
A Generalized Differentiable Evaluation Plug-in for Loop
Subdivision in Surface Reconstruction Pipelines

Tianhao Xie
Brian A. Barsky
Sudhir Mudur
Tiberiu Popa

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-180
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-180.html

August 15, 2024



Copyright © 2024, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



A Generalized Differentiable Evaluation Plug-in for Loop Subdivision in
Surface Reconstruction Pipelines

Tianhao Xie*

Concordia University
Brian Barsky†

University of California, Berkeley
Sudhir Mudur‡

Concordia University
Tiberiu Popa§

Concordia University

Figure 1: Loop subdivision evaluation plug-in in different applications. (I) Fitting subdivision surface to spatial-temporal sequences.
(II) Fitting subdivision surface to the static point cloud. (a) Point cloud. (b) Fitted control mesh. (c) Subdivision surface of (b). (III)
Integrating the plug-in into Deep Marching Tetrahedra [46]. (a) Point cloud. (b) Fitted subdivision surface.

ABSTRACT

Continuity in surface representations is extremely important for
many design, analysis, simulation and visualization tasks in aero,
hydro, automotive and graphics industries. While piecewise con-
tinuous NURBS have been ubiquitous, handling topologically com-
plex surfaces can be cumbersome. Hence, linear piecewise polygo-
nal/triangular meshes have been increasingly dominant. Today, these
are reconstructed by suitably trained deep learning networks usually
from multi-view images or point clouds, however, these meshes
are not smooth along the edges and at vertices. In this paper, we
present a powerful differentiable surface fitting method which can
be integrated into surface reconstruction pipelines. We use the Loop
subdivision surface, which in the limit yields the smooth surface
underlying the point cloud, and can also handle complex surface
topology. The principal idea is to stage the Loop subdivision scheme
such that it enables generalized analytical evaluation on any triangu-
lation, i.e., without any constraints on vertex valences. Importantly,
this in turn enables us to formulate the subdivision process as an un-
constrained minimization problem of a differentiable function which
can be solved with standard numerical solvers. The other contribu-
tion is the use of the Implicit Moving Least Squares (IMLS) surface
fitting as an energy loss to add shape-awareness to the commonly
used Chamfer loss for improving output quality. We demonstrate our
plug-in in multiple contexts such as smooth surface reconstruction

*e-mail: tianhao.xie@mail.concordia.ca
†e-mail: barsky@berkeley.edu
‡e-mail: mudur@cse.concordia.ca
§e-mail: tiberiu.popa@concordia.ca

from the point cloud using classical Poisson reconstruction, or in
an end-to-end deep neural network pipeline such as deep marching
tetrahedra. We further apply our method to spatial-temporal recon-
struction through a differentiable renderer. We have both a CPU
as well as a fast GPU implementation of our technique that can be
easily plugged into any deep-learning pipeline for point clouds or
meshes. The code will be made publicly available.

1 INTRODUCTION

Surface reconstruction is a fundamental problem in 3D digital ge-
ometric processing and as such has received a lot of attention over
the years. A large subset of such methods focus on mesh recon-
struction from point clouds or, more recently, from images using
recent advances in differential rendering [43]. While polygonal
meshes are the most popular surface representations and are used
in many contexts, they are piece-wise linear representations which
are not smooth along the edges and at vertices. Therefore, for many
problems such as fluid flow [50] cloth simulation [38] or coupled
shape optimization [60], polygonal meshes lead to discontinuous
derivatives that pose major challenges to the underlying optimization
problem.

A popular solution is to replace triangular meshes with either
parametric analytical surfaces such as NURBS [2, 41] etc. or C1

subdivision schemes [9] such as Loop [31] or Catmul-Clark [5].
Fitting a complex of NURBS patches with C1 continuity everywhere
to topologically complex shapes remains a challenging task. Sub-
division surfaces are a popular alternative. Subdivision surfaces
are particularly appealing to many high-level applications such as
surface optimization and analysis, simulation, modeling, and an-
imation [9]: not only they are very compact, they do not require
explicit sub patch decomposition and alignment as NURBS do [45].
Thus subdivision surfaces are ideal to use for fitting more complex
surface topology. A subdivision surface is represented by a compact



polygonal mesh which gets subdivided by introducing new vertices,
using, for example, Loop subdivision formulation [31]; in the limit,
this subdivision process leads to a smooth shape. An additional
advantage is also the compact representation of the surface needing
only a relatively small number of control variables compared to a
triangular mesh - this lower dimensionality coupled with the inherent
smoothness both facilitates the convergence and acts as an implicit
regularizer in shape optimization problems [37].

Fitting subdivision surfaces to point clouds has many challenges.
Existing fitting methods [7, 11, 33] rely on an optimization function
that uses iterative point-to-point correspondences. This optimization
function is non-differentiable, is not robust to noise and outliers, and
also tends to fail if the initial guess of the control mesh is too far
from the solution. The differentiability of our subdivision fitting
formulation is a key feature that allows its integration in end-to-end
deep learning pipelines such as Deep Marching Tetrahedra [46], and
also its integration with differentiable renderers.

Among existing subdivision schemes, Loop subdivision [31]
checks nearly all boxes: it is a triangular scheme that can approxi-
mate any shape independent of topology, it is C1 everywhere, and
under some constraints on vertex valances, it has a differentiable
analytical formulation for its limit surface [49]. More specifically,
the constraint is that no two adjacent vertices are irregular (i.e. de-
gree other than 6). This condition makes it difficult to obtain an
appropriate control mesh. A user might be required to do some local
connectivity editing to achieve that. But, in the context of an end-
to-end network based pipeline such as DMT [46], the connectivity
of the mesh outputted by the DMT pipeline that becomes an input
to our Loop evaluation is constantly changing in an unpredictable
way with every iteration of the optimization, therefore the Loop
evaluation must be robust enough to work on any and all possible
input meshes.

Our main objective in this work is to overcome this limitation
and define a more versatile Loop evaluation scheme that is fully
differentiable and can be easily integrated into existing 3D mesh
reconstruction pipelines providing greater access to subdivision mod-
els for CAD, simulation, and optimization simulation applications.
To that end, we make the following contributions:

1. We stage the Loop subdivision evaluation in a way that re-
moves the valence constraints, enabling analytic evaluation
of the limit surface for any control mesh, and resulting in a
versatile minimization formulation of an unconstrained and
differentiable function on any general control mesh.

