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Abstract

Shallow Quantum Circuits: Algorithms, Complexity, and Fault Tolerance

by

Yunchao Liu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Umesh Vazirani, Chair

A fundamental goal of quantum computing is to demonstrate computational advantage over
classical computers. Shallow quantum circuits play a central role in this effort as the field
transits from the Noisy Intermediate Scale Quantum (NISQ) era to the Early Fault Tolerant
era. This thesis describes three lines of research on the theoretical foundation of achieving
quantum computational advantage using shallow quantum circuits.

• The first is complexity and applications of random circuit sampling (RCS), an exper-
iment at the heart of recent “quantum supremacy” experiments. We describe recent
progress in understanding the computational complexity of RCS and its applications
in benchmarking noisy quantum devices.

• The second is learning algorithms. We give polynomial time algorithms for learning
shallow quantum circuits and quantum states prepared by shallow circuits.

• The third is fault tolerance. We discuss the prospects of achieving quantum compu-
tational advantage using fault tolerance techniques within noisy shallow circuits, and
describe two new techniques toward this goal, including fault tolerance against input
noise and single-shot logical state preparation.



i

Contents

Contents i

1 Quantum computational advantage: from NISQ to fault tolerance 1

2 Complexity and applications of random circuit sampling 4
2.1 Overview: theoretical reflections on quantum supremacy . . . . . . . . . . . 4
2.2 Complexity of ideal random circuit sampling . . . . . . . . . . . . . . . . . . 11
2.3 Complexity of noisy random circuit sampling . . . . . . . . . . . . . . . . . . 26
2.4 Benchmarking near-term quantum computers via random circuit sampling . 54

3 Learning algorithms 107
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.2 Learning shallow quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . 114
3.3 Learning quantum states prepared by shallow quantum circuits . . . . . . . . 169

4 Fault tolerance 210
4.1 Toward quantum computational advantage in the early fault tolerant era . . 210
4.2 Quantum computational advantage with constant-temperature Gibbs sampling214
4.3 Single-shot logical state preparation for arbitrary quantum LDPC codes . . . 253

Bibliography 272



ii

Acknowledgments

The journey of my PhD has been filled with the support, wisdom, and presence of mentors
and friends, and I am grateful for their positive impact on me.

My advisor Umesh Vazirani is the person I learned most from over the last five years.
Umesh has given me so much guidance and feedback on many different things, from finding
good research problems to writing papers and giving talks. I can clearly feel my growth after
each round of those back-and-forth conversations. Underlying all his guidance is his unique
philosophy and approach to things, which I am also beginning to appreciate: the principle
of focusing on the high-order bits, the deep philosophies behind simple stories, the gentle
touch to push things toward the right direction, the great care about certain seemingly small
things, and the mastery of cellphones... Above all, I think what Umesh did as an advisor is
to help me discover myself: to realize what I really want to do in research.

Dorit Aharonov has had a great impact on this thesis through both her mentorship and
her research work. This thesis builds upon the foundational work established in her PhD
thesis “Noisy Quantum Computation”. While reading her thesis, I realized that many of
her thoughts, even though written 25 years ago, still feel deeply insightful today. The most
important thing that Dorit taught me, through her deepest thoughts and strongest passion,
is what the connection between physics and computation really means.

Math conversations with Zeph Landau have been an indispensable part of my PhD. Zeph
has the magical power of distilling a math argument to its bare minimum and understanding
its fundamental core, and every time he waves that magic, it gives me a feeling of beauty
and joy. This is what led to our five papers together – and surely more will come. My
conversations with Zeph also go much beyond math: they involve life, philosophy, and
politics... And of course, there are cakes and waffles. Even more importantly, beyond all
these things, what I learned from Zeph is an example of a truly kind person.

There are so many people who have mentored me and guided me over the years. Former
postdocs Adam Bouland, Bill Fefferman, and Anurag Anshu helped me develop research skills
during the early stage of my PhD. Former students Chinmay Nirkhe and Urmila Mahadev
gave me invaluable advice throughout this journey. Berkeley faculty John Wright, Avishay
Tal, and Lin Lin have taught me so much through their courses and by setting examples
of great researchers. I spent wonderful times with Srinivasan Arunachalam and Kristan
Temme at IBM, and they continue to be my mentors. I thank all my research collaborators,
especially Yimu Bao, Thiago Bergamaschi, Xun Gao, and Jeongwan Haah, for being infinite
sources of inspiration.

My research wouldn’t have gone so smoothly without the hard work of the Simons lead-
ership and staff. I would like to especially thank Sandy Irani for her contributions to the
Simons community.

I would like to thank all members of the Berkeley theory group and Simons quantum
community for bringing lots of fun into my life. Thank you to Seri Khoury for feeding me
with his excellent barbeques and for educating me on the rules at UC Berkeley.



iii

I am extremely fortunate to have enjoyed the friendships with so many great people. The
Bonita community gave me unforgettable memories and fun, especially during covid. Former
students of the Yao class have always been my closest friends and allies, and I especially
enjoyed the presence of Binghui and Shunhua when they visited Simons. Hongxun and Xin
always motivate me by reminding me how good the younger students have become. I would
like to thank Fred and Lijie for all the experiences we have had together: all the food and
drinks and philosophical discussions, all the thoughts and emotions, and ups and downs.

To all the mentors and friends: thank you.



1

Chapter 1

Quantum computational advantage:
from NISQ to fault tolerance

A central goal of the theory of computation is to understand: What are the fundamental
capabilities and limitations of computers? [1] To understand this question one needs to
formulate a reasonable mathematical model of computation that can be realized in the
physical world, and then study the computational power of this model. The Extended
Church-Turing Thesis posits that any such realistic model of computation can be efficiently
simulated on a probabilistic Turing machine. This suggests that Turing machine is the most
powerful model in terms of understanding what computational problems can be efficiently
solved in the physical world.

Over the last 40 years, quantum computation has emerged as a revolutionary model of
computation based on quantum mechanics, not only in theory but also experimentally real-
ized with increasing scale. It has been realized since the early days of quantum computing
that this model potentially violates the Extended Church-Turing Thesis [2]: solving a com-
putational problem that cannot be solved by classical computers in polynomial time. This
was solidified by Shor’s quantum algorithm for factoring [3].

To establish quantum computing as a physical reality, the next essential step is the exper-
imental violation of the Extended Church-Turing Thesis, or an experimental demonstration
of quantum computational advantage. However, demonstrating quantum computational ad-
vantage via factoring integers, for example, is still far from reality as it likely requires a large-
scale fault tolerant quantum computer. On the other hand, rapid progress has been made on
the hardware side, where noisy intermediate scale quantum (NISQ) devices and early fault
tolerant devices of increasing scale and improving quality are being built (Fig. 1.1). These
devices are already capable of implementing quantum circuits of nontrivial size.

This thesis aims to bridge the gap between theory and experiment: establishing the
theoretical foundation for achieving quantum computational advantage using current or
near-future quantum devices. This is part of an exciting ongoing effort in the field toward
achieving deeper theoretical understanding and better experimental realization of quantum
computational advantage in the next few years.
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This workshop: what’s next?

Large-scale FTEarly FTNISQ

Progress on quantum computational advantage

Google 2023 RCS
67/70 qubits

Google 2019 RCS
53 qubits

Harvard/Quera/… 2023 IQP
48 “logical” qubits

Figure 1.1: Progress on quantum computational advantage.

We will focus on three of the most important features of the current progress on quantum
computational advantage (Fig. 1.1):

1. Shallow quantum circuits. Due to their limited coherence time, NISQ computers
are naturally modeled as having small circuit depth. Despite their simplicity, shallow
quantum circuits already demonstrate computational hardness: under plausible com-
plexity assumptions, no efficient classical algorithm can approximately sample from
the output distribution of a shallow quantum circuit. This is the starting point for the
theoretical basis of quantum computational advantage.

2. Transition from NISQ to fault tolerance. Noise is a major obstacle to performing
useful computation on a NISQ device which lacks error correction. A major effort
today is to realize restricted forms of fault tolerance within the capability of current
devices – the “early fault tolerant era”.

3. Useful and practical quantum algorithms. Besides the demonstration of compu-
tational hardness, an important direction is to develop useful quantum algorithms that
solve problems of practical interest, which ideally can be implemented using shallow
quantum circuits.

This thesis describes three lines of research on the theoretical foundation of achieving
quantum computational advantage using shallow quantum circuits.

• Chapter 2 studies the complexity and applications of random circuit sampling (RCS).
RCS is a basic primitive at the heart of recent “quantum supremacy” experiments,
which is the leading effort toward demonstrating quantum computational advantage
using NISQ devices. This chapter studies the complexity theoretic foundation of these
experiments, as well as their applications in benchmarking noisy quantum devices.

• Chapter 3 studies learning algorithms. We give polynomial time algorithms for learning
shallow quantum circuits and quantum states: given query access to an unknown black
box shallow quantum circuit (or copies of an unknown quantum state prepared by a
shallow circuit), learn a description of an equivalent shallow circuit (or description of
a shallow circuit that prepares the state). An important genre of heuristic quantum
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algorithms for NISQ devices can be viewed as learning a good shallow quantum circuit
for performing a certain task. Our learning algorithms may provide rigorous primitives
for this genre of algorithms.

• Chapter 4 studies fault tolerance. We propose a direction for achieving quantum
computational advantage in the early fault tolerant era – demonstrating computational
hardness using fault tolerance techniques within noisy shallow circuits, and describe
two new techniques toward this goal. The first is fault tolerance against input noise
for shallow IQP circuits. As an application, we prove the existence of a family of local
Hamiltonians for which the Gibbs state at constant temperature is easy to prepare on
a quantum computer but hard to sample from classically. The second is single-shot
logical state preparation. We prove that encoded logical states of arbitrary quantum
LDPC codes can be prepared using a constant depth quantum circuit followed by a
single round of measurement and classical feedforward.
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Chapter 2

Complexity and applications of
random circuit sampling

This chapter studies the computational complexity of random circuit sampling (RCS), as well
as applications of RCS in benchmarking noisy quantum devices. In Section 2.1 we give an
overview of the advances in understanding RCS and quantum supremacy experiments over
the last five years, highlighting the exciting back-and-forth between theory and experiment.
In Section 2.2 we study the complexity of ideal (noiseless) random circuit sampling and
provide evidence for its classical hardness, based on joint work with Adam Bouland, Bill
Fefferman and Zeph Landau [4]. In Section 2.3 we study the complexity of random circuit
sampling in the regime of constant noise per gate and give a polynomial time classical
algorithm for this problem, based on joint work with Dorit Aharonov, Xun Gao, Zeph
Landau and Umesh Vazirani [5]. Finally, in Section 2.4 we discuss theoretical justifications
of using random circuit sampling to characterize the noise models of a NISQ device, based
on joint work with Matthew Otten, Roozbeh Bassirian, Liang Jiang and Bill Fefferman [6].

2.1 Overview: theoretical reflections on quantum

supremacy

Motivation. This chapter studies random circuit sampling (RCS) – an experiment at the
heart of the recent “quantum supremacy” experiments: demonstrating quantum computa-
tions that are hard to simulate classically. These experiments play a fundamental role in
quantum computing in the NISQ era: from the experimental perspective, they achieve an im-
portant milestone toward building a practical quantum computer, and provide a benchmark
for the power and fidelity of NISQ devices; from the theoretical perspective, they provide a
fundamental test of quantum mechanics in the high complexity regime, and make progress
toward an experimental violation of the Extended Church-Turing Thesis.
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Figure 2.1: Random circuit sampling experiments. A random quantum circuit with n qubits
and depth d is selected by choosing each gate (white box) randomly. Here we assume
d = Ω(log n), such that pC(x) satisfies a statistical property called anti-concentration1. The
circuit is fixed and implemented on a noisy quantum device (noise is indicated by the blue
dots) M times, obtaining M samples of n-bit strings.

Random circuit sampling experiments. In 2019, Google announced a quantum supre-
macy experiment [7] which performed random circuit sampling on a 53-qubit quantum device.
A theoretical model of Google’s random circuit sampling experiment is shown in Fig. 2.1.
The experiment proceeds as follows:

1. Choose a random quantum circuit C with n qubits and depth d on a fixed circuit
architecture (Fig. 2.1 shows a 1D geometry while the experiment uses a 2D geometry)
by selecting each gate independently at random. The circuit acts on the input state
|0n⟩ and is measured in the standard basis at the output. Ideally, the output samples
are distributed as pC(x) = | ⟨x|C|0n⟩|2, x ∈ {0, 1}n.

2. The circuit C is fixed and implemented on a noisy quantum device M times, obtaining
M samples x1, x2, . . . , xM ∈ {0, 1}n. Due to noise in the device, the experiment actually
implements a noisy circuit where each gate is subject to some amount of noise (blue
dots in Fig. 2.1), and the experimental output may be far from pC(x).

3. After collecting the samples, a statistical test is used to test the consistency of the
samples with pC(x). We will focus on the statistical test called linear cross entropy

1Formally, anti-concentration means that EC 2n
∑

x∈{0,1}n pC(x)
2 = O(1), that is, the distribution is not

too concentrated.
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benchmark (XEB), defined as

XEB =
2n

M

M∑

i=1

pC(xi)− 1. (2.1)

This can be viewed as a score between 0 and 1 (a higher score is better).

When the experiment is sampling from a completely uncorrelated distribution such as the
uniform distribution, XEB = 0 in expectation. When the experiment is perfectly sampling
from pC(x), XEB ≈ 1 in expectation (this follows from the Porter-Thomas property of
pC(x)). Google’s 2019 experiment reported XEB = 0.002, which means that it only achieved
a tiny correlation with pC(x). The claim of “quantum supremacy” relies on the conjecture
that even this tiny correlation takes an enormous amount of computing resources classically
to achieve (thousands of years on a supercomputer).

Overview. Since the 2019 experiment, much progress has been made over the last five
years, including improved experiments and deeper theoretical understanding of how to inter-
pret these experiments, as well as applications in quantum benchmarking. Here we give an
overview of this progress. We refer to [8] for a more comprehensive survey of the literature.

From the theoretical perspective there are two basic questions about the “quantum
supremacy” claim. The first is whether sampling from the ideal output distribution pC(x) of
a random quantum circuit C is classically hard. Assuming this is true, there is the further
question of whether the statistical tests used in the experiment can be “spoofed” classically,
that is, whether an efficient classical algorithm can achieve the same performance as the
noisy experiment, even without sampling from the ideal output distribution.

Separately, random circuit sampling and its associated statistical tests has become a stan-
dard approach to benchmark quantum devices: characterizing the fidelity and noise models
in a NISQ device. This can be viewed as a practical application of quantum supremacy
experiments.

Below we discuss the substantial progress that has been made on both fronts.

Complexity theoretic foundation. The key challenge to prove the classical hardness of
ideal random circuit sampling is two-fold: the first is average-case hardness, meaning the
hardness must hold with high probability over a random circuit C; the second is robustness,
meaning it is hard to sample from any distribution that is close to pC(x). Putting together,
the goal is to prove that under standard complexity assumptions (such as the non-collapsing
of PH), no efficient classical algorithm can sample from pC(x) within inverse-polynomial
total variation distance, with high probability over C. While this remains a conjecture,
much progress has been made which provides positive theoretical evidence for this conjecture,
including the results presented in Section 2.2. We refer to Section 2.2 for extended discussions
on this subject.
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Computational complexity of XEB and noisy RCS. The central question regarding
the actual quantum supremacy experiments is the hardness of classically spoofing the XEB
test.

To justify this statistical test, Aaronson and Gunn formulated a strong conjecture called
XQUATH [9] which states that no efficient classical algorithm can achieve even a tiny cor-
relation with pC , which provided the complexity foundation of the XEB test and provided
a way to heuristically argue that even the very small XEB achieved in actual experiments
was a classically difficult computational task. The intuition behind this conjecture is the
Feynman path integral: think of a quantum circuit as a walk on the computational basis
with complex transition amplitudes. The ideal output of a quantum circuit is the exponen-
tial sum of all such trajectories (Feynman paths). Moreover, all these Feynman paths are a
priori similar and contribute equally. This is so unstructured that the best thing an efficient
classical algorithm can do is to calculate polynomially many such paths, which only achieves
an exponentially small correlation.

Since then, there has been pushback on both the quantum supremacy claim as well as its
theoretical foundation. On the practical side, there has been significant progress in tensor
network based classical simulation algorithms [10, 11, 12, 13, 14, 15]. These algorithms can
achieve the same XEB as Google’s 2019 experiment using hundreds of GPUs in a few hours.
However, these algorithms inherently run in exponential time and are not scalable. Indeed,
subsequent RCS experiments by USTC [16, 17] with up to 60 qubits are estimated to take
much more resources to spoof. This still left open the question of whether spoofing the XEB
test is a computationally hard problem.

In 2021, Gao et al. [18] developed an argument which cast doubt on the XQUATH
conjecture of [9] and developed a practical spoofing algorithm. Practically, the algorithm
uses a very small amount of resource, although it only achieved 10% of Google’s XEB and
fell short of spoofing the experiment. Theoretically, the computational hardness of the XEB
test was called into question, although this work left unclear whether the hardness of the
XEB test could be restored by formulating a new conjecture, and whether efficient classical
algorithms exist for the other statistical tests for RCS output distributions such as the Heavy
Output Generation (HOG) [19] and log XEB [20]. However, it reopens the question: is there
high complexity in noisy RCS experiments?

Finally, in 2022, Aharonov et al. [5] gave a polynomial time classical algorithm to sample
from the output distribution of a random quantum circuit with constant noise per gate,
within inverse-polynomial total variation distance. This result is presented in detail in Sec-
tion 2.3. This result implies the following: if the experiment collects M samples, then the
classical algorithm can also produce M samples that are statistically indistinguishable from
the experiment, in time poly(n,M). This means that no statistical test can distinguish
between the experiment and the classical algorithm.

This classical algorithm is based on Pauli path integral – the Feynman path integral in the
Pauli basis. Here we think of a quantum circuit as evolving a density matrix under unitary
channels, which is a walk on the Pauli basis (I,X, Y, Z) with real transition amplitudes.
The ideal output of a quantum circuit is the exponential sum of all Pauli paths. The



CHAPTER 2. COMPLEXITY AND APPLICATIONS OF RANDOM CIRCUIT
SAMPLING 8

key difference here is that: unlike the standard Feynman paths, different Pauli paths have
very different contributions since the identity element I only goes to identity under unitary
conjugation. The non-uniformity is further amplified in a noisy quantum circuit: as the
identity element I is preserved by noise and non-identity elements X, Y, Z get contracted by
noise, the contribution of a low-weight Pauli path is much higher than that of a high-weight
Pauli path. Thus the algorithm calculates all low-weight Pauli paths, and the approximation
error is bounded using anti-concentration.

Although this algorithm as it currently stands is not yet practical, it shows that there is
no computational hardness in random circuit sampling in the asymptotic regime of constant
noise per gate, thus ruling out an experimental violation of the Extended Church-Turing
Thesis. This calls into question the basic definitions of quantum supremacy and the inter-
pretation of the experimental results; a clarification is much needed.

Google’s 2023 experiment. In 2023, Google performed improved random circuit sam-
pling experiments with up to 70 qubits [21], which clearly exceeds far beyond classical sim-
ulability with reasonable resources estimated using current best-known practical simulation
algorithms, due to increased system size and improved fidelity.

Moreover, they gave a major clarification on the interpretation of the computational
hardness of the experiment. Instead of the asymptotic regime with constant noise per gate,
Google claimed that their finite-size experiments are in a low-noise regime: the noise per
gate scales as c/n where c is a small constant and n is the number of qubits. Thus the
experiment is interpreted in a small, finite-size regime, where noise can still be viewed as
a vanishing function in n, rather than the asymptotic regime where n goes to infinity and
noise is a constant.

Within this low-noise regime, they gave theoretical arguments showing that the XEB is
hard to spoof, which justifies the claimed difficulty of spoofing the XEB in practice. The
argument is based on a new hypothesis: that low-weight Pauli paths is the optimal spoofing
algorithm. Within the low-noise regime, the total noise on each layer of gates is a small
constant denoted as λ, and the XEB of the experiment scales as XEB ≈ e−λd (see below).
Furthermore, they conjecture that the XEB achieved by calculating all low-weight Pauli
paths is at most e−∆d, where ∆ is some fixed constant. Therefore, the experiment cannot be
spoofed as long as λ < ∆, which is shown to be true in the experiment where ∆ is estimated
numerically. These ideas emerged from separate developments in benchmarking which we
discuss next.

Cross-entropy benchmarking. Besides the above developments in understanding the
computational hardness of quantum supremacy experiments, there have been significant
developments in using XEB to characterize noisy quantum devices, where the significance of
the low-noise regime has already been recognized.

In Google’s 2019 experiment [7], it was suggested that the XEB is a proxy for fidelity.
Let |ψ⟩ = C |0n⟩ denote the ideal output state of a RCS experiment (before measurement)
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and let ρ denote the mixed state of the noisy experiment. The fidelity is defined as F =
⟨ψ|ρ|ψ⟩, which is an important benchmark of the device and is hard to directly measure.
Moreover, Google observed that their experimental XEB was consistent with an uncorrelated
noise model defined by multiplying individual gate fidelities, and they claimed that these
experimental results could be considered a way of verifying that the noise channel acting on
a layer of gates is uncorrelated across each gate. This observation is remarkable in the sense
that the fidelity of highly complex random circuits could be predicted by such a simple noise
model, but also intriguing as little theoretical evidence has been shown that supports this
observation.

Through subsequent theoretical developments (see Section 2.4), it was clarified that the
XEB decays exponentially according to e−λd, where λ is the total mount of noise in each
layer of gates, regardless of whether the noise is independent or correlated. This can be
understood as the following: think of the noise on each layer as an arbitrarily correlated
n-qubit Pauli channel (this is without loss of generality due to the twirling effects of random
circuits), then λ is the probability that any nontrivial Pauli error happens on any qubit.
Then, it holds in a RCS experiment that

XEB ≈ F ≈ e−λd ≈ Pr[no error happens in the circuit]. (2.2)

In particular, the main result of Section 2.4 provides theoretical evidence of F ≈ e−λd, and
Ref. [22] provides theoretical evidence of XEB ≈ e−λd. These results hold in the regime when
λ is at most a small constant, which coincides with the low-noise regime where noise per gate
scales as c/n. In addition, there have been theoretical and experimental works that apply
XEB to benchmark analog quantum simulators [23]. These developments have significant
consequences in quantum benchmarking:

1. It suggests that XEB is a proxy for fidelity, which gives a sample-efficient way to
estimate fidelity.

2. It suggests that λ can be estimated by measuring the XEB, addressing a significant
challenge in benchmarking non-Clifford gates (see Section 2.4 for more discussions).

3. Eq. (2.2) combined with experimental data on the noise of each gate suggests that the
noise on each gate in Google’s experiment is independently distributed (see Section 2.4
for more discussions), which is an important prerequisite for fault tolerance.

XEB phase transition. As discussed above, the XEB has been used as a benchmark
of the computational hardness of RCS experiments, as well as a proxy of the fidelity of
noisy devices. Google’s 2023 experiment [21] provided a more detailed understanding of the
XEB by identifying a phase transition, concluding that the low-noise regime of c/n noise
per gate is precisely the threshold below which the XEB works for benchmarking. First,
the expectation value of XEB (averaging over random circuits) is mapped to the partition
function of a classical spin model. Second, under certain approximations, an analytical
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formula of this partition function is obtained, as a function of n, d, and ε (noise per gate).
Third, by examining this expression, a phase transition in the parameter λ = nε is evident:
when λ is below a certain constant threshold, XEB ≈ e−λd (low-noise regime); when λ is
above this threshold, XEB ≫ e−λd (high-noise regime). Therefore, XEB is applicable for
characterizing noisy devices (items 1-3 below Eq. (2.2)) only in the low-noise regime.

In addition, this phase transition also jusifies the computational hardness of XEB in the
low-noise regime discussed earlier. Intuitively, in the low-noise regime the XEB captures
global correlations within the system, while in the high-noise regime XEB only captures
local correlations. Recall that efficient spoofing algorithms can be viewed as calculating
low-weight Pauli paths, that is, classically simulating local correlations, and the hypothesis
that the XEB achieved by low-weight Pauli paths is at most e−∆d for some fixed constant
∆, where ∆ can be estimated numerically. In the low-noise regime, XEB ≈ e−λd, which
can exceed the total amount of local correlations (when λ < ∆) because the experiment
contains global correlations. This gives theoretical evidence that XEB is hard to spoof in
the low-noise regime.

Discussion. Our current understanding of RCS and quantum supremacy experiments can
be summarized as follows.

1. Large practical classical simulation cost. The lastest RCS experiment is estimated
to take at least tens or hundreds of years to classically spoof using a supercomputer.

2. No scalable computational hardness. Noisy RCS experiments can be efficiently
simulated classically in the asymptotic regime of constant noise per gate.

3. Applications in benchmarking. RCS and XEB have already become a standard
approach for characterizing small-scale noisy quantum devices.

4. Plausible computational hardness in the low-noise regime. There are plausible
arguments showing that XEB is hard to spoof in the low-noise regime. It remains an
interesting open question to develop complexity theoretic evidence to put this claim
on a more rigorous footing.

Reflecting on these exciting developments over the last five years, the scientific efforts have
been very successful: compared with five year ago, we have now a much deeper theoretical
understanding about the complexity of RCS experiments and NISQ computation in general,
and have experimentally built much better devices. One of the reasons for this success is that
there was a clear target in 2019: achieve quantum supremacy via random circuit sampling.
It seemed clear at the time that this was the right target to achieve, and this provided strong
motivations for both theory and experiment to focus on this target.

Looking forward, the field is now moving into the early fault tolerant era. An urgent
question now is to formulate the next motivating target that drives our field. We refer to
Chapter 4 for this discussion.
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2.2 Complexity of ideal random circuit sampling

This section provides complexity theoretic evidence for the following conjecture on the clas-
sical hardness of ideal random circuit sampling.

Conjecture 2.1 (Hardness of approximate sampling). No polynomial-time randomized clas-
sical algorithm can do the following (unless the Polynomial Hierarchy collapses): on input a
random quantum circuit C, obtain a sample from a distribution that is within 1/poly(n) total
variation distance from the output distribution of C, with probability at least 1 − 1/poly(n)
over the choice of C as well as the internal randomness of the algorithm.

This conjecture provides the theoretical basis for quantum supremacy experiments (in
the limit of very small noise), and from the complexity perspective it is interesting as it does
not explicitly depend on BQP ̸= BPP.

A line of research started from Aaronson and Arkhipov [24] in the context of Boson
sampling developed a road map toward this conjecture. The crux is to show that the output
probability of random quantum circuits are #P-hard to approximate on average. Here
“approximate” corresponds to a 2−n

poly(n)
additive imprecision, which follows naturally from

Stockmeyer’s approximate counting theorem [25].

Conjecture 2.2. It is #P-hard to compute p0 (C) := | ⟨0n|C|0n⟩|2 up to additive imprecision
2−n/poly(n) on input a random circuit C, with probability at least 1− 1

poly(n)
over the choice

of C as well as the internal randomness of the algorithm.

It is shown via Stockmeyer’s approximate counting and anti-concentration that Con-
jecture 2.2 implies Conjecture 2.1 [24, 26]. Although Conjecture 2.2 has not been proven
so far, necessary conditions of Conjecture 2.2 were established in the form of average-case
hardness of p0 (C) that is robust up to a smaller additive imprecision. An open direction
is therefore to improve these results to match the 2−n

poly(n)
additive imprecision required by

Conjecture 2.2. The main result of this section gives improved average case hardness results
toward Conjecture 2.2, for both random circuit sampling and Boson sampling.

Theorem 2.1. For any constant η < 1/4, it is #P-hard under a BPPNP reduction to compute
the output probability of random quantum circuits C up to additive error 2−O(m logm), with
probability at least 1− η over the choice of C with m gates.

We also give an analogous result for Boson sampling, showing that it is hard to compute
the output probabilities of (noiseless) random n-photon m = n2 mode linear optical networks
to additive imprecision e−6n logn−O(n). This nearly matches the desired robustness for Boson
sampling (O(e−n logn)) up to a constant factor in the exponent. To our knowledge, this is
the first time that a quantum supremacy proposal exhibits a proven robustness of hardness
which is polynomially related to the conjectured robustness in absolute terms.
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Corollary 2.1. For any constant η < 1
4
, it is #P-hard under a BPPNP reduction to compute

the output probability of a n-photon m = nc-mode Boson sampling experiment up to additive
error δ = e−(c+4)n logn−O(n), with success probability 1− η.

2.2.1 Average-case hardness

In this section we develop the average-case hardness of computing the output probability
of random quantum circuits. An important ingredient of our proof is a robust polynomial
interpolation technique, which is independently developed in Section 2.2.2.

2.2.1.1 Worst-to-average-case reduction

Our first result is to establish a worst-to-average-case reduction for computing the output
probability of random quantum circuits in the noiseless setting. That is, if there exists an
algorithm that can approximate the output probability of most random quantum circuits
over an architecture, then there exists an algorithm that can approximate the output proba-
bility of every quantum circuit over the same architecture. Our average-case hardness result
tolerates a constant failure probability (i.e. it is hard to compute the output probability
for a large constant fraction of random circuits), and is robust up to a small additive error
2−O(m logm) for random circuits with m gates. Our result is therefore an improvement over
previous results [26, 27] in both aspects.

The main idea of the worst-to-average-case reduction works as follows. Consider a cir-
cuit architecture over which computing the output probability up to an exponentially small
additive error is #P-hard in the worst case. Then, to prove average-case hardness, it suf-
fices to construct a reduction that belongs to some finite level of the Polynomial Hierarchy.
That is, given an arbitrary circuit C0, our goal is to compute p0 (C0) using a procedure in
the Polynomial Hierarchy, with access to an oracle O that can compute p0 (C) for a large
fraction of random circuits C. For a circuit architecture A, let HA be the distribution over
circuits such that each gate is independently drawn from the Haar measure. Let {Gi}i=1,...,m

be the quantum gates in C0. We create a new circuit C1 by applying a “one-time pad” to
C0, where each gate Gi is replaced by

Gi → HiGi, (2.3)

where {Hi} is independently drawn from the Haar measure over the unitary group and has
the same dimension as Gi. By the invariance of Haar measure, C1 is distributed the same
as HA. Therefore {Hi} can be understood as the “random seed” used for the one-time pad.

By definition, O can compute an accurate approximation of p0 (C1) with high probability.
However, this number alone does not contain any information on our desired quantity p0 (C0).
The main insight that allows us to correlate average-case solutions to the worst-case quantity,
which was originally developed to show the average-case hardness for permanents [28, 29], is
to create many random instances {Ci} by the following procedure: first sample a “random
seed” {Hi}, then apply small and different perturbations to the random seed, and then apply
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each perturbed random seed to C0. As a result, while each random instance is marginally
distributed approximately according to HA, they are close to each other and are correlated
in a way that reveals the worst-case quantity p0 (C0).

More specifically, suppose there is a way of perturbing the circuit C1 into a new circuit
C(θ) (θ ∈ [0, 1]), such that C(θ) ≈ C1 when θ ≪ 1, and C(1) = C0. Moreover, suppose
p0 (C(θ)) for different values of θ are correlated in a way such that p0 (C(1)) can be inferred
from p0 (C(θ)) for small values of θ. Then, to compute p0 (C0), it suffices to query O with
C(θi) for many small θis.

One way to develop such a procedure is by perturbing the random seeds {Hi} used in
the construction of C1, which we define as follows.

Definition 2.1 (θ-perturbed random circuit distribution). Suppose there is a transform
on unitary matrices H 7→ H(θ) parameterized by a real number θ ∈ [0, 1], that satisfies
H(0) = H is unchanged, and H(1) = I is the identity matrix. For any circuit C0 with gates
{Gi}i=1,...,m and a random seed {Hi}i=1,...,m, the circuit C(θ) is defined by replacing Gi with

Gi 7→ Hi(θ)Gi. (2.4)

Denote the distribution induced by C(θ) as HA,θ. Note that HA,0 = HA and HA,1 = 1C0.

As discussed above, in order for such a perturbation to be useful for the worst-to-average-
case reduction, we require that the following (informal) properties are satisfied.

Properties of the perturbed circuit distribution (informal).

1. When θ is small, HA,θ is close to HA in total variation distance. Therefore, when O is
given an input C(θ) ∼ HA,θ from the perturbed distribution, it is guaranteed to return
a correct approximation of p0 (C(θ)) with high success probability.

2. An approximation of p0 (C(1)) can be inferred from approximations of p0 (C(θ)) for
small values of θ with a procedure in the Polynomial Hierarchy.

Finding such a good perturbation method is non-trivial. Two proposals were developed
in previous work in the context of noiseless circuits. In [26], they considered the truncated
Taylor series of He−θ logH , which is given by

H(θ) = H ·
(

K∑

k=0

(−θ logH)k

k!

)
, (2.5)

and showed that p0 (C(θ)) is a degree O(mK) polynomial in θ. Property 2 is then satisfied
by using polynomial interpolation techniques. In this approach, H(θ) as defined by Eq. (2.5)
is not unitary, and the resulting average-case hardness is for a circuit family that has a small
deviation from HA given by the truncation error of the Taylor series. Later, Movassagh [27]
developed a new perturbation method, called Cayley transform, that is able to stay within
the unitary path.
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Definition 2.2 (Cayley transform [27]). The Cayley transform of a unitary matrix H pa-
rameterized by α ∈ [0, 1] is a unitary matrix defined as

H(α) :=
αI + (2− α)H

(2− α)I + αH
, (2.6)

where A/B means A ·B−1. Consider the diagonalization of a unitary matrix

H =
∑

j

eiφj |ψj⟩⟨ψj| ,

the following is an equivalent form of the Cayley transform,

H(α) =
∑

j

1 + i(1− α) tan
φj

2

1− i(1− α) tan
φj

2

|ψj⟩⟨ψj| . (2.7)

Note that H(0) = H and H(1) = I.

Note that we are using slightly different notations from [27]. A self-consistent presentation
of the properties of the Cayley transform is given in [4, Appendix E].

While not having an evident polynomial structure as in the construction of [26], in [27]
they applied Cayley transform to the gates {Hi} parameterized by α = θ, and showed that
the resulting p0 (C(θ)) is a degree (O(m), O(m)) rational function in θ. A similar polynomial
interpolation technique can be applied to infer p0 (C(1)) from p0 (C(θ)) with small values of
θ.

In particular [27], building on [26], obtained the following average-case hardness results.

Theorem 2.2 ([26, 27]). Let A be a circuit architecture so that computing p0 (C) to within
additive error 2−O(m) is #P-hard in the worst case. The following results hold:

1. It is #P-hard to compute p0 (C) exactly on input C ∼ HA, with success probability at
least 1− η over the choice of C, for any constant η < 1

4
.

2. It is #P-hard to compute p0 (C) up to an additive imprecision 2−O(m3) on input C ∼
HA, with success probability at least 1−O(1)/m over the choice of C.

We improve these results by proving an average-case hardness that tolerates a larger
additive imprecision 2−O(m logm), while only requiring a constant success probability over the
choice of random circuits. These improvements follows from two new techniques: the first
is a robust polynomial interpolation argument which tolerates a constant failure probability,
and the second is an improved error bound for long distance polynomial extrapolation. Both
results are developed in Section 2.2.2 and are used as black boxes here.

To establish our reduction, we first consider the θ-perturbed random circuit distribution
instantiated by the Cayley transform.
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Definition 2.3 (θ-Cayley perturbed random circuit distribution). For any circuit C0 with
gates {Gi}i=1,...,m and a random seed {Hi}i=1,...,m, the circuit C(θ) is defined by replacing Gi

with
Gi 7→ Hi(θ)Gi, (2.8)

where Hi(θ) denotes the Cayley transform of Hi parameterized by θ. Denote the distribution
induced by C(θ) as HA,θ. Note that HA,0 = HA and HA,1 = 1C0.

As previously shown by [27], the output probability p0 (C(θ)) is a low-degree rational
function in θ.

Lemma 2.1 ([27]). For any circuit C0, let C(θ) be a circuit from the θ-Cayley perturbed
random circuit distribution as in Definition 2.3. Then p0 (C(θ)) is a degree (O(m), O(m))
rational function in θ.

Proof. Here we give a self-consistent proof as the details are useful for our later developments.
First, notice that the output amplitude can be written as the Feynman path integral,

⟨0n|C(θ)|0n⟩ =
∑

y1,...,ym−1∈{0,1}n

m∏

j=1

⟨yj|(Hj(θ)Gj ⊗ Ielse)|yj−1⟩ , (2.9)

where we have y0 = ym = 0n, Hj(θ)Gj is a local gate and Ielse denotes identity on all the
other qubits. Let the diagonalization of Hj be Hj =

∑
l e
iφjl |ψjl⟩⟨ψjl|. Then, consider an

individual term in the above sum,
m∏

j=1

⟨yj|Hj(θ)Gj|yj−1⟩

=
m∏

j=1

⟨yj|
∑

l

(
1 + i(1− θ) tan

φjl

2

)
|ψjl⟩⟨ψjl|

1− i(1− θ) tan
φjl

2

Gj |yj−1⟩

=
m∏

j=1

⟨yj|
∑

l

(
1 + i(1− θ) tan

φjl

2

)
|ψjl⟩⟨ψjl|

∏
t̸=l

(
1− i(1− θ) tan

φjt

2

)
∏

l

(
1− i(1− θ) tan

φjl

2

) Gj |yj−1⟩ .

(2.10)

Let

Q0(θ) :=
m∏

j=1

∏

l

(
1− i(1− θ) tan

φjl
2

)
,

Q(θ) := |Q0(θ)|2.
(2.11)

Then Eq. (2.10) is a degree (O(m), O(m)) rational function in θ with Q0(θ) being the denom-
inator. Furthermore, notice that Q0(θ) does not depend on the Feynman path {yj}, and each
term in the sum in Eq. (2.9) shares the same denominator Q0(θ). Therefore, ⟨0n|C(θ)|0n⟩ is
a degree (O(m), O(m)) rational function in θ, and so is p0 (C(θ)) = | ⟨0n|C(θ)|0n⟩ |2. Q(θ)
is then the denominator of p0 (C(θ)). Finally, note that if C0 only consists of 2-qubit gates,
then p0 (C(θ)) is a degree (8m, 8m) rational function in θ.
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Lemma 2.1 formally supports Property 2 of the θ-Cayley perturbed random circuit distri-
bution. Intuitively, this low-degree rational function structure allows us to apply polynomial
interpolation techniques to obtain an approximation to the worst-case quantity, even though
the worst-case point (θ = 1) is far from the average-case data points (0 < θ ≪ 1). Details of
this interpolation technique are presented in the proof of our main result (Theorem 2.3) and
in Section 2.2.2. Before presenting the main result, it remains to establish Property 1 of the
θ-Cayley perturbed random circuit distribution, which is given in the following lemma.

Lemma 2.2 ([27]). Let HA,θ be the θ-Cayley perturbed random circuit distribution as in
Definition 2.3, and HA be the distribution of Haar random circuits over A. Then we have

DTV(HA,θ,HA) = O(mθ), (2.12)

where DTV(·, ·) denotes the total variation distance between probability distributions and m
is the number of gates in A.

Proof. This total variation distance can be bounded by considering the distribution of each
individual gates. In [27], it was shown that the total variation distance between the Cayley
transformed random unitary H(θ) and Haar random unitary is O(θ). Therefore by additivity
of the total variation distance we have DTV(HA,θ,HA) = O(mθ).

Having established Property 1 and 2, we are now ready to state and prove our first result
on the average-case hardness of random circuits.

Theorem 2.3. Let A be a circuit architecture so that computing p0 (C) to within additive
error 2−O(m) is #P-hard in the worst case. Then the following problem is #P-hard under
a BPPNP reduction: for any constant η < 1

4
, on input a random circuit C ∼ HA with m

gates, compute the output probability p0 (C) up to additive error δ = exp (−O(m logm)),
with probability at least 1− η over the choice of C.

Remark 2.1. Another way of stating Theorem 2.3 is the following: suppose there exists an
algorithm that belongs to some finite level of PH that, on input a random circuit C ∼ HA with
m gates, computes the output probability p0 (C) up to additive error δ = exp (−O(m logm)),
with probability at least 1− η (η < 1

4
) over the choice of C as well as the randomness of the

algorithm. Then PH collapses to a finite level.

Proof. LetO be an algorithm that correctly approximates p0 (C) of a random circuit C ∼ HA
up to additive error δ, with success probability at least 1 − η over the choice of C. In the

following, we show that there exists a BPPNPO
procedure that on input any circuit C0,

computes p0 (C0) up to additive error δ′ = δ exp (O(m logm)), with success probability at
least 2

3
. The theorem statement then follows from the worst-case hardness of computing

p0 (C0) over A.
Consider any circuit C0 with m gates over the architecture A. Create a new circuit C1

as follows: for each gate Gi (i = 1, . . . ,m) in C0, we replace Gi with HiGi, where {Hi}
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is independently drawn from the Haar measure over the unitary group and has the same
dimension as Gi. By the invariance of Haar measure, C1 is distributed the same as HA.

Fix the random unitary gates {Hi}. Next, we apply the θ-Cayley perturbation on C0

using the random seed {Hi} as in Definition 2.3 to get the perturbed circuit C(θ). By
definition, we have C(0) = C1 ∼ HA and C(1) = C0.

By Lemma 2.1, p0 (C(θ)) is a degree (O(m), O(m)) rational function in θ. Let P (θ), Q(θ)

be the numerator and denominator of p0 (C(θ)), respectively, then p0 (C(θ)) = P (θ)
Q(θ)

. Note
that from the proof of Lemma 2.1, we have that

Q(θ) =
m∏

j=1

∏

l

∣∣∣1− i(1− θ) tan
φjl
2

∣∣∣
2

. (2.13)

The goal is to recover p0 (C(1)) = P (1)
Q(1)

from values of p0 (C(θ)) for small θ. To do this,

first note that Q(θ) is a known polynomial whose value can be computed in time O(m) for
any θ. Therefore, the problem can be reduced to a polynomial interpolation for P (θ).

To analyze the error for the polynomial interpolation, it is useful to establish bounds for
Q(θ). We can write Q(θ) as

Q(θ) =
m∏

j=1

∏

l

∣∣∣1− i(1− θ) tan
φjl
2

∣∣∣
2

=
m∏

j=1

∏

l

(
1 + (1− θ)2 tan2 φjl

2

)
, (2.14)

where it is easy to see that Q(θ) ≥ 1. Next, call the set of Haar random gates {Hj}j=1,...,m

β-good, if all eigenvalues φjl of all gates lie in the range [−π+β, π−β]. By Lemma 2.3, this
happens with probability at least 1 − O(mβ). Suppose we choose β = O(m−1) such that
{Hj} is β-good with high constant probability. Then conditioned on {Hj} being β-good, we
have

Q(θ) =
m∏

j=1

∏

l

(
1 + (1− θ)2 tan2 φjl

2

)

≤
m∏

j=1

∏

l

(
1 + tan2 π − β

2

)

≤
m∏

j=1

∏

l

(
1 +

4

β2

)

=
(
1 +O(m2)

)O(m)

= exp (O(m logm)) .

(2.15)

We also define the above upper bound of Q(θ) as K, where K = exp (O(m logm)).
Next we apply the algorithm O on input C(θ). Notice that by definition, O works on

inputs from the distribution HA, while C(θ) is distributed according to HA,θ as in Defini-
tion 2.3. Therefore, the success probability of O depends on the distance between the two
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distributions,

Pr
C(θ)∼HA,θ

[|O(C(θ))− p0 (C(θ))| ≥ δ] ≤ η +DTV(HA,θ,HA), (2.16)

where DTV denotes total variation distance. By Lemma 2.2, we have DTV(HA,θ,HA) =
O(mθ). Let ∆ = O(m−1) and restrict θ in the interval [0,∆], such that DTV(HA,θ,HA) =
O(m∆) is upper bounded by a small constant.

Conditioned onO being successful and {Hj} being β-good, we have
∣∣∣O(C(θ))− P (θ)

Q(θ)

∣∣∣ ≤ δ.

After seeing the output O(C(θ)) of O, we multiply it with Q(θ) to get an estimate of P (θ),
which satisfies

|O(C(θ))Q(θ)− P (θ)| ≤ δQ(θ) ≤ δK. (2.17)

By a simple union bound, the above equation holds with failure probability at most

Pr [|O(C(θ))Q(θ)− P (θ)| ≥ δK] ≤ Pr [|O(C(θ))− p0 (C(θ))| ≥ δ ∨ {Hj} not δ-good]

≤ η +O(m∆) +O(mβ) ≤ η′ <
1

4
,

(2.18)
for a suitable choice of constants in the O-notation for ∆ = O(m−1) and β = O(m−1), such
that η′ < 1

4
.

To compute P (1), we apply the algorithm O to a set of circuits {C(θi)}, where θi (i =
1, . . . , O(m2)) is a set of equally spaced points in the interval [0,∆], and different perturbed
circuits C(θi) shares the same random seed {Hj}. By Eq. (2.18), we obtain a set of points
{(θi, yi)} such that

Pr [|yi − P (θi)| ≥ δK] ≤ η′ <
1

4
. (2.19)

The problem is then reduced to a polynomial interpolation for P (θ), a degree O(m) polyno-
mial, with the noisy data {(θi, yi)}. Using our robust Berlekamp-Welch theorem which we
develop in the next section (see Theorem 2.4), on input {(θi, yi)} we can compute a number
p ≈ P (1) with access to an NP oracle, where the error can be bounded by

|p− P (1)| ≤ δK exp
(
O(m log ∆−1) +O(m)

)

= δ · exp(O(m logm)).
(2.20)

Finally, notice that

p0 (C0) = p0 (C(1)) =
P (1)

Q(1)
= P (1) (2.21)

as Q(1) = 1, therefore by choosing δ = exp (−O(m logm)) with a sufficiently large constant,
we can compute the worst-case output probability p0 (C0) up to additive error

exp (−O(m logm)). The overall procedure is in BPPNPO
. If O is an algorithm that belongs to

some finite level of PH, then this procedure also belongs to a finite level of PH, and therefore
by the worst-case #P hardness the PH collapses to a finite level.
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Lemma 2.3. The Haar distribution µH over the unitary group U(N) satisfies

Pr
µH

[φj ∈ [−π + δ, π − δ], ∀j] ≥ 1− Nδ

π
, (2.22)

where φj (j = 1 . . . N) denotes the eigenvalues of the random unitary distributed according
to µH .

Proof. The proof is a simple union bound:

Pr
µH

[φj ∈ [−π + δ, π − δ], ∀j] = 1− Pr
µH

[∃j : φj /∈ [−π + δ, π − δ]]

≥ 1−
N∑

j=1

Pr
µH

[φj /∈ [−π + δ, π − δ]]

= 1−N Pr
µH

[φ1 /∈ [−π + δ, π − δ]]

= 1− Nδ

π
.

(2.23)

In the above proof we used a result developed in Section 2.2.2 as a black box, which we
refer to as robust Berlekamp-Welch algorithm. This algorithm allows us to do polynomial
interpolation on noisy data, while tolerating a constant fraction of data points that can be
arbitrarily wrong. Similar to the Learning with Errors problem for solving noisy linear equa-
tions, the polynomial interpolation problem with both noise and corruption seems unlikely
to be solved in polynomial time. However, recall that given the #P hardness of computing
p0 (C) in the worst case, in our worst-to-average-case reduction we are allowed to use any
finite level of PH. We show how to do such a polynomial interpolation in Section 2.2.2 having
access to a NP oracle. As a result, we are able to tolerate a constant failure probability in
our average-case hardness.

Furthermore, our proof techniques can also be naturally applied to BosonSampling, where
a fundamental question is to prove robust average-case hardness results for computing perma-
nents of matrices with i.i.d. Gaussian entries [24, 30]. Consider a BosonSampling experiment
with n photons and m = nc (c > 2) output modes. Then assuming no collision, the output
probability corresponding to a output pattern S = (s1, . . . , sm) (si ∈ {0, 1},

∑
i si = n) is

Pr[S] = |Per(AS)|2 , (2.24)

where A is a m×n submatrix of a m×m Haar random unitary matrix, and AS is the n×n
submatrix of A whose rows are selected according to S. When c is a large enough constant,
AS is distributed close in total variation distance to matrices with i.i.d. complex Gaussian
entries of mean 0 and variance 1

m
. We then obtain the following result using similar proof

techniques:
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Corollary 2.2 (Restatement of Corollary 2.1). For any constant η < 1
4
, it is #P-hard

under a BPPNP reduction to compute the output probability of a n-photon m = nc-mode
BosonSampling experiment up to additive error δ = e−(c+4)n logn−O(n), with success probability
1− η.
Remark 2.2. As shown in [24], to prove the hardness of approximate sampling for Boson-
Sampling experiments, it suffices to improve the constant in our result from c + 4 to c − 1.
This is because on average the output probability is roughly

1(
m
n

) ≈ n!

mn
≈ e−(c−1)n logn. (2.25)

However, the barrier result shown by [24] implies that this improvement cannot be obtained
using similar techniques based on polynomial interpolation. See [4, Appendix B] for a de-
tailed discussion, where we also show that this barrier result does not rule out improving the
constant to c+ 1.

Proof. Let Gn×n denote the distribution over n×n matrices where each entry is independently
distributed according to CN (0, 1), the standard complex Gaussian distribution. Suppose c
is a large enough constant2, then an algorithm for approximating the output probability of
a BosonSampling experiment can be used to approximate

pX :=
|Per(X)|2

mn
, X ∼ Gn×n (2.26)

with a small loss in the success probability.
Let O be an algorithm that, on input a random matrix X ∼ Gn×n, correctly approximates

pX up to additive error δ, with success probability at least 1 − η over the choice of X. In

the following, we show that there exists a BPPNPO
procedure that on input any 0/1 matrix

X0, computes |Per(X0)|2 up to additive error δ′ = δ exp ((c+ 4)n log n+O(n)), with success
probability at least 2

3
. The theorem statement then follows from the worst-case #P hardness

of computing Per(X0).
Let X1 ∼ Gn×n and define

X(θ) := (1− θ)X1 + θX0. (2.27)

Then |Per(X(θ))|2 is a degree d = 2n polynomial in θ. By a result of [24], the total variation
distance between the distribution of X(θ) and Gn×n is O(n2θ). This can be shown by
calculating the distance for one entry, which is O(θ), and then multiply by n2 as the entries
are independently distributed.

Consider O(n2) uniformly spaced points {θi} in [0,∆] with ∆ = O(n−2). For a suitable
choice of constants, we can guarantee that for each data point θi,

Pr

[∣∣∣∣∣O(X(θi))−
|Per(X(θi))|2

mn

∣∣∣∣∣ ≥ δ

]
≤ η +O(n2∆) ≤ η′ (2.28)

2The proof in [24] requires c to be at least 5, and it was conjectured that c > 2 suffices.
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for some constant η′ < 1
4
. The procedure then follows by sending the points {(θi,O(X(θi)))}

to the robust Berlekamp-Welch algorithm (Theorem 2.4) to obtain the desired approximation

to the worst-case quantity |Per(X0)|2 = |Per(X(1))|2. Overall we have a BPPNPO
procedure

for computing |Per(X0)|2 up to additive error

δ ·mn · exp
(
d log ∆−1 +O(d)

)
= δ · exp ((c+ 4)n log n+O(n)) , (2.29)

which concludes the proof.

2.2.2 Robust Berlekamp-Welch

We prove the following theorem for robust polynomial interpolation. All polynomials con-
sidered here have real coefficients, and our results can be generalized to the complex case,
as for polynomials with complex coefficients we can deal with the real and imaginary parts
separately. Below our theorem is stated with success probability 2

3
, which can be amplified

to 1− 1/exp(d) by taking the median of poly(d) independent experiments.

Theorem 2.4 (Robust Berlekamp-Welch). For a degree d polynomial P (x), suppose there
is a set of data points D = {(xi, yi)} such that |D| = 100d2 and {xi} is equally spaced in the
interval [0,∆] (∆ < 1). Furthermore, assume that each point (xi, yi) satisfies

Pr [|yi − P (xi)| ≥ δ] ≤ η, (2.30)

where η < 1
4
is a constant, then there exists a PNP algorithm which, takes D as input, returns

a number p such that |p− P (1)| ≤ δed log∆
−1+O(d), with success probability at least 2

3
.

Remark 2.3. Note that our result can be improved to using only O(d) data points, by
applying a result of Rakhmanov [31]. However, the number of data points we use does not
affect our main results, as long as it is polynomial in d. Here we give a simpler proof using
O(d2) data points.

Proof. For simplicity, our proof is presented by specifying η = 1
300

, which can be naturally
generalized to any η < 1

4
. Say a point (xi, yi) is correct if |yi − P (xi)| ≤ δ. By Eq. (2.30),

the expected number of wrong points is less than 1
300

fraction. By Markov’s inequality, with
probability at least 2

3
, 0.99 fraction of points in D are correct. In the following we show

that conditioned on 0.99 fraction of points being correct (denote the set of correct points
as F ), there exists a deterministic PNP algorithm that computes a number p that satisfies
|p− P (1)| ≤ δed log∆

−1+O(d). This implies the statement of the theorem.
Consider the following computational problem:

Problem 2.1. Given 100d2 points D, decide if there exists at least 0.99 fraction of them
(denoted as F ′) and a degree d polynomial Q(x) that satisfy |yi −Q(xi)| ≤ δ, ∀(xi, yi) ∈ F ′.
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Problem 2.1 is in NP because a certificate (F ′, Q) can be efficiently verified by checking
each point in F ′.

When giving D in the statement of the theorem as input, this problem has a satisfying
certificate (F, P ). Having access to a NP oracle, as this problem is guaranteed to have
a solution, we can find a certificate (F ′, Q) by performing binary search in the certificate
space, which may be different from (F, P ). However, in the following we show that any
solution will satisfy the requirement of the theorem, and the algorithm simply outputs Q(1).

Let R(x) = P (x)−Q(x). As |F ∩F ′| ≥ 0.98|D|, there are at least 0.98 fraction of points
in D that satisfies

|R(xi)| ≤ |P (xi)− yi|+ |Q(xi)− yi| = 2δ. (2.31)

Recall that D is a set of equally spaced points in [0,∆]. Lemma 2.5 says that in such
condition R(x) can be uniformly bounded in the interval [0,∆]:

|R(x)| ≤ δeO(d), ∀x ∈ [0,∆]. (2.32)

Finally, as R is uniformly bounded in [0,∆], we can use Lemma 2.7 to bound the error at
x = 1,

|R(1)| = |P (1)−Q(1)| ≤ δeO(d)ed log∆
−1+d log 8 = δed log∆

−1+O(d), (2.33)

which concludes the proof.

The above proof needs several additional results which we develop in the following. First,
recall the following result of Paturi, which gives a bound of how fast a polynomial can grow
when it is uniformly bounded in a small interval.

Lemma 2.4 (Paturi [32]). Let P be a degree d polynomial which satisfies |P (x)| ≤ ε for
x ∈ [0,∆] (∆ < 1). Then we have |P (1)| ≤ εe4d∆

−1
.

Proof. This is implied by Fact 2 and Corollary 2 of [32].

The first missing step in the proof of Theorem 2.4, which is in Eq. (2.32), is to show
the following: if a degree d polynomial is bounded by δ for a constant fraction of a set of
uniformly spaced points in [0,∆], then the maximum value of the polynomial in the interval
[0,∆] is at most δeO(d). We show this in the following lemma, which is the main technical
part of the full proof.

Lemma 2.5. Let P be a degree d polynomial which satisfies |P (x)| ≤ 1 for any x ∈ A,
where A ⊆ B and B is a set of equally spaced points in [0, 1] such that |B| = 100d2 and
|A| ≥ 0.98|B|. Then P satisfies |P (x)| ≤ 2O(d),∀x ∈ [0, 1].

Proof. Denote A as good points at which P is bounded, and denote B − A as bad points.
We first prove the bound under a special case, where the good points are exactly the first
0.98 fraction. More specifically, for the set of uniformly spaced points

B = {0, δ, 2δ, . . . , (100d2 − 1)δ} ⊆ [0, 1] (2.34)
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where δ = 1
100d2

, suppose the polynomial is bounded at the first 0.98 fraction of points,

|P (x)| ≤ 1, ∀x ∈ A = {0, δ, . . . , (98d2 − 1)δ}. (2.35)

When a polynomial is bounded at consecutive uniformly spaced points in an interval, it can
also be uniformly bounded at all points in that interval. Using Lemma 2.6 we get

|P (x)| ≤ O(1), ∀x ∈ [0, (98d2 − 1)δ]. (2.36)

As P (x) is uniformly bounded on a constant subinterval of [0, 1], we can then use Lemma 2.4
to obtain the desired bound |P (x)| ≤ 2O(d), ∀x ∈ [0, 1]. Also note that both inequalities are
saturated by Chebyshev polynomial, so the bound is tight.

We proceed by proving the bound for the general case where A can be arbitrarily dis-
tributed in B. Let M = maxx∈[0,1] |P (x)| and suppose the maximum is achieved at x∗ ∈ [1

2
, 1].

Consider the roots of P

P (x) = L
d∏

k=1

(x− rk), L > 0, (2.37)

where rk can have real and imaginary parts. We construct a new polynomial Q(x) =
L
∏d

k=1(x− r′k) according to the following rule:

r′k =

{
rk, Re(rk) ≤ x∗,

2x∗ − Re(rk) + i Im(rk), Re(rk) > x∗.
(2.38)

Let M ′ = maxx∈[0,1] |Q(x)|. We show that this construction is useful because Q(x) has the
following properties:

1. deg(Q) = deg(P ) = d.
Proof. By construction.

2. M ′ ≥M .
Proof. M ′ ≥ |Q(x∗)| = |P (x∗)| = M .

3. |Q(x)| ≤ |P (x)|,∀x ∈ [0, x∗].
Proof. This follows because |x− r′k| ≤ |x− rk|,∀k, ∀x ∈ [0, x∗].

4. M ′ = |Q(1)|.
Proof. |Q(x)| is monotonic increasing at [x∗, 1] because ∀x∗ ≤ x < y ≤ 1, we have
|x − r′k| ≤ |y − r′k|. Also, ∀x ∈ [0, x∗], |Q(x)| ≤ |P (x)| ≤ M = |Q(x∗)|. This suggests
that the maximum occurs at x = 1.

According to property 2, we proceed by proving an upper bound for M ′. Let

B′ = {0, δ, 2δ, . . . , (50d2 − 1)δ} ⊆ [0,
1

2
].
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Among these points, at least 0.96 fraction of them are good for Q(x), denoted by A′. More
specifically,

|Q(x)| ≤ |P (x)| ≤ 1,∀x ∈ A′ ⊆ B′. (2.39)

If A′ is a consecutive set starting from 0 (i.e. A′ = {0, δ, 2δ, . . . , (|A′| − 1)δ}), then we can
obtain the desired bound by repeating the argument at the beginning of this proof. When
this is not the case, there exists y ∈ B′ such that y is bad and y+ δ is good. We proceed by
converting Q(x) to a new polynomial to eliminate this kind of points, while maintaining the
good properties of Q.

Let y be the maximum element in B′ such that y is bad and y+ δ is good (assuming such
y exists). By definition, all good points larger than y is consecutive, denoted as

A′ ∩ [y,
1

2
] = {y + δ, y + 2δ, . . . , y + Tδ} (2.40)

for some T ≥ 1. We perform the following operation on Q(x) = L
∏d

k=1(x− rk), resulting in

a new polynomial R(x) = L
∏d

k=1(x− r′k):

r′k =

{
rk, Re(rk) ≤ y,

Re(rk)− δ + i Im(rk), Re(rk) > y.
(2.41)

We prove the following properties for R.

5. |R(x− δ)| ≤ 1,∀x ∈ A′ ∩ [y, 1
2
].

Proof. ∀x ∈ A′ ∩ [y, 1
2
], notice that |x − δ − r′k| = |x − rk| when Re(rk) > y, and

|x− δ − r′k| ≤ |x− rk| when Re(rk) ≤ y. Therefore |R(x− δ)| ≤ |Q(x)| ≤ 1.

6. |R(x)| ≤ 1,∀x ∈ A′ ∩ [0, y].
Proof. ∀x ∈ A′ ∩ [0, y], notice that |x− r′k| = |x− rk| when Re(rk) ≤ y, and |x− r′k| ≤
|x− rk| when Re(rk) > y. Therefore |R(x)| ≤ |Q(x)| ≤ 1.

From property 5-6 we conclude that R(x) has the same number of good points as Q(x) (if
some point outside of (A′ ∩ [0, y]) ∪ {y, y + δ, . . . , y + (T − 1)δ} is good for R, we still label
it as bad). As y is good for R, we also have max{z ∈ B′ : z + δ ∈ A′} < y. Finally we show
that R has a larger maximum.

7. Let M ′′ = maxx∈[0,1] |R(x)|. Then M ′′ ≥M ′.
Proof. As |1− r′k| ≥ |1− rk|, we have M ′′ ≥ |R(1)| ≥ |Q(1)| = M ′.

Next, we repeat the above process until {z ∈ B′ : z + δ ∈ A′} is empty, and denote the
resulting polynomial as R̃, for which property 5-7 still holds. As R̃ is bounded by 1 at
{0, δ, 2δ, . . . , (48d2 − 1)δ}, we obtain

M ′ ≤ max
x∈[0,1]

|R̃(x)| ≤ 2O(d) (2.42)

by repeating the argument at the beginning of the proof, which concludes the full proof.
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A missing ingredient in the above proof is to show that when a polynomial in bounded
on a set of O(d2) equally spaced points in an interval, then it can be uniformly bounded on
that interval. As discussed in Remark 2.3, the number of points needed can be improved to
O(d) by using a powerful result of Rakhmanov [31].

Lemma 2.6. Let P be a degree d polynomial which satisfies |P (x)| ≤ c for equally spaced
points x ∈ {0, a

N
, 2a
N
, . . . , a} in the interval [0, a], where d2

N
≤ 1 − ε. Then P is uniformly

bounded as |P (x)| ≤ c
ε
,∀x ∈ [0, a].

Proof. To prove a uniform bound for P (x), we use a Markov’s inequality [33] to bound the
maximum derivative,

max
x∈[0,a]

|P ′(x)| ≤ 2d2

a
max
x∈[0,a]

|P (x)|. (2.43)

Let M = maxx∈[0,a] |P (x)| which is achieved at t a
N
≤ x ≤ (t+ 1) a

N
. Then

2d2

a
M ≥ max

x∈[0,a]
|P ′(x)| ≥ (M − c)2N

a
, (2.44)

which gives M ≤ c
ε
.

We are now ready to fill in the final missing part in the proof of Theorem 2.4 which
is in Eq. (2.33). A first idea is to directly apply Paturi’s Lemma 2.4 which gives the final
error bound δeO(d∆−1). However, this is clearly over pessimistic: for degree d polynomials,
the error growth should not be much bigger than (1/∆)d when ∆ is very small. Based on
this intuition, our following result gives an improvement for the error bound of long distance
polynomial extrapolation.

Lemma 2.7. Let P be a degree d polynomial that satisfies |P (x)| ≤ δ, ∀x ∈ [0,∆] (∆ < 1).
Then we have

|P (1)| ≤ δed log∆
−1+d log 8. (2.45)

Proof. Let Q(x) = P
(
x+1
2

∆
)
. Then Q(x) is a degree d polynomial that satisfies |Q(x)| ≤ δ,

∀x ∈ [−1, 1]. Next we use a well-known fact about polynomials, namely that the coefficients
of bounded polynomials are at most exponential in the degree. Let Q(x) =

∑d
i=0 aix

i.
Lemma 2.8 implies that

d∑

i=0

|ai| ≤ 4dδ. (2.46)
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Then we have

|P (1)| =
∣∣∣∣Q
(

2

∆
− 1

)∣∣∣∣

≤
d∑

i=0

|ai|
(

2

∆
− 1

)i

≤
d∑

i=0

|ai|
(

2

∆

)d

≤ δ
8d

∆d
= δed log∆

−1+d log 8.

(2.47)

Lemma 2.8 (Lemma 4.1 in [34]). Let P (x) =
∑d

i=0 aix
i be a polynomial. Then

d∑

i=0

|ai| ≤ 4d max
x∈[−1,1]

|P (x)|. (2.48)

2.3 Complexity of noisy random circuit sampling

In this section we study the classical complexity of RCS in the presence of a constant rate of
noise per gate. Specifically we consider a simple noise model shown in Fig. 2.2 (b) where a
(arbitrarily small) constant amount of depolarizing noise is applied to each qubit at each time
step, which is a theoretical model for the actual RCS experiments. Our main result shows
that sampling from the output distribution of a noisy random circuit can be approximately
simulated by an efficient classical algorithm within small total variation distance.

Theorem 2.5 (Main result). Assuming anti-concentration, there is a classical algorithm
that, on input a random circuit C on any fixed architecture, outputs a sample from a distri-
bution that is ε-close to the noisy output distribution p̃(C) in total variation distance with
success probability at least 1− δ over the choice of C, in time poly(n, 1/ε, 1/δ).

To put this in perspective, consider a RCS quantum supremacy experiment that collects
M samples. We claim that Theorem 2.5 implies that there is a classical algorithm running
in time bounded by polynomial in M , that outputs M samples that are indistinguishable,
i.e. no statistical test can distinguish the output of the algorithm from the output of the
experiment with probability greater than 1/2 + µ, for any constant µ > 0. This is because
to achieve statistical indistinguishability it suffices to choose ε = µ/M , which by the main
result above gives a running time poly(n,M/µ). Thus the running time of our algorithm is
at most a polynomial in the running time of the experiment.

Corollary 2.3. Assuming anti-concentration, no statistical test applied to M samples can
distinguish between the output of a noisy random circuit and the above classical algorithm
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(a) Ideal RCS

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

(b) Noisy RCS

Figure 2.2: Random circuit sampling, each white box is an independent Haar random 2-qubit
gate. (a) Ideal RCS generates an output distribution p(C) that satisfies anti-concentration
when d = Ω(log n). (b) Noisy RCS, where an arbitrarily small constant amount of depolar-
izing noise is applied to each qubit at each step, which generates a noisy output distribution
p̃(C). Here the 1D architecture is for illustration; the result applies to general architectures
(Definition 2.6).

with running time poly(n,M). In particular, if M = poly(n), the classical algorithm runs
in poly(n) time.

We note that the implications of our result are complexity theoretic and do not directly
address the soundness of finite-size quantum supremacy experiments.

Also note that anti-concentration is a central assumption for both the RCS experi-
ments and our algorithm, which is believed to hold for general architectures above Ω(log n)
depth [35]. At the same time, the output distribution of noisy random circuits is 2−Θ(d)

close to uniform in total variation distance [36, 37, 38]. This means that any quantum
supremacy experiment must collect M = 2Ω(d) samples. Thus d = Θ(log n) was recognized
as the sweet spot for scalable experimental demonstration of quantum computational ad-
vantage [38], depth O(log n) to guarantee polynomial number of samples and Ω(log n) to
guarantee anti-concentration. In this regime both the sample complexity of the experiment
and running time of our classical algorithm scale polynomially in n.

Our approach builds upon the work of Gao and Duan in 2018 [37]. They developed the
idea of performing a Fourier transform on quantum circuits and an algorithm for simulating
noisy random circuits via a truncation in Fourier domain and calculating low-degree Fourier
coefficients. They used the resulting algorithm to efficiently estimate local observables for
random analogs of fault-tolerance circuits, thus showing that structure is necessary for quan-
tum fault-tolerance. While not explicitly mentioned in [37], their approach in fact produces a
quasi-polynomial time algorithm for sampling from the output distribution to within inverse
polynomial total variation distance3. This raises the challenge of giving a polynomial time

3This fact was unknown at the time, as it was believed that anti-concentration requires large circuit
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algorithm for the sampling problem.
We start by reformulating the Fourier transform defined by [37] as Feynman path integral

in the Pauli basis, and the simulation algorithm as calculating those Feynman paths with
lowest Hamming weight. The Pauli basis framework was also used by [18] to give an alter-
native argument for achieving a 2−O(d) XEB (see Section 2.3.7 for a more formal treatment).
The advantage of using the Pauli basis for Feynman path integral is that most low-Hamming-
weight Feynman paths have 0 contribution to the path integral. This view helps design an
enumeration algorithm that calculates the contributions of only non-trivial paths in poly-
nomial time. From the perspective of Fourier analysis, prior algorithms of [40, 37] based
on low-degree Fourier approximation mainly rely on noise sensitivity and have running time
nO(log 1/ε) where ε is the desired approximation error which results in quasi-polynomial run-
ning time for our purpose, but our algorithm has running time 2O(log 1/ε) = poly(1/ε) due to
the additional property of Fourier sparsity.

Our algorithm is not practical in its current form due to a large exponent in the running
time, and we leave as an interesting future direction to develop practical implementations
using our framework. See Section 2.3.3 for discussions regarding finite-size noisy RCS ex-
periments.

2.3.1 Description of algorithm

Let ρ be an n qubit density matrix. We can write ρ =
∑

s∈Pn
αs·s where Pn are the normalized

n-qubit Pauli operators, and αs = Tr(sρ) is real. We keep track of the coefficients in the Pauli
basis after unitary evolution ρ 7→ UρU †, which evolve according to the rule Tr

(
sUρU †

)
=∑

t∈Pn
Tr
(
sUtU †

)
Tr(tρ). Comparing with the transition rule ⟨x|U |ψ⟩ =

∑
y ⟨x|U |y⟩ ⟨y|ψ⟩

we can see that while ⟨x|U |y⟩ is the transition amplitude from |y⟩ to |x⟩, Tr
(
sUtU †

)
plays

the role of transition amplitude from t to s.
Consider a quantum circuit C = UdUd−1 · · ·U1 where Ui is a layer of 2-qubit gates and d

is circuit depth. A Pauli path is a sequence s = (s0, . . . , sd) ∈ Pd+1
n . The Feynman path

integral in the Pauli basis (in short, Pauli path integral) is written as sum of product of
transition amplitudes,

p(C, x) =
∑

s0,...,sd∈Pn

Tr(|x⟩⟨x| sd) Tr
(
sdUdsd−1U

†
d

)
· · ·Tr

(
s1U1s0U

†
1

)
Tr(s0 |0n⟩⟨0n|). (2.49)

Note that LHS is the probability p(C, x) = | ⟨x|C|0n⟩|2 instead of amplitude. Denote the
contribution of a Pauli path s = (s0, . . . , sd) ∈ Pd+1

n to the path integral as f(C, s, x), which
gives p(C, x) =

∑
s∈Pd+1

n
f(C, s, x).

Our algorithm for simulating noisy random circuits is based on a simple but powerful
fact, used in [41, 37]. Consider the single-qubit depolarizing noise with strength γ, E(ρ) :=
(1−γ)ρ+γ I

2
Tr(ρ). Then the contribution of a Pauli path of a noisy quantum circuit subject

depth. Recent developments [39, 35] suggest otherwise.
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to this noise, decays exponentially with the Hamming weight of the Pauli path:

p̃(C, x) =
∑

s∈Pd+1
n

(1− γ)|s|f(C, s, x), (2.50)

where p̃(C, x) is the output probability of the noisy circuit and |s| is the Hamming weight
of s (the number of non-identity Pauli in s). We would like to approximate the value p̃(C, x)
by summing only over the low-weight Pauli paths,

p̃(C, x) ≈
∑

s∈Pd+1
n :|s|≤ℓ

(1− γ)|s|f(C, s, x), (2.51)

and claim that the total variation distance achieved by the approximation is 2−Ω(ℓ) on av-
erage. This is not immediate since the f(C, s, x) can be both positive and negative. We
invoke two properties of random circuits: the first is orthogonality, which says that on
average over random circuits the product of the contributions from two different Pauli paths
equals 0, i.e. EC [f(C, s, x)f(C, s′, x)] = 0 when s ̸= s′; the second is anti-concentration,
which says that the sum of squares of the output probability of a random circuit is small,
i.e. EC

∑
x p(C, x)2 = O(1) · 2−n. Roughly speaking, orthogonality allows us to upper bound

the total variation distance by a sum of squares quantity, which is then upper bounded using
anti-concentration.

The next step is to develop an algorithm to calculate the RHS of Eq. (2.51). Note that a
straightforward sum over all paths up to weight ℓ gives a running time of O(nd)O(ℓ) leading
to a quasi-polynomial time algorithm as in [37]. Here we develop a counting argument and
efficient enumeration method for all Pauli paths of weight at most ℓ which takes only 2O(ℓ)

time. The idea is sparsity of the low-weight paths, meaning that for most Pauli paths in
Pd+1
n , its contribution f(C, s, x) is 0; therefore we design a combinatorial algorithm that only

enumerates those paths that have non-zero contributions. Finally, the sampling algorithm
follows from a general sampling-to-computing reduction of [40].

At a high level, the hardness assumptions in [19, 9] may be intuitively viewed as asserting
that Feynman path integral in the computational basis is essentially the best classical algo-
rithm for RCS, and achieving non-trivial correlation requires following exponentially many
paths. Instead, the Pauli path integral approach has the virtue that low weight paths have
the most significant contribution.

2.3.2 Prior work regarding the computational complexity of RCS

To put the above results in context, let us recall the background regarding complexity theo-
retic evidence that classical computers cannot efficiently sample from the output of a random
quantum circuit (this section focuses on asymptotic hardness; see next section for discussions
regarding finite-size experiments). There are two main genres of results along those lines,
which we review below (see [8] for a more comprehensive survey).
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The first is in the form of a worst-case to average-case reduction, showing that if an
efficient classical algorithm can sample from the output distribution of ideal RCS within
small total variation distance, then the Polynomial Hierarchy collapses [26, 27, 4, 42, 43].
The eventual goal of this program was to show classical hardness for sampling within constant
total variation distance, which would require showing average-case hardness of computing
the output probability of ideal RCS within additive error O(2−n). While the earliest average-
case hardness results could only tolerate very small additive error, it was hoped that over
time the reductions could be made more robust. This has indeed been the case, with an
improvement from a large polynomial in the exponent [26] to 2−O(m) [43], but this line of
work has hit an obstacle that may prove difficult to overcome (see e.g. [4, Section 3] and [38,
Section II A]). Moreover, these results do not address the actual RCS experiments which
are highly noisy4.

The second genre is based on complexity theoretic assumptions about the difficulty of
distinguishing heavy and light outputs of the random circuit [19, 9]. These assumptions es-
sentially say that even a tiny correlation (order 2−n) with the output distribution of ideal RCS
is hard to achieve classically. While these assumptions are quite strong, they have the virtue
of yielding robust bounds. Indeed a specific conjecture in this genre called XQUATH [9]
has provided robust complexity theoretic foundation of the linear cross entropy benchmark
(XEB) used in recent experiments [7, 16, 17]. This provided a way to heuristically argue
that even the very small XEB achieved in actual 50-70 qubit experiments was a classically
difficult computational task. However, the strong parameters in the assumption (correlation
of order 2−n) was called into question by the result of [18], although it remained unclear if
the hardness of the XEB test can be restored by changing the parameters in XQUATH. In
addition, it was unclear whether the hardness of the other statistical tests such as HOG or
log XEB was impacted. Our results address these questions by showing that no statistical
tests, like the XEB, HOG and log XEB, can distinguish between noisy RCS and our classical
algorithm.

2.3.3 Concluding remarks: what our results do not address

We importantly note several points left unaddressed by our results.

• Practical speed-ups. We note that our results do not address RCS based quantum
supremacy in its non-asymptotic, practical form. In particular, much progress has
been made in developing practical spoofing algorithms for achieving a similar numerical
value as the XEB in current 53-60 qubit RCS experiments. Practical tensor network
algorithms [10, 11, 12, 13, 14, 15] can achieve this goal using hundreds of GPUs in a
few hours, but these algorithms have exponential scaling and become impractical if the
system size increases by a few qubits. A numerical implementation of the algorithm
in [18] achieved roughly 10% of Google’s XEB using 1 GPU in 1 second, though it

4The related work of [22] argued that the hardness of approximate sampling for noisy RCS can be reduced
to ideal RCS, but the argument required a local noise model that decreases as Õ(1/n), which is not scalable.
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remains unclear whether this algorithm can achieve Google’s XEB (using much less
than hundreds of GPUs). Our algorithm is not practical in its current form, as there
is a large constant (of order 1/γ where γ is the error per gate) in the degree of the
polynomial of the running time. An interesting future direction is to develop practical
implementations using our framework and ideas from [18] that achieves similar XEB
as in the experiments [7, 16, 17] using a small amount of resource.

• Sublogarithmic depth. Our algorithm assumes anti-concentration and therefore
works for random circuits with depth at least Ω(log n).5 The issue with sub-logarithmic
depth random circuits (with Haar random 2-qubit gates) is that there is no evidence for
hardness of sampling even for ideal RCS, as all existing results for average-case hardness
(the first genre discussed above) are only relevant for sampling when anti-concentration
holds. In addition, [44] gives evidence that 2D ideal RCS can be efficiently simulated
when depth is smaller than some fixed constant. The complexity of ideal and noisy
RCS remains unclear at depth between constant and o(log n). Separately, existing
quantum supremacy experiments rely on the assumption that the ideal circuit is close
to Porter-Thomas for benchmarking; closeness to Porter-Thomas is even stronger than
anti-concentration.

Notwithstanding the above discussion, it remains possible that a different approach
based on RCS of sublogarithmic depth circuits, which does not rely on anti-concentrati-
on, could lead to a scalable experimental violation of the extended Church-Turing
thesis.

• Less random gate sets. Besides anti-concentration, our algorithm also requires ran-
domness in the gate set. The simplest distribution over the gate set to think of is that
of Haar random 2-qubit gates. However, the gate sets used in actual experiments [7,
16, 17] are not Haar random 2-qubit gates, but gates with more limited randomness.
While we do not know if our results hold for the exact gate sets used in those recent
experiments, we show in Section 2.3.6 that our algorithm works for a gate set which is
closely related to the gate sets used in those experiments; more generally, the required
condition for our results is in fact much weaker than Haar random 2-qubit gates (see
Definition 2.6).

Overview of remainder of this section. In Section 2.3.4 we give formal definitions of
the Pauli path integral and derive useful properties of this framework. In Section 2.3.5 we
give the proof of our main result, and discuss Google and USTC’s gate set in Section 2.3.6.
Section 2.3.7 contains a formal proof for refuting XQUATH using the Pauli basis framework.
As an application of the Pauli basis framework, we provide simple proofs for existing results
about random circuits, including a lower bound on the depth for anti-concentration previ-
ously shown by [35] (Corollary 2.4), and an improved lower bound on the convergence to
uniform for noisy random circuits previously shown by [38] (Section 2.3.8).

5It was shown [35, 38] that anti-concentration requires at least Ω(log n) depth for random circuits with
Haar random 2-qubit gates.
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(a) Vector basis (b) Operator basis (c) Operator basis

State |ψ⟩ =
∑

x∈{0,1}n
⟨x|ψ⟩ |x⟩ ρ =

∑

s∈Pn

Tr(sρ)s |ρ⟩⟩ =
∑

s∈Pn

⟨⟨s|ρ⟩⟩|s⟩⟩

Evolution |ψ⟩ 7→ U |ψ⟩ ρ 7→ UρU † |ρ⟩⟩ 7→ U|ρ⟩⟩

Path integral

⟨x|U |ψ⟩
=

∑

y∈{0,1}n
⟨x|U |y⟩ ⟨y|ψ⟩

Tr
(
sUρU †

)

=
∑

t∈Pn

Tr
(
sUtU †

)
Tr(tρ)

⟨⟨s|U|ρ⟩⟩
=
∑

t∈Pn

⟨⟨s|U|t⟩⟩⟨⟨t|ρ⟩⟩

Table 2.1: The Feynman path integral can be viewed as decomposing the state into basis
states at each step of time evolution. (a) The standard decomposition with computational
basis states. (b) Decomposition using the Pauli operator basis, where states are represented
as density matrices and time evolution is represented as unitary channels. (c) The same
decomposition using the Pauli operator basis, presented with operator ket notation.

2.3.4 The Pauli basis framework

We first give formal definitions of the Pauli path integral discussed in Section 2.3.1 and then
derive useful properties of this framework.

Let C = UdUd−1 · · ·U1 be a quantum circuit acting on n qubits, where Ui is a layer of
2-qubit gates and d is circuit depth. The Feynman path integral in the computational basis
is written as

⟨0n|C|0n⟩ =
∑

x1,...,xd−1∈{0,1}n
⟨0n|Ud|xd−1⟩ ⟨xd−1|Ud−1|xd−2⟩ · · · ⟨x1|U1|0n⟩ . (2.52)

The main difference when switching to the Pauli basis is that instead of thinking about a
quantum circuit as applying unitary matrices to vectors, we think of it as unitary channels
applied to density matrices, C = UdUd−1 · · · U1 where each Ui(·) := Ui(·)U †i is a unitary
channel. Similar to decomposing a pure state vector into a superposition of computational
basis states, we consider the normalized Pauli operators

Pn :=
{
I/
√

2, X/
√

2, Y/
√

2, Z/
√

2
}⊗n

(2.53)

as an operator basis and decompose a density matrix into a linear combination of Pauli
operators (Table 2.1). In Table 2.1 we present the operator basis as a direct analogy of
vector basis by switching to the operator ket notation (Table 2.1 (c)).

Definition 2.4 (Pauli path integral). Let C = UdUd−1 · · ·U1 be a quantum circuit acting
on n qubits, where Ui is a layer of 2-qubit gates and d is circuit depth, and let p(C, x) :=
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| ⟨x|C|0n⟩|2 be the output probability distribution. The Pauli path integral is written as

p(C, x) =
∑

s0,...,sd∈Pn

Tr(|x⟩⟨x| sd) Tr
(
sdUdsd−1U

†
d

)
· · ·Tr

(
s1U1s0U

†
1

)
Tr(s0 |0n⟩⟨0n|)

=
∑

s0,...,sd∈Pn

⟨⟨x|sd⟩⟩⟨⟨sd|Ud|sd−1⟩⟩ · · · ⟨⟨s1|U1|s0⟩⟩⟨⟨s0|0n⟩⟩.
(2.54)

Here each term on RHS corresponds to a Pauli path s = (s0, . . . , sd) ∈ Pd+1
n . We also

define the Fourier coefficient of a quantum circuit C with output x and Pauli path s as

f(C, s, x) := ⟨⟨x|sd⟩⟩⟨⟨sd|Ud|sd−1⟩⟩ · · · ⟨⟨s1|U1|s0⟩⟩⟨⟨s0|0n⟩⟩ (2.55)

and the output probability is written as

p(C, x) =
∑

s∈Pd+1
n

f(C, s, x). (2.56)

Eq. (2.54) follows from repeatedly applying the rules shown in Table 2.1. The above
definition can also be extended to noisy quantum circuits. Let E(ρ) := (1 − γ)ρ + γ I

2
Tr(ρ)

be the single-qubit depolarizing noise with strength γ. It has the property that E(I) = I
and E(P ) = (1− γ)P when P ∈ {X, Y, Z}.

