
Efficient 3D Vision for Autonomous Driving

Philip Jacobson

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-183
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-183.html

August 18, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Efficient 3D Vision for Autonomous Driving

By

Philip Jacobson

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ming C. Wu, Chair
Professor Avideh Zakhor

Professor Masayoshi Tomizuka

Summer 2024

Efficient 3D Vision for Autonomous Driving

Copyright 2024
by

Philip Jacobson

Abstract

Efficient 3D Vision for Autonomous Driving

by

Philip Jacobson

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ming C. Wu, Chair

Self-driving vehicles have long been envisioned as a massive leap forward in transportation
technology. Although several efforts to developing fully autonomous vehicles are currently
being undertaken in both industry and academia, so far none have achieved the promise
of full self-driving. Of the challenges in building the autonomous software for self-driving
cars, one of the most prominent is perception, or the ability for the vehicle to sense the
world around it. To meet the requirements for practical deployment onto autonomous
vehicles, perception systems must meet four key metrics of efficiency: accuracy, low-
latency, reasonable compute hardware, and training data efficiency.

In this dissertation, we will introduce novel approaches to AV perception while aiming to
address the four metrics for efficiency. We introduce four major new perception schemes
during the course of this dissertation.

In Chapter 2, we consider a combined hardware/algorithms approach to perception to
achieve accelerated training speeds on limited compute hardware. We introduce system
based on the principles of delayed-feedback reservoir computing implemented using an op-
toelectronic delay system. To tailor this approach to computer vision tasks, we combine it
with a high-speed digital preprocessing through untrained convolutional layers to generate
randomized feature maps that are then circulated through our reservoir. We experimen-
tally validate our approach on the classic MNIST handwritten digit recognition task, and
achiever performance on-par with a digitally-trained convolutional neural network, while
achieving a training-time speed-up of up to 10×.

In Chapter 3, we consider 3D object detection in autonomous driving settings, and specif-
ically consider the problem of efficient LiDAR-camera fusion. We introduce a novel sensor
fusion approach, dubbed Center Feature Fusion, which operates through fusing camera
and LiDAR deep features in the bird’s-eye-view space. To enable low-latency fusion, we
propose a sparse feature fusion, we projects only a set of identified key camera features to
bird’s-eye-view. As a result, we are able to achieve performance on-par with competing
sensor fusion approaches, while reducing runtime latency by several times.

In Chapter 4, we consider the problem of 3D object detection from the data efficiency

1

angle, aiming to reduce the labeled data requirement needed to train the computer vi-
sion models necessary for autonomous vehicles. In this chapter, we introduce doubly-
robust self-training, a novel generalized approach to semi-supervised learning. We con-
duct both theoretical analysis to demonstrate its superiority over the standard self-training
approaches regardless of teacher model quality, and experimental analysis on both image
classification and object detection. For both vision tasks, we achieve performance superior
to the self-training baseline with no extra computational costs.

In Chapter 5, we continue exploring semi-supervised 3D object detection through lever-
aging the motion forecasting component of the autonomy stack to improve perception
models. We introduce our novel algorithm , TrajSSL, which uses a pre-trained prediction
model to generate a set of synthetic labels to enhance the training of a student detector
model. The generate synthetic labels are used to establish temporal consistency, and thus
filter out low-quality pseudo-labels during training, while simultaneously correcting for
missing pseudo-labels. TrajSSL outperforms the state-of-the-art for semi-supervised 3D
object detection across a wide variety of scenarios.

2

To my family

i

Contents
Contents ii

List of Tables iv

List of Figures v

1 Introduction 1
1.1 AV Sensors . 1

1.1.1 Camera . 2
1.1.2 LiDAR . 3
1.1.3 Radar . 3
1.1.4 Ultrasonic Sensing . 3
1.1.5 Sensor Fusion . 4

1.2 Computing Hardware for Perception . 4
1.2.1 Digital Hardware for Training . 4
1.2.2 Neuromorphic Acceleration . 5

1.3 Learning Algorithms for Perception . 6
1.4 Data for Perception . 6
1.5 Outline of the Dissertation . 7

2 Reservoir Computing for Accelerated Computer Vision 8
2.1 Reservoir Computing Introduction . 8
2.2 Delay-based RC . 9

2.2.1 Conceptual Outline . 10
2.2.2 Optoelectronic Hardware Implementation 11
2.2.3 Limitations . 12

2.3 Hybrid Convolutional RC . 13
2.3.1 Overview . 13
2.3.2 Convolutional Preprocessing and Masking 14
2.3.3 Hardware Implementation . 14
2.3.4 Simulation Software . 20

2.4 Experimental Results . 21
2.4.1 Parameter Optimization . 21
2.4.2 Untrained Hybrid RC . 24
2.4.3 Trained Hybrid RC . 25
2.4.4 Experimental Comparison . 27
2.4.5 CIFAR-10 Experiments . 28

2.5 Discussion . 30

3 Efficient LiDAR-Camera Fusion 31
3.1 3D Object Detection Overview . 31

3.1.1 LiDAR-based 3D Object Detection 31
3.1.2 Camera-based 3D Object Detection 32
3.1.3 Multi-modal Fusion . 33

3.2 Center Feature Fusion . 35
3.2.1 Overview . 36
3.2.2 LiDAR Backbone . 36

ii

3.2.3 Camera Backbone . 38
3.2.4 Point Cloud-Guided Depth Generation 38
3.2.5 Selective Bird’s-eye-view Projection 39
3.2.6 3D Detection Heads . 42
3.2.7 Model Training . 42

3.3 Experimental Results . 45
3.3.1 Dataset . 45
3.3.2 Main Results . 45
3.3.3 Ablation Studies . 47

3.4 Discussion . 48

4 Doubly-Robust Self-Training 50
4.1 Semi-Supervised Learning Overview . 50

4.1.1 Pseudo-labeling Approaches . 51
4.1.2 Semi-supervised Learning for Vision 51

4.2 Doubly-Robust Self-Training . 51
4.2.1 Overview . 52
4.2.2 Motivating example: Mean estimation 54
4.2.3 Guarantee for general loss . 56
4.2.4 The case of distribution mismatch 59

4.3 Experimental Results . 60
4.3.1 Image classification . 61
4.3.2 3D object detection . 64

4.4 Discussion . 67

5 Prediction Enhanced Autolabeling 69
5.1 Background . 69

5.1.1 Semi-Supervised 3D Object Detection 69
5.1.2 Temporal 3D Object Detection . 70
5.1.3 Motion Prediction . 71

5.2 TrajSSL . 71
5.2.1 Teacher-Student Framework . 72
5.2.2 Trajectory Generation . 72
5.2.3 Matched Prediction Pseudo-label Weighting 73
5.2.4 Unmatched Prediction-Enhanced Training 74
5.2.5 Training Objective . 74

5.3 Experimental Results . 75
5.3.1 Implementation Details . 76
5.3.2 Main Results . 77
5.3.3 Ablation Studies . 77

5.4 Discussion . 80

6 Conclusion 82

Bibliography 83

iii

Bibliography 83

List of Tables
2.1 MNIST classification accuracy varying number of layers in convolutional

preprocessing stage. 22
2.2 MNIST classification accuracy with and without max pooling layer after

convolutional preprocessing. 22
2.3 MNIST classification accuracy for differing random distributions used in

mask matrix. 23
2.4 MNIST classification accuracy for differing low pass filter cutoff frequencies. 24
2.5 Comparison of hybrid RC approach with various other machine learning

methods . 28

3.1 Performance comparison of CenterPoint and our method on nuScenes vali-
dation set. We report the total Mean Average Precision (mAP) and nuScenes
Detection Score (NDS), and per-class mAP. C.V., Motor., Ped., and T.C.
are short for Construction Vehicle, Motorcyle, Pedestrian, and Traffic Cone,
respectively. 45

3.2 Comparison with state-of-the-art fusion methods and CenterPoint on nuScenes
test set. Our method achieves a similar increase in performance to other
fusion approaches, even as we use only approximately 1/100 the number of
features for fusion. 46

3.3 Inference speed comparison with concurrent SOTA fusion approaches. CFF
increases inference speed by a factor of 2× to 5×. Inference speeds are
measured on an NVIDIA A6000 GPU. 47

3.4 Ablation study of ProjectionAlign. Results shown for nuScenes validation
set. 47

3.5 Comparison of average projection latency, number of pixels projected from
perspective view to BEV and resulting mAP for various detection heatmap
thresholds on nuScenes dataset. Projecting all camera pixels presents a
significant processing bottleneck. We omit the mAP for a threshold of 0.0
as the latency makes training this model infeasible. 48

4.1 Comparisons of doubly-robust loss with baselines on mini-ImageNet100, all
models trained for 100 epochs. 63

4.2 Ablation study on different curriculum settings on ImageNet-100. All mod-
els are trained in 20 epochs. 63

4.3 Ablation study on the number of epochs. All models are trained using 10%
labeled data on ImageNet-100. 64

4.4 Comparisons with previous SOTAs on CiFAR-10 and CIFAR-100. 65
4.5 Performance comparison on nuScenes val set. 65
4.6 mAP comparison between two labeled data training settings, illustrating

a 20% improvement in data efficiency using the doubly-robust loss with
equivalent mAP. 66

4.7 Per-class mAP (%) comparison on nuScenes val set using 1/16 of total
labels in training. 66

4.8 Performance comparison with pseudo-labeling baseline on nuScenes val set. 67

iv

4.9 Doubly Robust Loss performance comparison with differing detection thresh-
olds for pseudo-labels. 67

5.1 Performance (mAP) comparison on nuScenes validation dataset for car,
truck and bus class on a variety of labeled data fraction settings. Our
proposed TrajSSL improves performance over previous semi-supervised ap-
proaches across all classes in a wide variety of settings. *our re-implementation 77

5.2 Ablation of two main strategies of TrajSSL. 78
5.3 AgentFormer prediction accuracy for varying future frame timestamps. . . . 78
5.4 Ablation of number of prediction frames used in TrajSSL. 79
5.5 Comparison of our approach using Agentformer versus using a linear ex-

trapolation. 79
5.6 Impact of weighting parameters α, β. 79
5.7 Impact of weighting parameter γ. 80
5.8 Ablation experiments on τmin_iou. 80

List of Figures

1.1 Sensor system on Waymo’s 5th generation AV. Adapted from [40] 2
1.2 Qualitative comparison of differing 3D sensors: camera (red), LiDAR (green),

radar (blue). Adapted from [87]. 4
1.3 Comparison of training data used for training different foundation models. . 7

2.1 Diagram of prototypical RC scheme. Input data is encoded via the input
layer, before the reservoir performs a transformation into a high dimensional
space. Lastly, the output layer converts the reservoir readout to the target
sequence. 8

2.2 Illustration of linear separability arising from a nonlinear transformation
to a higher dimension. (a) Two classes lying in a 2D space which are not
linearly separable. (b) After a nonlinear transformation into 3D space, the
two classes are now separable with a single linear hyperplane. Adapted
from [4]. 9

2.3 Diagram of time-delay based reservoir computing scheme. Virtual nodes are
created through multiplying input data by mask matrix, which are then
serially passed through nonlinear node with delayed feedback. Reservoir
output is read through sampling in time. 10

2.4 (a) Visualization of input masking operation, demonstrating multiplication
of input sequence with a random mask. (b) Detailed illustration of inputs
and outputs to the nonlinear element. 11

2.5 Diagram of time-delay based reservoir computing scheme. Virtual nodes are
created through multiplying input data by mask matrix, which are then
serially passed through nonlinear node with delayed feedback. Reservoir
output is read through sampling in time. 12

2.6 (a) Feature extraction using convolutional layer, illustrating local receptive
field. (b) Random connections inside reservoir, poor contrast to CNN for
processing images. 13

v

2.7 (a) Prototypical CNN architecture with illustration of backpropagation
training. (b) Standard delay-based RC architecture. (c) Architecture of
our proposed hybrid RC scheme, illustrating preprocessing through un-
trained convolutional layers followed by delay-based RC. 15

2.8 Illustration of our RC experimental procedure. Experimental data is pre-
processed digitally on a PC before transfer via ethernet to an FPGA for
reservoir circulation. The reservoir readout is transfered back to the PC
via ethernet for the final training step. 16

2.9 Labeled photo of reservoir computing experimental setup. 17
2.10 Block diagram of the AMD Zynq 7000 SoC. 18
2.11 Illustration of tasks performed by custom FPGA DSP block used for ex-

periment control. 19
2.12 Screenshot of Xilinx IP Integrator interface with AXI DMA and FIFO blocks. 19
2.13 Diagram detailing the overall FPGA configuration used in our experiments. 20
2.14 Accuracy on MNIST test set for varying the convolutional layer width of

the (a) first (b) second and (c) third layer. Overall, no significant trend is
observed. 22

2.15 Accuracy on MNIST test set with varying sparsity of mask matrix. 23
2.16 Plot of experimental parameter sweep as a function of laser power and

modulator bias. A modulator bias of 0 corresponds to the peak of the
sinusoidal transfer function. 25

2.17 (a) Example image from MNIST dataset of digit “5". (b) Several feature
maps generated by forward pass through two untrained convolutional layers. 26

2.18 Test error on MNIST task plotted as a function of virtual nodes for standard
RC, hybrid untrained RC, and hybrid trained RC, both experiment and
simulation. 27

2.19 Diagram of VGG-8 network architecture, with 6 convolutional layers, 3
pooling layers, and 2 fully-connected layers. 29

2.20 Test accuracy on CIFAR-10 task plotted as a function of virtual nodes
for hybrid untrained RC and hybrid trained RC experiments with VGG-8
performance for comparison. 29

3.1 (a) Bottom-up grouping used in indoor point clouds. (b) Top-down group-
ing (i.e. voxelization) employed for outdoor point clouds. 33

3.2 High level comparison of (a) early (b) middle and (c) late fusion strategies. 34
3.3 Illustration of point decoration strategy for sensor fusion. 35
3.4 Illustration of deep feature fusion strategy for sensor fusion. 35
3.5 Summary of our proposed Center Feature Fusion model. The point cloud

and camera images are first encoded using a VoxelNet and DLA34-CenterNet,
respectively. Our selective projection is performed on the camera features
to project them to BEV where they are then fed into a small 2D CNN
to help with feature alignment. The multi-modal BEV features are then
concatenated and passed into CenterPoint’s bounding box heads. 37