2. We showcase the virtues of an unconstrained differentiable
optimization formulation on static point clouds as well as re-
constructing compatible spatial-temporal sequences (i.e. same
triangulation from frame to frame) using a differentiable ren-
derer.

3. We integrate the Loop formulation with the deep marching
tetrahedra pipeline, a state-of-the-art end-to-end deep learning
pipeline.

4. Importantly, we integrate the shape-aware IMLS loss [38] to
avoid artifacts due to the shape-agnostic nature of the Chamfer
loss.

2 RELATED WORK

The subdivision process defines a smooth curve or surface as the
limit of a sequence of mesh refinement steps starting from a control
mesh. This makes the final surface controlled by a small number of
control vertices in the starting mesh, thus resulting in a very com-
pact surface representation. Several subdivision schemes have been
developed over the years and are widely used in different applica-
tions [5,9,10,30,31]. In particular, Loop subdivision is a subdivision

scheme based on quartic box spline on triangular meshes [31]. It is
guaranteed that, in the limit, the subdivision surface has C2 continu-
ity in regular vertices (degree 6) and C1 continuity in irregular ver-
tices. In 1998, Jos Stam developed an analytical evaluation method
of Loop subdivision [49], which was based on a conversion from
Box splines to B-Nets [24]. This analytical and differentiable evalu-
ation makes this scheme ideal for differentiable shape optimization
and we will use it in our novel subdivision fitting pipeline.

2.1 Fitting subdivision surface to target shape
It is a common task to fit a smooth surface representation to a target
shape in computer graphics. One typical solution for this task is to fit
a piecewise smooth surface to the target, such as a B-spline surface
or a subdivision surface. Considerable work has been done on fitting
B-splines to point clouds by squared distance minimization [58, 61].
Since our focus in this work is on fitting subdivision surfaces, we
will limit our discussion of related work primarily to subdivision
surface fitting.

Hoppe et al. [15] and Lavoue et al. [26] fit subdivision surfaces
to CAD models by minimizing the squared distance energy. Litke et
al. [28] used quasi-interpolation to fit the Catmull-Clark subdivision
surface to a given shape within a prescribed tolerance. Ma et al. [32]
described a method to fit a Loop subdivision surface to a dense
triangular mesh by linear least square fitting.

The geometric data captured in the wild is almost always in
the form of an unstructured point cloud, with noise, outliers, and
missing geometry. A large body of work has focused on fitting
subdivision surfaces to point cloud data [7, 11, 33, 34]. Cheng et al.
[7] fit the subdivision surface by iteratively minimizing a quadratic
approximant of the squared distance function of a target shape.
Their approach first samples points on the Loop subdivision surface
based on a method by Stam [49]. Then, they solve a linear system
of the control mesh variables to minimize the squared distance
between the sample points and the target shape. Marinov et al. [33]
introduced an algorithm based on exact closest point search on
Loop surfaces which combines Newton iteration and non-linear
minimization. In more recent research, Esteller et al. [11] used
second-order approximation of the squared distance function and the
tangent space alignment to achieve robust fitting of the subdivision
surface for shape analysis. Similar to methods in [7] and [33],
Esteller et al. also sampled the points on the subdivision surface to
establish the error function – error between the subdivision surface
and the target shape. These methods need to solve a sequence of
constrained least-squares problems to minimize the error function.
The method in [16] could be optimized by the gradient-descent
method. However, instead of fitting the limit surface, they could
only fit a specific level of subdivision surface to the target shape. In
contrast to many of these methods, our proposed solution frames
the fitting problem as an optimization of a completely differentiable
function that can be solved using standard differentiable optimization
methods.

Some learning-based methods to fit a surface to a target shape
have also been previously proposed. Most of these approaches fit
parametric polynomial surfaces of some form to point clouds. Yumer
and Kara used a neural network to generate NURBS from input point
sets [59]. DeepFit incorporated a neural network to learn point-wise
weights for weighted least squares polynomial surface fitting [3].
Sharma et al. described a method using neural networks to fit B-
spline patches to input point cloud data [45]. Our fitting method
is not deep learning based; however, being differentiable, it can be
used to bridge the gap between deep learning-based methods in a
3D domain and traditional subdivision surface techniques.

2.2 Spatio-temporal surface reconstruction
Reconstructing representations for time-varying 3D data is a com-
mon problem in graphics animation and simulation. A common



Figure 2: Overview of our method for fitting a subdivision surface to a
static point cloud.

approach is to fit a template mesh to the consecutive time-series
point cloud or mesh. This is used to reconstruct coherent dynamic
geometry from time-varying point clouds captured by real-time 3D
scanning techniques. One widely used method is to reconstruct
meshes for all frames first and then to fit a template mesh to all
reconstructed meshes [1, 18, 52, 53]. These methods always need
additional markers or landmarks which must be specified by the
users. Another method is to generate a template from the first frame
and then fit the template directly to the remaining frames [47, 54].
In [54], Sussmuth et al. followed the Multi-level Partition of Unity
(MPU) Implicits approach to reconstruct the implicit function that
approximates the time-varying surface defined by the time-varying
point cloud and used the As-Rigid-As-Possible constraint to the mov-
ing of the points. When compared to our method, 1) their method
does not fit a subdivision surface to the 4D data and thus the final
resulting surface is not smooth; 2) while we use distance field energy,
they used an implicit function to represent the point cloud surface,
which must be optimized by solving a sequence of least squares
problems.

A few other methods perform template-free reconstruction [36,
42, 44]. In [36], Mitra et al. directly computes the motion of the
scanned object in all frames and estimates the time-deforming object
by kinematic properties. In [44], Sharf et al. used a space-time
solid incompressible flow prior to the reconstruction of moving and
deforming objects from point data. In [42] a template is constructed
gradually by mapping consecutive frames in a pyramidal fashion.
In [57], Wand et al. they reconstructed 3D scanner data by pairwise
scanning alignment. Tevs et al. [55] introduced Animation Cartogra-
phy, an intrinsic reconstruction of shape and motion, based on robust
estimation of dense correspondences under topological noise and
landmark tracking in temporally coherent and incoherent data. In
addition, there are also some real-time reconstruction methods for
general objects [27, 39, 62].