Definition 2.5 (Pauli path integral for noisy quantum circuits). For a quantum circuit
C = UdUd−1 · · ·U1, let C̃ be a noisy quantum circuit where each qubit in C is subject to γ
depolarizing noise in each layer (Fig. 2.2 (b)). Let

p̃(C, x) := ⟨⟨x|E⊗nUdE⊗n · · · U1E⊗n|0n⟩⟩ (2.57)

be the output probability distribution of the noisy circuit C̃. The Pauli path integral for C̃ is
defined as

p̃(C, x) =
∑

s∈Pd+1
n

f̃(C, s, x) (2.58)

where
f̃(C, s, x) := ⟨⟨x|E⊗n|sd⟩⟩⟨⟨sd|UdE⊗n|sd−1⟩⟩ · · · ⟨⟨s1|U1E⊗n|s0⟩⟩⟨⟨s0|0n⟩⟩. (2.59)

Let |s| be the Hamming weight of s (the number of non-identity Pauli in s). The definition
of depolarizing noise implies that

f̃(C, s, x) = (1− γ)|s|f(C, s, x). (2.60)

Our algorithm described in Section 2.3.1 is summarized in Algorithm 1 (“legal” Pauli
path is defined in Definition 2.9). Next we develop properties of the Pauli basis that are
useful later.
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Algorithm 1 Simulating noisy random circuits by low-degree Fourier approximation

Input: quantum circuit C, truncation parameter ℓ, x ∈ {0, 1}n
Output: an approximation of p̃(C, x)

1: q ← 0
2: for all legal Pauli path s with |s| ≤ ℓ do
3: calculate f(C, s, x)
4: q ← q + (1− γ)|s|f(C, s, x)
5: end for
6: Return q

First, note that the Fourier coefficients f(C, s, x) can be further decomposed into products
of transition amplitudes of 2-qubit gates ⟨⟨q|U|p⟩⟩ = Tr

(
qUpU †

)
where U ∈ U(4), p, q ∈ P2,

so any Fourier coefficient can be computed in time O(nd). The Fourier coefficients satisfy
f(C, s, x) ∈ R and |f(C, s, x)| ≤ 1

2n
. This is because for any x ∈ {0, 1}n and s ∈ Pn we have

⟨⟨x|s⟩⟩ = Tr(|x⟩⟨x| s) ∈
{

0,− 1√
2n
,

1√
2n

}
. (2.61)

In addition, the output x only affects the sign of the Fourier coefficient, as

f(C, s, x)2 = f(C, s, 0n)2, ∀x ∈ {0, 1}n. (2.62)

The rest of the properties we develop in this section crucially rely on the randomness of
the gate set. We first recall the properties of Haar random 2-qubit gates.

Lemma 2.9 (Properties of Haar random 2-qubit gates [45]). Let U ∈ U(4) be a Haar random
2-qubit gate, and p, q, r, s ∈ P2. Then

E
U∼U(4)

⟨⟨p|U|q⟩⟩⟨⟨r|U|s⟩⟩ = 0 if p ̸= r or q ̸= s. (2.63)

We also have

E
U∼U(4)

⟨⟨p|U|q⟩⟩2 =





1, p = q = I⊗2/2,

0, p = I⊗2/2, q ̸= I⊗2/2,

0, p ̸= I⊗2/2, q = I⊗2/2,
1
15
, else.

(2.64)

Eq. (2.63) is a key property which we refer to as gate-set orthogonality. It says that if
we consider the Pauli basis decomposition and average over two copies of a random unitary,
then the randomness forces the input and output Paulis to be the same across the two copies.
Next we show that this property does not require full randomness over U(4); randomness
over Pauli operators already suffices.
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Lemma 2.10 (Gate-set orthogonality). Let D be any distribution over U(4) that is invariant
under right-multiplication of random Pauli, i.e. for any measurable function F ,

E
U∼D

[F (U)] = E
U∼D

E
V∼{I,X,Y,Z}2

[F (UV )]. (2.65)

Then for any P,Q ∈ {I,X, Y, Z}2 such that P ̸= Q, we have

E
U∼D

[
UPU † ⊗ UQU †

]
= 0. (2.66)

Proof. Due to invariance under right-multiplication of random Pauli and linearity, it suffices
to prove that

E
V∼{I,X,Y,Z}2

[
V PV † ⊗ V QV †

]
= 0 if P ̸= Q. (2.67)

Let ⟨P,Q⟩ := 1[P,Q anticommute]. Then

E
V∼{I,X,Y,Z}2

[
V PV † ⊗ V QV †

]
=

1

16

∑

V ∈{I,X,Y,Z}2
V PV † ⊗ V QV †

=
1

16

∑

V ∈{I,X,Y,Z}2
(−1)⟨V,P ⟩+⟨V,Q⟩P ⊗Q

=
1

16

∑

V ∈{I,X,Y,Z}2
(−1)⟨V,PQ⟩P ⊗Q

= 0,

(2.68)

where the last line follows from the fact that PQ is not identity, and therefore commutes
with half Paulis and anticommutes with the other half.

Our main result holds for any gate set and architecture that satisfies gate-set orthog-
onality and anti-concentration. We discuss these two properties separately and start with
orthogonality.

Definition 2.6 (Gate set and architecture of random circuits). We consider random quan-
tum circuits defined over a fixed architecture described as follows. In each layer, each qubit
experiences a 2-qubit gate (so the number of qubits n is even, and there are n/2 2-qubit
gates per layer). The 2-qubit gates can be applied to any pair of qubits, without geometric
locality. Each 2-qubit gate is independently drawn from some distribution that is invariant
under right-multiplication of random Pauli. The final layer is drawn from a distribution that
is invariant under both left- and right-multiplication of random Pauli.

Note that the requirement that each qubit experiences a 2-qubit gate in each layer is for
convenience; more general architectures can be handled by a suitable redefinition of circuit
depth (this was also noted in [38]).
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Examples of gate sets that satisfy Definition 2.6 include Haar random 2-qubit gates as
well as a fixed 2-qubit gate surrounded by Haar random single qubit gates. A fixed 2-qubit
gate surrounded by random Pauli gates also satisfies Definition 2.6 but may violate anti-
concentration (see Remark 2.5). Any ensemble of random circuits that satisfies Definition 2.6
has the following crucial property that we frequently use.

Lemma 2.11 (Orthogonality of Fourier coefficients). Let C be a random circuit drawn from
some distribution D that satisfies Definition 2.6. Then for any Pauli paths s ̸= s′ ∈ Pd+1

n

and for any x ∈ {0, 1}n we have

E
C∼D

[f(C, s, x)f(C, s′, x)] = 0. (2.69)

Proof. As s ̸= s′, there exists a 2-qubit gate U that contributes transition amplitude
⟨⟨q1|U|p1⟩⟩ to f(C, s, x) and contributes ⟨⟨q2|U|p2⟩⟩ to f(C, s′, x), such that p1 ̸= p2 ∈ P2.
Lemma 2.10 implies that

E
U

[⟨⟨q1|U|p1⟩⟩⟨⟨q2|U|p2⟩⟩] = 0. (2.70)

Due to the independence between different gates, we can separately calculate the expecta-
tion over each gate in Eq. (2.69). Therefore the above equation implies that the overall
expectation in Eq. (2.69) equals 0. One special case is that the difference between s and s′

happens at the last step sd. For this case we use the left-invariance under random Pauli of
the final layer of gates.

Next we discuss anti-concentration, which is formally defined as follows.

Definition 2.7 (Anti-concentration). A distribution over quantum circuits D satisfies anti-
concentration if

E
C∼D

2n
∑

x∈{0,1}n
p(C, x)2 = O(1). (2.71)

Remark 2.4. The following is known about anti-concentration:

• [39, 35] showed that anti-concentration is satisfied for 1D random circuits with Haar
random 2-qubit gates as long as circuit depth is above some constant times log n.

• [35] also showed that Θ(n log n) 2-qubit gates are necessary and sufficient for anti-
concentration for a stochastic all-to-all connected architecture with Haar random 2-
qubit gates.

• [35, 38] showed that at least Ω(log n) depth is necessary for anti-concentration, for any
architecture with Haar random 2-qubit gates. We also give a simple proof of this fact
using the Pauli basis framework in Corollary 2.4.
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• [35] remarked that, as anti-concentration is proven for two architectures which are
two opposite extremes of geometric locality, they conjecture Θ(n log n) size (which is
Θ(log n) depth in our case) to be necessary and sufficient for anti-concentration for
any reasonably well-connected architecture.

Remark 2.5. The results discussed in Remark 2.4 only concern Haar random 2-qubit gates.
We expect the same results to hold for a fixed 2-qubit gate surrounded by Haar random single
qubit gates. It is worth mentioning that while a fixed 2-qubit gate surrounded by random
Pauli gates satisfies Definition 2.6, we do not expect it to satisfy anti-concentration, due to
the fact that it does not generate the entire Clifford group when, for example, the 2-qubit gate
is a CNOT gate.

The reason for requiring anti-concentration for our results is because it is closely related
to the Fourier weights of random circuits, which is then related to the error of the simulation
algorithm.

Definition 2.8 (Fourier weight). The Fourier weight of a random circuit C at degree k
is defined as

Wk = 22n E
C

∑

s∈Pd+1
n :|s|=k

f(C, s, 0n)2. (2.72)

Here the 22n factor is a normalization factor that comes from Eq. (2.61). A crucial
property for our arguments is that anti-concentration implies that the total Fourier weight
is upper bounded by a constant.

Lemma 2.12 (Total Fourier weight). Let D be a distribution over quantum circuits that
satisfies anti-concentration and Definition 2.6. The Fourier weights {Wk} satisfy

1. W0 = 1,

2. Wk = 0, ∀0 < k ≤ d,

3.
∑

k≥d+1Wk = O(1).

Proof. W0 = 1 corresponds to the unique all-identity path. Let s be a Pauli path of Hamming
weight k = |s| ∈ (0, d]. Then there exists a 2-qubit gate U that contributes a transition
amplitude ⟨⟨q|U|p⟩⟩ to f(C, s, 0n), where either p is identity and q is non-identity, or vice
versa. In either case we have ⟨⟨q|U|p⟩⟩ = 0. This implies that Wk = 0.
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To bound the total weight, we start with anti-concentration.

O(1) = E
C∼D

2n
∑

x∈{0,1}n
p(C, x)2

= E
C∼D

2n
∑

x∈{0,1}n


 ∑

s∈Pd+1
n

f(C, s, x)




2

= E
C∼D

2n
∑

x∈{0,1}n

∑

s,s′∈Pd+1
n

f(C, s, x)f(C, s′, x)

= E
C∼D

2n
∑

x∈{0,1}n

∑

s∈Pd+1
n

f(C, s, x)2

= 22n E
C∼D

∑

s∈Pd+1
n

f(C, s, 0n)2

= 22n E
C∼D

∑

k≥0

∑

s∈Pd+1
n :|s|=k

f(C, s, 0n)2

= 1 +
∑

k≥d+1

Wk.

(2.73)

Here, the first line follows from anti-concentration; the second line follows from the Pauli
path integral; the fourth line follows from orthogonality (Lemma 2.11); the fifth line follows
from Eq. (2.62).

Finally we give a detailed clarification regarding the assumptions we make about the
architecture and gate set for our main result.

Remark 2.6. For our main result Theorem 2.5, we assume Definition 2.6 and anti-concentra-
tion as defined in Definition 2.7.

• If the gate set is Haar random 2-qubit gates, no further assumption is needed.

• If not, then we further assume that the circuit depth is at least Ω(log n). This is
because our algorithm requires Ω(log n) depth to be efficient, and we cannot rule out
the possibility that there is an ensemble of random circuits below log depth that satisfies
both Definition 2.6 and 2.7.

2.3.5 Simulating noisy random circuit sampling

Given a random circuit C and an output x, let p(C, x) = | ⟨x|C|0n⟩|2 be the ideal output
distribution and let p̃(C, x) be the output distribution of the noisy circuit where C is subject
to local depolarizing noise of rate γ. This section shows the following:
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Theorem 2.6 (Restatement of Theorem 2.5). Let D be a distribution over quantum circuits
that satisfies anti-concentration and Definition 2.6 (also see Remark 2.6). There is a classical
algorithm that, on input C ∼ D, outputs a sample from a distribution that is ε-close to p̃(C, x)
in total variation distance with success probability at least 1− δ over the choice of C, in time
poly(n, 1/ε, 1/δ).

Our goal is to compute a function q̄(C, x) that achieves small L1 distance

∆ := ∥p̃− q̄∥1 :=
∑

x∈{0,1}n
|p̃(C, x)− q̄(C, x)| (2.74)

with high probability. Here {q̄(C, x)}x is not necessarily a distribution, and q̄(C, x) is not
necessarily positive (the bar notation indicates that q̄ is a quasi-probability distribution).
The main result is derived in three steps:

1. We use a general sampling-to-computing reduction shown by [40] which says that
given the ability to compute q̄(C, x) as well as its marginals, we can sample from a
distribution that is O(∆)-close to p̃(C, x) with a polynomial overhead. This is discussed
in Section 2.3.5.3. It remains to develop an efficient algorithm to compute q̄(C, x) and
its marginals.

2. The algorithm is to approximate p̃(C, x) by summing its low-degree Fourier coefficients,
defined as

q̄(C, x) :=
∑

s:|s|≤ℓ

f̃(C, s, x) =
∑

s:|s|≤ℓ

(1− γ)|s|f(C, s, x), (2.75)

where ℓ is to be determined. In Section 2.3.5.1 we upper bound the total variation
distance ∆ achieved by this approximation. It shows that choosing ℓ = O(log 1/ε)
suffices to achieve ε total variation distance.

3. It remains to bound the running time of the algorithm. In Section 2.3.5.2 which is the
main technical part, we show that each q̄(C, x) can be computed in time 2O(ℓ). This
completes the argument.

2.3.5.1 Bounds for the total variation distance

We show that the expected total variation distance square is upper bounded by an exponen-
tial decay of the Fourier weights.
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E
C

[
∆2
]
≤ 2n E

C

∑

x∈{0,1}n
(p̃(C, x)− q̄(C, x))2

= 2n E
C

∑

x∈{0,1}n


∑

s:|s|>ℓ

(1− γ)|s|f(C, s, x)




2

= 2n E
C

∑

x∈{0,1}n

∑

s:|s|>ℓ

(1− γ)2|s|f(C, s, x)2

= 22n E
C

∑

s:|s|>ℓ

(1− γ)2|s|f(C, s, 0n)2

=
∑

k>ℓ

(1− γ)2kWk.

(2.76)

Here, the first line follows from Cauchy–Schwarz; the second line is by definition of q̄; the
third line follows from orthogonality (Lemma 2.11); the fourth line follows from Eq. (2.62);
the fifth line is by definition of Fourier weight.

A simple upper bound can be derived assuming anti-concentration (using item 3 from
Lemma 2.12),

E
C

[
∆2
]
≤
∑

k>ℓ

(1− γ)2kWk ≤
∑

k>ℓ

(1− γ)2ℓWk ≤ O(1) · e−2γℓ. (2.77)

By choosing ℓ = O(log 1/ε) (roughly ℓ ≈ 1
γ
· log 1/ε) we can guarantee that ∆ ≤ ε with high

probability.

2.3.5.2 Counting and enumerating legal Pauli paths

For a given truncation parameter ℓ, the running time of the algorithm depends on the
number of Pauli paths with Hamming weight at most ℓ, as well as the efficiency for finding
and enumerating these paths. A simple argument for bounding the number of paths is as
follows. There are n(d+ 1) locations in the circuit to insert Pauli paths. The total number
of ways to insert ℓ non-identity Pauli into the Pauli path is at most

(
n(d+1)

ℓ

)
, and the choice

of X, Y, Z for each non-identity gives a 3ℓ factor. Therefore the total number of paths with
Hamming weight at most ℓ is at most

ℓ ·
(
n(d+ 1)

ℓ

)
· 3ℓ ≤ (nd)O(ℓ). (2.78)

In this section we show that this bound is a significant overestimate and can be improved to
2O(ℓ). The key point here is that only the “legal” paths matters, and therefore we design an
algorithm that only counts and enumerates legal paths.

Definition 2.9 (Legal Pauli path). For a given circuit architecture, a Pauli path s =
(s0, s1, . . . , sd) is legal if the following two conditions are satisfied:
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1. For all 2-qubit gates in the circuit, its input and output Paulis are either both II, or
both not II.

2. s0 and sd contains only I and Z.

The reason for considering legal Pauli paths is that the illegal ones are irrelevant, as they
contribute 0 to the Pauli path integral.

Lemma 2.13. Any illegal Pauli path s gives f(C, s, x) = 0 for any C and x.

Proof. Let s be an illegal Pauli path. Then there are two cases: either the first or the second
condition of Definition 2.9 is violated. If the second condition is violated, then f(C, s, x) = 0
because the inner product between computational basis states with s0 or sd equals 0, due to
the fact that

⟨⟨x|s⟩⟩ = Tr(|x⟩⟨x| · s) = 0, ∀x ∈ {0, 1}n, s /∈ {I/
√

2, Z/
√

2}⊗n. (2.79)

If the first condition is violated, then there is a 2-qubit gate U whose input Pauli is II and
the output is not II, or vice versa. Then f(C, s, x) = 0 because the transition amplitude
contributed by U equals 0 due to the fact that unitary channel is trace preserving, i.e.

⟨⟨p|U|q⟩⟩ = Tr
(
pUqU †

)
= 0 if p = I ⊗ I/2, q ̸= I ⊗ I/2,

or p ̸= I ⊗ I/2, q = I ⊗ I/2. (2.80)

Next we develop arguments to count legal paths. The number of legal Pauli paths up
to a given Hamming weight is a combinatorial property that only depends on the circuit
architecture, independent of the gate set.

We first give a simple example that counts the number of legal paths with weight d+ 1.
Lemma 2.12 says that d+ 1 is the smallest non-zero Hamming weight with legal paths. The
result below is interesting by itself, as we will show later that this result gives a simple lower
bound on the depth for anti-concentration (Corollary 2.4).

Lemma 2.14. The number of legal Pauli paths with Hamming weight d+1 equals n ·2d ·3d−1.

Proof. As the Pauli path s = (s0, s1, . . . , sd) has Hamming weight d+1, it has to be the case
that |si| = 1 for i = 0, . . . , d. We first choose the location of the non-identity in the first
layer s0, which has n choices. Suppose this non-identity Pauli is at the input of some 2-qubit
gate U . Then the output of U can be either IR or RI (We use R to represent a non-identity),
which gives two choices. Repeating this argument for each layer, we know that the number
of configurations of locations of non-identities is n · 2d. Finally, the 3d−1 factor comes from
the fact that the non-identity Pauli at the first and last layer has to be Z, while each of the
other d− 1 layers has three choices among X, Y, Z.
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Next we show that anti-concentration implies the desired 2O(ℓ) upper bound for the
number of legal paths. This bound is clearly tight up to the constant in the exponent, as
even the choice of X, Y, Z for a single path of weight ℓ gives a 3ℓ factor. The problem with
the result below is that it does not give an algorithm to find and enumerate the legal paths.
This is addressed later.

Lemma 2.15. Consider any circuit architecture which satisfies anti-concentration with Haar
random 2-qubit gates. For any ℓ ≥ d+1, the total number of legal Pauli paths with Hamming
weight at most ℓ is upper bounded by 2O(ℓ).

Proof. We have shown in Lemma 2.12 that anti-concentration implies that
∑

k≥d+1Wk =
O(1). Below we give a lower bound on the Fourier weight up to degree ℓ. Consider any
legal Pauli path s with Hamming weight at most ℓ. We will calculate its contribution to the
Fourier weight 22n EC f(C, s, 0n)2 as follows.

22n E
C

[
f(C, s, 0n)2

]
= 22n E

C

[
(⟨⟨x|sd⟩⟩⟨⟨sd|Ud|sd−1⟩⟩ · · · ⟨⟨s1|U1|s0⟩⟩⟨⟨s0|0n⟩⟩)2

]

= E
C

[
⟨⟨sd|Ud|sd−1⟩⟩2 · · · ⟨⟨s1|U1|s0⟩⟩2

]

= E
Ud

[
⟨⟨sd|Ud|sd−1⟩⟩2

]
· · · E
U1

[
⟨⟨s1|U1|s0⟩⟩2

]

=

(
1

15

)G(s)

(2.81)

Here the second line follows from the fact that |⟨⟨x|sd⟩⟩| = |⟨⟨s0|0n⟩⟩| = 1√
2n

, the third line
is due to the independence between different random gates, and the fourth line is due to
Lemma 2.9, where we define

G(s) := the number of 2-qubit gates whose input and output are not II in s. (2.82)

The above calculation says that any 2-qubit gate whose input and output are not II con-
tributes a 1

15
factor to the Fourier weight. A simple bound on G(s) is

|s|
4
≤ G(s) ≤ |s|, (2.83)

where LHS is because each gate corresponds to at most 4 non-identity Paulis, and RHS is
because each gate has at least 1 input non-identity Pauli. This implies that

22n E
C

[
f(C, s, 0n)2

]
≥
(

1

15

)|s|
. (2.84)



CHAPTER 2. COMPLEXITY AND APPLICATIONS OF RANDOM CIRCUIT
SAMPLING 43

Using this we have

O(1) =
ℓ∑

k=d+1

Wk

=
ℓ∑

k=d+1

22n E
C

∑

s∈Pd+1
n :|s|=k

f(C, s, 0n)2

≥
ℓ∑

k=d+1

∑

s∈Pd+1
n :|s|=k

(
1

15

)|s|
1[s is legal]

≥
(

1

15

)ℓ
(Number of legal paths of weight at most ℓ) ,

(2.85)

which means that the number of legal paths of weight at most ℓ is at most O(1) · 15ℓ.

We have remarked earlier that the number of legal paths is a combinatorial property
that only depends on the circuit architecture, independent of the gate set. We introduce
Haar random 2-qubit gates in Lemma 2.15 as a proof technique for bounding the Fourier
weights. We further show that the above results imply a lower bound on the depth for
anti-concentration, which has been shown by [35, 38] using different techniques.

Corollary 2.4. Consider any circuit architecture which satisfies anti-concentration with
Haar random 2-qubit gates, then the circuit depth satisfies d = Ω(log n).

Proof. Consider ℓ = d+ 1, using Lemma 2.14 and Lemma 2.15 we have

n · 2d · 3d−1 ≤ O(1) · 15d+1, (2.86)

which implies that d = Ω(log n).

Next we present the main result of this section, an algorithm for efficiently enumerating
low-weight legal Pauli paths.

Lemma 2.16. For any ℓ ≥ d + 1, the number of legal Pauli paths with Hamming weight
at most ℓ is at most nℓ/d · 2O(ℓ) (the circuit architecture does not need to satisfy anti-
concentration). Furthermore there is an efficient algorithm to enumerate the legal paths
in time nℓ/d · 2O(ℓ) and memory Õ(nd).

The proof of Lemma 2.16 is deferred to the end of this section. Next we discuss its
relationship with the above results.

First, it appears that Lemma 2.16 is not tight as it has an additional nℓ/d factor compared
with Lemma 2.15. In fact this is not the case, due to the fact that Lemma 2.15 assumes anti-
concentration, which by Corollary 2.4 means that Lemma 2.15 only holds when d = Ω(log n).
Note that in this case

nℓ/d = e
ℓ
d
·logn = 2O(ℓ), (2.87)
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so in the anti-concentration regime Lemma 2.16 gives the same asymptotic result as in
Lemma 2.15, which is tight up to the constant in the exponent.

Second, when ℓ = O(d), Lemma 2.16 gives poly(n) · 2O(d). Therefore compared with
Lemma 2.14 we conclude that Lemma 2.16 with ℓ = O(d) is tight up to the constant in the
exponent, regardless of whether anti-concentration holds.

Proof of Lemma 2.16. We prove Lemma 2.16 in the rest of this section. We will enumerate
legal Pauli paths s = (s0, s1, . . . , sd) using the following method.

1. For each d + 1 ≤ k ≤ ℓ, choose the Hamming weight w0, . . . , wd for each layer, such
that w0 + · · ·+ wd = k.

2. Choose the configuration (positions of identities and non-identities) for each layer.

3. Choose X/Y/Z for each non-identity.

The following is a detailed counting argument and enumeration method for the legal
Pauli paths. Consider a fixed total Hamming weight d+ 1 ≤ k ≤ ℓ.

1. Choose the Hamming weight w0, . . . , wd for each layer, such that the total weight
is k. The number of choices equals the number of solutions to the equation w0 +
w2 + · · · + wd = k (wi ≥ 1), which equals to

(
k−1
d

)
≤ 2k−1. The enumeration of such

solutions can be achieved using a combinations enumerator which efficiently enumerates
all combinations of choosing d objects from k−1 objects, with memory cost Õ(d). Note
that not all solutions correspond to legal Pauli paths; the illegal ones will be rejected
later.

2. For each Hamming weight configuration w0, . . . , wd, let t be the index of the layer with
smallest Hamming weight (if there are tiebreaks, choose the smallest t). As the total
weight is k, we know that wt ≤ k/d. Next we enumerate the configuration (locations
of non-identities) of this layer. The number of choices is

(
n
wt

)
≤ nk/d and can be

enumerated using a combinations enumerator. We can store a configuration of a layer
using n bits.

3. We choose the configurations for the other layers in a way that evolves the t-th layer
both forwards and backwards. For example, consider choosing the configuration for
the t+ 1-th layer, conditioned on a given configuration for the t-th layer. Consider the
layer of 2-qubit gates that connects the t-th layer of the Pauli path with the t + 1-th
layer of the Pauli path. Those 2-qubit gates that have input II have to have output
II. The number of 2-qubit gates whose input is not II is at most wt. For each of these
gates, its output can be IR, RI, or RR (We use R to represent a non-identity). So there
are at most 3wt configurations for the t + 1-th layer. Not all of these configurations
satisfy the constraint that the t+1-th layer has Hamming weight wt+1. So within these
(at most) 3wt configurations, we reject those that do not have weight wt+1. Repeating
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this procedure for the next layer, we have that the number of configurations for the
t + 2-th layer is at most 3wt+1 , conditioned on a given configuration for the t + 1-th
layer. Using the same argument but evolve backward from the t-th layer, the number
of configurations for the t−1-th layer is at most 3wt , and the number of configurations
for the t− 2-th layer is at most 3wt−1 and so on.

4. Repeat the above argument for t+ 1, t+ 2, . . . , d as well as t− 1, t− 2, . . . , 0. The total
number of configurations for the entire Pauli path (conditioned on a given partition
w0, . . . , wd and a given configuration for the t-th layer) is at most 3

∑
i wi = 3k. The

memory cost for enumerating a configuration for the entire circuit is at most Õ(nd).

5. Replace each R with X, Y, Z (except for the first and last layer, where R is only replaced
with Z), giving another 3k factor.

Taking into account all factors in the above steps, the total number of legal paths of Hamming
weight at most ℓ (and the total running time of the enumeration algorithm) is at most

ℓ∑

k=d+1

2k−1 · nk/d · 3k · 3k ≤ ℓ · nℓ/d · 18ℓ = nℓ/d · 2O(ℓ). (2.88)

2.3.5.3 Putting everything together

Summarizing the main results of the previous section, we have the following.

Lemma 2.17. Consider the same assumptions as our main result (Remark 2.6) and fix
a truncation parameter ℓ. There is an algorithm that computes the function q̄(C, x) =∑

s:|s|≤ℓ(1 − γ)|s|f(C, s, x) and its marginals in time nd · 2O(ℓ). Here by marginal we mean∑
i∈T
∑

xi∈{0,1} q̄(C, x1, . . . , xn) for any T ⊆ [n].

Proof. As circuit depth d = Ω(log n), Lemma 2.16 says that for any x ∈ {0, 1}n, q̄(C, x) can
be computed in time nd · 2O(ℓ) using the enumeration algorithm, as there are 2O(ℓ) paths and
each path takes O(nd) time to compute. To compute a certain marginal

∑

i∈T

∑

xi∈{0,1}

q̄(C, x1, . . . , xn),

note that we cannot straightforwardly compute each q̄(C, x1, . . . , xn) and sum them up be-
cause it has an additional factor 2|T |. However, the marginal can be easily computed by
exchanging the summation order,

∑

i∈T

∑

xi∈{0,1}

q̄(C, x1, . . . , xn) =
∑

i∈T

∑

xi∈{0,1}

∑

s:|s|≤ℓ

(1− γ)|s|f(C, s, x1, . . . , xn)

=
∑

s:|s|≤ℓ

(1− γ)|s|


∑

i∈T

∑

xi∈{0,1}

f(C, s, x1, . . . , xn)


 .

(2.89)
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The statement follows from the fact that the summation in the bracket can be computed in
time O(nd). This is because

∑

i∈T

∑

xi∈{0,1}

f(C, s, x1, . . . , xn) =
∑

i∈T

∑

xi∈{0,1}

⟨⟨x|sd⟩⟩⟨⟨sd|Ud|sd−1⟩⟩ · · · ⟨⟨s1|U1|s0⟩⟩⟨⟨s0|0n⟩⟩

= ⟨⟨x′|sd⟩⟩⟨⟨sd|Ud|sd−1⟩⟩ · · · ⟨⟨s1|U1|s0⟩⟩⟨⟨s0|0n⟩⟩,
(2.90)

where

⟨⟨x′|sd⟩⟩ = Tr


sd ·

⊗

j /∈T

|xj⟩⟨xj|
⊗

i∈T

Ii


. (2.91)

Lemma 2.17 allows us to use the standard reduction of sampling from a probability
distribution via computing its marginals. An issue here is that q̄(C, x) is not necessarily a
distribution; it is only guaranteed to be close to p̃(C, x) in L1 norm. We use the following
result of [40] which allows us to sample from a distribution that is close to p̃(C, x).

Lemma 2.18 (Lemma 10 in [40]). Let p be a probability distribution on {0, 1}n. Assume
there is an oracle that computes a function q̄ : {0, 1}n → R as well as its marginals, such
that ∥p− q̄∥1 ≤ δ. Then there is an algorithm that samples from a probability distribution q
using O(n) calls to the oracle, such that ∥p− q∥1 ≤ 4δ/(1− δ).

Proof of Main result. In Section 2.3.5.1 we have shown that EC [∆2] ≤ O(1) · e−2γℓ. By
Markov’s inequality,

Pr

[
∆ ≥ 1√

δ

√
E [∆2]

]
= Pr

[
∆2 ≥ 1

δ
E
[
∆2
]]
≤ δ. (2.92)

Therefore, with probability at least 1− δ over random circuit C, we have

∆ ≤ 1√
δ

√
E [∆2] ≤ O(1)√

δ
e−γℓ. (2.93)

Using Lemma 2.17 and Lemma 2.18, for those circuits that satisfy Eq. (2.93) we can
sample from a probability distribution that is O(1) · ∆-close to p̃(C, x) in total variation
distance. Let ε be the desired total variation distance, then

O(1)√
δ
e−γℓ ≤ ε is satisfied when ℓ ≥ 1

γ
log

O(1)

ε ·
√
δ
. (2.94)

Obtaining one sample requires O(n) calls to the algorithm in Lemma 2.17. Assuming circuit
depth is d ≤ poly(n), the total running time for obtaining one sample is n · nd · 2O(ℓ) =

poly(n) ·
(
O(1)/(ε ·

√
δ)
)O(1/γ)

= poly(n, 1/ε, 1/δ).
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2.3.5.4 Statistical indistinguishability

Next we show that our main result implies statistical indistinguishability. We first recall the
basic notions and then give a proof of Corollary 2.3.

Given two known probability distributions p, q over the same finite alphabet ({0, 1}n in
our case), and given M samples from either p or q, we would like to tell which is the case
with high success probability. That is, two known distributions p and q are statistically
distinguishable if there is an algorithm A (with unbounded running time) that, on input
x1, . . . , xM ∼ D,

• if D = p, A returns “D = p” with probability at least 2
3
;

• if D = q, A returns “D = q” with probability at least 2
3
.

Two known distributions p and q are statistically indistinguishable with M samples if there
is no algorithm A that satisfies the above condition. We use the following well-known fact
that closeness in total variation distance implies statistical indistinguishability.

Lemma 2.19. Two known distributions p and q are statistically indistinguishable with M
samples if

1

2
∥p− q∥1 <

1

3M
. (2.95)

In the context of random circuit sampling, statistical distinguishability is similarly defined
with an additional averaging over the random circuit.

Definition 2.10 (Statistical distinguishability). For a random circuit C, let p̃(C, x) be the
noisy RCS output distribution and let q(C, x) be a classical mock-up distribution (the output
distribution of a classical simulation algorithm). p̃(C, x) is statistically distinguishable from
q(C, x) with M samples if there is an algorithm A with input C as well as x1, . . . , xM ∈
{0, 1}n and output one of {noisy RCS,mock-up} (with unbounded running time) such that

• EC Prx1,...,xM∼p̃(C)[A(C, x1, . . . , xM) = noisy RCS] ≥ 2
3
,

• EC Prx1,...,xM∼q(C)[A(C, x1, . . . , xM) = noisy RCS] ≤ 1
3
.

Proof of Corollary 2.3. In order to prove statistical indistinguishability it suffices to show
that

E
C

[∥∥p̃(C)⊗M , q(C)⊗M
∥∥
1

]
<

1

3
. (2.96)

Our main result says that ∥p̃(C)− q(C)∥1 ≤ ε with probability at least 1 − δ over C. Call
those C that satisfy ∥p̃(C)− q(C)∥1 ≤ ε good, and the rest bad. We have

E
C

[∥∥p̃(C)⊗M , q(C)⊗M
∥∥
1

]
≤ E

C

[∥∥p̃(C)⊗M , q(C)⊗M
∥∥
1
|C is good

]
+ Pr[C is bad]

≤ E
C

[M · ∥p̃(C), q(C)∥1 |C is good] + δ

≤Mε+ δ,

(2.97)
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where the first line follows from the law of total expectation and the second line follows
from subadditivity of total variation distance with respect to tensor product. Therefore,
statistical indistinguishability is guaranteed by choosing ε = 0.01/M and δ = 0.01, which
gives running time poly(n,M) in our algorithm.

2.3.6 Generalizing to an approximation of Google and USTC’s
gate sets

In this section we discuss the role of gate sets in our main result. Assuming anti-concentration
holds and at least Ω(log n) depth, then in fact the only place in the proof of our main result
where the gate set is relevant is in the third line of Eq. (2.76). It uses a property of the
Pauli paths called orthogonality (Lemma 2.11), which follows from a property of the gate
set which we call gate-set orthogonality (Lemma 2.10). Gate-set orthogonality says that in
the Pauli basis, if we consider averaging over two copies of a random gate in the gate set,
then it effectively forces the input Pauli to be identical across the two copies. Lemma 2.10
shows that this holds as long as the gate set is closed under random Pauli.

However, in Google and USTC’s experiments [7, 16, 17] this condition is violated. They
considered random circuits with fixed 2-qubit gates and random single-qubit gates, where
the 2-qubit gates are called fSim and are roughly parameterized as follows,

fSim(ω1, ω2, ω3) =




1 0 0 0
0 0 e−iω1 0
0 e−iω2 0 0
0 0 0 e−iω3


 . (2.98)

These angles are site-dependent and are determined by benchmarking experiments. The
single-qubit gates are chosen randomly6 from {

√
X,
√
Y ,
√
W}, where W = (X + Y )/

√
2.

Here we consider a related gate set shown in LHS of Fig. 2.3 where the main difference
is that we insert random Z rotations. The fSim gates have a special property that allows us
to borrow randomness from RZ(θ3), RZ(θ4) and create additional random gates as RZ(θ5),
RZ(θ6), leading to the equivalent gate set in RHS of Fig. 2.3. This is because of the following
commutation property. By definition, we can check that for any angles θ1, θ2, ω = (ω1, ω2, ω3),

RZ(θ1)⊗RZ(θ2) · fSim(ω) = fSim(ω) ·RZ(θ2)⊗RZ(θ1). (2.99)

Therefore we can consider the effective single qubit gate set

RZ(θ1)V RZ(θ2), V ∈ {
√
X,
√
Y ,
√
W}.

By direct calculation, we can verify that this single-qubit gate set is invariant under random
Pauli and thus satisfies gate-set orthogonality.

6Google’s single qubit gates V are not independent across each layer; neighboring layers does not repeat.
This is still covered by Lemma 2.20 as it holds even for any fixed V ∈ {

√
X,
√
Y ,
√
W}.
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Figure 2.3: A gate set related to Google and USTC’s experiments, for which our main result
holds. LHS: the gate set consists of a fixed fSim gate surrounded by random gates from
{
√
X,
√
Y ,
√
W} as well as random Z rotations. RHS: this is equivalent to LHS due to a

special property of the fSim gates.

Lemma 2.20. Let D be a distribution over single-qubit unitary defined as RZ(θ1)V RZ(θ2)
where θ1, θ2 ∼ [−π, π] and V ∼ {

√
X,
√
Y ,
√
W}. Then for any P,Q ∈ {I,X, Y, Z} such

that P ̸= Q, we have
E

U∼D

[
UPU † ⊗ UQU †

]
= 0. (2.100)

This implies the orthogonality condition in Lemma 2.11 which implies that our main
result holds. An interesting open question is whether orthogonality is necessary for our main
result, and whether our main result holds for the exact gate sets used in Google and USTC’s
experiments.

2.3.7 Refuting XQUATH for sublinear depth random circuits

Here we give a formal refutation of the XQUATH conjecture of [9] using the Pauli basis
framework (a similar argument was first sketched in [18]; here we give a more formal treat-
ment). In this section we only consider Haar random 2-qubit gates.

The XQUATH conjecture is about the hardness of estimating the output probability
p(C, 0n) of an ideal random circuit C. It says that no efficient classical algorithm can achieve
a slightly better variance compared with the trivial algorithm of outputting 1

2n
.

Conjecture 2.3 (XQUATH [9]). Let D be a distribution over quantum circuits. There is
no polynomial-time classical algorithm that takes as input a quantum circuit C ∼ D and
produces a number q(C, 0n) such that

XQ := 22n

(
E

C∼D

[(
p(C, 0n)− 1

2n

)2
]
− E

C∼D

[
(p(C, 0n)− q(C, 0n))2

]
)

= Ω

(
1

2n

)
. (2.101)

The intuition behind this conjecture is the Feynman path integral in the computational
basis (Eq. (2.52)). There are 2O(nd) Feynman paths that are uniform, meaning that each path
gives the same contribution on average. Therefore, a polynomial time classical algorithm
cannot obtain a good estimate by calculating polynomial paths. In contrast, the Pauli path
integral is highly non-uniform and the contribution of a path decays exponentially with the
Hamming weight (Eq. (2.81)).
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Remarkably, we show that using the Pauli path integral, a single path suffices to refute
this conjecture below linear depth.

Theorem 2.7. Let D be a distribution over quantum circuits with Haar random 2-qubit
gates. Then there exists an algorithm that, on input C, outputs a number q(C, 0n) in time
O(nd) that achieves

XQ =

(
1

15

)d
. (2.102)

Therefore XQUATH is false for random circuits with depth d = o(n).

Proof. On input C = Ud · · ·U1, define the algorithm as computing

q(C, 0n) :=
1

2n
+ ⟨⟨0n|s∗⟩⟩⟨⟨s∗|Ud|s∗⟩⟩ · · · ⟨⟨s∗|U1|s∗⟩⟩⟨⟨s∗|0n⟩⟩ =

1

2n
+ f(C, s⃗∗, 0n) (2.103)

where s∗ = 1√
2n
Z1 ⊗ I⊗n−1 (Z1 acts on the first qubit). This takes time O(nd). Then

XQ = 22n E
C∼D

(
1

22n
− 2

2n
p(C, 0n)− q(C, 0n)2 + 2p(C, 0n)q(C, 0n)

)

= 22n E
C∼D

(
− 1

22n
− q(C, 0n)2 + 2p(C, 0n)q(C, 0n)

)

= 22n E
C∼D

(
− 2

22n
− f(C, s⃗∗, 0n)2 + 2p(C, 0n)q(C, 0n)

)

= 22n E
C∼D

(
−f(C, s⃗∗, 0n)2 + 2p(C, 0n)f(C, s⃗∗, 0n)

)

= 22n E
C∼D

(
−f(C, s⃗∗, 0n)2 + 2f(C, s⃗∗, 0n)2

)

= 22n E
C∼D

f(C, s⃗∗, 0n)2

=

(
1

15

)d
.

(2.104)

Here, the first line is by calculation; the second line is because EC∼D[p(C, 0n)] = 1
2n

; the

third line is because EC∼D[f(C, s⃗∗, 0n)] = 0 which follows from orthogonality with the all-
identity path; the fourth line is again because EC∼D[p(C, 0n)] = 1

2n
; the fifth line follows

from orthogonality (Lemma 2.11); the final step follows from the fact that there are exactly
d 2-qubit gates that has a non-identity at the input and output, and each gate contributes
a 1

15
factor due to Lemma 2.9.

As XQUATH is closely related to the XEB test, next we give a similar result by applying
the above algorithm to XEB. Note that in actual experiments the XEB should be viewed as a
statistical test, and our main result already implies that no such tests can distinguish between
noisy RCS and the efficient classical algorithm in our main result. Thus the discussions below
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are for demonstration purposes, and for simplicity we only consider the expected value of
XEB, and show that one Pauli path already suffices to achieve 2−O(d) XEB.

For a random circuit C, let p(C, x) be the output distribution of C, and let q(C, x) be
the output distribution of the noisy implementation of C or a simulation algorithm. The
expected value of the linear cross entropy is defined as

XEB := 2n E
C

∑

x∈{0,1}n
p(C, x)q(C, x)− 1. (2.105)

First we consider noisy random circuits with the same model as in our main result. A
useful property is that the XEB of noisy random circuits can be viewed as the Fourier weight
polynomial.

XEB = 2n E
C

∑

x∈{0,1}n
p(C, x)q(C, x)− 1

= 2n E
C

∑

x∈{0,1}n

∑

s

(1− γ)|s|f(C, s, x)2 − 1

= 22n E
C

∑

s

(1− γ)|s|f(C, s, 0n)2 − 1

=
∑

k>0

(1− γ)kWk.

(2.106)

Here, the second line follows from the Pauli path integral and orthogonality (Lemma 2.11);
the third line is by Eq. (2.62); the fourth line is by definition of Fourier weight and the fact
that W0 = 1.

Theorem 2.8. Assuming anti-concentration, the linear cross entropy of a noisy random
circuit with γ depolarizing noise satisfies

(1− γ)d+1 · n · 2d · 3d−1 ·
(

1

15

)d
≤ XEB ≤ O(1) · e−γd. (2.107)

Note that anti-concentration is only used for the upper bound; the lower bound does not
require anti-concentration.

Proof. For the upper bound we use the upper bound on total Fourier weight (Lemma 2.12),

XEB =
∑

k≥d+1

(1− γ)kWk ≤ O(1) · (1− γ)d+1 ≤ O(1) · e−γd. (2.108)

The lower bound follows from XEB ≥ (1− γ)d+1Wd+1. We have Wd+1 = n · 2d · 3d−1 ·
(

1
15

)d
because we have shown in Lemma 2.14 that the number of legal Pauli paths at degree d+ 1

equals n · 2d · 3d−1; each of them contributes
(

1
15

)d
to the Fourier weight.
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Next, consider a classical algorithm which samples from the same distribution as in the
proof of Theorem 2.7, which is the following distribution

q(C, x) =
1

2n
+ ⟨⟨x|s∗⟩⟩⟨⟨s∗|Ud|s∗⟩⟩ · · · ⟨⟨s∗|U1|s∗⟩⟩⟨⟨s∗|0n⟩⟩ =

1

2n
+ f(C, s⃗∗, x) (2.109)

where s∗ = 1√
2n
Z1 ⊗ I⊗n−1 (Z1 acts on the first qubit). {q(C, x)}x∈{0,1}n is a probability

distribution because
∣∣f(C, s⃗∗, x)

∣∣ ≤ 1
2n

and
∑

x∈{0,1}n f(C, s⃗∗, x) = 0.
The algorithm only samples the first qubit non-trivially, and uniformly on all other qubits.

Theorem 2.9. There exists an efficient classical algorithm that, given a random circuit,
outputs a sample in time O(nd) that achieves

XEB =

(
1

15

)d
. (2.110)

Proof.

XEB = 2n E
C

∑

x∈{0,1}n
p(C, x)f(C, s∗, x)

= 2n E
C

∑

x∈{0,1}n

∑

s=(s0,...,sd)∈Pn

f(C, s, x)f(C, s∗, x)

= 2n E
C

∑

x∈{0,1}n
f(C, s∗, x)2

= 22n E
C
f(C, s∗, 0n)2 =

(
1

15

)d
.

(2.111)

Here, the first line is by definition of q(C, x); the second line is by Pauli path integral; the
third line follows from orthogonality (Lemma 2.11); the fourth line is by Eq. (2.62).

2.3.8 Improved bounds on the convergence of noisy random
circuits to the uniform distribution

In this section we develop improved bounds on the total variation distance between the
output distribution of noisy random circuits and the uniform distribution, focusing on Haar
random 2-qubit gates and depolarizing noise. The result can be directly applied to other
depolarizing-like noise models as in [37, 38].

Let U denote the uniform distribution. In [38], the authors prove that the average total
variation distance is lower bounded as

E
C

[
1

2
∥p̃(C)− U∥1

]
≥ (1− γ)2d

4 · 30d
. (2.112)

Here we improve this bound by applying the Fourier weight and Pauli path integral technique.
Note that in order to match with the notation in [38], we remove the layer of noise channels
applied before the first layer of gates in Fig. 2.2 (b).
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Theorem 2.10. Let D be a distribution over quantum circuits on any parallel circuit archi-
tecture with Haar random 2-qubit gates. Let p̃(C) be the output distribution of C subject to
depolarizing noise with error rate γ on each qubit after each layer of gates, then we have

E
C∼D

[
1

2
∥p̃(C)− U∥1

]
≥ 1

12
· (1− γ)2d ·

(
2

5

)d
. (2.113)

Proof. Let δ := 1
2
∥p̃(C)− U∥1 be the total variation distance, and let

p̃0 :=
∑

y∈{0,1}n−1

p̃(C, 0y) (2.114)

be the marginal output probability of the first qubit being 0. As also noted by [38], the total

variation distance can be lower bounded as δ ≥
∣∣p̃0 − 1

2

∣∣ ≥
(
p̃0 − 1

2

)2
.

Following the proof of Lemma 2.17, the marginal output probability can be written as
the Pauli path integral

p̃0 =
∑

s=(s0,...,sd)∈Pd+1
n

g(C, s) (2.115)

where

g(C, s) := ⟨⟨0I⊗n−1|sd⟩⟩⟨⟨sd|E⊗nUd|sd−1⟩⟩ · · · ⟨⟨s1|E⊗nU1|s0⟩⟩⟨⟨s0|0n⟩⟩
= (1− γ)|sd|+···+|s1|⟨⟨0I⊗n−1|sd⟩⟩⟨⟨sd|Ud|sd−1⟩⟩ · · · ⟨⟨s1|U1|s0⟩⟩⟨⟨s0|0n⟩⟩.

(2.116)

The trivial all-identity path contributes 1
2

to p̃0. Therefore,

E
C∼D

[
1

2
∥p̃(C)− U∥1

]
≥ E

C∼D

(
p̃0 −

1

2

)2

= E
C∼D


 ∑

s:|s|>0

g(C, s)




2

= E
C∼D

∑

s:|s|>0

g(C, s)2,

(2.117)

where the third line is by orthogonality (Lemma 2.11). To lower bound the above sum, we
consider all Pauli paths of weight d+ 1. Any such path s that gives a non-zero contribution
will have Fourier weight

E
C∼D

g(C, s)2 = (1− γ)2d · 2n−2 ·
(

1

15

)d
· 1

2n
=

(1− γ)2d

4 · 15d
. (2.118)

It remains to count the number of such paths. We have shown in Lemma 2.14 that the
number of legal Pauli paths with weight d + 1 equals n · 2d · 3d−1. However, here we lose a
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factor of n because the final layer has to be sd = 1√
2n
Z1 ⊗ I⊗n−1 (Z1 acts on the first qubit)

and therefore the path has a fixed ending point, giving 2d · 3d−1 paths in total. This gives

E
C∼D

[
1

2
∥p̃(C)− U∥1

]
≥ E

C∼D

∑

s:|s|>0

g(C, s)2

≥ E
C∼D

∑

s:|s|=d+1

g(C, s)2

=
(1− γ)2d

4 · 15d
· 2d · 3d−1 =

1

12
· (1− γ)2d ·

(
2

5

)d
.

(2.119)

This bound can be further improved by considering more paths in Eq. (2.117).

For completeness, we also summarize known upper bounds for the total variation distance.
[36] showed that the KL divergence is upper bounded by DKL(p̃(C)∥U) ≤ n · e−γd. Thus by
Pinsker’s inequality

1

2
∥p̃(C)− U∥1 ≤

√
n

2
e−γd. (2.120)

Note that the above result holds for any circuit C, without averaging. In the anti-concentration
regime, [37] showed an improved upper bound which gives

E
C∼D

[
1

2
∥p̃(C)− U∥1

]
≤ O(1) · e−γd. (2.121)

2.4 Benchmarking near-term quantum computers via

random circuit sampling

With the recent exciting progress in NISQ (Noisy Intermediate Scale Quantum) experiments,
the characterization of noise in quantum devices has become a central challenge in the
field [46, 47]. This goes beyond the benchmarking of individual gates; the characterization
of many-body quantum noise can be expected to play an important role in building scalable
quantum computers [48, 49]. This is because with scaling, understanding crosstalk between
gates assumes increasing significance, in both improving fidelity of near-term experiments as
well as making progress towards fault tolerance [50, 51, 52, 53].

Randomized benchmarking [54, 55, 56, 57, 58] has been the standard approach in tradi-
tional noise benchmarking, but in the context of characterizing quantum computers it does
not scale beyond 2-3 qubits due to large circuit depth [59], and is therefore most useful for
the benchmarking of individual gates. Cycle benchmarking and its variants [48, 60, 49, 61,
62, 63] provide a scalable approach to benchmark Clifford circuits. However, the character-
ization of noise in general circuits with non-Clifford gates has been an unreachable task due
to the lack of group structure.
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Here we address this challenge by drawing inspiration from Google’s “quantum supremacy”
experiment [7]. Google observed that their experimental estimate of the linear cross entropy
benchmark – a proxy for the global fidelity of random circuits – was consistent with an
uncorrelated noise model defined by multiplying individual gate fidelities, and they claimed
that these experimental results could be considered a way of verifying that the noise channel
acting on a layer of gates is uncorrelated across each gate. This observation is remarkable
in the sense that the fidelity of highly complex random circuits could be predicted by such
a simple noise model, but also intriguing as little theoretical evidence has been shown that
supports this observation [64, 65]. A natural question is how convincing is this observation
from the theoretical perspective, and more importantly, could this new observation be the
germ of a new way to benchmark noise in general quantum circuits, even without assuming
locality and independence in the noise model?

In this section we develop a noise benchmarking algorithm based on random circuit sam-
pling (RCS). We show that the total amount of noise in a global and arbitrarily correlated
noise model can be sample-efficiently extracted by measuring the linear cross entropy. While
the noise parameter to be estimated is the same as cycle benchmarking [48], RCS benchmark-
ing works for arbitrary non-Clifford gates and therefore can be used to benchmark general
circuits. As an application, our results imply that if the noise in Google’s device were highly
non-local and correlated, this would cause the linear cross entropy and the uncorrelated
noise model to deviate from each other in Google’s experiment. This provides some for-
mal evidence that supports Google’s claim that the coincidence they observed between the
two metrics indicated that the noise in their device was uncorrelated [7], which raises the
potential for achieving fault tolerance.

RCS benchmarking. The noise benchmarking problem can be formulated as follows.
Consider the Pauli noise channel induced by a layer of arbitrary non-Clifford gates N (ρ) =∑

α∈{0,1,2,3}n pασαρσα where σα are n-qubit Pauli operators and pα are the corresponding
Pauli error rates. The assumption that noise can be described by a Pauli channel is without
loss of generality, as we show below that general noise channels will be effectively twirled
into a Pauli channel by RCS. The main challenge then is designing an efficient experimental
procedure to estimate the total error λ =

∑
α ̸=0n pα. In RCS benchmarking (Algorithm 2),

the gates to be characterized are applied in an alternating architecture and interleaved by
Haar random single-qubit gates (see Fig. 2.4), followed by a measurement in the computa-
tional basis. The algorithm works by estimating the average fidelity of these random circuits
at several different depths, and then fit the average fidelity as an exponential decay function
of depth, which gives the noise parameter λ. This algorithm can be implemented on today’s
hardware and is robust to state preparation and measurement (SPAM) errors.

Result 1: exponential decay of average fidelity. Let RQC(n, d) denote the ensemble
of random quantum circuits with n qubits and depth d as shown in Fig. 2.4. An ideal
implementation of a random circuit C ∼ RQC(n, d) creates a pure state |ψ⟩ = C |0n⟩,
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|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Figure 2.4: RCS benchmarking is an ef-
ficient algorithm to estimate the total
amount of noise, including all crosstalks,
on a layer of arbitrary two-qubit gates
(white boxes) by implementing an al-
ternating architecture interleaved with
Haar random single qubit gates (blue
boxes).

Algorithm 2 RCS benchmarking (simplified)

Input: number of qubits n, maximum circuit
depth D, number of circuits L
Output: effective noise rate (ENR)

1: for d = 1 . . . D do
2: for i = 1 . . . L do
3: sample a random circuit
Ci ∼ RQC(n, d)

4: estimate the fidelity of Ci, denote as
F̂d,i

5: ▷ fidelity estimation
6: end for
7: F̂d := 1

L

∑L
i=1 F̂d,i

8: end for
9: fit exponential decay F = Ae−λd using data
{F̂d}Dd=1

10: Return λ

while due to noise the experimental implementation corresponds to a mixed state ρ, and the
fidelity of C is F = ⟨ψ|ρ|ψ⟩ = ⟨0n|C†ρC |0n⟩. The average fidelity is given by EC∼RQC(n,d) F
which we denote by EF . Consider an arbitrary n-qubit noise channel acting on each layer of
gates, which can be described as N (ρ) =

∑
α,β∈{0,1,2,3}n χαβσαρσβ, where (χαβ) is a positive

semi-definite matrix known as the process matrix. We show that only the Pauli-diagonal
component of the noise channel N diag(ρ) =

∑
α∈{0,1,2,3}n χαασαρσα is effective due to the

twirling effect of random circuits (Section 2.4.2.1), in the sense that the average fidelity
with noise channel N equals the average fidelity with N diag, so without loss of generality we
assume a Pauli noise channel N (ρ) =

∑
α∈{0,1,2,3}n pασαρσα, and the goal is to estimate the

effective noise rate (ENR) λ =
∑

α ̸=0n pα. Our main result shows that EF ≈ e−λd, which
implies that λ can be extracted via estimating EF .

Theorem 2.11 (Main result). For random quantum circuits in 1D and 3-local noise channel
with effective noise rate λ, the average fidelity is given by e−λd ≤ EF ≤ e−λd(1 +Kλ) up to
a first-order approximation in λ. Here K is a universal constant, and we assume d≪ 2n.

For simplicity here we focus on random circuits with Haar random 2-qubit gates. The
same result is expected to hold for circuits with fixed 2-qubit gates interleaved by Haar
random single-qubit gates as in Fig. 2.4 as they share similar properties such as convergence
to unitary t-designs [45, 66, 67, 68, 69], which we also confirm via numerical simulations.
The starting point of the proof (Section 2.4.2.2) is to decompose EF via the law of total
expectation by conditioning on the number of errors that happen in the circuit, EF =
EF0 + EF1 +

∑
k≥2 EFk, where EFk := Pr[k errors happen] · E[F |k errors happen]. Note
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Description Lindblad λF λuXEB

T1, Tϕ γD[|0⟩⟨1|] + 2γD[|1⟩⟨1|] 0.0511(2) 0.0511(2)
Pauli-X γD[X] 0.0508(2) 0.0509(2)

Corr-XX γD[XiXi+1] 0.0505(3) 0.0505(3)
n− 1 Weight X γD[

∏
i ̸=j Xi] 0.0506(3) 0.0506(3)

Table 2.2: Curve fitting results for the numerical simulation in Fig. 2.5. λF and λuXEB shows
the simulated RCS benchmarking result, which corresponds to the decay rate of fidelity and
unbiased linear cross entropy, respectively.

Description Lindblad λF λuXEB

T1, Tϕ γD[σ] + 2γD[σ†σ] 0.0531(2) 0.0536(2)
Corr-T1 γD[σiσi+1] 0.0495(3) 0.0502(3)
Pauli-X γD[X] 0.0492(3) 0.0500(3)

Corr-XX γD[XiXi+1] 0.0486(3) 0.0490(3)

Table 2.3: Curve fitting results for the numerical simulation in Fig. 2.6. λF and λuXEB shows
the simulated RCS benchmarking result, which corresponds to the decay rate of fidelity and
unbiased linear cross entropy, respectively.

that EF0 = Pr[no error happens] ≈ e−λd, so the goal is to prove that all EFk with k ≥ 1 are
small compared with EF0. Intuitively EFk has a λk factor and should decrease quickly with
k when λ is small, so we make a first-order approximation by ignoring the k ≥ 2 terms and
focusing on the first-order contribution EF1. It is easy to prove that this approximation is
valid when circuit depth d ≤ c/λ for some small constant c, and our numerical simulations
suggest that it remains valid with experimentally relevant noise rates and circuit depths.
Next, we show that EF1 = O(λ · e−λd) by mapping this quantity to the partition function
of a classical spin model and then use a domain wall counting argument to analytically
bound the partition function. This technique has been used to analyze properties of random
quantum circuits [70, 71, 72, 73, 39, 35] and here we generalize this to the context of noise
benchmarking. While our rigorous arguments for showing EF1 = O(λ · e−λd) apply to
arbitrary 3-local errors which capture most error sources in quantum devices, numerical
simulations suggest that it holds for arbitrary errors. Combining the above arguments gives
the exponential decay EF ≈ e−λd when λ is upper bounded by a small constant, which we
also directly verify by simulating the average fidelity with different correlated noise models
and gate sets. Our numerical simulation results are presented in Fig. 2.5 and Sections 2.4.2
and 2.4.6.

Result 2: fidelity estimation and variance. The above result outlines a procedure
to extract λ via estimating EF (Algorithm 2). Here the depth-independent coefficient A
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(a) (b)

(c) (d)

Figure 2.5: Numerical simulations using the Monte Carlo wave function (MCWF) method
for various noise models. The system is modeled as perfect gates followed by evolution
for one time unit under noisy channels [74] using the Lindblad master equation [75] dρ

dt
=∑

i γiD[Ji](ρ), where the sum is over different noise channels, D[Ji](ρ) = JiρJ
†
i − 1

2
(J†i Jiρ+

ρJ†i Ji) is a Lindblad superoperator for generic collapse operator Ji, and γi controls the noise
strength. The unbiased linear cross entropy agrees with the fidelity for all depths above a
small threshold and correctly predicts the ENR. The noise models include: (a) single qubit
amplitude-decay and pure dephasing, (b) single qubit Pauli-X noise, (c) nearest-neighbor
correlated XX noise, (d) correlated X noise with weight n − 1 = 19, which is an artificial
high-weight noise model. Here we simulate n = 20 qubits on a 1D ring with noise strength
γ = 0.0025. Each global noise channel has an ENR of λtrue = nγ = 0.05 by design. We
average over 100 random circuits consisting of layers of two-qubit Haar-random unitaries
and use 400 noise trajectories for each circuit at each depth. We fit the uXEB curves from
depths 20 to 50.

corresponds to SPAM errors, and both A and λ can be extracted via curve fitting. To
complete this we need a sample-efficient estimator of fidelity (line 4 and 5 of Algorithm 2).
This is non-trivial as direct fidelity estimation (DFE) [76, 77] requires an exponential number
of samples in the worst case. It has been suggested through heuristic arguments [20, 7,
23] that (unbiased) linear cross entropy appears to be a sample-efficient estimator for the
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(a) (b)

(c) (d)

Figure 2.6: Numerical simulations using the Monte Carlo wave function (MCWF) method
for various noise models. The system is modeled as perfect gates followed by evolution
for one time unit under noisy channels [74] using the Lindblad master equation [75] dρ

dt
=∑

i γiD[Ji](ρ), where the sum is over different noise channels, D[Ji](ρ) = JiρJ
†
i − 1

2
(J†i Jiρ+

ρJ†i Ji) is a Lindblad superoperator for generic collapse operator Ji, and γi controls the noise
strength. The unbiased linear cross entropy agrees with the fidelity for all depths above a
small threshold and correctly predicts the ENR. The noise models include: (a) single qubit
amplitude-decay and pure dephasing, (b) nearest-neighbor correlated amplitude-decay, (c)
single qubit Pauli-X noise, (d) nearest-neighbor correlated XX noise. Here we simulate
n = 16 qubits on a 2D lattice with noise strength γ = 0.003125. Each global noise channel
has an ENR of λtrue = nγ = 0.05 by design. We average over 100 random circuits consisting
of layers of random single qubit gates from the set {

√
X,
√
Y ,
√
W}, where W = (X+Y )/

√
2

and we use a fixed two-qubit SQiSWP gate over 400 noise trajectories for each circuit at
each depth. We fit the uXEB curves from depths 20 to 50.

fidelity of noisy random circuits. For a random circuit C with output distribution pC(x) =
| ⟨x|C|0n⟩|2, the linear cross entropy estimator with M samples S = {xi}Mi=1 is given by
F̂XEB(S;C) = 2n

M

∑M
i=1 pC(xi) − 1. In experiments, after collecting the output samples, we

perform exact classical simulation of the ideal circuit C to compute the probabilities. We
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also consider the unbiased linear cross entropy estimator [78] defined as

F̂uXEB(S;C) =
2n

M

∑M
i=1 pC(xi)− 1

2n
∑

x∈{0,1}n pC(x)2 − 1
. (2.122)

The term “unbiased” can be understood as follows: when the samples S come from the ideal
distribution pC(x), we have ES F̂uXEB(S;C) = 1, while ES F̂XEB(S;C) can be exponentially
large. Note that for random quantum circuits the denominator 2n

∑
x∈{0,1}n pC(x)2 − 1

approaches 1 in log depth [39, 35], and therefore the two estimators give the same value
as depth increases. In our experiments we use the unbiased linear cross entropy estimator by
default, as it is more accurate at small constant depth. The main advantage of cross entropy
estimators compared with DFE is that O(1/ε2) measurement samples suffice for estimating
the fidelity of a random circuit within ε additive error.

To further justify the connection between unbiased linear cross entropy and fidelity,
we perform extensive numerical simulations under correlated noise models. Fig. 2.5 shows
the results of these simulations, which include the exponential decay curves of fidelity and
the unbiased linear cross entropy, and error bars correspond to the standard error of the
mean across different circuits which are too small to be seen on the plot. Note that the
unbiased linear cross entropy estimates the true fidelity very well in all noise models except
for very small depths. The curve fitting results are shown in Table 2.2. Here, both the
decay rate of fidelity and unbiased linear cross entropy agree very well with the effective
noise rate of the underlying noise model. These results verify our theoretical argument on
the exponential decay of fidelity, as well as the correctness of unbiased linear cross entropy
as a fidelity estimator, for both i.i.d. and highly correlated noise models. Figure 2.6 Shows
a similar set of experiments using a 2D grid of qubits and we have additionally included
a non-Pauli, nearest-neighbor correlated amplitude-decay noise model (Corr-T1). Table 2.3
demonstrates that the 1D results extend to 2D lattices and to non-trivial non-Pauli noise
channels. Additional simulation results with other system sizes, fidelity estimators, noise
rates and gate sets are presented in Section 2.4.6.

Next, we show evidence that the variance of cross entropy estimators for a random circuit
scale as O

(
1/M + λ2 (EF )2

)
, where M is the number of samples collected for each circuit

(Section 2.4.2.5). In a large scale experiment the second term is much smaller than the first
term due to the exponential decay of EF , and therefore it suffices to collect a large number
of samples for few circuits to estimate EF within small additive error. These results provide
evidence that supports Google’s claim that only 10 random circuits with a large number of
samples per circuit are sufficient to estimate the linear cross entropy in their experiment.
On the other hand, the second term dominates for RCS benchmarking with a small number
of qubits, and it is necessary to average over many (∼ 100) different circuits to obtain good
error bars, such as in our experiments below.

Result 3: experiments on IBM Quantum hardware. We implement RCS bench-
marking via experiments on IBM Quantum hardware [79] with up to 20 superconducting
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Figure 2.7: Experimental implementation of RCS benchmarking on ibmq athens with 5
qubits. (a) Simultaneous RB, where parallel RB sequences are implemented for three gate
patterns (green boxes) used in RCS benchmarking. The error rates underlying the single/two
qubit green boxes are the RB results represented in Pauli error for Haar random single qubit
gates and CNOT gates, respectively. (b) Exponential decay curves for RCS benchmarking
with direct fidelity estimation and cross entropy. The decay rates, which represent the total
amount of quantum noise per layer, are λDFE = 3.05(5)% and λuXEB = 3.08(3)%. As a
reference, the simultaneous RB estimator gives λsRB = 3.13(4)%. We select 8 depth values
ranging from 1 to 29. For DFE we implement 30 random circuits for each depth, and
estimate the fidelity of each circuit by measuring 20 Fourier coefficients, which is 600 circuits
for each depth. For cross entropy, we implement 100 random circuits for each depth. 8192
measurement samples are collected for each circuit. For both DFE and uXEB experiments,
we use the standard error of the mean across different circuits as the error bar. The decay
rate and its standard error are computed from the data points and error bars via standard
least squares fitting. For the simultaneous RB estimator, we use half the difference between
the two RB experiments as the standard error.

qubits in one dimension. On these devices, CNOT is the only 2-qubit gate available, and
arbitrary single-qubit gates are easy to implement, which have error rates that are roughly
2 orders of magnitude smaller than CNOT. Therefore, in RCS benchmarking we are effec-
tively measuring the total amount of quantum noise in a layer of CNOT gates. Fig. 2.7
shows experiment results on a 5-qubit device, see Section 2.4.3 for more details and larger
experiments.

Here we perform three types of experiments: simultaneous RB, RCS with direct fidelity
estimation, and RCS with cross entropy. In simultaneous RB [80], the main idea is to perform
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different RB sequences in parallel instead of performing RB on one pair of qubits while all
other qubits are idle. A similar experiment was performed in Google’s experiment [7] where
linear cross entropy was used as the post processing method instead of standard RB. We
implement simultaneous RB on each of the three patterns shown in Fig. 2.7a. The numbers
underlying single qubit boxes represent the error rates of two X90 pulses (

√
X), which can

represent the Pauli error rate of a Haar random single qubit gate. The numbers underlying
two qubit boxes represent the Pauli error rate of CNOT gates. The results demonstrate
some crosstalk behavior. For example, notice that in the third pattern in Fig. 2.7a, there is
a large (1.10%) error rate on qubit 0, which is not present in the single qubit simultaneous
RB. This suggests that a CNOT gate on qubit 1 and 2 can introduce a large error on qubit
0 due to crosstalk. Interestingly, in this experiment a CNOT gate on qubit 2 and 3 did not
introduce additional errors on qubit 4.

Next we show results of RCS benchmarking with direct fidelity estimation and cross
entropy. Note that DFE is not scalable due to the exponential sample complexity, and is
implemented here mainly to verify our theoretical predictions. The results are shown in
Fig. 2.7b, where all curves are exponential decays with roughly the same decay rate. The
curves have different intercepts because DFE and uXEB experiments have different SPAM
errors due to the additional overhead of DFE. From the curve fitting results, we can see
that λDFE and λuXEB agrees with each other within the standard error. This confirms our
theoretical results on the exponential decay of fidelity, and also verifies the validity of cross
entropy as an efficient fidelity estimator. Also, note that uXEB is much more sample efficient
than DFE, where the error bars for DFE are larger even when we collect 6 times the amount
of samples in uXEB. As a reference, we implement simultaneous RB both before and after the
RCS experiments, which can also be used to evaluate the error drift during the experiment
period. In Fig. 2.7b we present heuristic fidelity estimators defined by multiplying individual
gate fidelities measured by simultaneous RB experiments. Note that the simultaneous RB
estimator gives a slightly larger prediction for the effective noise rate (also see below).

Application to diagnosing crosstalk. Diagnosing and reducing crosstalk errors is a
central step towards achieving fault-tolerance. These errors can be characterized as two
types [50]: the first is non-locality, where a correlated noise channel acts non-locally on
multiple gates in the same layer; the second is dependence, where the noise channel on some
gate depends on the other gates being implemented simultaneously. The second type can
be demonstrated by comparing simultaneous RB results (such as in Fig. 2.7a). We show
RCS benchmarking can provide information about the first type of crosstalk in a layer of
arbitrary two-qubit gates.

In Google’s experiment [7], the second type of crosstalk is clearly present, as the average
two-qubit gate error increases from 0.36% as measured by individual RB to 0.62% as mea-
sured by simultaneous RB. Regarding the first type of crosstalk, Google observed in their
paper that their experimental linear cross entropy was consistent with a simple uncorrelated
noise model F̂sRB =

∏m
i=1(1 − ei), where m is the number of gates and ei is the error rate
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Figure 2.8: Simultaneous RB greatly overestimates noise when high-weight Pauli errors
(the noise model in Fig. 2.5d) are used. Here fidelity and uXEB curves overlap and are
indistinguishable on the scale of the plot, and error bars are too small to be seen.

of the ith gate measured by simultaneous RB. A similar behavior also happens in our ex-
periment in Fig. 2.7b. Based on these experimental results, they claimed this coincidence
indicated that the noise in their device was uncorrelated, i.e. the first type of crosstalk was
not significant. Our results on RCS benchmarking provides formal evidence to support such
a conclusion. This can be understood as follows. Imagine that a correlated (or high weight)
Pauli error occurs in the device that acts on multiple gates, then it will be captured by
multiple 2-qubit RB sequences. For example, if the error happens with 1% chance and is
supported on gate i and gate j, then it will contribute 1% to both ei and ej. On the other
hand, our result suggests that this error will only contribute 1% in the effective noise rate
λ. Therefore correlated errors across multiple gates will be counted multiple times by F̂sRB

but only one time by the linear cross entropy and fidelity, so an experiment with signifi-
cant correlated noise will demonstrate a deviation between F̂sRB and linear cross entropy.
In Fig. 2.8 we show a concrete simulated experiment with correlated noise to demonstrate
such a deviation. This provides formal evidence that correlated noise was not significant in
Google’s experiment.

Discussion. We show that random circuit sampling is a powerful tool for benchmarking
quantum noise, which can be viewed as a practical application of sampling-based quantum
supremacy experiments. As larger scale quantum devices are being built, an important
task is to develop efficient benchmarking protocols that can jointly test the performance
of all of the qubits. Several holistic benchmarking protocols are proposed for this purpose,
including quantum volume [81], accreditation protocols [82, 83] and others [84, 85, 86, 87,
88]. RCS benchmarking can also be understood in this context, where the effective noise rate
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characterizes the global noise strength when all two-qubit couplings are turned on, which
can help predict the fidelity of running large scale circuits as well as inform the design of
error correction codes.

While we have demonstrated the feasibility of RCS benchmarking for ∼ 20 qubits, there
are two main challenges when considering running RCS benchmarking in a larger scale. First,
as shown in our main result, a necessary condition for the correctness of RCS benchmarking
is the effective noise rate λ upper bouned by a small constant, that is, the effective noise rate
per qubit scales as O(1/n). This can be achieved if gate errors decrease as the number of
qubits increases in hardware development. Second, the computation in RCS benchmarking
becomes intractable when the number of qubits exceeds classical simulability, as comput-
ing the linear cross entropy (as well as other fidelity estimators) requires exact simulation
of random quantum circuits, which makes the computation steps in RCS benchmarking
inefficient.

Here we discuss two potential ways to overcome the computation barrier of RCS bench-
marking in order to scale to 50+ qubits, assuming the effective noise rate is sufficiently small.
First, for RCS benchmarking with generic gate sets, we can design variants of the fidelity esti-
mation procedure which requires simulating groups of correlated amplitudes, where tractable
tensor network simulation algorithms exist [12]. Second, when the native 2-qubit gate is a
Clifford gate, such as the CNOT gate in IBM’s hardware platform, the computation barrier
can be avoided by using random single qubit Clifford gates in between CNOT layers, where
the output probabilities are easy to compute. We expect the exponential decay of fidelity to
still hold in this case, as the analysis in our main result only involves second moments while
Clifford circuits can generate unitary 3-design.

2.4.1 Overview of RCS benchmarking

In this section, we give an overview of the RCS benchmarking protocol after introducing
basic notations, and then briefly introduce the results, including theory of RCS fidelity
decay, fidelity and variance estimation. We also discuss the relationship between RCS and
other benchmarking protocols.

2.4.1.1 Setup and notations

Fig. 2.9 shows the ensemble of random quantum circuits used throughout. The system of
qubits considered in our theoretical results and experiments are in one dimension, as shown
in the figure, and we expect our results to be generalizable to higher dimensional lattices,
where a similar alternating circuit architecture can be used such as in Google’s experiment,
as well as more general connectivity graphs. In the theory model of RCS (Fig. 2.9a), we
consider circuits which consist of random 2-qubit gates drawn independently from the Haar
measure on U(4). This model is used for the analysis of fidelity decay in section 2.4.2. In
practice, as random 2-qubit gates are hard to implement, we consider RCS with layers of
fixed 2-qubit gates with random single qubit gates in between (Fig. 2.9b). Our numerical
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simulation and experiments suggest that this model also creates an exponential decay in the
same way as the theory model. The architecture in Fig. 2.9b is suitable for implementation
on current quantum platforms, which usually optimize for a fixed 2-qubit gate. For example,
our experiments on IBM Quantum hardware use CNOT gates with random single qubit
gates drawn from the Haar measure on U(2).

Let RQC(n, d) denote the ensemble of random quantum circuits with n qubits and depth
d as shown in Fig. 2.9. Here we define depth as the number of layers of 2-qubit gates, and
both Fig. 2.9a and 2.9b correspond to n = 5 and d = 4. An ideal implementation of a
random circuit C ∼ RQC(n, d) creates a pure state |ψ⟩ = C |0n⟩, while due to noise the
experimental implementation corresponds to a mixed state ρ, and the fidelity of the circuit
C is defined as

F = ⟨ψ|ρ|ψ⟩ = ⟨0n|C†ρC |0n⟩ , (2.123)

which is a random variable that depends on C. The average fidelity is then given by
EC∼RQC(n,d) F , and we drop the subscript when unnecessary.

When assuming a gate-independent and Markovian noise channel between the layers, we
show in section 2.4.2 that EF ≈ e−λd for shallow depth circuits using the model in Fig. 2.9a,
where λ is the total amount of Pauli noise for each layer, which we define as the effective noise
rate (ENR). More specifically, consider an n-qubit noise channel N which can be uniquely
specified as

N (ρ) =
∑

α,β∈{0,1,2,3}n
χαβσαρσβ, (2.124)

where (χαβ) is a positive semi-definite matrix known as the process matrix, and σα ∈
{I,X, Y, Z}⊗n is a n-qubit Pauli operator. The effective noise rate is given by the sum
of diagonal elements of the process matrix which corresponds to non-zero Pauli errors,

ENR(N ) =
∑

α∈{0,1,2,3}n\{0n}

χαα. (2.125)

We also consider the effective noise rate per qubit (ENRq) defined as ENRq = ENR/n,
and also denote these quantities by λ and λq, respectively. When the noise channel is a
Pauli channel (that is, χ is a diagonal matrix), the effective noise rate is simply the sum of
probabilities of all non-zero Pauli operators.

In practice, however, noise is highly gate-dependent. For example, in today’s quantum
hardware the noise rate of 2-qubit gates are roughly two orders of magnitude higher than
the noise rate of single qubit gates. In the practical implementation of RCS as in Fig. 2.9b,
as two qubit gates are fixed and only single qubit gates (with much smaller error rates) are
random, RCS benchmarking can be effectively viewed as benchmarking the effective noise
rate of the noise channel introduced by the layer of 2-qubit gates, or more precisely, the
average ENR of the two alternating layers of 2-qubit gates. This noise rate extracted from
RCS benchmarking captures all local and cross talk errors among all qubits.
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(b) Experimental implementation

Figure 2.9: RCS benchmarking with circuits consist of local random gates in an alternating
architecture. (a) Theory model of RCS, where each two-qubit gate (blue box) is indepen-
dently drawn from the Haar measure on U(4). (b) Experimental implementation of RCS,
where only random single qubit gates are used (blue box) with fixed two-qubit gates (white
box).

Algorithm 3 RCS benchmarking (simplified)

Input: number of qubits n, maximum circuit depth D, number of circuits L
Output: effective noise rate (ENR)

1: for d = 1 . . . D do
2: for i = 1 . . . L do
3: sample a random circuit Ci ∼ RQC(n, d)
4: estimate the fidelity of Ci, denote as F̂d,i ▷ fidelity estimation
5: end for
6: F̂d := 1

L

∑L
i=1 F̂d,i

7: end for
8: fit exponential decay F = Ae−λd using data {F̂d}Dd=1

9: Return λ

2.4.1.2 Fidelity estimation and variance

The core step of the RCS benchmarking protocol (Algorithm 3) is fidelity estimation. Next
we describe the fidelity estimation methods that we consider in RCS benchmarking and
analyze the variance. Here we focus on sample complexity, which is the main bottleneck
of the entire procedure for the scale that we consider (∼ 20 − 30 qubits). See section 2.4.4
for discussions on computational complexity when considering RCS benchmarking in a scale
that is beyond classical simulability.

For a small number of qubits, fidelity estimation can be done by running direct fidelity
estimation (DFE) for each random circuit [76, 77]. Consider the Fourier expansion of the
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ideal state |ψ⟩⟨ψ| = 1
2n/2

∑
α γασα with γα = 1

2n/2 Tr [σα |ψ⟩⟨ψ|] and
∑

α γ
2
α = 1. Let the noisy

state from experiment be ρ = 1
2n/2

∑
α γ
′
ασα, then

F = ⟨ψ|ρ|ψ⟩ =
∑

α

γαγ
′
α = E

α∼γ2α

γ′α
γα
. (2.126)

Therefore F can be estimated by sampling a few Fourier coefficients from the distribution
{γ2α}, measuring them experimentally, and taking the empirical mean of γ′α/γα. This pro-
cedure in general requires O(2n/ε2) measurement samples in the worst case to obtain an
estimate of F within ε additive error. In particular, if the circuit depth in RCS is sufficiently
deep to generate a unitary 2-design, then the Fourier distribution of the output state is flat,
which corresponds to the worst case in DFE. An interesting question is to study whether
DFE can be improved for very low-depth random circuits.

Given the exponential sample complexity of DFE, we also consider sample efficient fidelity
estimators based on cross entropy [20, 89, 7, 78]. In this work we justify the validity of cross
entropy estimators by numerical simulation with different noise models and gate sets, and we
leave the theoretical proof that cross entropy agrees with fidelity as important future work.

For a random circuit C with output distribution pC(x) = | ⟨x|C|0n⟩|2, the linear cross
entropy estimator with M samples S = {xi}Mi=1 is given by

F̂XEB(S;C) =
2n

M

M∑

i=1

pC(xi)− 1. (2.127)

In experiments, after collecting the output samples, we perform exact classical simulation of
the ideal circuit C to compute the probabilities. We also consider the unbiased linear cross
entropy estimator [78] defined as

F̂uXEB(S;C) =
2n

M

∑M
i=1 pC(xi)− 1

2n
∑

x∈{0,1}n pC(x)2 − 1
. (2.128)

The term “unbiased” can be understood as follows: when the samples S come from the ideal
distribution pC(x), we have ES F̂uXEB(S;C) = 1, while ES F̂XEB(S;C) can be exponentially
large. Note that for random quantum circuits the denominator 2n

∑
x∈{0,1}n pC(x)2 − 1

approaches 1 in log depth [39, 35], and therefore the two estimators give the same value
as depth increases. Different from the standard linear cross entropy, we need to classically
simulate all 2n output probabilities in order to compute the unbiased linear cross entropy
estimator from experiment samples. In our experiments we use the unbiased linear cross
entropy estimator by default, as it is more accurate at small constant depth. The main
advantage of cross entropy estimators compared with DFE is that O(1/ε2) measurement
samples suffice for estimating the fidelity of a random circuit within ε additive error, which
follows from the property that the output probabilities obey the Porter-Thomas distribution.

In the RCS benchmarking protocol (Algorithm 3), an estimator for the average fidelity
EF at depth d is obtained by taking the empirical mean of cross entropy estimators of dif-
ferent random circuits independently drawn from RQC(n, d), given by 1

L

∑L
i=1 F̂uXEB(S;Ci).
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The effective noise rate λ is extracted by fitting the curve EF = Ae−λd using the estimators
of EF with increasing depth. Similar to RB protocols, this fitting procedure decouples the
decay rate λ from SPAM errors, which is reflected in the depth-independent coefficient A.

In order to estimate the uncertainty of the benchmarking result λ, we need to estimate
the variance of the estimator of EF . The total variance is the sum of two parts: the variance
of finite sampling for the fidelity estimation of each circuit, and the variance of fidelity across
different circuits. In section 2.4.2.5 we give a theoretical model of the total variance,

Var

(
1

L

L∑

i=1

F̂uXEB(S;Ci)

)
=

1

L
O

(
1

M
+ λ2 (EF )2

)
, (2.129)

which suggests that the strategy for choosing parameters (including the number of samples
for each circuit M and the number of circuits L) depends on the fidelity of the system. For
a small number of qubits, it is necessary to choose a large L due to the second term, and
for a large number of qubits such as in Google’s experiment, it suffices to choose a small L
and large M . In our numerical simulations and experiments on IBM Quantum hardware,
we use the sample variance of F̂uXEB(S;Ci) across different circuits as the error bar, which
is an unbiased estimator of the total variance.

The flexibility of RCS with respect to gate sets allows us to leverage the maximum amount
of randomness that is efficiently implementable in the underlying hardware architecture in
experimental implementations. In practice, the constants in Eq. (2.129) depends on the gate
set, and we observe that the constant can be decreased by increasing the randomness in
the gate set, which decreases the sample complexity of the experiment. For example, an
arbitrary single qubit gate can be implemented with two X90 pulses combined with phase
control of microwave drive on the IBM Quantum hardware platform, therefore we use Haar
random single qubit gates between CNOT layers in order to achieve the smallest variance.

