh(X,w),U) = (V (M, w), XUT + UXT), (7.20)

for an arbitrary U € R™*". Let u = vec(U).
Next, we define the function g(-) : R™™ = R:

g(V) = (Vo f(V,w), XUT +UXT),

~

for allV e R™™. Then, g(M) =0 due to (7.29).
By the mean-value theorem (MTV), we have:

~ ~

g(M)—g(M*):/O <Vg(tM*+(1—t)M),M—M*>dt

~

1
= / V2, f(tEM* + (1 —t)M)|(M — M*, XUT +UX")dt
0
= e HXu

where H € R™**"* js q symmetric matriz that is independent of U and satisfies:
1 ~
vec(K) Hvec(L) = / V2, f(tM* + (1 —t)M)]|(K, L)dt
0

for all K, L € R™™. This means:
e"HXu = g(M) — g(M*).
Taking the absolute value of both sides and upper-bounding the right-hand side gives:
e "HXu| = |g(M) — g(M")| < [g(M")|

< G| XUT +UXT |5
< 2<1Q||XUTHF

- 2glq\/tr(XXTUUT)
< 2¢q| X Jul,

where the second line follows from combining (7.13) and (7.3), and the fourth line

follows from the cyclic property of trace operators.
Choosing w = X"He can simplify the above inequality to

|X"He| < 2¢,¢|X],.
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Furthermore, the 6-RIP,, 5, property of the objective function means that:
(1= 0)M|E < [V2F(&01(M, M) < (1+6)|M]F
for all M with rank(M) < 2r. Combining with the fact that
| vec(M) "Hvec(M) — [V2£(£,0)](M, M)| < Gyq| M| %,
gives (7.26).

Proof 37 (Proof of Theorem 17) One can replace the decision variable 6 in (7.28)
with  and introduce the following optimization problem:

max 1
n,H
s.t. [XTHel| < 24| X[, (7.30)

’I]Inz j ﬂ j Inz.

It is easy to realize that given any feasible solution (6,H) for (7.28), the following
pair of points will serve as a feasible solution to (7.30):

_ , S -
U oy 1+0+ (g

~

By denoting the optimal value of (7.30) as n3(X), it holds that

L 1—8(X)— 5
) > f(X) Czq>1 0 —(yq

> > , 7.31
1+ 63(X) +Gg  1+H0+ G (7:31)

for all local minimizers (it is important to recall 5;2()2) < 5*(X) <4).

As stated above, the key to proving (7.7) is to upper-bounding 7]’}(5() Since (7.30)
is a semidefinite programming problem, finding any feasible solution of its Lagrangian
dual can provide an upper bound. The dual problem is given as follows:

min tr(U,) + 4C2¢2|| X |12\ + tr(G)

U,,Uy,G,\y
s.t. tr(Up) =1,
(Xyle” +e(Xy)T = U, — U, (7.32)
G —y
|:_yT )\ :| t 07

U, =0, U,>0.
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As per Chapter 6, define R
M = (Xy)e" +e(Xy)",
[

and decompose M as M = [M], — [M]_ with [M]_ = 0 and [M]_ = 0. Then, we
find a set of feasible solutions (Uf,Us, G*, \*,y*) to (7.32), which are:

* y * [M]+ * [M]*
YEwomy YT wony T w@ny
X 2610l 1,

It is easy to verify that the above solution is feasible and has the objective value

tr([M]0) + 4¢al X oMy
tr([M],) '

(7.33)

For any matriz X € R™" satisfying | XX —M*||» < T, (M*), we have X # 0.
Moreover, it has been shown in the proof of Lemma 19 in [6] that any y # 0 for which
X T mat(y) is symmetric satisfies the inequality

[Xyl? > 22, (XXT)|ly|%. (7.34)
where r is the rank of X. Furthermore, by the Wielandt—Hoffman theorem,

AAXXT) = A (M) < | XXT = M*|p < 7A (M),
ALXXT) = A (M) < [XXT = M |p < 7A (M),

Thus, using the above two inequalities and (7.34), we have

20Xyl _ 21X, 1 (M) + TA (M)

Xyl Q/Q)\ (XXT) 1—T (M)

The second inequality holds because

=C(r,M"). (7.35)

A(XXT) = A (M) — (A (M*) = A (XXT))
> A (M) = [(A (M) = A (XXT))]
> A (M*) —7A(M*) = (1= 1)\ (M)

Next, according to Lemma 14 of [101], one can write

tr([M],) = |Xyllle| (1 + cos0),
tr([M]_) = [Xylle](1 — cos ).
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where 0 is the angle between Xy and e. Substituting the above two equations and
(7.35) into the dual objective value (7.33), one can obtain