2.3 Neural subdivision

In [29], a learning-based framework for coarse-to-fine geometry
modeling, called Neural Subdivision was introduced. This method
shows better ability to preserve geometry features compared to the
traditional subdivision method. The method presented in [46] used
Deep subdivision to refine the final mesh, but this data-driven sub-
division scheme does not guarantee smoothness and has no closed-
form solution for the limit surface.

Figure 3: Stanford Bunny [51]:(a) Point cloud with 72,027 vertices. (b)
Optimized control mesh with 4667 vertices. (c) Subdivision surface of
(b). (d) Screened Poisson reconstructed mesh with 155,008 vertices.
(e) Optimized control mesh with 314 vertices. (f) Subdivision surface
of (e).

3 METHOD OVERVIEW

Subdivision surfaces are constructed via an iterative process from
an initial control mesh M0(V 0,F0). In every iteration a new mesh
is created by moving the existing vertices using a weighted com-
bination of the neighbors using a pre-defined weight mask and by
adding new vertices typically along edges also positioned using a
weighted combination of the nearby vertices. In the end we obtain
a sequence of meshes M0(V 0,F0),M1(V 1,F1),M2(V 2,F2) whose
positions converge to a limit surface. While such a construction
is simple to implement and intuitive to use for a modeling appli-
cation, which was one of the design goals of subdivision surfaces,
it does not have in general an analytical expression for the limit
surface, which is required for optimization problems and exact re-
construction. However, for the Loop subdivision scheme, Stam [49]
derived an analytical formula for the limit surface. His method has
one caveat: it can be applied for meshes that do not have adjacent
irregular vertices (i.e. vertices that have a degree other than 6). One
observation is that by applying one iteration of subdivision to the
Loop scheme, M1(V 1,F1) it is easy to see that for closed meshes no
adjacent vertices are irregular as new regular vertices are created in
the middle of all edges. However, this new control mesh will have
4 times as many faces thus increasing significantly the size of the
mesh. A second option is to extend Stam’s derivation to include
all possible combinations, but this will result in a combinatorially
impractical large number of cases to handle, making it error-prone,
and very difficult to implement efficiently, especially on a GPU in a
way that it can take advantage of the hardware parallelism.

We address this challenge by staging the Loop evaluation into
two stages and propose a practical and elegant divide-and-conquer
approach to address this challenge. We model the evaluation of the
limit surface as a function of the control mesh as a composition of
two simpler differentiable functions. The first one takes as input the
control mesh and outputs another mesh corresponding to one level
of subdivision yielding a mesh satisfying the required vertex valence
constraints for analytic evaluation in the limit, and the second one
applies Stam’s solution to compute the limit surface. We can now
obtain the evaluation of an arbitrary point on any general control
mesh by evaluating these two functions, and we can extract the
derivatives needed for solvers using the chain rule. This method
retains the low dimensionality of the starting control mesh making it
practical for use in optimization frameworks and end-to-end neural
networks pipelines but removes entirely any limitation related to
vertex valences in the control mesh. More specifically, given a point
Q̂ on the control mesh M0, in order to compute its position on the
final smooth 3D surface we first compute its position Q̃ on M1 by



Figure 4: A schematic view of our optimization process. (a) Control
mesh (M0). (b) Control mesh after one level of subdivision (M1). The
vertices of this mesh are the Loop subdivision control points. (c) Loop
subdivision surface. (d) Target point cloud. We optimize for M0 by
using an IMLS fitted to the point cloud and an ARAP regularizer on
the control mesh M0.

using the Loop subdivision mask [31]. Then after adjusting the
triangle index and getting new barycentric coordinates we compute
the position on the limit surface as per Stam [49]. This operator L(·)
that maps the point Q̂ on the control mesh to the point Q onto the
final subdivision surface is both analytical and differentiable and
only depends on the original vertices of M0. We provide both a CPU
and a GPU implementation of this general evaluation scheme and we
integrate it in multiple surface reconstruction contexts: (i) directly
fitting a subdivision surface to a point cloud, (ii) fitting a subdivision
surface to point cloud integrating it in the end-to-end Deep Marching
Tetrahedra network, and (iii) fitting a spatial-temporal sequence of
subdivision surfaces using a differentiable renderer.

4 SUBDIVISION SURFACE FITTING

4.1 Fitting a static point cloud

Given a point cloud P = {Pi} with associated normals N = {Ni},
our goal is to compute the control mesh M0(V 0,F0) of a Loop
subdivision surface that best fits the point cloud. The first step in our
process is to create the control mesh for the Loop subdivision surface
M0(V 0,F0). Although the position of the control mesh vertices will
be determined by our optimization, the number of vertices as well
as the topology of this mesh must be determined a priori. For this,
we compute an initial triangular mesh that fits the point cloud using
existing meshing methods; we use Screened Poisson [22] method in
MeshLab [8]. We then simplify this triangulation using quadratic
edge collapse [12] until we obtain the desired number of vertices
requested by the user.

Next, we fit our template control mesh M0(V 0,F0) using the
following optimization:

min
V 0

Edist(L(M
0, Q̂))+α ·Ereg(M0,M̄0) (1)

where Edist(·) is the IMLS fit energy [40] (eq. 4), L(·) is the 3D
position on the subdivision surface of a set of points Q̂ sampled from
the control mesh, M̄0 is the undeformed control mesh, EReg(·) is the
ARAP regularizer [48] (eq. 5), and α is the weight of the regularizer
term. An overview of the fitting model is shown in Figure 2.

IMLS fit energy: Oztireli et al. introduced an Implicit Moving
Least Squares(IMLS) surface in [40], which gave us a definition for
the point cloud surface as:

f (x) =
∑nT

i (x− xi)φi(x)
∑φi(x)

(2)

Figure 5: Overview of fitting subdivision surfaces to a spatial-temporal
sequence by combining Implicit Moving Least Squares (IMLS) with
differential rendering (DR) optimization

where φ is a locally supported kernel function that vanishes beyond
the cut-off distance h. h is the radius we search for neighbor points
and needs to be manually selected.

φ(r) = (1− r2

h2 )
4, (3)

We can use the implicit surface definition in equation 2 to derive a
fit energy [38]

Edist = ∑
i
(

∑k NT
k (Qi −Pk)φ(∥Qi −Pk∥)

∑k φ(∥Qi −Pk∥)
)2, (4)

where Pk and Nk are the 3D positions and normals of points in the
input point cloud (Figure 4d) and Qi are points on the subdivision
surface sampled from the control mesh (Figure 4a-c). For simplicity,
in all our examples we only use the vertices of the control mesh, but
we analyze the pros and cons of using more sampled points in the
following sections and illustrate this in Figure 10.