2.4.1.3 Relationship with other benchmarking protocols

In RCS benchmarking (Algorithm 3), the (unbiased) linear cross entropy plays the role
of fidelity estimator for random quantum circuits. The idea that (unbiased) linear cross
entropy is a sample efficient fidelity estimator for random circuits was originally proposed
by Google [20, 7]. Ref. [7] also considered a form of unbiased linear cross entropy that is
different from the one we use (Eq. (2.128)). In Ref. [23], a different form of unbiased linear
cross entropy was used to estimate the fidelity of time-independent Hamiltonian evolution
for Hamiltonians that lead to thermalization, where they develop an argument that connects
the cross entropy estimator to the 2-design property of the projected state ensemble of a
subsystem. Ref. [22] proved the exponential decay of linear cross entropy above log depth
under i.i.d. noise models, which can be viewed as theoretical evidence for the agreement
between linear cross entropy and fidelity. Ref. [18] also provides evidence that the effective
noise rate λ upper bounded by a small constant is necessary and sufficient for the agreement
between linear cross entropy and fidelity, which is consistent with our results.
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In this work we further justify the observation that cross entropy is a good fidelity
estimator for random quantum circuits by performing numerical simulation with practically
motivated noise models which capture amplitude and phase decay in superconducting qubits
as well as correlated noise. Meanwhile, instead of focusing on estimating fidelity itself, our
main result is to prove the exponential decay of fidelity under correlated noise and use this
to extract the effective noise rate.

In addition, in Google’s experiment [7] it was shown that linear cross entropy can also be
used as a post-processing method in benchmarking 2-qubit gates with a RB-like protocol. A
detailed analysis of this method using global Haar random unitary gates was shown in [90].
In this work, we focus on the application of linear cross entropy in benchmarking a non-trivial
number of qubits, where global randomness is hard to implement and only local randomness
is accessible. As a simple comparison, note that RCS benchmarking only requires two-qubit
gate errors to be smaller than order 1/n, while for standard RB with global Cliffords the
gate errors must be smaller than order 1/n2.

Several scalable RB variants were proposed in order to overcome the scalability bottleneck
of standard RB, including simultaneous RB [80], direct RB [91], and cycle benchmarking [48],
among others (see Ref. [90] for a comprehensive overview). A recent line of work uses a
variant of simultaneous RB to obtain the full description of a gate-independent Pauli noise
channel [60, 49, 61, 62]. Instead of using random global Cliffords, these works use random
elements from small subgroups (subsets) of the global Clifford group, while it is unclear if
they can be generalized to arbitrary gate sets without any group structure.

On the one hand, RCS benchmarking can also be put into context of the general frame-
work of RB. Consider two layers in our random circuit architecture as a random element of
a small subset of the global unitary group (note that this subset is not necessarily a group).
This is similar to other “subset RB” protocols [92, 93, 91, 94, 48] where the distribution of
the element is only supported on a small subset of the global unitary/Clifford group. General
conditions for subset RB to create exponential decays were also formulated [90]. It is unclear
if these previous analysis can be applied to RCS benchmarking which does not have a group
structure.

On the other hand, RCS benchmarking is different from RB variants in two main aspects.
First, unlike RCS, many scalable RB variants do not scramble across the entire system, and
the state of the system remains in a tensor product of few qubit states. Therefore these
RB variants create exponential decays that are different from RCS 7. Second, RCS is very
flexible with the gate set, while most RB variants assume Clifford gates with some cases
extended to more general gates and finite groups [95, 96, 97, 98, 93, 94, 99, 90, 100, 101].
These differences mainly come from a special property of random quantum circuits: while
the analysis of RB and variants rely heavily on the group structure, the fast convergence
to unitary designs for random quantum circuits only requires generic gate sets [45, 66, 67,
68, 69]. This flexibility allows our RCS protocol to be implemented directly with the native

7Note that an exception is direct RB [91] which gives a heuristic argument of fidelity decay using random
Clifford layers
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gate set available on any hardware platform, including non-Clifford gates and gates with
continuous parameters.

2.4.2 Theory of RCS benchmarking

Next we develop the theory of fidelity decay and variance estimation in RCS benchmarking.
Throughout this section we work in the theory model shown in Fig. 2.9a, which assumes
Haar random 2-qubit gates and a gate-independent noise channel acting on n qubits. Our
numerical simulation and experiments suggest that RCS benchmarking also works well in
practice with less randomness and gate-dependent noise.

2.4.2.1 Reducing to Pauli noise

We start by showing that general noise channels can be reduced to Pauli noise channels, then
develop theoretical and numerical results under Pauli noise. Consider an arbitrary n-qubit
noise channel N (ρ) =

∑
α,β∈{0,1,2,3}n χαβσαρσβ with process matrix (χαβ), we define N diag as

the noise channel that has process matrix diag(χαβ). By definition, N diag is a Pauli noise
channel that stochastically applies a Pauli operator σα with probability χαα. In addition, N
and N diag have the same effective noise rate which is given by

ENR(N ) = ENR(N diag) =
∑

α ̸=0n

χαα. (2.130)

Consider two RCS benchmarking experiments with the same circuit architecture, where
one has noise channel N and the other has N diag. We show that these experiments have the
same average fidelity.

Theorem 2.12. The average fidelity of RCS benchmarking with noise channel N is equal
to the average fidelity with noise channel N diag. That is, without loss of generality we can
assume that the underlying noise channel is Pauli noise.

Therefore to study the fidelity decay of RCS for general noise channels, it suffices to
only consider Pauli noise. Intuitively, Theorem 2.12 holds because of linearity, where we
consider diagonal terms σαρσα and off-diagonal terms σαρσβ (α ̸= β) separately, and show
that the off-diagonal terms are “killed” by the Haar random 2-qubit gates after averaging.
Details of the proof are presented in Section 2.4.5. Although RCS benchmarking is insensitive
to off-diagonal terms, this is in general not a limitation, as there exist techniques such as
randomized compiling [102] that can convert the underlying noise channel to Pauli noise for
Clifford+T circuits.

2.4.2.2 Fidelity decay

Next we develop an argument showing that the average fidelity in RCS benchmarking decays
as EF ≈ e−λd, where λ is the effective noise rate of a global Pauli noise channel acting on
all qubits after each layer of two-qubit gates, provided that λ is a small constant.
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Figure 2.10: Mapping random quantum circuits to a statistical mechanical model. LHS:
a tensor network diagram for E |⟨ψl|ψ⟩|2, where an error happens at depth l after gate
Gm. RHS: this expectation value equals to the partition function of a classical statistical
mechanical spin model. Here, each spin corresponds to a 2-qubit gate. On the top boundary,
the + spin (red) corresponds to the gate where the error happens (Gm), and the other gates
at depth l correspond to − spins (blue). All the other spins (grey) can be either + or −, and
the partition function is the sum of weights of all possible configurations of the grey spins.

Throughout the theoretical analysis we consider a 1D system of qubits with periodic
boundary condition (i.e. they are placed on a ring). For simplicity, below we first present
a proof sketch where we consider single qubit Pauli-X noise channel acting on each qubit
after each layer of gates, and then discuss generalizations afterwards. More detailed proofs
as well as the extensions are presented in Section 2.4.5.

Consider single qubit Pauli-X noise channel with Pauli error rate ε defined as

E(ρ) = (1− ε)ρ+ εXρX. (2.131)

It is easy to see that the global noise channel N = E⊗n has effective noise rate λ = 1− (1−
ε)n ≈ nε. We can view each Pauli-X noise channel as a stochastic process: with probability
ε an X error is applied. We can then write the output density matrix of a n-qubit depth-d
noisy random circuit as a weighted sum of all possible error patterns,

ρ = (1− ε)nd |ψ⟩⟨ψ|+
nd∑

i=1

ε(1− ε)nd−1 |ψi⟩⟨ψi|

+
nd−1∑

i=1

nd∑

j=i+1

ε2(1− ε)nd−2 |ψij⟩⟨ψij|+ · · ·
(2.132)

where |ψ⟩⟨ψ| denotes the ideal output state, |ψi⟩⟨ψi| denotes the ideal output state with an
X error at location i, etc. Each term in the above sum denotes the density matrix with a
fixed number of errors happened in all possible (nd) locations. For example, the first term
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denotes the state with no error and is weighted by the corresponding probability (1− ε)nd.
Similarly the other terms denote the state with 1, 2, . . . errors. We can therefore write the
average fidelity as

EF = E ⟨ψ|ρ|ψ⟩

= (1− ε)nd +
nd∑

i=1

ε(1− ε)nd−1 E |⟨ψi|ψ⟩|2

+
nd−1∑

i=1

nd∑

j=i+1

ε2(1− ε)nd−2 E |⟨ψij|ψ⟩|2 + · · ·

:= F0 + EF1 +
∑

k≥2

EFk.

(2.133)

Note that F0 ≈ e−εnd, our goal is therefore to prove that EF1 +
∑

k≥2 EFk is small compared
with F0.

Next we make a first order approximation by ignoring the term
∑

k≥2 EFk and focus
on EF1. Intuitively, the contribution to fidelity should decrease with the number of errors,
provided that noise rate is sufficiently small. We verify the validity of this first order approx-
imation via extensive numerical simulations in the next subsection and Section 2.4.5 and
2.4.6.

Next we focus on proving that EF1 is small compared with F0. Formally speaking, this is
a necessary condition to our main goal EF ≈ F0, as all the higher order terms are positive.
First, to simplify EF1, notice that by assuming a periodic boundary condition, at a fixed
depth the specific qubit where the error happens does not matter. We can simplify EF1 as

EF1 = nε(1− ε)nd−1
d∑

l=1

E |⟨ψl|ψ⟩|2 , (2.134)

simplifying the sum and bringing an extra factor n, where |ψl⟩ denotes the state with an
X error at depth l at the first qubit. The problem is then reduced to bounding the sum∑d

l=1 E |⟨ψl|ψ⟩|
2. See LHS of Fig. 2.10 for a demonstration of each term E |⟨ψl|ψ⟩|2.

Second, note that this sum is at least a constant,
∑d

l=1 E |⟨ψl|ψ⟩|
2 = Ω(1). This is simply

because all terms are positive, and in the first term where an error happens at depth 1, most
gates cancel with the conjugate except one 2-qubit gate, and

E |⟨ψ1|ψ⟩|2 = E
U∼U(4)

| ⟨00|U †XU |00⟩ |2 =
1

5
. (2.135)

Our main result proves a tight upper bound
∑d

l=1 E |⟨ψl|ψ⟩|
2 = O(1). This implies that

EF1/F0 = O(nε) = O(λ). (2.136)
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Third, note that all of the above arguments can be directly extended to general Pauli
noise channels, where the only difference is that |ψl⟩ has a general Pauli error at depth l
instead of a single qubit Pauli. We extend our rigorous analysis of

∑d
l=1 E |⟨ψl|ψ⟩|

2 up to
3-local errors. While this captures most error sources in quantum device, we expect the
same result to hold for general Pauli errors with arbitrary weight and locality, as supported
by numerical evidence shown in Section 2.4.5 and 2.4.6.

Theorem 2.13. For random quantum circuits in 1D with Haar random 2-qubit gates and
3-local noise channel with effective noise rate λ, the average fidelity is given by

e−λd ≤ EF ≤ e−λd(1 +Kλ) (2.137)

up to a first-order approximation in λ. Here K is a universal constant, and we assume
d≪ 2n.

Our results suggest that the fidelity decay EF ≈ e−λd is a good approximation when λ
is small, that is, when the effective noise rate per qubit scales like 1/n. This requirement
can be satisfied by the error rates in current quantum hardware. In addition, it is easy to
see that Theorem 2.13 does not hold when circuit depth d → ∞, as in this case EF → 1

2n

under depolarizing noise while the bounds goes to 0. Here our results mainly focus on low-
depth random quantum circuits, which corresponds to the setting that is experimentally
implementable.

Our results may seem surprising when comparing with other known results about random
quantum circuits. In particular, many properties about random quantum circuits, such as
convergence to unitary t-designs, are known to hold only above a certain depth [66], while
our results hold already at shallow depth without any threshold requirement. This is partly
because our fine grained analysis of E |⟨ψl|ψ⟩|2 works for any l = 1, . . . , d, and in particular
we show that

E |⟨ψl|ψ⟩|2 ≤ e−∆l +
1

2n
(2.138)

for some constant ∆ > 0. This suggests that for any l, random quantum circuits scramble
the error at depth l exponentially fast.

It is easy to see that Eq. (2.138) implies Theorem 2.13. Next we give a simplified proof
of Eq. (2.138) for single qubit errors; see Section 2.4.5 for details and extensions to higher
weight errors. First, note that in E |⟨ψl|ψ⟩|2 the gates that are applied after the error are
canceled with the conjugate. Write the state as |ψl⟩ = C2XC1 |0n⟩ and |ψ⟩ = C2C1 |0n⟩ with
unitary operators C1 and C2, then C2 is canceled out and we have

E |⟨ψl|ψ⟩|2 = E
C1∼RQC(n,l)

∣∣∣⟨0n|C†1XC1 |0n⟩
∣∣∣
2

, (2.139)

therefore Eq. (2.138) is a property about depth-l random quantum circuits.
Second, we evaluate this expectation (LHS of Fig. 2.10) by taking the expectation of each

2-qubit gate, resulting in a classical statistical mechanical spin model (RHS of Fig. 2.10).
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Figure 2.11: Details of the classical spin model. (a) Weights of the three-body interaction.
(b) A non-zero weight configuration corresponds to the configuration of two domain walls,
which either intersect and annihilate (Type II) or never intersect (Type I).

This technique of mapping to classical spin models has been widely used in recent study of
random quantum circuits, see e.g. [70, 71, 72, 73, 39, 35]. Here, as the expectation E |⟨ψl|ψ⟩|2
is a second moment property, that is, by linearity of expectation, each 2-qubit gate appears as
a rank-2 projector EU∼U(4) [U⊗2 ⊗ U∗⊗2], we can represent each 2-qubit gate with a classical
spin with 2 degrees of freedom. As a result, the expectation value is related to the partition
function of a classical spin model (RHS of Fig. 2.10), which lives on a triangular lattice
with three-body interactions. The weights of the interactions are given in Fig. 2.11a, and
boundary conditions are presented in Fig. 2.10. See Section 2.4.5 for detailed derivations.

Finally, we prove Eq. (2.138) by showing an analytical bound for the partition function
of the spin model. The proof follows from a domain wall (boundary between clusters of +
and − spins) argument. Note that from the constraints given by the weights (Fig. 2.11a), if
two spins at the top of a triangle have the same sign, then the spin at the bottom also has
the same sign. Therefore the spin configuration that has a non-zero weight must correspond
to two domain walls due to the top boundary condition. The domain wall configuration
has two cases (Fig. 2.11b): they either intersect and annihilate (Type II) or never intersect
(Type I). We can therefore evaluate the expectation as

E |⟨ψl|ψ⟩|2 =
4

15
(Z1 + Z2)−

1

15
, (2.140)

where Zi denotes the sum of weights of domain wall configuration of Type i. By a simple
counting argument, Z1 ≤ (4/5)2(l−1), and we also show that 4

15
Z2− 1

15
≤ 1

2n
, which concludes

the proof.
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2.4.2.3 Fidelity estimation

Our main results (Theorem 2.12 and 2.13) show rigorous evidence that EF ≈ e−λd for noisy
random circuits, where λ is the effective noise rate for the global noise channel. The main
idea of RCS benchmarking is to efficiently estimate EF for varying depth, and then extract
λ by fitting an exponential decay curve. Next we provide a detailed investigation of fidelity
estimators and develop numerical simulation techniques to verify their correctness.

Let C be a random circuit. The goal is to estimate the fidelity of an unknown quantum
state ρ prepared in experiment, with respect to the pure state |ψ⟩ = C |0n⟩. As discussed
partly in section 2.4.1.2, estimating the fidelity of an unknown quantum state is in general a
hard task, which either requires exponential copies of ρ via direct fidelity estimation [76, 77],
or requires additional circuit depth overhead that is unrealistic with current hardware [103].

Motivated by the insight developed by Google [20, 7] that the special property of random
quantum circuits allows fidelity to be efficiently estimated from output samples via cross
entropy, we consider fidelity estimators of the following general form,

⟨ψ|ρ|ψ⟩ ≈ F̂ (S;C) (2.141)

where S = {x1, . . . , xM} are samples from the output distribution of the noisy circuit,
i.e. computational basis measurement results of ρ. For example, the linear cross entropy
F̂XEB(S;C) = 2n

M

∑M
i=1 pC(xi) − 1 has the above form which is related to the sum of prob-

abilities of output samples. Several unbiased and non-linear variants of cross entropy were
also proposed [7, 20, 78, 23], and we use the unbiased version defined in Eq. (2.128) which
we find has the best performance. In general these fidelity estimators are sample efficient,
requiring only M = O(1/ε2) measurement samples to achieve ε additive accuracy (see sec-
tion 2.4.2.5), and their correctness is based on heuristic arguments and numerical simulation.
An important future direction is to provide rigorous justifications as well as develop other
efficient fidelity estimators.

Next we show numerical simulation results for noisy random circuits to verify our results
on the exponential decay of fidelity, and also show that cross entropy estimators agree well
with the fidelity. To accomplish this, we model the system as perfect gates followed by
evolution for one time unit under noisy channels [74] using the Lindblad master equation [75],

dρ

dt
=
∑

i

γiD[Ji](ρ), (2.142)

where the sum is over different noise channels, D[Ji](ρ) = JiρJ
†
i − 1

2
(J†i Jiρ + ρJ†i Ji) is a

Lindblad superoperator for generic collapse operator Ji, and γi is a parameter that controls
the noise strength.

We implement the evolution of this open quantum system in the open-source simulator,
QuaC [104]. Importantly, for the numerical simulation of 20 noisy qubits, the naive density
matrix simulation is inefficient. We instead use the Monte Carlo wave function (MCWF)
method [105], which simulates random “quantum jumps”, rather than the full dynamics of
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the density matrix, to reduce the total computational cost of the simulations. We simulate
1D rings of n qubits with periodic boundary conditions. Full details of the computational
method can be found in Section 2.4.6.

Using the MCWF technique, we simulate a variety of noise models, as summarized in
Table 2.2. These noise models are:

1. T1 and Tϕ, which includes single qubit amplitude decay and pure dephasing, and rep-
resent the primary noise sources in superconducting qubits [106];

2. i.i.d. single qubit Pauli-X noise, which models single qubit bit-flip;

3. nearest-neighbor correlated XX noise, where a Pauli-XX noise channel is applied to
all neighboring qubit pairs, which models two-body incoherent coupling;

4. n − 1 - weight Pauli-X noise, where a Pauli-X⊗n−1 noise channel is applied to all
subsets of size n− 1, which is an artificial noise model used to test RCS benchmarking
with extremely high-weight noise.

Note that the identity of the Pauli operators in the noise models (whether it’s X, Y
or Z) does not matter due to averaging over random circuits. The effective noise rate of
each of these noise channels is related to the noise strength γ in the Lindblad superoperator
by a constant factor, while the constant differs for each noise model (see Section 2.4.6 for
details). We manually adjust the coefficients γi such that the effective noise rate for all noise
models in Table 2.2 are equal to λ = nγ, where γ is a parameter we control. We simulate 1D
rings of n = 20 qubits, averaging over 100 random circuits consisting of layers of two-qubit
Haar-random unitaries and use 400 noise trajectories for each circuit at each depth. We fit
the uXEB curves from depths 20 to 50. Here the fidelity and cross entropy for each circuit
is calculated by averaging over the stochastic noise trajectories, which is more efficient than
simulating individual measurement samples (see Section 2.4.6 for more details).

Fig. 2.5 and Table 2.2 show the results of these simulations, which include the exponential
decay curves of fidelity and the unbiased linear cross entropy, and error bars correspond to
the standard error of the mean across different circuits which are too small to be seen on the
plot. Note that the unbiased linear cross entropy estimates the true fidelity very well in all
noise models. In Fig. 2.17 in Section 2.4.6 we also plot several other fidelity estimators using
the same data, where they are far from true fidelity until they converge at around depth 15.
As discussed in section 2.4.1.2, this is because the unbiased version corrects an additional
normalization factor which converges to 1 very quickly. Additional simulation results with
other system sizes, fidelity estimators, noise rates and gate sets can be found in Section 2.4.6.

For comparison, we also consider simultaneous RB [80], an alternative benchmarking
method that can also be used to heuristically estimate the fidelity. Here, two-qubit RB
sequences are simultaneously executed for all neighboring qubit pairs, and a Pauli error rate
ei can be extracted for all two qubit couplings from the RB decay curve. See section 2.4.3.1
for a concrete example. Then, the fidelity of a random circuit with m 2-qubit gates can be
estimated by
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Figure 2.12: The amount of correlated noise, γ3, can be readily extracted by combining
amplitude decay, Ramsey, and RCS experiments.

F̂sRB =
m∏

i=1

(1− ei). (2.143)

First, note that F̂sRB is an accurate fidelity estimator for random quantum circuits when the
noise sources are limited to single qubits, as the error rates can be estimated from the RB
decay, and the estimator F̂sRB agrees with EF due to our Theorem 2.13. Second, when there
is crosstalk, intuitively simultaneous RB can capture some correlated noise. For example,
suppose when qubit pair 1 is turned on, it generates an error on a neighboring qubit pair 2.
Since the RB sequences are executed simultaneously, this error can be captured by the RB
sequence on qubit pair 2. However, this intuition can fail when we have high weight correlated
errors, as the error could be over counted by multiple RB sequences (see “Application to
diagnosing crosstalk”).

2.4.2.4 Virtual experiment for extracting correlated noise

Next, we demonstrate a virtual experiment, where we show that RCS benchmarking can
be used to extract the amount of correlated noise in conjunction with other benchmarking
methods. Here, we assume that the underlying noise model is known to be a combination
of T1, Tϕ, and a correlated ZZ noise channel, but the values of the individual noise rates
is unknown. For simplicity, we assume that all noise channels of the same type (e.g., all
T1 processes) have the same noise rate across different qubits, but the noise rates can differ
between types (T1, Tϕ, and the correlated ZZ noise channels can have different strengths).
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This noise model is described by the Lindblad

L(ρ) =
n∑

i=1

(
γ1D(σi)[ρ] + γ2D(σ†iσi)[ρ] + γ3D(ZiZi+1)[ρ]

)
. (2.144)

Because we know the form of the noise channel, we can write down an explicit equation for
the total effective noise rate in terms of the amplitude decay rate γ1 = 1

T1
, the pure dephasing

rate γ2 = 1
Tϕ

times, as well as the correlated noise rate, γ3,

λ = n
(γ1

2
+
γ2
4

+ γ3

)
, (2.145)

where the prefactors for γ1 and γ2 are calculated in Section 2.4.6. The T1 time can be
measured via a simple amplitude decay experiment, giving an equation

Γ1 = γ1, (2.146)

The Tϕ time can similarly be calculated by a Ramsey technique [107]; however, for this noise
model, the Tϕ time will not be recovered accurately due to the additional correlated dephasing
caused by the incoherent ZZ coupling. The observed decay in the Ramsey experiment is a
combination of the T1, Tϕ, and ZZ terms,

Γ2 = γ1 + γ2 + 8γ3, (2.147)

where the prefactor 8 comes from arguments about the relative strengths of noise channels;
see Section 2.4.6. These two standard single qubit benchmarking techniques can be combined
with the ENR over the whole system provided by RCS. This gives three equations (from
the relaxation decay experiment (2.146), the Ramsey experiment (2.147), and the RCS
experiment (2.145)) and three unknowns (γ1, γ2 and γ3), and can be readily solved to extract
the correlated noise rate,

γ3 =
Γ1

4
+

Γ2

4
− λ

n
, (2.148)

which directly combines the experimentally measured Γ1, Γ2, and λ. We simulate the noise
model of Eq. (2.144) using n = 10 qubits with a ring geometry with γ1 = 0.01, γ2 = 0.02, and
γ3 = 0.02α, with α ∈ [0.0, 0.1, 0.25, 0.5, 1.0]. We extract the total ENR by using two-qubit
Haar random circuits, fitting the resulting uXEB curve from depths 12 to 40, except in the
case of α = 1.0, where we fit from 12 to 22, due to the large total ENR of 0.4. The result of
performing this extraction is shown in Figure 2.12.

2.4.2.5 Variance analysis

We provide an analysis of the variance of fidelity estimators in RCS benchmarking. In
particular, this can help to decide how many random circuits to implement and how many
measurement samples to collect in a RCS benchmarking experiment. Our analysis is a
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generalization of the statistical analysis of Google’s quantum supremacy experiment [20, 7,
78] and provides a more accurate model for small scale RCS experiments.

In the following we focus on providing a theoretical model for the variance of cross entropy
estimators. In experiments, once we have an estimate for the mean and variance of cross
entropy estimators of different circuit depth, we can use standard least squares fitting to
extract the effective noise rate λ as well as its standard error.

Recall the definition of the unbiased linear cross entropy

F̂uXEB(S;C) =
2n

M

∑M
i=1 pC(xi)− 1

2n
∑

x∈{0,1}n pC(x)2 − 1
(2.149)

which has two sources of randomness: the random circuit C and the measurement samples
S = {x1, . . . , xM}. By the law of total variance, we have

VarC,S(F̂uXEB) = E
C

[
VarS

(
F̂uXEB|C

)]
+ VarC

(
E
S

[
F̂uXEB|C

])
. (2.150)

This can be understood as the following: the total variance of F̂uXEB is the sum of the variance
across different measurement samples and the variance across different random circuits.

In the previous analysis [20, 7, 78], the second term is ignored and only the first term is
considered. In particular, they showed that the first term scales like (1 + 2EF − (EF )2) /M
where M is the number of samples collected for each circuit. This can be derived by as-
suming that the output distribution of the noisy circuit is a linear combination of an ideal
Porter-Thomas distribution with the uniform distribution. When EF ≪ 1 this can be well
approximated by 1/M .

For the second term, we assume that F̂uXEB is an unbiased estimator of the fidelity of the

random circuit, and ES
[
F̂uXEB|C

]
= FC equals to the fidelity of C. This implies that

VarC

(
E
S

[
F̂uXEB|C

])
= VarC (FC) , (2.151)

which is the variance of fidelity across different random circuits. This term was ignored based
on a concentration of measure argument [7], where they argued that for a large number of
qubits the fidelity is the same across different random circuits. However, it is unclear how
this term scales compared with the first term 1/M , especially for a small number of qubits.
In the following we drop the subscript C as in the previous subsection, and provide an
analysis for Var(F ).

For simplicity we work with the same model as in section 2.4.2.2, where we consider
single qubit Pauli-X noise and assume a first-order approximation. Then the fidelity can be
written as

F ≈ (1− ε)nd + nε(1− ε)nd−1
d∑

l=1

Al (2.152)
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where Al := |⟨ψl|ψ⟩|2. Then the variance can be approximated by

Var(F ) ≈ (nε)2 (1− ε)2nd−2 Var

(
d∑

l=1

Al

)

≈ λ2 (EF )2
d∑

k,l=1

(E [AkAl]− E[Ak]E[Al]) .

(2.153)

Here we have used the fact that λ ≈ nε and EF ≈ e−λd. Recall we have proven in sec-
tion 2.4.2.2 that EAl ≤ e−∆l + 1/2n decays exponentially with l, and we therefore expect
that each term in the above sum also decays exponentially, and the sum can be bounded by
a constant,

Var(F ) = O
(
λ2 (EF )2

)
. (2.154)

We leave the rigorous proof of this statement to future work. Note that the same proof
technique for the analysis of EAl can be applied here; however, the variance contains a
fourth moment property E [AkAl], which corresponds to a more complicated spin model
with negative weights, making it difficult to analytically bound the partition function.

Combining both terms, we obtain a theoretical model for the total variance

VarC,S(F̂uXEB) = O

(
1

M
+ λ2 (EF )2

)
. (2.155)

In the next section, we show that this model is well supported by experiment data on
IBM Quantum hardware. Additional numerical simulation results verifying our conjecture
that

∑d
k,l=1 (E [AkAl]− E[Ak]E[Al]) can be upper bounded by a constant are presented in

Section 2.4.6.
Finally, recall that in RCS benchmarking, L random circuits are implemented for a given

depth, and M measurement samples are collected for each circuit. The empirical mean of the
L cross entropy estimators is used to estimate EF at the given depth. The variance of this
estimator is then given by 1/L·O

(
1/M + λ2 (EF )2

)
. Assuming M is given, then the number

of circuits required to estimate EF within ε additive error is L = O
(
1/Mε2 + λ2 (EF )2 /ε2

)
.

This suggests that the strategy for choosing parameters for a RCS benchmarking experiment
depends on the system size. Suppose that the effective noise rate per qubit λ/n is fixed, then
EF ≈ e−λd decays exponentially with the number of qubits. Therefore, for a large number of
qubits, the variance across different circuits Var(F ) = O

(
λ2 (EF )2

)
is exponentially small,

and a small L with a large number of samples M is sufficient for obtaining a small total
variance. For example, in Google’s experiment with 53 qubits only 10 random circuits are
implemented. However, for a small number of qubits, the variance can be large even if we
collect infinite number of samples for few random circuits, due to the second term. Therefore
a large number of random circuits are needed, while the number of samples for each circuit
can be smaller. For example, in our 5-qubit RCS benchmarking experiment shown below, we
implement 100 random circuits and collect 8192 samples for each circuit for a given depth.
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Figure 2.13: Experimental implementation of RCS benchmarking on ibmq mumbai with 10
and 20 qubits. (a)(c) RCS benchmarking with long depth range (1-37) on 10 and 20 qubits,
respectively. The linear cross entropy starts from a large value and converges to the unbiased
one at depth 20-25. (b) RCS benchmarking with short depth range (20-32) on 10 qubits.
Curve fitting results are λuXEB = 6.9(1)% and λsRB = 6.0(2)%. (d) RCS benchmarking with
short depth range (20-32) on 20 qubits. Curve fitting results are λuXEB = 24.4(1)% and
λsRB = 16.4(9)%.

These observations suggest that our generalized variance model is necessary, especially for
characterizing RCS benchmarking experiments for a small number of qubits.

2.4.3 Experiments on IBM Quantum hardware

In the following we show experiment results of RCS benchmarking on IBM’s superconducting
qubits. We implement RCS benchmarking protocols on Qiskit platform [108] and access the
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Figure 2.14: Measuring cross entropy on ibmq montreal with up to 20 qubits and varying
depth. (a) Cross entropy as a function of the number of qubits, which does not obey a
simple exponential decay. (b) Using these data points, we can verify our variance model
VarC(F ) = O

(
λ2 (EF )2

)
. A linear dependence can be observed even with noisy estimates

for both sides. The results of the linear fit are slope = 2.4(1), r = 0.982.

devices through cloud [79]. All of our experiments are performed on a 1D system of qubits,
where we use a 5-qubit system ibmq athens as well as 1D subsets of 27-qubit systems
ibmq montreal and ibmq mumbai with up to 20 qubits. On these devices, CNOT is the
only 2-qubit gate available, and arbitrary single-qubit gates are easy to implement, which
have error rates that are roughly 2 orders of magnitude smaller than CNOT. Therefore,
in RCS benchmarking we are effectively measuring the total amount of quantum noise of a
layer of CNOT gates, where due to crosstalk this is larger than the sum of individual gate
errors measured from individual RB. Details of the gate set and architecture can be found
in Section 2.4.7.

Similar to our numerical simulation results presented in section 2.4.2, we perform three
types of experiments: simultaneous RB, RCS with direct fidelity estimation, and RCS with
cross entropy. These experimental results support our theoretical arguments for both fidelity
decay and variance estimation.

By default, all error rates reported here are represented in Pauli error rates, which is a
constant factor larger than the error rates based on average fidelity that is used in RB.

2.4.3.1 Simultaneous RB

In simultaneous RB [80], the main idea is to perform RB simultaneously with the gate
pattern that is used in applications. That is, instead of performing RB on one pair of qubits
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while all other qubits are idle, different RB sequences are executed in parallel, which can
capture correlated errors between different qubit pairs. A similar experiment was performed
in Google’s experiment [7] where linear cross entropy was used as the post processing method
instead of standard RB.

As shown in Fig. 2.9b, in RCS benchmarking we consider three patterns for applying
gates: one layer of single qubit gates, one layer of CNOT starting with qubit 0, and one
layer of CNOT starting with qubit 1. We implement simultaneous RB on each of these
three patterns, and the results are shown in Fig. 2.7. Here each row shows one of the three
patterns, and a standard Clifford RB sequence is applied to each of the green boxes. After
fitting the RB curve to an exponential decay, we obtain gate error rates shown below the
green boxes. The numbers underlying single qubit boxes represent the error rates of two X90
pulses (

√
X), which can represent the Pauli error rate of a Haar random single qubit gate.

The numbers underlying two qubit boxes represent the Pauli error rate of CNOT gates.

2.4.3.2 RCS benchmarking

Next we show results of RCS benchmarking with direct fidelity estimation and cross entropy.
Note that DFE is not scalable due to the exponential sample complexity, and is implemented
here mainly to verify our theoretical predictions. As a reference, we implement simultaneous
RB both before and after the RCS experiments, which can also be used to evaluate the error
drift during the experiment period.

We implement RCS benchmarking on a 5-qubit device ibmq athens where direct fidelity
estimation is tractable. Following our variance model, a large number of random circuits are
implemented in order to achieve small total variance. We select 8 depth values ranging from 1
to 29. By default, we take the maximum amount of measurement samples allowed (8192) for
all circuits submitted to the hardware platform. For direct fidelity estimation, we implement
30 random circuits for each depth, and estimate the fidelity of each circuit by measuring 20
Fourier coefficients according to the sampling procedure described in section 2.4.1.2. That
is, 600 circuits are implemented for each depth. For cross entropy, we implement 100 random
circuits for each depth.

The results of RCS benchmarking are shown in Fig. 2.7, where all curves are exponential
decays with roughly the same decay rate. Note that for both DFE and uXEB experiments,
the sample variance across different circuits is an unbiased estimator of the total variance.
Therefore we use the standard error of the mean across different circuits as the error bar.
The decay rate and its standard error can be computed from the data points and error bars
in Fig. 2.7 via standard least squares fitting. For the simultaneous RB estimator, we use
half the difference between the two RB experiments as the standard error.

From the curve fitting results, we can see that λDFE and λuXEB agrees with each other
within the standard error. This confirms our theoretical results on the exponential decay of
fidelity, and also verifies the validity of cross entropy as an efficient fidelity estimator. Also,
note that uXEB is much more sample efficient than DFE, where the error bars for DFE are
larger even when we collect 6 times the amount of samples in uXEB. In addition, note that
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the simultaneous RB estimator gives a slightly larger prediction for the effective noise rate.
As we have discussed before, this could come from overestimating high weight correlated
errors.

Similar RCS benchmarking results for 10 and 20 qubits are presented in Fig. 2.13, where
we do not implement DFE as it requires too many samples. Detailed parameter settings
for these experiments are given in Section 2.4.7. We perform two types of experiments:
long range with depth 1-37 (Fig. 2.13a and c) for demonstrating the overall behavior, and
short range with depth 20-32 (Fig. 2.13b and d) for fitting the curve. From the long range
results, we can observe that the linear cross entropy starts from a large value at low depth,
and converges to the unbiased version at depth around 20-25. Also, the unbiased linear
cross entropy has a small “bump” at low depth, which is more evident for larger system
size. We can observe similar behavior in our numerical simulations with 20 qubits (Fig. 2.5).
Therefore, to obtain accurate predictions for the effective noise rate, we measure cross entropy
for a short depth range starting from 20, and fit the unbiased linear cross entropy using these
data points. Interestingly, in both 10 and 20 qubit results, the effective noise rate given by
RCS benchmarking with the unbiased linear cross entropy is larger than the simultaneous
RB predictions. Assuming our depth fitting range is deep enough so that uXEB correctly
estimates fidelity (which is the case in our simulations), this suggests that some error sources
were captured by RCS but not by simultaneous RB. These errors should not have come from
high weight correlated noise, as in this case simultaneous RB will overestimate instead of
underestimate. We leave the identification of these error sources as future work. One possible
explanation for these additional errors captured by RCS benchmarking is that in RCS all
CNOT gates are running at the same time in each layer, which is not the case in sRB
which has independent Clifford sequences. The simultaneous CNOT gates in RCS could
introduce additional couplings, leading to a larger effective noise rate. In addition, note
that the effective noise rate for 20 qubits is much larger than twice the effective noise rate
for 10 qubits on the same device, which suggests that the errors are highly non-uniformly
distributed across the device.

Finally, taking the result λuXEB = 3.08(3)% from Fig. 2.7 as an example, we can compute
the effective noise rate per qubit λq = λ/n = 0.62(1)%. This number represents the average
quality of the quantum system, which we can understand as the error rate of “half” of a
2-qubit gate plus a single qubit gate when the gates are implemented in parallel. As a
comparison, we can compute from the curve fitting data of Google’s experiment [7, 109] that
λq = 0.43(4)%. Recall that our Theorem 2.13 suggests that a smaller λq means that a larger
number of qubits can be benchmarked together via RCS benchmarking, although the specific
constants are unclear. Google’s experiment can be interpreted as evidence that λq = 0.43%
is small enough to implement RCS benchmarking on 53 qubits, with their gate set and
architecture. We expect that a smaller error rate is needed to benchmark the same number
of qubits with 1D connectivity compared with 2D. This is because in some cases random
circuits with 2D connectivity are known to scramble faster than 1D [67], and therefore we
expect 2D circuits to have a smaller constant K in our Theorem 2.13.
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2.4.3.3 Cross entropy with increasing number of qubits

Next we present results on cross entropy with increasing number of qubits. This experiment
shows how cross entropy changes with more qubits added to the subset, and also gives data
points that allow us to verify our variance model. We start with a 1D subset of 6 qubits
on a 27-qubit device ibmq montreal, and add more qubits to the subset until it forms a 1D
chain of 20 qubits.

Fig. 2.14a shows the cross entropy results for depth 20 and 25. Each data point in
this figure is collected by implementing 100 random circuits. The two curves correspond to
different depths have consistent shapes, and the error bars for the blue curve is larger than the
error bars in the green curve, which qualitatively agrees with our prediction. Interestingly,
different from the results shown in Google’s experiment [7], here the cross entropy does not
decay as a simple exponential function with the number of qubits. This could potentially
suggest that adding more qubits to the subset can dramatically change the error pattern,
indicating complicated error correlations among the qubits. In particular, as more qubits
are added to the subset, the pattern of edge effects and dangling qubits also changes, which
can affect the noise of the subset of qubits being benchmarked. For example, in Fig. 2.14a
the two system sizes with lowest cross entropy (n = 14, 16) correspond to having additional
dangling qubits (qubit 20 and 13 as shown in Fig. 2.22c) at the edge.

The data points collected in Fig. 2.14a can be used to verify our variance model. Recall

that our variance model VarC,S(F̂uXEB) = EC
[
VarS

(
F̂uXEB|C

)]
+ VarC

(
ES
[
F̂uXEB|C

])
=

O
(
1/M + λ2 (EF )2

)
(Eq. (2.155)) states that the total variance equals the variance across

samples and the variance across circuits, and we would like to verify our model for the
second term VarC(F ) = O

(
λ2 (EF )2

)
. For this purpose, we use a rough estimate for both

sides from experiment data, and test the linear dependence. For the right hand side, we use
λ2 (EF )2 ≈ (EF logEF )2/d2 and substitute EF with the empirical mean of F̂uXEB. For
the left hand side, we use the sample variance of F̂uXEB across different circuits minus the
average sample variance across the measurement outcome probabilities for each circuit. This
value is an unbiased estimator for VarC(F ). Even though the estimates for both sides are
very noisy, we can still observe a linear dependence shown in Fig. 2.14b. This verifies our
model VarC(F ) = O

(
λ2 (EF )2

)
, which suggests that VarC(F ) does not directly depend on

system size or depth, while the constant depends on circuit architecture and gate set.

2.4.4 Additional discussions

We develop RCS benchmarking, which allows sample efficient benchmarking of the total
amount of quantum noise of a many-body system using only shallow circuits and local
randomness. Unlike RB and variants where the fidelity decay comes from the group structure,
RCS benchmarking uses the scrambling properties of random quantum circuits, which can be
directly implemented with the native gate set on any hardware platform without additional
compilation. While we consider qubits with 1D connectivity, we expect our results to be
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naturally generalized to more general connectivity graphs and higher local Hilbert space
dimensions.

An interesting future direction is to design variants of RCS benchmarking such that more
information about the noise channel can be extracted. For example, recent work [110] showed
that improved post-processing techniques can be used to classify incoherent vs coherent noise.
In addition, we can consider RCS benchmarking with a growing number of qubits (such as in
Fig. 2.14) and extract noise correlations from the data. Also, similar to simultaneous RB, we
can also consider simultaneous RCS where different subsets of the qubits are benchmarked
at the same time. This allows more flexible subset choices than simultaneous RB, and also
provides a possible way to avoid the computation barrier. Finally, it is interesting to consider
if the learning algorithms for Pauli noise channels [60, 49, 61, 62] can be extended to general
gate sets, using ideas from RCS benchmarking.

2.4.5 Detailed proofs

2.4.5.1 Mapping random quantum circuits to a classical spin model

We first describe the basic idea in our analysis of RCS benchmarking which uses the technique
that maps random quantum circuits to a classical spin model. This technique has been used
to study several other properties of random quantum circuits, see e.g. [70, 71, 72, 73, 39, 35].

In general our analysis of RCS benchmarking concerns the following object

E
C∼RQC(n,d)

[A second moment property of C] . (2.156)

Here the second moment property can be understood as the following: for each individual
gate Ui in C, this property is a linear function in the second moment of Ui, which is U⊗2i ⊗
U∗⊗2i , where U∗i is the complex conjugate of Ui. By linearity of expectation, we have

E
C=Um···U1∼RQC(n,d)

[A second moment property of C]

= E
Um∼U(4)

· · · E
U1∼U(4)

[A second moment property of C]

= A linear function of E
Ui∼U(4)

[
U⊗2i ⊗ U∗⊗2i

]
.

(2.157)

After taking the expectation, the above equation can be viewed as a tensor network, where
the basic element in the above object is the following local tensor (re-ordered for convenience):

E
U∼U(4)

[U ⊗ U∗ ⊗ U ⊗ U∗] = E
U∼U(4)

[

𝑖!
𝑖"

𝑖#𝑖$ 𝑗"
𝑗$

𝑗#
𝑗!

𝑘"
𝑘$

𝑘#
𝑘!

𝑙"
𝑙$

𝑙# 𝑙!

𝑈
𝑈∗ 𝑈

𝑈∗
]

=
∑

τ,σ∈{−1,1}

w(τ, σ) ·

𝑖!
𝑖"

𝑖#𝑖$ 𝑗"
𝑗$

𝑗#
𝑗!

𝑘"
𝑘$

𝑘#
𝑘!

𝑙"
𝑙$

𝑙# 𝑙!

𝑈
𝑈∗ 𝑈

𝑈∗
𝜏

𝜎

𝑘 𝑙

𝑖 𝑗

(2.158)
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where τ, σ are classical variables taking values in {−1, 1}, and the white tensors depend on
their values. w(τ, σ) are additional weights given by

w(τ, σ) =
1

12
δτσ −

1

60
=

{
1
15
, τ = σ,

− 1
60
, τ ̸= σ.

(2.159)

The white σ/τ tensors have the following form:

• σ/τ = +1:
𝜏

𝜎

𝑖 𝑗

𝑃" 𝑃"
𝑃$ 𝑃$

+

𝑖 𝑗

−

𝑖 𝑗

= δi1i2 · δi3i4 · δj1j2 · δj3j4 ,

• σ/τ = −1:

𝜏

𝜎

𝑖 𝑗

𝑃" 𝑃"
𝑃$ 𝑃$

+

𝑖 𝑗

−

𝑖 𝑗
= δi1i4 · δi2i3 · δj1j4 · δj2j3 .

After replacing all two-qubit gates with the above tensor, we have mapped any second
moment property of random quantum circuits to a classical spin model with the τ, σ vari-
ables. The original quantity in Eq. (2.156) corresponds to the partition function of this spin
model. For each specific assignment of τ, σ, Eq. (2.158) is a separable tensor, and the value
corresponding to the assignment is easy to calculate. However, this spin model has negative
weights, making it hard to directly analyze in this form.

2.4.5.2 Proof of Theorem 2.12

Let C ∼ RQC(n, d) be a random circuit, |ψ⟩ = C |0n⟩ be the ideal output state, and ρ be
the output state of the noisy circuit. It is easy to see that the fidelity

F = ⟨ψ|ρ|ψ⟩ = Tr [ρ · |ψ⟩⟨ψ|] (2.160)

is a second moment property, because trace is a linear operation and each two-qubit gate Ui
appears in the fidelity as the form U⊗2i ⊗ U∗⊗2i .

Let N (ρ) =
∑

α,β∈{0,1,2,3}n χαβσαρσβ be an arbitrary noise channel which acts on all
qubits after each layer of gates. Due to the linearity of quantum channels, we only need to
prove that the off-diagonal terms σαρσβ (α ̸= β) have 0 contribution in the calculation of
EF , which implies that the average fidelity with N is equal to the average fidelity of N diag,
which proves Theorem 1.

Let σα ̸= σβ ∈ {I,X, Y, Z}⊗n be two distinct Pauli operators. They have to differ by at
least one location, and we denote the single qubit Pauli operator as P1 ̸= P2 ∈ {I,X, Y, Z}.
Without loss of generality, we assume P1 and P2 act on the l1, l2 index of a two-qubit gate
and the i1, i2 index of another two-qubit gate. We perform the mapping described in the
previous subsection which maps the average fidelity to the partition function of a classical
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spin model. The relevant local tensor for P1 and P2 is given by

𝜏

𝜎

𝑘

𝑗

𝑃! 𝑃" (2.161)

and it is easy to see that this tensor always equals to 0 no matter what value σ and τ takes,
which makes the average fidelity equal to 0 under the off-diagonal term.

2.4.5.3 Analysis of average fidelity

Next we analyze EF under Pauli noise channels. As discussed above, EF can be directly
mapped to the partition function of a classical spin model with 2m spins, where m is the
number of two-qubit gates. However, as this spin model has negative weights due to the
noise channel, it appears difficult to directly analyze its partition function.

Our first idea is to separate the effect of noise from random quantum circuits via an
expansion in the noise rate. As described in section 2.4.2.2, we first focus on i.i.d. single
qubit Pauli-X noise and later address more general cases. Following section 2.4.2.2 we write
the average fidelity as

EF = (1− ε)nd +
nd∑

i=1

ε(1− ε)nd−1 E |⟨ψi|ψ⟩|2 +
nd−1∑

i=1

nd∑

j=i+1

ε2(1− ε)nd−2 E |⟨ψij|ψ⟩|2 + · · ·

:= F0 + EF1 +
∑

k≥2

EFk.

(2.162)

Here |ψi⟩ denotes the ideal state with an X error at location i. We can understand EFk
as the contribution to average fidelity with k errors in the circuit, which has an εk factor.
Therefore we expect the higher order contributions to be small compared with EF1, when ε
is sufficiently small.

To verify this intuition, we present numerical simulation results shown in Fig. 2.15.
Here the simulation is performed by simulating the partition function of the corresponding
spin model and therefore has no error bar. For n = 20 qubits with ε ≤ 0.01 Pauli-X
noise per qubit, we plot the ratio EF1/F0 as well as higher order terms EF≥2/F0, where
EF≥2 =

∑
k≥2 EFk. From the simulation results we can observe the following:

• First, as we will rigorously prove next, EF1/F0 converges to a constant that is propor-
tional to ε as depth increases.

• Second, note that EF≥2/F0 is much smaller compared with EF1/F0 for shallow depth
circuits. This verifies our intuition to throw away higher order terms in our analysis
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Figure 2.15: Simulation of the first and higher order terms in average fidelity. Here we
consider n = 20 qubits on a 1D ring and i.i.d. Pauli-X noise with effective noise rate per
qubit ε.

of RCS benchmarking experiments, as in experiments we are limited to implementing
shallow depth circuits.

• Third, note that EF≥2/F0 →∞ as d→∞.

Next we provide a simple argument to explain the third point. As d → ∞, we have F0 =
(1 − ε)nd → 0, and EF1 ≤ O(F0) → 0. However, we know that EF → 1

2n
as the state

converges to the maximally mixed state on average. Taking the limit d→∞ on both sides
of Eq. (2.162), we have EF≥2 → 1

2n
, and therefore EF≥2/F0 →∞. This observation suggests

a potential improvement to RCS benchmarking. In particular, we can consider other fitting
schemes, such as fitting an exponential decay with EF − 1

2n
instead of EF , which might

extend the depth range for which RCS benchmarking gives accurate results.
Next we proceed by analyzing the first order term EF1 and prove Theorem 2.13. Follow-

ing the proof sketch in section 2.4.2.2, we focus on proving

E |⟨ψl|ψ⟩|2 = E
C∼RQC(n,l)

∣∣⟨0n|C†σpC |0n⟩
∣∣2 ≤ e−∆l +

1

2n
, (2.163)

where σp ∈ {I,X, Y, Z}⊗n is a Pauli operator. We will formally prove Eq. (2.163) for
arbitrary 3-local Pauli errors, and show numerical evidence that shows this holds in general.

It is easy to see that Eq. (2.163) implies that EF1/F0 = O(λ) where λ is the effective
noise rate for the global noise channel. For example, for i.i.d. single qubit Pauli-X noise
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channel where λ ≈ nε, Eq. (2.163) with σp = X ⊗ I⊗n−1 implies that

EF1/F0 =
nε

1− ε
d∑

l=1

E |⟨ψl|ψ⟩|2

≤ nε

1− ε
d∑

l=1

(
e−∆l +

1

2n

)

= O(nε)

(2.164)

when d ≤ 2n. We can similarly prove EF1/F0 = O(λ) for general noise channels, as long as
Eq. (2.163) still holds, where we replace the single qubit Pauli-X with the Pauli operator in
the noise channel.

To complete our analysis on the first order term EF1, it remains to prove the upper

bound on EC∼RQC(n,l)

∣∣⟨0n|C†σpC |0n⟩
∣∣2. First note that this is a second moment property

of ideal depth-l random quantum circuits, as

E
C∼RQC(n,l)

∣∣⟨0n|C†σpC |0n⟩
∣∣2 = E

C∼RQC(n,l)
Tr
[
σpC |0n⟩⟨0n|C†σp · C |0n⟩⟨0n|C†

]
. (2.165)

We therefore map this quantity to the partition function of a classical spin model, where the
bulk of the spin model is a hexagonal lattice consists of local tensors given in Eq. (2.158).

This was first developed by [70], where it was noted that this spin model can be further
simplified by first summing over the τ variables, and as a result eliminates the negative
weights in w(τ, σ). After performing this summation over τ variables, the spin model cor-
responds to a triangular lattice of the σ variables shown in Fig. 2.10, and the bulk of the
weights corresponding to the three-body interaction are given in Fig. 2.11. We refer to
Refs. [70, 71, 72, 73, 39, 35] for the detailed calculations.

Next we derive the boundary conditions in order to fully specify the spin model for
Eq. (2.165). The bottom boundary corresponds to open boundary conditions for all σ vari-
ables, as the input is fixed to be 0. At the top boundary, for each two-qubit gate there is a
Pauli operator P1 ⊗ P2 ∈ {I,X, Y, Z}⊗2 acting on it. Summing over the τ variables for each
two-qubit gate at the top, we derive the following boundary condition:

𝜏

𝜎

𝑖 𝑗

𝑃" 𝑃"
𝑃$ 𝑃$

=





𝜏

𝜎

𝑖 𝑗

𝑃" 𝑃"
𝑃$ 𝑃$

+

𝑖 𝑗

−

𝑖 𝑗
, P1 = P2 = I,

4
15
·

𝜏

𝜎

𝑖 𝑗

𝑃" 𝑃"
𝑃$ 𝑃$

+

𝑖 𝑗

−

𝑖 𝑗

, P1, P2 ̸= I, I, σ = ⊕,

− 1
15
·

𝜏

𝜎

𝑖 𝑗

𝑃" 𝑃"
𝑃$ 𝑃$

+

𝑖 𝑗

−

𝑖 𝑗
, P1, P2 ̸= I, I, σ = ⊖.

(2.166)

Here, the dashed line denotes the w(τ, σ) interaction. This can be summarized as follows:

1. When there is no error, the two-qubit gate corresponds to a fixed ⊖ spin.
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2. When there is one or two Pauli errors, the σ spin has an additional weight 4
15

when it
equals to ⊕, and − 1

15
when it equals to ⊖.

Now we are ready to calculate the expectation value in Eq. (2.165). Define Z(n, l; b)
as the partition function of the spin model which corresponds to n-qubit, depth-l random
quantum circuits, where the top boundary condition is given by b ∈ {⊕,⊖}n/2. We start
with single qubit Pauli noise, where σp = X⊗I⊗n−1. In this case, there is one spin at the top
which has the second boundary condition, while all other spins are fixed to be ⊖. Therefore

E
C∼RQC(n,l)

∣∣⟨0n|C†XC |0n⟩
∣∣2 =

4

15
Z(n, l; · · · ⊖ ⊕ ⊖ · · · )− 1

15
Z(n, l; · · · ⊖ ⊖ ⊖ · · · )

=
4

15
Z(n, l; · · · ⊖ ⊕ ⊖ · · · )− 1

15
,

(2.167)

where in the second line we use the observation that the partition function equals to 1 when
all spins at the top boundary are equal to ⊖. This proves the equation in Fig. 2.10.

Following the argument in section 2.4.2.2 and demonstrated in Fig. 2.11, we can divide
the partition function into two parts,

Z(n, l; · · · ⊖ ⊕ ⊖ · · · ) = Z1(n, l; · · · ⊖ ⊕ ⊖ · · · ) + Z2(n, l; · · · ⊖ ⊕ ⊖ · · · ) (2.168)

where Zi denotes the sum of weights of domain wall configuration of type i shown in
Fig. 2.11b. First, note that the analysis of Z1 is simple. Each of the two domain walls

has length l− 1 and weight
(
2
5

)l−1
. For each domain wall, the number of possible configura-

tions is at most 2l−1. Thus, the contribution of two domain walls is at most

Z1(n, l; · · · ⊖ ⊕ ⊖ · · · ) ≤
(

4

5

)2(l−1)

. (2.169)

In particular, this implies that Z1(n,∞; · · · ⊖ ⊕ ⊖ · · · ) = 0. Next, we use the following
useful fact: when l → ∞, depth-l random quantum circuits converge to an exact unitary
2-design [66], which implies that

lim
l→∞

E
C∼RQC(n,l)

∣∣⟨0n|C†σpC |0n⟩
∣∣2 = E

C∼U(2n)

∣∣⟨0n|C†σpC |0n⟩
∣∣2 =

1

2n + 1
, (2.170)

for any non-zero σp ∈ {I,X, Y, Z}⊗n. See e.g. [45] for a proof of the second equality. There-
fore,

1

2n + 1
= lim

l→∞
E

C∼RQC(n,l)

∣∣⟨0n|C†XC |0n⟩
∣∣2

=
4

15
(Z1(n,∞; · · · ⊖ ⊕ ⊖ · · · ) + Z2(n,∞; · · · ⊖ ⊕ ⊖ · · · ))− 1

15

=
4

15
Z2(n,∞; · · · ⊖ ⊕ ⊖ · · · )− 1

15
.

(2.171)
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Combining the above facts, we have

E
C∼RQC(n,l)

∣∣⟨0n|C†XC |0n⟩
∣∣2 =

4

15
(Z1(n, l; · · · ⊖ ⊕ ⊖ · · · ) + Z2(n, l; · · · ⊖ ⊕ ⊖ · · · ))−

1

15

≤ 4

15

(
4

5

)2(l−1)

+
4

15
Z2(n, l; · · · ⊖ ⊕ ⊖ · · · )−

1

15

≤ 4

15

(
4

5

)2(l−1)

+
4

15
Z2(n,∞; · · · ⊖ ⊕ ⊖ · · · )− 1

15

=
4

15

(
4

5

)2(l−1)

+
1

2n + 1
.

(2.172)

Here, the third line follows from the simple observation that Z2(n, l; · · · ⊖⊕⊖ · · · ) is mono-
tonically non-decreasing with respect to l. This proves Eq. (2.163) for arbitrary 1-local
errors.

Next we extend the above argument to arbitrary 3-local errors, of the form X⊗X⊗X⊗
Ielse, X⊗I⊗Z⊗Ielse, etc. The 2-local case either reduces to 1-local (when the two errors act
on the same two-qubit gate) or 3-local (when the two errors act on different two-qubit gates).
For arbitrary 3-local errors, the top boundary has two neighboring spins with the second
boundary condition, and all other spins are fixed to be ⊖. After calculating the boundary
conditions, we have

E
C∼RQC(n,l)

∣∣⟨0n|C†σ3-localC |0n⟩
∣∣2 =

16

225
Z(n, l; · · ·⊖⊕⊕⊖ · · · )− 8

225
Z(n, l; · · ·⊖⊕⊖· · · )+

1

225
.

(2.173)
To relate the first two terms, we derive the following recursive formula for the partition
function:

Z(n, l; · · ·⊖⊕⊖· · · ) =
4

25
Z(n, l−1; · · ·⊖⊕⊕⊖ · · · )+ 8

25
Z(n, l−1; · · ·⊖⊕⊖· · · )+ 4

25
. (2.174)

Combining both equations above, we have

E
C∼RQC(n,l)

∣∣⟨0n|C†σ3-localC |0n⟩
∣∣2

=
4

9
Z(n, l + 1; · · · ⊖ ⊕ ⊖ · · · )− 8

45
Z(n, l; · · · ⊖ ⊕ ⊖ · · · )− 1

15

≤ O
(
e−∆l

)
+

4

9
Z2(n, l + 1; · · · ⊖ ⊕ ⊖ · · · )− 8

45
Z2(n, l; · · · ⊖ ⊕ ⊖ · · · )−

1

15
.

(2.175)

Here in the inequality we have combined the exponentially decaying Z1 terms. Now, notice
that the difference between Z2(n, l + 1; · · · ⊖ ⊕ ⊖ · · · ) and Z2(n, l; · · · ⊖ ⊕ ⊖ · · · ) can be
bounded: it corresponds to domain walls with depth l, and therefore has weight that is
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Figure 2.16: Simulation of the second moment of Pauli observable for depth-l random quan-
tum circuits on n = 20 qubits, which corresponds to a classical spin model with depth l and
width 10. Here t denotes the number of consecutive spins that has the second boundary
condition.

exponentially small in l, which gives

E
C∼RQC(n,l)

∣∣⟨0n|C†σ3-localC |0n⟩
∣∣2

≤ O
(
e−∆l

)
+

4

9
Z2(n, l + 1; · · · ⊖ ⊕ ⊖ · · · )− 8

45
Z2(n, l; · · · ⊖ ⊕ ⊖ · · · )−

1

15

≤ O
(
e−∆l

)
+

4

9

(
Z2(n, l; · · · ⊖ ⊕ ⊖ · · · ) +O

(
e−∆l

))
− 8

45
Z2(n, l; · · · ⊖ ⊕ ⊖ · · · )−

1

15

= O(e−∆l) +
4

15
Z2(n, l; · · · ⊖ ⊕ ⊖ · · · )−

1

15

≤ O(e−∆l) +
4

15
Z2(n,∞; · · · ⊖ ⊕ ⊖ · · · )− 1

15

= O(e−∆l) +
1

2n + 1
.

(2.176)
This proves Eq. (2.163) for arbitrary 3-local errors, and concludes the proof of Theorem 2.13.

Finally we present numerical simulation results which verify our proof and also show the
correctness of Eq. (2.163) for higher weight errors. In Fig. 2.16 we show simulation results for
depth-l random quantum circuits on 20 qubits. Here we simulate the spin model of width 10,
with t consecutive spins at the top which have the second boundary condition. t corresponds
to the locality of the Pauli error, as for a k-local Pauli operator we have k

2
≤ t ≤ k

2
+ 1.
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From Fig. 2.16 we can observe exponential decays as l increases, which eventually converge
to 1

2n+1
. Interestingly, the curve also decreases as t increases. We have already proven the

exponential decay for t = 1 (blue curve). The simulation results suggest that Eq. (2.163)
can actually be strengthened for higher weight errors. Here we conjecture that

E
C∼RQC(n,l)

∣∣⟨0n|C†σk-localC |0n⟩
∣∣2 ≤ e−O(k)e−∆l +

1

2n
, (2.177)

which follows intuitively because of the additional factor of ∼ (4/15)t due to the second
boundary condition.

2.4.5.4 Alternative proof idea

Here we also present an alternative proof idea for analyzing EC∼RQC(n,l)

∣∣⟨0n|C†σpC |0n⟩
∣∣2

using the result of [66]. This proof idea works for arbitrary Pauli observables but has an
additional 2n factor due to converting between different norms, and therefore does not satisfy
our purpose for proving Eq. (2.163). It is interesting to see whether this idea can be improved
to directly prove Eq. (2.163) with arbitrary locality.

First, recall the following result from [66],
∥∥∥∥ E
C∼RQC(n,l)

C⊗t ⊗ (C∗)⊗t − E
C∼U(2n)

C⊗t ⊗ (C∗)⊗t
∥∥∥∥
2→2

≤ e−∆l, (2.178)

where RQC(n, l) denotes depth-l random quantum circuits on n qubits, ∥ · ∥2→2 denotes the
super-operator 2 norm, and ∆ is a constant that depends on t. When t = 2, E[C⊗2⊗ (C∗)⊗2]
can be understood as a quantum channel that acts on 2n qubits. As we have a fixed input
|0n⟩⟨0n|⊗2, Eq. (2.178) implies that the output states are close in 2 norm, which combined
with Lemma 2.21 gives

E
C∼RQC(n,l)

∣∣⟨0n|C†σpC |0n⟩
∣∣2 ≤ 2ne−∆l +

1

2n + 1
, (2.179)

which has an additional dimension factor 2n due to the conversion between 1 and 2 norm.
However, our numerical simulation results in Fig. 2.16 suggest that this additional 2n factor
can be replaced by O(1), for single qubit as well as high weight Pauli errors.

Lemma 2.21. For a Hermitian observable W and n-qubit quantum states ρ, σ, we have

Tr[W (ρ− σ)] ≤ 2n/2∥W∥∞ · ∥ρ− σ∥2, (2.180)

where ∥ · ∥p denotes the Schatten p-norm.

Proof. Let λ1 ≥ · · · ≥ λ2n denote the absolute eigenvalues of ρ− σ. Then

Tr[W (ρ− σ)] ≤ ∥W∥∞(λ1 + · · ·+ λ2n)

≤ 2
n
2 ∥W∥∞(λ21 + · · ·+ λ22n)

1
2

= 2
n
2 ∥W∥∞ · ∥ρ− σ∥2.

(2.181)
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Name Lindblad Superoperator Description ENR

Single qubit
noise

T1 γD[σ] Amplitude Decay γ/2
Tϕ γD[σ†σ] Dephasing γ/4

Pauli-X γD[X] Pauli-X γ

Correlated
noise

Corr-T1 γD[σiσj] Amplitude Decay γ/4

Corr-Tϕ γD[σ†iσiσ
†
jσj] Dephasing 3γ/16

Corr-Pauli γD[σp] Arbitrary Pauli noise γ

Table 2.4: Effective noise rate for various noise models, including those studied here. Here
σ = |0⟩⟨1|, σp ∈ {I,X, Y, Z}⊗n. γ is the noise strength used in simulating the Lindblad
evolution, and ENR stands for effective noise rate.

2.4.6 Additional numerical simulation results

2.4.6.1 Computing the effective noise rate

In this section we show how to compute the effective noise rate given the description of a
noise model, where the results are given in Table 2.4. These results are used to control the
total effective noise rate in our numerical simulations. For example, in the first noise model
of Table 2.6, the total effective noise rate is γ/2 + 2× γ/4 = γ.

Next we show how to calculate the numbers in Table 2.4 with an example. Consider the
Tϕ noise model with Lindblad operator γD[|1⟩⟨1|]. The evolution of the density matrix is
given by

dρ

dt
= γ

(
|1⟩⟨1| ρ |1⟩⟨1| − 1

2
|1⟩⟨1| ρ− 1

2
ρ |1⟩⟨1|

)
. (2.182)

In our simulation the evolution continues for 1 time unit. Using a first order approximation,
we can write the noise channel as

N (ρ) = ρ+ γ

(
|1⟩⟨1| ρ |1⟩⟨1| − 1

2
|1⟩⟨1| ρ− 1

2
ρ |1⟩⟨1|

)
. (2.183)

To represent the noise channel in Pauli basis, we use |1⟩⟨1| = I−Z
2

and get

N (ρ) = ρ+
γ

4
(ZρZ − ρ) =

(
1− γ

4

)
ρ+

γ

4
ZρZ. (2.184)

Therefore the effective noise rate of Tϕ is γ/4, and the other numbers can be calculated
similarly.
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2.4.6.2 Simulation algorithm

For a generic noise source, the incoherent dynamics of the density matrix between gates can
be described by the master equation,

dρ

dt
=
∑

l

γlD[Jl](ρ), (2.185)

where ρ is the density matrix, D[Ji](ρ) = JiρJ
†
i − 1

2
(J†i Jiρ+ρJ†i Ji) is a Lindblad superoperator

for generic collapse operator Ji, and we use units where ℏ = 1. A Lindblad superoperator can
represent various Markovian noise sources, such as amplitude decay, dephasing, correlated
noise, etc. Lindblad operators for the various noise sources studied in this work are given
in Table 2.4. We take the system Hamiltonian, H, to be zero and assume that gates are
applied perfectly and instantaneously one time unit apart.

For 10 qubit simulations, we evolve the density matrix according to the Lindblad master
equation. For a large number of qubits (such as the 20 qubit runs), storing the full density
matrix ρ becomes unfeasible. Instead, we simulate the action of the noise sources using
the Monte Carlo wave function (MCWF) method [105]. We evolve under an effective, non-
Hermitian Hamiltonian

Heff =
−i
2

∑

l

γlJ
†
l Jl. (2.186)

As the state evolves, it will gradually lose norm. A random number p is drawn, and the
state is evolved under Heff until the norm falls below p. At this point a “quantum jump”
occurs. At this point, one of the noise channels is randomly chosen. The probability of the
jump happening due to noise channel l is given by

Pl =
γl⟨ψ|J†l Jl|ψ⟩∑
l γl⟨ψ|J†l Jl|ψ⟩

. (2.187)

Once a specific noise channel is chosen, the jump is applied according to

|ψ⟩ =
Jl|ψ⟩

⟨ψ|J†l Jl|ψ⟩
. (2.188)

A new random number, p, is drawn and the evolution then proceeds under the effective non-
Hermitian Hamiltonian Heff until the next jump occurs. This process is applied between
gates until all gates have been applied. This process is repeated many times, where each
time a pure state trajectory of the noisy circuit is generated. Due to linearity, the fidelity
and fidelity estimators of a noisy circuit can be computed by averaging over the pure state
trajectories.

2.4.6.3 Additional simulation results

In addition to the unbiased linear cross entropy estimator, we also run three other fidelity
estimators: estimators based on the standard linear cross entropy [7], cross entropy [20], and
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(a) (b)

(c) (d)

Figure 2.17: Numerical simulations of XEB, log XEB, and HOG fidelity using the Monte
Carlo wave function (MCWF) method for various noise models. As opposed to unbiased
XEB, these estimators only converge with sufficient depth. (a) Single qubit amplitude-decay
and pure dephasing. (b) Single qubit Pauli-X noise. (c) Nearest-neighbor correlated XX
noise. (d) Correlated X noise with weight nq − 1 = 19.

heavy-output-generation (HOG) score [19, 7]. All estimators are summarized in Table 2.5,
and they take a slightly different form than the equations used earlier due to the simulations
having access to the full wavefunction for a single noise trajectory. We use these estimators
to study the n = 20 linear ring and plot the results in Fig. 2.17 and summarize the results
in Table 2.6. These simulations, as well as the n = 20 results earlier, were sampled over 100
circuits and 400 noise trajectories for each circuit at each given depth. All estimators are fit
from depths 20 to 50.

We also compare the results from both true fidelity and the unbiased linear cross entropy
for n = 10 and n = 20 qubits with both two qubit Haar random unitaries and CNOT+single
qubit Haar random unitaries at three different effective noise rates for our four different noise
models. The results are summarized in Table 2.7. We find that the results are consistent
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Name Formula

uXEB F̂uXEB = E
∑

xDp(x)q(x)−1
D

∑
x p(x)

2−1

XEB F̂XEB = E
∑

xDp(x)q(x)− 1

Log XEB F̂log = logD + γ + E
∑

x q(x) log(p(x))

HOG Fidelity F̂HOG = E(2
∑

x q(x)1[p(x) ≥ log 2
D

]− 1)/ log 2

Table 2.5: Fidelity estimators studied here. Since our numerical simulations have access
to the full wavefunction, these formulas are slightly different than those used when using
experimental samples. x ∈ {0, 1}n represents all possible bitstrings, D = 2n is the dimension
of the Hilbert space, p(x) is the ideal output probability, q(x) is the output probability of
the noisy circuit, γ is Euler’s constant, and 1[·] is the indicator function. The expectation
value is taken over both random circuits C and, in the case of the MCWF solver, noise
trajectories.

Description Lindblad λF λuXEB λXEB λLOG λHOG

T1, Tϕ γD[σ] + 2γD[σ†σ] 0.0511(2) 0.0511(2) 0.0511(2) 0.0511(2) 0.0510(2)
Pauli-X γD[X] 0.0508(2) 0.0509(2) 0.0509(2) 0.0509(2) 0.0508(2)

Corr-XX γD[XiXi+1] 0.0505(3) 0.0505(3) 0.0505(3) 0.0505(3) 0.0505(3)
n− 1 Weight X γD[

∏
i ̸=j Xi] 0.0506(3) 0.0506(3) 0.0506(3) 0.0506(3) 0.0506(3)

Table 2.6: Numerical simulation of RCS benchmarking using the Monte Carlo wave function
(MCWF) technique. Here we simulate n = 20 qubits with noise strength γ = 0.0025, and
σ = |0⟩⟨1|. Each global noise model has a total ENR of λtrue = nγ = 0.05 by design. λF and
λuXEB shows the simulated RCS benchmarking result, which corresponds to the decay rate
of fidelity and unbiased linear cross entropy, respectively. λXEB, λLOG, and λHOG correspond
to the alternative fidelity estimators of standard linear cross entropy, cross entropy, and a
HOG-score based estimator.

over all variations. We fit the n = 20, two qubit Haar random results from depths 20 to 50.
We fit the n = 10, two qubit Haar random results from depths 10 to 25. We fit the n = 20
and n = 10 single qubit Haar random results from depths 20 to 34.

We provide additional results on n = 16, 2D 4 × 4 lattices using two different gate
sets: SQiSWP + {

√
X,
√
Y ,
√
W} gate set, where W = (X + Y )/

√
2 and single qubit Haar

random gates followed by fixed two-qubit SQiSWP gates. Figure 2.18 shows the collection
of various fidelity estimators not included earlier for the 2D discrete gate set (SQiSWP +
{
√
X,
√
Y ,
√
W}). Similar to the 1D results, the other estimators require sufficient depth to

converge. The estimates of all of the estimators are found in Table 2.8. Estimates for uXEB
at different noise strengths are summarized in Tabke 2.9. For the single qubit Haar random
gates followed by fixed two-qubit SQiSWP gates, uXEB results are plotted in Fig. 2.19 and
the other estimators are plotted in Fig. 2.20. The results for this continuous gate set are
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Noise rate Description
n = 10, single qubit n = 10, two qubit n = 20, single qubit n = 20, two qubit
λF λuXEB λF λuXEB λF λuXEB λF λuXEB

λ = 0.05

T1, Tϕ 0.0491(2) 0.0511(7) 0.04978(4) 0.04990(2) 0.0495(4) 0.0523(1) 0.0511(2) 0.0511(2)
Pauli-X 0.0488(6) 0.0515(9) 0.04970(4) 0.04983(2) 0.0482(4) 0.0527(1) 0.0508(2) 0.0509(2)

Corr-XX 0.0494(2) 0.0517(9) 0.04974(2) 0.04987(1) 0.0494(4) 0.0527(2) 0.0505(3) 0.0505(3)
n− 1 Weight X 0.0500(2) 0.0509(1) 0.049761(1) 0.049879(6) 0.0499(3) 0.0505(8) 0.0506(3) 0.0506(3)

λ = 0.1

T1, Tϕ 0.0968(9) 0.1029(2) 0.09902(9) 0.09964(1) 0.0971(8) 0.1127(3) 0.0998(6) 0.1000(6)
Pauli-X 0.0968(6) 0.1049(4) 0.09871(8) 0.09929(4) 0.0964(6) 0.1112(2) 0.1020(8) 0.1020(7)

Corr-XX 0.0973(5) 0.1042(2) 0.09888(5) 0.09946(2) 0.0980(7) 0.1163(3) 0.0996(8) 0.1000(8)
n− 1 Weight X 0.100(1) 0.099(1) 0.098954(2) 0.099512(1) 0.0998(7) 0.1013(3) 0.0948(8) 0.0948(8)

λ = 0.15

T1, Tϕ 0.1436(4) 0.1557(5) 0.1471(1) 0.1498(5) 0.1435(8) 0.1811(5) 0.150(1) 0.150(1)
Pauli-X 0.146(3) 0.150(9) 0.1464(1) 0.1484(6) 0.143(1) 0.182(6) 0.144(2) 0.145(2)

Corr-XX 0.145(1) 0.152(1) 0.14677(7) 0.14878(4) 0.142(1) 0.175(6) 0.164(2) 0.164(2)
n− 1 Weight X 0.150(1) 0.144(4) 0.146874(4) 0.148911(2) 0.146(1) 0.159(9) 0.155(2) 0.155(2)

Table 2.7: Additional numerical simulation results of RCS benchmarking. We simulate three
effective noise rates with different noise models, two system sizes (10 and 20 qubits), and
two gate sets (two-qubit Haar random gates, CNOT+single qubit Haar random gates).

Description Lindblad λF λuXEB λXEB λLOG λHOG

T1, Tϕ γD[σ] + 2γD[σ†σ] 0.0531(2) 0.0536(2) 0.0536(2) 0.0534(2) 0.0529(2)
Corr-T1 γD[σiσi+1] 0.0495(3) 0.0502(3) 0.0502(3) 0.0499(3) 0.0494(3)
Pauli-X γD[X] 0.0492(3) 0.0500(3) 0.0500(3) 0.0498(3) 0.0493(3)

Corr-XX γD[XiXi+1] 0.0486(3) 0.0490(3) 0.0490(3) 0.0488(3) 0.0484(3)

Table 2.8: Numerical simulation of RCS benchmarking using the Monte Carlo wave func-
tion (MCWF) technique. Here we simulate n = 16 qubits in a 4 × 4 lattice using
the SQiSWP+{

√
X,
√
Y ,
√
W} gate set, where W = (X + Y )/

√
2, with noise strength

γ = 0.003125, and σ = |0⟩⟨1|. Each global noise model has a total ENR of λtrue = nγ = 0.05
by design. λF and λuXEB shows the simulated RCS benchmarking result, which corresponds
to the decay rate of fidelity and unbiased linear cross entropy, respectively. λXEB, λLOG, and
λHOG correspond to the alternative fidelity estimators of standard linear cross entropy, cross
entropy, and a HOG-score based estimator.

similar to the discrete 2D gate set and all of the 1D results. The estimates of all of the
estimators are found in Table 2.10. Estimates for uXEB at different noise strengths are
summarized in Table 2.11.
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(a) (b)

(c) (d)

Figure 2.18: Numerical simulations of XEB, log XEB, and HOG fidelity using the Monte
Carlo wave function (MCWF) method for various noise models on a 4 × 4 lattice of qubits
using the SQiSWP+{

√
X,
√
Y ,
√
W} gate set, where W = (X+Y )/

√
2. As opposed to unbi-

ased XEB, these estimators only converge with sufficient depth. (a) Single qubit amplitude-
decay and pure dephasing. (b) Nearest-neighbor correlated amplitude decay. (c) Single qubit
Pauli-X noise. (d) Nearest-neighbor correlated XX noise.

Description
λ = 0.05 λ = 0.10 λ = 0.15

λF λuXEB λF λuXEB λF λuXEB

T1, Tϕ 0.0531(2) 0.0536(2) 0.1003(5) 0.1030(4) 0.1511(8) 0.1591(8)
Corr-T1 0.0495(3) 0.0502(3) 0.1016(9) 0.1042(8) 0.135(2) 0.143(2)
Pauli-X 0.0492(3) 0.0500(3) 0.0926(9) 0.0963(8) 0.177(2) 0.177(2)

Corr-XX 0.0486(3) 0.0490(3) 0.0982(8) 0.1006(7) 0.138(2) 0.145(2)

Table 2.9: Additional numerical simulation results of RCS benchmarking. We sim-
ulate three effective noise rates with different noise models using the using the
SQiSWP+{

√
X,
√
Y ,
√
W} gate set, where W = (X + Y )/

√
2. on a 4× 4 square lattice.
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(a) (b)

(c) (d)

Figure 2.19: Numerical simulations using the Monte Carlo wave function (MCWF) method
for various noise models. The system is modeled as perfect gates followed by evolution
for one time unit under noisy channels [74] using the Lindblad master equation [75] dρ

dt
=∑

i γiD[Ji](ρ), where the sum is over different noise channels, D[Ji](ρ) = JiρJ
†
i − 1

2
(J†i Jiρ+

ρJ†i Ji) is a Lindblad superoperator for generic collapse operator Ji, and γi controls the noise
strength. The unbiased linear cross entropy agrees with the fidelity for all depths above a
small threshold and correctly predicts the ENR. The noise models include: (a) single qubit
amplitude-decay and pure dephasing, (b) nearest-neighbor correlated amplitude-decay, (c)
single qubit Pauli-X noise, (d) nearest-neighbor correlated XX noise. Here we simulate
n = 16 qubits on a 2D lattice with noise strength γ = 0.003125. Each global noise channel
has an ENR of λtrue = nγ = 0.05 by design. We average over 100 random circuits consisting
of layers of single qubit Haar random gates followed by fixed two-qubit SQiSWP gates over
400 noise trajectories for each circuit at each depth. We fit the uXEB curves from depths
20 to 50.
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(a) (b)

(c) (d)

Figure 2.20: Numerical simulations of XEB, log XEB, and HOG fidelity using the Monte
Carlo wave function (MCWF) method for various noise models on a 4 × 4 lattice of qubits
using the SQiSWP+ single qubit Haar random gate set. As opposed to unbiased XEB, these
estimators only converge with sufficient depth. (a) Single qubit amplitude-decay and pure
dephasing. (b) Nearest-neighbor correlated amplitude decay. (c) Single qubit Pauli-X noise.
(d) Nearest-neighbor correlated XX noise.

2.4.6.4 Variance analysis

Next we present numerical simulation results which support our analysis of the variance of
fidelity in section 2.4.2.5. Recall the setting in section 2.4.2.5 where we consider i.i.d. single
qubit Pauli-X noise and use a first-order approximation of the fidelity. For a random circuit
C ∼ RQC(n, d), we can write the fidelity as

F ≈ (1− ε)nd +
n∑

i=1

d∑

l=1

ε(1− ε)nd−1 |⟨ψi,l|ψ⟩|2 , (2.189)
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Description Lindblad λF λuXEB λXEB λLOG λHOG

T1, Tϕ γD[σ] + 2γD[σ†σ] 0.0492(3) 0.0513(3) 0.0513(3) 0.0509(3) 0.0497(3)
Corr-T1 γD[σiσi+1] 0.0491(5) 0.0509(5) 0.0509(5) 0.0503(5) 0.0488(5)
Pauli-X γD[X] 0.0351(5) 0.0379(5) 0.0379(5) 0.0375(5) 0.0360(5)

Corr-XX γD[XiXi+1] 0.0528(4) 0.0546(4) 0.0546(4) 0.0542(4) 0.0530(4)

Table 2.10: Numerical simulation of RCS benchmarking using the Monte Carlo wave function
(MCWF) technique. Here we simulate n = 16 qubits in a 2D lattice using the SQiSWP+
single qubit Haar random gate set with noise strength γ = 0.003125, and σ = |0⟩⟨1|. Each
global noise model has a total ENR of λtrue = nγ = 0.05 by design. λF and λuXEB shows
the simulated RCS benchmarking result, which corresponds to the decay rate of fidelity
and unbiased linear cross entropy, respectively. λXEB, λLOG, and λHOG correspond to the
alternative fidelity estimators of standard linear cross entropy, cross entropy, and a HOG-
score based estimator.

Description
λ = 0.05 λ = 0.10 λ = 0.15

λF λuXEB λF λuXEB λF λuXEB

T1, Tϕ 0.0492(3) 0.0513(3) 0.0972(6) 0.1039(7) 0.145(1) 0.160(1)
Corr-T1 0.0491(5) 0.0509(5) 0.103(1) 0.108(1) 0.135(2) 0.149(3)
Pauli-X 0.0351(5) 0.0379(5) 0.0984(8) 0.1053(8) 0.178(2) 0.195(2)

Corr-XX 0.0528(4) 0.0546(4) 0.0960(7) 0.1024(7) 0.143(2) 0.160(2)

Table 2.11: Additional numerical simulation results of RCS benchmarking. We simulate
three effective noise rates with different noise models using the using the using the SQiSWP+
single qubit Haar random gate set. on a 4× 4 square lattice.

where |ψi,l⟩ denotes the ideal state with an X error on qubit i at depth l. Let

Al :=
1

n

n∑

i=1

|⟨ψi,l|ψ⟩|2 , (2.190)

then

F ≈ (1− ε)nd + nε(1− ε)nd−1
d∑

l=1

Al. (2.191)

Therefore,

Var(F ) ≈ (nε)2 (1− ε)2nd−2 Var

(
d∑

l=1

Al

)
≈ λ2 (EF )2 Var

(
d∑

l=1

Al

)
, (2.192)
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(b) CNOT+single qubit Haar

Figure 2.21: Numerical simulation of Var
(∑d

l=1Al

)
=
∑d

k,l=1 (E[AkAl]− E[Ak]E[Al]) which

verifies our variance model Var(F ) = O
(
λ2 (EF )2

)
. (a) Two-qubit Haar random gates. (b)

CNOT+single qubit Haar random gates. Var
(∑d

l=1Al

)
converges to a constant with both

gate sets, while the constant for single qubit Haar random gates is larger.

where we have used the fact that λ ≈ nε and EF ≈ (1−ε)nd. Next, we show with numerical
simulation that

Var

(
d∑

l=1

Al

)
=

d∑

k,l=1

(E[AkAl]− E[Ak]E[Al]) = O(1). (2.193)

In the following we present simulation results to verify Eq. (2.193) with two gate sets: 2-
qubit Haar random gates (as in Fig. 2.9a) and CNOT+single qubit Haar random gates (as in
Fig. 2.9b). For each k, l = 1, . . . , 30, we simulate E[AkAl], E[Ak] and E[Al] by averaging over
100 random circuits. For each random circuit, we randomly sample 100 error locations. The
solid lines and color regions in Fig. 2.21 denote mean and standard error across 5 independent
experiments.