~ 1 —cos@ +2¢qC (T, M*)/|e|
nf( ) < 14 cosf

)

which together with (7.31) implies that

(1+0+4¢9)¢qC (1, M™)
cost —(oq— 0 ’

lef < (7.36)
Now, we seek to lower-bound cos(0). This amounts to taking the upper bound of
sin2(9). This requires us to choose a particular value of y. We choose the same y
that is described in Lemma 12 of [93], since it makes X " mat(y) symmetric, thereby
satisfying (7.34). From the proof of Lemma 13 of [93], we know:

127 (1 — XXT) 2]

sin”(0) = " )
IXXT —ZZT|%

Since the expression of SiIlQ(@) is invariant to re-scaling, we may re-scale both
X and Z until |ZZT|% = 1. Also, since the expression is rotationally invariant, we
can partition X and Z as follows:

\ X _ |4
=[5 22
where X, Z, € R™", Z, € R")XT - We compute the QR decomposition QR = [X, Z]

and redefine X := QTX Z = QTZ Then, we follow the technique in Lemma 13 to
arriwe at:

|1Z27(1 - XX Z|% _ 12(Z,) " 1% ‘
IXXT —ZZT7|% 12,(Z,)" — X\ X % + 2120(Zo) "% + 122(22) 7|1

Additionally,
O-rznin( ) :Am1n<<Zl) ( ))
Aainl(Z0)T(Z0) + (Z0)(Z)) — A (Z3) T Z5)
—o2(2) - HZQ<ZQ> Is (7:37)
S02(Z) — A (M) = (1— 1)\, (M),

The last line of (7.37) is due to
XM 2|RET - 2273
ZZ) T = X\ XT B+ 202 Z) T+ 1 Z(Z0) T (7.39)
>\Z5(Z5) "I,
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and that ”Zz(Zz)T”F > |‘Z2(Z2)T||2-
Subsequently,

o 1Z5(Z5) " |7
sin”(0) <
21 Z,(Zy) % + 1125(Z5) T

1 Z5(Z5) T 2| Zo |1 %
= 202, (ZNZo| T+ 1 Zo(Zy) T 21 Zo13

1Z5(Zy) " |
T 2(1 =) (M*) 4+ Z9(Z,) T 7
T, (M*)
= 20 — 1A (M) + 7A (M)
< <7
(2—71)

where the first inequality follows from the fact that |Z,(Z))"T — X, X[|% > 0, the
third inequality follows from (7.37), and the fourth inequality follows from (7.38) and
the fact that the function . is increasing with x when both ¢ and x are positive.

The above bound is automatically non-vacuous, since sinQ(Q) < 7 < 1. Therefore,

cos > vV1—r,

leading to (7.7) after substitution into (7.36).

7.A.3 Proof of Section 7.3.1

First and foremost, we restate this lemma from [78, 105]:

Lemma 30 For any matrix X € R™™", given a positive semidefinite matrix M €
R™™™ of rank r, we have:

IXXT — M|% > 2(vV/2 —1)o, (M) (dist(X, M))2. (7.39)
Also, given Assumption 5, we have
Vo f(MY w)=0 (7.40)

First, we establish that the PL inequality holds in a neighborhood of the global
minimizer.

Lemma 31 Consider the global minimizer M™ of (7.1). There exists a constant
> 0 such that the PL inequality:

SIV AR W) > u(h(X,w) — F(P, (M), w), (7.41)
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holds for all X € R™*" satisfying:

dist (X, M™) < max{\/2(v/2 —1)y/1 — (6 + (,9)%(0,(M™))Y/?2 — D, 0}  (7.42)

and

D, < dist(X,?,(M")),
for g < (1—10)/¢,.

Proof 38 (Proof of Lemma 31) We prove the Lemma when C,,\/1 — (6 + (5q)%—

D, > 0, since otherwise it is trivial. Denote M = XX . First, we fir a constant C
such that:

dist(X, M*) < C < Cyyr/1— (0 + (pq)2 — D,.. (7.43)
Then, we define q; and gy as follows:
Nz 5.,
ql=¢1— SR 1 f— (r.44)
2VZ— Do, (M) 2 5 (M2 = &

Now, both q; and g, are nonnegative resulting from the assumption above. Further-

more, we know that § + (,q < \/1 - W;(Mw) from (7.43), then

1—0—Cq _ 1—q +q

, (7.45)

for some small enough u'. Define = (u')?/(1+ 6 + Cyq + 2p). First, we make the
assumption that:

SIVAhOX, W) < u(h(X,w) — F(P, (M), 0). (7.46)

From this assumption, we have:

p(h( X, w) = f(P(M*), w))

2

<p ((Varf(P,(M¥),w), M = 2, (M%) + I3 - 2, ()l )

2

I3 - 2,(00%)3).