Regularizer: We experimented with several reguralizers and
the As-Rigid-As-Possible (ARAP) regularizer [48] yields the best
results. The ARAP regularizer does not penalize any isometric
deformations allowing local rotations, but it penalizes local stretches.
More specifically:

Ereg = ∑
i

∑
j∈N(i)

wi j∥(V 0
i −V 0

j )−Ri(V̄ 0
i − ¯V 0

j )∥
2, (5)

where N(i) is the set of vertices adjacent to V 0
i , V̄ 0

i is the initial vertex
position and Ri is the local estimation rotation matrix for the one ring
of vertices around vertex i. wi j is the standard cotangent Laplacian
weight [35]. At every iteration, Ri can be computed analytically
using SVD decomposition on the local co-variance matrix [56].

Optimization: Unlike previous methods, ours is formulated as
an unconstrained optimization problem of a differentiable analytical
function that can be solved efficiently using standard off-the-shelf
numerical methods.

4.2 Fitting a spatial-temporal model
For the spatial-temporal case, we fit the subdivision surface defined
by the control mesh iteratively to the temporally changing sequence
of shapes, using the solution from one frame as an initial guess for
the subsequent frame. Although this approach is popular and widely
used [34], it often fails due to accumulated drift arising from the
inherently local nature of the geometric distance. Consequently,
additional information is used to correct it, usually either in the
form of boundary constraints [11] or other visual queues such as
optical flow [4,42]. Recently, with the development of differentiable



Figure 6: Comparison between the result of T-shirt data fitting. The
brown color is the target. Green (a) using the geometric IMLS fit.
Red (b) combines the geometric IMLS fit together with the image loss
from the differential renderer. Note the drift in (a) at the bottom of the
T-Shirt that is resolved in (b)

renderers, rendered image difference metrics can be used to optimize
shape [19]. Adding the image difference loss from the differential
renderer complements our pipeline, adding a global structure to our
local geometric fit thus eliminating the drift and yielding a more
accurate fit.

The input to our pipeline is a temporal sequence of target shapes
Si in the form of a set of triangular meshes. These meshes can be
computed independently from point clouds as they do not require
the triangular meshes to have the same connectivity. For the spatial-
temporal case, we employ meshes as target shapes instead of directly
using point clouds only because there are currently no available
reliable differentiable renderers for point clouds and we want to take
advantage of differentiable rendering since we want to combine it
with our differentiable fitting to reconstruct spatial-temporal surfaces.
But we would like to emphasize here that our method poses no
conceptual limitations for using point clouds even for the spatial-
temporal case. The output of our method is a subdivision surface
defined by a control mesh M0. For the spatial-temporal fitting, the
vertices of M0 will have different 3D positions in each frame.

Differentiable rendering: The emergence of differentiable ren-
dering (DR) [25, 43] paved the way for a new set of tools in 2D
to 3D surface reconstruction. It allows 3D shape optimization and
modeling from rendered 2D images [19–21, 43]. In image space,
DR-based optimization can give us global loss energy when fitting
to a mesh, which is complementary to our local geometric IMLS
loss. Inspired by this, we introduce a new pipeline for fitting sub-
division surfaces to spatial-temporal (4D) mesh data by combining
our method with DR.

Optimization: Similar to the static case, given a control mesh M0

and a sequence of spatial-temporal target mesh Si, we are sequen-
tially fitting the control mesh to each target mesh, using the solution
of the current frame as an initial guess for the next one. Optimizing
using only the geometric energy functionals described above leads
to temporal drift as can be seen in Figure 6 (a). To overcome this
we add an image loss term that provides a global stabilization of the
optimization, eliminating the drift as can be seen in Figure 6 (b).

In every iteration’s forward pass, we use the DR to render the
target mesh in different camera positions k which gives us target
images Ik

TARGET At the same time, we use the same DR to render the
limit surface of the template mesh which gives us predicted images
Ik
PRED in the same camera positions as used for rendering the target

images. Suppose the number of pixels for a rendered image is N, we
compute image loss limage by

limage = ∑
k

(Ik
PRED − Ik

TARGET )
2

N
. (6)

As for the geometric loss, we compute it by the same method for

computing energy provided in Section 3. Thus, the total loss ltotal is

ltotal = Edist(L(M
0), Q̂)+α ·Ereg(M0,M̄0)+β · limage. (7)

In our implementation, we use the DR available in Py-
Torch3D [43] and for the backward pass, we use the gradient descent
method, Adam optimizer [23], to optimize the control mesh.

4.3 Integrating Loop subdivision in end-to-end surface
reconstruction networks

More recently, end-to-end reconstruction networks have been pro-
posed for triangular mesh reconstruction from point clouds or voxels
such as Deep Marching Tetrahedra (DMT) [46]. In [46], a multi-
layer perceptron was used to predict the signed distance function
(SDF) and deformation of every tetrahedral grid vertex. Then, by
using differentiable marching tetrahedra, a triangular mesh can be
reconstructed based on the predicted SDF and deformed tetrahedra
grid. In [46], after the reconstruction of the mesh, a graph con-
volutional network and deep subdivision were used to refine the
reconstructed mesh. Since the code for the full pipeline in [46] was
only partially released, we use only the parts shown in Figure 7 from
(a) to (e).

Our Loop subdivision plug-in fits naturally into the DMT pipeline
as shown in Figure 7 and the network can be trained end to end,
inclusive of our Loop plug-in module. We experimented with both
Chamfer Loss and IMLS loss. Chamfer loss is very robust
to the initial location of the reconstructed mesh. It also does not
require normals to be computed on the point which allows for more
sparsity in the input point cloud, but it does not encode any shape
information about the surface. The IMLS loss, on the other hand,
takes into account the shape but it requires a fairly close initial guess
and works better if the point cloud is dense. We reconcile these two
competing losses by employing a strategy where we first train 5000
iterations using Chamfer loss only and then train for extra 1000
iterations on the entire pipeline using both Chamfer and IMLS loss.
For the last 1000 iterations we train on the entire pipeline Figure
7 (a)-(g)). For the first 5000 iterations we experimented both by
training on the entire pipeline and by training only on DMT (Figure
7 (a)-(e)). The difference in performance is not significant. Since the
control mesh can change at every iteration, in the initial stages of the
training it is possible to have occasional occurrence of large degree
vertices. In the GPU implementation we have to set a static value
for the highest valence that can occur, and the processing of high
valence vertices is slower as explained in section 5.4. Due to the
nature of the GPU parallelism, all data follows the same control path
resulting in a significant overall performance penalty even when
very few vertices have large valence.