3.6 Overview of VoxelNet architecture. Figure adapted from [139]. 37
3.7 Overview of point cloud-guided depth completion. First, the LiDAR point

cloud is projected onto the camera’s imaging coordinate system. An overlay
of LiDAR point with an RGB image is shown to illustrate the alignment.
Then, IP-basic is used to perform depth interpolation, generating a dense
per-pixel depth map. 39

vi

3.8 Visualization of CenterNet’s strategy of inferring object bounding box char-
acteristics through a single feature corresponding to the object’s center.
Figure adapted from [138] . 41

3.9 Figure demonstrating center-selective BEV projection. First, CenterNet is
used to generate a center detection heatmap. Based on the the predeter-
mined threshold, camera features are then fetched and back-projected into
BEV. 41

3.10 Demonstration of ProjectionAlign. a) Ground truth detections in BEV,
represented as points on the BEV grid. b) Unaligned projected camera
features. c) Aligned camera features. Much stronger location correspon-
dence exists between aligned features and ground truth object locations vs.
unaligned features. 44

3.11 Qualitative Comparison of detection results from CenterPoint (left) and
Center Feature Fusion (right). Red boxes indicate ground-truth objects,
while blue indicate model predictions. Our approach detects several cars
and trucks that CenterPoint misses, as well as generating more accurate
boxes for a number of objects. 46

4.1 Overview of self-training SSL scheme. First, a teacher model is trained on
the labeled data using supervised learning. The teacher model is then used
in inference mode to generate pseudo-labels on the unlabeled data, and a
student model is trained on a mixture of the labeled/pseudo-labeled data. . 50

4.2 Visualization of intuitive function of the doubly-robust loss. When the
teacher model is perfectly accurate, the loss heavily weights the contribu-
tion from pseudo-labeled data. Meanwhile if the teacher model is a poor
predictor, the loss focuses on the contribution from the labeled data. 53

4.3 Comparisons on ImageNet100 using two different network architectures.
Both Top-1 and Top-5 accuracies are reported. All models are trained for
20 epochs. 62

4.4 Results on ImageNet-100 using fully trained (300 epochs) DaViT-T with
different data fractions. 64

5.1 Visualization of the autonomy stack for AVs including four key functions:
perception, prediction, planning and control. 70

5.2 Overview of our proposed method TrajSSL. In addition to a teacher-student
SSL framework, we introduce a trajectory prediction model (AgentFormer)
which predicts future object trajectories based on past pseudo-label tracks.
The inference output of this model is combined with the perception pseudo-
labels and an IoU=matching process is performed. Pseudo-labels are then
weighted during supervision based on the degree to which they agree with
the forecasted trajectories. Meanwhile, predictions which don’t match al-
ready existing pseudo-labels are added to the training process as down-
weighted pseudo-labels. 71

5.3 Overview of Agentformer architecture. Figure adapted from [131]. 72
5.4 Illustrated process of generation trajectories from pseudo-labels. First, we

pre-train both our teacher detector model and our trajectory prediction
model using the available labeled scene data. Next, we use the teacher
model to run inference on the unlabeled scene data. Next, we link the
produced pseudo-labels into tracks of objects across time. Lastly, we feed
these tracks into prediction model to generate synthetic trajectories. 73

vii

5.5 Comparison between a scene containing only teacher-generated pseudo-
labels (in green), and the scene augmented with both pseudo-labels and
predicted trajectory boxes (in red). Overlapping red and green boxes indi-
cate pseudo-labels exhibiting a high degree of temporal consistency, which
are further emphasized during student training. Green boxes without over-
lap indicate pseudo-labels exhibiting a low degree of temporal consistency,
and hence more likely to be a false positive detection. Unmatched red
boxes indicate potential missed detections by the teacher model, and are
also added as soft targets during training. 74

5.6 Qualitative results comparison between (a) baseline confidence thresholding
SSL approach and (b) TrajSSL. Green boxes indicate ground truth objects,
and red indicate model predictions. Visually, we can see that the model
trained using TrajSSL performs significantly better, identifying many ob-
jects missed by the baseline model, while also generally predicting more
accurate bounding box shape and orientation. 75

viii

Acknowledgments

I’m lucky to have been surrounded by so many wonderful mentors and peers during my
PhD. The work in this dissertation was the culmination of the efforts of many who have
guided and supported me along the way.

I would first like to thank my advisor, Professor Ming C. Wu. For the entirety of my
PhD studies, he has guided and supported me in my research while never failing to believe
in my capabilities as a researcher.

I would to thank Professor Masayoshi Tomizuka and Dr. Wei Zhan, whose group I
worked closely with for the last several years of my PhD. The Mechanical Systems Control
Lab has been a second home for me, and I’m grateful for my experience there. I would
like to thank Professor Avideh Zakhor for serving on both my Quals and thesis committee,
and Professor Kris Pister for serving on my Quals committee.

I would like to thank all of my wonderful lab mates in my group who have helped
me grow as a researcher: Dr. Guan-Lin Su, who took me on when I was a starry-eyed
first year and showed me the ropes, helped me get a running start as a PhD student. Dr.
Mizuki Shirao, who during his time as a visiting scholar, imparted upon me an immense
amount of expertise in systems-level optoelectronics that was critical to my work. Kerry
Yu, who I worked closely with to program our FPGA for our experiments. Dr. Jean-
Etienne Tremblay, Dr. Xiaosheng Zhang, Dr. Jodi Loo, Dr. Nicolas Andrade, Daniel
Klawson, Jianheng Luo, Johannes Henriksson, and all of the other lab members who I
crossed paths with and learned from during my journey.

I would like to thank all of my collaborators in the MSC lab: Dr. Yiyang Zhou took
me in as a new member and helped me learn the ropes in an unfamiliar field. Dr. Mingyu
Ding, Chenfeng Xu, Yichen Xie, who worked closely with during my projects in the MSC
lab and have helped me learn and mature as a computer vision researcher immensely.
Banghua Zhu and Professor Jiantao Jiao, who I worked closely with as collaborators of
the MSC lab.

I would like to thank the National Defense Science and Engineering Graduate Fel-
lowship and all of the folks at the DoD and AFRL, who funded the final three years of
my PhD studies. I would also like to thank Dr. Andreas Schmitt-Sody, who served as a
wonderful mentor, both professionally and personally.

During my PhD, I was lucky to have two fruitful internships at HRL Laboratories and
Interdigital Inc. I would like to thank my advisors Dr. Heiko Hoffmann and Dr. Jiahao
Pang, whose advice and mentorship helped me bear fruit during my dissertation work.

I would like to thank my wonderful family: Mom, Dad, JingJing, and LingLing, even
though I moved across the country to pursue my education, never faltered in supporting
me personally in my journey. Through our many phone calls, I always felt you were by
my side. Lastly, I would like to thank my wonderful girlfriend Katie, who has brought me
immense joy and support during my PhD. I look forward to our future adventures ahead.

ix

Chapter 1

Introduction

Autonomous robots have long captured the imagination of scientists and the public alike.
With recent advancements in machine learning (ML) over the past decade, growth in
automation and robotics has been tremendous, and by 2030, the market is estimated to
reach up to a $260 billion dollar market cap [51]. One particular segment of the robotics
industry, autonomous driving, has received significant funding and attention over the past
several years. Ranging in applications from robotaxis traversing our cities to unmanned
vehicles for mining and agriculture to robots capable of deployment on the battlefield,
the potential of self-driving technology is staggering. The challenge of developing this
technology has brought together industry and academic researchers in computer vision,
signal processing, controls, motion planning, and hardware design. Nonetheless, the goal
of achieving SAE-designated L5 autonomy (full driving capability with no human inter-
vention) has yet to be realized.

The first component of the autonomy stack (and the focus of this thesis) is the per-
ception system, i.e. the "eyes" of the autonomous vehicle (AV). For on-road self-driving
cars, the perception system needs to handle a diverse set of high-level tasks, such as lane
detection, localization, traffic light/sign detection, vehicle and pedestrian detection, etc.
At the physical sensor level, the vehicle relies on any number of different sensor elements,
commonly including cameras, LiDAR, RADAR, etc. Custom-built embedded systems
house the computing hardware which process the incoming sensor data, and include both
CPU and GPU components to enable real-time processing. Lastly, the software backend
powering the perception system is comprised of both classical computer vision techniques,
as well as modern machine learning/deep learning-enabled vision. Given the massive com-
puting power required to train modern deep learning models, the perception models are
typically trained off-board on powerful servers in data centers before being deployed on
the vehicle.

Perception is perhaps the most important component in the robot autonomy stack;
without highly-accurate perception, none of the downstream modules responsible for plan-
ning and decision-making can function properly. For on-road self-driving cars, the stakes
are particularly high; faulty perception can lead to deadly collisions. Given the high-
stakes involved in vehicle perception, research aiming to address the challenges and faults
of the current state-of-the-art is critical. The following sections introduce several aspects
of perception that this thesis is focused on studying.

1.1 AV Sensors

Due to the challenging nature of AV perception, modern iterations of autonomous vehi-
cles typically rely on a host of different physical sensors. Common sensors deployed on
AVs include cameras, radar, LiDAR, and ultrasonic sensors, each with its own particular

1

strengths and use-cases. Fig 1.1 illustrates an example of a modern AV sensor suite, in
this case on a Waymo robotaxi.

Fig. 1.1: Sensor system on Waymo’s 5th generation AV. Adapted from [40]

1.1.1 Camera

Cameras are the most ubiquitous technology employed for imaging, broadly speaking, and
play an important role in the AV perception pipeline. By capturing light with electronic
image sensors, digital cameras are able to generate high-resolution RGB (red, green blue)
images of the world. Furthermore, the maturity of the technology allows for cameras to be
manufactured to be both compact and cheap, especially in contrast to competing sensor
technologies.

The main drawback of cameras is the images they capture are purely 2D, lacking
depth measurements to paint a full picture of a 3D scene. Several strategies exist to
try and extract 3D information from pure camera images in an AV setting. Monocular
depth estimation tries to directly estimate depth from a single RGB image; however the
ill-posed nature of the problem makes monocular depth estimation challenging, with the
best-performing approaches still far from reliable enough to form the backbone of AV
perception. Stereo vision utilizes scene captures from two cameras of differing locations
and geometries to ascertain depth information of objects in the scene. However, stereo
vision fails for flat objects with consistent textures and no distinguishing features.

Additionally, cameras also suffer from failure in harsh lighting conditions (both ex-
tremely dark or extremely bright), or in adverse weather conditions (heavy rain/snow,
fog, dust, etc).

2

1.1.2 LiDAR

LiDAR (short for Light Detection and Ranging) is a powerful 3D imaging technique
based on the principle of measuring the time-of-flight of emitted laser pulses reflecting off
surfaces in the scene. The LiDAR returns are rasterized as a point cloud, a collection of
(x, y, z) points (with optional point attributes such as velocity and reflectance, depending
on the LiDAR measurement capabilities) which illustrate a highly-accurate 3D layout of
the scene. Because LiDAR utilizes short-wavelength light in the near-infrared, LiDAR
is capable of achieving the high measurement resolution needed for sensing small objects
typical in driving scenarios. Furthermore, LiDAR is agnostic to lighting conditions, ca-
pable of functioning in both intense lighting and complete darkness. Because of these
capabilities, LiDAR is often employed as the main workhorse in modern AV perception
systems, capturing the detailed spatial information robots need to navigate the world.

Several key drawbacks have limited the proliferation of LiDAR, and stop it from being
the magic bullet for 3D perception. One significant economic issue is cost: the high-
powered LiDARs employed for AV applications are significantly more expensive than
more mature sensing technologies, due to the large number of moving components and
precise calibration required. Alternative LiDAR sensors (i.e. utilizing MEMS beamsteer-
ing [133]) leveraging cheaper manufacturing processes have been developed, but have not
yet matured to the point of practicality for AVs.

In terms of perception performance, LiDAR is limited due to its inability to detect
key semantic features of the scene, namely color and texture. For objects encountered by
drivers requiring a semantic understanding, for example traffic signs, LiDAR perception
is not adequate. LiDAR also suffers from a limited resolution; compared to the millions of
pixels digital cameras can achieve in a single image, a scene-level LiDAR point cloud may
have only hundreds of thousands of points. For small or far-away objects, this resolution
may not be sufficient. Lastly, LiDARs also fail in particularly adverse weather conditions,
as the laser light can scatter off particulates in the air, creating false readings.

1.1.3 Radar

Radar operates similarly to LiDAR, however instead uses radio frequency waves for sens-
ing. Because of the maturity of the technology, radar is relatively inexpensive and is
already used significantly for both AV applications and lower-level automation (i.e. driver
assist systems). Because of its longer wavelength, radar is more effective at penetrating
adverse weather conditions (e.g. fog), and like LiDAR is not affected by lighting con-
ditions. However, radar has much lower resolution than LiDAR and is not effective at
discerning smaller objects and detailed geometries.

1.1.4 Ultrasonic Sensing

Ultrasonic sensing works by measuring the travel time of emitted ultrasonic sound waves
reflecting off surrounding objects. Ultrasonic sensors are an ideal solution for close-range

3

object detection, and are heavily utilized in parking-assist software to measure the distance
to obstructions up to a few feet away. However, ultrasonic sensors have a very limited
range, and thus their utility for true L5 autonomy is limited.

1.1.5 Sensor Fusion

Due to the challenges of the autonomous driving task, the best results are achieved through
utilizing many different sensor modalities for perception. To summarize the strengths
and weaknesses of each sensor modality, a qualitative comparison is shown in Fig 1.2
Sensor fusion describes the process of combining sensor readings from multiple sources to
minimize uncertainty in the perception pipeline. Due to the disparate ways of representing
sensor readings from differing modalities, the best strategy for combining these is not
straightforward to determine. This topic will be discussed in further detail in Chapter 3.

Fig. 1.2: Qualitative comparison of differing 3D sensors: camera (red), LiDAR (green), radar (blue).
Adapted from [87].

1.2 Computing Hardware for Perception

The other facet of hardware enabling the perception part of the autonomy stack is the com-
puting hardware. The current standard for ML training/deployment are typical hardware
architectures used for digital computing.