<p (pIM = 2, ()M — 2,00 + |7 - 2, (01%) 3

14904 (yq

<u (pIM = 2, (") + =

due to Taylor’s theorem and (7.4). So then (7.46) leads to:

(149 + ()

2D )M — 2, (M)

1
SIVACX W) <
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Therefore,
IVA(X, w)|p < p'|M = P.(M*)] .

Then consider the following optimization problem:

min ¢
5,Hesn?
5.t |XTHe| < [l
H satisfies the (6 + (5q)-RIP,,. property.

(7.47)

where e = vec(X X =P (M"Y)). If we denote the optimal value of (7.47) as 03X, 1),
then 63(X,p') < & because the constraints of (7.47) are necessary conditions for
(7.46), according to Lemma 12 of [7]. Therefore,

1—0— Gy _ 1—0%(X, 1) — Cog
1464 Cq — 1+ 03X, 1) + (g

Moreover, by the same logic of (7.31), we know that nj}(X, w) > —% where

n}(X, w') is the optimal value of the optimization problem:

max n
n,H
s.t. |[XTHe| < /|, (7.48)

7’]In2 j I:I j In2.
Lemma 14 of [7] gives:
*( , /) < 1_q1+q2
1+ q
therefore making a contradiction to (7.45), subsequently proving (7.41).

Y

Proof 39 (Proof of Theorem 18) If we certify that:

| XX — MY|p
C

w

for any given X € R™ ", then a direct substitution can certify that (7.42) holds for
X, since by Lemma 30,

<OV 1=(6+G¢q)?* =D, (7.49)

| XXT — M|y
C

w

Therefore, the certification of (7.49) means that the PL inequality (7.41) holds for
this given X. Given that (7.10) is satisfied, then if this inequality holds:

w 140+ (g w
| XXT = M¥|p <y T_CquXOXOT — M*|p, (7.50)

dist(X, M) <
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(7.49) will also hold, because:

1
VT2, X] = MYl < CLVT= G+ Gl — C, D
— VU752

Thus, for the remainder of the proof, we aim to certify that starting from X, if
we apply the gradient descent algorithm, (7.50) will be satisfied every step along this
trajectory.
In order to do so, we use Taylor’s expansion and (7.40) to obtain

(V2 (N, w)](M — M*, M — M*)

2 )
where N is some convex combination of M and M"™, and M € R™™ is any matriz of
rank at most r. In light of the RIP property of the function and (7.4), one can write:

1—6—C(yq 1+0+ (g
2 2
This means that if My, My € R™™ are two matrices of rank at most r with f(M;,w) <

f(My, w), then:
1+6+Cyq
M, —MY|p < | ———||My, — M"Y b5l
g, = el < o/ T2, — age, (751

because f(My,w) — f(MY, w) < f(My,w) — f(M™,w).

Thus, one can conclude that f(X, X, ,w) < f(X,Xg,w) Vt, where X, denotes
the t™ step of the gradient descent algorithm starting from X,. Hence, (7.50) follows
for all X,.

Conveniently, Lemma 11 in [7] shows that f(X, X, ,0) < f(X,_1 X/ 1,0) for all
t > 0. However, this result can be extended to:

f(XtX;rv w) S f(Xt—lX;rflvw%

149
1/n > 12pr11/2 (, s X XT — Ml + HMqu) 7
— 0 — G624

since V f(-,w) is now a p-Lipschitz continuous function. Given (7.10), a sufficient
condition to the above inequality is that:

1< (1200007 (2(V2— 1)/ (T = 0+ G + [M¥] )

This finally means that the PL inequality (7.41) is established for the entire
trajectory starting from X,. Now, applying Theorem 1 in [38] gives:

WXy, w) = f(Pp (M), w) < (1= )" (h(Xo,w) — f(P (M), w)),

which implies a linear convergence as desired.

f(Mvw)_f(Mwaw):

|M — M¥|F < f(M,w) — f(M", w) < | M — M*|F.

by making
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7.A.4 Proof Sketches in Section 7.3.2

The proof of Theorem 19 is highly similar to that of Theorem 7 in [94], albeit
with a number of differences. In this section, we will only highlight the differences,
since everything else follows in the same manner.

First and foremost, we replace  with 0 + (,q in all of the proofs since in our
noisy formulation, the problem is (6 + (5q)-RIPy, ,,. instead.