In Fig. 2.21 we present simulation results for n = 8, 12, 16 qubits. We observe that

Var
(∑d

l=1Al

)
converges to a constant as depth increases for both gate sets. Interestingly,

although the simulation results are very noisy with large error bars, we can observe a clear

difference between the two gate sets. That is, Var
(∑d

l=1Al

)
converges to a larger constant

with single qubit Haar random gates. This verifies our intuition that a gate set with more
randomness has smaller variance in RCS benchmarking.
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Figure 2.22: Architecture of the IBM Quantum superconducting qubit devices used in our
experiments. (a) An example circuit on 5 qubits with depth 4. Each purple box represents a
Haar random single qubit unitary gate. Figure generated by Qiskit [108]. (b)(c) Architecture
for the 5 and 27 qubit devices. Figures retrieved from https://quantum-computing.ibm.

com/services?services=systems. The subset of qubits used in the 27 qubit device is
highlighted. The experiment in Fig. 2.14 is performed by adding qubits in the order given
by [0,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11,8,5,3].

2.4.7 Additional experiment details

Fig. 2.22 shows the architecture of the devices used in our experiments. For the 27 qubit
device, we consider a 20 qubit subset indexed by

[0,1,4,7,10,12,15,18,21,23,24,25,22,19,16,14,11,8,5,3]

for the 20 qubit experiments, and use the first 10 qubits in this list for the 10 qubit experi-
ments.

We give an example of the circuits implemented in RCS benchmarking in Fig. 2.22a. We
implement Haar random single qubit gates between CNOT layers. Note that an arbitrary
single qubit gate can be decomposed by

U(θ, ϕ, λ) = Rz(ϕ− π/2)Rx(π/2)Rz(π − θ)Rx(π/2)Rz(λ− π/2). (2.194)

(See https://qiskit.org/documentation/stubs/qiskit.circuit.library.UGate.html.)
Here Rx(π/2) is the

√
X gate, and also called a X90 pulse. The Rz gates, which are rotations

around z-axis, are implemented virtually in hardware via framechanges and do not have any
error. Therefore the error rate of a Haar random single qubit gate equals twice the error rate
of a X90 pulse. Rz(θ) and

√
X are the native single qubit gates supported by the devices.

Therefore, when submitting circuits to the devices through cloud, each single qubit gate is
first decomposed to the form in Eq. (2.194).

By default, for any circuit submitted to the cloud, we take the maximum amount of
measurement samples allowed (8192). We can submit the same circuit multiple times if

https://quantum-computing.ibm.com/services?services=systems
https://quantum-computing.ibm.com/services?services=systems
https://qiskit.org/documentation/stubs/qiskit.circuit.library.UGate.html
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more samples are needed. Below we give the parameters used in the experiments presented in
Fig. 2.13. The parameters for the other experiments are already given earlier. Here “repeat”
refers to how many times each circuit is submitted. The total circuit count includes the
repeated ones, so the total amount of samples collected equals this number times 8192.

• Fig. 2.13a: depth=[1, 5, 9, 13, 17, 21, 25, 29, 33, 37], 90 circuits for each
depth, repeat=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 900 circuits in total.

• Fig. 2.13b: depth=[20, 22, 24, 26, 28, 30, 32], 100 circuits for each depth,
repeat=[1, 1, 1, 1, 2, 2, 2], 1000 circuits in total.

• Fig. 2.13c: depth=[1, 5, 9, 13, 17, 21, 25, 29, 33, 37], 100 circuits for each
depth, repeat=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 1000 circuits in total.

• Fig. 2.13d: depth=[20, 22, 24, 26, 28, 30, 32], 100 circuits for each depth,
repeat=[1, 1, 1, 1, 2, 2, 2], 1000 circuits in total.
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Chapter 3

Learning algorithms

This chapter studies the following two fundamental problems in quantum complexity theory
and quantum learning theory:

1. Given access to an unknown constant depth quantum circuit U on a finite dimensional
lattice, learn a constant depth circuit that is close to U (in diamond distance).

In Section 3.2 we give a polynomial time algorithm for this problem, based on joint
work with Hsin-Yuan Huang, Michael Broughton, Isaac Kim, Anurag Anshu, Zeph
Landau, and Jarrod R. McClean [111].

2. Given copies of an unknown quantum state |ψ⟩ = U |0n⟩ that is prepared by an un-
known constant depth circuit U on a finite dimensional lattice, learn a constant depth
circuit that prepares |ψ⟩ (within small trace distance).

In Section 3.3 we give a polynomial time algorithm for this problem, based on joint
work with Zeph Landau [112].

Both algorithms extend to the case when the depth of U is polylog(n), with quasi-polynomial
running time. In addition, we also give a polynomial time algorithm for the first problem,
when U has arbitrary unknown architecture.

The above problems are also motivated by the development of quantum algorithms in
NISQ. NISQ computation can be modeled as shallow quantum circuits. Depite their sim-
plicity, shallow quantum circuits can already generate probability distributions that are
classically hard to simulate. This has motivated the development of NISQ algorithms to-
ward achieving useful quantum advantage, where the key idea can be summarized as trying
to discover a shallow circuit as a solution to an interesting problem (assuming the circuit
exists). This approach can be formulated as a learning problem, and the main challenge is
to develop efficient and provable learning algorithms. In this context, this chapter presents
two new learning algorithms that provably work in simple settings, which could be used as
primitives for new NISQ algorithms.
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3.1 Introduction

The question of how to efficiently learn expressive classes of quantum states and circuits
features prominently in quantum complexity theory, quantum algorithm design, and the
experimental characterization of quantum devices. As a first step, one might consider the
efficiency of learning shallow (constant depth) quantum circuits, where, to date, there has
been no resolution despite considerable interest from a number of angles. From a com-
plexity perspective, shallow quantum circuits are known to be more powerful than their
classical counterparts [113, 114, 115, 116], and under widely accepted complexity assump-
tions, sampling from the output distribution of shallow quantum circuits is classically hard
to simulate [117, 118, 119, 120, 8]. This computational power provides the basis for quantum
computational advantage with NISQ (noisy intermediate-scale quantum) devices and sup-
ports the quest for developing quantum algorithms based on learning parameterized shallow
quantum circuits [121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135].
Within an experimental setting focused on coherent errors or gate calibration, characteriz-
ing a NISQ device can be modeled as learning what shallow quantum circuit the device is
performing. Despite substantial interest in the question of learning shallow quantum circuits
from these directions, to date, no polynomial time algorithm for learning shallow quantum
circuits has been found. In this work, we introduce several efficient algorithms for two related
tasks.

Theorem (Summary of main results). There are polynomial time algorithms for (1) learning
the description of an unknown n-qubit shallow quantum circuit U (with arbitrary unknown
architecture) within a small diamond distance, given access to U ; (2) learning the description
of an unknown n-qubit state |ψ⟩ = U |0n⟩ prepared by a shallow quantum circuit U (on a
finite dimensional lattice) within a small trace distance, given copies of |ψ⟩.

The main challenges in learning shallow quantum circuits are twofold. While foundational
results in computational learning theory have established the efficient learnability of shallow
classical circuits [136, 137, 138], these techniques may not apply to shallow quantum circuits,
as these circuits can generate distributions with nontrivial correlations over the entire system
that are classically hard to simulate [119, 120, 8]. Furthermore, even when the structure of
a shallow quantum circuit is known up to parameterization, the optimization landscape for
learning shallow quantum circuits is swamped with exponentially many suboptimal local
minima [134]. The bad optimization landscape causes standard optimization methods, such
as gradient descent algorithms and Newton methods, to fail in learning shallow quantum
circuits.

To address these challenges, we consider a quantum circuit representation based on local
inversions, which yields an optimization landscape that can be efficiently navigated. The
local inversions disentangle qubits in each local region in a way that does not perturb the
remaining system. We then show how these local inversions may be combined to build up
the entire circuit without having to solve a computationally hard problem. Together, this
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new technique enables us to learn a natural class of quantum circuits that are classically
hard to simulate.

3.1.1 Background

Learning shallow classical circuits. Although the shallow quantum case has many con-
ceptual challenges resulting from non-locality, the learnability of shallow classical circuits
is a fundamental question in computational learning theory that has been well-studied and
resolved in many cases. Learning constant-depth classical circuits with bounded fan-in gates
(NC0) is equivalent to learning juntas and can be performed in polynomial time from uni-
form samples [137]. In addition, quasi-polynomial time algorithms are known for learning
constant-depth classical circuits with unbounded fan-in AND/OR gates (AC0) [136], as well
as mod p gates (AC0[p]) [138] in the PAC model. The problem of learning shallow quantum
circuits (QNC0) and their output states are natural quantum analogs of learning Boolean
circuits. As QNC0 can be exponentially more powerful than AC0 for some computational
problems [116], it is natural to ask if shallow quantum circuits can be learned efficiently
from random data samples.

Quantum machine learning. When one parameterizes the gates in a quantum circuit,
the parameterized quantum circuit forms an ML model, known as a quantum neural network,
that can learn from data and make predictions on new inputs [121, 122, 123, 124, 125, 126,
127]. Since deep parameterized quantum circuits suffer from having barren plateaus in the
optimization landscape [139, 140] and are challenging to implement on noisy quantum devices
[141, 142], shallow quantum circuits have been subject to extensive study in recent years
[128, 129, 130, 131, 132, 133, 134, 135]. Various applications of learning shallow quantum
circuits have been explored, ranging from compressing quantum circuits for implementing a
unitary [143, 144, 145, 127, 146], speeding up quantum dynamics [147, 148, 149, 150, 151], to
learning generative models for sampling from predicted distributions [152, 153, 154, 155, 156,
157]. While the optimization landscape for learning shallow quantum circuits is free from
barren plateau [128], the landscape is swamped with exponentially many suboptimal local
minima [134]. The presence of a large number of suboptimal local minima causes standard
local optimization methods, such as gradient descent or Newton’s method, to fail in learning
parameterized shallow quantum circuits.

Efficient quantum tomography. While quantum state and process tomography gener-
ally require exponential resources, performing tomography over some restricted families of
states or processes can be made computationally efficient. Examples of such families in-
clude matrix product states [158, 159, 160], high-temperature Gibbs states [161, 162, 163],
stabilizer states [164, 165, 166, 167], quantum phase states [168], noninteracting Fermionic
states [169], Clifford circuits with a small number of T gates [165, 170, 167], Pauli channels
under structural assumptions [60, 62, 171, 172], and interacting Hamiltonian dynamics [173,
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174, 175, 176, 177, 178, 179, 180, 181, 182, 183] (see [184] for a recent survey). Most of
these examples correspond to quantum circuit families that are classically easy to simulate
[185, 186, 187, 188, 189]. In contrast, sampling from the output distribution of constant-
depth quantum circuits is classically hard even when restricted to a 2D lattice [118, 119].
The experimental effort to characterize NISQ devices motivates the question of how to per-
form tomography for states and processes generated by shallow quantum circuits. While
these states can be learned sample-efficiently using shadow tomography [190, 191, 103], no
computationally efficient algorithms are known.

3.1.2 Our Results

We first focus on cases where one is given black-box access to the unknown unitary in
(1) learning general shallow quantum circuits and (2) learning geometrically-local shallow
quantum circuits. We then consider the more restricted model where one is only provided
access to copies of an unknown state and focus on (3) learning quantum states prepared by
geometrically-local shallow quantum circuits on finite-dimensional lattices.

3.1.2.1 Learning general shallow quantum circuits

Let U be an unknown n-qubit unitary generated by a shallow quantum circuit. The learning
algorithm uses a randomized measurement dataset consisting of N samples about U [192,
193, 194, 195, 127, 150, 151]. This dataset has been proposed as the classical shadow of U
[192, 193, 194]. Each classical data sample specifies a random n-qubit product input state
|ψℓ⟩ =

⊗n
i=1 |ψℓ,i⟩ and a randomized Pauli measurement outcome |ϕℓ⟩ =

⊗n
i=1 |ϕℓ,i⟩ on the

output states U |ψℓ⟩, where |ψℓ,i⟩ , |ϕℓ,i⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |y+⟩ , |y−⟩} are single-qubit
stabilizer states. Each data sample can be generated by a single query to U . Our goal is to
learn U within a small diamond distance. The following results have the form of learning
a circuit V acting on 2n qubits, such that ∥V − U ⊗ U †∥⋄ ≤ ε. Hence, V can be used to
implement U by tracing out the n-qubit ancilla system.

Our first main result shows that one can learn U with a polynomial sample and computa-
tional complexity, with only the assumption that U is constant-depth (i.e., U has arbitrary
unknown connectivity). Furthermore, the result applies even when the circuit generating
U can have any number m of ancilla qubits used as working space and can have arbitrary
two-qubit gates in SU(4) between any pair of the n + m qubits so long as the resulting
operation on the n system qubits is unitary. The learning algorithm is fully classical given
the randomized measurement dataset.

Theorem 3.1 (Learning shallow quantum circuits; see Theorem 3.6). Given an unknown
n-qubit unitary U generated by a constant-depth circuit over any two-qubit gates between any
pair of qubits. One can learn a constant-depth circuit approximating U to diamond distance
ε with high probability from N = O(n2 log(n)/ε2) samples about U and poly(n)/ε2 classical
running time.
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When the circuit is over a finite gate set, U can be learned to zero error with high
probability from N = O(log n) samples and poly(n) time.

3.1.2.2 Learning geometrically-local shallow quantum circuits

The algorithm for learning general shallow quantum circuits runs in polynomial time but
with a large exponent. Furthermore, the depth of the learned circuit V , while constant,
could be substantially greater than the depth of U . Motivated by the fact that most realistic
quantum systems are geometrically local on a finite-dimensional lattice, it is natural to
wonder if these aspects can be improved when learning geometrically-local quantum circuits
on lattices. Next, we show that this is indeed the case.

See Theorem 3.7 for a related result on learning shallow circuits over any geometry
represented by a bounded-degree graph.

Theorem 3.2 (Learning geometrically-local shallow circuits; see Theorem 3.8). Given an
unknown n-qubit geometrically-local depth-d quantum circuit U over a k-dimensional lattice
with d, k = O(1). One can learn a geometrically-local shallow circuit that approximates U
to diamond distance ε with high probability from N = O(n2 log(n)/ε2) classical data samples
and either

• O(n3 log(n)/ε2) classical running time with a learned circuit depth of (k+1)44(8kd)k +1.

• (n/ε)O((8kd)
k+1) classical running time with a learned circuit depth of (k+1)(2d+1)+1.

When the circuit is over a finite gate set, U can be learned to zero error with high probability
from N = O(log n) samples and O(n log(n)) time with a learned circuit depth of (k+1)(2d+
1) + 1.

This shows that in the geometrically local setting, the learned circuit depth can achieve a
linear blow-up. Furthermore, the learning algorithm works for d = polylog(n) depth circuits
at the cost of quasipolynomial running time.

We remark that the more formal statement of the above theorem, which is labeled in this
work as Theorem 3.8, can be straightforwardly generalized to a larger class of unitaries called
quantum cellular automata (QCA), which play an important role in understanding quantum
phases of matter [196, 197, 198, 199]. These are unitaries that map any geometrically local
operator to a geometrically local operator in the Heisenberg picture. For any such unitary,
our proof technique applies without any modification, yielding an efficient algorithm for
learning any QCAs. Interestingly, while shallow quantum circuits are QCAs by definition,
the converse statement is not necessarily true. For instance, shifting a set of qubits on a one-
dimensional lattice trivially maps local operators to local operators. However, it is impossible
to decompose this unitary into a geometrically local shallow quantum circuit [197]; see
Ref. [198, 199] for other nontrivial examples of QCA. Therefore, our algorithm is applicable
beyond shallow quantum circuits.
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So far, we have been focusing on learning a shallow quantum circuit from a classical
randomized measurement dataset. A natural question asks if further improvement is possible
when we allow more general quantum query access to U . In the following, we show that by
using quantum queries to U , an exponential improvement in query complexity is possible
and this result is asymptotically-optimal in both time and query complexity for learning
geometrically-local shallow circuits over finite gate sets. Surprisingly, quantum access also
allows these circuits to be with certainty, dropping the familiar qualifier of high probability.
The matching lower bounds stem from the need to query at least Ω(1) times to obtain any
information about U and to write down the learned n-qubit circuit, which requires Ω(n)
time.

Theorem 3.3 (Learning shallow circuits with quantum queries; see Theorem 3.9). An un-
known n-qubit geometrically-local shallow quantum circuit U over a finite gate set can be
learned to zero error with zero failure probability using Θ(1) queries to U and Θ(n) quantum
computational time.

3.1.2.3 Learning output states of geometrically-local shallow quantum circuits

Besides learning the n-qubit unitary U using input-output queries, it is natural to study
the problem of learning a pure quantum state |ψ⟩ prepared by a shallow quantum circuit
U , i.e., |ψ⟩ = U |0n⟩. Here, instead of given access to U , we are only given copies of the
pure state |ψ⟩ as in quantum state tomography [200, 158]. As discussed in Section 3.1.1,
most families of efficient learnable quantum states, such as matrix product states [158, 159,
160] and stabilizer states [164, 165, 166, 167], correspond to quantum circuit families that
are classically easy to simulate [186, 187]. In contrast, constant-depth quantum circuits are
classically hard to simulate even when restricted to a 2D lattice [118, 119].

Learning |ψ⟩ = U |0n⟩ from copies of |ψ⟩ has an incomparable difficulty to the earlier
results because it has a less stringent requirement (learning an output state of U) but a
more restricted access model (accessing copies of |ψ⟩ instead of U). While |ψ⟩ = U |0n⟩
can be learned from polynomially many copies [162, 201], the restricted access model makes
the problem computationally more challenging, and the question of whether there exists a
polynomial time algorithm remains open.

Here we give two efficient algorithms. The first works for general finite dimensional
lattices, and the learned circuit uses linear number of ancilla qubits.

Theorem 3.4 (Learning quantum states prepared by shallow circuits; see Theorem 3.13).
There is an algorithm that, given copies of an unknown state |ψ⟩, with the promise that
|ψ⟩ = U |0n⟩ where U is an unknown depth-d circuit acting on a k-dimensional lattice (using
arbitrary 2-qubit gates), outputs a depth-(2k + 1)d circuit W that prepares |ψ⟩ up to 0.01
trace distance, with success probability 0.99. The algorithm uses M copies of |ψ⟩ and runs
in time T , where

M = Õ(n4) · 2O(c), T = Õ(n4) · 2O(c) + (nkd · c)O(d·c) . (3.1)
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Here, c = O((3k)k+2d)k, and W uses r · n ancilla qubits where r > 0 can be chosen to be an
arbitrarily small constant.

Note that the running time is polynomial when d = O(1), and quasi-polynomial when
d = polylog(n). In addition, the dominating term in the running time (second term in T )
can be significantly improved when assuming a discrete gate set.

The second algorithm is specialized to 2D lattice. This achieves an improvement relative
to the above result in the sense that the learned circuit does not use any ancilla qubits.

Theorem 3.5 (Learning quantum states prepared by shallow circuits in 2D; see Theo-
rem 3.15). Given copies of an unknown state |ψ⟩, with the promise that |ψ⟩ = U |0n⟩ for an
unknown n-qubit circuit U with circuit depth d = O(1) acting on a 2-dimensional lattice,
and assume that each two-qubit gate in U is chosen from a finite gateset of constant size.
Then there is an algorithm that learns a circuit V with depth 2c·d

2
(for some universal con-

stant c) acting on n qubits (without using any ancilla), such that
∣∣⟨0n|V † |ψ⟩

∣∣2 ≥ 1− ε with

probability 1− δ, using O(log(n/δ)) copies of |ψ⟩ and time (n/ε)O(1).

3.1.3 Discussion

Higher circuit depth. In the general setting without geometric locality, we show that log-
depth circuits require exponentially many quantum queries to learn within a small diamond
distance (see Prop. 3.3), which is proven by showing that log-depth circuits can implement
Grover’s oracle over 2n elements and applying the Grover lower bound [202]. Therefore, our
result for efficiently learning general constant-depth quantum circuits cannot be extended to
much higher depth.

In the geometrically-local setting, Theorem 3.8 implies polynomial-time learnability for
quantum circuits on a k-dimensional lattice up to log(n)1/k depth, and quasi-polynomial
time for up to polylog(n) depth. What structural assumptions allow us to efficiently learn
quantum circuits beyond polylog-depth remains an important open question.

Worst-case vs average-case distance. Motivated by the above discussion, it is natu-
ral to consider learning quantum circuits under weaker notions of distance, analogous to
the classical notion of PAC learning. The standard notion of average-case distance in the
literature [203, 204] is defined as the distance between output states when averaging over
input states generated by Haar random unitaries. While learning polynomial-size quantum
circuits to small average-case distance can be achieved with polynomial sample complexity
[127, 150], the computational complexity of achieving a small average-case distance remains
an open question.

In addition, Ref. [193] considered a weaker notion of an average-case error where the goal
is to learn observables of the output state for random input states and showed that under
this notion, any quantum circuit (even those with exponential depth) could be learned in
quasi-polynomial time.
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3.2 Learning shallow quantum circuits

3.2.1 Technical overview

Let U be an unknown n-qubit circuit of depth d = O(1). We consider the following two
tasks in this chapter: (1) Learn a constant-depth circuit Û from random data samples from
U or query access to U , such that U and Û are close in diamond distance. (2) Learn a
constant-depth circuit Û from measuring copies of the n-qubit state |ψ⟩ = U |0n⟩, such that
Û |0n⟩ and |ψ⟩ are close in trace distance.

A basic idea to learn U is to produce a guess Û and check if Û is close to U (i.e., Û † · U
is close to identity). While the search space over Û is exponentially large, the locality of
shallow circuits allows us to search more efficiently. For example, in the following figure, we
can find a small local inversion circuit V1, that disentangles qubit 1 (the rightmost qubit),
i.e., UV1 ≈ U ′ ⊗ I1. Here, the input wires are at the bottom, and the output wires are at
the top; V1 is applied before applying U .

U

V1

≈ U ′ (3.2)

This follows from a two-step argument. First, the existence of such a local inversion circuit
is guaranteed by the locality of U , as undoing the gates in the backward lightcone (shaded
blue region) of qubit 1 forms such a local inversion. Second, given a guess V1, we develop
an efficient procedure to check approximate local identity, i.e. UV1 ≈ U ′ ⊗ I1 for some n− 1
qubit unitary U ′. This allows us to find local inversions via brute force enumerate-and-test
since the search space is small (as V1 has depth d and is supported within a constant size
region). Note that after this exhaustive process, we may find a list of valid local inversions.
The “ground truth” local inversion compatible with the unique global inverse of the unitary
is among them, but we do not know which one. Similarly, given copies of a state |ψ⟩ = U |0n⟩
we can find small local inversion circuits V1 to disentangle qubit 1, V1 |ψ⟩ ≈ |ψ′⟩ ⊗ |0⟩1 for
some n− 1 qubit state |ψ′⟩.

The above argument shows a procedure to efficiently learn local inversions for each qubit
for both of our learning problems. The central question is whether this suffices to reconstruct
the circuit and, if so, whether the reconstruction can be done efficiently. The main obstacle
is that local inversions for each qubit are not unique, and two local inversions on neighboring
qubits may not be consistent in the overlapping regions. Finding a consistent set of local
inversions may require solving a constraint satisfaction problem that is computationally hard.
Next, we show how to overcome this obstacle.
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3.2.1.1 Sewing local inversions

Suppose we have learned a set of local inversions Ci for an unknown shallow quantum circuit
U for each qubit i. Here, we show how to reconstruct the circuit using the learned local
information. Surprisingly, the algorithm only requires an arbitrary element Vi ∈ Ci for each
qubit i, without the need to search for the element compatible with the global inverse, which
could require solving a complicated constraint satisfaction problem. The formal statements
on this algorithmic technique are given in Section 3.2.4.3.

For simplicity, here we first assume all the local inversions are found exactly without any
approximation. Take any V1 ∈ C1, applying it to the unknown circuit U gives UV1 = U ′⊗ I1,
see Eq. (3.2), where we imagine qubit 1 to be the rightmost qubit and use a simple 1D
geometry for illustration. This represents some progress: applying V1 reduces the unknown
n-qubit unitary U to an unknown (n − 1)-qubit unitary U ′ (note that U ′ may not be a
shallow circuit). A natural thought is whether we can keep making this progress by applying
local inversion on other qubits. The main issue here is that now the unitary has changed.
For example, consider qubit 2 which is right next to qubit 1. Due to the fact that they
have overlapping lightcones, some local inversion V2 ∈ C2 may no longer work for the new
circuit UV1. Separately, we can attempt to find local inversion for qubit 2 with respect to
this new circuit UV1; however, doing so might disturb the progress we have made on qubit
1 and therefore requires coordinated effort across different qubits. This is exactly the type
of constraint satisfaction problem that we want to avoid.

Here we introduce a general approach to keep making progress: the idea is to introduce
a fresh ancilla qubit, swap it with qubit 1, and then undo the local inversion V1. We show
this in two steps: first, introduce a fresh ancilla qubit (red) and swap it with qubit 1,

U

V1

= U ′ (3.3)

and then apply V †1 ,

U

V1

V †1

= U ′

V †1

= U (3.4)

To explain the second equality of Eq. (3.4), note that without the swap operation, the above
procedure is not doing anything (since we just perform some operation and undo it). In
the second picture of Eq. (3.4), after experiencing V †1 , the red wire corresponds to the first
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output wire of U , but then it gets swapped out to the ancilla. Therefore, the overall effect
is equivalent to performing a swap at the end after applying U .

The key reason that the above procedure is useful is because it repairs the circuit. This
allows us to continue doing the same operation on qubit 2 because even though a lot of
operations were applied before U (see the first picture in Eq. (3.4)), it is equivalent to as if
nothing were applied before U (see the last picture in Eq. (3.4)); therefore we can similarly
apply V †2 , swap with a new fresh qubit, and V2 before U , achieving the effect of swapping
qubit 2 at the end. Repeating the above procedure for all qubits, we have learned a circuit
Û acting on 2n qubits that satisfies

U

learned circuit Û

= U (3.5)

which implies that Û = S · (U⊗U †), where S denotes the global swap operation between the
system and ancilla qubits. To implement U using the learned circuit, on input ρ we initialize
an ancilla register with some arbitrary state (say |0n⟩), apply S · Û and trace out the ancilla
register, and the output state equals UρU †. We can use a similar procedure to implement
U †. Thus, the above procedure simultaneously learns to implement U and U †, using access
only to U .

Finally, we remark that the learned circuit S · Û is shallow. To see this, note that
S = SWAP⊗n is depth-1. Û consists of unitaries of the form Wi := Vi · SWAP · V †i that are
local : each of them supports on the lightcone of qubit i, as well as an extra ancilla qubit.
Therefore we can implement non-overlapping Wis simultaneously, and all of the Wis can be
stacked into a constant number of layers since, at most, a constant number of qubits share
overlapping lightcones.

To achieve the optimal query and time complexity of Θ(1),Θ(n) for learning geometrically-
local shallow quantum circuits over finite gate sets in Theorem 3.3, we present a quantum
learning algorithm that finds the exact local inversions for all n qubits with zero failure prob-
ability by querying U for only O(1) times. This surprising scaling is achieved by combining
a few ideas: (a) coloring the geometry described by a bounded-degree graph, (b) decoupling
the n-qubit unitary U into O(n) few-qubit channels based on the coloring, and (c) designing
a tournament to perfectly distinguish between two classes of few-qubit quantum channels:
those that form an exact local identity versus those that do not. The tournament uses the
perfect distinguishability of certain pairs of CPTP maps shown in [205], where we design the
few-qubit channels to ensure perfect distinguishability. Then, the learning algorithm finds a
good order to sew the local inversions to produce a constant-depth circuit implementation
for the unknown constant-depth n-qubit circuit U .
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3.2.1.2 Sewing Heisenberg-evolved Pauli operators

Next, we describe a simpler technique based on directly sewing the Heisenberg-evolved Pauli
operators U †PiU (Pi is a single-qubit Pauli acting on qubit i) and discuss how it is closely
related to local inversion. Section 3.2.4.4 provides a detailed discussion of this technique.

We first describe how to learn the Heisenberg-evolved Pauli operators. Because U is a
shallow quantum circuit, each operator U †PiU acts on a constant number of qubits. The
few-qubit observable U †PiU can be reconstructed from the randomized measurement dataset.
Let the random input product state be |ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψn⟩, where |ψi⟩ is a random one-
qubit stabilizer state. Because each qubit in the output state is measured in a random
X, Y, Z basis with equal probability, we will measure Pi on the output state U |ψ⟩⟨ψ|U †
with probability 1/3. This allows us to estimate ⟨ψ|U †PiU |ψ⟩. Then, we show that we can
efficiently reconstruct U †PiU from a small number of different random input states.

After learning the 3n Heisenberg-evolved Pauli operators U †PiU , we present a direct
approach for sewing them into a circuit. This approach uses the identity

SWAP =
1

2

∑

P∈{I,X,Y,Z}

P ⊗ P.

Let Si be the SWAP gate acting on the i-th system qubit and the i-th ancilla qubit, let
S = ⊗ni=1Si be the global swap between system and ancilla, and let Wi := U †SiU =
1
2

∑
P∈{I,X,Y,Z} U

†PiU ⊗P, ∀i = 1, . . . , n. From the previous technique for sewing local inver-
sion, we have proven the identity

U ⊗ U † = S ·
n∏

i=1

(
Vi · Si · V †i

)
, (3.6)

where Vi satisfies UVi = U ′(i) ⊗ Ii is an arbitrary exact local inversion on qubit i. We can
see that

Vi · Si · V †i = U †UVi · Si · V †i U †U = U †SiU = Wi =⇒ U ⊗ U † = S ·
n∏

i=1

Wi = S ·
n∏

i=1

(
U †SiU

)
.

(3.7)
The new equation can also be seen by itself: simply cancel U with U † in the product so that
the right-hand side becomes SU †SU , and observe that

U U † = U †

U

(3.8)

As we can see, the Heisenberg-evolved Pauli operators can be directly sewn into U ⊗ U †.
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This outlines the following procedure to learn U : first learn the Heisenberg-evolved Pauli
operators {U †PiU}ni=1, combine them to form {Wi}ni=1 according to

Wi =
1

2

∑

P∈{I,X,Y,Z}

U †PiU ⊗ Pi,

and reconstruct the circuit using {Wi}ni=1. Note that each Wi acts on a constant number k
of qubits and can be directly compiled into a circuit of depth 2O(k). To further optimize the
depth of the learned circuit, notice that each Wi has the form Wi = U †SiU = ViSiV

†
i , i.e.,

it can be represented by a depth-(2d+ 1) circuit. We can find such a representation for Wi

by brute-force enumerating all depth-(2d + 1) circuits acting on k qubits, and the learned
circuit has the same form as in Section 3.2.1.1. This thus provides a simpler framework for
learning an unknown shallow quantum circuit U using a classical dataset containing random
samples about U .

To prove Theorem 3.1 and 3.2 on learning general and geometrically-local shallow quan-
tum circuits, we combine this framework with some additional ideas on (a) coloring the
k-dimensional lattices to ensure all qubits with the same color has nonoverlapping lightcone,
(b) truncating small Fourier coefficients to ensure the learned observables acts only on qubits
in the support of the true observables, (c) compiling the Heisenberg-evolved Pauli operator
when over a finite gate set, and (d) finding a good order to sew the Heisenberg-evolved Pauli
operators into a short-depth circuit.

3.2.2 Preliminaries

Let stab1 = {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |y+⟩ , |y−⟩} be the set of single-qubit stabilizer states. Given
an n-qubit unitary U , we use the Catholic letter U to denote the corresponding CPTP
map U(X) = UXU †. We denote I as the identity CPTP map. Given a Pauli operator
P ∈ {X, Y, Z}, we consider Pi to be a multi-qubit operator that is equal to the tensor
product of P on the i-th qubit and identity on the rest of the qubits. We also consider the
following definitions.

Definition 3.1 (Reduced channel). Given n > 0, i ∈ {1, . . . , n}, and an n-qubit CPTP
map C. The reduced channel EC̸=i of the CPTP map C with the i-th qubit removed is

EC̸=i(ρ ̸=i) = Tri

(
C
(
I(i)

2
⊗ ρ̸=i

))
, (3.9)

where ρ ̸=i is a density matrix on all except the i-th qubit, I(i) is the identity on the i-th qubit,
and Tri is the partial trace over the i-th qubit. For k ∈ {0, 1, . . . , n}, we define

EC>k(ρ>k) = Tr≤k

(
C
(
I(1,...,k)

2k
⊗ ρ>k

))
, (3.10)
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where ρ>k is a density matrix on all except the first k qubits, I(1,...,k) is the identity on the
first k qubits, and Tr≤k is the partial trace over the first k qubits. Given a subset of qubits
S ⊆ {1, . . . , n}, we define

ECS(·) = Tr/∈S

(
C
(
I(/∈S)

2n−|S|
⊗ (·)

))
, (3.11)

where I(/∈S) is the identity on qubits not in S and Tr/∈S is the partial trace over qubits not in
S.

Definition 3.2 (Fidelity). Given two quantum states ρ, σ. The fidelity F(ρ, σ) ∈ [0, 1]

between the two states is defined as Tr
(√√

ρσ
√
ρ
)2
. If σ = |ψ⟩⟨ψ|, then F(ρ, σ) = ⟨ψ| ρ |ψ⟩.

Fact 3.1 (Properties of fidelity [206]). The function 1− F (ρ, σ) satisfies

1− F (ρ, σ) = 1− F (σ, ρ) (symmetric); (3.12)

1− F (ρ, σ) ≥ 0 (nonnegative); (3.13)

1− F (ρ, σ) = 0 ⇐⇒ ρ = σ (identity of indiscernible). (3.14)

But 1−F does not satisfy triangle inequality. In contrast, Θ(ρ, σ) := arcsin
(√

1− F (ρ, σ)
)
∈

[0, π/2] is symmetric, nonnegative, and satisfies identity of indiscernible and triangle inequal-
ity,

Θ(ρ, σ) ≤ Θ(ρ, τ) + Θ(τ, σ). (3.15)

Hence, θ(ρ, σ) is a metric (known as the Fubini-Study metric), but 1 − F (ρ, σ) is not. In
addition to the metric properties, we also have

1− F (ψ, ρ) ≤ 1

2
∥ψ − ρ∥tr, (3.16)

for any state ρ and any pure state ψ, where ∥·∥tr is the trace norm. Also, the fidelity is
monotonic increasing under CPTP maps,

F (E(ρ), E(σ)) ≥ F (ρ, σ), (3.17)

for any CPTP map E and any state ρ, σ.

Definition 3.3 (Average-case distance). Given two n-qubit CPTP maps E1, E2. The average-
case distance Dave(E1, E2) between the two CPTP maps is defined as

E
|ψ⟩:Unif

[
1−F(E1(|ψ⟩⟨ψ|), E2(|ψ⟩⟨ψ|))

]
, (3.18)

where E|ψ⟩:Unif considers averaging under the uniform measure over pure states.
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Fact 3.2 (Haar average for average-case distance [203]). Given an n-qubit CPTP map E and
an n-qubit unitary U . We have the following identity,

Dave(E ,U) =
2n

2n + 1

(
1− 1

4n

∑

i,j

⟨i| E
(
U † |i⟩⟨j|U

)
|j⟩
)
, (3.19)

after averaging over the uniform measure over pure states.

Proposition 3.1 (Normalized Frobenius norm). Given two n-qubit unitaries U1, U2. We
have

1

3
min
ϕ∈R

∥∥eiϕU1 − U2

∥∥2
F

2n
≤ Dave(U1,U2) ≤ min

ϕ∈R

∥∥eiϕU1 − U2

∥∥2
F

2n
, (3.20)

where ∥X∥F =
√

Tr(X†X) is the Frobenius norm of X.

Proof. From [203], the average-case distance (also known as the average gate fidelity) satisfies

Dave(U1,U2) =
2n

2n + 1

(
1− 1

4n

∣∣∣Tr
(
U †1U2

)∣∣∣
2
)
. (3.21)

Expanding the definition of Frobenius norm, we have

min
ϕ∈R

∥∥eiϕU1 − U2

∥∥2
F

2n
= 2


1−

∣∣∣Tr
(
U †1U2

)∣∣∣
2n


 . (3.22)

Recall that

0 ≤

∣∣∣Tr
(
U †1U2

)∣∣∣
2n

≤ 1. (3.23)

Hence, we have

1−

∣∣∣Tr
(
U †1U2

)∣∣∣
2n


 ≤


1 +

∣∣∣Tr
(
U †1U2

)∣∣∣
2n




1−

∣∣∣Tr
(
U †1U2

)∣∣∣
2n


 ≤ 2


1−

∣∣∣Tr
(
U †1U2

)∣∣∣
2n


 .

(3.24)
This immediately implies that

2

3


1−

∣∣∣Tr
(
U †1U2

)∣∣∣
2n


 ≤ 2n

2n + 1


1−

∣∣∣Tr
(
U †1U2

)∣∣∣
2

4n


 ≤ 2


1−

∣∣∣Tr
(
U †1U2

)∣∣∣
2n


 (3.25)

which is equivalent to

1

3
min
ϕ∈R

∥∥eiϕU1 − U2

∥∥2
F

2n
≤ Dave(U1,U2) ≤ min

ϕ∈R

∥∥eiϕU1 − U2

∥∥2
F

2n
. (3.26)

This concludes the proof.
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Definition 3.4 (Worse-case distance / diamond distance). Given two n-qubit CPTP maps
E1, E2. The worst-case distance D⋄(E1, E2) between the two CPTP maps is defined as

1

2
max
ρ
∥(E1 ⊗ I)(ρ)− (E2 ⊗ I)(ρ)∥1 ≜

1

2
∥E1 − E2∥⋄, (3.27)

where ρ is maximized over 2n-qubit states and I(>n) is an identity map acting on the n
qubits. D⋄(E1, E2) is also known as diamond distance and ∥·∥⋄ is the diamond norm.

Fact 3.3 (Diamond distance for unitaries; Prop. 1.6 of [207]). For any two unitaries U1, U2,
we have

min
ϕ∈R

∥∥eiϕU1 − U2

∥∥
∞ ≤ ∥U1 − U2∥⋄ ≤ 2 min

ϕ∈R

∥∥eiϕU1 − U2

∥∥
∞. (3.28)

Fact 3.4 (Exact unitary synthesis; see e.g. [208, 209]). Given any unitary U acting on k
qubits, there is an algorithm that outputs a circuit (acting on k qubits) consisting of at most
4k two-qubit gates, which exactly implements the unitary U , in time 2O(k).

Corollary 3.1 (Exact unitary synthesis in geometrically-local circuit). Given any unitary U
acting on k qubits and a connected graph G over k qubits, there is an algorithm that outputs
a geometrically-local circuit (acting on k qubits and consists only of gates between connected
qubits) consisting of at most 2k4k two-qubit gates, which exactly implements the unitary U ,
in time 2O(k).

Proof. For each two-qubit gate in the original synthesis protocol, which may not be geometri-
cally-local under the connectivity graph G, we consider at most k − 1 swap gates to move
one of the qubits from the original location to a location next to the other qubit, apply the
two-qubit gate, then perform at most k−1 swap gates to move the qubit back to the original
location.

3.2.3 Approximate local identity

A central concept that we will use to define local inversion for representing n-qubit unitaries is
the ε-approximate local identity. In this section, we provide the properties for understanding
the concept of approximate local identity. In particular, we will consider a strong and a weak
form of local identity in Section 3.2.3.1 and 3.2.3.2. In each section, we state the definition,
show how to characterize if a unitary map forms a strong/weak ε-approximate local identity,
and prove how local identity relates to global identity.

3.2.3.1 Strong ε-approximate local identity

We begin by looking at a strong form of approximate local identity. The idea is that the
action of the n-qubit unitary U on the i-th qubit is close to the identity map, while the action
on the other qubits is close to the reduced channel of U with the i-th qubit removed (feed in
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a maximally mixed state on qubit i and trace out qubit i at the end). Recall Definition 3.1
of reduced channel,

EU̸=i(ρ ̸=i) = Tri

(
U
(
I(i)

2
⊗ ρ ̸=i

))
, (3.29)

where ρ̸=i is a density matrix on all except the i-th qubit, I(i) is the identity on the i-th
qubit, and Tri is the partial trace over the i-th qubit.

Definition 3.5 (Strong ε-approximate local identity). Given n > 0, ε ≥ 0, and i ∈ {1, . . . , n}.
An n-qubit unitary U is a strong ε-approximate local identity on the i-th qubit if

D⋄
(
U , I(i) ⊗ EU̸=i

)
≤ ε, (3.30)

where I(i) ⊗ EU̸=i is an n-qubit CPTP map that acts as identity on the i-th qubit.

While diamond distances are typically hard to characterize, the strong ε-approximate
local identity can be characterized up to a constant factor by studying the Heisenberg evolu-
tion of single-qubit Pauli observables under the n-qubit unitary U . Hence, in order to check
if an n-qubit unitary U strong approximate local identity on the i-th qubit, all we need
to check is whether the three Pauli observables Xi, Yi, Zi remains approximately unchanged
after Heisenberg evolution under U .

Lemma 3.1 (Characterization of strong ε-approximate local identity). Given n > 0, ε ≥ 0,
and an n-qubit unitary U . If U is a strong ε-approximate local identity on the i-th qubit,
then

1

2

∥∥U †PiU − Pi
∥∥
∞ ≤ ε,∀P ∈ {X, Y, Z}, (3.31)

where Pi is the Pauli operator P acting only on qubit i, and U †PiU is the Heisenberg evolution
of Pi under U . Furthermore, if the following holds,

1

2

∑

P∈{X,Y,Z}

∥∥U †PiU − Pi
∥∥
∞ ≤ ε, (3.32)

then U is a strong ε-approximate local identity on the i-th qubit.

Proof. We start by showing the first claim. Consider any n-qubit pure state |ψ⟩. We have
∥∥U †PiU − Pi

∥∥
∞ = max

|ψ⟩

∣∣⟨ψ|
(
U †PiU − Pi

)
|ψ⟩
∣∣ . (3.33)

By the definition of CPTP maps, we have

⟨ψ|U †PiU |ψ⟩ = Tr (PiU (|ψ⟩⟨ψ|)) . (3.34)

From the definition of diamond distance and of strong ε-approximate local identity on the
i-th qubit, we have the following inequality,

1

2

∣∣Tr (PiU (|ψ⟩⟨ψ|))− Tr
(
Pi
(
I(i) ⊗ EU̸=i

)
(|ψ⟩⟨ψ|)

)∣∣ ≤ ε. (3.35)
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By the definition of a CPTP map, we have

Tr ̸=i
(
EU̸=i(ρ)

)
= ρ (3.36)

for any quantum state ρ, where Tr ̸=i traces out all qubits except for qubit i. Hence, we have
Tr
(
Pi
(
I(i) ⊗ EU̸=i

)
(|ψ⟩⟨ψ|)

)
= Tr(Pi |ψ⟩⟨ψ|). Together, we obtain the first claim.

The second claim uses the following equality defined over an n+ 1-qubit system,

1

2


In+1 +

∑

P∈{X,Y,Z}

Pi ⊗ P


 = Si,n+1, (3.37)

where In+1 is an n+1-qubit identity, Pi is an n-qubit unitary that acts as the Pauli operator
P on the i-th qubit, and Si,n+1 is the swap operator between qubit i in the first n qubits and
the last qubit (qubit n + 1). We interpret the error in the Heisenberg-evolved single-qubit
Pauli observables as an error in commuting the Pauli observable Pi and the n-qubit unitary
U , ∥∥U †PiU − Pi

∥∥
∞ = ∥PiU − UPi∥∞. (3.38)

From this interpretation, we have the following inequalities,

∥Si,n+1(U ⊗ I)− (U ⊗ I)Si,n+1∥∞ ≤
1

2

∑

P∈{X,Y,Z}

∥(Pi ⊗ P )(U ⊗ I)− (U ⊗ I)(Pi ⊗ P )∥∞

(3.39)

≤ 1

2

∑

P∈{X,Y,Z}

∥(PiU − UPi)⊗ P∥∞ (3.40)

=
1

2

∑

P∈{X,Y,Z}

∥PiU − UPi∥∞ ≤ ε. (3.41)

The above inequality can be easily generalized to any of the following,

∥Si,j(U ⊗ Im)− (U ⊗ Im)Si,j∥∞ ≤ ε, (3.42)

where m ≥ 1, n + 1 ≤ j ≤ n + m, and Im is the identity operator on m qubits. Recall the
formal definition diamond distance from Definition 3.4,

D⋄ (E1, E2) =
1

2
max
ρ
∥(E1 ⊗ In)(ρ)− (E2 ⊗ In)(ρ)∥1, (3.43)

where ρ is a density matrix over 2n qubits, and In is the identity map over n qubits. From
Fact 3.3, for any two unitaries U1, U2, we have ∥U1 − U2∥⋄ ≤ 2∥U1 − U2∥∞. We obtain the
following from Eq. (3.42),

∥∥∥Si,j(U ⊗ Im)− (U ⊗ Im)Si,j
)∥∥∥
⋄
≤ 2∥Si,j(U ⊗ Im)− (U ⊗ Im)Si,j∥∞ ≤ 2ε. (3.44)
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The strong ε-approximate local identity considers

D⋄
(
U , I(i) ⊗ EU̸=i

)
=

1

2
max
ρ

∥∥(U ⊗ In)(ρ)− (I(i) ⊗ EU̸=i ⊗ In)(ρ)
∥∥
1
. (3.45)

We add one more qubit to form 2n+ 1 qubits. The additional qubit begins in a maximally
mixed state I/2, stays in I/2, and is traced out at the end. Let us now consider the following
series of analysis,

∥∥(U ⊗ In)(ρ)− (I(i) ⊗ EU̸=i ⊗ In)(ρ)
∥∥
1

(3.46)

=
∥∥Tr2n+1 [(U ⊗ In+1)(ρ⊗ (I/2))]− (I(i) ⊗ EU̸=i ⊗ In)(ρ)

∥∥
1

(3.47)

=
∥∥Tri [(Si,2n+1 ◦ (U ⊗ In+1)) (ρ⊗ (I/2))]− (I(i) ⊗ EU̸=i ⊗ In+1)(ρ⊗ (I/2))

∥∥
1

(3.48)

≤
∥∥Tri [((U ⊗ In+1) ◦ Si,2n+1) (ρ⊗ (I/2))]− (I(i) ⊗ EU̸=i ⊗ In+1)(ρ⊗ (I/2))

∥∥
1

+ 2ε (3.49)

=
∥∥(I(i) ⊗ EU̸=i ⊗ In+1)(ρ⊗ (I/2))− (I(i) ⊗ EU̸=i ⊗ In+1)(ρ⊗ (I/2))

∥∥
1

+ 2ε = 2ε. (3.50)

The only inequality above uses Eq. (3.44). We have proved the claim.

The following two lemmas give the relationships between global and local identity checks.
The basic idea is to check whether a map is close to identity by checking whether the map
forms approximate local identities on all the n qubits. If the map is far from identity, then
the map is not an approximate local identity for some qubits. If the map is an approximate
local identity for all qubits, then the map is close to the identity.

Lemma 3.2 (Global non-identity check from local non-identity checks). Given an integer
n > 0 and an n-qubit unitary U . If there exists ε > 0 and i ∈ {1, . . . , n}, such that U is not
a strong ε-approximate local identity on the i-th qubit, then ∥U − I∥⋄ ≥ ε/2.

Lemma 3.3 (Global identity check from local identity checks). Given an integer n > 0 and
an n-qubit unitary U . If there exists ε1, . . . , εn > 0, such that U is a strong εi-approximate
local identity on the i-th qubit for all i ∈ {1, . . . , n}, then ∥U − I∥⋄ ≤ 3

∑n
i=1 εi.

We give proofs of these two lemmas at the end of this subsection. Lemma 3.2 is proven
by contradiction. To prove Lemma 3.3, we consider a stabilizer decomposition for a single
qubit.

Proposition 3.2 (Single-qubit stabilizer decomposition). Given an integer n > 0 and an
n-qubit density matrix ρ. For any S ⊆ {1, . . . , n}, ρ can be written as a linear combination
of R = 10|S| n-qubit density matrices ρ1, . . . , ρR, ρ =

∑R
r=1 αrρr, where αr ∈ R and ρr is a

density matrix that satisfies

ρr =
⊗

j∈S

|sj⟩⟨sj| ⊗ TrS(ρr), (3.51)

for some |sj⟩ ∈ stab1. We also have
∑R

r=1 αr = 1 and
∑R

r=1 |αr| = 3|S|.
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Proof. Given an integer i ∈ {1, . . . , n}, consider the following linear map Mi which equals
to the identity channel on i-th qubit,

Mi(ρ) := |0⟩⟨0|i ⊗ ⟨0| ρ |0⟩i + |1⟩⟨1|i ⊗ ⟨1| ρ |1⟩i
+

1

2
|+⟩⟨+|i ⊗ ⟨+| ρ |+⟩i −

1

2
|+⟩⟨+|i ⊗ ⟨−| ρ |−⟩i

− 1

2
|−⟩⟨−|i ⊗ ⟨+| ρ |+⟩i +

1

2
|−⟩⟨−|i ⊗ ⟨−| ρ |−⟩i (3.52)

+
1

2
|y+⟩⟨y+|i ⊗ ⟨y+| ρ |y+⟩i −

1

2
|y+⟩⟨y+|i ⊗ ⟨y−| ρ |y−⟩i

− 1

2
|y−⟩⟨y−|i ⊗ ⟨y+| ρ |y+⟩i +

1

2
|y−⟩⟨y−|i ⊗ ⟨y−| ρ |y−⟩i ,

=
10∑

r=1

br |sr⟩⟨sr|i ⊗ ⟨s′r| ρ |s′r⟩i . (3.53)

where |s⟩⟨s|i is a single-qubit stabilizer state on the i-th qubit, ⟨s| ρ |s⟩i is a partial inner
product on the i-th qubit, sr, s

′
r, br takes on the corresponding values in stab1, stab1,

{1, 1/2,−1/2}, respectively. The fact thatMi equals to the identity CPTP map I is because
of the following identity

ρ =
∑

P∈{I,X,Y,Z}

Tri(Piρ)⊗ Pi
2
, (3.54)

where Pi acts on the i-th qubit, and Eq. (3.52) follows by further decomposing the Pauli
operators into their eigenstates.

Without loss of generality, we consider k = |S| and S = {1, . . . , k}. The identity ρ =
(◦i∈SMi)(ρ) gives rise to the equality

ρ =
10∑

r1=1

· · ·
10∑

rk=1

(
k∏

i=1

bri

)
|sr1 , . . . , srk⟩⟨sr1 , . . . , srk | ⊗

〈
s′r1 , . . . , s

′
rk

∣∣ ρ
∣∣s′r1 , . . . , s′rk

〉
. (3.55)

We define r =
∑k

i=1 10i−1ri, R = 10k, Zr = Tr
(〈
s′r1 , . . . , s

′
rk

∣∣ ρ
∣∣s′r1 , . . . , s′rk

〉)
≥ 0, and

ρr =

{
|sr1 , . . . , srk⟩⟨sr1 , . . . , srk | ⊗

⟨s′r1 ,...,s′rk |ρ|s′r1 ,...,s′rk⟩
Zr

if Zr > 0,

|sr1 , . . . , srk⟩⟨sr1 , . . . , srk | ⊗ I
2n−k if Zr = 0,

(3.56)

and αr = Zr
∏k

i=1 bri . It is not hard to check that
∑

r |αr| = 3k. Together, we have the

single-qubit stabilizer decomposition ρ =
∑R

r=1 αrρr.

Proof of Lemma 3.2. We consider proof by contradiction. Assume ∥U − I∥⋄ < ε/2. For any
integer m ≥ 0, for any state |s⟩i ∈ stab1 on the i-th qubit, and for any (n − 1 + m)-qubit
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density matrix ρ,

∥∥(U ⊗ I(>n)) (|s⟩⟨s|i ⊗ ρ)− |s⟩⟨s|i ⊗ (EU̸=i ⊗ I(>n))(ρ)
∥∥
1

(3.57)

≤
∥∥(U ⊗ I(>n)) (|s⟩⟨s|i ⊗ ρ)− |s⟩⟨s|i ⊗ ρ

∥∥
1

+
∥∥|s⟩⟨s|i ⊗ ρ− |s⟩⟨s|i ⊗ (EU̸=i ⊗ I(>n))(ρ)

∥∥
1

(3.58)

≤ ∥U − I∥⋄ + ∥U − I∥⋄ < ε. (3.59)

The first inequality follows from putting in |s⟩⟨s|i ⊗ ρ and using triangle inequality. The
second inequality follows from the definition of diamond distance, the identity

∥∥|s⟩⟨s|i ⊗ ρ− |s⟩⟨s|i ⊗ (EU̸=i ⊗ I(>n))(ρ)
∥∥
1

(3.60)

=

∥∥∥∥|s⟩⟨s|i ⊗ Tri

(
I(i)

2
⊗ ρ
)
− |s⟩⟨s|i ⊗ Tri

((
U ⊗ I(>n)

)(I(i)
2
⊗ ρ
))∥∥∥∥

1

, (3.61)

and the two facts: ∥ρA ⊗ ρB − ρA ⊗ ρC∥1 = ∥ρB − ρC∥1, ∥Tri(ρA)∥1 ≤ ∥Tr(ρA)∥1 for any
density matrix ρA, ρB, ρC . The above derivation shows that U is an ε-approximate local
identity on the i-th qubit, which is a contradiction. Therefore, ∥U − I∥⋄ ≥ ε/2.

Proof of Lemma 3.3. From Theorem 3.55 in [210], we have

∥U − I∥⋄ =
∥∥U |ψ⟩⟨ψ|U † − |ψ⟩⟨ψ|

∥∥
1

(3.62)

for some n-qubit state |ψ⟩. Let I(≤k) be the identity CPTP map acting on the first k qubit.
We use a telescoping sum of the form,

U |ψ⟩⟨ψ|U † − |ψ⟩⟨ψ| =
n−1∑

k=0

[(
I(≤k) ⊗ EU>k

)
(|ψ⟩⟨ψ|)−

(
I(≤k+1) ⊗ EU>k+1

)
(|ψ⟩⟨ψ|)

]
. (3.63)

By triangle inequality, we obtain

∥U − I∥⋄ ≤
n−1∑

k=0

∥∥(I(≤k) ⊗ EU>k
)

(|ψ⟩⟨ψ|)−
(
I(≤k+1) ⊗ EU>k+1

)
(|ψ⟩⟨ψ|)

∥∥
1
. (3.64)

In the next step, we will bound each term in the above telescoping sum.
To bound the term corresponding to k ∈ {0, . . . , n − 1} in Eq. (3.64), we consider an

(k+ (n− k) + k)-qubit density matrix ρ(k). The first k qubits of ρ(k) is the maximally mixed

state I(1,...,k)

2k
. The next (n − k) qubits of ρ(k) corresponds to all except the first k qubits

in |ψ⟩⟨ψ|. The last k qubits of ρ(k) corresponds to the first k qubits in |ψ⟩⟨ψ|. Under this
definition of ρ(k), we have

∥∥(I(≤k) ⊗ EU>k
)

(|ψ⟩⟨ψ|)−
(
I(≤k+1) ⊗ EU>k+1

)
(|ψ⟩⟨ψ|)

∥∥
1

(3.65)

=
∥∥(U ⊗ I(>n)

)
(ρ(k))−

(
I(k+1) ⊗ EU̸=k+1 ⊗ I(>n)

)
(ρ(k))

∥∥
1
, (3.66)
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where
(
I(k+1) ⊗ EU̸=k+1 ⊗ I(>n)

)
(ρ(k)) is the output state after applying the (n − 1)-qubit

CPTP map EU̸=k+1 to the first n qubits except the (k + 1)-th qubit of ρ(k). We now use
the single-qubit stabilizer decomposition with S = {k + 1} given in Prop. 3.2 to obtain

ρ(k) =
∑10

r=1 αrρ
(k)
r with

∑
r |αr| = 3 and the reduced density matrix of ρ

(k)
r on the (k+ 1)-th

qubit is a single-qubit stabilizer state. We can now bound each term by

∥∥(U ⊗ I(>n)
)

(ρ(k))−
(
I(k+1) ⊗ EU̸=k+1 ⊗ I(>n)

)
(ρ(k))

∥∥
1

(3.67)

≤
10∑

r=1

|αr|
∥∥(U ⊗ I(>n)

)
(ρ(k)r )−

(
I(k+1) ⊗ EU̸=k+1 ⊗ I(>n)

)
(ρ(k)r )

∥∥
1

(3.68)

≤
10∑

r=1

|αr|εk+1 = 3εk+1. (3.69)

The first line is the triangle inequality. The second line uses the assumption that U is an
εk+1-approximate local identity on the (k + 1)-th qubit. Combining Eq. (3.64), Eq. (3.66),
Eq. (3.69),

∥U − I∥⋄ ≤ 3
n−1∑

k=0

εk+1, (3.70)

which establishes the stated result.

3.2.3.2 Weak ε-approximate local identity

We next look at another definition of approximate local identity: the reduced channel of U
on the i-th qubit is close to the identity map. This definition is very easy to check but only
guarantees that the unitary U is close to the identity in the average-case distance (instead
of the worst-case distance, i.e., the diamond distance). Hence, we will refer to this as the
weak ε-approximate local identity. Recall Definition 3.1 of reduced channel,

EUi (ρi) = Tr̸=i

(
U

(
I (̸=i)

2n−1
⊗ ρi

)
U †
)
, (3.71)

where ρi is a density matrix on the i-th qubit, I (̸=i) is the identity on all except the i-th
qubit, and Tr̸=i is the partial trace over all except the i-th qubit.

Definition 3.6 (Weak ε-approximate local identity; unitary version). Given n > 0, ε ≥ 0,
and i ∈ {1, . . . , n}. An n-qubit unitary U is a weak ε-approximate local identity on the i-th
qubit if

Dave

(
EUi , I

)
≤ ε, (3.72)

where I is a 1-qubit CPTP map that acts as an identity.
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In the literature of quantum junta learning [211], one defines the influence of a qubit i in
an n-qubit unitary U =

∑
P∈{I,X,Y,Z}⊗n αPP , where αP ∈ C to be

∑

P∈{I,X,Y,Z}⊗n

Pi ̸=I

|αP |2 . (3.73)

The following lemma shows that weak approximate local identity is equivalent to low influ-
ence.

Lemma 3.4 (Characterization of weak ε-approximate local identity). Given n > 0, ε ≥ 0,
and an n-qubit unitary U . Consider the Pauli representation of U =

∑
P∈{I,X,Y,Z}⊗n αPP ,

where αP ∈ C. U is a weak ε-approximate local identity on the i-th qubit if and only if

∑

P∈{I,X,Y,Z}⊗n

Pi ̸=I

|αP |2 ≤
3

2
ε. (3.74)

From the definition of influence in quantum junta learning [211], we have qubit i has influence
bounded above by 1.5ε in the unitary U .

Proof. From the definition of the reduced channel, we have

EUi (ρi) =
∑

s1,s2∈{I,X,Y,Z}




∑

P,Q∈{I,X,Y,Z}⊗n

Pi=s1,Qi=s2,P ̸=i=Q ̸=i

α∗PαQ


 s1ρis2, (3.75)

where P ̸=i, Q̸=i is an (n − 1)-qubit Pauli observable equal to P , Q with qubit i removed.
From Fact 3.2 characterizing the average-case distance Dave, we have

Dave

(
EUi , I

)
=

2

3


1−

∑

P,Q∈{I,X,Y,Z}⊗n

Pi=I,Qi=I,P ̸=i=Q̸=i

α∗PαQ


 =

2

3


1−

∑

P∈{I,X,Y,Z}⊗n

Pi=I

|αP |2


 . (3.76)

Furthermore, we note that Tr
(
U †U

)
= 2n = 2n

∑
P∈{I,X,Y,Z}⊗n |αP |2. Hence, we have

1−
∑

P∈{I,X,Y,Z}⊗n

Pi=I

|αP |2 =
∑

P∈{I,X,Y,Z}⊗n

Pi ̸=I

|αP |2 . (3.77)

The lemma follows from the two identities given above.

Weak ε-approximate local identity naturally generalizes to any quantum process (chan-
nel) by using the definition of reduced channels for channels. The formal definition is given
below.
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Definition 3.7 (Weak ε-approximate local identity; channel version). Given n > 0, ε ≥ 0,
and i ∈ {1, . . . , n}. An n-qubit CPTP map C is a weak ε-approximate local identity on the
i-th qubit if

Dave

(
ECi , I

)
≤ ε, (3.78)

where I is a 1-qubit CPTP map that acts as an identity.

The following two lemmas give the relationships between global and local identity checks.
The basic idea is to check whether a map is close to identity by checking whether the map
forms approximate local identities on all the n qubits.

Lemma 3.5 (Global non-identity check from local non-identity checks). Given an integer
n > 0 and an n-qubit CPTP map C. If there exists ε > 0 and i ∈ {1, . . . , n}, such that C is
not a weak ε-approximate local identity on the i-th qubit, then Dave(C, I) ≥ ε.

Lemma 3.6 (Global identity check from local identity checks). Given an integer n > 0 and
an n-qubit CPTP map C. If there exists ε1, . . . , εn > 0, such that C is a weak εi-approximate
local identity on the i-th qubit for all i ∈ {1, . . . , n}, then Dave(C, I) ≤ 3

2

∑n
i=1 εi.

Proof of Lemma 3.5 and 3.6. Let us define |Ω1⟩ = 1√
2
(|00⟩+ |11⟩), and |Ωn⟩ = |Ω1⟩⊗n. From

Fact 3.2 characterizing the average-case distance Dave, we have

Dave(C, I) =
2n

2n + 1
(1− ⟨Ωn| (C ⊗ I) (|Ωn⟩⟨Ωn|) |Ωn⟩) . (3.79)

We can think of the term ⟨Ωn| (C ⊗ I) (|Ωn⟩⟨Ωn|) |Ωn⟩ as the probability of getting |Ω1⟩ on
all n parallel two-qubit Bell-basis measurements on the 2n-qubit state (C ⊗ I) (|Ωn⟩⟨Ωn|).
From standard probability theory, we have the following inequality,

1− ⟨Ωn| (E ⊗ I) (|Ωn⟩⟨Ωn|) |Ωn⟩ ≥ 1− Tr
((
|Ω1⟩⟨Ω1| ⊗ I⊗2̸=i

)
(C ⊗ I) (|Ωn⟩⟨Ωn|)

)
, (3.80)

where |Ω1⟩⟨Ω1| ⊗ I⊗2̸=i is a projection onto |Ω1⟩⟨Ω1| on the i-th and (n+ i)-th qubit for any i.
Also, from union bound, we have

1− ⟨Ωn| (E ⊗ I) (|Ωn⟩⟨Ωn|) |Ωn⟩ ≤ 1−
n∑

i=1

(
1− Tr

((
|Ω1⟩⟨Ω1| ⊗ I⊗2̸=i

)
(C ⊗ I) (|Ωn⟩⟨Ωn|)

))
.

(3.81)
By reorganizing using the reduced channel of C on the i-th qubit, we have

Tr
((
|Ω1⟩⟨Ω1| ⊗ I⊗2̸=i

)
(C ⊗ I) (|Ωn⟩⟨Ωn|)

)
= ⟨Ω1|

(
ECi ⊗ I

)
(|Ω1⟩⟨Ω1|) |Ω1⟩ . (3.82)

Therefore, we have

3

2
× 2n

2n + 1

n∑

i=1

Dave(ECi , I) ≥ Dave(C, I) ≥ 3

2
× 2n

2n + 1
Dave(ECi , I). (3.83)

By noting that 3
2
≥ 3

2
× 2n

2n+1
and 3

2
× 2n

2n+1
≥ 1, we obtain Lemma 3.5 and 3.6.
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3.2.4 Learning shallow quantum circuits from a classical dataset

In this section, we present algorithms for learning shallow quantum circuits that achieve a
small diamond distance. All algorithms in this section use a classical dataset obtained from
performing randomized measurements on the unknown shallow quantum circuit (defined
below) to classically reconstruct the unknown circuit. The learning algorithms only require
classical computation.

Definition 3.8 (Randomized measurement dataset for an unknown unitary). The learning
algorithm accesses an unknown n-qubit unitary U via a randomized measurement dataset of
the following form,

TU(N) =

{
|ψℓ⟩ =

n⊗

i=1

|ψℓ,i⟩ , |ϕℓ⟩ =
n⊗

i=1

|ϕℓ,i⟩
}N

ℓ=1

. (3.84)

A randomized measurement dataset of size N is constructed by obtaining N samples from
the unknown unitary U . One sample is obtained from one experiment given as follows.

1. Sample an input state |ψℓ⟩ =
⊗n

i=1 |ψℓ,i⟩, which is a product state consisting of uni-
formly random single-qubit stabilizer states in stab1.

2. Apply the unknown unitary U to |ψℓ⟩.

3. Measure every qubit of U |ψℓ⟩ under a random Pauli basis. The measurement collapses
the state U |ψℓ⟩ to a state |ϕℓ⟩ =

⊗n
i=1 |ϕℓ,i⟩, where |ϕℓ,i⟩ is a single-qubit stabilizer

state stab1.

Together, N queries to U construct a dataset TU(N) with N samples. The dataset can be
represented efficiently on a classical computer with O(Nn) bits.

An interesting question is whether quantum learning algorithms that have access to the
unknown quantum circuit U could be much more efficient. In Section 3.2.5, we present
a quantum learning algorithm that achieves the optimal scaling in query complexity and
computational time for learning geometrically-local shallow quantum circuits over finite gate
sets.

3.2.4.1 Results

We present the results for learning general and geometrically-local shallow quantum circuits
consisting of two-qubit gates over SU(4) and over a finite gate set using a classical dataset.
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Learning general shallow quantum circuits. We consider the problem of learning an
n-qubit unitary U created by a general shallow quantum circuit C with arbitrary circuit
connectivity, i.e., every qubit can be connected to any other qubit by a quantum gate, and
an arbitrary number m of ancilla qubits initialized in |0m⟩ and ended up in |0m⟩ after C.
Formally, we have the following identity for U ,

U ⊗ |0m⟩ = C(In ⊗ |0m⟩), (3.85)

where In is an identity on n qubits.
We have the following theorems for learning the unknown unitary U . We can see that the

sample/query complexity is very similar to learning geometric-local circuits. However, the
computational complexity becomes higher, and we can only guarantee a polynomial scaling
with system size n. The learning algorithm and proof are given in Section 3.2.4.5.

Theorem 3.6 (Learning general shallow quantum circuits). Given a failure probability δ,
an approximation error ε, and an unknown n-qubit unitary U generated by a constant-depth
circuit over any two-qubit gates in SU(4) with an arbitrary number of ancilla qubits. With a
randomized measurement dataset TU(N) of size

N = O
(
n2 log(n/δ)

ε2

)
, (3.86)

we can learn an n-qubit quantum channel Ê that can be implemented by a constant-depth
quantum circuit over 2n qubits, such that

∥∥∥Ê − U
∥∥∥
⋄
≤ ε, (3.87)

with probability at least 1−δ. The classical computational time to learn Ê is poly(n) log(1/δ)/ε2.
In addition, if each two-qubit gate in the unknown circuit is chosen from a finite gate

set of a constant size, then the algorithm learns an exact description Ê = U with probability
1− δ, using N = O(log(n/δ)) samples and O(poly(n) log(1/δ)) time.

Remark 3.1 (Implementation of learned n-qubit channel). The n-qubit channel Ê is the

reduced channel E V̂≤n of the constant-depth 2n-qubit circuit V̂ on the first n qubits.

Learning geometrically-local shallow quantum circuits. We consider the problem of
learning geometrically-local shallow quantum circuits. Here, we consider a generalized defi-
nition of geometric locality, which includes quantum circuits over 1D, 2D, and 3D geometry.
The generalization enables more exotic geometry over the qubits and is formally represented
by a fixed constant-degree graph. See Fig. 3.1(a) for an illustration of the definitions.

Definition 3.9 (Geometric locality). A geometry over n qubits is defined by a graph G =
(V,E) with n = |V | vertices, and each vertex has a degree of at most κ = O(1). A
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(a) Original geometry (b) Learned geometry

Figure 3.1: Learning geometrically-local shallow quantum circuits. (a) In this example, the
geometry is a 2D lattice where each vertex has a degree at most 4. The lightcone of the blue
qubit (for depth d = 2) is the union of the blue and orange qubits. (b) The learned circuit
acts on an extended geometry with 2n qubits, where each system qubit (black) is attached to
an ancilla qubit (red). Note that each ancilla qubit is connected only with its corresponding
system qubit (red edges).

geometrically-local two-qubit gate can only act on an edge of G. A geometrically-local quan-
tum circuit is a circuit with only geometrically-local two-qubit quantum gates. A depth-d
geometrically-local quantum circuit has d layers, where each layer consists of non-overlapping
geometrically-local two-qubit gates.

Definition 3.10 (Lightcone in a geometry). Given a geometry over n qubits represented by
a graph G = (V,E) with degree κ and an integer d. The lightcone Ld(i) of a qubit i with
depth d is the set of qubits with distance at most d from qubit i in the graph G. We have
|Ld(i)| ≤ (κ+ 1)d.

Definition 3.11 (Geometrically-local set). Given a geometry over n qubits represented by
a graph G = (V,E). A set S of qubits is geometrically local if all qubits in S are of O(1)
distance in G.

Under this more general definition of geometry, our proposed algorithm can still learn
very efficiently. The following theorem quantifies the efficiency in terms of both the query
complexity and the computational complexity. The learning algorithm and proof are given
in Section 3.2.5.2.

Theorem 3.7 (Learning geometrically-local shallow quantum circuits). Given an unknown
geometrically local constant-depth n-qubit circuit U over any two-qubit gates in SU(4). With
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a randomized measurement dataset TU(N) of size

N = O
(
n2 log(n/δ)

ε2

)
, (3.88)

we can learn an n-qubit quantum channel Ê that can be implemented by a geometrically local
constant-depth quantum circuit over 2n qubits, such that

∥∥∥Ê − U
∥∥∥
⋄
≤ ε, (3.89)

with probability at least 1− δ. The computational time to learn Ê is O(n3 log(n/δ)/ε2).
In addition, if each two-qubit gate in the unknown circuit is chosen from a finite gate

set of a constant size, then the algorithm learns an exact description Ê = U with probability
1− δ, using N = O(log(n/δ)) samples and O(n log(n/δ)) time.

Remark 3.2 (Implementation of learned n-qubit channel). The n-qubit channel Ê is equal

to the reduced channel E V̂≤n of the geometrically-local constant-depth 2n-qubit circuit V̂ on
the first n qubits.

Next, we look at a result, where we optimize the circuit depth in the learned circuit for
implementing Ê . While the depth in the learned circuit can be controlled, the computational
complexity becomes substantially worse. The learning algorithm and proof are given in
Section 3.2.4.7.

Theorem 3.8 (Learning geometrically-local shallow circuits on k-dimensional lattice with
optimized circuit depth). Given an unknown n-qubit circuit U over any two-qubit gates in
SU(4) with circuit depth d = O(1) acting on a k-dimensional lattice with k = O(1). With a
randomized measurement dataset TU(N) of size

N = 2O((8kd)
k)n

2 log(n/δ)

ε2
, (3.90)

we can learn an n-qubit quantum channel Ê that can be implemented by a quantum circuit
over 2n qubits on an extended k-dimensional lattice (see Fig. 3.1(b)), such that

∥∥∥Ê − U
∥∥∥
⋄
≤ ε, (3.91)

with probability at least 1− δ.

• With computational time O(n) ·N , the learned circuit has depth at most

(k + 1)44(8kd)k + 1. (3.92)
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• With computational time O(n) · N + (n/ε)O((8kd)
k+1), the learned circuit has depth at

most
(k + 1)(2d+ 1) + 1. (3.93)

In addition, if each two-qubit gate in the unknown circuit is chosen from a finite gate set
of a constant size, then the algorithm learns an exact description Ê = U with probability
1 − δ, using N = O(log(n/δ)) samples, O(n log(n/δ)) time, and a learned circuit of depth
(k + 1)(2d+ 1) + 1.

Remark 3.3 (The geometry in the doubled system). In the two theorems given above, we
mentioned geometrically-local circuits over 2n qubits, while the geometry is defined over n
qubits. Given the geometry represented as a graph G = (V,E) over n qubits with V =
{1, . . . , n}. We extend the graph to 2n qubits Gext = (Vext, Eext) as follows.

Vext = {1, . . . , n, n+ 1, . . . , 2n}, Eext = E ∪ {(i, n+ i)|1 ≤ i ≤ n}. (3.94)

Each qubit n+ i in the added system is connected only to qubit i in the original system; See
Fig. 3.1(b).

3.2.4.2 Techniques

We present two sets of closely related techniques for learning an n-qubit unitary U . The
first set in Section 3.2.4.3 uses an idea called local inversion unitary, which follows from the
concept of strong approximate local identity given in Section 3.2.3. As we have shown earlier,
strong local identity checks can be performed by using Heisenberg-evolved single-qubit Pauli
observables U †PiU . The second set in Section 3.2.4.4 directly uses the Heisenberg-evolved
Pauli observables U †PiU .

3.2.4.3 Learning using local inversion

We begin by defining the concept of an approximate local inversion unitary.

Definition 3.12 (Strong ε-approximate local inversion). Given n ∈ N, ε ∈ (0, 1), i ∈
{1, . . . , n}, and n-qubit unitaries U and Vi. We say Vi is a strong ε-approximate local in-
version of U on the i-th qubit if UVi is a strong ε-approximate local identity on the i-th
qubit.

Corollary 3.2 (Local inversion from Heisenberg-evolved Pauli observables). Given n ∈
N, ε ∈ (0, 1), i ∈ {1, . . . , n}, and n-qubit unitaries U and Vi. If Vi satisfies

∑

P∈{X,Y,Z}

∥∥∥V †i U †PiUVi − Pi
∥∥∥
∞
≤ ε, (3.95)

where Pi acts as P ∈ {X, Y, Z} on the i-th qubit and as identity on the rest of the qubits,
then Vi is a strong ε-approximate local inversion of U on the i-th qubit.
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Proof. This corollary follows from Lemma 3.1, which characterizes the strong ε-approximate
local identity with Heisenberg evolution of single-qubit Pauli observables.

Instead of learning the unitary U alone, we consider learning the n local inversion unitaries
V1, . . . , Vn. From the corollary given above, a straightforward way to learn Vi is to first learn
the Heisenberg-evolved single-qubit Pauli observable U †PiU for all P = X, Y, Z, then try
to find a unitary Vi that evolves U †PiU approximately back to Pi. This could be a much
simpler task than learning the entire n-qubit unitary altogether.

While local inversion could potentially make the learning easier, it is a priori unclear if
learning these local inversions is sufficient to learn U . In the following, we define a formalism
for sewing these local inversion unitaries into a 2n-qubit unitary (instead of n qubits).

Definition 3.13 (Sewing the local inversions). Given n ∈ N and n-qubit unitaries V1, . . . , Vn.
We define the sewed 2n-qubit unitary consisting of two sets of n qubits to be the following,

Usew(V1, . . . , Vn) := S

[
n∏

i=1

(
V

(1)
i

)
Si

(
V

(1)
i

)†
]
, (3.96)

where V
(1)
i corresponds to applying the n-qubit unitary Vi on the first n qubits, Si is the swap

operator for the i-th qubit between the two sets of n qubits, S is the swap operator for all n
qubits.

Remark 3.4 (Sewing order). The order for
(
V

(1)
i

)
Si

(
V

(1)
i

)†
in sewing the local inversions

does not matter. We can choose the order to optimize the resulting circuit, e.g., to minimize
the circuit depth.

Lemma 3.7 (Form of the sewed local inversions). Given n ∈ N and n-qubit unitaries
U, V1, . . . , Vn. Assume Vi is a strong εi-approximate local inversion of U on the i-th qubit.
Let Usew = Usew(V1, . . . , Vn).

D⋄(Usew,U ⊗ U †) =
1

2

∥∥Usew − U ⊗ U †
∥∥
⋄ ≤

n∑

i=1

εi, (3.97)

where the first/second set of n qubits is on the left/right of the tensor product.

Proof. From Theorem 3.55 in [210], we have

∥∥Usew − U ⊗ U †
∥∥
⋄ =

∥∥(U † ⊗ U)Usew |ψ⟩⟨ψ|U †sew(U ⊗ U †)− |ψ⟩⟨ψ|
∥∥
1

(3.98)

for some 2n-qubit state |ψ⟩. We define the following mathematical object,

|ψi⟩⟨ψi| :=
[
(U † ⊗ I) (S1 . . .Si) (I ⊗ U)S

((
V(1)
i+1

)
Si+1

(
V(1)
i+1

)†
. . .
(
V(1)
n

)
Sn
(
V(1)
n

)†)]
(|ψ⟩⟨ψ|)
(3.99)
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for each i = 0, . . . , n. Note that we have the following identities,

|ψ0⟩⟨ψ0| = (U † ⊗ U)Usew |ψ⟩⟨ψ|U †sew(U ⊗ U †), (3.100)

|ψn⟩⟨ψn| =
[
(U † ⊗ I)S(I ⊗ U)S

]
(|ψ⟩⟨ψ|) = |ψ⟩⟨ψ| . (3.101)

By the triangle inequality, we can obtain the following telescoping sum,

∥∥Usew − U ⊗ U †
∥∥
⋄ = ∥|ψ0⟩⟨ψ0| − |ψn⟩⟨ψn|∥1 ≤

n∑

i=1

∥|ψi⟩⟨ψi| − |ψi−1⟩⟨ψi−1|∥1. (3.102)

Each summand can be bounded as follows,

∥|ψi⟩⟨ψi| − |ψi−1⟩⟨ψi−1|∥1 ≤
∥∥∥Si(I ⊗ U)S − (I ⊗ U)S (Vi ⊗ I)Si (Vi ⊗ I)†

∥∥∥
⋄

(3.103)

=
∥∥∥SSi(U ⊗ I)− S(U ⊗ I) (Vi ⊗ I)Si (Vi ⊗ I)†

∥∥∥
⋄

(3.104)

≤
∥∥∥Si(U ⊗ I)−

((
Ii ⊗ EUVi̸=i

)
⊗ I

)
Si (Vi ⊗ I)†

∥∥∥
⋄

+ εi (3.105)

=
∥∥∥Si(U ⊗ I)− Si

((
Ii ⊗ EUVi̸=i

)
⊗ I

)
(Vi ⊗ I)†

∥∥∥
⋄

+ εi (3.106)

=
∥∥(UVi ⊗ I)−

((
Ii ⊗ EUVi̸=i

)
⊗ I

)∥∥
⋄ + εi ≤ 2εi. (3.107)

Together, we obtain the desired statement.

Remark 3.5 (A basic identity for U ⊗U †). A trivial example of an exact local inversion of
U on the i-th qubit is Vi = U †. In this case, Lemma 3.7 yields the following basic identity,

U ⊗ U † = S

[
n∏

i=1

(
U † ⊗ I

)
Si (U ⊗ I)

]
, (3.108)

which can also be shown by canceling all the intermediate (U ⊗ I)
(
U † ⊗ I

)
.

3.2.4.4 Learning using Heisenberg-evolved Pauli observables

We have seen earlier that one direct approach to learning local inversion is to first learn
the Heisenberg-evolved single-qubit Pauli observables U †PiU . In the following, we define an
alternative formalism that directly sews the Heisenberg-evolved Pauli observables into a 2n-
qubit unitary (instead of n qubits) that approximates U⊗U †. One can flexibly choose either
approach. Typically, learning the Heisenberg-evolved Pauli observables is computationally
simpler, but yields higher depth in the learned circuit.

Definition 3.14 (Approximate Heisenberg-evolved Paui observables). Given n ∈ N, ε ∈
(0, 1), i ∈ {1, . . . , n}, P ∈ {X, Y, Z}, an n-qubit unitary U , and an n-qubit observable Oi,P .
We say Oi,P is an ε-approximate Heisenberg-evolved Pauli observable P on qubit i under U
if
∥∥Oi,P − U †PiU

∥∥
∞ ≤ ε.
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Given a set of 3n Heisenberg-evolved Pauli observables, we use the following definition
to sew them into a 2n-qubit unitary.

Definition 3.15 (Sewing the Heisenberg-evolved observables). Given n ∈ N and 3 × n n-
qubit observables Oi,P ,∀i = 1, . . . , n, P ∈ {X, Y, Z}. Let ProjU(A) be the projection of a
matrix A to a unitary matrix minimizing the operator norm ∥·∥∞, i.e.,

ProjU(A) := arg min
B:unitary

∥A−B∥∞. (3.109)

We define the sewed 2n-qubit unitary consisting of two sets of n qubits to be the following,

Usew({Oi,P}i,P ) := S
n∏

i=1


ProjU


1

2
I ⊗ I +

1

2

∑

P∈{X,Y,Z}

Oi,P ⊗ Pi




 , (3.110)

where V
(1)
i corresponds to applying the n-qubit unitary Vi on the first n qubits, Si is the swap

operator for the i-th qubit between the two sets of n qubits, S is the swap operator for all n
qubits.

Remark 3.6 (Sewing order). The order for sewing ProjU
(
1
2
I ⊗ I + 1

2

∑
P Oi,P ⊗ Pi

)
is ar-

bitrary.

In the above, we have utilized the projection function ProjU. In the following lemma, we
show that this function can be computed efficiently on a classical computer.

Lemma 3.8 (Projection onto unitary matrices). Consider the singular value decomposition
A = UΣV †, where Σ is diagonal, nonnegative, and U, V is unitary. The projection can be
defined as

ProjU(A) = UV †. (3.111)

The computational time is polynomial in the dimension of A.

Proof. Consider any unitary B. We have ∥A−B∥∞ =
∥∥Σ− U †BV

∥∥
∞. Let W be the unitary

U †BV . We can use the definition of ∥M∥∞ = supv ∥Mv∥2/∥v∥2 to see that

∥Σ−W∥∞ ≥ max
i
∥Σiiêi −Wêi∥2

≥ max
i

√
1 + Σ2

ii − 2ΣiiRe[êTi Wêi] ≥ max
i
|1− Σii| = ∥Σ− I∥∞,

(3.112)

where êi is the unit vector with a nonzero entry on the i-th coordinate. Because ∥Σ− I∥∞ =∥∥A− UV †
∥∥
∞, we have obtained ∥A−B∥∞ ≥

∥∥A− UV †
∥∥
∞.

Similar to sewing local inversions, the sewed unitary accurately approximates U ⊗ U †.
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Lemma 3.9 (Form of the sewed Heisenberg-evolved observables). Given n ∈ N, an n-
qubit unitary U , and 3 × n n-qubit observables Oi,P ,∀i = 1, . . . , n, P ∈ {X, Y, Z}. Assume
Oi,P is an εi,P -approximate Heisenberg-evolved Pauli observable P on qubit i under U . Let
Usew = Usew({Oi,P}i,P ). Then

D⋄(Usew,U ⊗ U †) =
1

2

∥∥Usew − U ⊗ U †
∥∥
⋄ ≤

n∑

i=1

∑

P∈{X,Y,Z}

εi,P , (3.113)

where the first/second set of n qubits is on the left/right of the tensor product.