1.2.1 Digital Hardware for Training

In the standard AV computing environment, the two key computing units housing the
perception software are the central processing unit (CPU) and graphics processing unit

4

(GPU). CPUs excel at handling a general set of computing instructions at fast speeds
and in sequence. In the context of 3D vision, CPUs handle the preprocessing of raw
sensor data. GPUs, on the other hand, are heavily optimized for performing massively
parallel computations, offering significant speedups on repetitive arithmetic calculations
in comparison to CPUs. GPUs are used to handle the intense tensor multiplication arising
from the deep learning models used in the perception pipeline.

Due to the nature of training modern computer vision models, model training is gen-
erally performed off-board of the AV fleet. Large computing servers with hundreds of
server-side GPUs (e.g. NVIDIA A100) are used to train massive models for the percep-
tion task, allowing for both massive training acceleration and larger memory-footprint
models. After training, perception models are deployed on custom-built ASICs mounted
onto vehicles to be run in real-time. Power consumption and latency requirements limits
the hardware that can be used on-vehicle. For example, instead of powerful server-side
GPUs with large amounts of RAM, low-power edge GPUs (e.g. NVIDIA Jetson AGX
Orin) are used onboard the AV fleet. To make server-trained models compatible with the
resource-constrained vehicle hardware, these models first undergo a process of "distilla-
tion" to reduce the number of parameters to be more manageable with limited memory
and compute.

A drawback of the two-tiered training and deployment model for AV perception is the
inability for on-board training during real-time vehicle deployment. For many AV/robotics
tasks, updating the perception model with new observations during deployment is highly
desirable. However, the standard approach of training models server-side makes this
on-the-fly-learning challenging. Cloud connectivity is often limited during deployment,
removing the ability to send and receive information with a training server. Furthermore,
standard on-board CPUs/GPUs are ill-equipped to handle the training of current state-
of-the-art vision models. This need AI models which can be trained on the edge (i.e. close
to the data source) has driven interest in more efficient hardware architectures for AI.
While more efficient digital architectures optimized for ML are a major industry focus,
more exotic approaches beyond the realm of digital computing have also been proposed.

1.2.2 Neuromorphic Acceleration

One computing paradigm that has gained traction in the age of deep learning, neuro-
morphic computing, aims to engineer chips inspired by how computation is done in the
human brain. In contrast to traditional digital computing, many neuromorphic architec-
tures additionally leverage analog computing to more closely mimic brain functions, with
the idea that hardware more closely aligned with human brains will be faster and more
energy efficient for ML than current approaches. Proposals for neuromorphic architectures
include optical [93], electronic [118] or even mechanical [55] systems for neural network
computation. Most work in this area has targeted building chips for inference only, given
the challenge of implementing backpropagation through unconventional hardware. One
backpropagation-less approach to machine learning which has gained traction for the po-
tential of hardware acceleration is reservoir computing (RC). Chapter 2 of this thesis will
further discuss adapting reservoir computing for computer vision.

5

1.3 Learning Algorithms for Perception

For robotics and autonomous driving applications, a variety of machine learning tasks
are required, such as image classification, object detection, semantic segmentation, pose
estimation, scene reconstruction, etc. This thesis will focus primarily on two of these:
image classification and object detection. Image classification is the task of prediction a
single class label from a given preset which best describes the image as a whole. Object
detection is the task of localizing and classifying all objects of interest within a scene. 2D
object detection describes objects with four degrees of freedom (x, y, height, width),
whereas 3D object detection does so with seven degrees of freedom (x, y, z, height,
width, length, heading).

Within the past decade, advancements in deep learning have propelled neural networks
to become the dominant approach for most computer vision problems. For vision-based
tasks, convolutional neural network (CNN) [29] and transformer [109] architectures have
become the standard backbone for most use-cases. Task-specific variations of these archi-
tectures are common for different tasks, e.g. Faster R-CNN for object detection [89] and
Mask R-CNN for image segmentation [28]. Supervised learning, in which large amounts
of curated labeled data are used to train the model, is the most straightforward approach
to training these vision models.

1.4 Data for Perception

Huge advancements in machine learning over the past decade are owed not only to advances
in algorithms and compute power, but also to increasingly large troves of training data.
Some concrete examples include Stable Diffusion, a cutting-edge text-to-image generative
model trained on approximately 5 billion captioned images [90], and Segment Anything,
a foundation model capable of zero-shot image segmentation trained on 11 million images
and over a billion segmentation masks [42]. A summary of the training data used for these
foundation models is included in Fig. 1.3. Supervised learning demands that training data
have data labels associated with each data sample. For training vision models capable
of semantic understanding, web crawling yields billions of images readily captioned by
humans, providing an excellent source of semantic supervision.

Collecting data for 3D perceptions tasks constitutes a significantly bigger challenge
than doing so for models trained only for semantic understanding or 2D geometric recog-
nition. Visual data on the web by and large does not contain detailed spatial and geometric
descriptions, which are key to training AI models capable of 3D perception. Directly col-
lecting the required data on one’s own is not a straightforward solution. While autonomous
driving companies with large fleets can record many hours of driving scenes, the process
of manually labeling the collected data with human labor is both very expensive and time
consuming. In contrast to labeling 2D images with object box labels, 3D labeling requires
parsing point clouds to properly localize objects in 3D space, a more niche skill set that
cannot be easily crowd-sourced.

Several approaches exist to try and mitigate the data issue. Transfer learning tries

6

Fig. 1.3: Comparison of training data used for training different foundation models.

tries to adapt models trained on a different domain for a new task (e.g. leveraging im-
age foundation models for point cloud perception). Self-supervised learning uses purely
unlabeled data during training to teach a model to learn good representations through
forcing the model to recognize intrinsic patterns in the data. Self-supervised learning is
particularly useful in training language models, as text data can easily be used to provide
its own supervisory signal. Weakly-supervised learning tries to train models using some
low-quality, noisy form of annotation. Semi-supervised learning tries to train a model
using a small corpus of labeled data, combined with a large reservoir of unlabeled data.
A popular approach to semi-supervised learning is pseudolabeling, in which a model is
trained in a supervised manner on the labeled data and thereafter used to generate pre-
dictions on the unlabeled data to be used in downstream training. This approach will be
explored in more detail in chapters 4 and 5 of this thesis.

1.5 Outline of the Dissertation

This dissertation summarizes our efforts towards addressing all of the aforementioned
problems of AV perception. Chapter 2 introduces a novel form of hardware acceleration,
which we dub a hybrid form of reservoir computing, capable of accelerating the training of
neural network models in an edge environment. Chapter 3 addresses the problem of sensor
fusion, and proposes a novel approach for LiDAR-camera fusion which is both accurate and
low-latency. Chapters 4 and 5 explore the problem of label-efficient 3D object detection,
and propose both a theoretically-grounded approach to improved pseudolabeling, and an
approach leveraging the trajectory prediction portion of the autonomy stack to improve
perception. Lastly, chapter 6 provides a summary and future outlooks.

7

Chapter 2

Reservoir Computing for Accelerated
Computer Vision

In this chapter we will address the problem of efficient hardware architectures to enable
on-board training of computer vision models. Specifically, we introduce a novel form of
reservoir computing that is adapted for image classification tasks and is able to achieve
comparable performance to that of CNNs with greatly reduced training time. This chapter
is based on research previously published in [33] and [34].

2.1 Reservoir Computing Introduction

Fig. 2.1: Diagram of prototypical RC scheme. Input data is encoded via the input layer, before the
reservoir performs a transformation into a high dimensional space. Lastly, the output layer converts the
reservoir readout to the target sequence.

Reservoir computing is a framework for machine learning drawing inspiration from tra-
ditional Recurrent Neural Networks (RNN), a variant of artificial neural networks which
include recurrent connections between nodes in the hidden layers [37, 71, 36]. The proto-
typical RC network is composed of three components: an input layer, a "reservoir", and
an output layer. The input layer linearly transforms the input signal with a set of fixed
random weights to be fed into the reservoir. The key part of RC, the reservoir, is com-
prised of a series of nonlinear nodes or neurons with random connections in between such
that recurrent loops exist within the reservoir (hence mimicking the internal dynamics of
an RNN). The last layer of the network, the output layer, is a single linear layer which
transforms the reservoir output into the target sequence. Fig 2.1 includes a diagram of
this generalized structure of RC. The weights associated with the input layer and reservoir
are randomly initialized and remain fixed during training; only the output layer weights
are trained using a standard linear regression. By eliminating the need to train the hidden

8

layers of the neural network via backpropagation, reservoir computing vastly reduces the
amount of computation required for training while also guaranteeing convergence.

Based on the massive reduction in number of trainable parameters, it’s not immediately
obvious why RC should be able to perform competitively with standard neural networks.
The key to success is in the choice of a reservoir: a successful reservoir should transform the
input data into a high-dimensional feature space. As a nonlinear transformation of sample
data from a low dimensional space into a high dimensional space increases the likelihood of
linear separability, a successful reservoir improves the classification power of the trained
linear output layer. An example of this effect is shown in Fig. 2.2. Furthermore, the
dynamics of the reservoir should be reproducible, i.e. for a given input signal, the reservoir
should respond in the same way every time.

Fig. 2.2: Illustration of linear separability arising from a nonlinear transformation to a higher dimension.
(a) Two classes lying in a 2D space which are not linearly separable. (b) After a nonlinear transformation
into 3D space, the two classes are now separable with a single linear hyperplane. Adapted from [4].

The few constraints required of a serviceable reservoir allow for a variety of methods
of implementation, including both software simulations and physical manifestations. Suc-
cessful reservoir computers have been built with methods as exotic as cell cultures [25],
water tanks [72], and octopus arms [75]. More practical approaches commonly leverage
some form of analog electronics due to the maturity of CMOS manufacturing processes.
Nonetheless, physical implementations of reservoirs are bogged down by the requirement
that each node in the reservoir requires a physical nonlinear element. While implemen-
tation is feasible for reservoirs on the order of hundreds of nodes, scaling to the number
of neurons in modern machine learning applications (on the order of millions) becomes
prohibitive due to size and energy consumption constraints. To address this problem, an
alternative formulation known as delay-based RC was proposed

2.2 Delay-based RC

Delay-based RC is an alterntive to classical RC that has gained significant traction recently
[4]. As opposed to a spatial reservoir, delay-based RC instead uses a fully temporal
reservoir, where physical nodes are replaced with so-called virtual nodes, created through
time division multiplexing. These virtual nodes are processed serially through a single

9

physical node with delayed feedback; more virtual nodes can be stored in the system
memory through simply increasing the length of the delay. The key insight of delay-
based RC is that time-delay dynamical systems exhibit a high-dimensional state space,
meeting the requirement for a suitable reservoir. From an implementation perspective,
delay-based RC significantly reduces the number of required components, making it an
attractive candidate for hardware acceleration. An outline of delay-based RC is described
in the following section.

Fig. 2.3: Diagram of time-delay based reservoir computing scheme. Virtual nodes are created through
multiplying input data by mask matrix, which are then serially passed through nonlinear node with delayed
feedback. Reservoir output is read through sampling in time.

2.2.1 Conceptual Outline

The fundamental change in the delay-based formulation is a replacement of physical nodes
in a spatial reservoir with virtual nodes, which exist as the system response at a given
time. Given a data sample with some number of feature channels for input to the reservoir,
we first serialize the data into a stream I(t) using a sample-and-hold operation. The input
layer of the RC model takes the data stream I(t) and converts it into a discrete set of
virtual nodes uin(t) through a process called masking. Masking is done using a matrix
M , known as the mask, with dimension N × K, with N being the number of desired
virtual nodes and K being the number of input feature channels. These N virtual nodes
are fed into the reservoir, consisting of a nonlinear element with some associated delay
line of length τD. As τD corresponds to the total effective memory of the reservoir, the
virtual nodes are fed in sequentially with spacing θ = τD/N , such that all virtual nodes
corresponding to a single sample fit into the system memory at once. Fig. 2.4 illustrates
in detail the operation of inputting data to the reservoir. Given this setup, the reservoir
response, x(t), is described by:

T
dx(t)

dt
+ x(t) = αf(x(t − τD) + uin(t) + β) (2.1)

where f is the nonlinear activation of the physical node, τD is the delay time, α is the
gain of the entire circulation through the delay line, uin(t) is the masked input data, β
is a constant bias, and T is the characteristic time of the system corresponding to the

10

maximal time between which neighboring virtual nodes can interact. The continuous
reservoir response is sampled discretely to generate the virtual node values, X(k), where
k denotes discrete time. The final output layer is a linear mapping of the virtual node
values to the desired predicted labels, Ŷ :

Ŷ = W optX(k) (2.2)

where W opt are the trained readout weights. For classification-type tasks, the true class
labels Y are encoded through one-hot encoding; i.e. Y is an Nsamples × Nclasses matrix,
with a binary encoding used to denote the true class of a given image. Classification of
the predicted labels Ŷ is done with a winner-take-all approach, in which the class with
the highest value is chosen to be the model prediction. Training is done using the ridge
regression routine [104], where the equation for W opt is given by:

W opt = argmin
W

||Y − WX(k)||2 + λ||W ||2 (2.3)

where λ is a regularization constant used to prevent overfitting. This optimization is
performed offline, after all of the input data has been circulated through the reservoir.

Fig. 2.4: (a) Visualization of input masking operation, demonstrating multiplication of input sequence
with a random mask. (b) Detailed illustration of inputs and outputs to the nonlinear element.

2.2.2 Optoelectronic Hardware Implementation

Optics is an attractive medium for building neuromorphic hardware accelerators due to
the potential of fast processing speeds and low power consumption. Reservoirs built with
photonic integrated circuits remain relatively small in scale (limited to tens of nodes)

11

[107, 26, 101], whereas using free space optics, though able to incorporate a larger number
of nodes, sacrifices the compactness of an integrated solution [3, 1].

Optoelectronic [78, 50, 49] implementations of delay-based RC have emerged as a happy
medium, achieving strong performance on several benchmark tasks, such as time series
prediction and voice recognition. A well-known implementation follows the optoelectronic
oscillator (OEO) model [50, 126]. In the OEO model, light from a laser is modulated by
an electro-optic modulator before passing through an optical fiber line. After the time
delay, the optical signal is converted to the electrical domain via photodiode, amplified,
and then fed into the drive port of the modulator. Fig. 2.5 contains a visualization of the
optoelectronic RC architecture.