Then, we introduce the following Lemma in lieu of Lemma 6 in [94] since
Vo f(M*,w) # 0 in the noisy formulation:

Lemma 32 Given a constant € > 0, an arbitrary X € R™", and the ground truth
solution M* € R™™ of (7.1), if

2(1 + 0 + yq) AT
XXT|2 > max{ 2 M*||%, 435 (7.52
Al -Gt PTG S TP
then
IVxh(X,w)llp = A,
where (= (/D and D is a constant such that
D? < ( 22 )4/3, (7.53)

1_5_(C2+CD>Q

Note that such D exists since we first require that 1 —§ — (¢, + ()¢ > 0, meaning
that 1—ggqg2 < D. Moreover, a sufficient condition to (7.53) is that D < (2XA/7)%/3,
which can be simultaneously satisfied when A is chosen properly. The introduction of
the lower bound D will not affect the remainder of the proof of Theorem 19, since in
the later steps, we only require the existence of a constant C such that [ XX 7| < C?

when |V yh(X,w)|r < A. Therefore, Lemma 32 perfectly fits this role.

Proof 40 (Proof of Lemma 32) Denote M := XX . Using the RIP property and
(7.3), we have:

(Va f(M), M) :/0 [V2F(M* + s(M — M), w)][M — M*, M]ds + (V  f (M, w), M)

> (10— GOIM|E — (1+ 0+ GOIM | pIM|p — G alM]| g

= (1= 0= GOIMIE — (L+ 6+ GO | |M - — CpaD|M |
> (10— (G Co)a)|M I — (14 0+ G| M M |
10 (Gt o)y

2

where the second last inequality results from (7.53), which implies that D < | M| p;
and the last inequality follows from (7.52). Then combining the fact that | X|p <
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\/7_"||M||};/2, and |V xh(X,w)|p > W yields the desired fact that

<Vh<X7w)7X> <VMf<M)=M>

IVt wlle 2 =5 = = " x1,
L (1=6— (G + ool M
- 27| M|} (7.54)
15 (Gt Cp)

q 3/2
= M

> A

Then, utilizing Lemma 32, we can prove Lemma 7 in [94] in the same fashion to
obtain

(Vo f (M, w), M* — M)

< — (=0 = Ga)|M — M*|% — (Vp f (M, w), M — M)

< —(1=0—Ga)|M — M*|% + Gyq| M — M*|

< — (1 =6 = Ga)|M — M*|% + Caa(y/2(V2 = 1) (0, (M*))/2a) [M — M|
<—(1—0—(G—C)a)IM — M3

for any M € R™*™ that satisfies the requirements in Lemma 7 of [94]. This is because

IM — M*| > (1/2(v/2 = 1)(0,(M*))'/2a) by the assumption of a and Lemma 30.
The above change will only affect the constant ¢ in Lemma 7, and the new ¢ will
become

¢ = (VrIM | p) (V2 = 1)(1 = 6 — (& — Ca)a)o, (M),

Since the exact value of ¢ is irrelevant and we only need to prove its existence, the
rest of the proof follows from the existing procedure. Note that ¢ > 0 is guaranteed
by the assumption of noise in Theorem (19). Therefore, Lemma 7 still holds in the
noisy case.

Then, we proceed to show that Lemma 8 in [94] can also be proved similarly,
except for one key difference, which is

K = (1-38 — (3¢ + 2(,)9) (V2 = 1)o,(M")a?,
To verify this statement, we leverage the inequality

—(M) = f(M,w) — f(M*,w) — (5 + Gq)| M — M|%,
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and furthermore we now have that

1—0—(yq

f(M7w>_f(M*aw)Z<VMf<M*7w>7M_M*>+ 2

|M — M7

1—90—(yq . .
> M = M — G M — M
R 22| M — M3 — Cua(y/2(V2 — 1) (0, (M*))Y20) | M — M*|3
> (G ) |M — M*|%

- 2
for the same reason elaborated above. Combining the above two inequalities leads to

s 1730 (36426
~6(1) > .

IM — MJ > K.

As assumed in Theorem 19, since ¢ < C;ﬁ’—g%, we know that K > 0. This is the

only required property of K to facilitate the remainder of the proof of Lemma 8 of
[94]. Therefore, Lemma 8 still holds for the noisy case.