Proof. From Eq. (3.108), we have the following identity,

U ⊗ U † = S

[
n∏

i=1

(U † ⊗ I)Si(U ⊗ I)

]
. (3.114)

Using the fact that Si = 1
2
I ⊗ I + 1

2

∑
P∈{X,Y,Z} Pi⊗Pi, we can rewrite the above identity as

U ⊗ U † = S
n∏

i=1


1

2
I ⊗ I +

1

2

∑

P∈{X,Y,Z}

(U †PiU)⊗ Pi


 . (3.115)

Let us denote the following unitaries,

Vi :=
1

2
I ⊗ I +

1

2

∑

P∈{X,Y,Z}

(U †PiU)⊗ Pi, (3.116)

W̃i :=
1

2
I ⊗ I +

1

2

∑

P∈{X,Y,Z}

Oi,P ⊗ Pi (3.117)

Wi := ProjU

(
W̃i

)
. (3.118)

We can upper bound the diamond distance as follows,

∥∥Usew − U ⊗ U †
∥∥
⋄ = ∥Vn . . .V1 −Wn . . .W1∥⋄ (3.119)

≤
n∑

i=1

∥Vn . . .Vi+1Wi . . .W1 − Vn . . .ViWi−1 . . .W1∥⋄ (3.120)

≤
n∑

i=1

∥Vn . . .Vi+1Wi . . .W1 − Vn . . .ViWi−1 . . .W1∥⋄ (3.121)

=
n∑

i=1

∥Wi − Vi∥⋄ ≤ 2
n∑

i=1

∥Wi − Vi∥∞. (3.122)
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The last inequality uses the fact thatWi and Vi are unitary channels. From triangle inequal-
ity and the definition of ProjU(·), we have the following inequality,

∥Wi − Vi∥∞ ≤
∥∥∥Wi − W̃i

∥∥∥
∞

+
∥∥∥W̃i − Vi

∥∥∥
∞

= min
V :unitary

∥∥∥W̃i − V
∥∥∥
∞

+
∥∥∥W̃i − Vi

∥∥∥
∞

≤ 2
∥∥∥W̃i − Vi

∥∥∥
∞
.

(3.123)

We now use the specific form of W̃i, Vi to upper bound the summand,

∥Wi − Vi∥∞ ≤
∑

P∈{X,Y,Z}

∥∥Oi,P − U †PiU
∥∥
∞ ≤

∑

P

εi,P . (3.124)

Together with Eq. (3.122), we can obtain the desired statement.

Given an n-qubit observable O, we define supp(O) to be the set of qubits that the
observable O acts on. We also define |O| to be the size of supp(O). We have the following
lemma for learning a few-body observable. The learned observable Ô has the property that
it only acts on qubits that O acts on, hence supp(Ô) ⊆ supp(O).

Lemma 3.10 (Learning a few-body observable with an unknown support). Given an error
ε, failure probability δ, an unknown n-qubit observable O with ∥O∥∞ ≤ 1 that acts on an

unknown set of k qubits, and a dataset TO(N) = {|ψℓ⟩ =
⊗n

i=1 |ψℓ,i⟩ , vℓ}
N

ℓ=1, where |ψℓ,i⟩ is
sampled uniformly from stab1 and vℓ is a random variable with E[vℓ] = ⟨ψℓ|O |ψℓ⟩, |vℓ| =
O(1). Given a dataset size of

N =
2O(k) log(n/δ)

ε2
, (3.125)

with probability at least 1 − δ, we can learn an observable Ô such that
∥∥∥Ô −O

∥∥∥
∞
≤ ε and

supp(Ô) ⊆ supp(O). The computational complexity is O(nk log(n/δ)/ε2).

Proof. Consider the observable O under the Pauli basis, O =
∑

P αPP . The αP coefficients
satisfy

αP = 3|P | E
|ψ⟩∼stab⊗n

1

⟨ψ|O|ψ⟩ ⟨ψ|P |ψ⟩ , (3.126)

which can be learned by replacing the expectation with averaging over the dataset.
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We begin by defining the learned observable Ô.

α̂P :=
3|P |

N

N∑

ℓ=1

vℓ ⟨ψℓ|P |ψℓ⟩ , ∀P ∈ {I,X, Y, Z}⊗n : |P | ≤ k, (3.127)

β̂P :=

{
α̂P , |α̂P | ≥ 0.5ε/(2

√
2)k,

0, |α̂P | < 0.5ε/(2
√

2)k,
(3.128)

Ô :=
∑

P∈{I,X,Y,Z}⊗n:|P |≤k

β̂PP. (3.129)

Because O acts on at most k qubits, αP = 0 for |P | > k. From Bernstein’s inequality, given
a dataset size of

N =
2O(k) log(n/δ)

ε2
, (3.130)

with probability at least 1− δ, we have

|αP − α̂P | < 0.5ε/(2
√

2)k, ∀P ∈ {I,X, Y, Z}⊗n : |P | ≤ k. (3.131)

In the following, we assume the above event holds, which happens with probability at least
1− δ. We separately prove the following two statements.

supp(Ô) ⊆ supp(O) : For a Pauli observable P with αP = 0, we have |α̂P | < 0.5ε/(2
√

2)k

from Eq. (3.131). Hence, β̂P = 0. As a result, the set of qubits acted by Ô is a subset of
supp(O).

∥∥∥Ô −O
∥∥∥
∞
≤ ε : From the fact that αP = 0 implies β̂P = 0, we have

Ô −O =
∑

P∈{I,X,Y Z}⊗n:supp(P )⊆supp(O)

(
β̂P − αP

)
P (3.132)

=
∑

Q∈{I,X,Y Z}⊗k

(
β̂P (Q) − αP (Q)

)
P (Q), (3.133)

where P (Q) := Q ⊗ I{1,...,n}\supp(O) and k = |supp(O)|. Therefore, we can upper bound the
spectral norm by

∥∥∥Ô −O
∥∥∥
∞
≤

∥∥∥∥∥∥
∑

Q∈{I,X,Y Z}⊗k

(
β̂P (Q) − αP (Q)

)
P (Q)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑

Q∈{I,X,Y Z}⊗k

(
β̂P (Q) − αP (Q)

)
Q

∥∥∥∥∥∥
∞

.

(3.134)
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Recall that ∥A∥∞ ≤
√

Tr(A2) for any Hermitian matrix A, we have

∥∥∥Ô −O
∥∥∥
∞
≤
√√√√

∑

Q∈{I,X,Y Z}⊗k

(
β̂P (Q) − αP (Q)

)2
Tr(Q2) ≤ (2

√
2)k max

|P |≤k

∣∣∣β̂P − αP
∣∣∣ . (3.135)

By the triangle inequality and Eq. (3.131), we have
∣∣∣β̂P − αP

∣∣∣ ≤
∣∣∣β̂P − α̂P

∣∣∣+ |α̂P − αP | < ε/(2
√

2)k, ∀|P | ≤ k. (3.136)

Therefore, we have obtained the desired inequality
∥∥∥Ô −O

∥∥∥
∞
≤ ε.

Lemma 3.11 (Learning a few-body observable with a known support). Given an error ε,
failure probability δ, an unknown n-qubit observable O with ∥O∥∞ ≤ 1 that acts on an known

set S of k qubits, and a dataset TO(N) = {|ψℓ⟩ =
⊗n

i=1 |ψℓ,i⟩ , vℓ}
N

ℓ=1
, where |ψℓ,i⟩ is sampled

uniformly from stab1 and vℓ is a random variable with E[vℓ] = ⟨ψℓ|O |ψℓ⟩, |vℓ| = O(1).
Given a dataset size of

N =
2O(k) log(1/δ)

ε2
, (3.137)

with probability at least 1 − δ, we can learn an observable Ô such that
∥∥∥Ô −O

∥∥∥
∞
≤ ε and

supp(Ô) ⊆ S. The computational complexity is O(2O(k) log(1/δ)/ε2).

Proof. We begin by defining the learned observable Ô.

α̂P :=
3|P |

N

N∑

ℓ=1

vℓ ⟨ψℓ|P |ψℓ⟩ , ∀P ∈ {I,X, Y, Z}⊗n : supp(P ) ⊆ S, (3.138)

Ô :=
∑

P∈{I,X,Y,Z}⊗n: supp(P )⊆S

α̂PP. (3.139)

By definition, we can see that supp(Ô) ⊆ S. Consider the observable O under the Pauli
basis, O =

∑
P αPP . Because O acts on the qubits in the set S, αP = 0 for supp(P ) ̸⊆ S.

From Bernstein’s inequality, given a dataset of size

N =
2O(k) log(1/δ)

ε2
, (3.140)

with probability at least 1− δ, we have

|αP − α̂P | < ε/(2
√

2)k, ∀P ∈ {I,X, Y, Z}⊗n : supp(P ) ⊆ S. (3.141)

In the following, we assume the above event holds, which happens with probability at least
1−δ. Using the same derivation as in Eq. (3.132) to Eq. (3.135) for the proof of Lemma 3.10,
we have ∥∥∥Ô −O

∥∥∥
∞
≤ (2
√

2)k max
P :supp(P )⊆S

|α̂P − αP | < ε, (3.142)

hence we have arrived at the desired statement.
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Remark 3.7 (Relation to learning quantum juntas). The two lemmas given above are related
to quantum junta learning [211] but consider a much weaker access model. [211] requires that
the unknown observable O be a unitary, and the learning algorithm can access the unitary
coherently. In particular, [211] requires inputting half of the maximally entangled state to
the unitary. Here, we consider access to O through a simple classical dataset consisting of
random product input states and the outcome when measuring the input states with observable
O. When the lemmas are used as a subroutine in learning algorithms given in Section 3.2.4,
we do not have access to O as a unitary, so [211] cannot be used.

3.2.4.5 Learning general shallow circuits (Proof of Theorem 3.6)

We present the algorithm for learning an unknown n-qubit unitary U generated by an arbi-
trary constant-depth quantum circuit C with arbitrarily many ancilla qubits. We separate
the proof into two-qubit gates over SU(4) and over a finite gate set.

Arbitrary SU(4) gates. The algorithm utilizes a randomized measurement dataset TU(N).
The key ideas are using Lemma 3.10 to learn approximate Heisenberg-evolved Pauli observ-
ables, using Lemma 3.13 to sew the Heisenberg-evolved Pauli observables into a constant-
depth quantum circuit, and using Lemma 3.9 to obtain the rigorous performance guarantee.

The following lemma shows how to reuse the randomized measurement dataset TU(N) to
create the datasets needed to learn approximate Heisenberg-evolved Pauli observables using
Lemma 3.10.

Lemma 3.12 (Reusing the randomized measurement dataset). Given an unknown n-qubit
unitary U , and a randomized measurement dataset TU(N) given in Eq. (3.84). We can create
3n datasets TU†PiU(N), for each Pauli observable P ∈ {X, Y, Z} and each qubit i,

TU†PiU(N) :=

{
|ψℓ⟩ =

n⊗

j=1

|ψℓ,j⟩ , vU
†PiU

ℓ

}N

ℓ=1

, (3.143)

where |ψℓ,i⟩ is sampled uniformly and independently from stab1 and vU
†PiU

ℓ is a random

variable with E[vU
†PiU

ℓ ] = ⟨ψℓ|U †PiU |ψℓ⟩ and |vU
†PiU

ℓ | = O(1).

Proof. Recall that from Eq. (3.84), we have

TU(N) =

{
|ψℓ⟩ =

n⊗

i=1

|ψℓ,i⟩ , |ϕℓ⟩ =
n⊗

i=1

|ϕℓ,i⟩
}N

ℓ=1

. (3.144)

The input states are reused over the 3n datasets. For each Pauli observable P ∈ {X, Y, Z}
and each qubit i, we define the output value to be

vU
†PiU

ℓ := 3 ⟨ϕℓ,i|P |ϕℓ,i⟩ . (3.145)
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We have |vU†PiU
ℓ | = |3 ⟨ϕℓ,i|P |ϕℓ,i⟩ | ≤ 3 = O(1). Now, recall how |ϕℓ,i⟩ is defined. |ϕℓ,i⟩

is the measurement outcome when we measure the i-th qubit of the n-qubit state U |ψℓ⟩ in
a random Pauli basis: X basis gives |X, 0⟩ := |+⟩ , |X, 1⟩ := |−⟩; Y basis gives |Y, 0⟩ :=
|y+⟩ , |Y, 1⟩ := |y−⟩; Z basis gives |Z, 0⟩ := |0⟩ , |Z, 1⟩ := |1⟩. Using the fact that

0 = ⟨Q, b|P |Q, b⟩ , ∀P ̸= Q ∈ {X, Y, Z}, b ∈ {0, 1}, (3.146)

P =
∑

b∈{0,1}

(−1)b |P, b⟩⟨P, b| , ∀P ∈ {X, Y, Z}. (3.147)

and that the randomized measurement measures X, Y, Z bases equally likely, we have

E [3 ⟨ϕℓ,i|P |ϕℓ,i⟩] = ⟨ψℓ|U †PiU |ψℓ⟩ . (3.148)

This concludes the proof.

From Lemma 3.14 and the fact that supp
(
U †PiU

)
⊆ A(i) =

⋃
P∈{X,Y,Z} supp

(
U †PiU

)
,

we have ∣∣supp
(
U †PiU

)∣∣ ≤ |A(i)| = O(1). (3.149)

This enables us to combine Lemma 3.12 for constructing TU†PiU(N),∀i, P from TU(N) and
Lemma 3.10 for learning few-body observables with unknown supports (since A(i) is un-
known) to show the following. For any constant value ε̃ = O(1), given a dataset size of

N = O
(
n2 log(n/δ)

ε2

)
, (3.150)

we can learn Ôi,P ,∀i, P , such that with probability at least 1− δ, for all i ∈ {1, . . . , n} and
Pauli observable P ∈ {X, Y, Z}, we have

∥∥∥Ôi,P − U †PiU
∥∥∥
∞
≤ ε

6n
, and supp(Ôi,P ) ⊆ supp(U †PiU) ⊆ A(i). (3.151)

The computational time for learning all Ôi,P is O(nO(1) log(n/δ)/ε2) = poly(n) log(1/δ/ε2).

From Lemma 3.14, we can characterize supp(Ôi,P ) ⊆ supp(U †PiU) to apply Lemma 3.13.

Lemma 3.13 (Sewing into a constant-depth quantum circuit). Given 3n n-qubit observables

Ôi,P ,∀i ∈ {1, . . . , n}, P ∈ {X, Y, Z}, such that for any qubit i,
∣∣∣
⋃
P supp

(
Ôi,P

)∣∣∣ = O(1) and

there is only a constant number of qubit j with
(⋃

P

supp
(
Ôi,P

))
∩
(⋃

P

supp
(
Ôj,P

))
̸= ∅. (3.152)

There exists a sewing ordering for Usew({Ôi,P}i,P ) given in Definition 3.15, such that

Usew({Ôi,P}i,P ) can be implemented by a constant-depth quantum circuit. The constant-

depth quantum circuit is geometrically-local (see Definition 3.9) if
⋃
P supp

(
Ôi,P

)
,∀i are

geometrically-local sets (see Definition 3.11). The computational time for finding the circuit
implementation is O(n).
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Proof. For simplicity of notations, we define A(i) :=
⋃
P supp

(
Ôi,P

)
. We can see that

supp


ProjU


1

2
I ⊗ I +

1

2

∑

P∈{X,Y,Z}

Ôi,P ⊗ Pi




 ⊆ A(i) ∪ {n+ i}, (3.153)

Because |A(i)| =
∣∣∣
⋃
P supp

(
Ôi,P

)∣∣∣ = O(1) and ProjU can be implemented in time polyno-

mial in 2|A(i)∪{n+i}| = O(1) as shown in Lemma 3.8, the following unitary

ProjU


1

2
I ⊗ I +

1

2

∑

P∈{X,Y,Z}

Ôi,P ⊗ Pi


 (3.154)

can be implemented by a constant-depth circuit acting only on qubits in A(i) ∪ {n + i};
see Fact 3.4 for exact unitary synthesis. Furthermore, if A(i) =

⋃
P supp

(
Ôi,P

)
is a

geometrically-local set, the constant-depth circuit is geometrically-local; see Corollary 3.1
for exact unitary synthesis given a connectivity graph. The geometric locality for the 2n-
qubit system is defined in Remark 3.3.

Consider an n-node graph (equivalently, an n-qubit graph), where each pair (i, j) of nodes
(qubits) is connected by an edge if

A(i) ∩ A(j) ̸= ∅. (3.155)

The graph only has O(n) edges and can be constructed as an adjacency list in time O(n).
Because the graph has a constant degree, we can use a O(n)-time greedy graph coloring
algorithm to color the n-qubit graph using only a constant number χ = O(1) of colors. For
each node/qubit i, we consider c(i) to be the color labeled from 1 to χ. The sewing order
for the 3n observables Ôi,P in Definition 3.15 are given by the greedy graph coloring, where
we order from the smallest color to the largest color. By the definition of graph coloring, for
any pair i, j of qubits with the same color, we have

A(i) ∩ A(j) = ∅. (3.156)

Therefore, for any color c′, we can find an implementation of the 2n-qubit unitary

∏

i:c(i)=c′


ProjU


1

2
I ⊗ I +

1

2

∑

P∈{X,Y,Z}

Oi,P ⊗ Pi




 (3.157)

with a constant-depth (and geometrically-local if A(i),∀i are geometrically-local) quantum
circuit in time O(n). Since there is only a constant number of colors, the 2n-qubit unitary
Usew({Ôi,P}i,P ) in Eq. (3.110) with the color-based ordering can be implemented with a
constant-depth (and geometrically-local if A(i),∀i are geometrically-local) quantum circuit
in time O(n).
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Lemma 3.13 shows that there exists an ordering for sewing the approximate Heisenberg-
evolved Pauli observables Ôi,P to create Usew({Ôi,P}i,P ) given in Definition 3.15, such that

Usew({Ôi,P}i,P ) can be implemented by a constant-depth quantum circuit. Given Eq. (3.151),
we can use Lemma 3.9 on the form of the sewed Heisenberg-evolved Pauli observables to yield

∥∥∥Usew({Ôi,P}i,P )− U ⊗ U †
∥∥∥
⋄
≤ ε. (3.158)

Finally, define an n-qubit channel Ê as follows,

Ê(ρ) := Tr>n

(
Usew({Ôi,P}i,P )(ρ⊗ |0n⟩⟨0n|)

)
, (3.159)

which can be implemented as a constant-depth quantum circuit over 2n qubits. Because
Eq. (3.151) holds with probability at least 1− δ, we have

∥∥∥Ê − U
∥∥∥
⋄
≤ ε (3.160)

with probability at least 1− δ. This concludes the proof of the first part of Theorem 3.6.

Finite gate sets. Let the circuit depth be d = O(1), the finite gate set be G with |G| =
O(1), and the number of ancilla qubits be m. The ancilla qubits are initialized as |0⟩ and
end up at |0⟩ after applying C, i.e.,

U ⊗ |0m⟩ = C(In ⊗ |0m⟩). (3.161)

The Schrodinger evolution of an n-qubit state ρ under U is

UρU † = Tr>n(C(ρ⊗ |0m⟩⟨0m|)C†), (3.162)

where C is a shallow quantum circuit over n + m qubits and Tr>n traces out the ancilla
qubits. The Heisenberg evolution of an n-qubit observable O under U is

U †OU = (In ⊗ ⟨0m|)C†(O ⊗ Im)C(In ⊗ |0m⟩), (3.163)

where In is an identity on n qubits and Im is an identity on m qubits.
The algorithm utilizes a randomized measurement dataset TU(N). The key ideas are using

Lemma 3.10 and a brute-force search algorithm over a constant number of choices to find
the exact Heisenberg-evolved Pauli observables, using Lemma 3.13 to sew the Heisenberg-
evolved Pauli observables into a constant-depth quantum circuit, and using Lemma 3.9 to
obtain the rigorous guarantee.

Lemma 3.14 (Characterizing the support). Given an n-qubit unitary U generated by a
constant-depth quantum circuit C with m ancilla qubits. For each qubit i ∈ {1, . . . , n}, let
us define a set of qubits

A(i) :=
⋃

P∈{X,Y,Z}

supp
(
U †PiU

)
. (3.164)

We have |A(i)| = O(1) and the number of qubits j such that A(i) ∩ A(j) ̸= ∅ is at most a
constant.
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Proof. From the definition of U , U ⊗ |0m⟩ = C(In ⊗ |0m⟩), we have

A(i) ⊆
⋃

P∈{X,Y,Z}

supp
(
C†PiC

)
. (3.165)

Let d = O(1) be the depth of the circuit C. We say qubit i is connected to qubit j in
the circuit C if there is a sequence of gates in C with strictly decreasing layers, such that
each pair of consecutive gates share a qubit and the first gate acts on qubit i and the last
gate acts on qubit j. Let B(i) be the set of qubits connected to i. Because each pair of
consecutive two-qubit gates share a qubit, the number of possible gate sequences for a fixed
i grows at most twice as large at every step. Hence, |B(i)| ≤ 2d. Furthermore, for any Pauli
operator P , supp

(
C†PiC

)
only contains qubits connected to i, so A(i) ⊆ B(i). Together,

|A(i)| ≤ |B(i)| ≤ 2d = O(1). This establishes the first claim.
Now, we show that for any i, the number of j such that B(i) ∩ B(j) ̸= ∅ is at most a

constant. If B(i) ∩ B(j) ̸= ∅, we know that there is a sequence of gates in C with strictly
decreasing layers and then strictly increasing layers, such that each pair of consecutive gates
share a qubit and the first gate acts on qubit i and the last gate acts on qubit j. Similar to
before, The number of possible gate sequences for a fixed i grows at most twice as large at
every step. Hence the number of j with B(i) ∩ B(j) ̸= ∅ is at most 22d = O(1). Because
A(i) ⊆ B(i), any j with A(i) ∩ A(j) ̸= ∅ satisfies B(i) ∩ B(j) ̸= ∅. Therefore, the number
of qubits j such that A(i) ∩ A(j) ̸= ∅ is at most a constant. This establishes the second
claim of the lemma.

From the above lemma and the fact that supp
(
U †PiU

)
⊆ A(i), we have

∣∣supp
(
U †PiU

)∣∣ ≤ |A(i)| = O(1). (3.166)

This enables us to combine Lemma 3.12 for constructing TU†PiU(N),∀i, P from TU(N) and
Lemma 3.10 for learning few-body observables with unknown supports (since A(i) is un-
known) to show the following. For any constant value ε̃ = O(1), given a dataset size of

N = O (log(n/δ)) , (3.167)

we can learn Ôi,P ,∀i, P , such that with probability at least 1− δ, for all i ∈ {1, . . . , n} and
Pauli observable P ∈ {X, Y, Z}, we have

∥∥∥Ôi,P − U †PiU
∥∥∥
∞
≤ ε̃, and supp(Ôi,P ) ⊆ supp(U †PiU). (3.168)

The computational time for learning all Ôi,P is O(nO(1) log(n/δ)) = poly(n) log(1/δ).

Our goal now is to find U †PiU exactly using the approximate observable Ôi,P satisfying
Eq. (3.168) by choosing a sufficiently small ε̃ that is constant in system size n. To do so, we
need to consider the backward lightcone of qubit i in circuit C defined below.
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Definition 3.16 (Backward lightcone in a circuit). We say a gate g in circuit U is in the
backward lightcone of qubit i in C if there is a sequence of gates in C with strictly decreasing
layers, such that each pair of consecutive gates share a qubit, the first gate acts on qubit i,
and the last gate is g.

The circuit Ci corresponding to the backward lightcone of qubit i in circuit C is the circuit
with all gates in the backward lightcone of qubit i in circuit C.

The set Si of qubits corresponding to the backward lightcone of qubit i in circuit C is
the set of all qubits acted by at least one of the gates in the backward lightcone of qubit i in
circuit C.

From the definition of Ci, Si corresponding to the backward lightcones given above, we
have

supp(U †PiU) ⊆ supp(C†PiC) ⊆ Si and U †PiU = (In ⊗ ⟨0m|)C†iPiCi(In ⊗ |0m⟩). (3.169)

Note one cannot guarantee Si = supp(U †PiU). By a counting argument similar to the proof
of Lemma 3.14, we have the following fact.

Fact 3.5 (Size of backward lightcone). Given a depth-d circuit C. The circuit Ci corre-
sponding to the backward lightcone of qubit i in C consists of at most 2d−1 gates. The set Si
of qubits corresponding to the backward lightcone of qubit i in C contains at most 2d qubits.

Recall that the depth of C is d = O(1), and the gate set is G with |G| = O(1). Because
d = O(1), |Si| ≤ 2d = O(1). For any (n + m)-qubit constant-depth circuit C̃ over a finite
gate set, given a fixed set S̃i of qubits corresponding to the backward lightcone of qubit i in
C̃, the number of possible circuit C̃i corresponding to the backward lightcone of qubit i in
circuit C̃ is a constant independent of n,m and 1/δ. Hence, there is a constant number of
C̃†iPiC̃i = C̃†PiC̃. We denote the possible choices of the n-qubit observable given the set S̃i
and qubit i ∈ {1, . . . , n} to be Sobs(i, S̃i),

Sobs(i, S̃i) :=
{

(In ⊗ ⟨0m|)C̃†PiC̃(In ⊗ |0m⟩)
∣∣∣ C̃ is a depth-d circuit over gate set G,

(3.170)

such that S̃i is the set of qubits corresponding to the backward lightcone of qubit i in C̃
}

(3.171)

We have |Sobs(i, S̃i)| = O(1). Furthermore, we can always consider a permutation Πi,S̃i
over

the qubits that implements the following permutation mapping,

1→Πi,S̃i
i, {1, . . . , |S̃i|} →Πi,S̃i

S̃i, (3.172)

and Πi,S̃i
acts as identity on the m ancilla qubits. Given a permutation Πi,S̃i

over the qubits
(which is itself a unitary), we have

Sobs(i, S̃i) =
{

Πi,S̃i
OΠi,S̃i

∣∣∣ O ∈ Sobs(1, {1, . . . , |S̃i|})
}
. (3.173)
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We note that O acts on n qubits, while Πi,S̃i
acts on n+m qubits; hence, we implicitly extend

O to n+m qubits by acting as identity on the m ancilla qubits. The set Sobs(1, {1, . . . , |S̃i|})
contains all the possible observables (up to permutation of the qubits) with |S̃i| qubits in
the backward lightcone of qubit i ∈ {1, . . . , n} in a depth-d circuit.

Recall from Fact 3.5 that the set S̃i of qubits corresponding to the backward lightcone of
qubit i in a depth-d circuit satisfies 1 ≤ |S̃i| ≤ 2d. We take the union over all possible values
of |S̃i| to define

S∗obs :=
2d⋃

k=1

Sobs(1, {1, . . . , k}). (3.174)

Because 2d = O(1) and for all k = O(1), |Sobs(1, {1, . . . , k}| = O(1), we have |S∗obs| = O(1).
We define the minimum distance between every pair of distinct observables in S∗obs as follows,

εdist := min
O1 ̸=O2∈S∗obs

∥O1 −O2∥∞. (3.175)

The minimum distance εdist depends on the depth d = O(1) and the finite gate set G with
|G| = O(1), so ε∗ is a constant independent of the system size n and failure probability δ.
We also define the minimum distance to an observable with a strictly smaller support.

εsupp := min
O1∈S∗obs

min
O2, such that

supp(O2)⊆supp(O1)
supp(O2 )̸=supp(O1)

∥O1 −O2∥∞. (3.176)

Because the support ofO2 is strictly contained in the support ofO1, we have ∥O1 −O2∥∞ > 0.
And since |S∗obs| = O(1), we have εsupp is a constant independent of n and δ.

Let ε̃ = min(εdist, εsupp)/3 in Eq. (3.168), and define Ŝi := {i} ∪ supp(Ôi,P ). Consider
any permutation Πi,Ŝi

over n qubits that implements the following permutation mapping,

1→Πi,Ŝi
i, {1, . . . , |Ŝi|} →Πi,Ŝi

Ŝi. (3.177)

We consider the following observable

O∗i,P := Πi,Ŝi

(
arg min
O∈S∗obs

∥∥∥Π−1
i,Ŝi
Ôi,PΠ−1

i,Ŝi
−O

∥∥∥
∞

)
Πi,Ŝi

. (3.178)

Because |S∗obs| = O(1) and the dimension of O ∈ S∗obs is a constant, the brute-force minimum
over S∗obs takes O(1) time. Because there are 3n observables O∗i,P , the computational time to
find all 3n observables O∗i,P is O(n). The following lemma shows that O∗i,P is exactly equal
to the desired Heisenberg-evolved Pauli observable U †PiU .

Lemma 3.15 (Exact reconstruction). Given the definitions above, with probability at least
1− δ, we have O∗i,P = U †PiU for all qubits i and Pauli observable P .
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Proof. We condition on the event that Eq. (3.168) is true, which happens with probability

at least 1− δ. Recall that supp(Ôi,P ) ⊆ supp(U †PiU) and
∥∥∥Ôi,P − U †PiU

∥∥∥
∞
≤ ε̃ ≤ εsupp/3.

From the definition of εsupp, we have supp(Ôi,P ) = supp(U †PiU). Hence,

Ŝi =
(
{i} ∪ supp(U †PiU)

)
⊆ Si, (3.179)

where Si is the set of qubits corresponding to the backward lightcone of qubit i in circuit C.
Consider any permutation Πi,Ŝi,Si

over n qubits that is equal to Πi,Ŝi
for inputs 1, . . . , |Ŝi|

and implements the following permutation mapping,
{
|Ŝi|+ 1, . . . , |Si|

}
→Πi,Ŝi,Si

Si \ Ŝi, (3.180)

and Πi,S̃i,Si
acts as identity on the m ancilla qubits. Because supp(U †PiU) ⊆ Ŝi, we have

Π−1
i,Ŝi
U †PiUΠ−1

i,Ŝi
= Π−1

i,Ŝi
(In ⊗ ⟨0m|)C†(Pi ⊗ Im)C(In ⊗ |0m⟩)Π−1i,Ŝi

= (In ⊗ ⟨0m|)
(

Π−1
i,Ŝi,Si

C†Π−1
i,Ŝi,Si

)
P1

(
Π−1
i,Ŝi,Si

CΠ−1
i,Ŝi,Si

)
(In ⊗ |0m⟩). (3.181)

By the definition of the permutation Π−1
i,Ŝi,Si

, {1, . . . , |Si|} is the set of qubits corresponding

to the backward lightcone of qubit 1 in the circuit Π−1
i,Ŝi,Si

CΠ−1
i,Ŝi,Si

. As a result, we have

O∗ := (In ⊗ ⟨0m|)
(

Π−1
i,Ŝi,Si

C†Π−1
i,Ŝi,Si

)
P1

(
Π−1
i,Ŝi,Si

CΠ−1
i,Ŝi,Si

)
(In ⊗ |0m⟩) (3.182)

∈ Sobs(1, {1, . . . , |Si|}) ⊆ S∗obs. (3.183)

The last ⊆ follows from the fact that |Si| ≤ 2d in Fact 3.5. We can use Eq. (3.181) and
∥∥∥Ôi,P − U †PiU

∥∥∥
∞
≤ ε̃ ≤ εdist/3 (3.184)

to see that ∥∥∥Π−1
i,Ŝi
Ôi,PΠ−1

i,Ŝi
−O∗

∥∥∥
∞
≤ εdist/3. (3.185)

For any O ∈ S∗obs with O ̸= O∗, we have ∥O −O∗∥∞ ≥ εdist. By the triangle inequality, we
have ∥∥∥Π−1

i,Ŝi
Ôi,PΠ−1

i,Ŝi
−O

∥∥∥
∞
≥ ∥O −O∗∥∞ −

∥∥∥Π−1
i,Ŝi
Ôi,PΠ−1

i,Ŝi
−O∗

∥∥∥
∞
≥ 2εdist/3. (3.186)

Together, we can show that O∗ is the unique global minimum,

O∗ = arg min
O∈S∗obs

∥∥∥Π−1
i,Ŝi
Ôi,PΠ−1

i,Ŝi
−O

∥∥∥
∞
. (3.187)

Using Eq. (3.181) again shows that

O∗i,P = Πi,Ŝi

(
arg min
O∈S∗obs

∥∥∥Π−1
i,Ŝi
Ôi,PΠ−1

i,Ŝi
−O

∥∥∥
∞

)
Πi,Ŝi

= U †PiU. (3.188)

This concludes the proof.



CHAPTER 3. LEARNING ALGORITHMS 150

From Lemma 3.14, we can characterize the support ofO∗i,P = U †PiU to apply Lemma 3.13.
Lemma 3.13 shows that there exists an ordering for sewing the Heisenberg-evolved Pauli
observables O∗i,P = U †PiU to create Usew({O∗i,P}i,P ) given in Definition 3.15, such that
Usew({O∗i,P}i,P ) can be implemented by a constant-depth quantum circuit. Under the event
that O∗i,P = U †PiU (think of O∗i,P as 0-approximate Heisenberg-evolved Pauli observable P
on qubit i under U) for all Pauli observable P and qubit i, Lemma 3.9 shows that

Usew({O∗i,P}i,P ) = U ⊗ U †. (3.189)

Finally, define an n-qubit channel Ê as follows,

Ê(ρ) := Tr>n
(
Usew({O∗i,P}i,P )(ρ⊗ |0n⟩⟨0n|)

)
, (3.190)

which can be implemented as a constant-depth 2n qubits circuit. Using Lemma 3.15, we
have

Ê = U (3.191)

with probability at least 1− δ. This concludes the proof of Theorem 3.6.

3.2.4.6 Learning geometrically-local shallow circuits (Proof of Theorem 3.7)

We present the algorithm for learning an unknown geometrically-local shallow quantum
circuit U . We separate the proof into two-qubit gates over SU(4) and over a finite gate set.

Arbitrary SU(4) gates. We present the algorithm for learning an unknown geometrically-
local shallow quantum circuit U over any two-qubit gate in SU(4). The algorithm uses
the randomized measurement dataset TU(N). The key ideas are constructing a superset
of the support of the Heisenberg-evolved Pauli observables using Lemma 3.16, finding the
Heisenberg-evolved Pauli observables for every qubit using Lemma 3.11, and sewing the
Heisenberg-evolved Pauli observables together using Definition 3.15 and Lemma 3.9.

Consider the lightcones Ld(i) for each qubit i with depth d as given in Definition 3.10.
We have the following lemma for characterizing the properties of Ld(i).

Lemma 3.16 (Properties of lightcones). Given a geometry over n qubits represented by a
graph G = (V,E) with a degree κ = O(1), a depth-d geometrically-local circuit U as given in
Definition 3.9 with d = O(1), and the lightcones Ld(i) for each qubit i with depth d as given
in Definition 3.10. For each qubit i, we have

supp
(
U †PiU

)
⊆ Ld(i), (3.192)

for any Pauli operator P ∈ {X, Y, Z}. Furthermore, Ld(i) is geometrically local (see Defi-
nition 3.11), |Ld(i)| = O(1), Ld(i) is known, and the number of qubits j such that Ld(i) ∩
Ld(j) ̸= ∅ is at most a constant.
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Proof. Because U is of depth d and Pi acts only on qubit i, U †PiU only acts only on qubits
that are distance d away from qubit i according to the graph G. By the definition of Ld(i),
we have supp

(
U †PiU

)
⊆ Ld(i). Recall that |Ld(i)| ≤ (κ + 1)d = O(1). Furthermore, since

G is known, Ld(i) is known. Now, consider a qubit j such that Ld(i) ∩ Ld(j) ̸= ∅. This
condition shows that qubit j must be of distance at most 2d from qubit i in the graph G.
Hence, the number of such j is bounded above by (κ + 1)2d = O(1). This concludes the
proof of the lemma.

Lemma 3.16 shows that Ld(i) is a geometrically-local set, |Ld(i)| = O(1), Ld(i) is known,
and the number of qubits j such that Ld(i) ∩ Ld(j) ̸= ∅ is at most a constant.

Recall that we can use Lemma 3.12 to constructing TU†PiU(N),∀i, P from the classical
dataset TU(N) given in Definition 3.8. Because |Ld(i)| = O(1) and Ld(i) is known, from
Lemma 3.11, with a dataset size of

N = O
(
n2 log(3n/δ)

ε2

)
, (3.193)

we can use TU†PiU(N),∀i, P constructed from TU(N) to learn Ôi,P , ∀i, P such that, with
probability at least 1− δ, for all i ∈ {1, . . . , n} and Pauli observable P ∈ {X, Y, Z}, we have

∥∥∥Ôi,P − U †PiU
∥∥∥
∞
≤ ε

6n
and supp(Ôi,P ) ⊆ supp

(
U †PiU

)
⊆ Ld(i). (3.194)

The computational time for learning all Ôi,P is O(n3 log(n/δ)/ε2).
We now utilize Lemm 3.13 to sew the learned observables into a geometrically-local

constant-depth quantum circuit. To use the lemma, we note the following relations from
Eq. (3.194),

A(i) :=
⋃

P

supp(Ôi,P ) ⊆
⋃

P

supp(U †PiU) ⊆ Ld(i). (3.195)

Because Ld(i) is a geometrically-local set, |Ld(i)| = O(1) and the number of qubits j such
that Ld(i) ∩ Ld(j) ̸= ∅ is at most a constant, we have A(i) is a geometrically-local set,
|A(i)| = O(1) and the number of qubits j such that A(i) ∩ A(j) ̸= ∅ is at most a constant.
Hence Lemma 3.13 given above shows that we can find an implementation of Usew({Ôi,P}i,P )
as a geometrically-local constant-depth 2n-qubit circuit in time O(n). Given Eq. (3.194), we
can use Lemma 3.9 on the form of the sewed Heisenberg-evolved Pauli observables to yield

∥∥∥Usew({Ôi,P}i,P )− U ⊗ U †
∥∥∥
⋄
≤ ε. (3.196)

Finally, define an n-qubit channel Ê as follows,

Ê(ρ) := Tr>n

(
Usew({Ôi,P}i,P )(ρ⊗ |0n⟩⟨0n|)

)
, (3.197)
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which can be implemented as a geometrically-local constant-depth quantum circuit over 2n
qubits. Because Eq. (3.194) holds with probability at least 1− δ, we have

∥∥∥Ê − U
∥∥∥
⋄
≤ ε (3.198)

with probability at least 1− δ. This concludes the proof of the first part of Theorem 3.7.

Finite gate sets. We present the algorithm for learning an unknown geometrically-local
shallow quantum circuit U over a finite gate set. Let the depth of the unknown shallow
quantum circuit be d = O(1) and the finite gate set be G with |G| = O(1). The algorithm
uses the randomized measurement dataset TU(N). The algorithm constructs a superset
of the support of the Heisenberg-evolved Pauli observables using Lemma 3.16, finds the
Heisenberg-evolved Pauli observables for every qubit exactly using Lemma 3.11 and the
information about the finite gate set G, and sew the Heisenberg-evolved Pauli observables
together using Definition 3.15 and Lemma 3.9.

Consider the lightcones Ld(i) for each qubit i with depth d as given in Definition 3.10.
Lemma 3.16 shows that Ld(i) is a geometrically-local set, |Ld(i)| = O(1), Ld(i) is known,
and the number of qubits j such that Ld(i)∩Ld(j) ̸= ∅ is at most a constant. The algorithm
and the proof proceed similarly to the case of having arbitrary two-qubit gates in SU(4).
The main difference is in defining the following set Sobs(Pi) for all i ∈ {1, . . . , n} and Pauli
observable P ∈ {X, Y, Z},

Sobs(Pi) :=
{
U †PiU | U is a geometrically-local depth-d circuit over the gate set G

}
.

(3.199)
Because |G| = O(1) and d = O(1), the set Sobs(Pi) contains a constant number of observables
that only act on qubits in Ld(i). We can define the minimum distance to be

ε0(Pi) := min { ∥O1 −O2∥∞ | O1 ̸= O2 ∈ Sobs(Pi) } = Ω(1). (3.200)

We also define ε0 = mini,P ε0(Pi) = Ω(1), which is a constant.
Recall that we can use Lemma 3.12 to constructing TU†PiU(N),∀i, P from the classical

dataset TU(N) given in Definition 3.8. Because |Ld(i)| = O(1) and Ld(i) is known, from
Lemma 3.11, with a dataset size of

N = O
(

log(3n/δ)

ε20

)
= O(log(n/δ)), (3.201)

we can use TU†PiU(N),∀i, P constructed from TU(N) to learn Ôi,P , ∀i, P such that, with
probability at least 1− δ, for all i ∈ {1, . . . , n} and Pauli observable P ∈ {X, Y, Z}, we have

∥∥∥Ôi,P − U †PiU
∥∥∥
∞
≤ ε0

3
and supp(Ôi,P ) ⊆ supp

(
U †PiU

)
⊆ Ld(i). (3.202)
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The computational time for learning all Ôi,P is O(n log(n/δ)/ε20) = O(n log(n/δ)). Because
U †PiU ∈ Sobs(Pi) only has a constant number of possibilities, we can find

O∗i,P := arg min
O∈Sobs(Pi)

∥∥∥O − Ôi,P

∥∥∥
∞

(3.203)

in time O(n). Because the pairwise distance in Sobs(Pi) is at least ε0 and U †PiU ∈ Sobs(Pi),

O∗i,P = U †PiU, ∀i ∈ {1, . . . , n}, P ∈ {X, Y, Z} (3.204)

with probability at least 1− δ.
We now utilize Lemm 3.13 to sew the learned observables into a geometrically-local

constant-depth quantum circuit. To use the lemma, we note the following relations from
Eq. (3.194),

A(i) :=
⋃

P

supp(O∗i,P ) ⊆
⋃

P

supp(U †PiU) ⊆ Ld(i). (3.205)

Because Ld(i) is a geometrically-local set, |Ld(i)| = O(1) and the number of qubits j such
that Ld(i) ∩ Ld(j) ̸= ∅ is at most a constant, we have A(i) is a geometrically-local set,
|A(i)| = O(1) and the number of qubits j such that A(i) ∩ A(j) ̸= ∅ is at most a constant.
Hence Lemma 3.13 given above shows that we can find an implementation of Usew({O∗i,P}i,P )
as a geometrically-local constant-depth 2n-qubit circuit in time O(n). Given Eq. (3.204), we
can use Lemma 3.9 on the form of the sewed Heisenberg-evolved Pauli observables to yield

Usew({O∗i,P}i,P ) = U ⊗ U †. (3.206)

Finally, define an n-qubit channel Ê as follows,

Ê(ρ) := Tr>n
(
Usew({O∗i,P}i,P )(ρ⊗ |0n⟩⟨0n|)

)
, (3.207)

which can be implemented as a geometrically-local constant-depth quantum circuit over 2n
qubits. Because Eq. (3.194) holds with probability at least 1− δ, we have

Ê = U (3.208)

with probability at least 1− δ. This concludes the proof of Theorem 3.7.

3.2.4.7 Learning shallow circuits on k-dimensional lattice with optimized
circuit depth (Proof of Theorem 3.8)

Here we develop an approach to optimize the depth of the learned circuit. The main idea
is to design a coloring scheme for the k-dimensional lattice with the fewest colors possible,
such that gates supported on the same color can be implemented simultaneously.
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Figure 3.2: A coloring of k-dimensional lattice with k + 1 colors, where different regions of
the same color are separated by distance at least R. (a) A coloring of 2-dimensional lattice.
(b) A coloring of 3-dimensional lattice (the fourth color is not shown).

Definition 3.17 (k+1-coloring of k-dimensional lattice with distance R). Consider a graph
representing a k-dimensional lattice (Fig. 3.1(a) shows k = 2). Each vertex is assigned
a color, and the entire lattice is divided into many small regions with different colors. A
k + 1-coloring of k-dimensional lattice with distance R satisfies the following properties:

1. There are k + 1 colors in total;

2. Each small region has constant size;

3. The distance between two regions with the same color is at least R.

Here we give a construction of the above coloring (see Fig. 3.2). Similar approaches have
been used in e.g. [212], although explicit constructions in 3D or above are not provided. The
construction is based on “fattening” different t-cells in the lattice, from small to large t.1

Consider a k-dimensional cube of length 2kR (the volume of the cube is (2kR)k). Then we
do the following:

• Fatten each 0-cell (vertices) to length kR, assign color 1.

• Fatten each 1-cell (edges) to length (k − 1)R, assign color 2.

1We thank Jeongwan Haah for teaching this argument at PCMI 2023 Graduate Summer School.
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• Fatten each 2-cell (faces) to length (k − 2)R, assign color 3.

• . . .

• Fill in the remaining k-cell with color k + 1.

This is repeated in a translation-invariant way across the entire lattice.
This construction is illustrated in Fig. 3.2 for k = 2, 3. First, consider k = 2. A 2-

dimensional square of size 4R × 4R is shown in the top left corner (thick black box) of
Fig. 3.2(a). In the first step, we fatten each of the 4 vertices into red squares of size 2R×2R.
Only a quarter of each red square remains within the original square. Next, we fatten each
of the 4 edges into purple rectangles of size R × 2R. This can be viewed as “growing” the
edge until it has thickness R, but the regions that were colored red remain unchanged. Note
the fact that the purple edges have a thickness of R, while the red vertices have a thickness
of 2R. This is crucial as it ensures that different purple regions are separated by a distance
of at least R. Finally, the remaining regions are colored orange. Note that different orange
regions are also separated by a distance of at least R due to the thickness of the purple edges.

The coloring of 3-dimensional lattices is shown in Fig. 3.2(b). Here we assign colors to
a 3-dimensional cube of size 6R × 6R × 6R, and Fig. 3.2(b) illustrates one of the six faces
of that cube, which is the result of fattening the red vertices, green edges, and the blue face
(the final coloring of the 3-cell is not shown in the figure). The thickness of the red vertices is
larger than the thickness of the green edges, which guarantees that different green edges are
separated by distance R. Similarly, the decrease in the thickness of the blue faces relative
to the green edges guarantees the separation of different blue faces.

Choose R = 3d in the above coloring scheme, and suppose the system is divided into
L small regions A1, . . . , AL (

∑
i |Ai| = n). Two regions Ai, Aj that have the same color

are separated by distance at least 3d. Let A′i be the ancilla system associated with Ai (see
Fig. 3.1), and let SAi

be the SWAP operator across Ai and A′i. Let S =
∏L

i=1 SAi
be the global

swap between system and ancilla. We are now ready to describe the learning algorithm. We
separate the proof into two-qubit gates over SU(4) and over a finite gate set.

Arbitrary SU(4) gates. The learning algorithm proceeds in the same way as in Theo-
rem 3.7; the only difference is that we need to learn Heisenberg-evolved Pauli operator U †PU
for P supported on each small regions in the coloring scheme instead of on each of the single
qubits.

Our goal is to learn to implement the unitary

U ⊗ U † = S

[
L∏

i=1

(U † ⊗ I)SAi
(U ⊗ I)

]
. (3.209)

The algorithm learns each of the operators WAi
:= (U † ⊗ I)SAi

(U ⊗ I) and then multiply
them together, followed by the global swap. The key idea to optimize the circuit depth of
the learned circuit is to utilize the coloring scheme in the following sense:
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Lemma 3.17 (Disjointness of supports). Let Ai, Aj be two regions with the same color.
Then WAi

and WAj
have disjoint support.

Proof. Recall that the operator WAi
is supported on L(Ai)∪A′i, where L(Ai) is the lightcone

of Ai according to Definition 3.10. Therefore, WAi
does not overlap with WAj

when the
lightcones L(Ai) and L(Aj) do not overlap. The coloring scheme has the property that Ai,
Aj are separated by distance at least 3d. Note that the lightcone of a region spreads the
region by distance d. This implies that L(Ai) and L(Aj) are still separated by distance at
least d and therefore do not overlap.

Using the above lemma, we can construct the learned circuit by applying the learned
operators {WAi

} with the same color simultaneously.

Lemma 3.18. There is an implementation of U ⊗ U † via applying the operators {WAi
} in

an appropriate order, such that the total circuit depth is (k + 1)(2d+ 1) + 1.

Proof. We would like to implement

U ⊗ U † = S
L∏

i=1

WAi
. (3.210)

Note that the operators {WAi
} pairwise commute, and we apply them in the following order:

for each color j ∈ {1, 2, . . . , k + 1}, apply all operators WAi
that has color j simultaneously.

Finally, apply the global swap S.
Note that by definition, WAi

= (U † ⊗ I)SAi
(U ⊗ I) can be viewed as a depth-(2d + 1)

circuit acting on L(Ai) ∪ A′i. The total circuit depth is therefore (k + 1)(2d + 1) + 1 (the
final +1 comes from the global swap).

The learning algorithm has two steps: learning and compiling.

1. (Learning) Learn an approximate classical description ŴAi
for each WAi

, such that
∥ŴAi

−WAi
∥∞ ≤ ε1 for all i with high probability.

2. (Compiling) Compile the learned unitaries ŴAi
from step one into depth-(2d + 1)

circuits Ŵ ′
Ai

, such that ∥ŴAi
− Ŵ ′

Ai
∥∞ ≤ 2ε1 for all i.

The diamond distance between the learned circuit and the true circuit is at most 3Lε1 ≤ 3nε1.

Step 1: Learning. The goal is to learn an approximation Ôi,PAi
of each operator U †PAi

U ,
such that the following,

∥∥∥Ôi,PAi
− U †PAi

U
∥∥∥
∞
≤ ε1

2|Ai|+1
, ∀i ∈ {1, 2, . . . , L}, PAi

∈ {I,X, Y, Z}|Ai|, (3.211)

holds with probability at least 1− δ.
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Using the fact that SAi
= 1

2|Ai|

∑
P∈{I,X,Y,Z}|Ai| P ⊗ P , we have

WAi
=

1

2|Ai|

∑

P∈{I,X,Y,Z}|Ai|

U †PU ⊗ P. (3.212)

Meanwhile, let

ŴAi
:= ProjU


 1

2|Ai|

∑

P∈{I,X,Y,Z}|Ai|

Ôi,PAi
⊗ PAi


 . (3.213)

From the lattice coloring scheme, we have |L(Ai)|+|Ai| ≤ 2(8kd)k. Hence, using Corollary 3.1
on exact unitary synthesis with geometrically-local circuits, we can implement ŴAi

by a
geometrically-local circuit with a circuit depth of

4(8kd)k42(8kd)k ≤ 43(8kd)k+1 ≤ 44(8kd)k . (3.214)

Conditioned on Eq. (3.211) succeeds, the approximation error is bounded as follows:

∥∥∥ŴAi
−WAi

∥∥∥
∞
≤ 2

∥∥∥∥∥∥
1

2|Ai|

∑

P∈{I,X,Y,Z}|Ai|

(
Ôi,PAi

− U †PAi
U
)
⊗ PAi

∥∥∥∥∥∥
∞

≤ 2

2|Ai|

∑

P∈{I,X,Y,Z}|Ai|

∥∥∥Ôi,PAi
− U †PAi

U
∥∥∥
∞

≤ ε1.

(3.215)

Here in the first line we use the same argument as in Eq. (3.123).
It remains to bound the time and query complexity to achieve the learning guarantee in

Eq. (3.211). Given a randomized measurement dataset

TU(N) =

{
|ψℓ⟩ =

n⊗

i=1

|ψℓ,i⟩ , |ϕℓ⟩ =
n⊗

i=1

|ϕℓ,i⟩
}N

ℓ=1

, (3.216)

for a Pauli operator P ∈ {I,X, Y, Z}|Ai| with weight w ≤ |Ai| (the weight of a Pauli operator
is the number of non-identity elements), let

v
U†PAi

U

ℓ := 3w ⟨ϕℓ,Ai
|P |ϕℓ,Ai

⟩ , (3.217)

where we let |ϕℓ,Ai
⟩ := ⊗j∈Ai

|ϕℓ,j⟩. The same argument in Lemma 3.12 shows that

E
[
v
U†PAi

U

ℓ

]
= ⟨ψℓ|U †PAi

U |ψℓ⟩ . (3.218)
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Let m := maxi |L(Ai)| ≤ (8kd)k be the maximum support of the operators U †PAi
U . Using

Lemma 3.11, with a dataset size of

N =
2O(m) log(n/δ)

ε21
, (3.219)

Eq. (3.211) is achieved with success probability at least 1− δ.

Step 2: Compiling. Given a classical description of ŴAi
as unitary acting on L(Ai) ∪A′i,

which can be implemented with a circuit depth of at most 44(8kd)k , we would like to find a
depth-(2d + 1) circuit Ŵ ′

Ai
that is close to ŴAi

. To do this, we construct an ε-net for the
circuit lightcone and perform a brute force search.

Definition 3.18 (ε-net for circuits). Consider a graph G = (V,E). Let U be some unitary
generated by d layers of 2-qubit gates where each gate is chosen from SU(4) and acts on an
edge in E. An ε-net for circuits is a set of depth-d circuits defined on G, denoted as Nε(G),
such that for any choice of U , there exists V ∈ Nε(G), such that ∥V − U∥∞ ≤ ε.

Lemma 3.19. Let G = (V,E) be a graph with s = |V | vertices and maximum degree κ. An
ε-net for depth-d circuits defined on G, denoted as Nε(G), can be constructed with size at

most
(
κsd
ε

)O(sd)
and in time

(
κsd
ε

)O(sd)
.

Proof. There are at most sd/2 2-qubit gates in the circuit. We construct the ε-net by first
enumerating all possible circuit architectures and then enumerate each 2-qubit gate using
a 2ε

sd
-net for SU(4). In each layer, each qubit can interact with one of the κ neighboring

qubits. This implies that the number of possible circuit architectures in one layer is at most
κs. Therefore, the number of possible circuit architectures with depth d is at most κsd.

An ε1-net for SU(4) can be constructed with
(
c0
ε1

)c1
elements, where c0, c1 are absolute

constants. Plugging in ε1 = 2ε
sd

, the size of Nε(G) is at most

κsd ·
(O(1) · sd

ε

)O(1)·sd
=

(
κsd

ε

)O(sd)
. (3.220)

This concludes the proof.

Let GL(Ai) be the subgraph of k-dimensional lattice induced by vertices in L(Ai). The
lattice coloring scheme guarantees that the size of L(Ai) is at most (8kd)k. Let Nε2(GL(Ai))
be an ε2-net for depth-d circuits acting on L(Ai), which has size at most

(
(8kd)k+1

ε2

)O(1)·(8kd)k+1

. (3.221)

By definition, there is an element V ∈ Nε2(GL(Ai)) which is a depth-d circuit acting on L(Ai),
such that

∥(U † ⊗ I)SAi
(U ⊗ I)− (V † ⊗ I)SAi

(V ⊗ I)∥∞ ≤ 2ε2, (3.222)
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which implies that
∥ŴAi

− (V † ⊗ I)SAi
(V ⊗ I)∥∞ ≤ ε1 + 2ε2. (3.223)

Therefore, enumerating over all elements in Nε2(GL(Ai)), we are guaranteed to find one

element V̂ that satisfies

∥ŴAi
− (V̂ † ⊗ I)SAi

(V̂ ⊗ I)∥∞ ≤ ε1 + 2ε2. (3.224)

Let ε2 = ε1/2 and define Ŵ ′
Ai

:= (V̂ † ⊗ I)SAi
(V̂ ⊗ I), we have ∥ŴAi

− Ŵ ′
Ai
∥∞ ≤ 2ε1.

Putting everything together. To achieve diamond distance ε between the learned circuit
S
∏L

i=1 Ŵ
′
Ai

and the true circuit U ⊗ U †, it suffices to choose ε1 = ε
3n

. With probability at

least 1− δ, we can learn all operators ŴAi
within sufficient precision, using a dataset size of

N =
2O((8kd)

k)n2 log(n/δ)

ε2
. (3.225)

Next, each ŴAi
is classically compiled into a circuit, and they are combined together accord-

ing to the order in Lemma 3.18, such that the learned circuit has total depth (k+1)(2d+1)+1.
This classical postprocessing procedure takes a total time of

O(nN) + (n/ε)O(8kd)
k+1) , (3.226)

which is polynomial in n and 1/ε. If we do not compile ŴAi
to the shorter-depth circuit Ŵ ′

Ai

and use ŴAi
directly, then the classical postprocessing procedure only requires a computa-

tional time of
O(nN), (3.227)

but the learned circuit will have a total depth of (k+ 1)44(8kd)k + 1. This concludes the proof
of the first part of Theorem 3.8.

Finite gate sets. The algorithm and the proof closely follow that of arbitrary SU(4) gates.
When one considers a finite gate set with a constant size, a key simplification is the following:
for any given i ∈ {1, . . . , L} and PAi

∈ {I,X, Y, Z}|Ai|, U †PAi
U only takes on a constant

number of options. Let εi,PAi
= Ω(1) be the minimum distance in spectral norm between

any pair of distinct U †PAi
U .

From the same algorithm and proof in Step 1: Learning, we can ensure that
∥∥∥Ôi,PAi

− U †PAi
U
∥∥∥
∞
≤
εi,PAi

3
, ∀i ∈ {1, 2, . . . , L}, PAi

∈ {I,X, Y, Z}|Ai|, (3.228)

holds with probability at least 1− δ using a sample complexity of

N = O
(

log(n/δ)

ε2i,PAi

)
= O (log(n/δ)) . (3.229)
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From the definition of εi,PAi
, we can identify U †PAi

U exactly from Ôi,PAi
. This enables us

to exactly reconstruct

WAi
=

1

2|Ai|

∑

P∈{I,X,Y,Z}|Ai|

U †PU ⊗ P = U †SAi
U. (3.230)

Because U is a quantum circuit of depth d = O(1) on a constant-dimensional lattice over
a finite gate set of a constant size, we can perform a constant-time brute-force search to
find a (2d+ 1)-depth circuit implementation for WAi

instead of searching through the ε-net
as in Step 2: Compiling. The computational time of the compiling step is improved from

(n/ε)O(8kd)
k+1) to O(n). Following the rest of the proof for the case of SU(4) gates, we can

learn U exactly with a learned circuit of depth (k + 1)(2d+ 1) + 1. The sample complexity
is given in Eq. (3.229), and the computational time is dominated by reading the classical
dataset, which is of O(nN) = O(n log(n/δ)). This concludes the proof of Theorem 3.8.

3.2.5 Learning shallow quantum circuits from quantum queries

We consider quantum learning algorithms that can access an unknown n-qubit unitary U
through coherent quantum queries, which interleave the unitary U with quantum computa-
tion.

Definition 3.19 (Coherent quantum queries). The learning algorithm is a quantum algo-
rithm with general coherent query access to the unknown unitary U . The quantum learning
algorithm can interleave multiple accesses to the unknown unitary U with polynomial-size
quantum circuits.

We show the following result for learning geometrically-local shallow quantum circuits
over finite gate sets with asymptotically optimal query complexity and time complexity. We
only need to consider proving the matching upper bounds. The matching lower bounds to
the query and time complexity are trivial: learning anything about U requires Ω(1) queries
to U ; writing down U requires Ω(n) time.

Theorem 3.9 (Learning geometrically-local shallow quantum circuits over a finite gate set).
Given an unknown geometrically-local constant-depth n-qubit circuit U over a finite gate set.
From

N = Θ(1) (3.231)

queries to U , we can learn an n-qubit quantum channel Ê that can be implemented by a
geometrically-local constant-depth 2n-qubit circuit, such that

Ê = U , (3.232)

with probability 1. The computational time to learn Ê is Θ(n).
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3.2.5.1 Learning local inversion using coherent quantum queries

When there is only a finite choice of possible unitaries, we can find the local inversion
perfectly with O(1) queries, even if there is incoherent noise coming from the environment.
This lemma is useful for showing the O(1) query complexity for learning n-qubit shallow
quantum circuits with a finite gate set and a fixed geometric structure. The idea is to store
multiple output quantum states in a quantum memory and utilize entangled quantum data
processing. The formal statement is given below. We use the subscript on identity I or I to
denote the number of qubits the identity acts on.

Lemma 3.20 (Perfect local inversion among finite choices). Consider k, l,m = O(1), uni-
taries U1, . . . , Um over k qubits, and unitaries W1, . . .Wm over (k− 1) + l qubits. Let CPTP
maps Ex from k to k + l qubits be

Ex(ρ) := (I1 ⊗Wx)(Ux ⊗ Il)(ρ⊗ I/2l), ∀x = 1, . . . ,m. (3.233)

Given an unknown Ex. Using O(1) queries to Ex, we can find a perfect local inversion Vx of
Ux on the first qubit. Furthermore, Vx = U †i for some i.

In order to prove the above lemma, we use a perfect local identity check for two choices
given in Lemma 3.21. The proof of Lemma 3.20 is given after the proof of Lemma 3.21.

Lemma 3.21 (Perfect local identity check among two choices). Consider k, l ≥ 1, two
unitaries U1, U2 over k qubits, and two unitaries V1, V2 over k + l − 1 qubits. Given CPTP
maps from k qubits to k + l qubits,

Ex(ρ) := (I1 ⊗ Vx)(Ux ⊗ Il)(ρ⊗ I/2l), ∀x = 1, 2. (3.234)

Assume that k, l are constants, U1 acts as identity on the first qubit U1 = I1⊗ Ũ1, and U2 is
constant far from CPTP maps that act as an identity on the first qubit,

c := min
E
∥U2 − I1 ⊗ E∥⋄ = Ω(1). (3.235)

Given an unknown Ex. Using O(1) queries to Ex, we can perfectly distinguish between E1 and
E2.

Proof. Let |Ωk⟩ be the maximally entangled state over two copies of a k-qubit system. We
define the following density matrices over (k + l) + k qubits,

ρx := (Ik ⊗ Ex)(|Ωk⟩⟨Ωk|), ∀x = 1, 2. (3.236)

The support of a density matrix ρ is defined as

supp(ρ) :=
{
|ψ⟩
∣∣ ⟨ψ| ρ |ψ⟩ > 0

}
. (3.237)



CHAPTER 3. LEARNING ALGORITHMS 162

From the definition of ρx, we have

supp(ρx) = {(Ik+1 ⊗ Vx)(Ik ⊗ Ux ⊗ Il)(|Ωk⟩ ⊗ |ψ⟩), ∀ |ψ⟩} . (3.238)

The maximal fidelity between two density matrices is defined as

F̃ (ρ1, ρ2) := max
(
| ⟨ϕ1|ϕ2|ϕ1|ϕ2⟩ |

∣∣ |ϕx⟩ ∈ supp(ρx), x = 1, 2
)
. (3.239)

The maximal fidelity behaves similarly to fidelity and is multiplicative under tensor product

F̃ (ρ1 ⊗ σ1, ρ2 ⊗ σ2) = F̃ (ρ1, ρ2)F̃ (σ2, σ2). (3.240)

From the above definition, we see that there exists |ψ1⟩ , |ψ2⟩ such that

F̃ (ρ1, ρ2)
2 =

∣∣∣(⟨Ωk| ⊗ ⟨ψ1|)(Ik ⊗ U †2 ⊗ Il)(Ik+1 ⊗ (V †2 V1(Ũ1 ⊗ Il)))(|Ωk⟩ ⊗ |ψ2⟩)
∣∣∣
2

. (3.241)

We now consider two states associated with the above,

σ1 := (Ik+1 ⊗ (V †2 V1(Ũ1 ⊗ Il)))(|Ωk⟩⟨Ωk| ⊗ |ψ2⟩⟨ψ2|)(Ik+1 ⊗ ((Ũ †1 ⊗ Il)V †1 V2)) (3.242)

σ2 := (Ik ⊗ U2 ⊗ Il)(|Ωk⟩⟨Ωk| ⊗ |ψ1⟩⟨ψ1|)(Ik ⊗ U †2 ⊗ Il) (3.243)

The Fuchs–van de Graaf inequalities show that F̃ (ρ1, ρ2)
2 = Tr(σ1σ2) ≤ 1 − 1

4
∥σ1 − σ2∥21.

We now consider a lower bound of the trace norm ∥σ1 − σ2∥1 by tracing out the last l qubits,

∥σ1 − σ2∥1 ≥ ∥(Ik ⊗ I1 ⊗ E)(|Ωk⟩⟨Ωk|)− (Ik ⊗ U2)(|Ωk⟩⟨Ωk|)∥1, (3.244)

where E is a CPTP map that acts on the last k−1 qubits. Recall that the 1-norm distance in
the Choi states upper bounds the diamond distance in the CPTP maps up to the dimension
factor 1/2k. From the definition of c in Eq. (3.235), we have the following inequality,

∥σ1 − σ2∥1 ≥
1

2k
∥I1 ⊗ E − U2∥⋄ ≥

c

2k
. (3.245)

Therefore, we have
F̃ (ρ1, ρ2) ≤

√
1− (c/2k+2)2 < 1, (3.246)

which is a key result that will be used later.
We need to consider another pair of states. Consider the Pauli decomposition of U2 on

the first qubit,

U2 =
∑

P∈{I,X,Y,Z}

P ⊗ Ũ2,P , (3.247)

where Ũ2,P is a complex matrix of dimension 2k−1. Because U2 does not act as identity on

the first qubit, we have c′ :=
∑

P ̸=I Tr
(
Ũ †2,P Ũ2,P

)
> 0 is a positive constant. Consider the

following matrix,

M :=
∑

P∈{X,Y,Z}

P ⊗ Ũ2,P , (3.248)
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and define two 2k-qubit pure states,

|ψ1⟩ := |Ωk⟩ , (3.249)

|ψ2⟩ := Ik ⊗
(
U †2

M√
Tr(M †M)/2k

)
|Ωk⟩ . (3.250)

By the definition of c′ and M , we have Tr
(
M †M

)
= 2c′ > 0 and

F̃ (|ψ1⟩⟨ψ1| , |ψ2⟩⟨ψ2|) = | ⟨ψ1|ψ2|ψ1|ψ2⟩ |2 = 2c′/2k > 0. (3.251)

Furthermore, the overlap between Ex(|ψx⟩⟨ψx|) satisfies

Tr (E1(|ψ1⟩⟨ψ1|)E2(|ψ2⟩⟨ψ2|)) =
1

2c′/2k
· 1

2k
· 1

2k
·

∑

P,Q∈{X,Y,Z}

Tr
(

Tr≤k(P ⊗ ((Ũ †2,P ⊗ Il)V †2 V1(Ũ1 ⊗ Il))) Tr≤k(Q⊗ ((Ũ †1 ⊗ Il)V †1 V2(Ũ2,Q ⊗ Il)))
)

= 0,
(3.252)

which implies that there exists a two-outcome projective measurement M that could per-
fectly distinguish between the two states E1(|ψ1⟩⟨ψ1|) and E2(|ψ2⟩⟨ψ2|).

Consider N queries to Ex to obtain ρ⊗Nx , where the number of queries is

N := max


1,




log
(
(2c′/2k)

)

log
(√

1− (c/2k+2)2
)





 = O(1). (3.253)

Using Eq. (3.240), (3.246), and (3.251), we have

F̃ (ρ⊗N1 , ρ⊗N2 ) = F̃ (ρ1, ρ2)
N ≤

√
1− (c/2k+2)2

N ≤ (2c′/2k) = F̃ (|ψ1⟩⟨ψ1| , |ψ2⟩⟨ψ2|). (3.254)

From Lemma 1 of [205], there exists a CPTP map T that takes ρx to |ψx⟩⟨ψx| for x = 1, 2.
We apply T to ρx. And we evoke one additional query to Ex to obtain Ex(|ψx⟩⟨ψx|). Finally,
we perform the two-outcome projective measurement M to perfectly distinguish between
E1(|ψ1⟩⟨ψ1|) and E2(|ψ2⟩⟨ψ2|). Together, with N + 1 = O(1) queries to Ex, we can perfectly
distinguish between E1 and E2.

We are now ready to prove Lemma 3.20. The central idea is a bipartite tournament with
a potential local inversion on one side and all possible non-local inversion on the other side.

Proof of Lemma 3.20. Each query to Ex allows us to create 1 query to any one of the following
CPTP maps,

Ex,i = (Ex ◦ U †i ), ∀i = 1, . . . ,m. (3.255)
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The algorithm proceeds by going through all of i one by one. For each i, the algorithm
creates two sets,

Si :=
{
y ∈ {1, . . . ,m} | UyU †i acts as identity on the first qubit

}
, (3.256)

Ti := {1, . . . ,m} \ Si. (3.257)

Note that by definition, i ∈ Si and i ̸∈ Ti. For each y ∈ Ti, the algorithm uses the algorithm
given in the proof of Lemma 3.21 to test whether Ex,i is equal to Ey,i or Ei,i. If Ex,i is indeed
equal to one of them, then the algorithm in Lemma 3.21 is guaranteed to output the one that
is equal to Ex,i. If not, then the algorithm in Lemma 3.21 will output Ey,i or Ei,i arbitrarily.
After going through all y ∈ Ti, if between Ey,i and Ei,i, Ei,i is always chosen for all y ∈ Ti,
then the algorithm sets i∗ := i and terminates the for-loop over i. The algorithm outputs
U †i∗ as the claimed perfect local inversion of Ux on the first qubit.

By construction, the total number of queries to Ex in the above algorithm is a constant.
We now prove that (a) i∗ can always be found by the above algorithm and (b) U †i∗ is a
perfect local inversion of Ux on the first qubit. The proof is separated into the following two
paragraphs addressing each claim.

i∗ can always be found. When i = x, for each y ∈ Ti, we are testing whether Ex,x is
equal to Ey,x or Ex,x. Because UyU

†
x does not act as identity on the first qubit by definition

of Tx, Lemma 3.21 shows that the algorithm will always return Ex,x when deciding between
Ey,x and Ex,x. Hence when i = x, the algorithm will set i∗ := i and terminate the for-loop
over i. The algorithm could also terminate earlier for some i < x but will always terminate
when i = x. Therefore, i∗, as defined by the algorithm previously, can always be found.

U †i∗ is a perfect local inversion of Ux on the first qubit. We first show by contradiction
that x ̸∈ Ti∗ . Suppose that x ∈ Ti∗ . For y = x ∈ Ti∗ , we would be testing whether Ex,i∗ is
equal to Ex,i∗ or Ei∗,i∗ . Recall that i∗ ̸∈ Ti∗ , thus x ̸= i∗. Lemma 3.21 thus implies that the
algorithm will always return Ex,i∗ when deciding between Ex,i∗ and Ei∗,i∗ . As a result, the
condition defining i∗ is not satisfied, which is a contradiction. Because Si∗∪Ti∗ = {1, . . . ,m},
we have x ∈ Si∗ . which means have UxU

†
i∗ acts as identity on the first qubit. As a result,

U †i∗ is a perfect local inversion of Ux on the first qubit.

3.2.5.2 Learning geometrically-local shallow circuits over a finite gate set
(Proof of Theorem 3.9)

We present the algorithm for learning an unknown geometrically-local shallow quantum
circuit U over a finite gate set. Let the geometry over n qubits be represented by a graph
G = (V,E) with degree κ = O(1), the depth of U be d = O(1), and the finite gate set be G
with |G| = O(1). This algorithm requires coherent quantum queries to the unknown unitary
U . The key ideas are constructing n CPTP maps EUi , ∀i ∈ {1, . . . , n} from O(1) queries
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to U , utilizing Lemma 3.20 to find perfect local inversion among finite choices, and using
Definition 3.13 and Lemma 3.7 to sew the local inversion unitaries together.

We consider the lightcone Ld(i) of the geometry for qubit i under the unknown depth-d
geometrically-local circuit U in Definition 3.10 and the properties of the lightcones given in
Lemma 3.16.

For each qubit i in the n-qubit system, we can always decompose the depth-d geometrically-
local quantum circuit U as the following,

U =
(
Ii ⊗W (i) ⊗ I/∈L2d(i)

) (
U (i) ⊗ W̃ (i)

)
, (3.258)

where U (i) acts on qubits in the set Ld(i), W̃
(i) acts on qubits not in the set Ld(i), W

(i) acts
on qubits in the set L2d(i) \ {i}, and Ii, I/∈L3d(i) are identity matrices acting on qubit i and

qubits not in L3d(i), respectively. Furthermore, U (i),W (i), W̃ (i) are all subcircuits (circuits
containing a subset of gates) of the unknown depth-d geometrically-local circuits U . We
define the CPTP map EUi ,

EUi (ρ) := Tr/∈L2d(i)

(
U

(
ρ⊗ I/∈Ld(i)

2n−|Ld(i)|

)
U †
)

(3.259)

=
(
Ii ⊗W(i)

) (
U (i) ⊗ IL2d(i)\Ld(i)

)(
ρ⊗ IL2d(i)\Ld(i)

2|L2d(i)|−|Ld(i)|

)
, (3.260)

where ρ is a density matrix for qubits in Ld(i), I/∈Ld(i) is the identity matrix over qubits not
in Ld(i), I/∈Ld(i)/2

n−|Ld(i)| is the maximally mixed state for qubits not in Ld(i), and Tr/∈L2d(i)

traces out all qubits not in L2d(i). Because EUi (ρ) uses a single query to U , naively, one
would expect that to obtain a query to EUi for every qubit i requires n queries to U . The
following lemma shows that we can do much more efficiently than what one would naively
expect.

Lemma 3.22 (Queries to every EUi from only O(1) queries to U). We can construct a query
to every EUi , 1 ≤ i ≤ n from only O(1) queries to the unknown constant-depth geometrically-
local circuit U .

Proof. Let d = O(1) be the depth of the circuit U . We consider a graph G(3d) over n qubits,
where each pair of qubits is connected by an edge if their distance in G is at most 3d. The
degree of G(3d) is at most (κ + 1)3d = O(1). The graph only has O(n) edges and can be
constructed as an adjacency list in time O(n). Let us define a coloring of the graph G(3d).
By the standard greedy coloring algorithm, we can find a color c(3d)(i) for each qubit i in
graph G(3d), where no adjacent vertices can have the same color, and there are only χ(3d)

distinct colors with
χ(3d) ≤ (κ+ 1)3d + 1 = O(1). (3.261)

The greedy coloring algorithm runs in time linear in the number of edges in G(3d), which is
linear in the number n of qubits.
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For each color c = 1, . . . , χ(3d), we consider the set of qubits with color c. We can
construct one query to every EUi for qubits i with color c(3d)(i) = c from only one query to
U . By the construction of the graph coloring, for two distinct qubits i ̸= j with the same
color c, L3d(i) ∩ L3d(j) = ∅. We now define the following sets of qubits for the color c,

A(c) :=
{
i ∈ {1, . . . , n}

∣∣ c(3d)(i) = c
}
, Bq(c) :=

⋃

i:c(3d)(i)=c

Lq(i), (3.262)

for any integer q ≥ 1. Given the definition of U (i),W (i) in Eq. (3.258) for each qubit i. We
can further decompose the shallow circuit U as

U =




IA(c) ⊗

⊗

i:c(3d)(i)=c

W (i)


⊗ I/∈B2d(c)






 ⊗

i:c(3d)(i)=c

U (i)


⊗ W̃ (c)


 , (3.263)

where W̃ (c) acts on qubits not in Bd(c). Consider initializing the qubits not in Bd(c) as the
maximally mixed state, evolving under U , and tracing out any qubits not in B2d(c). The
resulting CPTP map EUc from qubits in Bd(c) to qubits in B2d(c) can be written as

EUc (ρ) =


IA(c) ⊗

⊗

i:c(3d)(i)=c

W(i)




 ⊗

i:c(3d)(i)=c

U (i) ⊗ IB2d(i)\Bd(i)



(
ρ⊗ IB2d(c)\Bd(c)

2|B2d(c)|−|Bd(c)|

)
,

(3.264)
where ρ is a density matrix over qubits in Bd(c). It is not hard to see that

EUc =
⊗

i:c(3d)(i)=c

EUi . (3.265)

Because EUc only requires one query to U , we can create EUi for all qubit i with color c from
one query to U . Since there is only χ(3d) = O(1) colors, we can create a query to every
EUi , 1 ≤ i ≤ n from only O(1) queries to the unknown circuit U .

Because U is over a finite gate set with size O(1), we have U (i) and W (i) only have a
constant number of choices. Furthermore, both U (i) and W (i) act on a constant number of
qubits because |Ld(i)| = O(1), |L2d(i)| = O(1) for a constant depth d. From Lemma 3.20,
for each qubit i, through O(1) queries to EUi , we can learn a perfect local inversion Vi of U (i)

on qubit i with no failure probability. The local inversion unitary Vi is the inverse of one of
the possible choices for U (i). Hence, Vi is a geometrically-local depth-d circuit that only acts
on qubits in Ld(i). Combining with Lemma 3.22, from only O(1) queries to U , we can learn
V (i),∀i = 1, . . . , n, such that

U (i)Vi = I(i) ⊗ EU(i)Vi
̸=i , (3.266)

where I(i) is the identity map on qubit i and EU(i)Vi
̸=i is the reduced channel of U (i)Vi with

qubit i removed. The quantum computational time is given by O(n). We now show that Vi is
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also the perfect local inversion unitary for U on qubit i. To see this, recall the decomposition
in Eq. (3.258), we have

UVi =
(
Ii ⊗W(i) ⊗ I/∈L2d(i)

) (
U (i)Vi ⊗ W̃(i)

)
(3.267)

= I(i) ⊗
((
W(i) ⊗ I/∈L2d(i)

) (
EU(i)Vi
̸=i ⊗ W̃(i)

))
(3.268)

= I(i) ⊗ EUVi̸=i . (3.269)

We can now use Definition 3.13 and Lemma 3.7 to sew the perfect local inversion unitaries
together. This gives the following 2n-qubit unitary,

Usew(V1, . . . , Vn) = S

[
n∏

i=1

(
V

(1)
i

)
Si

(
V

(1)
i

)†
]

= U ⊗ U †, (3.270)

where V
(1)
i is the unitary Vi acting on the first set of n qubits.

We now show that there exists a sewing ordering such that Usew(V1, . . . , Vn) is a constant-
depth geometrically-local circuit. Given the geometry over n qubits represented by a graph
G = (V,E). Consider a graph G(2d) over n qubits, where each pair (i, j) of qubits are
connected by an edge if i, j is of distance at most 2d in the geometric graph G. Hence,
equivalently, for all (i, j) not connected by an edge in G(2d), we have

Ld(i) ∩ Ld(j) = ∅. (3.271)

The degree of G(2d) is bounded above by (κ + 1)2d. And G(2d) can be constructed as an
adjacency list in time O(n). Because the graph has a constant degree, we can use a O(n)-
time greedy graph coloring algorithm to color the n-qubit graph G(2d) using only a constant
number of colors. For each node/qubit i, we consider c(i) to be the color. The sewing order
for the n local inversion unitaries Vi is given by the greedy graph coloring, where we order
from the smallest color to the largest color. By the definition of graph coloring, for any pair
i, j of qubits with the same color, we have Ld(i)∩Ld(j) = ∅. Furthermore, Vi is a constant-
depth geometrically-local circuit that only acts on a constant number of qubits. Therefore,
for any color c′, we can find an implementation of the 2n-qubit unitary

∏

i:c(i)=c′

(
V

(1)
i

)
Si

(
V

(1)
i

)†
(3.272)

with a constant-depth geometrically-local quantum circuit in time O(n). Since there is only
a constant number of colors, the 2n-qubit unitary Usew(V1, . . . , Vn) in Eq. (3.270) with the
color-based ordering can be implemented with a constant-depth geometrically-local quantum
circuit in time O(n). Finally, define an n-qubit channel Ê as follows,

Ê(ρ) := Tr>n (Usew(V1, . . . , Vn)(ρ⊗ |0n⟩⟨0n|)) , (3.273)
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which can be implemented as a geometrically-local constant-depth quantum circuit over 2n
qubits. Because Usew(V1, . . . , Vn) = U ⊗ U † from Eq. (3.270), we have

E = U (3.274)

with probability one. This concludes the proof of Theorem 3.9.

3.2.6 Hardness for learning log-depth quantum circuits

We have seen from the previous appendices that learning general constant-depth quantum
circuits can be done efficiently. A natural follow-up question is whether one could efficiently
learn log-depth quantum circuits. In the following, we show that learning log-depth quantum
circuits to a constant diamond distance is exponentially hard, even when we allow coherent
quantum queries to U . Hence, the problem of learning quantum circuits transitions from
being polynomially easy to exponentially hard when we go from O(1)-depth to O(log n)-
depth.

Proposition 3.3 (Hardness for learning log-depth circuits). Consider an unknown n-qubit
unitary U generated by a O(log n)-depth circuit over arbitrary two-qubit gates with n ancilla
qubits. We have

• Learning U to 1/3 diamond distance with high probability requires exp(Ω(n)) queries.

• Distinguishing whether U equals to the identity I or is 1/3-far from the identity I in
diamond distance with high probability requires exp(Ω(n)) queries.

Proof. Without loss of generality, we consider n to be 2k for an integer k. Consider the
unknown unitary U to be I or one of Ux, ∀x ∈ {0, 1}n. The unitary Ux is defined to be

Ux |y⟩ =

{
1, x = y,

−1, x ̸= y,
(3.275)

for any y ∈ {0, 1}n. The n-qubit unitary Ux can be constructed as follows,

Ux =



∏

1≤i≤n
xi=0

Xi


CnZ



∏

1≤i≤n
xi=0

Xi


 , (3.276)

where Xi is the X gate on the i-th qubit, and CnZ is a controlled-Z gate controlled on all
qubits. The circuit

∏
i:xi=0Xi can be implemented in one layer. We can implement CnZ

using n ancilla qubits in depth O(log n). To see this, we first construct a (2k + 2k− 1)-qubit
unitary V recursively as follows:

1. Set the n = 2k qubits to be the first set of control qubits. Set j ← k.
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2. Consider the 2j control qubits as 2j−1 pairs of two control qubits. Include 2j−1 new
ancilla qubits initialized at |0⟩n.

3. For each pair of control qubits, implement a CCX gate on each newly added ancilla
qubit controlled on the two control qubits.

4. Set the new 2j−1 ancilla qubits as the set of control qubits. Set j ← j − 1.

5. If j > 0, repeat Step 2.

We can compile the CCX gate acting on three qubits to be a sequence with a constant
number of two-qubit gates. The depth of V is O(log n). The unitary V computes whether
all n qubits are one and stores the result in the 2n− 1 qubit. We can implement the n-qubit
unitary CnZ using a 2n-qubit O(log n)-depth circuit with n ancilla qubits,

CnZ ⊗ |0n⟩ = (V ⊗ I)†X2n CZ2n−1,2nX2n (V ⊗ I) (In ⊗ |0n⟩), (3.277)

where X2n is the NOT gate on the one ancilla qubit not acted by V , I is a single-qubit
identity, In is an n-qubit identity, and CZ2n−1,2n is controlled on the last ancilla qubit added
in the recursive construction of V and acts on the one ancilla qubit not acted by V .

If one could learn U up to 1/3 error in the diamond distance with high probability or if
one could distinguish whether U equals to the identity I or is 1/3-far from the identity I in
the diamond distance with high probability, then one could successfully distinguish between
the identity map I and the unitary Ux. Distinguishing I or one of Ux,∀x ∈ {0, 1}n is the
well-known Grover search problem. Hence, from the well-known Grover lower bound [213],
we have the number of queries must be at least Ω(2n/2) = exp(Ω(n)). This concludes the
proof.

3.3 Learning quantum states prepared by shallow

quantum circuits

In this section we give efficient algorithms for learning quantum states prepared by shallow
quantum circuits. The first algorithm presented below works for general finite dimensional
lattices. The second algorithm presented in Section 3.3.4 is specialized to 2D lattices and
uses no ancilla qubits for finite gate sets.