Fig. 2.5: Diagram of time-delay based reservoir computing scheme. Virtual nodes are created through
multiplying input data by mask matrix, which are then serially passed through nonlinear node with delayed
feedback. Reservoir output is read through sampling in time.

2.2.3 Limitations

Although delay-based RC is attractive from a hardware acceleration perspective, the rel-
ative structural simplicity arising from the lack of full spatial coupling (i.e. lack of con-
nectivity between all nodes in the reservoir) makes scaling delay-based RC to tackle more
complex tasks challenging. Adapting reservoir computing for processing images, a neces-
sary perquisite for deployment in AV perception, is a challenging task.

Image recognition, a task central to computer vision and well-representative of tasks
required in AV perception, has remained relatively under-explored in the RC literature
because of these inherent limitations. With recent advancements in deep learning, classical

12

image processing techniques using hand-crafted features have ceded ground to convolu-
tional neural networks (CNNs), which have been able to achieve state-of-the-art perfor-
mance on most tasks [44, 53]. CNNs are a class of neural networks which convolve input
images with trained filters to extract useful features for classification, allowing the neu-
ral network to learn on its own the most useful features, rather than relying on more
traditional feature engineering.

In contrast to CNNs which exploit the structure of images with local receptive fields in
each layer, reservoirs contain largely random connections between interior nodes, limiting
the ability of the model to capture spatial dependencies within images. Fig. 2.6 compares
the more structured convolutional feature extraction to that of a reservoir. Delay-based
RC somewhat limits the structural randomness of the reservoir interior by restricting inter-
actions to between nodes close together in time, however still lacks the feature extraction
capabilities of a CNN. The next section of this chapter describes our proposed scheme for
adapting delay-based RC to be capable of handling image recognition tasks.

Fig. 2.6: (a) Feature extraction using convolutional layer, illustrating local receptive field. (b) Random
connections inside reservoir, poor contrast to CNN for processing images.

2.3 Hybrid Convolutional RC

In this section, we introduce our adaption of delay-based optoelectronic RC for image
classification, which we dub hybrid convolutional RC.

2.3.1 Overview

The key insight of our proposed hybrid RC scheme is to try and capture the power of con-
volutional feature extraction and integrate it into the RC pipeline. In this vein, we have
introduced a new form of RC which combines standard delay-based RC with preprocessing
images through convolutional layers. After passing through the series of convolutional and
pooling layers, the output feature maps are flattened row-wise into a single vector, which
is then multiplied by the random mask matrix to generate the input nodes. Thus, each
input node becomes a random linear combination of the output convolutional features,
the exact nature of which depends on the mask matrix. Normally, the weights within
convolutional layers are trained through backpropagation to allow the CNN to learn the

13

most optimal features for classification. We consider two models for our hybrid scheme:
one which maintains the training of convolutional layers through backpropagation, and
another in which we instead use convolutional layers which are randomly initialized, but
then left untrained. The latter method, instead of extracting learned features, generates
randomized feature maps to preserve the fast training speed of RC. The number of fea-
ture maps generated is controlled through the final convolutional layer’s width. After
passing through these layers, all of the feature maps are flattened into a single feature
vector and multiplied with a mask matrix before being processed through the reservoir
computer itself. Fig. 2.7 compares our proposed hybrid RC approach with CNNs and the
standard delay-line RC approach. The following sections will discuss in further detail the
implementation of our proposed system.

2.3.2 Convolutional Preprocessing and Masking

The first step of our proposed hybrid RC scheme is preprocessing through a set of con-
volutional layers. The convolution of an input image X with a set of filter weights w is
represented with the following equation:

Zu,v,n =
∑

i

∑
j

∑
c

wi,j,c,n ∗ Xu−i,v−j,c (2.4)

where c corresponds to the number of input feature channels, and n corresponds to the
number of output feature channels. After the forward pass through the convolutional
layers, the encoded image is flattened into a single feature vector, first along the chan-
nel dimension, then along the two spatial dimensions. Next, the feature map outputs
are transformed into the input virtual nodes through the masking process. We use a
two-dimensional mask matrix with size Nvirtual nodes × Nfeature map dimensionality, which is
matrix-multiplied with the flattened feature vector to generate the virtual nodes. Through
adjusting the number of rows of the mask matrix, we can adjust the number of virtual
nodes to be generated per-image. The mask matrix itself is a sparse random matrix, with
the sparsity of the random matrix treated as a hyperparameter. Thus, each input virtual
node becomes some random linear combination of pixel-level features.

2.3.3 Hardware Implementation

To implement our proposed hybrid RC scheme experimentally, we adapt the OEO-based
reservoir computer with FPGA control, and use a standard laptop computer for both data
preprocessing and postprocessing. First, images are encoded with the convolutional layers
and then undergo the masking process digitally on the laptop. Next, the reservoir input
is transferred via ethernet connection to an FPGA with on-board ARM processor directly
interfacing with the analog system. The input data is converted to an analog signal via an
DAC and circulated through the reservoir, after which the reservoir response is measured
and converted back to a digital signal via an ADC. The output data is then transferred via
ethernet back to the laptop computer, where the final step of linear regression is performed.
An overview of this experimental procedure is shown in Fig. 2.8. Each individual aspect
of the hardware implementation is described below.

14

Fig. 2.7: (a) Prototypical CNN architecture with illustration of backpropagation training. (b) Standard
delay-based RC architecture. (c) Architecture of our proposed hybrid RC scheme, illustrating preprocess-
ing through untrained convolutional layers followed by delay-based RC.

15

Fig. 2.8: Illustration of our RC experimental procedure. Experimental data is preprocessed digitally on
a PC before transfer via ethernet to an FPGA for reservoir circulation. The reservoir readout is transfered
back to the PC via ethernet for the final training step.

2.3.3.1 Computer for Digital Processing

The first two steps in our hybrid RC scheme, the forward pass through convolutional
layers and the input masking operation, are performed digitally. Although our FPGA
includes an on-board ARM processor capable of performing these operations, for the sake
of simplicity we perform these off-board on a laptop computer, although we submit that
a more compact implementation can make use of the on-chip CPU for all digital tasks.
We implement our preprocessing scheme in Python using the Keras and numpy libraries.
The computer used is a MacBook Pro 2.6 GHz 6-Core Intel Core i7.

2.3.3.2 Optoelectronic RC Implementation

We base the delay-line reservoir computer portion of our scheme on the aforementioned
OEO implementation shown in Fig. 2.5. The experimental set-up consists of a 1550 nm
distributed feedback laser (Gooch & Housego DS-7009) modulated by a 40 Gb/s LiNbO3
Mach-Zehnder modulator (Fujitsu FTM7937EZ). The modulated signal passes through
an optical delay line before being converted to the electrical domain with a high-speed
photodiode (MACOM P-18A). After passing through a low-noise transimpedance amplifier
and low-pass filter, the analog signal is sampled by an analog-to-digital converter (ADC)
with 12 bit resolution attached to a field programmable gate array (FPGA) mezzanine card
(Zipcores FMC-DSP Rev. B). The low-pass filter here is used to set the effective memory
of the delay system, i.e. how far apart in time virtual nodes can still interact with each
other. The reservoir response is added digitally to the input signal within the FPGA’s
programmable logic, before being output through a digital-to-analog converter (DAC)
used to drive the modulator input. Fig. 2.9 contains a photograph of our experimental
testbed.

The differential equation describing the reservoir response x(t) of this system (a mod-
ified version of Eq. 2.1) is:

τf
dx(t)

dt
+ x(t) = GT IAsin2(GDRV x(t − τD) + Ginuin(t) + Vbias) (2.5)

where τf is the time constant of the low-pass filter, GT IA is the gain from the tran-
simpedance amplifier, GDRV is the gain from the driver amplifier, Gin is the digital am-
plification of the input signal, and Vbias is a DC bias voltage applied to the Mach-Zehnder

16

modulator. We note that the sin2 nonlinearity comes from the response function of the
Mach-Zehnder interferometer. Given the sin2 nonlinearity, applying a Vbias allows us to
control the relative strength of the nonlinear response. Vbias close to Vπ (i.e. voltage
corresponding to a π radian shift) puts the modulator in the strongly nonlinear portion of
the sine function, whereas a Vbias close to Vπ/2 puts the modulator in the approximately
linear regime of the sine function.

The bandwidth of this system is limited by the ADC/DAC, which have a 125 MSa/s
sampling rate. For the experiments desrcibed in this thesis, we use a virtual node spacing
is 80 ns, allowing for a total information processing speed of 12.5 MHz. We base this
choice off of limitations of the digital logic needed for transferring data between the chip
and PC.

Fig. 2.9: Labeled photo of reservoir computing experimental setup.

2.3.3.3 FPGA Design

To handle data I/O between the analog reservoir and digitally pre/postprocessed data,
we use a PicoZed board with a Zynq 7000 system-on-chip (SoC). Fig. 2.10 contains a
high-level block diagram of the Zynq 7000. The system-on-chip can be broadly divided
into two components. The first of these is the processing system (PS), which contains dual
ARM CPU cores and access to large blocks of DRAM memory. The second component,
the programmable logic (PL), contains an array of programmable latches that can be used

17

to create custom logic functions. To move data between the PS and PL, the industry-
standard AXI protocol is used. Both of these components are used in our hardware design
for control of the reservoir computer.

Fig. 2.10: Block diagram of the AMD Zynq 7000 SoC.

The key functionality of the PL in our system is to interface with the ADC/DAC
module on the attached mezzanine card. This can be broken down into several sub-
processes: receiving input data from the PS, reading the reservoir response through the
ADC, performing feedback addition between the reservoir response and input signal (and
optionally scaling the signal), outputting the combined signal through the DAC to drive
the modulator, and sending the sampled virtual node response back to the PS. Fig. 2.11
contains a high-level illustration of the tasks requiring custom programmable logic.

To program the PL, we use Xilinx’s Vitis and Vivado software kits. Within these,
Xilinx provides an IP block integrator, allowing us to leverage pre-built components for
transferring data between the PS and PL. Thus, to integrate our custom functionality into

18

Fig. 2.11: Illustration of tasks performed by custom FPGA DSP block used for experiment control.

the high-level block design, we create a custom DSP block written in Verilog containing
the core functionalities described above and then compile it into a module compatible with
the block-level IP integrator. To physically move data on-board, we use an AXI DMA
(direct memory access) block, a data moving engine capable of moving data between the
PS and PL. In addition, we connect FIFO blocks on either end of our custom DSP block to
queue departing and arriving data. Finally, all of the described components are connected
via the AXI interface, enabling data movement between all parts of the SoC. An example
of the Xilinx interface with connected block components is shown in Fig. 2.12.

Fig. 2.12: Screenshot of Xilinx IP Integrator interface with AXI DMA and FIFO blocks.

The critical function of the on-board PS is sending and receiving data between the
board and the PC. To enable experiments at high speed, we use the Ethernet protocol
for transferring data between the PC and board at speeds of up to 1 Gbps. We program
the PS using the lwip (Lightweight IP) library, which gives networking functionality for
bare metal programs (we program the PS without an OS for simplicity sake). Ethernet

19

packets arrive from the PC in groups of 1446 bytes (largest size for standard Ethernet
packet). After arrival, the input data is parsed and stored in the DRAM memory of the
PS. The DMA reads data from the memory in blocks of 4 MB to transfer to the PL for
reservoir circulation. Although the DMA can move data in larger size blocks, we find
empirically that 4 MB blocks offer the optimal processing speeds due to memory overhead
associated with larger packets. After the reservoir response is sampled, the DMA moves
a corresponding 4 MB packet back to the PS, where it is once again placed into DRAM
memory. The PS then reads these output virtual nodes from memory, groups them into
Ethernet packets, and sends them out from the board back to the PC. Repeating this
workflow for groups of 4 MB of data at a time, we can scale our data transfer operation
to process an arbitrarily large number of input virtual nodes. Although speeds of up to
1 Gbps are theoretically possible for Ethernet protocol, we observe speeds closer to 250
Mbps, as the use of jumbo Ethernet packets (>1446 bytes) is required to fully saturate
the link. As jumbo packets are not compatible with our PicoZed model board, we operate
the Ethernet connection below its limit. On the PC side, we use Socket, a Python API
capable of sending and receiving data via Ethernet connection. The overall design of both
the PL and PS components of the SoC are detailed in Fig. 2.13.

Fig. 2.13: Diagram detailing the overall FPGA configuration used in our experiments.

2.3.4 Simulation Software

In addition to our hardware testbed, we also develop simulation software to model our
hybrid RC scheme digitally. Our simulation model uses Euler’s method to numerically
solve the differential equation in Eqn. 2.5. In addition to the physical constants contained
within the equation for the system dynamics, we also simulate the 12 bit resolution arising
from the discretization performed by the ADC/DAC. To optimize all of the experiment
hyperparameters, we perform a standard grid search to find a good operating point.

20

2.4 Experimental Results

To experimentally demonstrate our proposed RC scheme, we use the well-known MNIST
handwritten digit classification task [52]. The MNIST dataset consists of 70000 (60000
training, 10000 test) grayscale 28×28 images of handwritten digits 0-9; the goal of the task
is to correctly identify the written number. We consider two benchmarks for this task:
first the LeNet-5 CNN, a well-known CNN architecture adapted for this problem, which
achieves a 0.95% test error [53]. Modern neural networks with even deeper architectures
have further improved accuracy on MNIST to a few fractions of a percent [18], however
these exceed the training capabilities of a standard CPU and so are less useful to us
as benchmarks. Additionally, we also consider an Extreme Learning Machine (ELM), a
variant of neural network containing layers of untrained neurons, as a benchmark [32]. We
use an ELM containing two convolutional layers and one fully-connected layer with 15000
neurons, all of which are left untrained, to serve as a memoryless corollary to our hybrid
RC scheme. This benchmark achieves a 1.4% test error on the MNIST task.

2.4.1 Parameter Optimization

Our model has several adjustable parameters that need to be optimized, both physical
and digital. We explore these primarily through experiments, running scaled-down exper-
iments of 1000 virtual nodes per image to measure performance.