5 RESULTS AND DISCUSSION

5.1 Static surface fitting
We used our method to fit a number of synthetic models (the Stanford
Bunny and Lucy), see Figures 3 and 8 as well as a point cloud
of our own acquired using the Microsoft Azure Kinect device (a
Koala toy) Figure 9. The starting searching radius h0 and weight of
ARAP regularizer α were selected manually. We scaled the point
clouds to a unit box before fitting to increase the numerical stability
of the optimization. For the Stanford Bunny and Lucy, we used
h0 = 0.0005. For the toy Koala, we used h0 = 0.05. As for the α , it
depends on the noise level of the point cloud. When the point cloud
is noisy, you need a bigger weight, such as 0.1. When the point
cloud is very clean, α should be set to very small, such as 0.01. For
the Stanford Bunny and Lucy, we set α = 0.01. For the toy Koala,
we set α = 0.1.

For the bunny(Figure 3) the original point cloud has 72,027 ver-
tices and the reconstructed mesh using Screened Poisson [22] has
155,008 vertices. We demonstrate two reconstructions. The first



Figure 7: Integrating Loop subdivision evaluation plug-in into DMT. (a) Input point cloud. (b) Multi-layer perceptron. (c) Predicted SDF and
deformations for every tetrahedra grid vertex by MLP. (d) Differentiable marching tetrahedra. (e) Reconstructed mesh by DMT. (f) Loop subdivision
evaluation plug-in. (g) Fitted Loop subdivision surface.

Figure 8: Stanford Lucy [51]:(a) Point cloud with 49,987 vertices. (b)
Optimized control mesh with 8002 vertices. (c) Subdivision surface of
(b). (d) Screened Poisson reconstructed mesh with 262,909 vertices.
(e) Optimized control mesh with 20,002 vertices. (f) Subdivision
surface of (e).

one with a template mesh of 4667 vertices (Figure 3 (c)) that shows
no visual difference to the original, but uses only around 3% of the
Screened Poisson reconstruction. The second one uses only 314 ver-
tices, or only 0.2% of the Screened Poisson reconstruction (Figure 3
(f)). While a number of details are absent due to very high mesh
compression, the main shape is still reconstructed fairly well.

For the more detailed and complicated Lucy model (Figure 8),
with only 3% of the Screened Poisson reconstruction vertices, we
could retain most of the intricate objects and folds.

In Figure 9 we show the reconstruction of a koala toy. The
physical scanned model is furry so while the original reconstruction
is very detailed it also contained a lot of noise. With only 0.2%
of the original number of vertices and 0.8% of Screened Poisson
reconstruction vertices, we provide a reconstruction that retains the
shape and many of the important details.

The performance of the IMLS distance depends on the number
of sampled points on the subdivision surface that we use in the

Figure 9: Kinect scanned koala:(a) Point cloud with 1,018,126 vertices.
(b) Screened Poisson reconstructed mesh with 276,529 vertices. (c)
Optimized control mesh with 2,465 vertices. (d) Subdivision surface
of (c).

Figure 10: Comparison between (a) using only the control mesh
vertices to compute the IMLS fit, and (b) using the vertices after one
level of subdivision.

computation. By default, in all our examples we only use the points
in the control mesh. However, it is possible to select more samples.
Figure 10 shows this trade-off. Figure 10 (a) is the reconstruction of
the Lucy model using only the vertices in the original control mesh.
Figure 10 (b) is the reconstruction using the vertices obtained after
one level of subdivision (i.e. four times more). The result is slightly
improved, some areas contain more detail, however optimization
takes about three times as long.

5.2 Spatial-temporal fitting
We tested our spatial-temporal method on two sequences: a synthetic
sequence generated using a cloth simulation of a T-Shirt in Blender
[14], and a spatial-temporal capture of a cow toy using a multi-view
stereo setup. Both sequences have 30 frames and in both cases we
made a template from the first frame. For the cloth sequence, we used
for simulation a mesh of 2000 vertices that we randomly re-sampled
in every frame to simulate a real capture to 100,000 vertices (or 2%
of the total vertices). The template mesh has 2046 vertices, For the



Figure 11: Fitting result for t-shirt simulation: (a) Optimized control mesh of using both IMLS and DR. (b) Simulation result from Blender [14]. (c)
Fitting result by only IMLS energy(section 3). (d) Fitting result by combining IMLS and DR(section 4.2). (e) Fitting result by only DR.

Figure 12: Fitting result for a real scanned puppet. (a) Template control mesh with 1,252 vertices. (b), (f) Reconstructed per frame meshes using
[22] (c), (g) Fitted subdivision surface using IMLS energy (section 3) (d), (h) Fitted subdivision surface using a combination of IMLS energy and
DR(section 4.2) (e), (i) The fitting result only using DR. The shapes (b)-(e) correspond to the initial frame. The shapes (f)-(i) correspond to the last
frame in the sequence.

puppet sequence, the target mesh has around 123,000 vertices and
the template mesh of 1252 vertices (1% of the total vertices).

The settings for the DR are adapted from the PyTorch3D [43] tuto-
rial. We used Soft Silhouette shader whose image size is 256×256,
blur radius is log(1/(1e−4 −1)∗1e−4) and faces per pixel is 100.
When rendering the target shape, we had 20 different camera views
in total. However, in every iteration, we only randomly select 2
views to render the images of the template to reduce unnecessary
rendering time. The hyper-parameters α and β were set to 0.1 and
1. The T-Shirt sequence has a lot of geometric details that are well
preserved in the reconstruction. In contrast, the puppet sequence
has less detail and in some cases, some reconstruction artifacts (see
Figure 12 (f)) stay fixed in the reconstruction due to the continuity
properties of the subdivision surfaces. In Figures 11 and 12 we
compare the IMLS fitting scheme with the DR fitting scheme. Using
the DR fitting scheme by itself results in loss of a lot of details:
Figures 11 (e), 12 (e), (i) This is not unexpected as we only use
silhouette loss. However, the geometric detail between IMLS and

IMLS+DR is very similar (Figures 11 (c), (d), Figures 12 (c), (d),
Figures 12 (g), (h)). The main gain from adding the DR term is
the reduced drift (Figure 6). We also perform a quantitative eval-
uation using the Hausdorff distance between the target mesh and
the subdivision surface. For the subdivision surface, we computed
the Hausdorff distance using 3 iterations of subdivision. Results are
presented in Figure 15. The combination of IMLS + DR largely
outperforms either of them used separately.