Theorem 3.10 (Restatement, simplified version of Theorem 3.13). There is an algorithm
that, given copies of an unknown state |ψ⟩, with the promise that |ψ⟩ = U |0n⟩ where U is
an unknown depth-d circuit acting on a k-dimensional lattice (using arbitrary 2-qubit gates),
outputs a depth-(2k+ 1)d circuit W that prepares |ψ⟩ up to 0.01 trace distance, with success
probability 0.99. The algorithm uses M copies of |ψ⟩ and runs in time T , where

M = Õ(n4) · 2O(c), T = Õ(n4) · 2O(c) + (nkd · c)O(d·c) . (3.278)
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Here, c = O((3k)k+2d)k, and W uses r · n ancilla qubits where r > 0 can be chosen to be an
arbitrarily small constant.

Note that the running time is polynomial when d = O(1), and quasi-polynomial when
d = polylog(n). In addition, the dominating term in the running time (second term in T )
can be significantly improved when assuming a discrete gate set.

For quantum states prepared by shallow circuits, it is known that learning (sufficiently
large) local reduced density matrices suffices to information-theoretically reconstruct the
state [162, 201]. The question is whether the reconstruction can be computationally efficient.
A naive approach finds small circuits for different local regions and stitch them together into
a global circuit by checking local consistency, but this runs into a seemingly hard constraint
satisfaction problem (in two and higher dimensions). In Section 3.3.4 we develop an efficient
algorithm in 2D by showing that to learn a 2D state it suffices to solve a 1D constraint
satisfaction problem which is efficient; however this approach runs into the same issue at
three and higher dimensions. Here we develop new techniques that do not rely on solving
any consistency problem; this enables the algorithm to work at arbitrary dimensions.

Testing quantum circuit complexity. As an application of our result, we also give
an algorithm to test whether an unknown state on a k-dimensional lattice has low or high
quantum circuit complexity.

Corollary 3.3 (Simplified version of Theorem 3.14). Fix some constant L > 0. Given
copies of an unknown state |ψ⟩ on a k-dimensional lattice, with the promise that one of the
following two cases hold:

• Case 1: Low complexity. |ψ⟩ = U |0n⟩ where the depth of U is at most L;

• Case 2: High complexity. Any state prepared by a constant depth circuit using
O(n) ancilla qubits is at least 0.01-far from |ψ⟩ in trace distance.

There is an algorithm that decides which is the case, with success probability at least 0.99,
with polynomial sample and time complexity.

Learning phases of matter. Quantum systems defined on finite-dimensional lattices
are a central subject in condensed matter physics, where quantum states are classified into
different “phases of matter” [214]. Quantum circuit complexity plays an important role
in the definition of phases of matter: the “trivial” phase is typically defined as quantum
states prepared by a constant (or polylog(n)) depth circuit acting on a k-dimensional lattice
(e.g. [215, 216]), while quantum states in a topologically ordered phase have high circuit
complexity [217]. Our result therefore shows that:

• Quantum states in the “trivial” phase can be learned in polynomial (or quasi-polynomial)
time.
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• Given an arbitrary quantum state, there is an efficient algorithm to test whether it is
in the “trivial” phase or some other high-complexity phase.

Discussion. An interesting question is whether our algorithm can be generalized to other
geometries (or interaction graphs) beyond finite-dimensional lattices. In fact, we show that
our algorithm works for any geometry which has a property called “covering scheme” (Defini-
tion 3.23), and we construct covering schemes for finite-dimensional lattices. It is interesting
to study what other geometries can have this covering scheme.

3.3.1 Learning algorithm

Notations. Our goal is to learn a quantum state |ψ⟩, with the promise that |ψ⟩ = U |0n⟩
where U is an unknown depth-d circuit acting on a k-dimensional lattice. We do not assume
knowledge of the circuit architecture: each layer of the circuit consists of non-overlapping
2-qubit gates, where each qubit could interact with any of its neighbors. The following
concepts are used throughout the argument.

• Ball: B(A, r) denotes the radius-r neighborhood on the lattice for a set of vertices A
(including A). For example, the dotted region in Fig. 3.3b shows a ball around region
A on the 2D lattice.

• Lightcone: L(A, d) denotes the volume of locations that can be reached by a depth d
circuit starting from region A. In particular, the support of the lightcone at top layer
equals B(A, d). For example, the green region in Fig. 3.3a denotes the lightcone of the
leftmost qubit for a circuit defined on 1D lattice.

A lightcone can be viewed as propagating or spreading causal influence in a circuit from
input to output. Later we will define a dual notion of backward lightcone, which spreads
from output to input.

3.3.1.1 Overview of technical challenges and new ideas

We first give an overview of the technical challenges in developing a learning algorithm, and
our new ideas to overcome these challenges. We start by defining a key concept of local
inversion.

Definition 3.20 (Local inversion). Given a state |ψ⟩ and a subset A ⊆ [n] of qubits, a
unitary operator V is called a local inversion of A if V acts on a ball of A and V |ψ⟩ =
|0⟩A ⊗ |ϕ⟩ for some arbitrary pure state |ϕ⟩ on n− |A| qubits.

Fact 3.6. Suppose |ψ⟩ = U |0n⟩ where U is a depth-d circuit acting on a k-dimensional
lattice. Then for any A ⊆ [n], there exists a local inversion V of A satisfying:

1. V is supported on B(A, d);
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U

|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩

V1

= |0⟩ ⊗ |ϕ⟩

(a) Local inversion in 1D

B A

C

(b) Local inversion in 2D

Figure 3.3: Local inversions for quantum states prepared by shallow circuits. (a) 1D lattice;
(b) 2D lattice, where a local inversion of A can be constructed by applying a depth-d circuit
on AB.

2. V is a depth d circuit, whose inverse shape is contained within the lightcone L(A, d).

This fact follows from undoing the gates in the lightcone of A. For example, Fig. 3.3a
shows a state prepared by a circuit acting on a 1D lattice, and the green region denotes the
lightcone of the leftmost qubit. There exists a local inversion V1 (for example, by inverting
the gates in the lightcone) which disentangles the leftmost qubit. Note that the shape of V1
is the inverse of the shape of the lightcone. Fig. 3.3b shows a 2D lattice, where the dotted
region AB equals B(A, d). There exists a local inversion of A which is a depth-d circuit
acting on AB.

Learning local inversions. Local inversions provide the basic tool for a learning al-
gorithm because they are easy to learn. For example, consider a constant-size region A
in Fig. 3.3b. We first perform quantum state tomography to learn the reduced density ma-
trix on AB, and then brute force search over all depth-d circuits acting on AB. For each
circuit, we can efficiently check whether it correctly inverts the region A to |0⟩A. In this way
we can find possibly a set of local inversion operators of A.

For the remainder of Section 3.3.1, we will assume that we have access to (exact) local
inversion operators. In reality, we can only learn approximate local inversion operators. This
issue is addressed in Section 3.3.2.

Our algorithm has a simple framework: (1) Quantum learning: learn local reduced den-
sity matrices; (2) Classical processing: find local inversion operators for local regions, and
combine them into a circuit. Below we review the challenges in realizing this framework.

Challenges. The first issue is that there are multiple local inversion operators for a given
local region. A naive approach to find a circuit is the following: pick a local inversion oper-
ator for each local region, such that local inversions for neighboring regions are consistent.
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Consistency demands that two quantum circuits share the same gates where they overlap,
so that they can be merged together as a bigger circuit. This is precisely a constraint
satisfaction problem that is hard in general in 2D and higher dimensions.

The result of Section 3.3.4 addresses this problem in 2D, by showing that one can effi-
ciently solve such a constraint satisfaction problem in 1D, to find 1D circuits that disentangle
the 2D state into many 1D stripes (Fig. 3.7), and argue that the remaining 1D stripes are
easy to learn. This approach fails at three and higher dimensions as the disentangling step
still requires solving a hard constraint satisfaction problem.

The key challenge in solving the learning problem on finite dimensional lattices is to find
a way to avoid any constraint satisfaction problem. In this section we give such a way.

Here is a basic idea: by definition, applying a local inversion V to a state |ψ⟩ gives
V |ψ⟩ = |0⟩A ⊗ |ϕ⟩, where |ϕ⟩ is a smaller state on n − |A| qubits. Can we repeat the
process by further removing qubits from |ϕ⟩? The issue here is that now the state has been
disturbed. In particular, the local inversion V we applied may not be the “ground truth”
which undoes the gates in the lightcone of A, and V may just be an arbitray depth-d circuit
that happens to invert A. Therefore the state |ϕ⟩ suffers from a potential quantum circuit
complexity blow-up: we no longer have the guarantee that |ϕ⟩ is prepared by a depth-d
circuit. Repeating this process will further increase the blow-up.

Key ideas. Overcoming these obstacles requires two insights. The first is to observe that
we can undo the local inversion after applying it, so the state |ψ⟩ is not disturbed. The
utility of this observation is that in rewriting the state in this way, we have replaced part of
the unknown state with a partial piece of known operations. The second insight is to realize
that with a careful choice of local inversions based on the geometry of the lattice, these
partial pieces can be layered together in a way that the backward lightcone of the final state
is covered completely by these partial pieces and does not depend on the unknown initial
state. The result is the learned constant depth circuit consisting of parts of local inversions
and their inverses.

3.3.1.2 Replacement process

As discussed above, our first key idea is the following, which at first glance seems useless:
apply a local inversion, and then undo it. We formally define this as a replacement process.

Definition 3.21 (Replacement process). Given a state |ψ⟩ and a region A, define the A-
replacement process as follows: take a local inversion V of region A, then perform the
following operations on |ψ⟩:

1. apply V ,

2. trace out the qubits in A, replace each qubit with |0⟩,

3. apply V †.
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Note that step 2 is in fact not doing anything (since step 1 already inverted the region
A to |0⟩A) and is included here to help the illustration of the argument. Next, since step 2
is effectively the identity operation, step 1 and step 3 cancel with each other, and therefore
the state |ψ⟩ remains unchanged. This is illustrated as follows (for simplicity, here we draw
local inversions as boxes without the wedges).

|ψ⟩ = |ψ⟩
V

|0⟩ |0⟩ |0⟩ |0⟩
V †

A

A0

(3.279)

Fact 3.7. The state |ψ⟩ is invariant under any A-replacement process for any region A.

Next we give an intuitive explanation of why the replacement process may be helpful for
learning. First, we informally introduce the new concept of backward lightcone (green region
in Eq. (3.279)). The formal definition is given in Definition 3.25.

Definition 3.22 (Backward lightcone, informal). The backward lightcone of a subset of
qubits S at the output of a quantum circuit is the minimal part of the circuit diagram that
determines the reduced density matrix of S.

For example, in Eq. (3.279) the green region starts from A0 at the output of the circuit and
keeps growing backwards (which looks like the inverse of a (forward) lightcone), until it hits
a region of |0⟩. There is no need to grow further because the input is completely determined.
Now, note that the reduced density matrix of A0 at the output of the circuit (which equals
the reduced density matrix of A0 in |ψ⟩) is determined by its backward lightcone: start from
a region of |0⟩ which is larger than A0, apply the green circuit, and trace out the qubits not
in A0. All quantum gates not in the green region are irrelevant since removing them does
not affect the reduced density matrix of A0.

Here is an interesting observation about the A-replacement process: suppose we choose
A to be a (sufficiently large) ball of some smaller region A0 as in Eq. (3.279), then the
backward lightcone of A0 ends at the freshly initialized qubits in step 2 of Definition 3.21.
In particular, the backward lightcone does not reach the unknown state |ψ⟩, which allows us
to reconstruct the reduced density matrix of |ψ⟩ on A0 by a known circuit. And yet, due to
the invariance of |ψ⟩ (Fact 3.7) we can pretend that nothing has happened to |ψ⟩ and repeat
this process. In other words,

Key observation: We have replaced part of the state with known operations, with-
out disturbing the state.
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This observation suggests an approach to learning a circuit for |ψ⟩: repeatedly apply A-
replacement processes for different small regions A, and hope to have the backward lightcone
of more and more output qubits be contained entirely within the replacement process, and
hope that eventually this holds true for all of the output qubits. If we can manage this, it
means we must have generated |ψ⟩ solely from the collection of replacement processes (which
are constructed by quantum circuits that are known to us) and thus we can extract from
them a circuit that can generate |ψ⟩, simply via the backward lightcone of all output qubits.

It is not obvious that this can work, because we need to apply replacement processes not
only in parallel, but also on top of each other, since a single layer cannot cover all output
qubits (e.g. Fig. 3.4a). The issue is that applying replacement processes on top of each
other changes the lightcone structure: for example, the backward lightcone of A0 may be
much larger than in Eq. (3.279) if there are additional layers on top, because the backward
lightcone starts from the output which is at the very top of the circuit.

In the next section we pin down the exact conditions for this approach to work.

3.3.1.3 Covering schemes and reconstruction circuits

It turns out that we can make this approach work if we can find a collection of small regions
that satisfy the following conditions which we call a covering scheme. Our plan is:

1. In this section we show that a covering scheme implies a learning algorithm.

2. In Section 3.3.1.4 we show how to construct good covering schemes for k-dimensional
lattices.

Definition 3.23 (Covering scheme). A (ℓ, c, d) covering scheme is a collection of subsets of
qubits Sij ⊆ [n]

S1
1 , S

1
2 , . . . , S

1
m1
, S2

1 , S
2
2 , . . . , S

2
m2
, . . . , Sℓ1, S

ℓ
2, . . . , S

ℓ
mℓ

which satisfy the following conditions.

1. The size of each B(Sij, d) is upper bounded by c.

2. For every fixed i, the sets B(Sij, d) are pairwise disjoint for 1 ≤ j ≤ mi.

3. For each qubit v ∈ [n], there exists a Sij such that B({v}, (2ℓ− 1)d) ⊆ Sij.

We can think of these subsets as being divided into ℓ different layers: in each layer
1 ≤ i ≤ ℓ, there are subsets Si1, S

i
2, . . . , S

i
mi

. Condition 1 says that each of them is small
(even after being enlarged by a radius of d). Condition 2 says that the subsets in the same
layer are disjoint, even after each of them is enlarged by a radius of d. Condition 3 says that
for each qubit, a ball around that qubit (of radius (2ℓ − 1)d) is entirely contained within
some subset.
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Examples in 1D. The example below shows a covering scheme in 1D with ℓ = 2 layers.

|ψ⟩

S1
1 S1

2 S1
3 S1

4
S2
2 S2

3 S2
4S2

1 S2
5

(3.280)

Note that in each layer, the sets have some distance between each other, because we
require that they remain disjoint even after being enlarged (Condition 2). In addition, the
first layer and the second layer have a lot of overlap. This ensures that any qubit must lie
within the interior of some set, which implies Condition 3.

Why is this useful? Recall that our idea is to repeatedly apply replacement processes.
The reason to introduce covering schemes is the following:

Key idea: Applying replacement processes for a covering scheme allows us to
reconstruct the entire state.

We first illustrate this idea in 1D in Fig. 3.4, and then give a formal argument in Sec-
tion 3.3.1.3.

• Reconstruction process. Suppose we apply S1
1 -replacement process, which is sup-

ported on B(S1
1 , d) and looks exactly the same as Eq. (3.279). Note that all replacement

processes corresponding to the first layer in the covering scheme can be implemented
in parallel, due to Condition 2 in Definition 3.23. Next, we apply all replacement pro-
cesses corresponding to the second layer in the covering scheme. We call the resulting
diagram a reconstruction process, shown in Fig. 3.4a.

• Backward lightcone. Now we construct the backward lightcone for all output wires
of the reconstruction process (Fig. 3.4b). The way to do this is to color all gates at
the top layer in green, and then “spread” the green color backwards, until hitting a
region of |0⟩. Note that some of the spreading stops at the second layer of |0⟩, but
inevitably some of the spreading goes beyond the second layer and enters the first
layer. However, all of the spreading stops at the first layer of |0⟩ and never touches the
bottom unknown state |ψ⟩.

• Reconstructed circuit. By Fact 3.7, the state |ψ⟩ remains invariant under the
reconstruction process, and therefore the output state at the top layer equals |ψ⟩.
The backward lightcone consists entirely of known quantum circuits, and therefore
it gives a reconstructed circuit that prepares |ψ⟩ (Fig. 3.4c). This circuit has the
following features: it has depth 3d and acts on the all-|0⟩ input state, where we view
the red qubits as ancilla qubits. After the circuit is applied, the entire state equals
|ψ⟩ ⊗ |junk⟩, where the wires at the top correspond to |ψ⟩, and the red wires (ancilla
qubits) correspond to |junk⟩.
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|ψ⟩
V1

|0⟩ |0⟩ |0⟩ |0⟩
V †1

V2

|0⟩ |0⟩ |0⟩ |0⟩
V †2

V3

|0⟩ |0⟩ |0⟩ |0⟩
V †3

V4

|0⟩ |0⟩ |0⟩ |0⟩
V †4

V6

|0⟩ |0⟩ |0⟩ |0⟩
V †6

V7

|0⟩ |0⟩ |0⟩ |0⟩
V †7

V8

|0⟩ |0⟩ |0⟩ |0⟩
V †8

V5

|0⟩ |0⟩
V †5

V9

V †9
|0⟩ |0⟩

(a) Reconstruction process

|ψ⟩
V1

|0⟩ |0⟩ |0⟩ |0⟩
V †1

V2

|0⟩ |0⟩ |0⟩ |0⟩
V †2

V3

|0⟩ |0⟩ |0⟩ |0⟩
V †3

V4

|0⟩ |0⟩ |0⟩ |0⟩
V †4

V6

|0⟩ |0⟩ |0⟩ |0⟩
V †6

V7

|0⟩ |0⟩ |0⟩ |0⟩
V †7

V8

|0⟩ |0⟩ |0⟩ |0⟩
V †8

V5

|0⟩ |0⟩
V †5

V9

V †9
|0⟩ |0⟩

(b) Backward lightcone

|0⟩ |0⟩|0⟩ |0⟩ |0⟩ |0⟩|0⟩ |0⟩ |0⟩ |0⟩|0⟩ |0⟩ |0⟩ |0⟩|0⟩ |0⟩

|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩|0⟩ |0⟩ |0⟩ |0⟩

(c) Reconstructed circuit

Figure 3.4: Illustration of the learning algorithm in 1D.

Reconstruction theorem. Next we give a rigorous argument for how to reconstruct the
state in general. We start with a formal definition of the reconstruction process.

Definition 3.24 (Reconstruction process). The reconstruction process for |ψ⟩ is defined as
follows. Let Vi,j be a local inversion for Sij. By Fact 3.6, Vi,j is a depth-d circuit acting on
B(Sij, d). The reconstruction process is defined as follows:

For each 1 ≤ i ≤ ℓ, apply the Sij-replacement process using Vi,j for all j in
parallel.

More specifically, for each fixed i we do the following:
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1. Apply Vi,j for all 1 ≤ j ≤ mi in parallel;

2. Trace out all qubits in Sij for each 1 ≤ j ≤ mi and replace with |0⟩;

3. Apply V †i,j for all 1 ≤ j ≤ mi in parallel.

As shown in the 1D example in Fig. 3.4, a two-step argument is used to show that a circuit
for preparing the unknown state |ψ⟩ can be extracted from the reconstruction process:

1. The state |ψ⟩ is invariant under each Sij-replacement process (Fact 3.7), and therefore
is invariant under the entire reconstruction process.

2. We can reconstruct the output state of the reconstruction process (which equals |ψ⟩)
via its backward lightcone, because the backward lightcone consists of known quantum
circuits and in particular does not touch the unknown input state |ψ⟩ at the bottom.

Below we elaborate on the second point. At this point a more precise definition of the
backward lightcone is needed. Note that this definition needs to be applicable to slightly
more general quantum circuits with reset gates.

Definition 3.25 (Backward lightcone). Let |ϕ⟩ = W |0n⟩ where W is a quantum circuit
consists of 2-qubit unitary gates and 1-qubit reset gates (a reset gate traces out the input and
initializes a |0⟩ state). Let A ⊆ [n] be a subset of qubits. The backward lightcone of A is a
circuit diagram which is part of the circuit diagram of W , defined as the collection of green
gates acting on all-0 inputs, constructed as follows:

1. Color the output wires of W corresponding to A in blue.

2. Repeat the following process until no changes happen:
If there exists a 2-qubit gate G with a blue wire on top, color this gate in green. More-
over, consider each of the two wires at the bottom of G. If it is not connected to a reset
gate, color the wire in blue.

In other words, the backward lightcone consists of all quantum gates that could influence the
reduced density matrix of |ϕ⟩⟨ϕ| on A. The running time to construct the backward lightcone
is linear in the size of W .

The process to construct the backward lightcone can be viewed as spreading the green
color from top to bottom, as shown in Fig. 3.4b. The desired property for the backward
lightcone, when applied to a reconstruction process, is that it stops entirely at intermediate
reset gates and does not reach the bottom.

To help further illustrate this concept, we introduce a dual thought experiment. A
different way of formulating our desired property is that we do not want the influence of the
bottom input state to reach any top wire. The propagation of the influence can be viewed as
forward lightcone spreading of the input state, that is, spreading the white color in Fig. 3.4b



CHAPTER 3. LEARNING ALGORITHMS 179

from bottom to top. Note that indeed, the white color stops entirely at intermediate reset
gates and does not reach the top.

Now we are ready to prove that the desired property is guaranteed by the covering scheme.

Theorem 3.11 (Covering scheme implies learning algorithm). Suppose |ψ⟩ = U |0n⟩ where
U is a depth-d circuit acting on a k-dimensional lattice. Let (ℓ, c, d) be a covering scheme for
the k-dimensional lattice, and let W be the reconstruction process for this covering scheme,
which satisfies W |ψ⟩ = |ψ⟩. Then the backward lightcone of all output wires in W |ψ⟩ is a
depth-(2ℓ− 1)d circuit C which is part of W .

The circuit C can be used to prepare |ψ⟩ in the following sense: it acts on n qubits as
well as m = O(n) ancilla qubits, and

C |0n⟩ ⊗ |0m⟩ = |ψ⟩ ⊗ |junk⟩ . (3.281)

Proof. To prove that the backward lightcone of all output wires in W |ψ⟩ is part of W and
does not reach the input state |ψ⟩, it suffices to show that the backward lightcone of each
individual output wire in W |ψ⟩ must stop at some regions of reset gates in some replacement
processes.

Keeping track of the backward lightcone can be tricky: the backward spreading process
can stop at various different layers such as in Fig. 3.4b. However, here we give a simple and
pessimistic argument which suffices for our purpose.

Focus on a single output wire v ∈ [n] of W |ψ⟩ and imagine its backward spreading
process. Part of the spreading may stop early at some reset gates, while other parts of
the spreading may continue further. Instead of working with W , suppose we consider a
new quantum circuit W ′ where all reset gates in W is replaced by the identity gate, with
one exception: according to Condition 3 of Definition 3.23, there exists a Sij such that
B({v}, (2ℓ− 1)d) ⊆ Sij; we keep the reset gates in W ′ that correspond to the Sij-replacement
process.

Clearly, the backward spreading process in W is entirely contained within the backward
spreading process in W ′, since W ′ removed some reset gates relative to W which can only
help the spreading. Now, observe the following: the backward spreading process in W ′ must
stop at the reset gates in the Sij-replacement process. This is because Sij contains a ball
around v with radius (2ℓ− 1)d. By the time the spreading process reaches those reset gates,
the process cannot spread further than a distance of (2ℓ−1)d and therefore is entirely covered
by those reset gates. The number (2ℓ − 1)d comes from a worst case estimate: suppose Sij
is within the very bottom layer of the covering scheme, then the spreading process has gone
through the top ℓ − 1 layers of depth 2d as well as V †i,j of depth d, with a total depth of
(2ℓ − 1)d. This implies that the backward spreading process of v in W must be contained
within W : if it cannot reach the bottom even in W ′, then it also cannot reach the bottom
in W .

This concludes the proof that C is a (at most) depth-(2ℓ− 1)d circuit and is part of W .
Finally, note that C is a unitary quantum circuit which outputs a pure state. In addition,
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the reduced density matrix on the n output wires equals |ψ⟩⟨ψ|. This implies that the system
and ancilla must be tensor product pure states as in Eq. (3.281).

To conclude this section we give a recap about the role of different parameters of a (ℓ, c, d)
covering scheme in the learning algorithm.

• d is the promised depth of the unknown circuit that prepares |ψ⟩.

• ℓ determines the depth of the learned circuit, which equals (2ℓ− 1)d.

• c determines the running time of the learning algorithm: the algorithm needs to find
local inversions acting on a region of size c, which takes time exponential in c and d.

Clearly, these parameters play an important role and are in tension with each other.

3.3.1.4 Good covering schemes

In this section we construct good covering schemes for k-dimensional lattices.

Theorem 3.12 (Lattice covering scheme). For k-dimensional lattice there exists a (k + 1, c, d)
covering scheme for any integer d > 0, where

c ≤
(
(8k2 + 14k + 2)d

)k
. (3.282)

Before giving the proof, we first discuss an example in 2D (Fig. 3.5). Our starting point
is a new concept called lattice coloring.

Definition 3.26 (Lattice coloring). A (w, c,R) lattice coloring for the k-dimensional lattice
is defined as follows. Suppose the lattice is divided into disjoint subsets where each subset is
connected. Each subset is assigned a color. We demand the following properties:

1. There are w different colors.

2. Each subset has size at most c.

3. Two different subsets with the same color must have distance at least R.

Fig. 3.5a shows a (3, 16R2, R) coloring for the 2D lattice (16R2 is an overestimate).
Here R is a free parameter. Similar coloring schemes have been widely used in the physics
literature (e.g. [212]). Now, we use this coloring to construct a covering scheme for the 2D
lattice.

Lemma 3.23. For 2D lattice there exists a (3, 3844d2, d) covering scheme for any integer
d > 0.
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(a) Lattice coloring (b) Layer 1

(c) Layer 2 (d) Layer 3

Figure 3.5: A covering scheme for the 2D lattice, which is derived from a lattice coloring.
Here R = 13d.

This covering scheme is shown in Figs. 3.5b to 3.5d. Below we explain it in detail.
The idea is the following: each color in the lattice coloring corresponds to a layer in the

covering scheme (so ℓ = 3). We choose R to be large enough, and then

• Fix a color in the lattice coloring (say red regions in Fig. 3.5a), then for each small
colored subset A in Fig. 3.5a, we assign a subset S = B(A, 5d) to the covering scheme
(red regions in Fig. 3.5c).

Now, we choose R to make sure that Condition 2 in Definition 3.23 is satisfied. Say we
consider two red regions A and B in Fig. 3.5a that are separated by distance R. The corre-
sponding subsets in the covering scheme are S1 = B(A, 5d) and S2 = B(A, 5d). Condition 2
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in Definition 3.23 demands that S1 and S2 are disjoint even after being enlarged further by
distance d (dashed regions in Fig. 3.5c). That is, B(A, 6d) and B(B, 6d) must be disjoint.
We therefore choose R = 13d to ensure this property.

Next, we show that Condition 3 in Definition 3.23 is satisfied. Take any qubit v ∈ [n],
then it must lie within some colored region in Fig. 3.5a. Suppose the region is red and call
it A. Then B({v}, 5d) ⊆ B(A, 5d) which is one of the subsets in the covering scheme in
Fig. 3.5c.

Finally, note that each small colored region in Fig. 3.5a is contained with in a box of
4R×4R. The length scale of each subset in the covering scheme is at most 4R+2×5d = 62d.
Therefore, all subsets in the 2D covering scheme has size at most 62d× 62d = 3844d2.

Proof of Theorem 3.12. The proof essentially repeats the above example. We first quote a
coloring scheme for the k-dimensional lattice (see Definition 3.17).

Lemma 3.24 (k-dimensional lattice coloring). For k-dimensional lattice there exists a

(
k + 1, (2kR)k, R

)

lattice coloring. Each small colored region is contained in a k-dimensional box of length scale
2kR.

Each color in the lattice coloring corresponds to a layer in the covering scheme (so ℓ =
k + 1). We choose R to be large enough, and then for each small colored subset A in the
lattice coloring, we assign a subset S = B(A, (2k + 1)d) to the corresponding layer of the
covering scheme.

• The depth of learned circuit is (2ℓ− 1)d = (2k + 1)d.

• To ensure Condition 2 in Definition 3.23 is satisfied, we choose R = 2× (2k+2)d+d =
(4k + 5)d.

• The length scale of each subset in the covering scheme is at most 2kR+2× (2k+1)d =

(8k2 + 14k + 2)d. Therefore, c is at most ((8k2 + 14k + 2)d)
k
.

Remark 3.8. In the proof of Theorem 3.12 we have chosen R = (4k + 5)d which leads to
the stated scaling of c. Note that choosing R to be any number larger than that also gives a
valid covering scheme, with a larger c. This is useful for the discussions in Section 3.3.2.3.

3.3.2 Detailed analysis

In this section we give a detailed analysis which leads to the following main result.



CHAPTER 3. LEARNING ALGORITHMS 183

Theorem 3.13 (Main result). There is an algorithm that, given copies of an unknown state
|ψ⟩, with the promise that |ψ⟩ = U |0n⟩ where U is an unknown depth-d circuit acting on
a k-dimensional lattice (using arbitrary 2-qubit gates), outputs a depth-(2k + 1)d circuit W
that prepares |ψ⟩ up to ε trace distance, with success probability 1 − δ. The algorithm uses
M copies of |ψ⟩ and runs in time T , where

M =
n4 · 2O(c)

ε4
log

n

δ
, T =

n4 · 2O(c)

ε4
log

n

δ
+

(
nkd · c
ε

)O(d·c)

. (3.283)

Here, c = O((3k)k+2d)k, and W uses r · n ancilla qubits where r > 0 can be chosen to be an
arbitrarily small constant.

3.3.2.1 The reconstruction process is robust

We first show that the final error is controlled, if we replace local inversions in the recon-
struction process with approximate local inversions.

Definition 3.27 (ε-approximate local inversion). Let V be a unitary acting on AB, and
denote the remaining system as C (Fig. 3.3b). Let |ψ⟩ be a state defined on ABC. V is an
ε-approximate local inversion of the region A for |ψ⟩ if

⟨0|A TrBC
(
V |ψ⟩⟨ψ|V †

)
|0⟩A ≥ 1− ε. (3.284)

Lemma 3.25. Let V be an ε-approximate local inversion of the region A for |ψ⟩. The
corresponding A-replacement process is given by

V† ◦ RA ◦ V , (3.285)

where calligraphic letters denote channels, and RA is the reset channel acting on A which
traces out the input and prepares |0⟩⟨0|A. Then we have

∥∥V† ◦ RA ◦ V(|ψ⟩⟨ψ|)− |ψ⟩⟨ψ|
∥∥
1
≤ 4
√
ε. (3.286)

Proof. First, note that due to the unitary invariance of the trace distance,
∥∥V† ◦ RA ◦ V(|ψ⟩⟨ψ|)− |ψ⟩⟨ψ|

∥∥
1

=
∥∥V† ◦ RA ◦ V(|ψ⟩⟨ψ|)− V† ◦ V(|ψ⟩⟨ψ|)

∥∥
1

= ∥RA ◦ V(|ψ⟩⟨ψ|)− V(|ψ⟩⟨ψ|)∥1 .
(3.287)

Next, we can write V |ψ⟩ as

V |ψ⟩ =
√

1− ε′ |0⟩A |ϕ⟩BC +
√
ε′ |else⟩ABC , (3.288)

where ε′ ≤ ε and ⟨0|A |else⟩ABC = 0. Using the relationship between fidelity and trace
distance,

∥V(|ψ⟩⟨ψ|)− |0⟩⟨0|A ⊗ |ϕ⟩⟨ϕ|BC∥1 = 2

√
1− |⟨ψ|V † |0⟩A |ϕ⟩BC |

2 = 2
√
ε′. (3.289)
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Finally,

∥RA ◦ V(|ψ⟩⟨ψ|)− V(|ψ⟩⟨ψ|)∥1
≤ ∥RA ◦ V(|ψ⟩⟨ψ|)− |0⟩⟨0|A ⊗ |ϕ⟩⟨ϕ|BC∥1 + ∥|0⟩⟨0|A ⊗ |ϕ⟩⟨ϕ|BC − V(|ψ⟩⟨ψ|)∥1
= ∥RA ◦ V(|ψ⟩⟨ψ|)−RA (|0⟩⟨0|A ⊗ |ϕ⟩⟨ϕ|BC)∥1 + ∥|0⟩⟨0|A ⊗ |ϕ⟩⟨ϕ|BC − V(|ψ⟩⟨ψ|)∥1
≤ ∥V(|ψ⟩⟨ψ|)− |0⟩⟨0|A ⊗ |ϕ⟩⟨ϕ|BC∥1 + ∥|0⟩⟨0|A ⊗ |ϕ⟩⟨ϕ|BC − V(|ψ⟩⟨ψ|)∥1
≤ 4
√
ε.

(3.290)
Here, the second line is by triangle inequality; the third line is because |0⟩⟨0|A ⊗ |ϕ⟩⟨ϕ|BC is
invariant under RA; the fourth line is by data-processing inequality.

Lemma 3.26. Let Φ1,Φ2, . . . ,ΦT be arbitrary replacement processes using ε-approximate
local inversions of |ψ⟩, where each Φi has the form of Eq. (3.285) where V is an ε-approximate
local inversion for some arbitrary region. Then

∥ΦT ◦ · · · ◦ Φ2 ◦ Φ1(|ψ⟩⟨ψ|)− |ψ⟩⟨ψ|∥1 ≤ 4T
√
ε. (3.291)

Proof. Note that

∥ΦT ◦ · · · ◦ Φ2 ◦ Φ1(|ψ⟩⟨ψ|)− |ψ⟩⟨ψ|∥1
≤ ∥ΦT ◦ · · · ◦ Φ2 ◦ Φ1(|ψ⟩⟨ψ|)− ΦT (|ψ⟩⟨ψ|)∥1 + ∥ΦT (|ψ⟩⟨ψ|)− |ψ⟩⟨ψ|∥1
≤ ∥ΦT−1 · · · ◦ Φ2 ◦ Φ1(|ψ⟩⟨ψ|)− |ψ⟩⟨ψ|∥1 + 4

√
ε,

(3.292)

where the second line is by triangle inequality, the third line is by data-processing inequality
and Lemma 3.25. The claim follows from induction.

3.3.2.2 Analysis of the learning algorithm

Next we put everything together and give a detailed analysis of the learning algorithm.
The algorithm is given copies of an unknown quantum state |ψ⟩, with the promise that
|ψ⟩ = U |0n⟩ where U is a depth-d circuit acting on a k-dimensional lattice.

Step 1: build a covering scheme. We build a (k + 1, c, d) covering scheme (here c =
O(k2d)k or larger, depending on the choice of R, see Remark 3.8) for the k-dimensional
lattice according to Theorem 3.12. This covering scheme is divided into ℓ = k + 1 layers.
Note that there are less than n subsets in total.

Step 2: learn reduced density matrices. To find local inversions for the covering
scheme it suffices to learn reduced density matrices on a radius-d ball around each subset
(dashed regions in Figs. 3.5b to 3.5d). Each reduced density matrix has size which has the
same scaling as c and there are less than n of them.

Suppose we would like to learn all of them within ε1 trace distance, with δ failure prob-
ability. Here we use a simple existing result (see Lemma 3.27): for each copy of |ψ⟩, we
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measure each qubit in a random Pauli basis. The collection of measurement outcomes is
known as classical shadows or randomized measurement dataset [103, 195]. The desired
result can be achieved by processing this dataset, which uses

M =
2O(c)

ε21
log

n

δ
(3.293)

copies of |ψ⟩. The running time to process this dataset scales similarly. From now on
everything is classical processing on the learned reduced density matrices, and we assume
that all learned reduced density matrices are within ε1 error (this happens with probability
at least 1− δ).

Step 3: find approximate local inversions. For each reduced density matrix, suppose
it looks like the region AB in Fig. 3.3b. We will brute force search over an ε1-net on depth-d
circuits acting on AB to find a depth-d circuit that approximately inverts the region A. In
this way we can find a 3ε1-approximate local inversion of A for |ψ⟩ (see Proof of first claim
of Theorem 3.15 for a proof). The running time scales as the size of the ε1-net, which equals

(
kd · c
ε1

)O(d·c)

. (3.294)

See Lemma 3.19 for a proof.
Note that this can be significantly improved if we assume a discrete gate set, which we

do not discuss here.

Step 4: find approximate reconstruction circuit. We have found a 3ε1-approximate
local inversion for every subset in the covering scheme. Construct a reconstruction process
(Definition 3.24) using these approximate local inversions, denote as Φ. By Lemma 3.26, we
have

∥Φ(|ψ⟩⟨ψ|)− |ψ⟩⟨ψ|∥1 ≤ 4n
√

3ε1. (3.295)

By Theorem 3.11, the covering scheme guarantees that the backward lightcone C of the
output of Φ is contained entirely within Φ (in fact, the output state of Φ is independent of
its input state). C is a depth-(2k + 1)d circuit. Our final learned state ρ̂ is thus equal to
Φ(|ψ⟩⟨ψ|), which can be prepared by running C on all-|0⟩ input and trace out those qubits
that do not belong to the output of Φ. To achieve ε-closeness in trace distance, it suffices to
choose ε1 = ε2

48n2 .
This concludes the proof of the complexity statements in the main result.

3.3.2.3 Optimizing the number of ancilla qubits

Here we explicitly calculate (a rough upper bound of) the number of ancilla qubits needed
for reconstructing |ψ⟩, which corresponds to the red qubits in Fig. 3.4c. In Figs. 3.5b to 3.5d,
the ancilla qubits live in the colored regions outside solid black boxes.
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We start from a lattice coloring (e.g. Fig. 3.5a). Note that each small colored region is
contained in a k-dimensional box of length scale 2kR; meanwhile each small colored region
at least contains a k-dimensional box of length scale R (see Definition 3.17). The number of
colored regions is at most n/Rk.

Next we upper bound the number of ancilla qubits that can be associated with a colored
region. The length scale of a subset in a covering scheme is at most 2kR+2×(2k+1)d ≤ 3kR,
since we will choose R to be at least (4k + 5)d. The ancilla qubits live at 2k different
k − 1 dimensional surfaces with thickness (2k + 1)d ≤ 3kd; the total volume is at most
(2k)× (3kR)k−1 × (3kd). Overall, the total number of ancilla qubits in the entire circuit is
at most

n

Rk
× (2k)× (3kR)k−1 × (3kd) ≤ n

R
× (3k)k+1d. (3.296)

Choosing R = L · (3k)k+1d for some sufficiently large constant L, the total number of ancilla
qubits is an arbitrarily small constant times n. In fact we could also afford to choose L = ω(1)
to be some small function (e.g. log log log n) so that the total number of ancilla qubits is
sublinear. Below we just consider L as being a constant.

The complexity scales with c as shown in Section 3.3.2.2, which is given by

c ≤ (3kR)k = O((3k)k+2d)k. (3.297)

3.3.3 Testing quantum circuit complexity

The following result is a stronger version than stated in Corollary 3.3.

Theorem 3.14. Given copies of an unknown state |ψ⟩ on a k-dimensional lattice, with the
promise that one of the following two cases hold:

• Case 1: Low complexity. |ψ⟩ = U |0n⟩ where the depth of U is at most d;

• Case 2: High complexity. Let ρ be any n-qubit state prepared by a depth at most
(2k + 1)d circuit using r · n ancilla qubits, where r is some small constant. Then
∥ρ− |ψ⟩⟨ψ|∥1 > ε.

There is an algorithm that decides which is the case, with success probability at least 1 − δ,
where the sample complexity and running time is the same as in Theorem 3.13.

Proof. We perform Step 1 and 2 as prescribed by Section 3.3.2.2 (note that ε1 = ε2

48n2 ). Then,
we declare “Case 1: Low complexity” if the search procedure to find all desired approximate
local inversions in Step 3 all succeed. Otherwise, declare “Case 2: High complexity”.

We assume that the reduced density matrices in Step 2 are all within ε1 error, which
happens with probability at least 1− δ. Conditioned on this event, the algorithm is always
correct, because of the following reasoning.

• In Case 1, all search procedures to find the desired approximate local inversions are
guaranteed to succeed, so the algorithm must output “Case 1”.
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• In Case 2, suppose by contradiction that all search procedures succeed. Then, by the
arguments of the main result, this actually gives a proof that |ψ⟩ can be prepared
within ε error, using a quantum circuit of depth (2k + 1)d and a small amount of
ancilla qubits, which contradicts the assumption of Case 2. Therefore, some of the
search procedures must fail, and the algorithm must output “Case 2”.

3.3.4 Alternative algorithm for learning quantum states
prepared by shallow circuits in 2D

Given copies of an unknown quantum state |ψ⟩ = U |0n⟩, with the promise that U is a depth-
d circuit acting on a 2-dimensional lattice. In this section, we present an algorithm to learn
a description of a shallow circuit that prepares |ψ⟩ up to a desired precision. The algorithm
can be viewed as first collecting a sufficiently large randomized measurement dataset [103,
195] from the unknown state and then classically reconstructing the circuit based on the
dataset.

Definition 3.28 (Randomized measurement dataset for an unknown state). The learning
algorithm accesses the unknown state via a randomized measurement dataset of the following
form,

T|ψ⟩(N) =

{
|ϕℓ⟩ =

n⊗

i=1

|ϕℓ,i⟩
}N

ℓ=1

. (3.298)

A randomized measurement dataset of size N is constructed by obtaining N samples from the
unknown state |ψ⟩. One sample is obtained from one experiment given as follows: measure
every qubit of |ψ⟩ under a random Pauli basis. The measurement collapses the state |ψ⟩ to
a state |ϕℓ⟩ =

⊗n
i=1 |ϕℓ,i⟩, where |ϕℓ,i⟩ is a single-qubit stabilizer state in stab1.

Together, N copies of |ψ⟩ construct a dataset T|ψ⟩(N) with N samples. The dataset can
be represented efficiently on a classical computer with O(Nn) bits.

Theorem 3.15 (Learning quantum states generated by shallow circuits in 2D). Given copies
of an unknown state |ψ⟩, with the promise that |ψ⟩ = U |0n⟩ for an unknown n-qubit circuit
U with circuit depth d acting on a 2-dimensional lattice, then the following holds.

1. Suppose each two-qubit gate in U is chosen from SU(4). With a randomized measure-
ment dataset T|ψ⟩(N) of size

N =
2O(d

2)n50

ε64
log

n

δ
, (3.299)

we can learn a quantum circuit V with depth 3d acting on n+m qubits on an extended
2-dimensional lattice, such that

1

2

∥∥TrB
(
V |0n⟩⟨0n|A ⊗ |0m⟩⟨0m|B V †

)
− |ψ⟩⟨ψ|

∥∥
1
≤ ε, (3.300)



CHAPTER 3. LEARNING ALGORITHMS 188

with probability at least 1 − δ. The computational time to learn V is
(
nd3

ε

)O(d3)
. The

number of ancilla qubits can be chosen as m = tn for an arbitrarily small constant
t > 0.

2. In addition, if each two-qubit gate in U is chosen from a finite gateset of constant
size and d = O(1), then there is an algorithm that learns an exact preparation circuit
V with depth 3d acting on n + m qubits, such that V |0n⟩A |0m⟩B = |ψ⟩A ⊗ |junk⟩B
with probability 1 − δ, with sample complexity N = O(log(n/δ)) and time complexity
O(n log(n/δ)). The number of ancilla qubits can be chosen as m = tn for an arbitrarily
small constant t > 0.

3. In addition, if each two-qubit gate in U is chosen from a finite gateset of constant size
and d = O(1), then there is an algorithm that learns a circuit V with depth 2c·d

2
(for

some universal constant c) acting on n qubits (without using any ancilla), such that∣∣⟨0n|V † |ψ⟩
∣∣2 ≥ 1 − ε with probability 1 − δ, with query complexity N = O(log(n/δ))

and time complexity (n/ε)O(1).

Remark 3.9. The first claim in Theorem 3.15 holds for any gateset and any circuit depth
d (which may not be a constant), while the second and third claims are specialized to the
simpler setting of finite gateset and constant depth.

In particular, the first claim implies that when d = polylog(n), the state |ψ⟩ can be learned

within ε trace distance with sample complexity N = 2polylog(n)

εO(1) log n
δ
, in time (n/ε)polylog(n).

We prove Theorem 3.15 in the remainder of this section. We start by assuming a finite
gate set, and address general SU(4) gates in Section 3.3.4.4.

3.3.4.1 Learning 1D states by solving a constraint satisfaction problem

We start by assuming U is a depth-d circuit acting on a 1D lattice, for some constant
d = O(1). The learning problem is equivalent to finding a low-depth circuit V such that
V |ψ⟩ = |0n⟩. Consider Fig. 3.6 where A, B, C are contiguous regions of size 3d. Suppose
we want to locally invert the qubits in region A back to |0⟩A. We can do so by undoing
the gates within the lightcone of A, i.e. apply a depth-d circuit of the blue shape (that acts
on 4d qubits) on top of |ψ⟩. As we do not know what is the correct circuit to apply, we
enumerate over all possible circuits of the blue shape (we can do it because its size is small).
There are 2O(d

2) such circuits in total, and for each circuit we apply it to |ψ⟩ and test if the
state on A actually equals to |0⟩A (we can do it by measuring many copies, and seeing the
outcome all-0 with high probability). For now we assume that all local inversion circuits can
be found exactly; this is addressed in more detail later.

At the end of this procedure, we end up with a list of candidate circuits CA of the blue
shape, such that each of them is a valid local inversion of A, i.e., for all VA ∈ CA we have
VA |ψ⟩ = |0⟩A ⊗ |ψ′⟩. The inverse of the lightcone of A in the unknown circuit U is among
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d

d

3d

A B C

Figure 3.6: Efficient learning of quantum states generated by a shallow circuit in 1D. For each
local region A,B,C, . . . we find a list of local inversion circuits, and merge them together
by solving a constraint satisfaction problem.

them, but we don’t know which one. We repeat the same procedure for each region A, B,
C, ... and get a list of candidate local inversions CA, CB, CC , ... for each region.

Note that in this construction shown in Fig. 3.6, only the local inversions acting on
neighboring regions could overlap. For example, the blue and green circuit does not overlap
because A and C are separated by distance 3d, and each circuit could “spread” into region
B for distance at most d.

The next observation is that there are certain blue circuits in CA that share the same
overlapping region with certain red circuits in CB, i.e. they share the same gates in the
overlapping triangle of blue and red. For example, the inverse of the lightcone of A in U
and the inverse of the lightcone of B in U share the same overlap. We call such circuits
“consistent” with each other. Note that if two circuits are consistent, they can be merged
into a bigger one. For example, take a blue circuit and a red circuit that are consistent, then
they can be merged by considering the union of the gates, and applying the merged circuit
to |ψ⟩ will simultaneously invert both regions A and B. If we can find a local inversion for
each region such that all nearest neighbors are consistent, then they can be merged into a
depth-d circuit V that satisfies V |ψ⟩ = |0n⟩.

Now the task can be viewed as a constraint satisfaction problem: for each region, find a
local inversion circuit among all candidate local inversions (there are at most 2O(d

2) choices),
such that each pair of nearest neighbor circuits are consistent. This can be solved efficiently
by a simple dynamic programming algorithm in time n · 2O(d2).

To be more specific, suppose the system is divided into L = n
3d

regions of size 3d as in

Fig. 3.6, and suppose we have found at most M = 2O(d
2) local inversions for each region.

These circuits are stored in an array C, where C[i][j] denotes the jth local inversion circuit
for the ith region. Define an arrays cost, where cost[i][j] = 0 if there exists a consistent
assignment at locations 1, 2, . . . , i where C[i][j] is used at location i; and cost[i][j] ≥ 1
otherwise (let cost[0][j] = 0 for all j). Also define an array prev, where prev[i][j] is an
index k, such that there exists a consistent assignment at locations 1, 2, . . . , i where C[i][j]
is used at location i and C[i− 1][k] is used at location i− 1. prev[i][j] is not defined when
cost[i][j] ≥ 1.
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Once these arrays are constructed, we can take any circuit j such that cost[L][j] = 0,
and construct a consistent assignment by tracing back through the prev array. Let temp be
an array of size M . The following pseudocode shows how to construct these arrays in time
O(LM2).

1: for i = 1, 2, . . . , L do
2: for j = 1, 2, . . . ,M do
3: for k = 1, 2, . . . ,M do
4: temp[k] = cost[i− 1][k] + 1 [C[i][j] is not consistent with C[i− 1][k]]
5: end for
6: cost[i][j] = mink temp[k]
7: if cost[i][j] = 0 then
8: prev[i][j] = arg mink temp[k]
9: end if
10: end for
11: end for

Finally, note that the above procedure can be implemented by a two-step process:

1. Learn reduced density matrices of |ψ⟩ supported on the lightcone of each small region
A,B,C, . . . .

2. Find local inversions classically using the learned classical descriptions of the reduced
density matrices, and then solve the constraint satisfaction problem.

This is because to find local inversions, say for the B region, we only need access to the
reduced density matrix of |ψ⟩ on the lightcone of B, which has 5d qubits, since the local
inversion only acts on the reduced density matrix.

We need to learn n
3d

reduced density matrices of size at most 5d. The following general
lemma shows the complexity for learning reduced density matrices which we use throughout
this section.

Lemma 3.27 (Learning reduced density matrices). Let ρ be an unknown n-qubit mixed
state. Suppose we would like to learn its reduced density matrices ρA1 , . . . , ρAm where Ai
are subsystems of size at most k. Given a randomized measurement dataset Tρ(N) of size

N = 2O(k)

ε2
log m

δ
, we can learn a list of Hermitian matrices (not necessarily density matrices)

{σAi
} such that with probability at least 1− δ, we have ∥ρAi

− σAi
∥1 ≤ ε for all i.

Proof. Fix some i, we can write ρAi
=
∑

P∈{I,X,Y,Z}|Ai| αPP . It suffices to learn the Pauli

coefficients αP = 1
2|Ai|

Tr(ρAi
P ) = 1

2|Ai|
Tr(ρP ). Suppose we have learned these coefficients

(denote as {βP}) to within ε1 precision. Let σAi
:=
∑

P∈{I,X,Y,Z}|Ai| βPP , then

∥ρAi
− σAi

∥21 ≤ 2|Ai|Tr(ρ− σ)2 = 22|Ai|
∑

P

(αP − βP )2 ≤ 24kε21, (3.301)
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which gives ∥ρAi
− σAi

∥1 ≤ 22kε1. Thus to achieve ∥ρAi
− σAi

∥1 ≤ ε it suffices to learn
{Tr(ρP )} within accuracy ε/2k; there are at most m ·4k k-local Pauli operators that we need
to learn.

By the main result of [103], given a randomized measurement dataset of size

N =
2O(k)

ε2
log

m

δ
, (3.302)

with probability at least 1 − δ, we can learn all observables Tr(ρP ) for the m · 4k k-local
Pauli operators within accuracy ε/2k; this is sufficient to obtain Hermitian matrices {σAi

}
that satisfy ∥ρAi

− σAi
∥1 ≤ ε for all i.

Note that when the gates in the unknown circuit are assumed to come from a constant-
size gate set, the reduced density matrices only have 2O(d

2) = O(1) choices. Therefore,
choosing ε to be some small constant in Lemma 3.27 suffices to learn all the reduced density
matrices exactly. This allows us to find the exact local inversions by classically processing
the reduced density matrices.

In summary, we have shown an algorithm that learns a depth-d circuit V that satisfies
|ψ⟩ = V † |0n⟩ with success probability 1 − δ, using a randomized measurement dataset of
size N = O(log(n/δ)), in time O(n).

3.3.4.2 Disentangling a 2D state

Next we use the 1D techniques developed above to disentangle a state |ψ⟩ = U |0n⟩, where
U is a depth-d circuit acting on a 2D lattice, for some constant d = O(1).

For this purpose we need to introduce a general property for quantum states generated
by low depth circuits, that is they have finite correlation length.

Lemma 3.28 (Finite correlation length). Let |ψ⟩ be a state generated by a depth-d geometric-
ally-local circuit (Definition 3.9). Let A, B be two regions that are separated by distance at
least 2d in the connectivity graph. Then I(A : B)ψ = 0. In other words, let ρAB, ρA, ρB be
the reduced density matrices of |ψ⟩ on AB, A and B, then ρAB = ρA ⊗ ρB.

Proof. As A and B are separated by distance 2d, their lightcones L(A) and L(B) are disjoint.
ρAB = ρA ⊗ ρB follows from the fact that ρAB is generated by the gates in L(AB), which is
a tensor product between L(A) and L(B).

Fig. 3.7 (a) shows a quantum state |ψ⟩ (let ρ = |ψ⟩⟨ψ|) prepared by a depth-d circuit on
a 2D lattice, divided into three regions L,M,R. Since L and R are separated by distance 5d,
Lemma 3.28 implies that ρLR = ρL ⊗ ρR. Although subsystems L and R are not entangled
with each other, they both could be entangled with M . Therefore we develop an argument
to invert the qubits in M , so that the state on L and R could become a tensor product of
pure states.
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Figure 3.7: Learning to disentangle a quantum state generated by a shallow circuit in 2D.
(a) The middle region M can be inverted by solving a similar 1D constraint satisfaction
problem as in Fig. 3.6. (b) After inverting all the gray Bi regions, the remaining white Ai
regions are disentangled into a tensor product of pure states.

Note that M is a 1D-like region. Our goal is to find a depth-d circuit V acting on a
slightly wider strip (of width 7d) around M , such that V |ψ⟩ = |0⟩M ⊗ |ψ′⟩. Such a circuit
exists since we can undo the lightcone of M , and we can find such a circuit using the same
argument as in the previous section. In Fig. 3.7 (a), the blue, red and green regions play the
same role as in Fig. 3.6. For example, we can find a set of local inversions CA for the shaded
blue region A, by first learning the reduced density matrix on the dotted blue region, and
then enumerating over all depth-d circuits acting on the dotted blue region. After learning a
set of local inversions for each local region, we can find a desired depth-d circuit that inverts
M by solving a 1D constraint satisfaction problem.

Now, we have effectively reduced the problem of learning |ψ⟩ to the following problem:
given copies of a state |ψ1⟩ with the promise that

1. it is prepared by a depth-2d circuit (defined on a 2D lattice) acting on |0n⟩;

2. its reduced density matrix on M equals |0⟩⟨0|M .

The goal is to learn the state |ψ1⟩. Note that in this new state σ = |ψ1⟩⟨ψ1|, even though
its circuit depth has increased from d to 2d, the reduced state on L and R is still in tensor
product, i.e. σLR = σL ⊗ σR, due to the fact that M (with width 5d) is sufficiently wide.
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The main purpose of inverting the M region is that now σL and σR are guaranteed to be
pure states, as shown by the following.

Lemma 3.29. Let ρABC be a pure state such that the following two properties hold:

1. ρB = |0⟩⟨0|B,

2. ρAC = ρA ⊗ ρC.

Then ρA and ρC are both pure states.

Proof. This is a special case of Lemma 3.33.

Next, we apply the above argument across the entire system. In Fig. 3.7 (b), the system
is divided into many vertical strips of width 5d. By repeating the above argument, we can
learn a inverting circuit Vi for each shaded Bi region. Note that each Vi acts on a width-7d
strip around Bi and therefore different Vis do not overlap. By combining these different
inverting circuits, overall we have learned a depth-d circuit V such that V |ψ⟩ = |0⟩B ⊗ |ψ′⟩
where B denotes the union of Bi.

Finally, by repeatedly applying Lemma 3.29, we know that the reduced density matrix
of V |ψ⟩ on each region Ai is a pure state. This means that overall the state can be written
as V |ψ⟩ = |0⟩B ⊗ (⊗i |ϕ⟩Ai

) for some pure states |ϕ⟩Ai
.

Now, we have disentangled the state |ψ⟩ into a tensor product of many 1D-like pure
states, and the problem of learning |ψ⟩ is reduced to the following problem:

Problem 1. We are given copies of a state |ψ2⟩ with the promise that

1. it is prepared by a depth-2d circuit (defined on a 2D lattice) acting on |0n⟩;

2. its reduced density matrix on each of the Bi regions in Fig. 3.7 (b) equals |0⟩⟨0|Bi
; in

particular, this implies that |ψ2⟩ = |0⟩B ⊗ (⊗i |ϕ⟩Ai
) for some pure states |ϕ⟩Ai

.

The goal is to learn the state |ψ2⟩, and it suffices to learn each of the individual states |ϕ⟩Ai
.

3.3.4.3 Learning finite correlated states in 1D

Next we show how to learn a state |ϕ⟩ (abbreviating the subscript Ai) on a specific region Ai
that came from Problem 1. Besides the fact that |ϕ⟩ is a pure state, the learning algorithm
heavily relies on the property that |ϕ⟩ is part of a larger state that is prepared by a depth-2d
circuit. Note that this does not imply that |ϕ⟩ itself can be prepared by a depth-2d circuit
acting on Ai. Instead, we will use this property to derive useful facts about |ϕ⟩, presented as
two different viewpoints. Each of them leads to a learning algorithm that is similar to the
approach in Section 3.3.4.1.
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ALi Ai ARi

Figure 3.8: Each of the states on the white Ai regions in Fig. 3.7 (b) can be viewed as being
prepared by a depth-2d circuit acting on Ai (white) as well as ancilla qubits ALi and ARi
(blue).

Viewpoint 1. By Lemma 3.28, the state |ϕ⟩ is a finite correlated state with correlation
length ℓ = 4d. That is, let σ = |ϕ⟩⟨ϕ| and let R1, R2 ⊆ Ai be two regions that are separated
by distance at least 4d, then σR1R2 = σR1 ⊗ σR2 .

Viewpoint 2. |ϕ⟩ can be prepared by a depth-2d circuit acting on Ai as well as some ancilla
qubits ALi and ARi , shown in Fig. 3.8. To see this, recall that |ϕ⟩ is part of a state that is
prepared by a depth-2d circuit. Now, imagine that we undo all the gates in that circuit,
except for those in the backward lightcone of Ai. This procedure does not affect the state on
Ai, and the resulting circuit (denote as Wi) has exactly the same shape as in Fig. 3.8, where
ALi , ARi both has width 2d. Moreover, since |ϕ⟩ is a pure state, it is disentangled with the
ancilla qubits, which means

Wi |0⟩AL
i
|0⟩Ai

|0⟩AR
i

= |junk⟩AL
i
⊗ |ϕ⟩ ⊗ |junk′⟩AR

i
. (3.303)

Clearly, Viewpoint 2 is a much stronger characterization of |ϕ⟩ and derives Viewpoint 1
as a corollary; however, it involves additional ancilla qubits. In the following, we show that
each of these Viewpoints itself is sufficient to derive a learning algorithm; in particular,

• Using Viewpoint 1, we show that the state |ϕ⟩ can be prepared by a depth-2O(d
2)

circuit acting on Ai (without ancilla), therefore it can be learned using the techniques
in Section 3.3.4.1.

• Using Viewpoint 2, we show how to learn a depth-2d circuit Wi that prepares the state
|ϕ⟩ using ancilla qubits, according to Eq. (3.303).

Central to both of these results is a technique that allows us to disentangle a finite
correlated state in 1D. For simplicity, below we present this technique for a 1D system on a
line with no width.



CHAPTER 3. LEARNING ALGORITHMS 195

|ϕ⟩ =
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ρA

C

ρC

B
=

A

ρA

C

ρC

B1 B2

U

=
A1 A2 A3 A4B1 B2 B3

U1 U2 U3

R1 R2 R3 R4

Figure 3.9: Disentangling a finite correlated state in 1D.

Lemma 3.30 (Disentangling finite correlated states in 1D). Let |ϕ⟩ be a state defined on a
line with correlation length ℓ, that is, every two regions R1, R2 that are separated by distance
at least ℓ have zero mutual information, i.e. ρR1R2 = ρR1 ⊗ ρR2, where ρ = |ϕ⟩⟨ϕ|. Divide the
1D line into contiguous regions of size ℓ, denote as A1, B1, A2, B2, . . . , BL−1, AL (Fig. 3.9).
Then for each i there exists a unitary Ui acting on the Bi region, such that

∏L−1
i=1 Ui |ϕ⟩ is a

tensor product of L pure states.

Proof. We start with three subsystems A,B,C (first line of Fig. 3.9), where B has size ℓ.
Then we have

rank(ρB) = rank(ρAC) = rank(ρA ⊗ ρC) = rank(ρA) · rank(ρC) ≤ dim(B). (3.304)

Purifying the state ρA (ρC) requires an ancilla system with dimension rank(ρA) (rank(ρC)).
Therefore we can partition B into two systems B1, B2, such that there exists pure states
|ϕ1⟩AB1

and |ϕ2⟩B2C
, such that |ϕ1⟩AB1

is a purification of ρA, and |ϕ2⟩B2C
is a purification

of ρC . This implies that |ϕ1⟩AB1
⊗ |ϕ2⟩B2C

is a purification of ρAC . Since |ϕ⟩ABC is also a
purification of ρAC , by Uhlmann’s theorem there exists a unitary UB such that |ϕ⟩ABC =
UB |ϕ1⟩AB1

⊗ |ϕ2⟩B2C
.

Applying this argument independently at different Bi regions (bottom line of Fig. 3.9),
we have that for each i = 1, 2, . . . , L − 1, there exists a partition of the system Bi as two
systems BL

i and BR
i , as well as a unitary Ui acting on Bi = BL

i ∪BR
i , such that

|ϕ⟩ = Ui |ϕ1⟩A1...BL
i
⊗ |ϕ2⟩BR

i Ai+1···AL
, (3.305)

or equivalently, U †i |ϕ⟩ = |ϕ1⟩A1...BL
i
⊗|ϕ2⟩BR

i Ai+1···AL
, for some pure states |ϕ1⟩ and |ϕ2⟩. Next,

we relabel the systems according to

Ri := BR
i−1 ∪ Ai ∪BL

i . (3.306)
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Intuitively, after applying all U †i s, the system must be disentangled across all the Ri regions.
To prove this we use a simple argument based on the strong subadditivity of quantum entropy
(Lemma 3.31).

Let σ :=
(∏L−1

i=1 U
†
i

)
|ϕ⟩⟨ϕ|

(∏L−1
i=1 Ui

)
be the final (pure) state. Fix some i, our goal is to

prove that σRi
is pure, i.e., S(σRi

) = 0. The strong subadditivity of quantum entropy gives

S(σRi
) ≤ S(σR1...Ri

) + S(σRi...RL
)− S(σ) = S(σR1...Ri

) + S(σRi...RL
). (3.307)

Note that when calculating S(σR1...Ri
) we can undo all the unitaries U †j for j < i due to

the invariance of entropy under unitary. Then S(σR1...Ri
) = 0 immediately follows from

Eq. (3.305), and a similar argument shows S(σRi...RL
) = 0, which concludes the proof.

Lemma 3.31 (Strong subadditivity of quantum entropy [218]). Let ρ be a mixed state defined
on three systems A,B,C. Let S(ρ) := −Tr(ρ log ρ) be the von Neumann entropy. Then we
have

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC). (3.308)

Learning under Viewpoint 1. A corollary of Lemma 3.30 is that any finite correlated
state in 1D can be prepared by a low-depth circuit, because each of the small pure state on
the Ri regions in the bottom line of Fig. 3.9 can be prepared by a local unitary acting on
O(ℓ) qubits. Applying this argument to the state |ϕ⟩Ai

shown in Fig. 3.8, we conclude that
it can be prepared by two layers of unitaries acting on O(d2) qubits, acting on the Ai region
only. This implies that the state |ϕ⟩Ai

can be prepared by a depth-2O(d
2) circuit acting on

Ai, and thus can be learned by applying the argument in Section 3.3.4.1.

Learning under Viewpoint 2. The main drawback of the above argument is that the
learned circuit depth has an exponential blowup. To reduce this blowup we use additional
structure of the state |ϕ⟩Ai

, described in Viewpoint 2 and Fig. 3.8. Note that there is a key
difference between learning the state |ϕ⟩Ai

and learning 1D states discussed in Section 3.3.4.1.
Here, while the state |ϕ⟩Ai

has a low-depth property shown in Fig. 3.8, this property relies
on ancilla qubits (the |junk⟩ states in Eq. (3.303)) that we do not have access to. Therefore
we cannot directly apply the techniques in Section 3.3.4.1, which requires access to all qubits
prepared by the low-depth circuit.

The main idea is to learn a mixed state ρ that is locally consistent with the state |ϕ⟩⟨ϕ|,
i.e., they have the same local reduced density matrices, and then show that this forces the
two states to be globally the same.

The argument is illustrated in Fig. 3.10, where we learn to locally prepare the state
instead of invert the state. Consider the state |ϕ⟩ on the Ai region shown in Fig. 3.10, and
suppose we have learned its reduced density matrix ρblue on the solid blue region. Due to the
fact that |ϕ⟩ is prepared by a depth-2d circuit acting on ALi , Ai, A

R
i , we know that there exists

a depth-2d circuit acting on the dotted blue region that prepares ρblue (the circuit looks like
a small piece of Fig. 3.8), by undoing all the gates except for those in the backward lightcone
of the solid blue region. We can perform a brute force search over all depth-2d circuits acting
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ALi Ai ARi

4d

12d

Figure 3.10: Learning a quantum state generated by a depth-2d circuit with ancilla.

on the dotted blue region, and for each of them we can test whether it prepares ρblue. In
this way we obtain a list of depth-2d circuits acting on the dotted blue region that prepares
ρblue.

By repeating the above procedure we can obtain a list of local preparation circuits for
each of the solid colored regions. A key point here is that the neighboring colored regions
overlap by distance 4d. Moreover, the local preparation circuits for the blue and green regions
do not overlap, since the red region is sufficiently big. This enables us to solve a constraint
satisfaction problem of the same nature as in Section 3.3.4.1, where we can choose a local
preparation circuit for each region, such that neighboring circuits are consistent and can be
merged together. Overall we have learned a depth-2d circuit W acting on ALi , Ai, A

R
i , that

simultaneously prepares all the local reduced density matrices.
Let ρ := TrAL

i A
R
i

(W |0⟩⟨0|AL
i AiAR

i
W †) be the learned density matrix on Ai. At this point

we know that ρ and |ϕ⟩⟨ϕ| are locally the same on the solid blue, red, and green regions (and
so on), but this does not directly imply that ρ = |ϕ⟩⟨ϕ|. For example, a Haar random pure
state and the maximally mixed state are locally very close but globally very far. Next, we
show that the finite correlation property forces ρ and |ϕ⟩⟨ϕ| to be globally equal.

Lemma 3.32 (Local consistency implies global consistency). Let |ψ⟩ be a state defined on
a 1D line with correlation length ℓ and let σ = |ψ⟩⟨ψ|. Suppose the system is partitioned
into contiguous regions A1, . . . , AL where |Ai| ≥ ℓ. Suppose ρ is a mixed state that satisfies
ρAiAi+1

= σAiAi+1
for all i, then ρ = σ.
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Proof. We show this for 3 subsystems; generalizing to more subsystems is straightforward.
Let ρ be a mixed state satisfying ρA1A2 = σA1A2 and ρA2A3 = σA2A3 . Following the proof of
Lemma 3.30, there exists a unitary U acting on A2 such that

UA2 |ψ⟩A1A2A3
= |ϕ1⟩A1A21

⊗ |ϕ2⟩A22A3
, (3.309)

where A21, A22 is a partition of A2, and |ϕ1⟩A1A21
, |ϕ2⟩A22A3

are some pure states. Equiva-
lently, we have

UA2σU
†
A2

= |ϕ1⟩⟨ϕ1|A1A21
⊗ |ϕ2⟩⟨ϕ2|A22A3

. (3.310)

Let τ := UA2ρU
†
A2

, we will show that τ = |ϕ1⟩⟨ϕ1|A1A21
⊗ |ϕ2⟩⟨ϕ2|A22A3

, which implies
ρ = σ.

First, taking the partial trace over A3 on both sides of Eq. (3.310), we have

UσA1A2U
† = |ϕ1⟩⟨ϕ1|A1A21

⊗ TrA3 |ϕ2⟩⟨ϕ2| . (3.311)

Then, notice that

τA1A2 = UρA1A2U
† = UσA1A2U

† = |ϕ1⟩⟨ϕ1|A1A21
⊗ TrA3 |ϕ2⟩⟨ϕ2| . (3.312)

Tracing outA22 on both sides, we have τA1A21 = |ϕ1⟩⟨ϕ1|A1A21
; similarly, τA22A3 = |ϕ2⟩⟨ϕ2|A22A3

.
Since τA1A21 and τA22A3 are both pure states, this implies that the global state τ is a tensor
product

τ = τA1A21 ⊗ τA22A3 = |ϕ1⟩⟨ϕ1|A1A21
⊗ |ϕ2⟩⟨ϕ2|A22A3

. (3.313)

Thus we have τ = UσU †, which implies ρ = σ.

Summary of our progress so far. So far we have developed all technical ingredients
for learning a quantum state |ψ⟩ = U |0n⟩, under the simplified setting that U is a depth
d = O(1) circuit acting on a 2D lattice, and each gate in U is from a constant size gate set.

Note that all the above arguments can be viewed as first learning the local reduced den-
sity matrices of |ψ⟩ followed by classically reconstructing the circuit. As we have discussed
before in Section 3.3.4.1, a reduced density matrix of constant size can be learned exactly as
it only has a constant number of choices. In the disentangling step shown in Fig. 3.7, we can
learn O(n) reduced density matrices on the dotted regions of size O(d2), and then classically
reconstruct a depth-d circuit V in time O(n), such that V |ψ⟩ = |0⟩B ⊗ (⊗i |ϕ⟩Ai

) where the
pure states |ϕ⟩Ai

live on the white regions of Fig. 3.7 (b).

Proof of second claim of Theorem 3.15. Next, we start with Viewpoint 2. As shown in
Fig. 3.10, learning a state |ϕ⟩Ai

requires learning its reduced density matrices of size 5d×16d.
This can be achieved by experimentally applying V to |ψ⟩ and then learning the reduced
density matrices. Equivalently, say we want to learn the reduced density matrix of |ϕ⟩Ai

on a region M of size 5d × 16d, then it suffices to learn a reduced density matrix of |ψ⟩
of size 7d × 18d on a region surrounding M , then classically apply the gates of V within
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the backward lightcone of M , and then classically trace out the qubits outside M . In other
words, the reduced density matrices of |ϕ⟩Ai

can be simulated by slightly larger reduced
density matrices of |ψ⟩. Using these reduced density matrices, for each i we can learn a
depth-2d circuit Wi such that

Wi |0⟩AL
i AiAR

i
= |ϕ⟩Ai

⊗ |junk⟩AL
i A

R
i
, (3.314)

which takes total time O(n). The entire process requires O(n) reduced density matrices
of |ψ⟩ of size O(d2), which can be learned exactly with probability at least 1 − δ, using a
randomized measurement dataset of size N = O(log(n/δ)).

The state |ψ⟩ can be prepared as follows:

1. Initialize registers Ai, Bi, A
L
i , A

R
i in the state |0⟩. Let A = ∪iAi and B = ∪iBi.

2. For each i, apply the depth-2d circuit Wi to ALi AiA
R
i .

3. Apply the depth-d circuit V † to AB, and the state |ψ⟩ lives on AB.

Overall the learned circuit has depth 3d and can be implemented on an extended 2D lattice,
where the qubits in Ai can interact with its ancilla qubits ALi , A

R
i as well as neighboring Bi

regions.
In Fig. 3.10 we have chosen the width of Ai to be 5d. Note that the width of ALi and ARi

are both 2d, regardless of the width of Ai. In fact we could have chosen the width of Ai to be
Cd for some large constant C, and the number of ancilla qubits is at most n/(Cd) ·4d = 4

C
n,

which can be made arbitrarily small.

Proof of third claim of Theorem 3.15. Using Viewpoint 1, the state |ϕ⟩Ai
can be

prepared by a depth-2O(d
2) circuit acting on Ai, and thus can be learned by applying the

argument in Section 3.3.4.1. Let |ϕ⟩Ai
= W |0⟩Ai

for some depth-2O(d
2) circuit W acting on

Ai. A technical issue here is that we no longer have the guarantee that W consists of gates
from a finite gate set as in U , because the existence of W comes from the disentangling
argument in Lemma 3.30, instead of coming from the original circuit U as in Viewpoint 2.
Below we discuss how to find this circuit W .

Let d′ = 2O(d
2) be the circuit depth of W . Following Section 3.3.4.1, we can learn reduced

density matrices of σ := |ϕ⟩⟨ϕ|Ai
of size 5d × 5d′ (which can be done exactly, as discussed

above) and then classically find local inversions for regions of size 5d×3d′. Following Fig. 3.6,
let A be a region of size 5d× 3d′, and let AA1 be the lightcone of A with size 5d× 4d′. Then
there is a depth-d′ circuit WAA1 acting on AA1 such that

TrA1

(
WAA1σAA1W

†
AA1

)
= |0⟩⟨0|A . (3.315)

To find the local inversion WAA1 we use an ε0-net over depth-d′ circuits acting on AA1,
denoted as Nε0(AA1) (see Definition 3.18 and Lemma 3.19), which has size at most

S =

(
d′3

ε0

)O(d′3)
. (3.316)
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By definition, there exists ŴAA1 ∈ Nε0(AA1) such that ∥ŴAA1 −WAA1∥∞ ≤ ε0, which gives

⟨0A|TrA1

(
ŴAA1σAA1Ŵ

†
AA1

)
|0A⟩ ≥ 1− 2ε0. (3.317)

By enumerating over every element in Nε0(AA1), we can find a list of circuits which satisfy
the above equation. Following the argument in Section 3.3.4.1, we repeat the same procedure
for each local region and merge the local circuits into a global depth-d′ circuit Ŵi, which
approximately inverts each local region up to 1− 2ε0 fidelity. By union bound, we have

∣∣∣⟨0Ai
| Ŵi |ϕ⟩Ai

∣∣∣
2

≥ 1− 2
√
nε0. (3.318)

After learning each region Ai, the state |ψ⟩ can be approximately prepared as follows:

1. Initialize registers Ai, Bi in the state |0⟩. Let A = ∪iAi and B = ∪iBi.

2. For each i, apply the depth-d′ circuit Ŵ †
i to Ai.

3. Apply the depth-d circuit V † toAB, and the state onAB, which is
∣∣∣ψ̂
〉

= V †(⊗iŴ †
i ) |0n⟩,

approximately equals to |ψ⟩.

We bound the approximation error as follows.

∣∣∣
〈
ψ̂|ψ

∣∣∣ψ̂|ψ
〉∣∣∣

2

=
∣∣∣⟨0n| (⊗iŴi)V |ψ⟩

∣∣∣
2

=
∏

i

∣∣∣⟨0Ai
| Ŵi |ϕ⟩Ai

∣∣∣
2

≥ 1− 2nε0. (3.319)

Therefore to achieve 1 − ε fidelity it suffices to choose ε0 = ε
2n

, which gives total running
time n · S = (n/ε)O(1).

3.3.4.4 Robustness to imprecision

In the previous sections we have been focusing on a finite gateset, which allows us to learn
reduced density matrices exactly, and therefore the disentangling procedure in Fig. 3.7 can
be performed exactly. However, it’s not clear that this argument still works for general SU(4)
gates, because in this case each step can only be performed approximately. In particular, we
can only approximately disentangle the state using the procedure in Fig. 3.7, and learning
the remaining 1D states poses new technical challenges as they are no longer pure.

In this section we address this issue. In the following we first outline the argument
and develop key technical lemmas, before going into the full proof of the first claim in
Theorem 3.15.

We start with the disentangling step in Fig. 3.7. Here, instead of exhaustively enumerat-
ing small circuits acting on local regions, we can only enumerate over an ε-net of the circuit.
Therefore, we are only able to find circuits that approximately invert each Bi region shown
in Fig. 3.7 (b). This means that after the disentangling step, the reduced density matrix on
B will be close to |0⟩⟨0|B, instead of being exactly equal to |0⟩⟨0|B.
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Now the question is what happens to the remaining Ai regions. Note that the state is
still in tensor product across different Ai regions due to the finite correlation length property,
but the reduced density matrices on each Ai region will not be pure. The following lemma
shows that these states are approximately pure.

Lemma 3.33. Let ρA1A2...ALB be a pure state such that the following two properties hold:

1. ⟨0B|ρB|0B⟩ ≥ 1− ε,

2. ρA1A2...AL
= ρA1 ⊗ · · · ⊗ ρAL

.

Then for each i = 1, . . . , L there exists a pure state |ϕ⟩Ai
such that ⟨ϕAi

|ρAi
|ϕAi
⟩ ≥ 1− ε.

Proof. Consider the operator norm ∥ρ∥∞ := λmax(ρ) = max|ψ⟩ ⟨ψ|ρ|ψ⟩. Condition 1 gives
∥ρB∥∞ ≥ 1− ε. Using condition 2 we have

∥ρB∥∞ = ∥ρA1...AL
∥∞ = ∥ρA1 ⊗ · · · ⊗ ρAL

∥∞ =
L∏

i=1

∥ρAi
∥∞ ≥ 1− ε, (3.320)

which implies that λmax(ρAi
) ≥ 1− ε for any i.

Next, we discuss how to learn these states {ρAi
} that are approximately pure. Again, we

still have the property that each ρAi
is a 1D-like state with finite correlation length. However,

our previous techniques developed in Section 3.3.4.3 only work for exactly pure states. We
develop new techniques by examining the robustness of the key technical lemma developed
in Section 3.3.4.3, Lemma 3.30.

There are two key ingredients in the proof of Lemma 3.30:

1. The use of Uhlmann’s theorem to prove the existence of a local disentangling unitary;

2. The use to entropy inequalities (in particular, strong subadditivity) to prove that the
state is disentangled into many local pieces after applying Uhlmann’s unitaries across
the entire system.

Fortunately, both ingredients are robust. First, Uhlmann’s theorem says that if two
mixed states are close, then there exists a unitary (acting on the purifying system) that
approximately maps between their purifications. Second, entropy inequalities are robust,
thanks to the continuity of entropy given below.

Lemma 3.34 (Fannes–Audenaert inequality). Let ρ, σ be two n-qubit density matrices, and
let ε := 1

2
∥ρ− σ∥1. Then

|S(ρ)− S(σ)| ≤ nε+ h(ε), (3.321)

where h(·) is the binary entropy function and can be upper bounded as h(ε) ≤ 2
√
ε.

We formalize the above intuitions as the following main technical lemma, which is a
robust version of Lemma 3.32.
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Lemma 3.35. Let ρ be an n-qubit mixed state defined on systems A1, . . . , AL, with the
following properties:

1. there exists an n-qubit pure state |ψ⟩, such that ⟨ψ|ρ|ψ⟩ ≥ 1− ε.

2. for any i = 2, 3, . . . , L− 1, it holds that I(A1 · · ·Ai−1 : Ai+1 · · ·AL)ρ = 0.

For simplicity we assume that L is odd. Let σ be another n-qubit mixed state that satisfies

1

2
∥σA2iA2i+1A2i+2

− ρA2iA2i+1A2i+2
∥1 ≤ δ, ∀i = 0, 1, . . . , (L− 1)/2, (3.322)

Then
1

2
∥σ − ρ∥1 ≤ 13nε1/16 + 4nδ1/4. (3.323)

Proof. The above condition says that ρ and σ are close on local regions

A1A2, A2A3A4, A4A5A6, . . . , AL−1AL.

The goal is to prove that they are globally close.
Let τ := |ψ⟩⟨ψ| denote the density matrix of |ψ⟩. For any j ∈ {1, 2, . . . , (L−1)/2}, define

three regions L(j) := A≤2j−1, M
(j) := A2j, R

(j) := A≥2j+1 (the superscript (j) is abbreviated
when there is no confusion).

Note that for any subsystem W , we have

1

2
∥τW − ρW∥1 ≤

1

2
∥τ − ρ∥1 ≤

√
1− ⟨ψ|ρ|ψ⟩ ≤ √ε. (3.324)

Therefore,

∥τLR − τL ⊗ τR∥1 ≤ ∥τLR − ρLR∥1 + ∥ρLR − ρL ⊗ ρR∥1 + ∥ρL ⊗ ρR − τL ⊗ τR∥1
≤ ∥τLR − ρLR∥1 + ∥ρL − τL∥1 + ∥ρR − τR∥1
≤ ε1

(3.325)

where we let ε1 := 6
√
ε. Then, the relationship between fidelity and trace distance implies

that
F (τLR, τL ⊗ τR) ≥ 1− ∥τLR − τL ⊗ τR∥1 ≥ 1− ε1. (3.326)

Let |ϕ1⟩LM(j)
1

be a purification of τL, and let |ϕ2⟩M(j)
2 R

be a purification of τR. Note that

dim(M
(j)
1 ) ≤ dim(L) and dim(M

(j)
2 ) ≤ dim(R). Let M ′(j) be an ancilla space with dimen-

sion dim(M
(j)
1 ) dim(M

(j)
2 )/ dim(M (j)). Here M ′(j) is needed in case M (j) is smaller than

M
(j)
1 M

(j)
2 . Now, |ψ⟩LMR |0⟩M ′(j) is a purification of the state τLR, while |ϕ1⟩LM(j)

1
⊗ |ϕ2⟩M(j)

2 R

is a purification of the state τL⊗τR, and they have the same dimension. Then by Uhlmann’s
theorem, there exists a unitary U (j) : M (j)M ′(j) →M

(j)
1 M

(j)
2 , such that

U
(j)

M(j)M ′(j) |ψ⟩LM(j)R |0⟩M ′(j) ≈ε1 |ϕ1⟩LM(j)
1
⊗ |ϕ2⟩M(j)

2 R
. (3.327)
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Here, |u⟩ ≈ε |v⟩ means | ⟨u|v|u|v⟩ |2 ≥ 1− ε.
The above argument shows the existence of a unitary U (j) acting on M (j) = A2j (as

well as an ancilla system M ′(j)), that approximately disentangles the state |ψ⟩ into a tensor

product between LM
(j)
1 and M

(j)
2 R, where M

(j)
1 , M

(j)
2 are ancilla systems associated with

A2j. We apply all such unitaries U (j) (j ∈ {1, 2, . . . , (L− 1)/2}) to |ψ⟩, and obtain

η :=




(L−1)/2∏

j=1

U (j)


 |ψ⟩⟨ψ| ⊗ |0⟩⟨0|M ′




(L−1)/2∏

j=1

U (j)†


 , (3.328)

where M ′ represents the union of all M ′(j). Note that η supports on A1, A3, A5, . . . , AL as
well as M

(j)
1 ,M

(j)
2 for j ∈ {1, 2, . . . , (L− 1)/2}. Now, we relabel the systems according to

Bj := M
(j−1)
2 ∪ A2j−1 ∪M (j)

1 , j ∈ {1, 2, . . . , (L+ 1)/2}, (3.329)

and the state η supports on Bj, j ∈ {1, 2, . . . , (L + 1)/2}, and we want to prove that it is
approximately a tensor product across all Bj regions via upper bounding the relative entropy

D(η|| ⊗j ηBj
) =

∑

j

S(ηBj
)− S(η) =

∑

j

S(ηBj
). (3.330)

By the strong subadditivity of quantum entropy,

S(ηBj
) ≤ S(ηB≤j

) + S(ηB≥j
)− S(η) = S(ηB≤j

) + S(ηB≥j
). (3.331)

Focusing on the entropy of S(ηB≤j
), we can ignore the unitaries that are applied on regions

other than A2j. Note that Eq. (3.327) implies that

1

2

∥∥∥Tr
M

(j)
2 R

(U (j) |ψ⟩⟨ψ| ⊗ |0⟩⟨0|M ′(j) U
(j)†)− |ϕ1⟩⟨ϕ1|LM(j)

1

∥∥∥
1
≤ √ε1. (3.332)

Therefore by the Fannes-Audenaert inequality,

S(ηB≤j
) = S(Tr

M
(j)
2 R

(U (j) |ψ⟩⟨ψ| ⊗ |0⟩⟨0|M ′(j) U
(j)†)) ≤ 2|L|√ε1 + 2ε

1/4
1 ≤ 2n

√
ε1 + 2ε

1/4
1 .