2.4.1.1 Convolutional Preprocessing

Within the convolutional layers used to generate input feature maps, there are several
parameters we can adjust: the number of layers, the width of the layers, convolutional
kernel size, and the inclusion of pooling layers. Unlike in trained CNN models, performance
improvements from adding more untrained convolutional layers level off relatively quickly
(see Tab. 2.1); for this task, we use only two layers. The width of the layers, representing
the number of convolutional kernels included within the layer, similarly has a small effect
on performance once a small threshold has been passed. Fig. 2.14 shows the results of our
experiments varying the convolutional layer(s) width. In our experiments, we use layers
of width 32 and 64, respectively. We use a 3 × 3 convolutional kernel within each of these
layers, consistent with many modern CNN models [97]. Additionally, we include a third
2×2 max-pooling layer as part of this preprocessing scheme, as we found it to significantly
increase test accuracy while further reducing dimensions and processing time, as shown
in Tab. 2.2. Processing images through these three layers produces a flattened vector of
dimension 9216 x 1.

2.4.1.2 Random Matrix Masking

The random mask matrix, used to generate the input nodes to the reservoir computer from
the preprocessed feature maps, has several adjustable parameters associated with it. The
first of these, the matrix density, denotes the number of non-zero elements in the matrix,

21

Number of Convolutional Layers Classification Accuracy
0 88.039±0.75%
1 96.107±0.28%
2 96.41±0.14%
3 96.215±0.36%

Table 2.1: MNIST classification accuracy varying number of layers in convolutional preprocessing stage.

Fig. 2.14: Accuracy on MNIST test set for varying the convolutional layer width of the (a) first (b)
second and (c) third layer. Overall, no significant trend is observed.

Number of Convolutional Layers Classification Accuracy
w/ pooling 96.41±0.14%
w/o pooling 95.178±0.5%

Table 2.2: MNIST classification accuracy with and without max pooling layer after convolutional pre-
processing.

22

representing the fraction of matrix elements with non-zero values. For this problem, a
low matrix density of 0.01 is found to achieve optimal experimental performance (see Fig.
2.15). The other parameter associated with the mask matrix is the random distribution
from which the non-zero elements are drawn from. A summary of experiments using
differing random distributions is shown in Tab. 2.3; we found the optimal to be a uniform
random distribution with range (−1, 1). After the matrix is initialized, we perform a
row-wise normalization to limit the range of generated input nodes.

Fig. 2.15: Accuracy on MNIST test set with varying sparsity of mask matrix.

Random Distribution Classification Accuracy
Uniform [-1,1] 96.66±0.24%
Binary (-1,1) 95.96±0.29%
Normal σ=2 96.41±0.14%
Normal σ=1 96.37±0.27%

Normal σ=0.5 96.03±0.25%

Table 2.3: MNIST classification accuracy for differing random distributions used in mask matrix.

2.4.1.3 Experimental Parameters

In addition to the parameters associated with preprocessing, there are also several exper-
imental parameters to be optimized in our optoelectronic experimental testbed. First, we
consider the delay-line length and the low pass filter constant. Although traditionally the
delay length is chosen such that all of the virtual nodes for a single data sample can fit
entirely in memory, we note that it’s possible to store virtual nodes for a single sample
across multiple delay lengths by simply allowing the reservoir to continue circulating. We
pursue this approach for the practical reason of requiring a more manageable length of
optical fiber. Because the MNIST task does not inherently require memory, we found that
experimental performance has a fairly weak correlation with the delay-line length, with
test accuracy obtained using a 100 meter and 2 meter delay being equivalent, as long as
laser power is increased to compensate for loss in the longer delay line. For convenience,
we use the short 2 meter delay in the rest of our experiments. To validate the idea of

23

using an RC (i.e. memory-dependent) approach for a static image recognition task, we
also tried eliminating the system memory by simply removing the feedback addition. In
this case, we found a sizable decrease in test accuracy of 0.7% from experiments in which
memory is included. Thus, while the inclusion of a memory mechanism adds a small boost
to performance from the introduction of a further (random) degree of freedom, storing a
larger number of virtual nodes in a long delay-line has a minimal effect. This result is as
we expect, since individual virtual nodes have little spacial relation between each other
due to the random masking process, meaning a large memory bank does not offer a more
meaningful global view of the image. While the delay length controls the total memory
storage available, the low pass filter constant determines the temporal distance between
which virtual nodes have connections. We use a low pass filter with a time constant ap-
proximately equal to one times the virtual node spacing; longer time constants result in
degrading performance as a result of too much averaging (see Tab. 2.4) [4].

Low Pass Filter Cutoff Frequency Classification Accuracy
32 MHz 96.09±0.40%
100 MHz 95.35±0.18%

Table 2.4: MNIST classification accuracy for differing low pass filter cutoff frequencies.

Also within our experiment are several parameters used to control the operating point
of the dynamical system itself (i.e. whether the system is in an oscillatory regime or
not). In the OEO model, these are typically captured by the single-loop gain, i.e. the
small-signal gain of a single circulation through the entire system, and the modulator bias
point [126]. The former can be most directly controlled through the power of the laser
source, whereas the latter is simply the DC bias voltage of the Mach-Zehnder Modulator,
in terms of Vπ, with 1Vπ corresponding to the minimum transmission of the modulator.
We performed an experimental parameter sweep of these two quantities, illustrated in Fig.
2.16. We find that test accuracy is generally stable, except in the quadrant corresponding
to high laser power and low modulator bias. This part of the parameter space is congru-
ous with the OEO’s oscillation regime, illustrating the deleterious effect of the induced
oscillation on the system’s performance. Thus, for this task, we can choose the system’s
operating point fairly liberally while maintaining fairly consistent performance. For the
experiments in this paper, we used a modulator bias of 1Vπ and a laser power of 3.5 mW,
while driving the modulator at 0.4V.

2.4.2 Untrained Hybrid RC

First, we discuss experimental results using untrained convolutional layers for our hybrid
preprocessing scheme. The main appeal of this approach is the minimization of processing
time; by using completely untrained convolutional layers, the preprocessing stage is re-
duced to the time required to randomly initialize the weights within the layers, followed by
performing a single forward pass. In this scheme, we randomly initialize the weights using
TensorFlow’s glorot_uniform initializer, which draws weights from a random uniform
distribution whose interval is inversely proportional to the sum of the input and output
dimensions of the layer. A visualization of some examples of the randomized features pro-
duced with this scheme is shown in Fig. 2.17. We performed simulations and experiments

24

Fig. 2.16: Plot of experimental parameter sweep as a function of laser power and modulator bias. A
modulator bias of 0 corresponds to the peak of the sinusoidal transfer function.

ranging in size from 1000 virtual nodes per image to 15000 virtual nodes per image, with
results shown in Fig. 2.18. In simulation, we achieved test errors of 3.16% and 1.2%,
respectively, at 1000 and 15000 virtual nodes, whereas we achieved 3.6% and 1.6% for for
the same points in experiments. As benchmarks, we also plot performance of a standard
RC scheme (i.e. no convolutional preprocessing) and a well-known CNN model, LeNet-
5. For all reservoir sizes, our hybrid scheme, even with random convolutions, improves
test accuracy by more than a percentage point in comparison to the standard implemen-
tation in both experiment and theory. At 15000 virtual nodes, we find our hybrid RC
scheme comes close to the 0.95% test accuracy achieved using LeNet-5 [53]. Additionally,
simulations of our scheme outperform the ELM baseline, indicating the added benefit of
including RC memory.

2.4.3 Trained Hybrid RC

As an alternative approach, we also consider ways of implementing our hybrid RC scheme
using trained weights in the convolutional layers, rather than simply randomly initializing
them. The most straightforward way of achieving this is to fully train a CNN using
backpropagation, after which we take the trained convolutional layer weights for use in
our preprocessing procedure. For this purpose, we use a 6-layer CNN, denoted MNIST
convnet in Table 2.5, containing the aforementioned 2 convolutional layers and one max
pooling layer, followed by two fully-connected layers with 128 and 10 neurons, respectively
for classification [17]. In total, this CNN model contains 1.2 million trainable parameters,
with around 18000 of them contained within the two convolutional layers. Training this

25

Fig. 2.17: (a) Example image from MNIST dataset of digit “5". (b) Several feature maps generated by
forward pass through two untrained convolutional layers.

26

Fig. 2.18: Test error on MNIST task plotted as a function of virtual nodes for standard RC, hybrid
untrained RC, and hybrid trained RC, both experiment and simulation.

model to convergence achieves around 1% test error, similar to that of LeNet-5. Using
the two trained convolutional layers and max pooling layer for preprocessing, we replicate
the experiments in Sec. 2.4.2, also plotted within Fig 2.18. In simulation, we achieve 2%
and 0.8% test accuracy at 1000 and 15000 virtual nodes respectively, whereas we achieve
2.7% and 1.1% test accuracy in experiments. Particularly for smaller numbers of virtual
nodes, pre-training the convolutional weights significantly improves test accuracy, as seen
in the large divergence between the red and blue curves in Fig 2.18. We also note that
at 15000 virtual nodes, our hybrid scheme in simulation actually outperforms the CNN
model from which we have derived our trained weights from, as well as outperforming the
LeNet-5 benchmark. Experiments nearly match these results, with test accuracy virtually
indistinguishable from that of a CNN.

2.4.4 Experimental Comparison

In both the trained and untrained hybrid RC implementation, we are able to achieve test
accuracy nearly equal to that of state-of-the-art CNN models for the MNIST task. Addi-
tionally, our experimental optoelectronic implementation offers further benefits compared
to most digital machine learning algorithms. Most salient of these is the potential for sig-
nificant increases in processing speed. The total processing time for our untrained hybrid
RC implementation can be broken down into four parts: the convolutional preprocessing,
the mask matrix multiplication, the reservoir circulation, and the final linear regression.
Even for large reservoirs of 15000 nodes or more, the theoretical minimum processing
time through the reservoir computer is quite small, requiring only a few seconds using a

27

Method Test Error Training Time*
Le-Net 5 CNN [53] 0.95% 1
MNIST Convnet 1.0% 1
Hybrid RC Untrained (Simulation) 1.2% 15
Hybrid RC Untrained (Experiment) 1.6% 0.1
Hybrid RC Trained (Simulation) 0.8% 15
Hybrid RC Trained (Experiment) 1.1% 1.1
Standard RC 2.3% 0.1
ELM 1.4% 0.25
Linear Classifier [53] 7.6% 0.01

Table 2.5: Comparison of hybrid RC approach with various other machine learning methods

*Normalized to LeNet-5 CNN case

125 MHz FPGA clock. To provide an estimate of speed increase, we compare the pro-
cessing time of these four steps using our laptop’s CPU, versus fully training a LeNet-5
network to convergence on the same CPU. Comparing these, our hybrid scheme can offer
a potential 10× increase in processing speed compared to the training of the CNN, with
the processing speed bottleneck arising from the large matrix multiplication required to
produced the masked inputs. The full breakdown of our calculated hybrid RC process-
ing time is as follows: 15% is spent performing convolutional prepocessing, 55% is spent
performing the random mask matrix multiplication, 10% is spent circulating the virtual
nodes through the reservoir, and 20% is spent running the ridge regression optimization.
In total, the CNN training time is 10 minutes, whereas our hybrid RC training routine
can be condensed down into as short as approximately one minute.

The trained hybrid RC scheme does not offer this same speed advantage, given that it
requires the training of a CNN to select the desired weights. Thus, the trade-off between
these two approaches is between a very fast solution with slightly worse performance,
versus a slower solution, but with performance even surpassing many state-of-the-art
algorithms. These results comparing processing speed and performance are summarized
in Table 2.5. A potential middle ground exists in the leveraging of transfer learning, in
which convolutional layer weights are taken from an already on-hand CNN model trained
for a different task, from which some feature extraction information is still preserved [76].

2.4.5 CIFAR-10 Experiments

In addition to our experiments using the MNIST dataset, we also consider a much more
challenging problem setting: CIFAR-10 image classification. CIFAR-10 is a dataset of
60000 32x32 RGB images consisting of 10 classes: airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks [43]. Given the larger diversity of object types and the
inclusion of multiple color channels, experiments on CIFAR-10 are a good gauge of how
our form of hybrid RC can scale to tackle more challenging problems.

Our experimental setup for CIFAR-10 experiments is largely the same as previously
outlined, except we swap the CNN architecture used in the convolutional preprocessing
stage with that of a VGG-8 network. VGG is an improved convolutional backbone over

28

that of LeNet-5, capable of extending layers depths up to 19 layers with increasing perfor-
mance [96]. A diagram of the VGG-8 architecture is included in Fig. 2.19. Training the
VGG-8 network on CIFAR-10 classification achieves around 80% test accuracy without
any significant bells and whistles. We perform RC experiments using both untrained and
trained VGG-8 convolutional layers.

Fig. 2.19: Diagram of VGG-8 network architecture, with 6 convolutional layers, 3 pooling layers, and 2
fully-connected layers.

We plot the results of our CIFAR-10 experiments in Fig. 2.20. In contrast to the
MNIST task, the performance of our untrained hybrid RC lags significantly behind the
CNN baseline, with a gap of more than 25% in test accuracy at 10000 virtual nodes. Using
pretrained weights in the convolutional preprocessing stage closes this gap significantly,
but the test accuracy of our approach is still around 5% worse using 10000 virtual nodes.
These results reveal the limitations of our hybrid RC approach; the feature extraction
power of untrained convolutional layers are limited and not sufficient for more challenging
image classification tasks. Using trained weights in the convolutional layers can bring
hybrid RC performance close to that of standard CNNs, however the cost of training
these layers becomes more significant. Ideas from transfer learning remain a potential
direction for developing more advanced hybrid RC systems.

Fig. 2.20: Test accuracy on CIFAR-10 task plotted as a function of virtual nodes for hybrid untrained
RC and hybrid trained RC experiments with VGG-8 performance for comparison.

29

2.5 Discussion

In this chapter, we introduced a new form of reservoir computing which combines con-
volutional preprocessing with an optoelectronic delay-based RC implementation. Our
experimental platform combines digital pre- and postprocessing on a laptop CPU with
a custom-programmed FPGA for interfacing with the analog optical/electronic reservoir
computer. The main strength of this approach is a significant reduction in training time
(even with limited hardware). On the MNIST handwritten digit recognition task, our
approach achieves test accuracy on-par with a standard CNN approach, while requiring
as little as a tenth of the time for training.