5.3 Integrating Loop subdivision evaluation plug-in into
Deep Marching Tetrahedra

In evaluating our method we use a methodology similar to [46]. We
selected 12 meshes from TurboSquid website1, ShapeNet [6], and
Stanford scanning repository [51] and sampled 5000 points on every
mesh with added Gaussian noise µ = 0, σ2 = 0.005, as shown in
the top of figure 13. The reconstructed meshes by algorithm 7 are
shown at the bottom of figure 13.

1https://www.turbosquid.com/



Figure 13: Top: Sampled point clouds. Bottom: Reconstructed meshes using DMT and our Loop subdivision evaluation.

Chamfer distance, Hausdorff distance, and IMLS functions are
usually computed between point clouds. Since our output is a subdi-
vision surface, we evaluate these functions by using the limit position
of the control mesh vertices of the subdivision surface. We report
the Hausdorff distance and Chamfer distance for the result of extra
1000 iterations training by (i) Chamfer loss only (Figure 16 DMT),
(ii) Loop evaluation adding Chamfer loss (Figure 16 DMT+Loop)
and (iii) using loop evaluation, Chamfer loss, and IMLS loss (Fig-
ure 16 DMT+Loop+IMLS). Our subdivision surface has similar
Chamfer and Hausdorff distances compared to DMT but our model
has the extra benefit of being C1 continuous everywhere. In addi-
tion to the closeness of the fit, we also evaluate the mesh quality
of the subdivision mesh, an important feature in some applications.
We measure the per-face triangular quality using the function in
MeshLab [8] as follows: (1) area o f the f ace

max side o f the triangle (2) radii o f incircle
circumcircle

(3) area
a∗a+b∗b+c∗c . Figure 17 shows that the Loop limit surface has

better-shaped triangles than the mesh from DMT for similarly sized
meshes. Figure 18 illustrates this visually with an example.

As per the quantitative results obtained, fitting the subdivision
surface by Chamfer loss has the smallest distance to the point cloud.
However, because Chamfer distance measures the distance using a
point-to-point function, it can sometimes over-fit to noisy input; as
can be seen in Figure 14 (a), there is a sharp artifact between the arm
and the cheek of the puppet. Since the IMLS loss is computed based
on local implicit surfaces of the point cloud, it can avoid or mitigate
this kind of over-fitting as can be seen in figure 14 (b). What’s more,
since the IMLS energy is more geometry-aware, the result produced
by IMLS has better visual smoothness as shown in Figure 14 (e) and
(f). Combining the loop evaluation, IMLS loss, and Chamfer loss
yields the best visual result among all.

5.4 Implementation

We implemented our Loop subdivision evaluation plug-in as a Py-
Torch extension so that it can be easily used in any PyTorch-based
deep-learning pipeline. We implemented both the C++ extension and
the CUDA extension to enable our plug-in to work on both CPU and
GPU. The C++ extension is based on Eigen [13] and Libigl [17].

To implement the CUDA extension, there are two main problems
that needed to be solved: how to handle the list structure properly
to store the adjacency list of a triangular mesh which is required by
the evaluation, and how to parallelize the computations so that the
kernel function can be executed efficiently on the GPU. Since the
adjacency list is not usable in CUDA, we replace it with a padded
matrix that has the number of its rows as the number of vertices and
the number of columns as the maximum number of valences, which
we have set to 12 in our implementation.

Since most of the Deep-learning pipelines are executed on the
GPU, the CUDA extension also saves time for transferring data
between the CPU and GPU. We report our execution times in Figure
19. The CUDA implementation is up to 6.6x faster on the Loop
subdivision evaluation and up to 9.4x faster on the Loop subdivision
evaluation using IMLS energy.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this work, we have presented a generalized differentiable eval-
uation plug-in for Loop subdivision. Differentiability is achieved
by suitably staging the loop subdivision process to enable defining
the derivative as a composite. It works with any triangular control
mesh and hence can be easily integrated into deep learning-based
pipelines for different applications. We demonstrate our method on
subdivision surface fitting for static point clouds, subdivision surface
fitting for spatial-temporal shape sequences using a differentiable
renderer, and integration of the plug-in into the Deep Marching
Tetrahedra pipeline. The results show that our plug-in is versatile



Figure 14: Qualitative comparison between with and without Loop evaluation and IMLS loss. Left column: reconstructed mesh with DMT only.
Right column: Reconstructed mesh with DMT and subdivision surface fitting using the combined Chamfer and IMLS losses.

Figure 15: Hausdorff distance between fitting result and target
shape(w.r.t bounding box diagonal)

to work with different applications and yields improved results. Be-
yond that, the GPU implementation improves the plug-in’s usability
in Deep-learning based pipelines.

Our method has some limitations. The spatial-temporal recon-
struction relies on a differential renderer and those that are currently
available only support surface meshes. Therefore, for the spatial-
temporal examples, it was necessary to reconstruct a triangular mesh
from each static point cloud. Since the IMLS energy is based on the

Figure 16: Quantitative results of different methods.

Figure 17: Per-face quality metrics. A larger number is indicative of
better triangulation quality

nearest neighbor search, the optimization can fail when the distance
between the template control mesh and the target shape is too large.
Thus, in the case of spatial-temporal examples, the frame-to-frame
motion of the data needs to be relatively small. For the same reason,
when integrating our method into Deep Marching Tetrahedra, the
IMLS loss cannot be used in the early epochs of the training.



Figure 18: Per face quality area o f the f ace
max side o f the triangle (a) Without Loop evalua-

tion, (b) Adding Loop evaluation.A larger number is indicative of better
triangulation quality.

Figure 19: Execution time of PyTorch C++ extension and CUDA
extension. All tests were executed on Nvidia RTX 3090 and Intel
i9-12900k.

As mentioned in Section 5.4, in the CUDA implementation, we
replace the list with a padded matrix, which has the limitation that
the maximum valence of the input mesh should not exceed 12 in our
implementation. Although this number can be set higher, that will
lead to a performance and memory penalty. Note that valence of
12 is very unusual and may happen only in degenerate cases in the
early epochs of training.