(3.333)
A similar argument holds for S(ηB≥j

). Therefore we have

S(ηBj
) ≤ 4n

√
ε1 + 4ε

1/4
1 , ∀j ∈ {1, 2, . . . , (L+ 1)/2}. (3.334)

Let

ω :=




(L−1)/2∏

j=1

U (j)


σ ⊗ |0⟩⟨0|M ′




(L−1)/2∏

j=1

U (j)†


 , (3.335)
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then ∥σ − |ψ⟩⟨ψ|∥1 = ∥ω − η∥1. Note that for any j, ηBj
only depends on the reduced

density matrix τA2j−2A2j−1A2j
; similarly, ωBj

only depends on the reduced density matrix
σA2j−2A2j−1A2j

. Therefore,
∥∥ωBj

− ηBj

∥∥
1
≤
∥∥σA2j−2A2j−1A2j

− τA2j−2A2j−1A2j

∥∥
1

≤
∥∥σA2j−2A2j−1A2j

− ρA2j−2A2j−1A2j

∥∥
1

+
∥∥ρA2j−2A2j−1A2j

− τA2j−2A2j−1A2j

∥∥
1

≤ 2δ + 2
√
ε.

(3.336)
Note that |Bj| ≤ 3n, by the Fannes-Audenaert inequality,

S(ωBj
) ≤ S(ηBj

) + 3n(δ +
√
ε) + 2

√
δ +
√
ε. (3.337)

This implies that

D(ω|| ⊗j ωBj
) =

∑

j

S(ωBj
)− S(ω)

≤
∑

j

S(ωBj
)

≤
∑

j

S(ηBj
) + 3n2(δ +

√
ε) + 2n

√
δ +
√
ε.

(3.338)

Then

∥σ − ρ∥1 ≤ ∥σ − τ∥1 + ∥τ − ρ∥1
≤ ∥ω − η∥1 + 2

√
ε

≤
∥∥ω −⊗jωBj

∥∥
1

+
∥∥⊗jωBj

−⊗jηBj

∥∥
1

+
∥∥⊗jηBj

− η
∥∥
1

+ 2
√
ε

≤
√

2D(ω|| ⊗j ωBj
) + 2nδ + 2n

√
ε+

√
2D(η|| ⊗j ηBj

) + 2
√
ε

≤
√

8n(n
√
ε1 + ε

1/4
1 ) + 6n2(δ +

√
ε) + 4n

√
δ +
√
ε

+

√
8n(n

√
ε1 + ε

1/4
1 ) + 2nδ + 2(n+ 1)

√
ε.

(3.339)

Here in the fourth line we use the quantum Pinsker inequality, which says that ∥ρ− σ∥1 ≤√
2D(ρ∥σ) for two density matrices ρ, σ. Using the fact that ε1 = 6

√
ε, we have

1

2
∥σ − ρ∥1 ≤ nδ + 2n

√
ε+
√

8nε
1/4
1 +

√
8
√
nε

1/8
1 +

√
6

2
n
√
δ +

√
6

2
nε1/4 +

√
nδ1/4 +

√
nε1/8

≤
√

8nε
1/4
1 +

√
8
√
nε

1/8
1 + 5nε1/8 + 4nδ1/4

≤ 13nε1/16 + 4nδ1/4.
(3.340)
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Finally, the next technical lemma bounds the distance between the learned state and the
unknown state |ψ⟩.

Lemma 3.36. Let |ψ⟩A1...ALB
be a pure state, and let ρA1...ALB = |ψ⟩⟨ψ|A1...ALB

. Suppose the
following two properties hold:

1. ⟨0B|ρB|0B⟩ = 1− ε,

2. ρA1...AL
= ρA1 ⊗ · · · ⊗ ρAL

.

Suppose {σAi
} are density matrices that satisfies 1

2
∥ρAi

− σAi
∥1 ≤ δ for any i. Then

1

2

∥∥(⊗Li=1σAi
)⊗ |0⟩⟨0|B − |ψ⟩⟨ψ|

∥∥
1
≤
√

2ε+ Lδ. (3.341)

Proof. The state |ψ⟩A1...ALB
can be written as

|ψ⟩A1...ALB
=
√

1− ε |0⟩B |ϕ⟩A1...AL
+
√
ε |else⟩A1...ALB

, (3.342)

where ⟨0|B |else⟩A1...ALB
= 0. This implies that

ρA1...AL
= TrB ρA1...ALB = (1− ε) |ϕ⟩⟨ϕ|A1...AL

+ εTrB |else⟩⟨else| . (3.343)

Note that

1

2
∥ρA1...AL

− σA1 ⊗ · · · ⊗ σAL
∥1 =

1

2
∥ρA1 ⊗ · · · ⊗ ρAL

− σA1 ⊗ · · · ⊗ σAL
∥1

≤ 1

2

L∑

i=1

∥ρAi
− σAi

∥1

≤ Lδ.

(3.344)

Therefore,

⟨ψ|A1...ALB
σA1 ⊗ · · · ⊗ σAL

⊗ |0⟩⟨0|B |ψ⟩A1...ALB
≥ ⟨ψ| ρA1...AL

⊗ |0⟩⟨0|B |ψ⟩ − Lδ
≥ (1− ε)2 − Lδ
≥ 1− 2ε− Lδ.

(3.345)

This implies that
1

2

∥∥(⊗Li=1σAi
)⊗ |0⟩⟨0|B − |ψ⟩⟨ψ|

∥∥
1
≤
√

2ε+ Lδ. (3.346)

Proof of first claim of Theorem 3.15. Next we show how to use the above techniques to
learn an unknown quantum state |ψ⟩ = U |0n⟩, with the promise that U is a depth-d circuit
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acting on a 2D lattice (here d is treated as a generic parameter which is not necessarily a
constant) with arbitrary SU(4) gates.

We work with Viewpoint 2 described in Section 3.3.4.3. As discussed at the end of
Section 3.3.4.3, the learning process requires O(n) reduced density matrices of |ψ⟩ of size
O(d2). Suppose all of these reduced density matrices are learned to within ε0 trace distance
with probability 1 − δ, then by Lemma 3.27 it suffices to take a randomized measurement
dataset T|ψ⟩(N) of size

N =
2O(d

2)

ε20
log

n

δ
. (3.347)

Next we proceed with the disentangling step shown in Fig. 3.7. We have learned the
reduced density matrices on the dotted regions shown in Fig. 3.7 (a) to within ε0 trace
distance. Denote the dotted blue region as AA1 where A is the colored blue region, and let
ρAA1 be the reduced density matrix of |ψ⟩ on AA1. We know that there exists a depth-2d
circuit VAA1 such that

VAA1ρAA1V
†
AA1

= |0⟩⟨0|A ⊗ σA1 (3.348)

for some density matrix σA1 . We have learned a density matrix ρ̂AA1 such that ∥ρ̂AA1 −
ρAA1∥1 ≤ ε0. To find an approximate local inversion for the region A, we perform a brute
force search over an ε0-net for depth-2d circuits acting on AA1, denoted as Nε0(AA1), which
is constructed by discretizing each SU(4) gate (see Definition 3.18 and Lemma 3.19), which
has size at most

S =

(
d3

ε0

)O(d3)
. (3.349)

Note that Eq. (3.348) together with ∥ρ̂AA1 − ρAA1∥1 ≤ ε0 implies that

Tr
(
⟨0|A VAA1 ρ̂AA1V

†
AA1
|0⟩A

)
≥ 1− ε0. (3.350)

By definition of ε0-net, there exists a unitary V̂AA1 ∈ Nε0(AA1) that satisfies ∥V̂AA1 −
VAA1∥∞ ≤ ε0, which gives

Tr
(
⟨0|A V̂AA1 ρ̂AA1V̂

†
AA1
|0⟩A

)
≥ 1− 2ε0. (3.351)

The algorithm is to enumerate over all elements in Nε0(AA1) and find the ones which satisfy
the above equation. Each of these circuits is an approximate local inversion in the sense that

Tr
(
⟨0|A V̂AA1ρAA1V̂

†
AA1
|0⟩A

)
≥ 1− 3ε0. (3.352)

Using the same argument as in Section 3.3.4.2, in Fig. 3.7 (a) we can find a depth-d circuit V̂
acting on the width-7d strip around M , such that Eq. (3.352) is satisfied for all local colored
regions. There are at most

√
n such regions. Let ρ = |ψ⟩⟨ψ|, by union bound,

Tr
(
⟨0|M V̂ ρV̂ † |0⟩M

)
≥ 1− 3

√
nε0. (3.353)
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Repeat the same procedure for all vertical Bi strips shown in Fig. 3.7 (b). There are at
most

√
n different vertical strips. Let B = ∪iBi, and let V denote the union of all learned

inversion circuits across different regions, we have

Tr
(
⟨0|B V ρV † |0⟩B

)
≥ 1− 3nε0. (3.354)

Now, the problem reduces to learning the state V |ψ⟩, which can be formulated as follows.

Problem 2. We are given copies of a state σ = |ϕ⟩⟨ϕ| with the promise that

1. it is prepared by a depth-2d circuit (defined on a 2D lattice) acting on |0n⟩;

2. its reduced density matrix on each of the Bi regions in Fig. 3.7 (b) is close |0⟩⟨0|Bi
, i.e.

⟨0B|σB|0B⟩ ≥ 1− ε1.

The goal is to (approximately) learn the state |ϕ⟩.

Let |ϕ⟩ := V |ψ⟩ and let ε1 := 3nε0. Consider dividing the state σ = |ϕ⟩⟨ϕ| into regions
A1, A2, . . . , AL and B = ∪iBi as in Fig. 3.7 (b). As the regions {Ai} are sufficiently far from
each other, the reduced density matrix on A = ∪iAi is a tensor product across each region,
i.e., σA1...AL

= σA1⊗· · ·⊗σAL
. By Eq. (3.354), we have ⟨0B|σB|0B⟩ ≥ 1−ε1. By Lemma 3.33,

for each i = 1, . . . , L there exists a pure state |ϕ⟩Ai
such that ⟨ϕAi

|σAi
|ϕAi
⟩ ≥ 1− ε1.

Next we discuss how to learn the state σAi
for a fixed i. This is similar to the earlier

situation in Viewpoint 2, but with the critical difference that here σAi
is no longer pure. So

we list the updated Viewpoint below.

Viewpoint 2’. σAi
can be prepared by a depth-2d circuit acting on Ai as well as some

ancilla qubits ALi and ARi , shown in Fig. 3.8. To see this, recall that σAi
is part of a state

that is prepared by a depth-2d circuit. Now, imagine that we undo all the gates in that
circuit, except for those in the backward lightcone of Ai. This procedure does not affect
the state on Ai, and the resulting circuit (denote as Wi) has exactly the same shape as in
Fig. 3.8, where ALi , ARi both has width 2d. Note that here σAi

could be entangled with the
ancilla qubits, and we have

TrAL
i A

R
i

(
Wi |0⟩⟨0|AL

i AiAR
i
W †
i

)
= σAi

. (3.355)

Using the same argument as the end of Section 3.3.4.3, the reduced density matrices
of σAi

can be simulated by reduced density matrices of |ψ⟩⟨ψ| on slightly larger regions.
Therefore we can obtain reduced density matrices of σAi

within trace distance ε0. Let C be
the solid blue region in Fig. 3.10, and let CC1 be the dotted blue region. We have learned
a reduced density matrix σ̂C such that ∥σ̂C − σC∥1 ≤ ε0. From Viewpoint 2’, we know that
there is a depth-2d circuit WCC1 acting on CC1, such that

TrC1

(
WCC1 |0⟩⟨0|CC1

W †
CC1

)
= σC . (3.356)
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Consider an ε0-net for depth-2d circuits acting on CC1, denoted as Nε0(CC1). By definition,
there exists a unitary ŴCC1 that satisfies ∥ŴCC1 −WCC1∥∞ ≤ ε0, which means that

∥∥∥TrC1

(
ŴCC1 |0⟩⟨0|CC1

Ŵ †
CC1

)
− σ̂C

∥∥∥
1

≤
∥∥∥TrC1

(
ŴCC1 |0⟩⟨0|CC1

Ŵ †
CC1

)
− σC

∥∥∥
1

+ ∥σC − σ̂C∥1
≤2ε0.

(3.357)

By enumerating over every element in Nε0(CC1), we can find a list of circuits {Ŵ ′
CC1
} that

satisfy
∥∥∥TrC1

(
Ŵ ′
CC1
|0⟩⟨0|CC1

Ŵ ′†
CC1

)
− σ̂C

∥∥∥
1
≤ 2ε0. Any such circuit Ŵ ′

CC1
will also satisfy

∥∥∥TrC1

(
Ŵ ′
CC1
|0⟩⟨0|CC1

Ŵ ′†
CC1

)
− σC

∥∥∥
1
≤ 3ε0. (3.358)

Using the same argument as in Section 3.3.4.3, we can merge these learned local circuits

into a global depth-2d circuit Ŵi. Let σ̂Ai
:= TrAL

i A
R
i

(
Ŵi |0⟩⟨0|AL

i AiAR
i
Ŵ †
i

)
be the learned

reduced density matrix on Ai, then the local reduced density matrices of σ̂Ai
and σAi

are
3ε0 close in trace distance on solid colored regions in Fig. 3.10. This allows us to invoke the
main technical lemma, Lemma 3.35, which gives

1

2
∥σ̂Ai

− σAi
∥1 ≤ 13nε

1/16
1 + 8nε

1/4
0 ≤ 22n17/16ε

1/16
0 . (3.359)

The state |ψ⟩ can be approximately prepared as follows:

1. Initialize registers Ai, Bi, A
L
i , A

R
i in the state |0⟩. Let A = ∪iAi and B = ∪iBi.

2. For each i, apply the depth-2d circuit Ŵi to ALi AiA
R
i . The reduced density matrix on

AB equals (⊗iσ̂Ai
)⊗ |0⟩⟨0|B

3. Apply the depth-d circuit V † to AB, and the reduced density matrix on AB is ρ̂ =
V †(⊗iσ̂Ai

)⊗ |0⟩⟨0|B V , which approximately equals to |ψ⟩⟨ψ|.

Similar to the proof of second claim of Theorem 3.15 at the end of Section 3.3.4.3, we can
choose the Ai regions to be sufficiently wide, such that the number of ancilla qubits equals
to tn for an arbitrarily small constant t.

The final task is to bound the error between the learned density matrix and |ψ⟩⟨ψ|. Using
Lemma 3.36, the trace distance can be bounded as

1

2

∥∥V †(⊗iσ̂Ai
)⊗ |0⟩⟨0|B V − |ψ⟩⟨ψ|

∥∥
1

=
1

2

∥∥(⊗iσ̂Ai
)⊗ |0⟩⟨0|B − V |ψ⟩⟨ψ|V †

∥∥
1

≤
√

2 · 3nε0 +
√
n · 22n17/16ε

1/16
0

≤ 6n25/32ε
1/32
0 .

(3.360)
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Therefore, to achieve trace distance ε, it suffices to choose ε0 = O( ε
32

n25 ). The total sample
complexity is

N =
2O(d

2)

ε20
log

n

δ
=

2O(d
2)n50

ε64
log

n

δ
. (3.361)

The total running time is

n · S =

(
nd3

ε

)O(d3)
. (3.362)
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Chapter 4

Fault tolerance

This chapter studies fault tolerance techniques for shallow quantum circuits and their appli-
cations. In Section 4.1 we discuss the motivation for studying this direction and propose a
key open question toward quantum computational advantage in the early fault tolerant era:
constructing a family of shallow quantum circuits that is both fault tolerant and classically
hard. The rest of this chapter presents partial progress toward addressing this question. In
Section 4.2 we construct a family of local Hamiltonians which demonstrate quantum com-
putational advantage with constant-temperature Gibbs sampling, which follows from a fault
tolerance scheme for shallow IQP circuits against input noise. This is based on joint work
with Thiago Bergamaschi and Chi-Fang Chen [219]. In Section 4.3 we prove that encoded
logical states of arbitrary quantum LDPC codes can be fault tolerantly prepared in a single
shot: a constant depth noisy quantum circuit followed by a single round of measurement
and classical feedforward, based on joint work with Thiago Bergamaschi [220]. Both results
develop techniques for achieving fault tolerance within noisy shallow quantum circuits.

4.1 Toward quantum computational advantage in the

early fault tolerant era

Recent developments in quantum hardware have ushered the transition of quantum com-
puting from the NISQ era to the early fault tolerant era. This motivates the question of
what is the next step regarding achieving quantum computational advantage using current
or near-term quantum devices.

In Section 2.1 we gave an overview of the exciting developments in achieving quantum
computational advantage in the NISQ era via random circuit sampling. While these exper-
iments require a large resource cost to classically spoof, their main drawback is the lack of
scalable computational hardness in the asymptotic regime of constant noise per gate, which
can be viewed as a consequence of the lack of error correction. As we discussed in Section 2.1,
a key question now is to formulate the next motivating target that drives our field. Here
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we discuss such a proposal: demonstrate quantum computational advantage with provable
hardness using fault tolerance techniques within noisy shallow quantum circuits.

Noisy shallow quantum circuits and fault tolerance. Recall that a noisy shallow
quantum circuit is a low-depth quantum circuit which consists of noisy initial states, noisy
quantum gates and noisy measurements. This has been a standard model of quantum com-
putation in the NISQ era, which includes Google’s random circuit sampling experiments [7,
21].

In 2023, Harvard/QuEra performed an experiment which marks the beginning of the
early fault tolerant era [221]. While the experiment is still within the model of noisy shallow
quantum circuits, it demonstrated fundamentally new capabilities: long-range connectivity
and transversal gates on encoded qubits. This demonstrated a new potential of noisy shallow
circuits: they can achieve some limited form of fault tolerance, even though the circuit is
shallow and does not have mid-circuit error correction.

While the experiment is not scalable due to the exponential sampling overhead in post-
selected error detection, it makes an important step beyond NISQ. A concrete goal is there-
fore to achieve scalable quantum computational advantage with provable hardness, using
fault tolerance techniques within noisy shallow circuits. This goal aims to achieve the best
case scenario, where what we currently have in terms of hardware capabilities already suffice
for scalable computational hardness. This goal is a specific question in a broader context of
finding plausible architectures for early fault tolerant devices that can demonstrate compu-
tational hardness in the next few years.

The key technical challenge is therefore to develop a family of shallow quantum circuits
that are both fault tolerant and classically hard, in the sense that sampling from the output
distribution is classically hard to simulate even in the presence of constant noise per gate.

Overhead and hardware requirements of fault tolerance. Why is the above question
technically non-trivial? The difficulty lies in the circuit depth overhead to implement quan-
tum fault tolerance. Suppose we would like to encode an n-qubit, constant depth quantum
circuit (which is already classically hard in the absence of noise) into a fault tolerant circuit.
The quantum fault tolerance threshold theorem [222] based on recursive concatenation gives
a quantum circuit that acts on n · polylog(n) qubits, with depth polylog(n), and requires
fresh qubit initialization. Our goal is to reduce the circuit depth to O(log n) or even less,
which likely requires new techniques (the significance of O(log n) depth circuits is discussed
below).

An alternative model of quantum fault tolerance assumes mid-circuit error correction:
measure a subset of qubits (mid-circuit measurement), perform a classical computation based
on the measurement outcome (decoding), and apply subsequent quantum gates based on the
result of the computation (feedforward). The assumption here is that the decoding time is
negligible. It is known that the quantum circuit depth overhead for fault tolerance can be
reduced to constant in this model using single-shot error correction [223].
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Here we would like to achieve low circuit depth overhead without assuming mid-circuit
error correction, for the following two reasons. The first is to reduce the hardware require-
ment for demonstrating quantum computational advantage. A mid-circuit decoder requires
specialized hardware and has not been demonstrated in large scale experiments. As we dis-
cussed earlier, removing this assumption would imply that our current hardware capabilities
already suffice for scalable quantum computational advantage in the early fault tolerant era.
The second is to understand the fundamental question of whether a noisy quantum computer
can demonstrate computational hardness by itself, without the help of a classical computer,
even at low depth. Analogous to the fundamental notion of self-correcting quantum memory
which requires a noisy quantum computer to store a quantum state by itself, here we are
asking for “self-correcting quantum advantage” at low depth.

Finally, we comment on the significance of O(log n) depth quantum circuits, which is
related to the requirement of fresh qubit initialization (initializing a noisy ancilla in the |0⟩
state at any time) in fault tolerance. Without fresh qubit initialization, it is known that
any noisy quantum circuit output becomes trivial at ω(log n) depth due to the accumulation
of noise [36], which implies the fundamental importance of fresh qubit initialization in fault
tolerance. Conversely, it is also known [36] that any noisy quantum circuit of O(log n) depth
that uses fresh qubits can be converted to one without fresh qubits, with the same depth and
polynomial blow-up in system size. Therefore, our goal addresses the fundamental question
of whether quantum computational advantage exists in a model of computation without
fresh qubits or mid-circuit error correction.

Concrete direction: fault tolerant IQP sampling. A concrete direction to address
the above question is to study low-overhead fault tolerant implementation of IQP sampling.
The definition of an IQP circuit is shown in Fig. 4.1, which is known to be hard to simulate
classically even at constant depth [118, 119]. From the fault tolerance perspective, IQP cir-
cuits are the most natural family of classically-hard circuits, because conceiving a blueprint
for implementing such a quantum circuit fault tolerantly is straightforward: just implement
each component in Fig. 4.1 using logical ones with a suitable quantum LDPC code. This
involves (1) fault tolerant preparation of the logical |+⟩ state, (2) transversal diagonal gates,
and (3) logical X measurement. In particular, there is no need to perform magic state dis-
tillation or code switching, which are typically required for universal fault tolerant quantum
computation, because we only need transversal diagonal gates (instead of universal gates)
for IQP sampling. Examining this blueprint, the key challenge in fact lies in the first step:
how to prepare the logical state in low depth.

Ref. [114] showed that a constant depth Clifford circuit can be implemented fault toler-
antly in constant depth (without classical feedforward), using single-shot logical state prepa-
ration (see below and Section 4.3) for the surface code. Instead of correcting the Pauli
error in state preparation using classical feedforward, the error is propagated through the
circuit and corrected at the end. However, this approach runs into issues when applied to
non-Clifford gates, as Pauli errors no longer propagate as Pauli errors. Reducing the over-
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Figure 4.1: IQP sampling. An IQP circuit starts with every qubit in the |+⟩ state, followed
by a circuit of diagonal gates, and measurement in the X ({|+⟩ , |−⟩}) basis.

head for logical state preparation seems to be a fundamental challenge for fault tolerantly
implementing quantum circuits with non-Clifford gates.

Overview of Section 4.2 and Section 4.3. The remainder of this chapter aims to de-
velop techniques and achieve a deeper understanding towards addressing the key question
discussed above. Meanwhile, the two results presented in Section 4.2 and Section 4.3 also
address fundamental questions in quantum complexity theory and fault tolerance, respec-
tively.

In Section 4.2 we construct a family of local Hamiltonians which demonstrate quantum
computational advantage with constant-temperature Gibbs sampling: the Gibbs state can
be efficiently prepared quantumly by a rapidly-mixing quantum Markov chain but hard to
sample from using a classical computer, addressing a key question about the complexity of
quantum Gibbs sampling. Interestingly, the key idea is to reduce this question to constructing
a fault tolerance scheme for shallow IQP circuits, under a special noise model where only
input qubits are subject to noise. Our construction gives a fault tolerant circuit under
this noise model with O(log log n) depth. This makes partial progress toward the goal.
Meanwhile, it also hints that achieving fault tolerant IQP sampling in constant depth with
the standard noise model may be difficult, as it already seems difficult in this weaker noise
model.

In Section 4.3 we prove that single-shot logical state preparation can be achieved for
arbitrary quantum LDPC codes. This allows constant-depth fault tolerant preparation of
encoded |0⟩ or |+⟩ states in any LDPC code with classical feedforward. As discussed above,
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it remains to be seen whether this result can help achieve low overhead fault tolerant IQP
sampling.

4.2 Quantum computational advantage with

constant-temperature Gibbs sampling

A major goal of today’s quantum computing efforts is to realize quantum computational
advantage in realistic physical setups. One such setup is open system thermalization, where
a quantum many-body system is specified by a Hamiltonian H and then coupled to a bath
at finite (constant) temperature β, and the system converges to the Gibbs state ρβ ∝ e−βH .
Under physical assumptions,1 this thermalization process can be described by a thermal Lind-
bladian (a continuous-time quantum Markov chain), most notably the Davies generator [224]
and its variants (e.g. [225]). This setup is especially relevant for physical platforms in which
implementing digital quantum circuits is difficult. However, there has been no complexity-
theoretic evidence showing that quantum computational advantage can be achieved in this
model (see Section 4.2.1 for a discussion).

In this section, we provide such evidence by showing that quantum computational advan-
tage can be achieved for the task of sampling from the measurement outcome distribution
of Gibbs states at constant temperatures. In particular, we construct a family of commut-
ing local Hamiltonians and show that its thermalization process (described by the Davies
generator) is rapidly mixing. Meanwhile, its Gibbs state is classically intractable to sample
from.

Theorem 4.1 (Main result). For any constant inverse-temperature β = Θ(1), there exists
a family of n-qubit commuting O(1)-local Hamiltonians, such that the n-qubit Gibbs state ρβ
is both

1. Rapidly Thermalizing. It can be prepared within small trace distance by the Davies gen-
erator (a quantum Markov chain describing thermalization), in time no(1). In addition,
this process can be simulated on a quantum computer in time n1+o(1). And yet,

2. Classically Intractable. Under certain complexity-theoretic assumptions, there is no
polynomial time classical algorithm to sample from the measurement outcome distribu-
tion p(x) = ⟨x| ρβ |x⟩ within small total variation distance.

The classical hardness is based on the hardness of approximate sampling from the output
distribution of ideal shallow quantum circuits. The main result, therefore, places the hard-
ness of rapidly mixing thermalization to the same level as ideal sampling-based quantum
supremacy experiments (see Section 4.2.8 for more details).

1The bath is Markovian and the coupling is weak.
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i
hi = −CZiC†

(a) A Local Hamiltonian

ρβ = C

|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩

(b) The Noise Model

Figure 4.2: (a) We consider local Hamiltonians which are parent Hamiltonians of shallow
quantum circuits. (b) The Gibbs states of these Hamiltonians ρβ ∝ e−βH are equivalent to
the output state of C, where the input qubits are subject to bit-flip errors (blue dots) of rate
(1 + e2β)−1.

A more general version of the result (Theorem 4.8) is given in Section 4.2.10, where we
generalize the above and show how to trade-off locality for mixing time, including a family
of O(log log n)-local Hamiltonians which thermalizes in polylog(n) time.2

Our approach. The family of Hamiltonians we consider is the class of “parent” Hamil-
tonians of shallow quantum circuits (Fig. 4.2a). Starting from a trivial, non-interacting
Hamiltonian HNI = −∑i Zi consisting of single-qubit Pauli-Z terms, we consider the family
of Hamiltonians that are related to HNI by a low depth circuit,

H =
{
H : ∃ low-depth circuit C, H = CHNIC

†} . (4.1)

Each H ∈ H is local, commuting, and it encodes the computation C in the sense that its
ground state is the output of the circuit C |0n⟩. The reason that these Hamiltonians are
good candidates for quantum advantage at constant temperatures lies in the following key
observation:

The Gibbs state of each H ∈H is a noisy version of the underlying
computation, where random bit-flip errors are applied to the input qubits

(Fig. 4.2b).

This is a clean example of the general intuition that constant-temperature Gibbs states
are very noisy and far from ground states. To encode computational hardness into the Gibbs
states of H ∈ H , it then suffices to design a shallow quantum circuit which is classically
intractable to simulate even under input noise. Our main result then follows from two key
technical contributions:

2In the initial posting of this work, we stated this latter construction as our main result. We thank James
Watson and Joel Rajakumar for the observation that under appropriate parameter choices, our construction
in fact has constant locality (see Section 4.2.4.2).
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1. A construction of classically-hard shallow quantum circuits that are fault-
tolerant against input noise. Standard techniques in quantum fault-tolerance blow
up the circuit depth, and in turn, the locality of the parent Hamiltonian3. We start
from a specific family of classically-hard shallow circuits (namely, IQP circuits [118,
119]), and then design a low-overhead fault-tolerance scheme tailored to IQP circuits
and the input noise model.

2. A proof that these Hamiltonians thermalize rapidly, via a modified log-
Sobolev inequality. We prove a rapid mixing bound for Hamiltonians in H which
leverages the structure of the thermal Lindbladian (the quantum Markov chain describ-
ing thermalization), in combination with a carefully constructed lightcone argument
for shallow quantum circuits.

4.2.1 Related work

Complexity of Gibbs states. Establishing quantum computational advantage with cons-
tant-temperature Gibbs sampling faces inherent difficulties. After all, at high enough tem-
peratures, Gibbs states are expected to be essentially classical objects; in particular, sampling
from these Gibbs states is efficient to simulate on a classical computer4 [189, 226]. On the
other hand, in the low temperature regime, preparing Gibbs states is expected to be hard in
general even for a quantum computer;5 in particular, the thermalization process may take
exponential time.

Nevertheless, a path exists to circumvent these issues, by embedding some classically hard
quantum computation into a local Hamiltonian. It is reasonable to hope that the nature
of this embedding ensures that producing the Gibbs state is still tractable for quantum
computers6 (e.g. [228, 229]), and one can further hope that the Gibbs state is classically hard.
But there is yet another issue: standard means to embed quantum circuits into Hamiltonians
[230] typically encode the quantum computation into its ground state. However, Gibbs states
at constant temperatures are understood to be very noisy, and far from the ground state.
In this manner, to argue that this noisy version of the ground state remains classically
hard, there must be an inherent fault-tolerance to the circuit-to-Hamiltonian mapping. Our
approach can be viewed as a clean example that satisfies all of the above criteria.

Gibbs samplers and rapid mixing. Preparing Gibbs states (or Gibbs sampling) is a
candidate application of quantum computers as well as an important quantum algorithmic

3Our interest in decreasing the locality stems both from the practical challenges behind engineering
systems with many-body interactions, and a complexity-theoretic understanding of the role of locality in the
hardness of Gibbs sampling.

4This does not contradict our result which holds for arbitrary constant temperature, due to the order of
quantifiers; see Remark 4.1.

5Indeed, NP-hard due to the classical PCP theorem [227].
6In fact, we desire something even stronger: that the Hamiltonian is rapidly thermalizing.
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primitive. While there are many proposed quantum Gibbs samplers, recent developments
have focused on an approach of simulating open system (Lindbladian) dynamics, in particular
the Davies generator and its variants which mimic thermalization in nature [231, 232, 233].

The key missing ingredient to the efficiency of these quantum simulation algorithms is a
bound on the mixing time of the underlying quantum Markov chain. The standard approach,
via a bound on the spectral gap, gives a mixing time that has intrinsic polynomial dependence
in n [234]. A much stronger approach known as (quantum) log-Sobolev inequalities consists
of a decay of the relative entropy, and results in only polylog(n) mixing time, a phenomenon
known as rapid mixing. These stronger inequalities are notoriously hard to prove: examples
have only been shown for certain commuting systems, in 1D [235, 236] or on lattices above a
threshold temperature [237]. Our rapid mixing bound uses the lightcone structure of shallow
quantum circuits, and does not require geometric locality or a temperature threshold.

Shallow quantum circuits and fault-tolerance. Shallow quantum circuits are widely
used in quantum algorithms for near-term devices and quantum supremacy experiments. The
hardness of sampling from the output distribution of shallow quantum circuits provides the
complexity foundation for these experiments (see [8] for a review). We focus on constant-
depth instantaneous quantum polynomial time (IQP) circuits C = H⊗nDH⊗n where D
is a constant-depth diagonal unitary, which provides hardness due to the universality of
measurement-based quantum computation [118, 119]. However, these circuits are not noise-
robust and become classically simulable under noise [40, 238]; fault-tolerance techniques are
therefore necessary for classical hardness in our context.

There is a tension between shallow quantum circuits and the overhead of quantum fault-
tolerance.7 Standard techniques encode a constant depth quantum circuit into a fault-
tolerant circuit of polylog(n) depth [222], and fault-tolerance with constant circuit depth
overhead is only known for shallow Clifford circuits [114]. Ref. [40] devised a fault-tolerance
scheme specialized to IQP circuits and the input noise model, and we design a new scheme
in this setting which achieves a significantly smaller overhead.

4.2.2 Our Contributions

4.2.2.1 Efficient quantum Gibbs sampling via rapid mixing

Our first result is a quantum algorithm for preparing the Gibbs states of H ∈H , given only
a description of its local terms H =

∑
i hi (as 2ℓ × 2ℓ matrices).8

Lemma 4.1 (Gibbs State Preparation). Fix β > 0, and let H ∈ H be the parent Hamil-
tonian of a quantum circuit on n qubits, of depth d and lightcone size ℓ. Then, there exists

7Note that some models of fault-tolerance assume instant classical computation and feedforward within
a quantum circuit [239, 240]. This is not allowed in our setting: all operations must be realized by quantum
gates.

8Although H has a simple structure by definition, the underlying global structure (the low-depth circuit
C) is hidden among the local terms, and is not directly accessible. See Remark 4.2 for a discussion.
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a quantum algorithm which can prepare the Gibbs state of H at inverse-temperature β up to
an error ε in trace distance in time O(24ℓ · 2d · e2β · n · poly(log n

ε
, ℓ, β)).

In general, the lightcone size ℓ is upper bounded by ℓ ≤ 2d. We emphasize we do not
make any assumptions on the temperature or geometric locality. This is important as our
fault-tolerant circuits (Lemma 4.2) are not naturally defined on a lattice.

The algorithm in Lemma 4.1 follows from a two-step argument. The first step is the
design and analysis of a particular family of Davies generators [224], a family of dissipative
Lindbladians whose local jumps (or transitions) are engineered to resemble the connectivity
of the Hamiltonian. In Lemma 4.8, we prove that the mixing time of our Lindbladians is
tmix = O(4ℓ log n) via a modified log-Sobolev inequality. In principle, this step is already a
thermal algorithm, in the sense that “placing the system in a fridge” would drive it to the
Gibbs state in time tmix · log(1/ε).

The second step is the simulation of the dissipative (non-unitary) dynamics on a quantum
computer. We employ the block-encoding framework of [232] which we significantly simplify
as our family of Hamiltonians is commuting and has integer spectra. The quantum simulation
adds a factor of n to the running time, which may be hard to improve due to the absence of
geometric locality.

4.2.2.2 Fault-tolerance of shallow IQP circuits

The key ingredient for the classical hardness of sampling from quantum Gibbs states is to
produce a shallow quantum circuit which is hard to sample from even under input noise.
For this purpose, we design a fault-tolerance scheme for shallow IQP circuits [118, 119] since
their gate set works nicely with fault tolerance techniques. Our result ensures that any IQP
circuit can be made robust to input noise with only a small additive blow-up to the circuit
depth (see Lemma 4.14 for a more general statement).

Lemma 4.2. Let p < 1
2
be a constant bit-flip error rate, and let C be an n qubit IQP circuit

of depth d. Then, there exists an O(n log n
ε
) qubit circuit C̃ of depth d+ o(log n

ε
), such that a

sample from C̃ under input noise (Fig. 4.2b) can be efficiently post-processed into a sample
within ε total variation distance to the output distribution of C.

This result significantly reduces the blow-up in circuit depth compared to a prior fault-
tolerance scheme of [40]. Moreover, the locality of the resulting parent Hamiltonian H =
−∑i C̃ZiC̃

† is only a constant. Our key idea is a non-adaptive state distillation scheme,
drawing inspiration from magic state distillation [241]: distilling a near-perfect initial state
from noisy initial states, up to a known but uncorrected Pauli error. The error is propagated
through the circuit and corrected in post-processing, similar to [114]. Propagating Pauli
errors through non-Clifford circuits is hard in general, but here it works thanks to the
structure of IQP circuits.
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4.2.2.3 Applications

BQP Completeness under adaptive single-qubit measurements. In addition to
quantum advantage, using our techniques we can show that constant-temperature Gibbs
states do have some inherent form of universality for quantum computation. In Section 4.2.11
we prove that there exist local Hamiltonians whose Gibbs states are universal resource states
for quantum computation, in the sense that they can be used for universal measurement-
based quantum computation.

Theorem 4.2. Fix an inverse-temperature β = Θ(1). Then, there exists an n-qubit, O(1)-
local commuting Hamiltonian, whose Gibbs state at inverse-temperature β is a universal
resource state for quantum computation and is efficiently preparable on a quantum computer.

Theorem 4.2 is based on the universality of cluster-states for measurement-based quantum
computation. That is to say, any quantum computation of bounded size can be implemented
using adaptive single-qubit measurements on top of a fixed 2D cluster-state (e.g. [242]). We
design a Hamiltonian whose Gibbs state resembles a noisy version of a cluster-state, such
that under adaptive single-qubit operations, one can nevertheless correct and distill out
computation.

Gibbs sampling under measurement errors. An interesting question is whether the
thermal quantum advantage demonstrated in this section, is itself robust to noise. That
is, in realistic physical platforms, we expect imperfect state preparation, noisy system-bath
couplings, and erroneous measurements. As a starting point to this problem, we consider a
model where the Gibbs state preparation is ideal, but there are random bit-flip errors in the
measurement outcome.

We show that the quantum advantage survives in this model, albeit at a higher locality.

Theorem 4.3. Fix an inverse temperature β = Θ(1), and a measurement error rate p < 1
2
.

There exists a family of n-qubit, O(log n)-local Hamiltonians, such that sampling from their
Gibbs state at inverse-temperature β, under measurement errors of rate p, is classically
intractable under certain complexity-theoretic assumptions. Moreover, there exists a poly(n)
time quantum algorithm to produce said Gibbs state.

The Hamiltonians of Theorem 4.3 are similar to that of Theorem 4.1, in the sense that
they are parent Hamiltonians of fault-tolerant IQP circuits. However, to ensure classical
hardness under measurement errors, our quantum circuits now need to be fault-tolerant
against both input and output errors. (Recall that the “input errors” come from temperature,
while “output errors” come from actual physical noise in measurements.) To do so, in
Section 4.2.12 we appeal to an optimized construction of a prior fault-tolerance scheme by
[40], at the cost of an increase to the locality of the Hamiltonians, which also changes the
mixing time from no(1) to poly(n).
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4.2.3 Discussion

We conclude by discussing two future directions, broadly related to the complexity of Gibbs
sampling. The first of which concerns the BQP Completeness of Gibbs sampling (without
adaptivity).

Question 4.1 (BQP Completeness of Gibbs Sampling). For every n qubit, poly(n) depth
quantum circuit C, does there exist a Hamiltonian H and a constant inverse-temperature
β > 0 such that by sampling from its Gibbs state one can recover the output of the quantum
computation C?

Partial progress on this question has recently been made by [229], albeit, only at very
low temperatures where the Gibbs state approximates the ground state. In particular, they
showed how to embed an arbitrary quantum computation into a (modified) Feynman-Kitaev
circuit-to-Hamiltonian mapping, which could be efficiently prepared by a Lindbladian evolu-
tion. Whether similar ideas could work at constant temperatures remains an open problem.

Another interesting direction lies in the time overhead for fault-tolerance, and for quan-
tum advantage using shallow circuits which are robust to noise.

Question 4.2 (Quantum Advantage in Noisy Shallow Circuits). Does there exist a family
of constant depth quantum circuits (using only quantum gates) which is classically hard to
sample from in the presence of depolarizing noise on each gate?

Its main motivation lies in the design of quantum advantage experiments, which can be
implemented on near-term devices. Depolarizing noise on each gate of the circuit, however,
is naturally a significantly more general noise model than input noise. Nevertheless, the
same question with input noise remains open as well.

4.2.4 Technical Overview

In this section we give a sketch of our two main technical contributions: (1) A proof of a
modified log-Sobolev inequality for a family of Davies generators, via a lightcone argument
(Section 4.2.4.1); and (2) A fault-tolerance scheme for shallow IQP circuits against input
noise, via non-adaptive state distillation (Section 4.2.4.2). We begin by presenting some
basic notation and background on thermal Linbladians.

4.2.4.1 Gibbs state preparation via rapid mixing

Fix a Hamiltonian H ∈H . By definition, there exists a shallow circuit C such that

H =
∑

i∈[n]

hi, where hi = C
(
|1⟩⟨1|i ⊗ I[n]\i

)
C†, (4.2)

and each |1⟩⟨1|i is a single-qubit projection. Note that Eq. (4.2) is equivalent to Eq. (4.1) up
to a shift. The eigenstates of H of energy k ∈ [n] are all the states C |x⟩, where x ∈ {0, 1}n
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has hamming weight |x| = k. We denote the projection Πk onto the eigenspace of H of
energy k as

Πk = C

(∑

|x|=k

|x⟩⟨x|
)
C†. (4.3)

We consider two notions of locality for C and H respectively:

• The circuit lightcone. The lightcone Li of qubit i is the set of qubits that can be reached
by i via gates in C, and we define the lightcone size as ℓ = maxi |Li|.

• The Hamiltonian locality. Let Si = supp(hi) = supp(CZiC
†) be the set of qubits that

hi acts nontrivially on. The locality of the Hamiltonian H is defined as r = maxi |Si|.

Note that Si is related to the propagation of Zi under C, and thus by definition we have
Si ⊆ Li. In fact, r ≪ ℓ for the family of circuits we consider.

Our Davies generators. We determine our family of thermal Linbladians, or Davies
generators, by specifying two ingredients: a set of jump operators, and transition weights.
Technically, general thermal Lindbladians for noncommuting Hamiltonians need not take the
Davies’ form (see, e.g, [232, 233]), but for commuting Hamiltonians, the Davies’ generator
is nonetheless sufficient for all our discussions.

• Jump Operators. To generate the transitions, we consider the set of jump operators
which are local, ℓ-qubit Pauli operators on the support of each lightcone Li,

9

{Aa}a∈A = 2−ℓ ·
{
PLi ⊗ I[n]\Li : i ∈ [n], P ∈ Pℓ

}
, (4.4)

where Pℓ = {I,X, Y, Z}⊗ℓ.10 In contrast to classical Markov Chain transitions, these
quantum jumps will change the energy of the system in superposition. Thereby, it will
be convenient to decompose the jump operators into the energy basis:

Aaν :=
∑

k∈[n]

Πk+νA
aΠk such that

∑

ν∈[−n,n]

Aaν = Aa. (4.5)

• Transition Weights. The transition weight is selected to be the Glauber dynamics
weight, γ(ν) = 1/(1 + e−βν) for all ν ∈ [−n, n].

9This set of jump operators which “drive” the transition can be essentially arbitrary, however, this choice
resembling the connectivity of the underlying Hamiltonian will play an important role in our analysis.

10Note that there are |A| = n · 4ℓ jump operators.
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Put together, the associated family of Davies generators L can be written down as11

L[ρ] =
∑

a∈A

∑

ν

γ(ν)

(
Aaνρ(Aaν)

† − 1

2

{
(Aaν)

†Aaν , ρ

})
. (4.6)

This construction satisfies the quantum detailed balance condition, which implies that the
desired Gibbs state is a fixed point L[ρβ] = 0 of the evolution (see e.g. [243], or Fact 4.1).
It remains to show that the Lindblad dynamics, governed by the exponential map

d

dt
ρ = L[ρ]⇒ ρ(t) = eLt[ρ0], (4.7)

converges quickly to ρβ. This is achieved by presenting a bound on the mixing time of L,
which is the shortest time tmix such that

∥∥eLtmix [ρ− σ]
∥∥
1
≤ 1

2
∥ρ− σ∥1 , for all density matrices ρ, σ. (4.8)

A lightcone argument for the modified log-Sobolev inequality. To study the mix-
ing time of our algorithm, our starting point is first to study the trivial non-interacting
Hamiltonian HNI =

∑
i∈[n] |1⟩⟨1|i⊗ I[n]\{i}, and prove a rapid mixing bound for the associated

Davies generator LNI. Subsequently, we argue that the mixing time of L can be compared
with that of LNI. This is achieved by leveraging the lightcone structure of shallow quantum
circuits. We begin by presenting basic definitions of Log-Sobolev bounds.

Mixing time bounds via log-Sobolev inequalities. There are two general purpose
methods to bound the mixing time of Lindbladian evolution. The first of which consists
of a bound on the spectral gap of L. Unfortunately, a spectral gap bound comes at an
inherent polynomial overhead to the mixing time, see Section 4.2.5. Instead, we make use of
a much sharper notion of convergence known as a modified log-Sobolev inequality (MLSI)
[234]. Informally, a MLSI quantifies the rate of decay of the relative entropy,12 by relating
it to the relative entropy itself:

d

dt

∣∣∣∣
t=0

D
(
etL[ρ]||ρβ

)
≤ −α ·D

(
ρ||ρβ

)
for every density matrix ρ, (MLSI)

where α is known as the MLSI constant. This clearly implies an exponential decay of
D(eLt[ρ]||ρβ) ≤ e−αt · D(ρ||ρβ). Which, in turn, tells us the mixing time is bounded by
tmix ≤ α−1 · O(log n) (Pinsker’s inequality). This logarithmic mixing time bound is known
as rapid mixing, and proving good lower bounds on the constant α has proven to be quite
challenging in the quantum setting.

11Where {A,B} := AB +BA is the anti-commutator.
12The quantum relative entropy between two density matrices ρ, σ is given by D(ρ||σ) =

Tr
[
ρ · (log ρ− log σ

)]
.
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The non-interacting Lindbladian. The simplest Hamiltonian in the family H is the
non-interacting system HNI. Its Gibbs state is the tensor product state σβ ∝

(
e−β|1⟩⟨1|

)⊗n
.

Under our framework (described in Eq. (4.6)), its associated Linbladian LNI has the same
form as L, except that the circuit C has been replaced by the identity. In this manner, LNI

itself can also be written as a sum of non-interacting, single-qubit components:

LNI =
∑

i∈[n]

Lisingle ⊗ I[n]\{i} (4.9)

Since each single qubit Lindbladian Lsingle is highly explicit (it acts on 2 × 2 matrices), in
Section 4.2.5, following now standard techniques, we are able to prove simple bounds on its
MLSI constant.

Claim 4.1. LNI satisfies a MLSI with constant Ω(e−β).

The convex combination argument. The main technical challenge in our analysis lies
in relating LNI with our family of Davies generators L from Eq. (4.6), in order to inherit the
rapid mixing properties from the former. The crux of our proof lies in analyzing L in a basis
rotated by C, to show that the rotated Davies generator is a convex combination of LNI and
some other Davies generator. This involves a delicate lightcone argument shown in Fig. 4.3,
and discussed shortly.

Claim 4.2. In a basis rotated by C, the Lindbladian L from Eq. (4.6) can be written as a
convex combination

L̃ ≡ C†L[C · C†]C = q · LNI[·] + (1− q) · Lrest[·], (4.10)

where both LNI,Lrest share the fixed point σβ, and q = 41−ℓ.

We emphasize that the parameter q ∈ [0, 1] only depends on the lightcone size of C.
Moreover, while LNI is the well-understood non-interacting system discussed previously, Lrest
may apriori be arbitrary. However, at the very least we know it shares a fixed point with
LNI.

Neverthless, in Section 4.2.4.1 we show that convexity is precisely enough13 to exhibit an
MLSI for L, with a constant which is only a multiplicative factor of q off of that of LNI.

Lemma 4.3. L satisfies a MLSI with constant Ω(4−ℓe−β).

13This is inspired by [244], who leveraged the concavity of the spectral gap to prove mixing properties of
stochastic Hamiltonians.
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The lightcone argument. We conclude by discussing the key technical step: a proof of
Claim 4.2 via a lightcone argument. The starting point is to examine the Davies generator
L (Eq. (4.6)) and its rotated version L̃ = C†L[C ·C†]C. The goal is to show that “a fraction
of” L̃ equals the Davies generator of the non-interacting Hamiltonian HNI, that is, within
that fraction, the effect of C is erased.

To begin, note that the Davies generator L (Eq. (4.6)) only depends on the circuit C
through the jump operators decomposed into the frequency basis, Aaν , which we recollect can
be written as

Aaν =
∑

k

Πk+νA
aΠk =

∑

k

C

( ∑

|y|=k+ν

|y⟩⟨y|
)
C†AaC

(∑

|x|=k

|x⟩⟨x|
)
C†. (4.11)

Crucially, due to the rotation of L to L̃,14 we observe that the dependence of C within L̃ is
only through second-moment operators of the form

E
P∼Pℓ

[C†PC ⊗ C†PC], (4.12)

where we consider the sum of all jump operators that act on a specific lightcone Li of size
ℓ, and recall that the jump operators are ℓ-qubit Pauli operators. It remains to express this
operator as a convex combination, as shown in Fig. 4.3. A sketch of the argument follows:

• Step (i): Uses the identity EP∼Pℓ
[P ⊗ P ] = 1

2ℓ
· SWAP, and linearity of expectation.

• Step (ii): Since C is a low-depth circuit, one can cancel the quantum gates within the
lightcone of qubit i with their inverse.

• Step (iii): Uses the identity EP∼Pℓ
[P ⊗ P ] = 1

2ℓ
· SWAP again, but in the other direc-

tion.

• Step (iv): Re-writes the expectation into two parts: the first part is over the 4 single-
qubit Paulis that act only on qubit i, and the second part, is all the remaining ℓ-qubit
Paulis.

The crux of the argument lies in noting that in the first part of Step (iv), the ith qubit
has been completely disentangled from the remaining circuit. Thereby, the single-qubit Pauli
acts on a disentangled wire, and all remaining gates cancel with each other.

This gives the desired convex combination, where the first term corresponds to the non-
interacting Hamiltonian with single-qubit jump operators. Finally, note that our choice of
the jump operators (as ℓ-qubit Paulis acting on each lightcone) is crucial for this argument,
and it is unclear if an arbitrary choice of jump operators would suffice.

14And the fact our jump operators are Pauli operators.
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E
P∼Pℓ

C†

C

P ⊗
C†

C

P
(i)
=

1

2ℓ
·

C†

C

C†

C

(ii)
=

1

2ℓ
· (iii)

= E
P∼Pℓ

P P

(iv)
=

1

4ℓ−1
· E
P∼Pi

P P +
4ℓ−1 − 1

4ℓ−1
· E
Q∼Pℓ\Pi

Q Q

Figure 4.3: A lightcone argument for proving the modified log-Sobolev inequality.

Efficient implementation on a quantum computer. Rapid mixing of the Davies gen-
erator implies that the Gibbs state can be efficiently prepared in the thermal model of
computation, described by coupling the quantum system to a thermal bath [245]. Next,
we briefly discuss how to simulate the dissipative Lindbladian evolution eLt on a quantum
computer.

We leverage the “continuous-time quantum Gibbs sampler” framework of [232]. They
show that to implement the map eLt one requires Õ(t) black-box invocations to a unitary
block-encoding of the Lindblad operators ([232], Theorem I.1). In turn, to implement such a
block-encoding for Hamiltonians H of integer spectra, it suffices to design quantum circuits
which implement the Hamiltonian simulation of H, a block-encoding for the jump operators
Aa, as well as a certain“frequency filter” which implements the Glauber dynamics weight.
In Section 4.2.6, we discuss circuit implementations of all these ingredients, summarized in
the following Lemma.

Lemma 4.4 (Dissipative Lindbladian Implementation). Fix parameters t ≥ 1 and ε ≤ 1
2
.

Let L denote the Lindbladian of Eq. (4.6), defined by a quantum circuit C on n qubits of
depth d and lightcone size ℓ. Then, we can simulate the map etL to error ε in diamond norm
using a quantum circuit of depth O(t · n · 4ℓ · 2d · poly(ℓ, log n, log 1

ε
, log t)).

Put together with our bound on the mixing time, we arrive at our main statement on Gibbs
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state preparation in Lemma 4.1.

4.2.4.2 Classical hardness of gibbs sampling

As discussed earlier, to obtain the classical intractability of quantum Gibbs sampling it
suffices to construct a family of low depth quantum circuits which are hard to sample from
even in the presence of input errors (Fig. 4.2b). The reason this imposes a challenge is
two-fold. First, it is known that many classically hard shallow quantum circuits actually
become classically simulable under input noise [40], thereby suggesting a need for fault-
tolerance techniques. However, standard fault-tolerance techniques [222] often come with a
prohibitive circuit depth overhead, which blows up the locality of the parent Hamiltonian.
We address these challenges by designing a fault-tolerance scheme tailored to the input noise
model with small overhead.

Our plan is to focus on IQP circuits, which are known to be already classically hard at
constant depth. We show that their commuting structure plays an important role in our
fault-tolerance techniques at low overhead.

Quantum computational advantage with shallow IQP circuits. Recall that IQP
circuits can be written as C = H⊗nDH⊗n, where D is a diagonal unitary. The induced
probability distribution p(x) = | ⟨x|C|0n⟩ |2 is hard to sample from classically in general
[246]. While any family of constant-depth and classically-hard IQP circuits suffices for our
purpose, here we use the concrete example of cluster states on regular lattices composed with
random Z-rotations15, which have become the basis for various proposals of sampling-based
quantum supremacy using low-depth circuits [246, 40, 118, 119, 247, 248].

We present the structure of these circuits in more detail in Section 4.2.8, where we
additionally present a comprehensive discussion on the foundations of their hardness. As a
brief overview, note that 2D cluster states with single-qubit Z rotations is a universal resource
state for measurement-based quantum computation (MBQC) [242]. This implies that exactly
sampling from their output distribution is hard in the worst-case [24]. The hardness of
approximate sampling from these architectures are based on further assumptions [249, 118,
247], which we rigorously define in Section 4.2.8. The following theorem thus provides the
complexity-theoretic basis of our hardness arguments.

Theorem 4.4 (Complexity of constant-depth IQP sampling [118, 119]). There exists a
constant δ > 0, and a family of constant depth IQP circuits {Cn}n≥1 on n qubits, such that
no randomized classical polynomial-time algorithm can sample from the output distribution
of Cn up to additive error δ in total variation distance, assuming the average-case hardness
of computing a fixed family of partition functions (Conjecture 4.1), and the non-collapse of
the Polynomial Hierarchy.

15In the literature, these circuits are also known as the “evolution (quench) of an nearest-neighbor,
translationally invariant (NNTI) Hamiltonian”.
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· · ·
(a) Repetition gadget

...
...

...

...
...

(b) Recursive concatenation (c) Fault-tolerant circuit

Figure 4.4: Fault-tolerance via state distillation gadgets. (a) The repetition code gadget.
(b) A B-Tree and the recursive concatenation scheme. Arrows denote the direction of CNOT
gates. (c) Pre-processing the circuit using distillation gadgets.

To establish classical hardness of the Gibbs sampling task, it suffices to map the above
circuit C to a fault-tolerant circuit C̃, such that a sample from the output distribution of
C̃ under input noise can be efficiently post-processed into an ideal sample from C. The key
challenge is to reduce the fault-tolerance overhead in C̃, so that the corresponding parent
Hamiltonian has small locality.

Fault-tolerance of IQP circuits against input noise. The starting point in our ap-
proach is the observation that it suffices to error-detect the random inputs bits, instead of
correcting them, to preserve the hardness-of-sampling of C. Indeed, bit-flip errors (which
are Pauli-X errors) on the input of IQP circuits, become phase-flip errors after the first layer
of Hadamard gates, and thus commute with the entire IQP circuit. In this manner, they are
equivalent to bit-flip errors on the measured output string. Therefore, if we could identify
the computational basis state |r⟩ = ⊗i |ri⟩ fed into the IQP circuit, we would be able to cor-
rect the measured output sample by simply subtracting r ∈ {0, 1}n. Indeed, we emphasize
we don’t intend to correct the input error within the quantum circuit at all, as this would
require decoding and feedforward, and potentially a much deeper circuit. Instead, we correct
the error only during classical post-processing (that is, after all qubits are measured).

The crux of our approach is the design of a “distillation” gadget, which independently
pre-processes each input bit ri into k others in such a manner which enables us to reconstruct
ri (with high probability) given only the other k − 1 noisy bits. We illustrate this task with
a simple example, based on the repetition code.

A distillation gadget based on the repetition code. Recall that all input bits are
noisy: each of them is flipped from 0 to 1 with probability q. Given k bits drawn from
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s← Bernk(q), suppose we designate the k-th bit as the “root” and apply a CNOT gate from
it to the other k−1 bits (Fig. 4.4a). During the decoding stage, we would like to reconstruct
the root bit given the other k − 1 bits. To do this we simply compute the majority of the
“leaves”:

Gadget(s1, s2, · · · , sk) = (s1 ⊕ sk, s2 ⊕ sk, · · · , sk−1 ⊕ sk, sk),
ŝk = Maj(s1 ⊕ sk, s2 ⊕ sk, · · · , sk−1 ⊕ sk).

(4.13)

We show that the probability of failure (when ŝk ̸= sk) equals δ = qΩ(k).
To highlight how these gadgets can be used for fault-tolerance, given an n-qubit IQP

circuit C, we begin by pre-processing each of n input bits independently into a distillation
gadget of size k, resulting in a circuit on n · k bits. Each of the n “root” bits are then
fed into C (Fig. 4.4c). Note that the n · (k − 1) remaining bits are untouched by C. In
the end, after all qubits are measured, we can use the n · (k − 1) ancilla bits to infer if an
error had happened on each of the “root” bits fed into the circuit. As argued earlier, if an
error did happen, it can be corrected by simply flipping the measurement outcome since the
error commutes with the circuit. If we choose k = Θ(log n), then the entire error correction
process succeeds with high probability.

Recursive concatenation and B-Trees. In effect, the scheme above distills the “root”
bit sk with an effective bit-flip error rate qΩ(k), using k − 1 redundant “syndrome” bits of
error rate q. Note that it used no information about the distribution of sk, only that of the
“leaves” s1, · · · , sk−1.

To improve on this example, we bootstrap the above technique by recursively preparing
“syndrome” bits of better and better fidelity.16 Suppose we organize k bits into a tree of
arity B and depth 2, such k = 1 + B + B2. Moreover, apply the repetition code gadget on
each layer, from leaves to root of the tree, by applying a CNOT gate from each parent bit
to their respective children bits in the tree. In doing so, by the previous analysis we can
identify each bit at the middle layer, just using the bits at the leaves, with error probability
qΩ(B). By performing majority again at the middle layer, we are now able to identify the
bit at the root of this two-layer tree with error rate (qΩ(B))Ω(B) = qΩ(B2). By recursively
applying this approach on a B-tree of depth d, the error probability at the root of the tree
scales doubly-exponentially with the depth d, qB

Ω(d)
.

At face value, it may seem that we haven’t gained anything over the repetition code,
as the error probability still only decays exponentially with the size of the gadget. The
advantage lies instead in the locality of the gadget. Indeed, consider the lightcone of the
orange qubit u at the leaf of the tree in Fig. 4.4b. By examining the causal influence of this
qubit, we conclude that only the qubits in the neighborhood of its path to the root (the
purple nodes in Fig. 4.4b) can lie in its lightcone. That is, if

u = u0 → u1 → · · · → ud ≡ root (4.14)

16This construction is largely inspired by recursive magic state distillation schemes.
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denotes the path from leaf to root, then the lightcone of u is contained the union of the
neighborhoods Lu ≡ ∪diN(ui). Therefore, |Lu| ≤ O(B · d), which is a linear function of the
depth of the tree. By further studying the propagation of Z Pauli’s through the gadget, we
analogously show that that the locality of the parent Hamiltonian of the distillation circuit
is |Su| ≤ d; precisely the nodes on the path from leaf to root. Lemma 4.2 then follows from
a careful choice of B and d.

Organization. We organize the rest of this work as follows. In Section 4.2.5, we prove
our rapid mixing bounds for Davies Generators, and in Section 4.2.6 discuss their simulation
on a quantum computer. In Section 4.2.7, we prove that the constant temperature Gibbs
states of the Hamiltonians in H , can be interpreted as the output of noisy circuits. In Sec-
tion 4.2.8, we present an overview of the computational complexity of shallow IQP sampling.
In Section 4.2.9, we present our fault-tolerance scheme based on state distillation. Finally,
in Section 4.2.10, we put everything together and prove our main result (Theorem 4.1). In
Section 4.2.12, we present our results on Gibbs sampling with measurement errors, and in
Section 4.2.11, we discuss the BQP completeness of Gibbs sampling with adaptive single-
qubit measurements.

4.2.5 Rapid Mixing and Efficient Gibbs State Preparation

We dedicate this section to a proof of the rapid convergence of our dissipative Lindbladians.
We defer a discussion on its implementation using quantum circuits to Section 4.2.6. For
simplicity, henceforth we re-scale the class of parent Hamiltonians,17

H =
∑

i∈[n]

hi =
∑

i

C
(
|1⟩⟨1| ⊗ I[n]\i

)
C† (4.15)

to ensure frustration-freeness and positive integer spectra [n] = {0, · · · , n}. Recall this
Hamiltonian is commuting, and its eigenstates are given by {C |x⟩ : x ∈ {0, 1}n}. Let ℓ be
the lightcone size of C. We refer the reader to Section 4.2.4.1, Eq. (4.6) for a description of
our Lindbladian.

4.2.5.1 Preliminaries on thermal Lindbladians and their convergence

We dedicate this subsection to background on the evolution and convergence of open quan-
tum systems described by a Lindbladian. Recall, a general Lindbladian is a continuous-time
Markov chain acting on density operators

L[ρ] =
∑

j

JjρJ
†
j −

1

2
{JjJ†j , ρ} for some set of Lindblad operators {Jj}j, (4.16)

17Note that we are simply applying an affine transformation, H = 1
2

(
n · I + C

∑
ZiC

†), such that the
Gibbs state of H at temperature β is the same as that of C

∑
ZiC

† at temperature β/2.
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which generates a family of completely positive and trace-preserving map

eLt[ρ] for each t ≥ 0. (4.17)

Our Linbladians of interest satisfy a particular property known as detailed balance.

Definition 4.1 (s-Inner Product). Fix a full rank density matrix σ and s ∈ [0, 1]. We define
the weighted Hilbert-Schmidt inner product:

⟨A,B⟩s = ⟨A, σ1−sBσs⟩ = Tr
[
A†σ1−sBσs

]
for each A,B. (4.18)

Definition 4.2 (s-Detailed Balance). A Lindbladian L is s-Detailed Balance with respect
to σ if L† is self-adjoint with respect to ⟨·, ·⟩s:

∀A,B : ⟨A,L†[B]⟩s = ⟨L†[A], B⟩s (4.19)

There are two important structural consequences of this detailed balance condition. The
first is that the density operator σ is a fixed point of Lindbladian evolution:

L[σ] = 0 (4.20)

The second, as discussed shortly, is that it implies a powerful means to understand the
convergence of the mixing process. For the reader most familiar with classical Markov chains,
the detailed balance condition above is an analog to its classical counterpart, however, with
an additional degree of freedom 0 ≤ s ≤ 1 which arises due to non-commutativity.

Two special cases of the above are the GNS (where s = 1) and KMS (s = 1/2) detailed
balance conditions. Fortunately, under minor constraints on the family of Lindbladians
(which our Lindbladian satisfies), all these definitions collapse. We refer the reader back to
Eq. (4.6) for the definition of the family of Linbladians we consider, Davies Generators.

Fact 4.1 (Davies’ generators are detailed balanced). Consider the Davies generator L de-
scribed in Eq. (4.6), subject to constraint that the transition weights satisfy ∀ν : γ(ν)/γ(−ν) =
e−βν, and the jump operators contain their adjoints {Aa} = {A†a}. Then, L satisfies s-DB
∀s ∈ [0, 1] w.r.t. the Gibbs state ρβ ∝ e−βH .

In this manner, the Gibbs state ρβ ∝ e−βH is a fixed point of the Davies generator we
designed in Section 4.2.4.1. However, it may not be the unique stationary state, nor may its
evolution converge rapidly. To understand the rate of convergence of this process, we need a
bound on its mixing time tmix(L). Physically, the mixing time provides an estimate for the
thermalization time of the system.

Definition 4.3 (Mixing time). The mixing time tmix(L) of a Lindbladian L is the smallest
time t ≥ 0 for which

∥etL(ρ1 − ρ2)∥1 ≤
1

2
∥ρ1 − ρ2∥1 for any two states ρ1, ρ2. (4.21)
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In what remains of this subsection, we describe two means to analyze tmix. The first of which
consists of a bound on the spectral gap of L. Apriori, however, the super-operator L is not
even Hermitian, and its spectral gap may not even be well-defined. Fortunately, under an
appropriate similarity transformation, we can appeal to a related Hermitian quantity known
as the discriminant :

Definition 4.4 (Quantum discriminant). Fix s ∈ [0, 1] and a full-rank density matrix σ.
The discriminant Ks of L consists of the super-operator

Ks(·) = σ−
1−s
2 L

(
σ

1−s
2 · σ s

2

)
σ−

s
2 . (4.22)

Lemma 4.5 ([243], Lemma 5 and 7). The discriminant Ks of L satisfies the following
properties

1. L satisfies s-DB if and only if Ks is Hermitian.

2. If L satisfies s-DB, then the eigenvalues of L are the same as that of Ks, which are
real.

3. If L is a Davies generator satisfying the constraints of Fact 4.1, then K ≡ Ks is
independent of s ∈ [0, 1].

The spectral gap ∆(L) = ∆(Ks) of a given Lindbladian is defined to be that of the asso-
ciated discriminant. Analyzing this gap can be a challenging task, and concrete bounds are
often case-dependent. Nevertheless, it provides a powerful means to control the convergence
of the time-evolution.

Lemma 4.6 (Mixing time from the Spectral Gap, [234]). If a Lindbladian L satisfies KMS
reversibility with fixed point σ, then

tmix(L) ≤ log
(
2∥σ−1/2∥

)

∆(L)
, (4.23)

We remark that the dependence on log ∥σ−1/2∥ ≈ O(βn) often-times incurs a polynomial
overhead to the mixing time. The notion of a (modified) Log Sobolev inequality provides a
significantly stronger means of analyzing the mixing time. To formalize this method, we first
require the definition of the conditional expectation of an operator X, E [X] = limt→∞ e

tL[X].

Definition 4.5 (Modified Logarithmic Sobolev inequality). The Markov semigroup (etL)t≥0
satisfies a Modified Logarithmic Sobolev inequality (MSLI) with constant α if

d

dt
D

(
etL[ρ]||E [ρ]

)∣∣∣∣
t=0

= TrL[ρ](log ρ− log E [ρ]) ≤ −α ·D(ρ||E [ρ]) for each ρ, (4.24)

where D(ρ||σ) = Tr ρ(log ρ− log σ) is the quantum relative entropy.
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In other words, a MLSI quantifies the decay of the relative entropy, which converts to a
bound on the mixing time through Pinsker’s inequality.

Lemma 4.7 (Mixing time from MLSI, [234]). If a Lindbladian L satisfies KMS-detailed
balance with fixed point σ and a MLSI with constant α, then

tmix(L) ≤ 2 · log(4 · log ∥σ−1∥)
α

(4.25)

This polylogarithmic overhead in system size is known as rapid mixing. Moreover, if given
an additional entangled reference system R the semigroup (etL ⊗ IR)t≥0 satisfies an MSLI,
then L is said to satisfy a complete modified logarithmic Sobolev inequality (CMLSI).

4.2.5.2 Analysis

The main result of this subsection is a bound on the mixing time of our family of Lindbla-
dians.

Lemma 4.8. The mixing time of our family of Lindbladians L defined in Eq. (4.6) is bounded
by

tmix(L) = O(4ℓ · eβ · log n). (4.26)

The starting point of our analysis is based on that of a much simpler Lindbladian, namely,
that corresponding to the trivial circuit C = I. In this setting, both the associated parent
Hamiltonian, and the associated Lindbladian, are a sum over non-interacting, single-qubit
terms:

HNI =
∑

i

|1⟩⟨1|i and LNI =
∑

i∈[n]

Lisingle, where Lisingle[σiβ] = 0 and σiβ ∝ e−β|1⟩⟨1|i .

(4.27)
The jump operators of Lisingle are simply single-qubit Pauli operators, and the single-qubit
Gibbs state σiβ is its fixed point. Using now standard techniques, one can prove that this
non-interacting Lindbladian is both gapped and mixes rapidly:

Claim 4.3 (The Non-Interacting Lindbladian is rapidly mixing). The non-interacting Lind-
bladian LNI has a constant spectral gap ∆(LNI) ≥ 4−1 and satisfies a MSLI with constant
αNI = Ω(e−β).

The unique fixed point of LNI is thus the tensor product state σβ = ⊗iσiβ ∝ e−βHNI . We
defer a proof of Claim 4.3 to the next subsection. In the rest of this subsection, we show
how to relate our Lindbladian L of Eq. (4.6) (implicitly defined by the quantum circuit C),
to LNI, and moreover how to inherit its rapid mixing properties.
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Claim 4.4 (A Convex Combination of Lindbladians). In a basis rotated by C, the Lindbla-
dian L can be written as the convex combination

C†L[C · C†]C = q · LNI[·] + (1− q) · Lrest[·], (4.28)

of two Lindbladians LNI,Lrest which share the fixed point σβ = ⊗iσiβ. Moreover, the param-

eter q = 41−ℓ depends only on the lightcone size of C.

A proof of which we also defer to a future subsection. The convex combination claim
above is the heart of our analysis, as it enables us to inherit the gap and mixing properties of
LNI , without knowing properties of Lrest except for its (common) fixed point. To conclude
this subsection, we present a proof of the MLSI of L :

Claim 4.5 (The Modified Log-Sobolev Inequality). The Lindbladian L satisfies a MSLI with
constant α ≥ q · αNI = Ω(4−ℓ · e−β).

Proof. [of Claim 4.5] From Claim 4.4, we can write our Lindbladian L in a basis rotated by
the circuit C as a convex combination

L̃ = C†L[C · C†]C = q · LNI[·] + (1− q) · Lrest[·] (4.29)

Since relative entropy is basis independent, proving a MLSI for L̃ similarly implies one for
L with the same constant. To do so, we begin by expressing the “entropy production rate”
as a convex combination.

EPL̃(ρ) = Tr
[
L̃[ρ](log ρ− log σβ)

]
= (4.30)

= qTr[LNI[ρ](log ρ− log σβ)] + (1− q) Tr[Lrest[ρ](log ρ− log σβ)] (4.31)

To the first term on the RHS above, we can simply apply the MLSI for the non-interacting
Linbladian Claim 4.3:

Tr[LNI[ρ](log ρ− log σβ)] ≤ −αNI ·D(ρ||σβ). (4.32)

In turn, we claim that the second term on the RHS above is non-positive. Indeed, note
that by Claim 4.4, σβ is a fixed point of Lrest. The Data-processing inequality for the relative
entropy then tells us that

Tr[Lrest[ρ](log ρ− log σβ)] =
d

dt
D(etLrest [ρ]||σβ)

∣∣∣∣
t=0

=
d

dt
D(etLrest [ρ]||etLrest [σβ])

∣∣∣∣
t=0

≤ 0.

(4.33)
Put together, we conclude EPL̃(ρ) ≤ −q · αNI ·D(ρ||σβ).
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4.2.5.3 The non-interacting Lindbladian is gapped (Claim 4.3)

We dedicate this subsection to an analysis of the non-interacting Lindbladian LNI (Claim 4.3).

Lemma 4.9. The spectral gap of the single-qubit Lindbladian Lsingle is ∆(Lsingle) ≥ 4−1.

To understand this spectral gap, we revisit the (Hermitian) Discriminant super-operator
K defined in Definition 4.4. Recall, from Lemma 4.5, that (under detailed balance) this
super-operator has the same eigenvalues of L. In turn, to understand the spectral gap of K,
we vectorize this super-operator (on 2× 2 matrices) into an operator (a 4× 4 matrix).

K[·] =
∑

j

Aj[·]Bj → K =
∑

j

Aj ⊗BT
j . (4.34)

Proof. To analyze the gap, we consider the discriminant Ksingle of the Lindbladian Lsingle,
and in particular its vectorization:

Ksingle =
∑

a∈A

∑

ν∈[−n,n]

−
√
γ(ν)γ(−ν) · Aaν ⊗ (Aaν)

∗ +
γ(ν)

2

(
(Aaν)

†Aaν ⊗ I + I⊗ (Aaν)
T (Aaν)

∗
)

(4.35)

Which is PSD, frustration free, and preserves the eigenvalues of Lsingle (up to a factor of
−1) Lemma 4.5. Moreover, via detailed balance, the purified Gibbs state

∣∣√σβ
〉
∝ |00⟩ +

e−β/2 |11⟩ is a ground state of Ksingle. Since the jump operators are single qubit Pauli
operators {I, X, Y, Z}, they can be written in the energy basis as

AI
0 ∝ I and AZ0 ∝ Zi and AX1 = (−i)AY1 ∝

[
0 0
1 0

]
(4.36)

and that the conjugates can be inferred from the identity Aaν = Aa†−ν . The 4 × 4 vectorized
discriminant can therefore be written as

Ksingle =
1

2




γ(1) 0 0 −
√
γ(1)γ(−1)

0 γ(1)+γ(−1)
2

+ γ(0) 0 0

0 0 γ(1)+γ(−1)
2

+ γ(0) 0

−
√
γ(1)γ(−1) 0 0 γ(−1)


 . (4.37)

Which we identify to be frustration free and have spectral gap γ(1)
2
·min(1 + eβ, 1+e

β

2
+

γ(0)
γ(1)

) = γ(1)
2
≥ 1

4
under Glauber Dynamics, where γ(ν) = (1 + e−βν)−1.

The positivity of the spectral gap can be used to show a complete MLSI, as shown by
[250]. This conversion comes at the cost of factors of the local dimension of the Lindbladian
- which in the case of Lsingle, is just 2.
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Theorem 4.5 (CMLSI from the Spectral Gap, [250] Theorem 4.3). Suppose a Lindbladian
G, acting on a D-dimensional Hilbert space, is GNS-symmetric w.r.t a fixed state σ > 0.
Then, it satisfies a CMSLI with constant

αc ≥ ∆(G) · ∥σ
−1∥−1
D2

. (4.38)

In this manner, Lsingle satisfies a CMSLI with constant αsingle = 1
16·(1+eβ) . We are now in

a position to prove the MLSI for LNI .

Proof. [of Claim 4.3] We begin by leveraging the Complete MLSI, on the local Lindbladians
(Theorem 4.5 and Lemma 4.9):

Tr[LNI [ρ](log(ρ)− log(σβ))] =
∑

i∈[n]

Tr
[
Lisingle[ρ](log(ρ)− log(σβ))

]
(4.39)

=
∑

i∈[n]

Tr
[
Lisingle[ρ](log(ρ)− log(Ei[ρ]))

]
(4.40)

≤ −αsingle
∑

i∈[n]

D(ρ||Ei[ρ]) (4.41)

Where Ei is the conditional expectation of the ith semigroup etL
i
single . Next, we leverage the

strong subadditivity of non-interacting conditional expectations [250] (eq. 5), see also [251]:

∑

i∈[n]

D(ρ||Ei[ρ]) ≥ D(ρ||
∏

i

Ei[ρ]). (4.42)

To conclude, observe that for any ρ, the collection of conditional expectation
∏

i∈[n] Ei[ρ] = σβ
maps to the unique stationary state.

4.2.5.4 The convex combination claim (Claim 4.4)

Recall that the parent Hamiltonian H has solvable eigenstates given by {C |x⟩ : x ∈ {0, 1}n},
with energies given by the hamming weight |x| ∈ [n].

Proof. We begin by explicitly writing down each jump operator in the frequency basis:

Aaν =
∑

k

Πk+µA
aΠk = C

(∑

k∈[n]

∑

|x|=k
|y|=k+ν

|y⟩ ⟨x| · ⟨y|C†AaC |x⟩
)
C† (4.43)

=: C

(∑

k∈[n]

∑

|x|=k
|y|=k+ν

|y⟩ ⟨x| ·Na
x,y

)
C† (4.44)
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For conciseness, we have denoted the coefficient by Na
x,y = ⟨y|C†AaC |x⟩. Our Lindbladian

L of Eq. (4.6) can thus be written in a basis rotated by the circuit C, in terms of the second
moment of these coefficients:

C†L[CρC†]C =
∑

ν

γν ·
∑

a

( ∑

k,k′∈[n]

∑

|x|=k
|y|=k+ν

∑

|x′|=k′
|y′|=k′+ν

Na
x,y · (Na

x′,y′)
∗ · |y⟩ ⟨x| ρ |x′⟩ ⟨y′| (4.45)

−1

2

∑

k∈[n]

∑

|x|,|x′|=k
|y|=k+ν

Na
x,y · (Na

x′,y)
∗ ·
{
|x′⟩ ⟨x| , ρ

})
. (4.46)

For i ∈ [n], consider the subset of jump operators Ai, centered around the i-th lightcone
Li:

Ai = 2−ℓ ·
{
PLi ⊗ I[n]\Li : P ∈ Pℓ

}
(4.47)

By definition, these subsets are disjoint, and form a partition ∪iAi = A. We claim that we
can rotate the jump operators in each subset, by substituting

Ai → A′i = UiAiU †i (4.48)

for an arbitrary choice of unitary Ui of support contained in Li, while keeping the Lindbladian
L invariant. Essentially, this is because the Lindbladian is only defined by the second
moments of the jump operators, and that the second moment of random Pauli operators
is Haar random (via the 1-design property) and thus invariant under unitary conjugation:

∑

a∈Ai

Aa[·]Aa =
1

2ℓ
trLi [·] =

∑

a∈Ai

U †iA
aUi[·]U †iAaUi for any Ui supported on Li. (4.49)

Indeed, for every choice of basis elements x, x′, y, y′ ∈ {0, 1}n, the pre-factor

∑

a∈Ai

Na
x,y · (Na

x′,y′)
∗ =

∑

a∈Ai

⟨y|C†AaC |x⟩ ⟨x′|C†AaC |y′⟩ (4.50)

=
∑

a∈Ai

⟨y|C†UiAaU †i C |x⟩ ⟨x′|C†UiAaU †i C |y′⟩ =
∑

a′∈A′
i

Na′

x,y · (Na′

x′,y′)
∗

(4.51)

is preserved, whether in Ai or A′i.
Finally, let Ui be the gates in C contained in the lightcone of the ith qubit. The sum over

jump operators a ∈ A can be written as an expectation over random ℓ-qubit Paulis, P ∈ Pℓ,
and then an expectation over the center i ∈ [n] in which to place P . With probability 4/4ℓ,
P is a single qubit Pauli Pi centered at i. Moreover, for a single-qubit Pauli Pi centered at
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i, the choice of Ui exactly cancels with the circuit C†:

⟨y|C†Ui
(
Pi ⊗ I[n]\{i}

)
U †i C |x⟩ = ⟨y|

(
Pi ⊗ In\{i}

)
|x⟩ , (4.52)

for each x, y ∈ {0, 1}n and Pi ∈ {I, X, Y, Z}i. (4.53)

We note that these are precisely the jump operators we expect in the non-interacting case
LNI, where the circuit is replaced by the trivial circuit C = I. In this manner, we conclude
that the rotated Lindbladian can be written a convex combination:

C†L[C · C†]C = 22(1−ℓ) · LNI[·] + (1− 22(1−ℓ)) · Lrest[·], (4.54)

where both LNI[·], Lrest[·] are Davies’ generators defined on disjoint sets of jump operators.
Both of them satisfy detailed balance and share the Gibbs state as the stationary state.

4.2.6 Circuit Implementation of the Dissipative Lindbladian

The main claim of this section is an efficient implementation of the Lindbladian time-
evolution using a quantum circuit. Put together with our bound on the mixing time of
our Lindbladians, this all but concludes the proof of the preparation of Gibbs states of the
parent Hamiltonians of quantum circuits.

Lemma 4.10 (Dissipative Lindbladian Implementation). Fix parameters t ≥ 1 and ε ≤ 1
2
.

Let L denote the Lindbladian of Eq. (4.6), defined by a quantum circuit on n qubits, of
lightcone size ℓ and depth d. Then, we can simulate the map etL to error ε in diamond norm
using a quantum algorithm of depth O(t · n · 22ℓ · 2d · poly(ℓ, log n, log 1

ε
, log t)).

We dedicate Section 4.2.6.1 to presenting the required background results on implement-
ing Lindbladian evolution using quantum circuits. In the ensuing section Section 4.2.6.2,
we discuss optimizations both particular to our systems, and generic, to the runtime of our
algorithms.

4.2.6.1 Preliminaries on simulating Lindbladian evolution

Our implementation of the map etL follows the framework of [232], in reducing the task
to constructing a block-encoding of the Lindblad operators. To implement their scheme
it is suitable to renormalize the time-scale and Lindblad operators {Lj}j∈A such that the
resulting Lindbladian has norm 1:

t→ t · ∥
∑

j

L†jLj∥ and Lj → Lj · ∥
∑

j

L†jLj∥−1/2 (4.55)

Given the choice of jump operators from Eq. (4.6), under this normalization we have t→ n·t.
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Definition 4.6 (Unitary block encoding for Lindblad Operators [232, Definition I.2]). Given
a purely irreversible Lindbladian determined by the Lindblad operators {Lj}j∈A, a unitary U
is said to be block-encoding of the Lindblad operators if

(
⟨0|b ⊗ I

)
U
(
|0⟩c ⊗ I

)
=
∑

a∈A

|a⟩ ⊗ Lj for b, c ∈ N (4.56)

Given a black-box circuit corresponding to a block-encoding of L, the following theorem
stipulates that one can simulate the corresponding Lindbladian evolution for time t using
just Õ(t) invocations of the black-box:

Theorem 4.6 (Theorem I.2, [232]). Suppose U is a unitary block-encoding of the Lindbladian
L as in Definition 4.6. Let time t ≥ 1 and error ε ≤ 1

2
, then we can simulate the map etL to

error ε in diamond norm using

1. O((c+ log t
ε
) log t

ε
)) resettable ancilla qubits,

2. Õ(t) controlled uses of U and U †, and

3. Õ(t+ c) other 2-qubit gates.