Although our approach achieves impressive results on the MNIST task, the technology
still has significant limitations, making any deployment in an autonomous driving setting
unlikely in the near future. Although capable on the simple MNIST dataset, autonomous
driving tasks require perception systems far more discerning for challenging tasks such as
vehicle, pedestrian, sign, and road detection and classification in the wild. Scaling our
hybrid RC system to tackle problems on this scale is challenging; our experiments on the
more-challenging CIFAR-10 classification task show that RC still lags significantly behind
even simple CNN models on this more-representative dataset. In addition, MNIST and
CIFAR-10 contain extremely low-resolution images (28x28), far below what typical HD
cameras produce in modern vision systems. How to scale our form of delay-based RC to
handle a greater number of input features while still maintaining a considerable latency
advantage requires significantly more thought. Lastly, our current RC implementation,
while potentially offering a significant training-time advantage, does not improve model
latency in inference. For more niche AV applications requiring on-board training in real-
time, this may be suitable. However, a lack of inference acceleration limits the desirability
of such a system in production.

While significant hurdles remain in bringing reservoir computing to AVs, this work
nonetheless represents one of the first explorations of applying RC to the domain of com-
puter vision. Our results open a new path to achieving faster online training of edge vision
systems. Future research directions from this work include exploring hybrid RC for vision
with explicit temporal dependence (i.e. video) and leveraging techniques such as transfer
learning to test the limits of combining random computations with pretrained models for
faster training.

30

Chapter 3

Efficient LiDAR-Camera Fusion

The previous chapter of this thesis addresses the training efficiency of vision algorithms
from a combined hardware/algorithms perspective. While reservoir computing shows some
promise, the technology is not yet capable of meeting the needs of current AV perception.
Thus, moving forward we take advantage of mature GPU hardware and instead focus
on improvements from a purely algorithmic/data perspective. In this chapter we will
address improving the speed and accuracy of algorithms for object detection in self-driving
scenarios. Specifically, we introduce a new approach for LiDAR-camera fusion, which we
dub Center Feature Fusion (CFF) which performs feature-efficient sensor fusion while
achieving good performance on the nuScenes autonomous driving dataset. This chapter
is based on work previously published in [35].

3.1 3D Object Detection Overview

3D object detection is a central pillar of the perception system for modern autonomous
vehicles; being able to detect relevant objects (e.g. cars, pedestrians, cyclists) in a driving
scene is key to ensuring safe navigation. Algorithms for 3D object detection differ depend-
ing on the sensor suite used on the vehicle, encompassing camera-based, LiDAR-based,
radar-based, or some combination of these.

LiDAR is the main workhorse in most AV detection systems, providing low-resolution
but accurate spatial and depth information about the scene. Cameras are ubiquitous
in AV perception and beyond due to the technology maturity, providing high resolution
color and texture information regarding the scene. Radar offers a low-cost alternative to
LiDAR, providing 3D sensing even in poor conditions, although at a much lower resolution
in comparison to LiDAR. Sensor fusion is the process of extracting and combining useful
complementary information from each of these sensor modalities.

3.1.1 LiDAR-based 3D Object Detection

LiDAR-based 3D object detectors aim to detect objects with a given point cloud, repre-
sented as an unordered set of 3D points in space. In contrast to image-based deep learning,
point cloud-based detectors lack a canonical backbone architecture due to the challenge of
dealing with the irregularity of point clouds. Instead, different strategies exist depending
on the application. A comparison of these is shown in Fig. 3.1.

Deep learning on indoor point clouds, which typically are smaller in number of points
(on the order of thousands) and have more regular point density, generally employs a
form of bottom-up grouping to enable hierarchical learning. The first works to explore
this strategy, PointNet and PointNet++ [83, 84], operate directly on the point sets with

31

an MLP (multi-layer perceptron) and group points using either K nearest neighbor (kNN)
or a ball query. DGCNN builds edge graphs between points and processes them with
graph convolutional layers [115]. VoteNet generates learned "vote" points and aggregates
point cloud points around these based on Euclidean distance [81]. Bottom-up grouping
works well as it allows for a finer-grained grouping of points accounting for differing
point geometries and densities throughout the point cloud. However, the techniques used
for these grouping strategies (e.g. farthest point sampling) are computationally slow
and incompatible with parallel processing, making processing of large-scale point clouds
computationally inefficient.

Deep learning on outdoor LiDAR point clouds (as is typical for autonomous driving
perception) has to account for a larger number of points (on the order of hundreds of
thousands or even millions of points) and very high sparsity. In this setting, the stan-
dard approach is to employ a form of top-down grouping, i.e. voxelization, to efficiently
group points in 3D space. Voxel-based methods first quantize point clouds into regular
3D voxels before the voxelized representation is processed through the detector stage.
VoxelNet [139] discretizes the 3D space before processing points inside each voxel with a
PointNet-like network; voxels are then processed using a dense 3D convolutional neural
network. SECOND [123] improves on VoxelNet by introducing efficient sparse convolu-
tions. Pillar-based methods discretize the point cloud into vertical columns, flattening the
representation along the height dimension. PIXOR [124] flattens the point cloud into a
2D pseudo-image which is encoded with a 2D CNN. PointPillars [48], similar to VoxelNet,
processes points inside pillars through a PointNet before the encoded pillars are passed
through a 2D convolutional network. PV-RCNN employs a hybrid point-based and voxel-
based approach for detection [94]. CenterPoint replaced the standard two-stage detection
architecture with an anchor-free approach by utilizing a center-based representation of
detected objects, achieving the new state-of-the-art on 3D detection tasks [127].

3.1.2 Camera-based 3D Object Detection

3D object detection using only RGB camera images, although attractive as an alternative
to expensive 3D sensors, still lags significantly behind LiDAR-based detection. Single-view
3D object detection in particularly is challenging due to the problem of monocular depth
estimation. Some methods use standard 2D CNN backbones and attempt to directly
estimate depth from single images to calculate 3D bounding boxes [138, 74]. Pseudo-
lidar methods use a pre-trained depth estimation network to transform RGB images into
point clouds that are then compatible with standard LiDAR-based detectors [114, 86].
Another class of detectors transforms camera features into a grid-based birds-eye-view
(BEV) representation by predicting a per-pixel depth distribution [88, 60].

In contrast to single-view 3D detection, computer stereo vision seeks to estimate depth
information by using images of the same scene taken from differing vantage points. In the
context of autonomous vehicles, many works seek to leverage vehicle motion to generate
differing views of a scene from a single camera view [113, 59]. Although stereo vision
improves depth estimation over single-view detection, stereo vision fails for objects lacking
significant variation in features or textures.

32

Fig. 3.1: (a) Bottom-up grouping used in indoor point clouds. (b) Top-down grouping (i.e. voxelization)
employed for outdoor point clouds.

3.1.3 Multi-modal Fusion

Sensor fusion, specifically LiDAR-camera fusion, seeks to leverage the relative strengths
of both sensor modalities and combine them to most meaningfully improve the detection
pipeline. Generally, fusion approaches keep most of the detector backbones of each re-
spective modality intact, while introducing information exchange at various point(s) in
the pipeline. These can be broken down into three broad strategies: early fusion, middle
fusion, and late fusion. Early fusion seeks to fuse information at the input level (i.e. at
the raw pixel/point level). Middle fusion performs fusion at the deep feature level after
raw inputs have been encoded with a neural network. Late fusion fuses the outputs of
the model (bounding boxes in the case of object detection). A schematic comparing these
approaches is shown in Fig. 3.2.

Early sensor fusion work focused primarily on proposal-level fusion, i.e. fusing informa-
tion at the region proposal level (a form of mid fusion). MV3D [12] fuses object proposals
in three views (BEV, front view, and perspective view), whereas AVOD fuses them in
two views (BEV and perspective view) [46]. RoarNet determines geometrically feasible
3D poses from images to generate a set of 3D region proposals [95]. Frustum-PointNet
[82] and Frustum-ConvNet [116] lift image proposals into 3D frustums to identify relevant
regions of the point cloud. Later works such as FUTR3D [13] and TransFusion [6] gen-
erate object proposals in 3D and refine them using a transformer decoder which attends
to 2D features. By nature of fusing information at an object proposal level, these fusion
approaches are specific to the task of object detection and cannot be generalized to other
tasks.

33

Fig. 3.2: High level comparison of (a) early (b) middle and (c) late fusion strategies.

Point decoration, a hybrid form of early fusion, has become a popular paradigm in
sensor fusion for the past few years. The general outline of point/input decoration is as
follows: first, camera images are encoded with a neural network to generate deep features
in the image space. Next, the LiDAR data (points or another representation) are pro-
jected to the camera space, where each point is associated with a corresponding pixel.
Then, the corresponding camera features are appended to the points, before being pro-
cessed through a standard LiDAR-based backbone for detection. A visualization of point
decoration is shown in Fig. 3.3. PointPainting [110] proposed projecting the point cloud
onto the outputs of 2D semantic segmentation networks to augment each point with the
class label of the corresponding 2D pixel. FusionPainting [122] fuses segmentation labels
from both 2D and 3D segmentations to generate more accurate labels for the point cloud.
PointAugmenting [111] instead annotates points with deep CNN features while processing
the LiDAR and camera features through separate streams in the CNN backbone. Au-
toAlign [15] uses a learnable cross-attention module to associate pixel-level features with
voxels, instead of the hard association of projection using a camera matrix. AutoAlignV2
adopts a more efficient approach that first projects voxel features to the camera coordi-
nate system, followed by a deformable cross-attention operation to associate pixel features
with voxels. MVP [128] takes a different input decorating approach, projecting the point
cloud onto a segmentation map to generate virtual LiDAR points inside each object to
densify the point cloud. While variations of input decoration have dominated much of
the recent research in sensor fusion, the approach suffers from several inherent drawbacks.
Most significant of these is point decoration approaches only augment the existing LiDAR
data with additional camera features, failing to leverage the higher resolution of camera
images to compensate for low-resolution LiDAR point clouds.

34

Fig. 3.3: Illustration of point decoration strategy for sensor fusion.

Concurrent to our work has been a trend toward mid-level deep feature fusion. In
contrast to point decoration, deep feature fusion is a form of mid fusion in which deep
features from both the camera and LiDAR streams are fused together. Fig. 3.4 displays
a visualization of this fusion scheme. Continuous Fusion [61] shares information between
the 2D and 3D backbones at all layers of the neural network. DeepFusion [58] uses a
learnable attention layer to associate CNN features between different sensor modalities.
Two works concurrent to ours, both dubbed BEVFusion [67, 105], use the approach known
as lift-splat-shoot (LSS) [80] to generate per-pixel depth predictions to project the full
set of camera features to BEV, where after undergoing a pooling operation, they are
concatenated with LiDAR BEV features. While fusion in BEV space is a promising
approach we will discuss in more detail later in this chapter, BEVFusion is limited by
both the latency associated with projecting and pooling the camera features, and the
inherent accuracy in depth estimation with an approach such as LSS.

Fig. 3.4: Illustration of deep feature fusion strategy for sensor fusion.

3.2 Center Feature Fusion

In this section, we introduce a novel approach for fusion-based 3D object detection, which
we dub Center Feature Fusion (CFF).

35

3.2.1 Overview

CFF approaches sensor fusion in a fundamentally different manner than previous input
decoration approaches by instead considering fusion in BEV space. CFF adopts the ap-
proach of other mid fusion approaches and first encodes the LiDAR point cloud and cam-
era images with LiDAR and camera backbones, respectively. We use a Centerpoint-based
Voxelnet as our LiDAR backbone, and DLA-34 as our image backbone. The top-down
bird’s-eye-view is a naturally attractive space for sensor fusion as it preserves the geome-
try of the scene (in contrast to camera perspective view) while also serving as the space
in which the planning algorithms of the autonomy stack operates. However, performing
fusion in BEV space is not straightforward; transforming camera images from perspective
view to BEV requires per-pixel depth measurements, which RGB cameras naturally lack
the capability to capture. Concurrent approaches try to predict a probabilistic depth
distribution over discrete bins, however this is both inherently inaccurate and costly in
terms of latency. Instead, we leverage well-calibrated sensors and transform the point
cloud to perspective view, followed by a depth interpolation to generate a dense per-pixel
depth map. Using this depth map, we can accurately project camera images to BEV.
However, with high resolution input images, this operation can be prohibitively costly
from a latency perspective to perform. Instead, we leverage camera-based center-based
detection (CenterNet) to identify the key pixel features, and instead project only these (a
small fraction of the total) to BEV. These features are concatenated with the LiDAR BEV
features, after which they are further encoded with a small number of convolutional layers
before being passed to the detection heads. Lastly, data augmentation is a key component
of training 3D object detectors. LiDAR-based data augmentation consist of geometrical
perturbations to the point cloud (e.g. random rotation, translation); however applying
these in a fusion context destroys alignment with camera projections. Instead, we modify
the augmentation scheme to apply augmentations to the projected camera images in BEV,
as opposed to the perspective view images, in order to preserve alignment between the
two modalities. A detailed diagram illustrating CFF is shown in Fig. 3.5.

3.2.2 LiDAR Backbone

To process the LiDAR point cloud, we adapt a VoxelNet-based backbone. First, the point
cloud is partitioned into 3 dimensional voxels of size (0.075 m, 0.075 m, 0.2 m). Using
the standard point cloud range outlined by the nuScenes dataset (±54m in the x and
y directions and -5m to 3m in the z direction) results in a voxelized representation of
1440×1440×40. Dynamic voxelization is used for efficient memory storage. To generate
a set of feature vectors for each voxel based on the points contained within, we use a
"simple" encoding approach of averaging the point features of all points contained within
the voxel. Next, the encoded voxels are processed through a set of convolutional middle
layers, implemented using sparse convolution tensor operations. The convolutional middle
layers contain a set of 4 3D convolution blocks with channel numbers of 16, 32, 64, 128
respectively. After the convolutional middle layers, the features are passed through an
additional two convolution blocks, increasing the channel number to 256. The output
feature map is reduced in the xy direction by a factor of 8, and is flattened along the z
direction, comprising a solely top-down view of the scene.

36

Fig. 3.5: Summary of our proposed Center Feature Fusion model. The point cloud and camera images are
first encoded using a VoxelNet and DLA34-CenterNet, respectively. Our selective projection is performed
on the camera features to project them to BEV where they are then fed into a small 2D CNN to help with
feature alignment. The multi-modal BEV features are then concatenated and passed into CenterPoint’s
bounding box heads.