Finally, we choose C' = <%”M*”%>U4 and invoke Lemmas 6-8 in [94]
to complete the proof of Theorem 19. Note the € here is the same e appeared in the
statement of Theorem 19.
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7.B Additional Numerical Illustration
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(a) 6 bound in Theorem 16 when (b) d bound in Theorem 16 when
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Figure 7.3: Comparison of the maximum RIP constants ¢ allowed by Theorem 16
to guarantee a given bound on the distance | XXT — M*|, for an arbitrary local
minimizer X satisfying (7.6) with a given probability. In this plot {; = 0,0 = 0.05
as per the main text.
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Figure 7.4: Comparison of the maximum RIP constants ¢ allowed by Theorem 16
to guarantee a given bound on the distance | XX T — M*| for an arbitrary local
minimizer X satisfying (7.6) with a given probability. In this plot ¢; = 0.01,{, = 0.
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Figure 7.5: Comparison of the maximum RIP constants ¢ allowed by Theorem 16
to guarantee a given bound on the distance | XX T — M*| for an arbitrary local
minimizer X satisfying (7.6) with a given probability. In this plot {; = 0.01,0 = 0.05.
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Chapter 8

Conclusion

In this dissertation, we embarked on a comprehensive journey to address the non-
convex problem of matrix sensing, particularly under two more realistic scenarios: the
under-sampled regime and the presence of random noise. Our exploration was rooted
in a deep understanding of the current limitations and potential of existing method-
ologies, leading to the development of novel strategies and theoretical insights that
push the boundaries of what is achievable in matrix sensing. The concluding remarks
encapsulate our contributions and findings, distilled from the extensive analysis and
research conducted throughout this work.

Advancements in the Under-Sampled Regime

Our investigation into the under-sampled regime, characterized by high Re-
stricted Isometry Property (RIP) constants, revealed significant challenges and oppor-
tunities for matrix sensing. We highlighted the limitations of traditional approaches
like the Semidefinite Programming (SDP) method and the Burer-Monteiro (BM) ap-
proach in this context. Through rigorous analysis and novel proofs, we demonstrated
improved guarantees for the SDP method, particularly highlighting its enhanced per-
formance with an increasing rank of the solution matrix. This advancement, predi-
cated on the non-existence of incorrect solutions, indicates that SDP can offer robust
solutions beyond the previously established bounds, particularly as the RIP constant
approaches unity in certain configurations.

Furthermore, our exploration into tensor-based over-parametrization as an al-
ternative to matrix-based solutions opened new avenues for solving matrix sensing
problems. By lifting the problem into the tensor space, we not only circumvented the
limitations posed by rank constraints but also introduced a methodology for trans-
forming spurious solutions into strict saddle points, thereby enhancing the efficacy of
local search methods. This innovative approach underscores the potential of tensor
parametrization in tackling non-convex problems more effectively.



CHAPTER 8. CONCLUSION 157

Additionally, the introduction of higher-order loss functions emerged as a pivotal
development. By incorporating these sophisticated loss functions, we demonstrated
the feasibility of escaping from distant critical points, thus offering a viable alterna-
tive to over-parametrization. This contribution is particularly relevant in scenarios
where practical constraints limit the application of over-parametrization, offering a
fresh perspective on navigating the complex landscape of non-convex optimization
problems.

Tackling the Noisy Regime

The second focal point of our research addressed the implications of random
noise on matrix sensing, a scenario emblematic of real-world data collection and pro-
cessing challenges. Our work in this domain elucidated the intricate relationship
between noise intensity, the RIP constant, and their collective impact on the solution
landscape. Through comprehensive theoretical analysis, we established global and
local guarantees that delineate the proximity of local minimizers to the ground truth,
thereby providing a clearer understanding of the solution’s fidelity in the presence of
noise.

Moreover, our foray into general low-rank optimization problems in the context
of noise further expanded the scope of our findings. By relaxing the RIP constant re-
quirements, we showcased the resilience of our proposed methodologies against noise,
reinforcing the notion that accurate recovery is achievable even in less-than-ideal con-
ditions. This part of our research not only broadens the applicability of our findings
but also contributes to the broader discourse on low-rank recovery and optimization.

Concluding Remarks

In summary, this dissertation contributes significantly to the field of matrix
sensing by providing deeper insights into the challenges and solutions applicable in
under-sampled and noisy regimes. Our work extends the theoretical foundations of
matrix sensing, offering new perspectives and methodologies that enhance the robust-
ness and applicability of recovery algorithms. By addressing both the under-sampled
and noisy scenarios, this research not only advances our understanding of matrix
sensing but also lays the groundwork for future explorations in this vibrant field of
study. Through this journey, we have not only sought to demystify the complexities
inherent in non-convex optimization but also to illuminate pathways towards more
effective and efficient problem-solving strategies in the realm of matrix sensing and
beyond.
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