We remark that since our Hamiltonian has a integer spectra [n], one can exactly imple-
ment the projection of the jump operators {Aa} onto the energy eigenbasis by performing
an operator fourier transform with uniform weights:

Aaν ∝
∑

t̄∈Sπ/n

eiνt̄eiHt̄Aae−iHt̄ where Sπ/n =
π

n
· {−n,−(n− 1), · · · ,−1, 0, 1, · · · , n} (4.57)

In this setting, we can now apply a lemma on the efficient implementation of block-encodings
from [232], simplified to the context of integer spectra Hamiltonians.

Lemma 4.11 (Lemma I.1, [232]). In the setting of Theorem 4.6, a unitary block encoding
for the Lindblad operators corresponding to a Hamiltonian H of integer spectra [n] can be
created using O(n+ log |A|) ancilla qubits, as well as one query to

1. The controlled Hamiltonian simulation:
∑

t̄∈Sπ/n
|t̄⟩⟨t̄| ⊗ e±iHt̄,

2. A block-encoding of the jump operators:
∑

a∈A |a⟩ ⊗ Aa,

3. O(log n) qubit Quantum Fourier transform: |t̄⟩ → (2n)−1/2
∑

ω∈[−n,···n] e
−iωt̄ |ω⟩

4. And a controlled filter for the Boltzmann factors:

W =
∑

ω∈[−n,··· ,n]

[ √
γ(ω) −

√
1− γ(ω)√

1− γ(ω)
√
γ(ω)

]
⊗ |ω⟩⟨ω| (4.58)
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4.2.6.2 Optimizing the circuit implementation

In light of Theorem 4.6 and Lemma 4.11, in what remains of this section, we describe how
to implement the controlled Hamiltonian simulation (Claim 4.6), the block-encoding of the
jump operators (Claim 4.7), and the controlled Boltzmann filter (Claim 4.8), in circuit depth
O(4ℓ · 2d · poly(log n, log 1

ε
, ℓ)). While the first two optimizations are particular to our family

of Hamiltonians, the latter may find independent application to the framework of [232].
We begin with a simple lemma which “colors” the interaction graph of the Hamiltonian,

partitioning the interactions into disjoint subsets S1, S2 · · ·S∆ ⊂ [n] such that no two terms
hi, hj of the same subset have overlapping support.

Lemma 4.12. Any parent Hamiltonian H ∈ H defined by a quantum circuit of depth d
and lightcone size ℓ can be ∆-colored with ∆ ≤ ℓ · 2d + 1 colors.

Proof. Two interactions hi, hj overlap at a qubit only if their lightcones intersect in the
underlying circuit C, which determines H. Let ℓr denote the maximum “reverse lightcone”
size of the circuit, that is, the maximum number of qubits which have a given qubit in
their lightcone. Since the Hamiltonian is at most ℓ-local, any interaction hi overlaps with at
most ℓ · ℓr other terms, which in turn tells us the interactions can then be partitioned using
∆ ≤ ℓ · ℓr + 1 different colors. If the depth of the circuit C as measured by layers of 2-qubit
gates is d, then ℓr ≤ min(n, 2d).

Claim 4.6. The controlled time-evolution of an n qubit parent Hamiltonian of a quantum
circuit with lightcone size ℓ, can be implemented using a quantum circuit of depth O(4ℓ ·∆ ·
log n) and size O(4ℓ ·∆ · n · log n).

At a high level, the circuit of Claim 4.6 partitions the terms of the (commuting) Hamil-
tonian into disjoint subsets of non-overlapping terms, which can be implemented in parallel.
However, since we need to implement the controlled Hamiltonian simulation, all of these
Hamiltonian terms need to act conditioned on the time-register, which is a sequential bottle-
neck to the circuit depth. In order to further compress the depth, we parallelized the access
to the time-register by encoding it into a GHZ state.

Proof. Since the Hamiltonian is commuting, let us restrict our attention to a fixed subset
S in the partition guaranteed by Lemma 4.12. It suffices to prove how to implement the
controlled time evolution of each subset of non-overlapping terms HS =

∑
i∈S hi. For this

purpose, we begin by parallelizing the access to the clock register: |t̄⟩ → |t̄⟩⊗n, using a
O(log n) depth circuit of CNOT gates, of size O(n log n).

Next, controlled on the jth clock register, we apply the time evolution of the jth interac-
tion. Although this gate acts on O(log n) + ℓ qubits, it can be implemented via a sequence
of O(log n) gates acting only on ℓ + 1 qubits, by applying a binary expansion of the time
register t̄ = π

n
·∑k 2k t̄k:

∑

t̄

|t̄⟩⟨t̄| ⊗ eit̄hj =
∏

k

I\k ⊗
∑

t̄k∈{0,1}

|t̄k⟩⟨t̄k| ⊗ exp
[
i
π

n
· 2k t̄k · hj

]
(4.59)
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In turn, each unitary on ℓ + 1 qubits can generically be implemented in O(4ℓ) size and
depth. After all the colors have concluded, we revert the copies of the clock register.

Claim 4.7. A block encoding of the jump operators can be implemented using a quantum
circuit of depth O(∆ · (ℓ+ log n)) and size O(n ·∆ · (ℓ+ log n)).

Proof. There are |A| = n · 4ℓ jump operators, which we represent by indexing them using a
pair a = (i, P ) in terms of the center of its support i ∈ [n], using log n qubits, as well as the
ℓ-local Pauli P , using 2 ·ℓ qubits. Next we proceed using similar techniques to Claim 4.6. We
begin by partitioning the jump operators into ∆ disjoint subsets using Lemma 4.12, where
any two jump operators in the same subset either have the same center, or do not intersect.
Our implementation proceeds by addressing each color c ∈ [∆] independently.

First, we create copies of the control register |a⟩ → |a⟩⊗n, to parallelize access to it.
Suppose all the jump operators centered at j have been colored c. Our goal is to coherently
apply all the controlled jump operators of the form (j, P ) by acting only on the support
(centered at j) and the jth control register |a = (i, Q)⟩j. For this purpose, we first check
whether i = j, and controlled on the one-qubit outcome, we apply the Pauli Q. The check
can be implemented using O(log n) size and depth, and the controlled Pauli in O(ℓ) size and
depth. We conclude by inverting the checking and copying steps.

Claim 4.8. The controlled filter W can be implemented up to error ε in spectral norm using
a circuit of size O(polylog(n

ε
)) 2-qubit gates.

Proof. Let us denote nδ = β−1 log 1
δ
. Then, the Glauber dynamics weight γ(ν) = (1+e−βν)−1

satisfies

γ(ν) ≤ δ if ν ≤ −nδ, (4.60)

and γ(ν) ≥ 1− δ if ν ≥ nδ. (4.61)

We claim that the W gate can be replaced by a truncation Wδ,

Wδ =
∑

ω∈[−n,··· ,n]

[ √
γ̃(ω) −

√
1− γ̃(ω)√

1− γ̃(ω)
√
γ̃(ω)

]
⊗ |ω⟩⟨ω| , γ̃(ω) :=





γ(ω) if ω ∈ [−nδ, nδ]
1 if ω > nδ

0 if ω < −nδ
.

(4.62)
Indeed, the truncation error is controlled by

∥W −Wδ∥ ≤
∑

j∈[−n,−nδ]

∥
[ √

γ(ω) 1−
√

1− γ(ω)√
1− γ(ω)− 1

√
γ(ω)

]
∥ (4.63)

+
∑

j∈[nδ,n]

∥
[√

γ(ω)− 1 −
√

1− γ(ω)√
1− γ(ω)

√
γ(ω)− 1

]
∥ (4.64)

≤ 2n · (2
√
δ + 2δ) ≤ 8n ·

√
δ, (4.65)
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where the last line uses that 1−
√

1− x ≤ x when x ∈ [0, 1/2].
It only remains now analyze the gate complexity of implementing Wδ. Following [232] (pg.

25, footnote 33), the Wδ filter for the Glauber weight between [−nδ, nδ] can be implemented
using the QSVT up to error ε using Õ((1 + βnδ)polylog 1

ε
) 2-qubit gates. With the choice

δ = O( ε
n
), we arrive at the advertised bounds by combining with the trivial cases ω /∈

[−nδ, nδ].

We remark that this error in spectral norm between unitaries is equivalent to the channel
diamond norm distance, up to a constant: ∥U − V ∥⋄ ≤ 2 · ∥U − V ∥.

Put together, Claim 4.6, Claim 4.7 and Claim 4.8 imply Lemma 4.10.

4.2.7 The Input Noise Model and Gibbs States of Quantum
Circuits

In this section, we show that the Gibbs states of parent Hamiltonians of quantum circuits
correspond to noisy versions of the output of the quantum circuit, under a certain input
noise model. To begin, let us recollect the noise model. Fix a noise rate p ∈ (0, 1). The
single-qubit bit-flip error channel consists of the superoperator

Dp(σ) = (1− p) · σ + p ·XσX. (4.66)

Given a quantum circuit C on n qubits, the input noise model consists of independent
applications of the bit-flip error channel on the input wires of C. In particular, the mixed
state given by the output of the noisy circuit is:

ρ = C

(
Dp(|0⟩⟨0|)

)⊗n
C† (4.67)

For a fixed n qubit quantum circuit C, recall that we refer to the parent Hamiltonian of C
as

HC = C

(∑

i∈[n]

|1⟩⟨1|i ⊗ I[n]\i
)
C† (4.68)

Lemma 4.13. Fix β > 0, and let HC be the parent Hamiltonian of a quantum circuit C.
The Gibbs state of HC at inverse-temperature β is given by the output of the circuit C under
input level noise with probability p = (1 + eβ)−1 :

ρβ =
e−βHC

Tr e−βHC
= C

(
Dp(|0⟩⟨0|)

)⊗n
C† (4.69)
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Proof. It suffices to consider the Gibbs state σβ of the Hamiltonian H =
∑

i∈[n] |1⟩⟨1|i, as

ρβ = CσβC
†. Since H is commuting, the partition function can be written as:

Tr e−βHC = Tr e−βH =
∑

x∈{0,1}n

n∏

i

⟨xi| e−β|1⟩⟨1|i |xi⟩ = (4.70)

=
n∏

i

∑

xi∈{0,1}

⟨xi| e−β|1⟩⟨1|i |xi⟩ = (1 + e−β)n. (4.71)

Therefore, the Gibbs state of H can be expressed as the outcome of the depolarizing channel:

σβ = (1 + e−β)−n · e−βH =
n⊗

i

( |0⟩⟨0|
1 + e−β

+
|1⟩⟨1|
1 + eβ

)
=

(
Dp(|0⟩⟨0|)

)⊗n
, (4.72)

with p = (1 + eβ)−1.

4.2.8 Computational Complexity of Shallow IQP Sampling

In recent years several architectures have been proposed for achieving a quantum speedup,
based on quantum processes which resemble or are equivalent to the IQP Circuit Sampling
task discussed in Section 4.2.4.2. The basis for these speedups is on standard complexity-
theoretic conjectures, including the non-collapse of the Polynomial Hierarchy, often in addi-
tion to strong assumptions on the hardness of computing permanents or partition functions.
We dedicate this section to a discussion on the background behind Theorem 4.4, as well as
a comparison to related statements in the literature.

To begin, let us recollect the circuit described in Section 4.2.4.2, comprised of a 2D cluster
state and random phase gates [119, 118].

1. Prepare an n qubit cluster state on a 2D rectangular lattice using a layer of
Hadamard gates and 4 layers of CZ gates.

2. Sample a random string b ∈ [7]n, and apply powers of T gates to each qubit:

⊗

i∈[n]

T bi
( ∏

<i,j>

CZi,j |+⟩⊗n
)

= Cb |0⟩⊗n , where T =

[
1 0
0 eiπ/4

]
. (4.73)

3. Finally, measure the output in the X basis.

Figure 4.5: A family of random IQP circuits, {Cb}.
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If instead of random powers of single-qubit T gates, the powers were chosen adaptively
given partial measurements of the circuit, this scheme would implement measurement-based
quantum computation [242]. The universality of MBQC under adaptivity (or post-selection)
implies the hardness of exactly sampling from the output distribution, unless the polynomial
hierarchy collapses to the third level [246, 118]. To reproduce their argument, universality
implies

PostIQP =︸︷︷︸
[246]

PostBQP =︸︷︷︸
[252]

PP. (4.74)

If we now assume there existed a classical algorithm to exactly sample from arbitrary IQP
circuits, that would imply PP = PostIQP ⊆ PostBPP, which in turn gives us a collapse of
the Polynomial Heirarchy (henceforth, PH):

PH =︸︷︷︸
Toda’s Theorem

P PP =︸︷︷︸
By assumption

P PostBPP = Σ3. (4.75)

In fact, by similar reasoning [246] (Theorem 2) showed that no classical algorithm can
even weakly approximately sample from IQP circuits - i.e. up to some fixed multiplicative
error. To extend these hardness results to approximate sampling (up to some additive error)
in total variation distance, we require stronger assumptions.

[249] were the first to show that, assuming an additional complexity-theoretic conjecture
on the average-case hardness of computing partition functions, approximately sampling from
the output of IQP circuits remains classically intractable even up to small total variation
distance. They noted that the output distribution of IQP circuits,

px = | ⟨x|C |0⟩⊗n |2 = 2−n ·
∣∣Zx
∣∣2, (4.76)

precisely resembles a complex-valued partition function, defined by wu,v, wu real-valued edge
and vertex weights on some underlying architecture graph G:

Zx =
∑

z∈{±1}n
exp

[
i

( ∑

<u,v>

wuvzuzv +
∑

u

(π · xu + wu)zu

]
. (4.77)

They prove that approximating
∣∣Zx
∣∣2, and therefore px, up to multiplicative error is #P

hard in the worst-case, and pose as a conjecture its hardness in the average case over x.
Under this conjecture, [249] show that the existence of an efficient classical algorithm to
approximately sample from {px}, even up to constant TVD, would imply a collapse of the
polynomial heirarchy.

However, the original results of [249] referred to a complete graph G, which, roughly
speaking, correspond to IQP circuits of some polynomial depth. In follow up work by the
same authors [40], they reduced the circuit depth to logarithmic under a sparsified version
of the graph G. It was only in [118] and [119] that the #P hardness of approximately
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computing px on 2D circuit architectures was established (in the worst-case), corresponding
to constant depth IQP circuits in 2D. Their analogous average-case conjecture for approxi-
mately computing px on 2D circuits, is reproduced below:

Conjecture 4.1 ([118]). There exists a choice of vertex and edge weights {wuv, wu}u,v∈[n]
on a 2D lattice G, and constants ε, δ, such that approximating the measurement distribution
{px} to the following mixture of multiplicative and additive errors

|p̃x − px| ≤
1

poly(n)
· px +

ε

δ · 2n (4.78)

is #P hard for any 1− δ fraction of instances x.

[118] show that Conjecture 4.1 implies Theorem 4.4:

Theorem 4.7 ([118], restatement of Theorem 4.4). Assuming Conjecture 4.1, simulating
the distribution {px} up to ε total variation distance is classically intractable, assuming PH
doesn’t collapse.

A related result was shown by [119]. They start from the (weaker) conjecture that
computing p(x) up to a multiplicative factor is hard-on-average, and combine it with a
further conjecture on the anti-concentration of the output distribution of random linear-
depth IQP circuits. Put together, they also arrive at Theorem 4.4.

4.2.9 Fault Tolerance of IQP Circuits under Input Noise

We dedicate this section to a proof of Lemma 4.14, on the fault tolerance of IQP circuits
under input noise.

Lemma 4.14. Fix an input noise rate p < 1
2
and a positive integer D. Let C be an n qubit

IQP circuit with depth d and lightcone size ℓ. Then, there exists another quantum circuit
C̃, such that a sample from the output of C̃ under input bit-flip errors can be post-processed
using an efficient classical algorithm into a sample ε-close to the output distribution of C.
The circuit C̃

1. acts on O(n log n
ε
) qubits,

2. has lightcone size ℓ+O
(
D log1/D

(
n
ε

))
,

3. depth d+O
(
D log1/D

(
n
ε

))
, and

4. the locality of its parent Hamiltonian is ℓ+O(D).
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At a high level, our approach is based on pre-processing each of the n input bits into
“code-blocks” or gadgets of size k = O(log n

ε
) bits, where each gadget has a designated “root”

bit. The n root bits are then input into the IQP circuit C. Since bit-flip errors commute
with the IQP circuit, to be able to sample from the original output distribution of C, it
suffices to identify these root bits. Indeed, we emphasize that we do not use the encoding
to correct the errors within the circuit, as this would require adaptivity and an increase in
circuit depth, and instead perform the correction only in post-processing.

4.2.9.1 The Distillation Gadget

We place the noisy bits into a tree of arity B (a “B-tree”) of depth D. For notational
convenience, let us partition the nodes in the tree into disjoint subsets, L1∪L2 · · ·∪LD = [k],
the “layers” of the tree. Moreover, for each node u in the tree, let the subset Nu denote its
children or (downwards) neighbors in the tree. The encoding circuit proceeds over the layers
from the leaves to the root, where at the ith layer Li of the tree, a CNOT gate is applied
from each parent bit to each of its children.

Note that the size of the tree k is implicitly defined by B and d: k =
∑D−1

j=0 B
j = Θ(BD).

Algorithm 4 The Distillation Gadget U

Input: k qubits in the computational basis |s⟩, where s← Berk(p/2).

1: For each layer i ∈ [2, · · · , D] from leaves to root,
2: For each child c ∈ Np of a parent node p, apply a CNOT gate from p to c.

∏

i∈[D]

⊗

p∈Li

( ∏

c∈Np

CNOTp,c

)
|s⟩ ≡ U |s⟩ . (4.79)

We emphasize that the ordering of operations, from leaves to root, matters crucially.
In this manner, the ith layer acts as a “parity check syndrome” for the (i + 1)st. When
implemented using 2-qubit gates, the depth of the distillation circuit is B ·D, as the CNOT
gates at the same layer but operating on different subtrees can be performed in parallel, but
the B CNOT gates which act on the same parent must be performed sequentially.

4.2.9.2 The Decoding Algorithm

Next, suppose that all the qubits of U |s⟩ except for that at the root of the tree have been
measured, resulting in bits b2, · · · bk. Can we reconstruct s1, the bit at the root? The
decoding algorithm below traverses the tree layer by layer, from leaves to root, attempting
to reconstruct the bit sp of the next layer.
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Algorithm 5 The Decoding Algorithm

Input: (k−1) bits b2, · · · , bk, organized into a B-tree, where the root bit has been removed.
Output: A single bit s̃1, a guess for the bit at the root.

1: At the leaves L1 ⊂ [k], let us denote b̃u = bu for u ∈ L1.
2: For each layer i ∈ [2, · · · , D], from leaves to root,
3: For each parent node p ∈ Li, let s̃p = Maj(b̃c : c ∈ Np) be the majority of its children

bits.
4: If the root hasn’t been reached, update b̃p ← s̃p ⊕ bp. Otherwise, output s̃1.

The decoding algorithm above maintains the invariant that s̃u is a “guess” for the original
noisy bit su input into the distillation gadget. Since U acts from leaves to root, the children
in each layer contain (with high probability) the necessary information to reconstruct the
parents’ bit sp. Together with the measurement outcome bp - which reveals information
about the layer above - we can continue the reconstruction up the tree.

4.2.9.3 Analysis

We divide the analysis into three claims, which consider the correctness, the lightcone size
of the circuit, and the “Z-locality” of the distillation gadget which determines the locality
of the parent Hamiltonian.

Claim 4.9 (Correctness). Fix any noise rate p ≤ 1−δ
2

and let B = Ω(δ−2). Then, the

effective bit-flip error rate at the root of the depth d B-tree is ≤ 2−B
Ω(d)

.

Proof. We prove inductively that the effective bit-flip error rate pi at the ith layer, i.e.,

pi ≡ Ps←Bernk(p)[su ̸= s̃u] for each node u ∈ Li, (4.80)

decays doubly-exponentially with the layer index i > 2. As the base case, p1 = p is the
probability of a bit-flip error on the leaves. Suppose p = 1−δ

2
. Then, after the first layer, the

probability the majority vote of the children bits is incorrect is

p2 ≤
B∑

j=B/2

(
B

j

)(
p1
)j(

1− p1
)B−j

= 2−B
B∑

j=B/2

(
B

j

)(
1− δ

)j(
1 + δ

)B−j
(4.81)

≤
(
1− δ

)B/2 ·
(
1 + δ

)B/2 ≤
(
1− δ2

)B/2 ≤ 1

16
, (4.82)

so long as B is chosen to be Ω(δ−2). For each layer i ≥ 2, the effective bit-flip error rate on
the (i+ 1)st layer is

pi+1 ≤
B∑

j=B/2

(
B

j

)(
pi
)j ·
(
1− pi

)B−j ≤ 2B(pi)
B/2 ≤ p

B/4
i . (4.83)
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In this manner, pi+1 ≤ 2−(B/4)
i

for i ≥ 1.

Claim 4.10 (Circuit lightcone size). The circuit lightcone size of the distillation scheme is
≤ B ·D.

Proof. The lightcone size of the quantum circuit U is upper bounded by the size of the
lightcone of the qubits at the leaves of the tree. Crucially, we claim that if

u = u1 → u2 → u3 · · · → uD = root (4.84)

denotes the path from a leaf u ∈ L1 to the root, then only the children of these nodes can
be in the lightcone of u. Indeed, this is since the CNOT gates in Section 4.2.9.1 are applied
layer by layer in increasing order, so the only nodes which are causally connected to u in
the circuit are its immediate ascendants or their neighbors. In turn, the size of this set is
bounded by B ·D.

The last key claim makes reference to the locality of the parent Hamiltonian of the
distillation circuit, that is, the size of the support of the operator U(Zi ⊗ I)U †, maximized
over bits i in the gadget.

Claim 4.11 (Parent Hamiltonian Locality). The locality of parent Hamiltonian of the dis-
tillation circuit is ≤ D.

Proof. The following two circuit identities describe how Pauli Z operators propagate through
CNOT gates.

CNOTi,j(Zi ⊗ I)CNOTi,j = Zi ⊗ I (4.85)

CNOTi,j(I⊗ Zj)CNOTi,j = Zi ⊗ Zj (4.86)

Crucially, the locality only increases (or propagates) from the target qubit to the control
qubit. Applied to our gadget in Section 4.2.9.1, we conclude that the qubits in the Z-lightcone
of any qubit i in the tree, are precisely the ancestors of i. Thus, |supp(U(Zi ⊗ I)U)| ≤ D,
the depth of the tree.

We are now in a position to conclude the proof of Lemma 4.14.

Proof. [of Lemma 4.14] By Claim 4.9, if p ≤ 1
2
(1− δ), then, so long as

B = max

(
Θ(δ−2), log1/D

(n
ε

))
(4.87)

the probability the decoding algorithm incorrectly outputs the bit at the root of the tree is
≤ εn−1. By a union bound, all the gadgets succeed with probability ≥ 1−ε. Conditioned on
this event, the output distribution of C̃ corrected by the output of the n decoding algorithms
is exactly that of C, which implies the bound on the TV distance. To conclude, the locality
parameters are then implied by Claim 4.10 and Claim 4.11
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4.2.10 Quantum Advantage in Gibbs Sampling

We dedicate this section to combining all the aforementioned ingredients and concluding the
proof of our main result in Theorem 4.1.

Theorem 4.8 (General version of Theorem 4.1). For any constant inverse-temperature β =
Θ(1) and integer L, there exists a family of n-qubit commuting O(L)-local Hamiltonians,
such that the n-qubit Gibbs state ρβ is both

1. Rapidly Thermalizing. It can be prepared within small trace distance by the Davies
generator (Eq. (4.6)) which has mixing time eO(L·log1/L(n)). In addition, this process

can be simulated on a quantum computer in time n · eO(L·log1/L(n)). And yet,

2. Classically Intractable. Under Conjecture 4.1, there is no polynomial time classical al-
gorithm to sample from the measurement outcome distribution p(x) = ⟨x| ρβ |x⟩ within
small constant total variation distance.

In particular, the choice of a sufficiently large constant L recovers our main result of
Theorem 4.1. When L = log log n, we obtain a mixing time of polylog(n).

Proof of Theorem 4.8. To begin our proof, let us fix an inverse-temperature β = Θ(1), and
consider the equivalent bit-flip error rate

p = (1 + eβ)−1 <
1

2
, (4.88)

as guaranteed by Lemma 4.13.

Classical Intractability. Consider the family of constant-depth, classically intractable,
n-qubit IQP circuits C guaranteed by Theorem 4.4 (Conjecture 4.1). Using Lemma 4.2, let
us fix a depth parameter L, and embed each circuit in said family into a new circuit C̃,
which is fault tolerant to input noise of rate p = 1

2
(1 − Θ(1)). C̃ now has Z-locality O(L),

circuit depth and lightcone size O(L log1/L(n
ε
)); and a noisy sample from C̃ can be efficiently

classically post-processed into a sample ε-close in trace distance to an ideal sample from C.
Now, consider the family of parent Hamiltonians defined by the family of Fault-Tolerant

circuits C̃,

H =
∑

i

C̃

(
Zi ⊗ I[n]\i

)
C̃†. (4.89)

The support size of each term is given by the Z-locality of the fault-tolerant circuit C̃, which
is O(L).

If, by assumption, there was a polynomial time classical algorithm A to sample from
the Gibbs state of H at inverse-temperature β, then we could construct a polynomial time
classical algorithm to sample from a distribution ε-close to the ideal distribution of C, as
follows: First, construct C̃ and thus the local terms of H from C. Then, leverage A to sample
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from ∝ e−βH . Finally, process the output sample using the post-processing algorithm from
the fault-tolerance statement of Lemma 4.2.

Rapid Thermalization. To conclude, via Lemma 4.1, the Gibbs state of H can be pre-
pared using the Davies generator of Eq. (4.6) of mixing time exponential in the circuit

lightcone size, log n · exp
(
O(L · log1/L(n))

)
= exp

(
O(L · log1/L(n))

)
. To simulate this pro-

cess on a quantum computer, the overall runtime n ·exp
(
O(L · log1/L(n))

)
has an additional

quasi-linear overhead.

Remark 4.1. Theorem 4.1 asserts that for every constant temperature, there exists a Hamil-
tonian H which is classically hard-to-sample from. Conversely, results by [189] and [226]
show that every local Hamiltonian (of fixed degree) has a critical temperature, such that above
said threshold one can efficiently classically sample from their Gibbs state. The resolution to
this apparent contradiction lies in the order of quantifiers. The degree/locality of our Hamil-
tonians increases with the temperature, see Section 4.2.9 for their dependence on the noise
rate.

Remark 4.2. Since the Gibbs state is determined by a low depth quantum circuit C, with
access to a description of C, one could trivially produce it on a quantum computer. However,
if given access only to the local Hamiltonian terms {hi}i = {−CZiC†}i, we don’t believe it to
be computationally efficient to recover the global structure of C, in general. While this is not
rigorous statement, we only know how to do so for 1D circuits, via dynamic programming. It
is worthwhile to contrast this to the Feynman-Kitaev circuit-to-Hamiltonian mapping [230],
wherein the gates of the circuit can be exactly read-off from the local Hamiltonian interactions.

4.2.11 BQP Completeness with Adaptive Single-Qubit
Measurements

We dedicate this section to a proof of Theorem 4.2, on the BQP completeness of Gibbs
Sampling with adaptive measurements.

Theorem 4.9. Fix an inverse-temperature β = Θ(1). Then, there exists an n-qubit O(1)-
local Hamiltonian, whose Gibbs state at inverse-temperature β is a universal resource state
for quantum computation and is efficiently preparable on a quantum computer.

This result is all but a corollary of our fault tolerance techniques for IQP circuits, applied
to measurement-based quantum computation. Indeed, it is well known that 2D cluster states,
in addition to single-qubit measurents in adaptively chosen basis on the X − Y plane, is
universal for quantum computation. The following lemma shows that one can produce said
cluster state out of the Gibbs state of a local Hamiltonian, so long as we are allowed to
measure a subset of the qubits, and subsequently apply a Pauli correction to “distill” out
the cluster state.



CHAPTER 4. FAULT TOLERANCE 250

Lemma 4.15. There exists a n-qubit, O(1)-local commuting Hamiltonian, whose Gibbs state
at inverse-temperature β can be used to prepare a cluster state. That is, by measuring a subset
of the qubits of the Gibbs state, and then with 1 round of adaptive Pauli correction, one can
produce a 2D cluster state on O(n/ log n

ε
) qubits with probability 1− ε.

Proof. Let C be the circuit which prepares a 2D cluster state on m qubits, comprised of
Hadamard gates and CZ gates. Let C̃ be the n = Θ(m log m

ε
) qubit circuit defined by the

fault tolerance scheme of Lemma 4.14, which is robust to input errors of finite probability
< 1

2
. Then, consider the parent Hamiltonian H of C̃, on n qubits and with locality O(1).
By construction, its Gibbs state is a quantum-classical state, of classical bits lying in

the fault-tolerance gadget of Lemma 4.14, and qubits comprising a cluster-state under input
noise. Again, recall that input bit-flip errors are equivalent to output Z errors, due to the
gate structure of C. From Lemma 4.14, by measuring the classical bits of the fault-tolerance
gadget, one can recover the output Z error with probability 1− ε.

We remark that the adaptively chosen X − Y measurements can be performed simul-
taneously with the Pauli corrections. In this manner, after producing the desired resource
Gibbs state, it suffices to perform adaptively chosen single-qubit measurements to achieve
universal measurement based quantum computation.

4.2.12 Addressing Output Measurement Errors

In this section, we prove Theorem 4.3 on sampling from finite-temperature Gibbs states
subject to measurement errors.

Lemma 4.16. Fix an inverse temperature β = Θ(1), and a measurement error rate p < 1
2
.

There exists a family of n-qubit, O(log n)-local Hamiltonians, such that sampling from their
Gibbs state at inverse-temperature β, under measurement errors of rate p, is classically
intractable under Theorem 4.4. Moreover, there exists a poly(n) time quantum algorithm to
produce said Gibbs state.

Our construction of Lemma 4.16 is similarly based on the parent Hamiltonians of fault-
tolerant IQP circuits, which are hard-to-sample from in the ideal case. We note that the
distribution defined by sampling from the Gibbs state of the parent Hamiltonian of a quan-
tum circuit C, given measurement errors, corresponds exactly to sampling from C under
both input and output noise, albeit with different noise rates. Unfortunately, to address this
mixed noise model, we do need to appropriately modify our fault-tolerance scheme. For this
purpose, we appeal to prior work by [40], at the cost of a higher locality.

4.2.12.1 Overview

To model the noise in this section, recall the definition of the bit-flip error channel Dp in
Eq. (4.66). Given a quantum circuit C on n qubits, and fixed noise rates pin, pout ∈ [0, 1

2
),

the noisy output distribution of C given input and output noise is given by
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pC,pin,pout(x) = Tr

[
|x⟩⟨x| · D⊗npout ◦ C

(
Dpin ◦ (|0⟩⟨0|)

)⊗n
C†

]
(4.90)

If A : {0, 1}n → {0, 1}n′
is a deterministic classical post-processing algorithm, we denote

as A ◦ p the distribution given by sampling x ← p and outputting A(x). The following
lemma is a fault-tolerance statement for IQP circuits against this input/output noise model.

Lemma 4.17. Let C be an n qubit IQP circuit of depth d and lightcone size ℓ, and fix input
and output bit-flip error rates pin, pout ∈ [0, 1

2
). Then, for every r ∈ N there exists a quantum

circuit Cr and a deterministic, O(nr)-time decoding algorithm Ar : {0, 1}nr → {0, 1}n, such
that in the presence of input and output noise, the statistical distance

∥Ar◦pCr,pin,pout−pC,0,0∥1 ≤ n·(4q(1−q))r/2, where q = pin(1−pout)+pout(1−pin) <
1

2
. (4.91)

Moreover, Cr is defined on nr = n · r qubits, has depth dr = d · log r and lightcone size ≤ ℓ · r.

In other words, noisy samples from Cr can be post-processed into nearly-ideal samples
from C. Note that q < 1

2
implies the total variation distance above decays exponentially

with r.

Corollary 4.1. Fix input and output bit-flip error rates < 1
2
. Then, any IQP circuit on n

qubits and constant depth can be efficiently transformed into a quantum circuit of O(log log n)
depth and O(log n) lightcone size, robust to input and output noise with error n−Ω(1).

Starting from the hard-to-sample IQP circuits ensured by Theorem 4.4, we can construct
circuits fault-tolerant to input and output noise via the Corollary above. In turn, these fault-
tolerant circuits define a parent Hamiltonian, which is rapidly thermalizing (via Lemma 4.1),
and yet, classically hard to sample from. Put together, we prove Lemma 4.16.

4.2.12.2 Analysis

We remark that if the circuit C itself is an IQP circuit, then the bit-flip noise model Bp
commutes with the circuit, and thus the input/output noise is equivalent to input noise at
a higher rate: pC,pin,pout(x) = pC,q,0(x), with

q = pin(1− pout) + pout(1− pin) <
1

2
(4.92)

To leverage this equivalence, however, we need to design a fault-tolerant circuit which itself
is an IQP circuit. Fortunately, here we can appeal to [40], who achieved precisely that.
To summarize their construction, their circuit embedding leverages the following property
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of IQP circuits. The diagonal part D of any IQP circuit can be expressed as a matrix-
exponential of a polynomial of Z Pauli matrices:

D = exp

[
i
∑

j∈[m]

θj
⊗

i∈[n]

Z
Mji

i

]
, for real coefficients {θj}, and a boolean matrix M ∈ Fm×n2 .

(4.93)
If D is comprised of 2-qubit gates, then the weight of any row of M is ≤ 2. Now, suppose

G ∈ F(n·r)×n
2 is the generator matrix of a repetition code, on n′ = n ·r bits and rate n/n′ = 1

r
.

[40] observe that the new IQP circuit defined by mapping M → M̃ = M · GT is robust to
input noise, up to (roughly) the random-error-correction capacity of G. Indeed, this follows
from the fact that 〈

GTx
∣∣D
∣∣GTx

〉
= ⟨x| D̃ |x⟩ ,∀x ∈ {0, 1}n′

. (4.94)

Therefore, the output distribution of the new circuit C̃ under input (or output) noise is
the same as sampling y ∈ {0, 1}n from C, encoding y into the code ỹ = Gy ∈ {0, 1}n′

, and
finally flipping each entry of ỹ independently with probability q. If the repetition code can
tolerate random bit-flip errors with rate q, then one can approximately sample from C using
noisy samples from C̃.

The caveat in their approach is that the resulting IQP circuits maybe polynomially larger.
Indeed, each two qubit gate in the original circuit C, is mapped to a 2 · r multi-qubit gate
in C̃:

eiθZa⊗Zb → eiθZ
1
a⊗Z2

a···Zr
a⊗Z1

b ···Z
r
b (4.95)

which is complex to implement using only diagonal operations. Instead, we dispense with
the requirement that the intermediate gates in the circuit be diagonal (and thus the circuit is
not an IQP circuit), however, globally it is equivalent to the same (IQP) unitary operation.

Definition 4.7. A k-local Pauli rotation gate is the k qubit unitary U defined by an angle
θ ∈ [0, 2π] and a k-qubit Pauli P where U = eiθP .

Of particular note to us are multi-controlled Z rotations, where P = Z1 ⊗ Z2 · · ·Zk.

Claim 4.12. Any k-local Pauli rotation gate can be implemented using an ≤ log k depth
circuit on a fully connected architecture of 2-qubit gates.

For simplicity, we prove the above for multi-qubit Z Paulis, as the general case is analo-
gous.

Proof. Let U be a k-local Z rotation gate, and V be any unitary. Then, the identity
V eiθPV † = eiθV PV

†
tells us that it suffices to find a depth d ≤ log k Clifford circuit V such

that V (⊗kiZi)V † = Z1 ⊗ I[k]\1. We claim that this can be done recursively, where each layer

of V halves the weight of the remaining Z’s. Indeed, since (I⊗ Z) = CNOT(Z ⊗ Z)CNOT†,
layers of CNOT gates on a matching of the remaining Z’s will suffice.
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To prove our statement, we instantiate the lemma below with our implementation of
multi-controlled Z gates.

Lemma 4.18 ([40]). Let C be an n qubit IQP circuit of depth d. Then, for every r ∈ N,
there exists a deterministic, O(n · r)-time decoding algorithm Ar : {0, 1}n·r → {0, 1}n, and a
quantum circuit Cr on nr = n · r qubits, comprised only of Hadamard gates and O(d) layers
of ≤ 2r-local Z rotation gates, satisfying

1. In the absence of noise, the distribution Ar ◦ pCr,0,0 given by sampling y ← pC̃r,0,0
from

the output of Cr, and outputting Ar(y), is the same as sampling from C.

2. In the presence of input-level noise with probability q, the statistical distance

∥Ar ◦ pC̃r,q,0
− pC,0,0∥1 ≤ n · (4 · q · (1− q))r/2. (4.96)

4.3 Single-shot logical state preparation for arbitrary

quantum LDPC codes

Single-shot logical state preparation is a procedure in which a code-state (such as the logical
|0⟩ or |+⟩ state) of a quantum error correcting code is prepared by a constant depth quantum
circuit, followed by one round of single qubit measurements, and an adaptive Pauli correction
using classical feedforward. In this section, we prove that every CSS quantum LDPC code
admits a single-shot state preparation procedure with logarithmic space overhead that is
fault tolerant against local stochastic noise, generalizing prior work by [253, 114] for the
surface code. Our proof is based on a clustering-of-errors argument by [254] and [255].

The intuition behind our construction is to realize repeated measurement via measurement-
based quantum computation. A standard approach to initialize a quantum LDPC code in
the logical |+⟩ state is as follows: first initialize all physical qubits in a code block in the |+⟩
state, then perform repeated Z and X syndrome measurements, and finally perform a Pauli
error correction using classical feedforward based on the syndrome measurement outcomes.
A key observation here is that the repeated measurements are non-adaptive, thus we can
attempt to simulate this process using a cluster state, achieving a space-time trade-off.

Our construction, which we refer to as the Alternating Tanner Graph state |ATG⟩
(Fig. 4.6) formalizes this intuition: there are 2T + 1 copies of the code block. A copy
of the Z Tanner graph is placed on each odd layer (simulating Z syndrome measurements),
and a copy of the X Tanner graph is placed on each even layer (simulating X syndrome
measurements). Vertical connections are added between code qubits of neighboring layers,
which is used to propagate quantum computation in the time direction. To prepare the clus-
ter state in constant depth, we initialize all qubits in the |+⟩ state and apply a CZ gate on
each edge. Note that this is equivalent to the Raussendorf-Bravyi-Harrington (RBH) cluster
state when applied to the surface code [253].
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(a) The Alternating Tanner Graph state |ATG⟩ (b) |ATG⟩ of the surface code

Figure 4.6: (a) The ATG is a graph state, defined on a vertex set comprised of layers of
copies of the code block and the Z (resp. X) Tanner graph (in blue, resp. red) of the qLDPC
code. (b) The RBH cluster state [253], which prepares code states of the surface code in a
3D cubic lattice arrangement, is a special case of this construction.

4.3.1 Single-shot logical state preparation

4.3.1.1 Basic definitions and notation

The set of Pauli operators on a set of n qubits is denoted as Pauli(n). A Pauli error E ∈
Pauli(n) is said to be a local stochastic error of noise rate p ∈ [0, 1], or, E ← N(p) if

∀S ⊂ [n], PE←N(p)

[
S ⊂ supp(E)

]
≤ p|S|. (4.97)

Definition 4.8. An [[n, k, d]] stabilizer code Q is said to be an ℓ-LDPC code if there exists
a choice of generators ∈ Pauli(n) for Q with Pauli weight ≤ ℓ and such that the number of
generators acting non-trivially on any fixed qubit is ≤ ℓ.

We will henceforth assume that Q is a CSS code, specified by X and Z parity check
matrices (Hx, Hz) satisfying Hx(Hz)† = 0. Let Hx ∈ Fmx×n

2 and Hz ∈ Fmz×n
2 respectively,

where mx,mz determine the number of X and Z parity checks. We say i ∼ c if i is in the
support of the check c.

Definition 4.9 (Tanner Graph). The tanner graph of a parity check matrix H ∈ Fm×n2 is
the bipartite graph on the vertex set [m]∪ [n], such that there exists an edge (c, i) for c ∈ [m]
and i ∈ [n] if Hc,i = 1.
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We refer to the tanner graphs of HX , HZ as GX , GZ .
Here we overview our fault-tolerant state preparation algorithm for any LDPC CSS code.

Our algorithm is based on that of [114] and is comprised of three general steps, summarized
below.

Single-Shot State Preparation.

1. Using a constant-depth circuit W , we prepare a graph state |ATG⟩ = W
∣∣0V
〉
.

G = (V,E) is defined on “bulk” qubits B and “boundary” qubits ∂ = V \ B.

2. Measure all the bulk qubits B in the Hadamard basis |±⟩, resulting in a string
s.

3. Using s, compute a Pauli correction Rec(s) ∈ Pauli(∂), and adaptively apply it
to the boundary qubits ∂. The resulting (unnormalized) state is given by:

(
|±s⟩⟨±s|B ⊗ Rec(s)∂

)
|ATG⟩ (4.98)

In the absence of any errors, we design Rec(s) to ensure that the resulting state is∣∣Φ̄
〉

= 1√
2

(|0̄⟩ |0̄⟩+ |1̄⟩ |1̄⟩), a logical EPR pair across two copies of the LDPC code – “the

boundaries”. More generally, the resulting state is
∣∣Φ̄
〉⊗k

if the LDPC code has k logical
qubits. For simplicity, below we state the result for one of the k logical qubits. To ensure
that this state-preparation algorithm is fault-tolerant, we stipulate that even in the presence
of random errors during the execution of W and the measurements, the resulting output
state is statistically close to

∣∣Φ̄
〉

with local stochastic noise.

Definition 4.10 (cf. [114]). A family of stabilizer codes Q admits a Single-Shot State Prepa-
ration procedure if there exists a constant depth circuit W on a set of qubits ∂ ∪ B, and
deterministic recovery and repair functions,

Rec : {0, 1}B → Pauli(∂) (4.99)

Rep : Pauli(B)→ Pauli(∂), (4.100)

such that, for any error on the Bulk P ∈ Pauli(B) and measurement outcome s ∈ {0, 1}B,
(
|±s⟩⟨±s| ⊗ Rec(s)

)
PW |0⟩B ⊗ |0⟩∂ = γs |±s⟩ ⊗ Rep(P )

∣∣Φ̄
〉
, (4.101)

where γs ∈ C. Moreover, if P ← N (p) is a local stochastic error on the Bulk, then Rep(P )←
N (c1 · pc2) is a local stochastic Pauli error on ∂, for two constants c1, c2.

Naturally, in the presence of measurement errors, one cannot hope to perfectly prepare
the encoded logical state. Instead, the function Rep quantifies the residual error on the ideal
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state. The state preparation procedure is then fault-tolerant if it manages to convert local
stochastic noise during the state preparation circuit into local stochastic noise on the output
state.

The main result of this work is the following theorem:

Theorem 4.10. Fix an integer T ≥ 1. Let Q be any [[n, k, d]] CSS code, which is ℓ-LDPC.
Then, Q admits a single-shot state preparation procedure (for the encoded logical state

∣∣Φ̄
〉
)

using a circuit W on O(ℓ·n·T ) qubits and of depth O(ℓ2), satisfying the following guarantees:

1. There exists a constant p∗(ℓ) ∈ (0, 1), such that if W is subject to local-stochastic noise
N (p) of rate p < p∗, the state preparation procedure succeeds with probability at least
1− n · ( p

p∗
)Ω(min(T,d)).

2. Conditioning on this event, the resulting state is subject to a local stochastic noise of
rate N (O(p1/2)).

Theorem 4.10 can be interpreted as a repeated measurement state preparation scheme,
realized in measurement based quantum computation. In this sense, it “tradeoffs space for
time”, suppressing errors exponentially in min(T, d), at the cost of a O(T ) multiplicative
space overhead. Its proof is based on an error-clustering argument, inspired by the results
of [254] and [255].

4.3.1.2 The Alternating Tanner Graph state |ATG⟩
Using the LDPC code Q, we will define the cluster state |ATG⟩ by specifying a graph
G = (V,E). So long as the degree of G is bounded, the resulting state-preparation circuit is
low-depth.

|ATG⟩ =

( ∏

(u,v)∈E

CZu,v

)
|+⟩⊗|V | (4.102)

Fix an integer T ≥ 1. G will be defined on (2T + 1) layers of copies of the LDPC code,
which alternate X and Z checks. At each layer, we will place a copy of the tanner graph of
Hx or Hz.
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The Alternating Tanner Graph. Of the 2T + 1 layers, {1, 2, · · · , 2T + 1}

– Every layer has a copy of the n “code” qubits. Each code qubit i ∈ [n] at layer
t is connected to its copy above and below it (i, t± 1).

– Z Layers. Odd layers have a copy of mz “Z” parity check qubits. A copy of the
Z tanner graph is placed between the n code qubits and the mz Z parity check
qubits.

– X Layers. Even layers have a copy of mx “X” parity check qubits. A copy of the
X tanner graph is placed between the n code qubits and the mx X parity check
qubits.

One should picture the copies of the code qubits stacked vertically in 1D layers, while
the X and Z ancilla qubits lie to their left and right respectively. The “boundary” qubits
∂ referred to in the overview will simply be the 2n code qubits on the 1st and (2T + 1)th
layers. Henceforth we will index the vertices in G as tuples, (i, t) for any code qubit i ∈ [n]
at layer t, and (c, t) for check qubits c ∈ [mx] (or mz). We highlight that the only vertical
connections in E are between copies of the same code qubit.

4.3.1.3 The stabilizers of |ATG⟩
The alternating Tanner graph state |ATG⟩ is a stabilizer state. A complete set of stabilizer
generators is defined as follows: for each u ∈ V , there is an associated stabilizer

Gu = Xu

⊗

v: (u,v)∈E

Zv. (4.103)

We will use this collection of graph-state stabilizers to define stabilizers of the post-
measurement state. Following [114], we will identify two subgroups of the stabilizer group
S of |ATG⟩, S0 ⊂ S1 ⊂ S, satisfying the following constraints:

(i) Any element of S0 can be written as I∂ ⊗X(α)B on some subset α ∈ {0, 1}B.

(ii) Any element of S1 can be written as S∂ ⊗X(α)B on some subset α ∈ {0, 1}B, and for
some stabilizer S of

∣∣Φ̄
〉
.

(iii) For every stabilizer S of
∣∣Φ̄
〉
, there exists an element of S1 of the form S∂ ⊗X(α)B.

The fact that these subgroups act only as Pauli X’s on the Bulk implies that after an
X basis measurement, they remain stabilizers of the post-measurement state, and we can
recover their information from the measured string s. We will shortly describe how to use
these stabilizers to define the Recover and Repair Functions Rec,Rep. In this section, we
show how to define these stabilizers using the structure of the tanner graph state. We defer
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(a) A Z meta-check, on an
even layer (blue triangles).

(b) The stabilizers of the
top boundary code.

(c) An Encoded X̄ ⊗ X̄
Logical Stabilizer.

Figure 4.7: The Stabilizers of the Graph State |ATG⟩

to Section 4.3.3 rigorous proofs that these stabilizers factor as above. Let us begin with S0.

The Meta-Checks S0. S0 will consist of X or Z “meta-checks” which encode redundancies
into the bulk qubits. Each meta-check will be centered around an “meta-vertex” - the support
of such meta-checks will consist of copies of the X and Z tanner graphs in alternating layers
(offset from those of E); together with vertical connections between copies of the same
ancillas (Section 4.3.1.3).

For each even layer t and c ∈ [mz], we place a Z meta-check:

G(c,t−1) ·G(c,t+1) ·
∏

i∼c

G(i,t) = X(c,t−1) ⊗X(c,t+1)

⊗

i∼c

X(i,t) (4.104)

For each odd layer t and c ∈ [mx], we place a X meta-check:

G(c,t−1) ·G(c,t+1) ·
∏

i∼c

G(i,t) = X(c,t−1) ⊗X(c,t+1)

⊗

i∼c

X(i,t) (4.105)

The fact that these products of graph state factorize cleanly into products of X operators
is non-trivial, and carefully leverages the fact that Q is a CSS code. While we defer a
rigorous proof to Section 4.3.3, the underlying intuition is that each X ancilla qubit d ∈ [mx]
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which arises in the neighborhood of the support of any given Z meta-check c ∈ [mz], appears
precisely an even number of times. This is since d and c on layer t are connected through a
qubit i iff HZ

c,i ·HX
d,i = 1 (see Section 4.3.1.3 (b)), and therefore the number of appearances

is

∑

i

HZ
c,i ·HX

d,i =
(
HZ(HX)T

)
c,d

= 0 mod 2 (4.106)

The stabilizers in S1 arise in two types. Recall that
∣∣Φ̄
〉

consists of an encoded maxi-
mally entangled state across two copies of the LDPC code Q. Then, within S1 there will be
stabilizers of the individual boundary codes, and encoded stabilizers of the Bell state.

The Stabilizers of the Boundary Codes. We specify the X and Z stabilizers of the
boundary codes as follows. To begin, let us consider the simpler case, consisting of the
Z-type stabilizers. For each c ∈ [mz], there exists graph state stabilizers ∈ S, satisfying the
following decomposition

G(c,1) = X(c,1)

⊗

i∼c

Z(i,1), G(c,2T+1) = X(c,2T+1)

⊗

i∼c

Z(i,2T+1) (4.107)

Which directly follows from the definition of the graph state stabilizers. Note that these
operators act as Z Paulis on the boundary ∂ and X on B.

The X-type stabilizers on the boundary codes are slightly more complicated, and require
products of graph state stabilizers. For each X-type stabilizer c ∈ [mx] of Q, there exists
products of graph state stabilizers ∈ S, satisfying the decomposition

G(c,2) ·
∏

i∼c

G(i,1) = X(c,2)

⊗

i∼c

X(i,1), G(c,2T ) ·
∏

i∼c

G(i,2T+1) = X(c,2T )

⊗

i∼c

X(i,2T+1). (4.108)

Which, we note, act as X stabilizers on the boundary codes ∂ in tensor product with an X
Pauli on the Bulk, as desired.

The Encoded Logical Stabilizers. The encoded Bell pairs are stabilized by products
X̄1⊗ X̄2T+1, Z̄1⊗ Z̄2T+1 of logical operators. We construct these operators using graph state
stabilizers in G, and only X operators on the Bulk, via products of stabilizers in alternating
layers of G.

To begin, let us consider the encoded X̄1 ⊗ X̄2T+1 stabilizer. Let αx ⊂ [n] denote the
support of a logical X̄ on Q. Then, we can write the X̄1 ⊗ X̄2T+1 stabilizer as:

∏

i∈αx
t odd

G(i,t) =
⊗

i∈αx
t odd

X(i,t) = X̄1 ⊗ X̄2T+1

⊗

i∈αx
t∈{3,5,··· }

X(i,t) (4.109)

Similarly, let αz ⊂ [n] denote the support of a logical Z̄ on Q. Then, we can write the
Z̄1 ⊗ Z̄2T+1 stabilizer as:
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∏

i∈αz
t even

G(i,t) = Z̄1 ⊗ Z̄2T+1

⊗

i∈αz
t even

X(i,t) (4.110)

To argue that these operators factor as desired, we similarly apply the constraint that Q
defines a CSS code. We refer the reader to Section 4.3.3 for the proofs.

4.3.1.4 The Recover and Repair functions

We are now in a position to define the Pauli frame correction Rec, and the residual Pauli
noise Rep.

The Pauli Frame Correction Rec. The definition of Rec proceeds in two steps. At a
high level, we begin by leveraging the meta-check information S0, to make a guess Z(β) for
the error which occurs on the Bulk B.18 Then, we pick Rec to be an arbitrary Pauli error
supported on the boundary ∂, which is consistent with the information from S1, and the
inferred error Z(β).

To understand the role of the meta-checks in this sketch, let us concretely show how the
measurement outcome string s ∈ {0, 1}B allows us to extract partial information about any
Z-type Pauli error on the Bulk P = Z(η)B. For any stabilizer I∂ ⊗X(α)B ∈ S0, we have

(−1)s·α
(
|±s⟩⟨±s| ⊗ I∂

)
Z(η)B ⊗ I∂ |ATG⟩

=

(
|±s⟩⟨±s| ⊗ I∂

)
X(α)Z(η)B ⊗ I∂ |ATG⟩

= (−1)α·η
(
|±s⟩⟨±s| ⊗ I∂

)
Z(η)B ⊗ I∂ |ATG⟩ ,

(4.111)

therefore revealing the “syndrome” information η · α = s · α mod 2. By collecting this
syndrome information, we can make a guess for the error on the Bulk, as described in Step 2
of Fig. 4.8. An analogous calculation can be reproduced for the stabilizers S∂⊗X(α)B ∈ S1:

S∂ ·
(
|±s⟩⟨±s| ⊗ I∂

)
Z(η)B ⊗ I∂ |ATG⟩

= (−1)s·α
(
|±s⟩⟨±s| ⊗ I∂

)(
X(α)Z(η)B ⊗ S∂

)
|ATG⟩

= (−1)α·η+α·s
(
|±s⟩⟨±s| ⊗ I∂

)
Z(η)B ⊗ I∂ |ATG⟩ .

(4.112)

In this manner, if we were to perform an ideal syndrome measurement of S∂ on the post-
measurement state, the value readoff would be α · η+α · s. The goal is to correct all of them
to 0 (or +1 for the stabilizer measurement).

18Note that we can restrict ourselves to Z errors on B, since these qubits are measured in the X basis.
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Recover Rec(s). Given a measurement string s ∈ {0, 1}B,

1. For each stabilizer I∂ ⊗X(α)B ∈ S0, compute its syndrome sα = s · α.

2. Find the minimum-weight Z-type Pauli Z(β) supported on B, consistent with
the syndromes sα of S0.

3. For each stabilizer S∂ ⊗X(γ)B ∈ S1, compute the corrected syndrome

s′γ = s · γ ⊕ γ · β.

4. Let Rec(s) be an arbitrary Pauli supported on ∂, consistent with the computed
corrected syndromes s′ of S1. a

aHere, for simplicity we assume the CSS code is specified by full rank matrices HX , HZ , such that
there always exists an error associated to every syndrome vector.

Figure 4.8: The Pauli Frame

Unfortunately, our decoder does not have access to these ideal values, and instead can
only make a guess of them using s, and the inferred error Z(β), as done in step 3. Note that
this step is not necessarily efficient.

After Rec(s) is applied, the state equals

(
|±s⟩⟨±s| ⊗ Rec(s)∂

)
Z(η)B ⊗ I∂ |ATG⟩ up to

normalization. For each code stabilizer S∂, suppose the corresponding cluster state stabilizer
is S∂ ⊗X(α)B ∈ S1, then the residual syndrome is given by

S∂ ·
(
|±s⟩⟨±s| ⊗ Rec(s)∂

)
Z(η)B ⊗ I∂ |ATG⟩

= (−1)α·β+α·sRec(s)∂ · S∂ ·
(
|±s⟩⟨±s| ⊗ I∂

)
Z(η)B ⊗ I∂ |ATG⟩

= (−1)α·β+α·sRec(s)∂ · (−1)α·η+α·s
(
|±s⟩⟨±s| ⊗ I∂

)
Z(η)B ⊗ I∂ |ATG⟩

= (−1)α·β+α·η
(
|±s⟩⟨±s| ⊗ Rec(s)∂

)
Z(η)B ⊗ I∂ |ATG⟩ ,

(4.113)

that is, the residual syndrome is given by α · β + α · η. This constitutes a proof that the
decoding process in Rec(s) (step 4 of Fig. 4.8) can be arbitrary, because the residual syndrome
only depends on β.
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The Residual Error Rep. Once the Rec(s) has been computed and applied, we pick Rep
to be a carefully designed Pauli operator (residual error) on ∂ satisfying:

(
|±s⟩⟨±s| ⊗ Rec(s)

)
P |ATG⟩ = γs |s⟩ ⊗ Rep(P )

∣∣Φ̄
〉

(4.114)

Note that the decoder need not know what Rep is; however, should they be able to
perform a perfect syndrome measurement after Rec is applied, then Rep can essentially be
understood as the minimum weight operator consistent with that syndrome. To be more
concrete, we define Rep(P ) as a product of 4 terms:

Rep(P ) = RepX(P ) · RepZ(P ) · RepX̄(P ) · RepZ̄(P ) (4.115)

Each of the terms above will correspond to the residual correction of the syndrome of a
given stabilizer of Φ̄. If we partition the stabilizers S∂ ⊗X(α) ∈ S1, based on whether S∂ is
an X or Z stabilizer of the LDPC code Q, or whether it is a logical XX or ZZ stabilizer of
the encoded Bell state, then

• RepX(P ) is the minimum weight Z-type Pauli operator on ∂ consistent with the residual
syndrome of the X stabilizers of Q;

• RepZ(P ) is the minimum weightX-type Pauli operator on ∂ consistent with the residual
syndrome of the Z stabilizers of Q;

• RepX̄(P ) ∈ {I, Z̄} is the residual Z logical error, which ensures Rep(P ) and Z(β)P
have the same syndrome under the encoded XX stabilizer.

• RepZ̄(P ) ∈ {I, X̄} is the residual X logical error, which ensures Rep(P ) and Z(β)P
have the same syndrome under the encoded ZZ stabilizer.

We will argue in the following section that so long as P is a local stochastic error, then
RepX(P ), RepZ(P ) are local stochastic as well. Moreover, RepX̄(P ), RepZ̄(P ) are trivial
(identity) with high probability.

4.3.2 Proof of fault-tolerance via clustering

This section is the main technical part, in which we show that if P is a local stochastic
error, then the residual error Rep(P ) is also local stochastic. Our proof approach follows
closely that of [255] and [254], who argued that quantum LDPC codes can (information-
theoretically) correct from random errors of rate less than a critical threshold p ≤ p∗, even
in the presence of syndrome measurement errors. Their key idea was a “clustering” argument,
which reasons that stochastic errors on LDPC codes cluster into connected components on
a certain low-degree graph. Using a percolation argument on this low-degree graph, they
prove these errors are unlikely to accumulate into a logical error on the codespace.
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The syndrome adjacency graphs. To setup notation, let P2, P3, · · ·P2T ∈ {0, 1}n de-
note the support of the physical Z errors that occur on each layer of the Bulk qubits, and
B1, B3, · · ·B2T+1 ∈ {0, 1}mz , B2, B4, · · ·B2T ∈ {0, 1}mx denote the support of the Z errors
that occur the ancilla qubits in G. Following the syntax of Rec,Rep, let R2, R3, · · · , R2T ∈
{0, 1}n and C1, C2, · · · , C2T+1 denote the set of deduced Z-errors on the physical and an-
cilla qubits respectively, using the information from the meta-checks S0.19 For E ∈ {0, 1}n,
SynX(E) ∈ {0, 1}mx is the X syndrome vector associated to E (when E is interpreted as a
Pauli Z error), and SynZ(E) is defined analogously.

By definition, R,C and P,B are both consistent with syndromes inferred from S0, which
implies the relation

B2t ⊕B2t+2 ⊕ SynX(P2t+1) = C2t ⊕ C2t+2 ⊕ SynX(R2t+1), ∀t = 1, 2, . . . , T − 1, (4.116)

and similarly for the Z syndrome on even layers:

B2t−1 ⊕B2t+1 ⊕ SynZ(P2t) = C2t−1 ⊕ C2t+1 ⊕ SynZ(R2t), ∀t = 1, 2, . . . , T. (4.117)

We represent the decoding process on a pair of new graphs, coined the “syndrome ad-
jacency graphs”, following minor modifications to [254]’s ideas. The X (resp, Z) syndrome
adjacency graph is defined on T + 1 layers, where in each layer we place n nodes, and the
1st and T + 1st layers are referred to as the “boundary” nodes. For each timestep t ∈ [T ]
and X parity check c ∈ [mx], we also place a node (c, t) between code layers t and t + 1.
Intuitively, the nodes in the X syndrome adjacency graph are in bijection with the nodes in
the Z layers of the ATG. In turn, the edges in this graph represent the connectivity of the
stabilizers of the ATG: we connect any two nodes if they both are both acted on by a X
(resp. Z) meta-checks or X (resp. Z) boundary code stabilizers. If the code is ℓ-LDPC, the
degree of this graph is z ≤ ℓ(ℓ− 1) + 2ℓ ≤ ℓ(ℓ+ 1).

We connect code nodes (i, t) and (j, t) if i, j ∼ c are both in the support of some check
c ∈ [mx], we connect (c, t) to both (i, t) and (i, t+1), and finally we connect (c, t) to (c, t+1).

To represent the decoding process on these new graphs, we will mark the vertices in
which decoding has failed: for t ∈ {1, · · ·T − 1} we paint a code vertex (i, t) in the Bulk of
the X syndrome adjacency graph iff the physical error differs from the inferred error on the
associated vertex of the ATG: P(i,2t+1) ̸= R(i,2t+1); similarly, we paint a check vertex (c, t) of
the syndrome adjacency graph iff B(c,2t) ̸= C(c,2t). Finally, we paint a vertex on the boundary
of the X syndrome adjacency graph iff RepX(P ) is non-zero on the associated qubit of ∂.

Perhaps the key observation in the approach of [255, 254] is to decompose the marked
vertices in these adjacency graphs into (maximal) connected components20. By definition,
the total weight of R + C must be less than the total error on the Bulk P + B. What is
non-trivial is that this is true even within each connected components of marked vertices, as
formalized in Lemma 4.19 below.

19Note that R,C define Z(β), in the notation of Section 4.3.1.4.
20A connected component K of marked vertices is maximal if there is no marked vertex adjacent to but

not in K.
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Lemma 4.19 (Mismatched errors form connected components). Consider a connected com-
ponent K within the Bulk of the X syndrome adjacency graph. Then,

∑

t∈[1,T−1]

∣∣R2t+1

∣∣
K

+
∑

t∈[1,T ]

∣∣C2t

∣∣
K
≤

∑

t∈[1,T−1]

∣∣P2t+1

∣∣
K

+
∑

t∈[1,T ]

∣∣B2t

∣∣
K
, (4.118)

and similarly for the Z syndrome adjacency graph.

Proof. By definition, R,C are chosen to have minimal weight consistent with the syndrome
S0 information. We claim that if on K, the weight of R,C are not minimal, then we could
swap R|K , C|K ↔ P |K , B|K on K, and decrease the overall error weight. Indeed, to see
that performing such a swap still produces an operator R′, C ′ consistent with the syndrome
information, note that (1) all checks contained entirely within K are consistent, since so is
P |K , B|K ; (2) on the “closure” K̄ of K (K and its boundary), R′|K̄ , C ′|K̄ = P |K̄ , B|K̄ , since
K is a maximal connected component.

The clustering arguments in the next lemmas require a short technical fact.

Fact 4.2 ([255, 254]). Consider a set T of t nodes in a graph G of degree ≤ z. The number
of sets S of nodes which contain T , of total size s, and which form a union of connected
components in G, is ≤ zs−t · 4s.

The first step in the clustering argument is to reason that there does not exist any
connected component (in either X or Z syndrome adjacency graph) which connects the two
boundary codes in ∂. This is the only location the third dimension/number of layers of the
graph state, T , appears. Henceforth, we will refer to this non-connected boundary condition
as the clustering condition, or CCX ,CCZ . As we discuss shortly, conditioned on this event,
the residual errors can be described as local stochastic errors.

Lemma 4.20 (The Boundaries aren’t Connected). There exists p0 ∈ (0, 1) s.t. ∀p < p0, the
probability there exists a connected component K in the Bulk of the X syndrome adjacency
graph which spans the two boundaries is

1− P[CCX ] ≡ PP←N(p)

[
∃K which spans ∂

]
≤ mx ·

(p/p0)
T/2

1−
√
p/p0

, (4.119)

where p0 ≡ (8z)−2. The Z clusters are analogous.

Proof. Let us fix a connected component of size |K| = s. We aim to find a lower bound on
the number of Bulk Z errors which occur in K, as a function of s. For this purpose, note
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that the number of marked vertices satisfies:21

s =
∑

t∈[1,T−1]

∣∣R2t+1P2t+1

∣∣
K

+
∑

t∈[1,T ]

∣∣C2tB2t

∣∣
K

≤
∑

t∈[1,T−1]

(∣∣R2t+1

∣∣
K

+
∣∣P2t+1

∣∣
K

)
+
∑

t∈[1,T ]

(∣∣C2t

∣∣
K

+
∣∣B2t

∣∣
K

)
.

(4.120)

Next, we leverage the fact that the weight of the inferred error (R,C) is minimal, from
Lemma 4.19. That is, within any connected component K,

∑

t∈[1,T−1]

∣∣R2t+1

∣∣
K

+
∑

t∈[T ]

∣∣C2t

∣∣
K
≤

∑

t∈[1,T−1]

∣∣P2t+1

∣∣
K

+
∑

t∈[T ]

∣∣B2t

∣∣
K
. (4.121)

This implies that ∑

t∈[1,T−1]

∣∣P2t+1

∣∣
K

+
∑

t∈[T ]

∣∣B2t

∣∣
K
≥ s

2
. (4.122)

Therefore, there are at least s/2 physical errors (P,B) in K. Finally, if a connected compo-
nent K spans the boundaries of ∂, it must have size s ≥ T . By a union bound,

PP←N(p)

[
∃K which spans ∂

]

=PP←N(p)

[
∃K, ∃i, j ∈ [mx] s.t. (i, 1), (j, T ) ∈ K

]

≤
∑

s≥T

(
# Clusters of Size s incident on ∂

)
·
(

# Error Patterns

)
· ps/2

≤mx ·
∑

s≥T

(4z)s · 2s · ps/2 ≤ mx
(p/p0)

T/2

1−
√
p/p0

(4.123)

where p0 ≡ (8z)−2. In the last inequality, we leveraged Fact 4.2 and the fact that the number
of ways to pick s/2 locations out of a set of size s is ≤ 2s.

We are now in a position to prove the residual errors RepZ ,RepX are local stochastic
noise, so long as we condition on the disconnected boundaries condition CC of Lemma 4.20.
The proof strategy is similar to that above, and that of [254]: We relate the size of the
clusters to the number of true physical errors within it, and subsequently union bound over
such configurations of clusters.

To proceed, we need another short lemma on the weight of clusters connected to only
one of the boundary codes:

21Here, we let |RP | denote the number of locations the vectors R,P differ, or alternatively, the weight of
the operator associated to the product of R,P as Pauli Z operators.
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Lemma 4.21. Consider a connected component K in the X syndrome adjacency graph,
incident on only one of the boundary codes. Let G = RepX(P ) denote the residual Z error
on ∂. Then,

|G|K ≤
∑

t∈[1,T−1]

∣∣P2t+1 ·R2t+1

∣∣
K
. (4.124)

Proof. The crux of the proof lies in the following claim (which we prove shortly): If the
connected component K is incident on only one of the boundaries of ∂, then the operators
G|K ∈ Pauli(n) and

∏
t∈[1,T−1] P2t+1|K ·R2t+1|K ∈ Pauli(n) have the same X syndrome. This

tells us G|K and
∏

t∈[1,T−1] P2t+1|KR2t+1|K differ only by a Z stabilizer. However, if G is

minimal, then G|K must have weight less than that of
∏

t∈[1,T−1] P2t+1|KR2t+1|K . Otherwise,

we could replace G with G ·G|K ·
∏

t∈[1,T−1] P2t+1|KR2t+1|K , and decrease the overall weight
of G, without changing the syndrome information. Thus,

|G|K ≤
∣∣∣∣
∏

t∈[1,T−1]

P2t+1

∣∣
K
R2t+1

∣∣
K

∣∣∣∣ ≤
∑

t∈[1,T−1]

∣∣P2t+1 ·R2t+1

∣∣
K
. (4.125)

To prove the missing claim, we note two facts. Let us assume, WLOG, that K is incident
on the boundary on the first layer. First, recall that the residual error G|K = RepX(P )|K
is, by definition, the minimum weight Z error consistent with the residual X syndrome
(restricted to the cluster K). By the definition of the Pauli frame in Fig. 4.8, we observe
that this residual syndrome is simply B2|K ⊕ C2|K , the mismatch on the first layer of X
checks.

Therefore, it remains to show that SynX(
∏

t∈[1,T−1] P2t+1|K ·R2t+1|K) = B2|K ⊕C2|K . By

a telescoping argument using Eq. (4.116),

SynX(
∏

t∈[1,T−1]

P2t+1|K ·R2t+1|K) =
∑

t∈[1,T−1]

SynX(P2t+1|K ·R2t+1|K)

=
∑

t∈[1,T−1]

(
B2t|K ⊕B2t+2|K ⊕ C2t|K ⊕ C2t+2|K

)

= B2|K ⊕ C2|K ⊕B2t∗|K ⊕ C2t∗|K ,

(4.126)

where we assume the cluster K is entirely contained within layers [1, t∗ < T ]. However, note
that the last layer of K must be a “code” layer, i.e. we must have B2t∗|K ⊕ C2t∗|K = 0.
As otherwise, by Eq. (4.116) and the meta-check connectivity, we must have at least one
connected node at some layer > 2t∗, a contradiction to K being contained within [1, t∗ <
T ].

Lemma 4.22 (The Residual Error is Stochastic). Let S ⊂ ∂ denote a subset of qubits on
the boundary of size |S| = a. Then there exists p1 ∈ (0, 1) s.t. ∀p < p1,

PP←N(p)

[
S ⊆ Supp(RepX(P ))

∣∣∣∣CCX
]
≤ (p/p1)

a/2

1− (p/p1)1/4
· 1

P[CCX ]
, (4.127)
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Where p1 = (8z)−4, and P[CCX ] is defined in Lemma 4.20. RepZ(P ) is analogous.

Proof. We wish to bound the probability that the residual error G = RepX(P ) is supported
on a subset S of size |S| = a. Let us once again decompose the X syndrome adjacency
graph into clusters, and sum up the total size of clusters connected to (and including) G, let
this size be s. Assuming none of these clusters span the two boundary codes, we have from
Lemma 4.21,

2a ≤ 2 ·
∑

K

|G|K ≤
∑

K

|G|K +
∑

t∈[1,T−1]

∣∣P2t+1R2t+1

∣∣
K
≤ s. (4.128)

Moreover, since the weight of R,C is minimal, they must have weight less than that of P,B
on each cluster (Lemma 4.19):

s =
∑

K

(
|G|K +

∑

t∈[1,T−1]

∣∣R2t+1P2t+1

∣∣
K

+
∑

t∈[1,T ]

∣∣C2tB2t

∣∣
K

)

≤ 4 ·
∑

K

( ∑

t∈[1,T−1]

∣∣P2t+1

∣∣
K

+
∑

t∈[1,T ]

∣∣B2t

∣∣
K

)
.

(4.129)

In other words, there must be at least s/4 real errors “connected” to the residual error G.
We can now apply a union bound over the cluster configurations:

PP←N(p)

[
S ⊆ Supp(RepX(P )) and CCX

]

≤
∑

s≥2a

(
# Clusters of Size s

)
·
(

# Error Patterns

)
· ps/4

≤
∑

s≥2a

(
4s · zs−a

)
·
(
2s
)
· ps/4 ≤

(
26z
√
p
)a ·

∑

i≥0

(23zp1/4)i ≤ (p/p1)
a/2

1− (p/p1)1/4
.

(4.130)

So long as p ≤ p1 ≡ (8z)−4. In the above, we leverage Fact 4.2. Bayes rule with P[CCX ]
concludes the proof. The Z errors are analogous.

It only remains to consider the logical stabilizers of Φ̄. As described in Section 4.3.1.3,
RepX̄ ∈ {I, Z̄1} quantifies the necessary logical correction operation on ∂, to ensure the
resulting state is Φ̄. The lemma below stipulates that except with exponentially small
probability, this correction operator is simply identity.

Lemma 4.23 (There are no Logical Errors). The probability the X logical correction RepX̄(P )
is non-trivial is

PP←N(p)

[
RepX̄(P ) ̸= I

]
≤ (p/p2)

d/4

1− (p/p2)1/4
· 1

P[CCX ]
, (4.131)

where p2 = (8z)−4, and P[CCX ] was defined in Lemma 4.20. The Z correction RepZ̄(P ) is
analogous.
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Proof. Suppose, after we apply RepX(P ) = RepX(P )1 ⊗ RepX(P )2T+1 to the boundary ∂ of
the post-measurement state, we were able to perform a perfect (noiseless) syndrome mea-
surement of an encoded X̄1⊗X̄2T+1 stabilizer. By definition of the associated encoded logical
stabilizers from Section 4.3.1.3, the resulting syndrome outcome sX̄ ∈ {0, 1} is

sX̄ = SynX̄1X̄2T+1

(
RepX(P )1 ⊗ RepX(P )2T+1

⊗

t∈[1,T−1]

P2t+1 ·R2t+1

)
. (4.132)

If we let the support of X̄ be αx ⊂ [n], this syndrome outcome is equal to the parity of the
following operator Z(γ), γ ⊂ [n] on αx:

Z(γ) ≡ RepX(P )1 · RepX(P )2T+1 ·
∏

t∈[1,T−1]

P2t+1 ·R2t+1, sX̄ = |γ ∩ αx| mod 2 (4.133)

We claim that this parity is 0 with high probability, such that no logical correction RepX̄(P )1
is needed. To see this, we follow the procedure from the previous proofs, and decompose the
X syndrome adjacency graph into clusters. Recall via the proof of Lemma 4.21 that each
cluster defines a logical (or trivial) operator of Q, since

SynX

(
RepX(P )|K ·

∏

t∈[1,T−1]

P2t+1|KR2t+1|K
)

= 0. (4.134)

Moreover, if this product of operators on K is an X stabilizer of Q, then by definition it has
0 logical X̄1X̄2T+1 syndrome. The only remaining possibility lies in if the cluster K defines
a logical operator. If so, we must have that the size of |K| = s ≥ d, the distance of the
code. By a similar argument behind Lemma 4.21 and Lemma 4.19, if we condition on K not
spanning the boundaries (event CCX), then K contains at least s

4
physical errors.

Via the percolation-based union bound, the probability there exists any cluster K with
non-trivial SynX̄1X̄2T+1

syndrome is then

PP←N(p)

[
SynX̄1X̄2T+1

(
RepX(P )1 ⊗ RepX(P )2T+1

⊗

t∈[1,T−1]

P2t+1 ·R2t+1

)
= 1 and CCX

]

≤
∑

s≥d

(
# Clusters of Size s

)
·
(

# Error Patterns

)
· ps/4

≤
∑

s≥d

(
4s · zs

)
·
(
2s
)
· ps/4 ≤

(
8zp1/4

)d · (p/p2)
d/4

1− (p/p2)1/4

(4.135)
where p2 = (8z)−4. In the above, we leveraged Fact 4.2.



CHAPTER 4. FAULT TOLERANCE 269

4.3.3 Omitted proofs

We dedicate this section to the proofs that the stabilizers defined in Section 4.3.1.3 factorize
into X Pauli operators on the Bulk B. To simplify notation, let Nu = {v : (u, v) ∈ E} denote
the neighborhood of a vertex u ∈ V in the graph G.

Lemma 4.24 (The Meta-Checks S0). For each even layer t and c ∈ [mz], the associated Z
meta-check factorizes into a product of X Pauli operators on B:

G(c,t−1) ·G(c,t+1) ·
∏

i∼c

G(i,t) = X(c,t−1) ⊗X(c,t+1)

⊗

i∼c

X(i,t) (4.136)

And similarly for the X meta-checks.

Proof. For any meta-check centered around the “meta-vertex” (c, t), the product of graph
state stabilizers around it can be written in terms of its “neighborhood of neighborhoods”.
The neighborhood N(c,t) of (c, t) consists of the check qubits (c, t ± 1), and the code qubits
(i, t) s.t. HZ

c,i = 1 (i.e. i ∼ c). The “neighborhood of neighborhoods” is then the multi-set (a
set with repetitions) ∪u∈N(c,t)

∪v∈Nu , which allows us to write the product of stabilizers above
as:

G(c,t−1) ·G(c,t+1) ·
∏

i∼c

G(i,t) = X(c,t−1) ⊗X(c,t+1)

⊗

i∼c

X(i,t)

∏

u∈N(c,t)

∏

v∈Nu

Zv (4.137)

We claim that each qubit in ∪u∈N(c,t)
∪v∈Nu appears an even number of times in this multi-

set, such that the product of Z Paulis above cancels. In fact, there are only two cases we
need to consider: First, consider the code qubits (i, t± 1) in layers above and below t. Each
such node is in both N(c,t±1) and in N(i,t), thus counted twice.

The challenge lies in the X check qubits at layer t. For any d ∈ [mx], the check qubit
(d, t) lies in the “neighborhood of neighborhoods” of (c, t) through a code qubit (i, t) iff
HZ
c,i ·HX

d,i = 1. Thereby, the parity of the number of appearances is

∑

i

HZ
c,i ·HX

d,i =
(
HZ(HX)T

)
c,d

= 0 (4.138)

Since (HX , HZ) defines a CSS code.

The stabilizers in S1 arise in two types. Recall that
∣∣Φ̄
〉

consists of an encoded maximally
entangled state accross two copies of the LDPC code Q. Then, within S1 there will be
stabilizers of the individual boundary codes, and encoded stabilizers of the Bell state.

Lemma 4.25 (The Stabilizers of the Boundary Codes). Each X-type or Z-type stabilizer
S∂ of the two boundary LDPC codes Q can be written in the form X(α) ⊗ S∂ ∈ S1 via a
product of graph state stabilizers. Explicitly,
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1. For each Z-type stabilizer c ∈ [mz] of Q, there exists graph state stabilizers ∈ S1,
satisfying the decomposition

G(c,1) = X(c,1)

⊗

i∼c

Z(i,1), G(c,2T+1) = X(c,2T+1)

⊗

i∼c

Z(i,2T+1) (4.139)

2. For each X-type stabilizer c ∈ [mx] of Q, there exists products of graph state stabilizers
∈ S1, satisfying the decomposition

G(c,2) ·
∏

i∼c

G(i,1) = X(c,2)

⊗

i∼c

X(i,1), G(c,2T ) ·
∏

i∼c

G(i,2T+1) = X(c,2T )

⊗

i∼c

X(i,2T+1).

(4.140)

We remark that both of the decompositions above are simply applying an X or Z stabi-
lizer of the LDPC code on either the first or last layer of G.

Proof. Case 1 is rather straightforward, as the graph state stabilizer S(c,1) (resp, 2T + 1)
is precisely applying a Z stabilizer of Q on the associated boundary code. Case 2 is more
subtle. However, we can follow the reasoning in Lemma 4.24: to show that the Z Pauli’s
arising from the graph state stabilizers cancel, it suffices to show they are counted an even
number of times from the neighborhoods of (c, 2) and (i, 1) where HX

c,i = 1. Indeed, the
code qubits (i, 2) are counted exactly twice (due to the vertical connections), and the Z-type
check qubits (d, 1) are counted an even number of times since Q is a CSS code.

The encoded Bell pairs are stabilized by products X̄1 ⊗ X̄2T+1, Z̄1 ⊗ Z̄2T+1 of logical
operators. The Lemma below shows how to construct these operators using graph state
stabilizers in G, and only X operators on the Bulk.

Lemma 4.26 (The Encoded Stabilizers of Φ). Every encoded stabilizer S of Φ can be written
as a product of graph state stabilizers S∂ ⊗X(α) ∈ S1, for some subset α ⊂ B. Explicitly,

1. Let αx ⊂ [n] denote the support of a logical X̄ on Q. Then,

∏

i∈αx
t odd

G(i,t) = X̄1 ⊗ X̄2T+1

⊗

i∈αx
t odd ∈B

X(i,t) (4.141)

2. Let αz ⊂ [n] denote the support of a logical Z̄ on Q. Then,

∏

i∈αz
t even

G(i,t) = Z̄1 ⊗ Z̄2T+1

⊗

i∈αz
t even

X(i,t) (4.142)
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Proof. The argument follows the strategy of the previous two lemmas. The alternating
even/odd layers implies that the Z operations arising due to the vertical connections are
each counted twice, thus cancelling. The connections to ancilla qubits on each layer cancel
due to the CSS condition, as logical operators by definition have support αx (resp αz) with
even overlap with the support of Z (resp X) parity checks.
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[223] Héctor Bomb́ın. “Single-Shot Fault-Tolerant Quantum Error Correction”. In: Phys.
Rev. X 5 (3 Sept. 2015), p. 031043. doi: 10.1103/PhysRevX.5.031043.

[224] E. B. Davies. “Markovian master equations”. In: Communications in Mathematical
Physics 39.2 (June 1974), pp. 91–110. doi: 10.1007/BF01608389.

[225] Evgeny Mozgunov and Daniel Lidar. “Completely positive master equation for arbi-
trary driving and small level spacing”. In: Quantum 4 (2020), p. 227.

[226] Ainesh Bakshi, Allen Liu, Ankur Moitra, and Ewin Tang. High-Temperature Gibbs
States are Unentangled and Efficiently Preparable. 2024. arXiv: 2403.16850 [quant-ph].

[227] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
“Proof Verification and the Hardness of Approximation Problems”. In: J. ACM 45.3
(1998), pp. 501–555. doi: 10.1145/278298.278306.

[228] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded
Regev. “Adiabatic Quantum Computation is Equivalent to Standard Quantum Com-
putation”. In: SIAM Journal on Computing 37.1 (2007), pp. 166–194. doi: 10.1137/
S0097539705447323.

[229] Chi-Fang Chen, Hsin-Yuan Huang, John Preskill, and Leo Zhou. Local minima in
quantum systems. 2023. arXiv: 2309.16596 [quant-ph].

[230] Alexei Y. Kitaev, A. H. Shen, and Mikhail N. Vyalyi. Classical and Quantum Com-
putation. Vol. 47. Graduate studies in mathematics. American Mathematical Society,
2002.

[231] Patrick Rall, Chunhao Wang, and Pawel Wocjan. “Thermal State Preparation via
Rounding Promises”. In: Quantum 7 (Oct. 2023), p. 1132. doi: 10.22331/q-2023-
10-10-1132.

[232] Chi-Fang Chen, Michael J. Kastoryano, Fernando G. S. L. Brandão, and András
Gilyén. Quantum Thermal State Preparation. 2023. arXiv: 2303.18224 [quant-ph].

[233] Chi-Fang Chen, Michael J. Kastoryano, and András Gilyén. An efficient and exact
noncommutative quantum Gibbs sampler. 2023. arXiv: 2311.09207 [quant-ph].

[234] Michael J. Kastoryano and Kristan Temme. “Quantum logarithmic Sobolev inequali-
ties and rapid mixing”. In: Journal of Mathematical Physics 54.5 (May 2013), p. 052202.
doi: 10.1063/1.4804995.
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byse Rouzé. “Entropy Decay for Davies Semigroups of a One Dimensional Quantum
Lattice”. In: Communications in Mathematical Physics 405.2 (Feb. 2024), p. 42. doi:
10.1007/s00220-023-04869-5.
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