Fig. 3.6: Overview of VoxelNet architecture. Figure adapted from [139].

37

3.2.3 Camera Backbone

To process the camera images, we adapt the same backbone used in [138], DLA-34. DLA
(deep layer aggregation) is a modern CNN backbone network which hierarchically ag-
gregates feature maps to better propagate features through the network. Instead of a
standard 3×3 convolution operation, our DLA-34 backbone uses deformable convolutions
in its convolution blocks [19]. The output of the DLA-34 backbone generates feature maps
with 256 channels and a height and width reduced by a factor of 4 from the input.

3.2.4 Point Cloud-Guided Depth Generation

After encoding both camera images and the LiDAR point cloud with their respective
backbones, the next step is to perform feature fusion. As we propose fusing the two sets
of features in BEV, the first step is completing the required transformation of the encoded
camera features. The transformation from camera perspective view to BEV requires per-
pixel depth estimates, which are naturally lacking from the camera features. However,
operating under the assumption that the camera and LiDAR sensors are well callibrated,
we have the ability to transform the point cloud to the camera frame(s) via a homogenous
transformation. To do so, we consider two quantities which define the camera coordinate
system: the extrinsic and intrinsic matrix. The extrinsic matrix defines the translation
from the world coordinate frame to the 3D coordinate system of the camera, defined
by its pose (location and direction of view). The extrinsic matrix is composed of two
transformations: a 3D rotation, and a 3D translation. The composed extrinsic matrix
takes the following form:

E =
(

R t
0 1

)
(3.1)

where R is a 3×3 rotation matrix and t is a 3×1 translation vector. The intrinsic matrix
defines the perspective projection which transforms the 3D camera coordinate system to
the 2D imaging plane coordinate system. The intrinsic parameters are defined by internal
characteristics of the camera, taking the following form:

I =

 fx s x0
0 fy y0
0 0 1

 (3.2)

where fx and fy are the focal lengths in the x and y direction, respectively, x0 and y0
is the principal offset, and s is the axis skew. The full transformation from 3D world
coordinates to the 2D imaging coordinates is defined as a composition of the intrinsic and
extrinsic matrix:

P = I × E (3.3)

After transforming the point cloud to the camera frames corresponding to each directional-
facing camera on the vehicle, points outside of the camera field of view are cropped, leav-
ing only the points which occupy the same coordinate as an existing pixel on the imaging

38

plane. For pixels matched to these points, we can directly infer their depths from the z co-
ordinate of the corresponding point in the 3D camera coordinate frame. However, because
the LiDAR imaging resolution is significantly lower than that of the camera, the majority
of pixels will not have a matched point to use for determining its depth value. Thus,
we are required to perform depth completion, the task of converting a sparse depth map
to a dense one. While several deep learning-based approaches exist, they both require a
separate pre-training phase and are computationally expensive [38, 106, 23, 121]. Instead,
we leverage an approach known as IP-basic, a fast, lightweight and efficient classical depth
completion algorithm which is significantly more accurate than a simple nearest-neighbor
classifier [45]. IP-basic operates in the manner of a modified version of a nearest neighbor
classifier, instead using custom kernels to fill in empty depth values in the image in a
strategic way. Requiring no training data, we can use IP-basic at runtime with minimal
added overhead. We use an interpolation-only version of the IP-basic algorithm (i.e. only
predicting depths for pixels within the convex hull of the projected points) so as to ignore
objects in the image beyond the LiDAR range. For pixels outside the interpolation range,
we assign them large depth values outside of the detection range so that they remain
ignored after projection to BEV. A summary of the entire depth generation process is
visualized in Fig. 3.7.

Fig. 3.7: Overview of point cloud-guided depth completion. First, the LiDAR point cloud is projected
onto the camera’s imaging coordinate system. An overlay of LiDAR point with an RGB image is shown
to illustrate the alignment. Then, IP-basic is used to perform depth interpolation, generating a dense
per-pixel depth map.

3.2.5 Selective Bird’s-eye-view Projection

After generating a dense depth map for each set of camera feature maps, we now have
the capability of projecting the camera features to BEV. Mathematically, this is achieved

39

by simply performing the inverse of the camera transformation described in the previous
section. Consider a camera pixel coordinate (u, v, d), where d is the predicted depth value
for the corresponding pixel. The inverse of the perspective projection (i.e. transformation
to the camera 3D coordinate system (x, y, z)) is given by:

x = d(u − x0)/fx (3.4)

y = d(v − y0)/fy (3.5)

z = d (3.6)

We note that the camera intrinsics for the datasets we use in this work have axis skew
s = 0, allowing us to utilize the above set of equations. To transform the camera features
to the corresponding world coordinates, we simply invert the camera extrinsic matrix to
apply the inverse affine transformation. To populate our BEV feature grid with camera
features, we now simply take the camera features in world coordinates and sort them into
discrete bins based on the predetermined resolution of the BEV feature map. Then, we
perform max pooling on all of the features within a single BEV grid bin to generate the
final BEV representation of the camera features.

While the described operation for BEV transformation is straightforward to perform,
we note that the time complexity of the operation becomes untenable for a significant
number of pixels. Even for a relatively modest resolution of 1600 × 900 pixels used by
the cameras in the nuScenes dataset, a feature map downsampling factor of 8 combined
with 6 directional cameras on the vehicle results in a total of over a million pixel features
required to be projected, a heavy computational load. To circumvent this issue, we con-
sider selective projection, where we aggressively filter the camera pixels before performing
the BEV transformation, significantly reducing the runtime latency. In considering this
approach, we note that for the task of object detection, only the camera features corre-
sponding to objects of interest are relevant for fusion. As the vast majority of camera
pixels correspond to background parts of the image (e.g. roads, buildings, etc.), only a
small fraction of pixels contain the information most relevant to fuse.

To identify these key pixels, we leverage CenterNet, an efficient one-stage 2D object
detector. CenterNet, in contrast to anchor-based object detectors, uses a detection head
comprised of three sub-modules: a keypoint heatmap head, an offset head, and a size
head. The keypoint head generates a heatmap Ŷ ∈ [0, 1] w

s
× h

s
×K , where w and h are the

input height and width, respectively, s is the downsampling factor of the output, and K is
the number of classes. In the CenterNet model, objects are characterized by their center
pixels, located in the keypoint heatmap through extracting all local maxima above some
threshold value. Thus, higher heatmap values correspond to a higher "objectness" score for
a particular pixel. Bounding box characteristics are then determined through the values
predicted by the other two detection heads located at the corresponding heatmap peaks.
Because CenterNet infers the bounding box characteristics from the feature located at the
object center, we argue that its learned features contain all of the relevant object informa-
tion condensed into a few select points. Fig. 3.8 contains a visualization of CenterNet’s
detection strategy.

We share the DLA-34 image backbone used for encoding the camera images with
the CenterNet detector, and generate a center heatmap from the encoded features using

40

Fig. 3.8: Visualization of CenterNet’s strategy of inferring object bounding box characteristics through
a single feature corresponding to the object’s center. Figure adapted from [138]

the aforementioned detection heads. To determine the pixels to project, we introduce
a heatmap threshold hyperparameter; pixels with heatmap values above the threshold
meet the importance requirement to be projected, whereas pixels below the threshold are
disregarded. The features are fetched from the output of the DLA-34 backbone (i.e. we
use the features before they are encoded by the detection heads). In total, 64 output
feature channels are contained in the projected camera features. A lower threshold value,
while more comprehensive in the feature fusion, increases runtime latency, whereas a
high threshold value results in the opposite. Ablations of the heatmap threshold will
be discussed in the experiments section of this chapter. Fig 3.9 illustrates the described
selective projection routine.

Fig. 3.9: Figure demonstrating center-selective BEV projection. First, CenterNet is used to generate a
center detection heatmap. Based on the the predetermined threshold, camera features are then fetched
and back-projected into BEV.

41

3.2.6 3D Detection Heads

After feature fusion is performed, the BEV feature map consists of a concatenation of both
LiDAR BEV features from the VoxelNet backbone, and camera BEV features extracted
from the DLA-34 backbone. To ensure strong fusion performance, accurate alignment be-
tween the features’ of the two modalities is essential. However, errors arising from depth
estimation and inaccurate sensor calibration introduce modest misalignments between the
two sets of features in BEV. To correct for this, we additionally process the projected
camera features through a series of eight 3 × 3 convolutional layers in order to increase
the effective receptive field of each BEV feature, helping compensate for projection in-
accuracies. We pad the feature maps to ensure that the output shares the same feature
dimension as the original input.

After aligning the camera BEV features with the convolutional encoding, the fused
features are encoded with a single share convolution before being passed to the detection
heads. To perform the final detection, we adopt the same anchor-free detection procedure
as is used by CenterPoint [127]. As is the case with CenterNet’s 2D detection scheme, the
3D corollary uses a center heatmap head (in BEV) for object localization in conjunction
with several regression heads: a sub-voxel refinement head (a 2D xy refinement), a height-
above-ground head (to predict the z coordinate of the object), a 3D size head, a yaw
rotation angle head (parameterized through predicting the sine and cosine of the rotation
angle), and a 2D velocity head. As in CenterNet, object bounding boxes are extracted
through finding local maxima in the BEV heatmap, and then fetching the corresponding
box characteristics from the regression heads.

3.2.7 Model Training

3.2.7.1 Training Losses

To supervise our the training of our model, we use a loss function composed of two
components: a classification loss, and a regression loss. The classification target is created
in the standard manner for center-based detectors: ground truth objects are scattered onto
the BEV grid target in a one-hot encoded manner. To increase the supervisory strength of
the signal, Gaussians with peaks at each object center and radius max((wl), 2) are drawn
on the target heatmap. We use a focal loss summed over all elements of the BEV grid as
the classification loss:

Lcls =
∑
xy

{
(1 − Ŷxy)α log (Ŷxy) if Yxy = 1
(1 − Ŷxy)β (̂Yxy)α log (1 − Ŷxy) otherwise

(3.7)

where Ŷxy is the model prediction heatmap, Yxy is the ground truth heatmap, and α and
β are the focal loss hyperparameters (selected to be 2 and 4 respectively). To supervise
the regression heads, we use an L1 loss evaluated at the center point of each object using
the ground truth object parameters. The total loss is then:

Ltot = Lcls + λLreg (3.8)

where we set λ = 0.25.

42

3.2.7.2 Training Hyperparameters

The first step in our training routine is to separately pretrain the image backbone. We
use a pretrained CenterNet model due to the necessity of an accurate object heatmap for
meaningful projection of camera features to BEV for fusion. Our pretrained CenterNet
model is trained following the procedure outlined in [138]. While training the full fusion
model, we freeze the weights contained within the image backbone. Similarly, we also load
in the VoxelNet backbone with weights from a pretrained CenterPoint model to increase
the speed of convergence. For training the fusion model, we use the adamW optimizer [69]
with a one-cycle learning rate policy, a max learning rate of 1e − 3, weight decay of 0.1
and momentum between 0.85 and 0.95. We adopt the class-balanced sampling and class-
grouped training proposed in CBGS, which re-samples training data samples to increase
the frequency of rarer object classes during each training epoch [141]. We train our model
using a batch size of 12 on 3 Nvidia A6000 GPUs for a total of 6 epochs.

3.2.7.3 Data Augmentation

Strong data augmentations are essential during training of 3D object detectors (partic-
ularly on small-scale publicly available datasets) to prevent overfitting and enhance the
training data. In sensor fusion applications, data augmentation poses a challenge due to
the fundamentally different approaches applied in 2D (e.g. random cropping, random flip-
ping) and 3D (random rotation, scaling). Applying these augmentations naively destroys
the consistency between fused points and degrades performance. DeepFusion addresses
this problem with InverseAug, in which they save the 3D augmentation parameters, re-
verse them at the fusion stage, and then calculate the feature’s corresponding coordinates
in the 2D frame. By using BEV as our fusion representation, we are able to propose an
even simpler algorithm we call ProjectionAlign. Because we project camera features to
BEV, we generate a pseudo-3D point cloud, which can be augmented in the same manner
as the LiDAR point cloud. Thus, we simply apply augmentations to the point cloud, save
the exact parameters of the augmentation, and apply them to the camera features once
they are converted to the same 3D world coordinate system. A visualization of the fea-
ture alignment achieved through ProjectionAlign is shown in Fig. 3.10. We perform the
standard LiDAR data augmentations of random flipping along the X and Y axis (using
50% chance of flipping), global random scaling (scale value ∈ [0.9, 1.1]), global random
rotation (angle in radians ∈ [−π/4, π/4]), and global random translation (gaussian dis-
tribution with σ = 0.5m). We don’t apply any geometric augmentations to the camera
images directly to preserve the exact alignment between the two modalities.

43

Fig. 3.10: Demonstration of ProjectionAlign. a) Ground truth detections in BEV, represented as points
on the BEV grid. b) Unaligned projected camera features. c) Aligned camera features. Much stronger
location correspondence exists between aligned features and ground truth object locations vs. unaligned
features.

44

3.3 Experimental Results

3.3.1 Dataset

To evaluate CFF, we perform experiments using the nuScenes dataset, a large-scale au-
tonomous driving dataset released by nuTonomy [10]. nuScenes consists of 1000 20 sec-
ond driving scenes, split into 700 for training, 150 for validation, and 150 for testing.
The scenes were collected in Boston and Singapore, both highly dense and challenging
urban driving environments. Object annotations are included for every tenth frame in
the dataset, resulting in 28130 frames for training, 6019 frames for validation, and 6008
frames for testing. While object labels are provided on the training and validation sets,
test set labels are known only to the dataset curators and require submission to a public
leaderboard for evaluation. As is standard for nuScenes, we form denser point clouds
through concatenating points across all non-keyframe. Each frame consists of a 32-beam
LiDAR scan and six monocular camera images of resolution 1600 x 900 covering the full
360-degree field-of-view. Annotations come from a set of 10 classes: cars, trucks, con-
struction vehicles, buses, trailers, barriers, motorcycles, bicycles, pedestrians, and traffic
cones. Sensor calibration parameters (e.g. camera intrinsics and extrinsics, LiDAR to
world coordinate transformation) are included for each frame in the dataset. Ego car
coordinates are calculated using a combination of GPS and IMU (inertial measurement
unit) readings. HD semantic maps are also provided for each driving scene. Detection
performance is measured using two main metrics: Mean Average Precision (mAP), and
the nuScenes Detection Score (NDS). NDS is a custom metric consisting of an average
of both mAP and five true positive metrics: mean translation error (mATE), mean size
error (mASE), mean orientation error (mAOE), mean velocity error (mAVE), and mean
attribute error (mAAE).