Since our focus is on geometric fitting, for fitting spatial-temporal
sequence, we selected an image loss based on silhouette only. It
would also be of interest to explore other image losses and point-
based differential renderers.

In the future, we could also improve our method by using more
accurate implicit surface reconstruction techniques from point clouds
such as the one proposed by Liu et al. [30].

REFERENCES

[1] B. Allen, B. Curless, and Z. Popović. Articulated body deforma-
tion from range scan data. ACM Transactions on Graphics (TOG),
21(3):612–619, 2002.

[2] R. H. Bartels, J. C. Beatty, and B. A. Barsky. An Introduction to Splines
for Use in Computer Graphics and Geometric Modeling. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1987.

[3] Y. Ben-Shabat and S. Gould. Deepfit: 3d surface fitting via neural
network weighted least squares. In European Conference on Computer
Vision, pp. 20–34. Springer, 2020.

[4] A. Bozic, P. Palafox, M. Zollhöfer, A. Dai, J. Thies, and M. Nießner.
Neural non-rigid tracking. Advances in Neural Information Processing
Systems, 33:18727–18737, 2020.

[5] E. Catmull and J. Clark. Recursively generated b-spline surfaces on
arbitrary topological meshes. Computer-aided design, 10(6):350–355,
1978.

[6] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu.

ShapeNet: An Information-Rich 3D Model Repository. Technical
Report arXiv:1512.03012 [cs.GR], Stanford University — Princeton
University — Toyota Technological Institute at Chicago, 2015.

[7] K.-S. Cheng, W. Wang, H. Qin, K.-Y. Wong, H. Yang, and Y. Liu.
Fitting subdivision surfaces to unorganized point data using sdm. In
12th Pacific Conference on Computer Graphics and Applications, 2004.
PG 2004. Proceedings., pp. 16–24. IEEE, 2004.

[8] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia. MeshLab: an Open-Source Mesh Processing Tool. In
V. Scarano, R. D. Chiara, and U. Erra, eds., Eurographics Italian
Chapter Conference. The Eurographics Association, 2008. doi: 10.
2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

[9] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in character
animation. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pp. 85–94, 1998.

[10] D. Doo and M. Sabin. Behaviour of recursive division surfaces near
extraordinary points. Computer-Aided Design, 10(6):356–360, 1978.

[11] V. Estellers, F. Schmidt, and D. Cremers. Robust fitting of subdivision
surfaces for smooth shape analysis. In 2018 International Conference
on 3D Vision (3DV), pp. 277–285. IEEE, 2018.

[12] M. Garland and P. S. Heckbert. Surface simplification using quadric er-
ror metrics. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pp. 209–216, 1997.

[13] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[14] R. Hess. Blender Foundations: The Essential Guide to Learning
Blender 2.6. Focal Press, 2010.

[15] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,
J. Schweitzer, and W. Stuetzle. Piecewise smooth surface reconstruc-
tion. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, pp. 295–302, 1994.

[16] S. Ilic. Using subdivision surfaces for 3-d reconstruction from noisy
data. In Workshop on Image Registration in Deformable Environments
(DEFORM), pp. 1–10. Citeseer, 2006.

[17] A. Jacobson, D. Panozzo, et al. libigl: A simple C++ geometry pro-
cessing library, 2018. https://libigl.github.io/.

[18] K. Kähler, J. Haber, H. Yamauchi, and H.-P. Seidel. Head shop: Gener-
ating animated head models with anatomical structure. In Proceedings
of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pp. 55–63, 2002.

[19] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learning category-
specific mesh reconstruction from image collections. In Proceedings of
the European Conference on Computer Vision (ECCV), pp. 371–386,
2018.

[20] H. Kato, D. Beker, M. Morariu, T. Ando, T. Matsuoka, W. Kehl,
and A. Gaidon. Differentiable rendering: A survey. arXiv preprint
arXiv:2006.12057, 2020.

[21] H. Kato and T. Harada. Learning view priors for single-view 3d recon-
struction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9778–9787, 2019.

[22] M. Kazhdan and H. Hoppe. Screened poisson surface reconstruction.
ACM Transactions on Graphics (ToG), 32(3):1–13, 2013.

[23] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[24] M.-J. Lai. Fortran subroutines for b-nets of box splines on three-and
four-directional meshes. Numerical Algorithms, 2(1):33–38, 1992.

[25] S. Laine, J. Hellsten, T. Karras, Y. Seol, J. Lehtinen, and T. Aila. Mod-
ular primitives for high-performance differentiable rendering. ACM
Transactions on Graphics (TOG), 39(6):1–14, 2020.

[26] G. Lavoué, F. Dupont, and A. Baskurt. Subdivision surface fitting for
efficient compression and coding of 3d models. In Visual Communi-
cations and Image Processing 2005, vol. 5960, pp. 1159–1170. SPIE,
2005.

[27] H. Li, B. Adams, L. J. Guibas, and M. Pauly. Robust single-view
geometry and motion reconstruction. ACM Transactions on Graphics
(ToG), 28(5):1–10, 2009.

[28] N. Litke, A. Levin, and P. Schroder. Fitting subdivision surfaces. In
Proceedings Visualization, 2001. VIS’01., pp. 319–568. IEEE, 2001.

[29] H.-T. D. Liu, V. G. Kim, S. Chaudhuri, N. Aigerman, and A. Jacobson.
Neural subdivision. arXiv preprint arXiv:2005.01819, 2020.



[30] S.-L. Liu, H.-X. Guo, H. Pan, P.-S. Wang, X. Tong, and Y. Liu. Deep
implicit moving least-squares functions for 3d reconstruction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1788–1797, 2021.

[31] C. Loop. Smooth subdivision surfaces based on triangles. Master’s
thesis, University of Utah, USA, 1987.

[32] W. Ma, X. Ma, S.-K. Tso, and Z. Pan. Subdivision surface fitting from
a dense triangle mesh. In Geometric Modeling and Processing. Theory
and Applications. GMP 2002. Proceedings, pp. 94–103, 2002. doi: 10.
1109/GMAP.2002.1027500

[33] M. Marinov and L. Kobbelt. Optimization methods for scattered data
approximation with subdivision surfaces. Graphical Models, 67(5):452–
473, 2005.

[34] K. Mendhurwar, G. Handa, L. Zhu, S. Mudur, E. Beauchesne,
M. LeVangie, A. Hallihan, A. Javadtalab, and T. Popa. A system
for acquisition and modelling of ice-hockey stick shape deformation
from player shot videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, pp. 890–891,
2020.

[35] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete
differential-geometry operators for triangulated 2-manifolds. In Vi-
sualization and mathematics III, pp. 35–57. Springer, 2003.

[36] N. J. Mitra, S. Flory, M. Ovsjanikov, N. Gelfand, L. Guibas, and
H. Pottmann. Dynamic geometry registration. In Symposium on
Geometry Processing, pp. 173–182, 2007.

[37] N. Mohammad Khalid, T. Xie, E. Belilovsky, and T. Popa. Clip-mesh:
Generating textured meshes from text using pretrained image-text
models. In SIGGRAPH Asia 2022 Conference Papers, pp. 1–8, 2022.

[38] J. Montes, B. Thomaszewski, S. Mudur, and T. Popa. Computational
design of skintight clothing. ACM Transactions on Graphics (TOG),
39(4):105–1, 2020.

[39] R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp.
343–352, 2015.

[40] A. C. Öztireli, G. Guennebaud, and M. Gross. Feature preserving
point set surfaces based on non-linear kernel regression. In Computer
graphics forum, vol. 28, pp. 493–501. Wiley Online Library, 2009.

[41] L. Piegl and W. Tiller. The NURBS Book. Springer-Verlag, New York,
NY, USA, second ed., 1996.

[42] T. Popa, I. South-Dickinson, D. Bradley, A. Sheffer, and W. Heidrich.
Globally consistent space-time reconstruction. In Computer Graphics
Forum, vol. 29, pp. 1633–1642. Wiley Online Library, 2010.

[43] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. Johnson,
and G. Gkioxari. Accelerating 3d deep learning with pytorch3d. arXiv
preprint arXiv:2007.08501, 2020.

[44] A. Sharf, D. A. Alcantara, T. Lewiner, C. Greif, A. Sheffer, N. Amenta,
and D. Cohen-Or. Space-time surface reconstruction using incom-
pressible flow. ACM Transactions on Graphics (TOG), 27(5):1–10,
2008.

[45] G. Sharma, D. Liu, S. Maji, E. Kalogerakis, S. Chaudhuri, and R. Měch.
Parsenet: A parametric surface fitting network for 3d point clouds. In

European Conference on Computer Vision, pp. 261–276. Springer,
2020.

[46] T. Shen, J. Gao, K. Yin, M.-Y. Liu, and S. Fidler. Deep marching
tetrahedra: a hybrid representation for high-resolution 3d shape synthe-
sis. In Advances in Neural Information Processing Systems (NeurIPS),
2021.

[47] M. Shinya. Unifying measured point sequences of deforming objects.
In Proceedings. 2nd International Symposium on 3D Data Processing,
Visualization and Transmission, 2004. 3DPVT 2004., pp. 904–911.
IEEE, 2004.

[48] O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In
Symposium on Geometry processing, vol. 4, pp. 109–116, 2007.

[49] J. Stam. Evaluation of loop subdivision surfaces. In SIGGRAPH’98
CDROM Proceedings. Citeseer, 1998.

[50] J. Stam. Flows on surfaces of arbitrary topology. ACM Transactions
On Graphics (TOG), 22(3):724–731, 2003.

[51] Stanford. The stanford 3d scanning repository. http://graphics.
stanford.edu/data/3Dscanrep/.

[52] C. Stoll, Z. Karni, C. Rössl, H. Yamauchi, and H.-P. Seidel. Template
deformation for point cloud fitting. In PBG@ SIGGRAPH, pp. 27–35,
2006.

[53] R. W. Sumner and J. Popović. Deformation transfer for triangle meshes.
ACM Transactions on graphics (TOG), 23(3):399–405, 2004.

[54] J. Süßmuth, M. Winter, and G. Greiner. Reconstructing animated
meshes from time-varying point clouds. In Proceedings of the Sympo-
sium on Geometry Processing, pp. 1469–1476, 2008.

[55] A. Tevs, A. Berner, M. Wand, I. Ihrke, M. Bokeloh, J. Kerber, and H.-P.
Seidel. Animation cartography—intrinsic reconstruction of shape and
motion. ACM Transactions on Graphics (TOG), 31(2):1–15, 2012.

[56] S. Umeyama. Least-squares estimation of transformation parameters
between two point patterns. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 13(04):376–380, 1991.

[57] M. Wand, B. Adams, M. Ovsjanikov, A. Berner, M. Bokeloh, P. Jenke,
L. Guibas, H.-P. Seidel, and A. Schilling. Efficient reconstruction
of nonrigid shape and motion from real-time 3d scanner data. ACM
Transactions on Graphics (TOG), 28(2):1–15, 2009.

[58] W. Wang, H. Pottmann, and Y. Liu. Fitting b-spline curves to point
clouds by curvature-based squared distance minimization. ACM Trans-
actions on Graphics (ToG), 25(2):214–238, 2006.

[59] M. E. Yumer and L. B. Kara. Surface creation on unstructured point
sets using neural networks. Computer-Aided Design, 44(7):644–656,
2012.

[60] J. Zehnder, S. Coros, and B. Thomaszewski. Designing structurally-
sound ornamental curve networks. ACM Transactions on Graphics
(TOG), 35(4):1–10, 2016.

[61] W. Zheng, P. Bo, Y. Liu, and W. Wang. Fast b-spline curve fitting by
l-bfgs. Computer Aided Geometric Design, 29(7):448–462, 2012.

[62] M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher,
C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, et al. Real-time non-rigid
reconstruction using an rgb-d camera. ACM Transactions on Graphics
(ToG), 33(4):1–12, 2014.

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

	Introduction
	Related Work
	Fitting subdivision surface to target shape
	Spatio-temporal surface reconstruction
	Neural subdivision

	Method Overview
	Subdivision Surface Fitting
	Fitting a static point cloud
	Fitting a spatial-temporal model
	Integrating Loop subdivision in end-to-end surface reconstruction networks

	Results and Discussion
	Static surface fitting
	Spatial-temporal fitting
	Integrating Loop subdivision evaluation plug-in into Deep Marching Tetrahedra
	Implementation

	Conclusion, Limitations and Future work