3.3.2 Main Results

First we compare the improvement from our proposed fusion approach against the Cen-
terPoint LiDAR-only baseline. We display this comparison on the nuScenes validation
set in Table 3.1. Our method achieves a +4.9% improvement in mAP and a +2.4% im-
provement in NDS overall against CenterPoint, with improvements in mAP seen across
all of the classes. Fig 3.11 visualizes our results qualitatively for an example frame in the
nuScenes validation set.

mAP NDS Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.
CenterPoint [127] 59.6 66.8 85.5 58.6 17.1 71.5 37.2 68.5 58.9 43.3 85.1 69.7

Ours 64.5 69.2 85.5 59.1 22.5 73.4 43.2 68.8 72.8 62.1 86.4 70.6
Improvement +4.9 +2.4 +0.0 +0.5 +5.4 +1.9 +6.0 +0.3 +13.9 +18.8 +1.3 +0.9

Table 3.1: Performance comparison of CenterPoint and our method on nuScenes validation set. We
report the total Mean Average Precision (mAP) and nuScenes Detection Score (NDS), and per-class mAP.
C.V., Motor., Ped., and T.C. are short for Construction Vehicle, Motorcyle, Pedestrian, and Traffic Cone,
respectively.

Table 3.2 compares the performance of our method with other state-of-the-art fusion

45

Fig. 3.11: Qualitative Comparison of detection results from CenterPoint (left) and Center Feature Fusion
(right). Red boxes indicate ground-truth objects, while blue indicate model predictions. Our approach
detects several cars and trucks that CenterPoint misses, as well as generating more accurate boxes for a
number of objects.

approaches on the nuScenes test set. In addition to mAP and NDS, we also compare an ap-
proximate number of fused features per-frame. PointAugmenting [111] (and other related
point-decoration methods) augment each point in the point cloud, which is, on average,
around 200000 points in nuScenes after concatenation with non-key frames. TransFusion
[6] calculates attention between LiDAR BEV features and CenterNet [138] camera fea-
tures in perspective view, and so the fused features are aggregated across all more than
100000 pixels in the CenterNet output feature maps. BEVFusion [67] projects and fuses all
camera features encoded by a Swin-T backbone, amounting to almost 150000 total pixels.
In comparison, through our selective fusion approach, we toss out the majority of camera
features and fetch only around 1000 features to project and fuse, more than 100× fewer
than the aforementioned fusion methods. Despite this, we achieve comparable improve-
ments in performance over the CenterPoint baseline. We outperform PointAugmenting on
a handful of classes (e.g. bus, barrier) even without the test-time-augmentation PointAug-
menting employs. On the more fine-grained classes of motorcyclists and bicyclist, which
rely heavily on semantic information for detection, we achieve performance in-line with
all of the other methods. We also perform a more direct comparison of inference speed,
shown in Tab 3.3. As measured on an NVIDIA A6000 GPU, CFF achieves a latency speed
of 5 FPS. In comparison, BEVFusion, a concurrent work also leveraging fusion in BEV
space, is more than 5× slower at only 0.8 FPS. This shows the quantitative advantage
gained from our feature-efficient approach to fusion.

of fused features mAP NDS Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.
CenterPoint - 60.3 67.3 85.2 53.5 20.0 63.6 56.0 71.1 59.5 30.7 84.6 78.4

PointAugmenting ∼200000 66.8 71.0 87.5 57.3 28.0 65.2 60.7 72.6 74.3 50.9 87.9 83.6
TransFusion ∼100000 68.9 71.7 87.1 60.0 33.1 68.3 60.8 78.1 73.6 52.9 88.4 86.7
BEVFusion ∼100000 70.2 72.9 88.6 60.1 39.3 69.8 63.8 80.0 74.1 51.0 89.2 86.5

Ours ∼1000 65.2 69.9 84.7 55.4 26.0 66.2 59.2 74.3 72.6 50.7 85.7 77.5

Table 3.2: Comparison with state-of-the-art fusion methods and CenterPoint on nuScenes test set.
Our method achieves a similar increase in performance to other fusion approaches, even as we use only
approximately 1/100 the number of features for fusion.

46

Method Inference Speed (FPS)
BEVFusion [60] 0.8

PointAugmenting [111] 2.9
Ours 5.0

Table 3.3: Inference speed comparison with concurrent SOTA fusion approaches. CFF increases inference
speed by a factor of 2× to 5×. Inference speeds are measured on an NVIDIA A6000 GPU.

3.3.3 Ablation Studies

3.3.3.1 Augmentation Strategy

We validate the effectiveness of our ProjectionAlign data augmentation by comparing its
performance against no augmentation, augmentation only the standard LiDAR augmenta-
tions are applied (i.e. camera and LiDAR features are misaligned), and our augmentation
strategy. The results are summarized in Table 3.4. Without any sort of data augmenta-
tion, our fusion model quickly runs into overfitting and improvement over the LiDAR-only
baseline is minimal at +0.8 mAP. Applying the naive augmentation strategy improves our
model by significant amount of +2.8 mAP. By introducing our aligned augmentation
strategy, the model performance is further improved by +1.2 mAP. This confirms the
effectiveness of our augmentation scheme and the general importance of aligning fused
features, as was shown in [58].

Augmentation Strategy mAP NDS
No Augmentation 60.4 66.6
+ LiDAR Only 63.2 68.2

+ ProjectionAlign 64.5 69.2

Table 3.4: Ablation study of ProjectionAlign. Results shown for nuScenes validation set.

3.3.3.2 Heatmap Thresholding

To illustrate the computational efficiency gained from our selective projection strategy,
we perform experiments varying the heatmap threshold used to determine which camera
features should be projected to BEV. These are summarized in Table 3.5. A threshold of
0, meaning every pixel across all 6 cameras is projected, requires on average more than
3.5 seconds on a single NVIDIA A6000 GPU. Given that most of the pixels are identified
by the object detector as background, even a small threshold of 0.01 reduces the number
of projected pixels and the required latency by more than 6×. We find that improvement
in mAP levels off at a threshold of 0.1, which results in fusing almost 1/100 of the total
camera features available, illustrating the redundancy of the vast majority of available
features. Thus, we use the threshold of 0.1 in all of the experiments presented in this
paper.

47

Threshold # of projected pixels Latency mAP
0.5 110 57 ms 60.8
0.1 1442 74 ms 64.5
0.05 2855 98 ms 64.8
0.01 20077 558 ms 63.5
0.0 134400 3690 ms -

Table 3.5: Comparison of average projection latency, number of pixels projected from perspective view
to BEV and resulting mAP for various detection heatmap thresholds on nuScenes dataset. Projecting all
camera pixels presents a significant processing bottleneck. We omit the mAP for a threshold of 0.0 as the
latency makes training this model infeasible.

3.4 Discussion

In this chapter, we introduce a novel approach for fusing LiDAR and camera images for
3D object detection which we dub Center Feature Fusion (CFF). In contrast to previous
fusion approaches, CFF fuses encoded sensor representations in bird’s-eye-view space while
simultaneously leveraging a center-based selective projection approach that allows for a
significant latency improvement. We validate our approach on the nuScenes dataset,
achieving a sizable +5 mAP improvement over the LiDAR-only baseline while performing
competitively with competing fusion approaches, even while fusing a far smaller number
of features and achieving faster inference speeds.

Although CFF achieves strong performance on the nuScenes dataset, several potential
limitations/opportunities for improvements exist. One significant assumption CFF oper-
ates under is that the camera calibration parameters are available and accurate. Sensor
calibration is a challenging problem itself, requiring a significant upfront effort for our
fusion approach to have viability. Furthermore, in real operating conditions, the natural
mechanical vibrations of a moving car can disrupt calibrated sensors, generating errors
in the calibration parameters. As is, CFF has no mechanism to compensate for unpre-
dictable errors in calibration. A related issue is sensor synchronization; misalignment in
the times when camera and LiDAR sensors capture the scene can similarly disrupt the
reliability of CFF. Another potential area of improvement for CFF is in the depth in-
terpolation stage. While LiDAR-guided depth completion is substantially more accurate
than monocular depth estimation, inaccuracies in per-pixel depth estimates still exist, and
improved methods for interpolation are a direction of future investigation. An even more
significant limitation to this approach is that depth estimation fails for objects either out-
side of the LiDAR range, or are too small to contain a significant number of points in the
point cloud. For both of these cases, no depth estimation can be performed and fusion
cannot be performed. Extending CFF to be capable of fusing information even outside
of the LiDAR’s range is a compelling problem, given the importance of long-range object
detection in driving scenarios. Lastly, our current method for training CFF requires pre-
training the camera-only CenterNet model separately, requiring significant extra compute
be dedicated to this two-stage training process. Developing an approach to train CFF
in an end-to-end manner is another possible direction for improving this work, especially
considering the existence of fusion models which are trained end-to-end.

Even given these drawbacks, CFF introduces a meaningfully new approach to sensor

48

fusion which performs competitively with previous literature approaches while offering a
new analysis on how to improve the latency of the fusion mechanism. As is, CFF has
the potential for implementation in real-world AV perception systems as an alternative to
slower, more computationally intensive fusion-based object detectors.

49

Chapter 4

Doubly-Robust Self-Training

In this chapter, we will address 3D vision from the data efficiency angle. Based on theo-
retical analysis, we introduce a novel loss function, which we dub the doubly-robust loss,
to be used for semi-supervised learning. On both image classification and object detection
tasks, our loss function outperforms the baseline semi-supervised learning approach. This
chapter is based on work previously published in [140].

4.1 Semi-Supervised Learning Overview

To circumvent the high data labeling costs associated with supervised learning, several dif-
ferent strategies have been proposed. Semi-supervised learning (SSL) is a popular machine
learning paradigm that considers the problem of learning based on a small labeled dataset
together with a large unlabeled dataset. This general framework plays an important role
in many problems in machine learning, including model fine-tuning, model distillation,
self-training, transfer learning and continual learning [142, 77, 117, 24, 20]. Similarly,
semi-supervised learning has been widely adopted for computer vision, and particularly
for the task of AV perception [54, 8, 7, 99, 119, 41, 85].

One popular approach to SSL, known as self-training or pseudo-labeling, works by
first pre-training a teacher model in a supervised manner on the available labeled data.
Subsequently, the teacher model is then used to generate predictions, dubbed pseudo-
labels, on the unlabeled data. A new model, called a student model, is then trained on a
combination of the labeled and pseudo-labeled data. A visualization of the self-training
approach to SSL is shown in Fig. 4.1.

Fig. 4.1: Overview of self-training SSL scheme. First, a teacher model is trained on the labeled data
using supervised learning. The teacher model is then used in inference mode to generate pseudo-labels on
the unlabeled data, and a student model is trained on a mixture of the labeled/pseudo-labeled data.

50

In contrast to fully supervised learning, pseudo-labeling relies on training the student
model using inherently noisy labels due to inaccuracies in the teacher model predictions.
Thus, to develop a strong pseudo-labeling scheme, two key challenges need to be ad-
dressed: how to extract the highest-quality pseduo-labels from the teacher model, and
the best manner in which to use the pseudo-labeled data during student model training.
Several strategies have been proposed to address these challenges that we will detail in
the following sections.

4.1.1 Pseudo-labeling Approaches

Pseudo-labeling is a popular semi-supervised learning paradigm in which machine-generated
pseudo-labels are used for training with unlabeled data [54, 8, 7, 99, 135]. To generate
these pseudo-labels, a teacher model is pre-trained on a set of labeled data, and its predic-
tions on the unlabeled data are extracted as pseudo-labels. Previous work seeks to address
the noisy quality of pseudo-labels in various ways. Temporal Ensembling [47] uses a tem-
poral averaging of pseudo-labels to improve their quality. Mean Teacher [103] updates
the teacher model weights using an exponential moving average (EMA) with the student
model weights such that the teacher model maintains an advantage over the student dur-
ing training. MixMatch [8] ensembles pseudo-labels across several augmented views of the
input data. ReMixMatch [7] extends this by weakly augmenting the teacher inputs and
strongly augmenting the student inputs. FixMatch [99] uses confidence thresholding to
select only high-quality pseudo-labels for student training.

4.1.2 Semi-supervised Learning for Vision

Self-training has been applied in both 2D computer vision problems [64, 39, 102, 100, 136]
and 3D problems [79, 112, 56, 63] object detection. STAC [100] enforces consistency be-
tween strongly augmented versions of confidence-filtered pseudo-labels. Unbiased teacher
[64] updates the teacher during training with an exponential moving average (EMA) of the
student network weights. Dense Pseudo-Label [136] replaces box pseudo-labels with the
raw output features of the detector to allow the student to learn richer context. In the 3D
domain, 3DIoUMatch [112] thresholds pseudo-labels using a model-predicted Intersection-
over-Union (IoU). DetMatch [79] performs detection in both the 2D and 3D domains and
filters pseudo-labels based on 2D-3D correspondence. HSSDA [63] extends strong augmen-
tation during training with a patch-based point cloud shuffling augmentation. Offboard3D
[85] utilizes multiple frames of temporal context to improve pseudo-label quality.

4.2 Doubly-Robust Self-Training

In this section, we introduce our proposed doubly-robust loss function, and demonstrate
through theoretical analysis its superiority over the naive semi-supervised loss function.

51

4.2.1 Overview

Our proposed doubly-robust loss is based on a simple modification of the standard loss for
self-training. Assume that we are given a set of unlabeled samples, D1 = {X1, X2, · · · , Xm},
drawn from a fixed distribution PX , a set of labeled samples D2 =
{(Xm+1, Ym+1), (Xm+2, Ym+2), · · · , (Xm+n, Ym+n)}, drawn from some joint distribution
PX × PY |X , and a teacher model f̂ . Our target is to find some θ⋆ ∈ Θ that satisfies

θ⋆ ∈ arg min
θ∈Θ

E(X,Y)∼PX×PY |X [ℓθ(X, Y)].

Let ℓθ(x, y) be a pre-specified loss function that characterizes the prediction error of the
estimator with parameter θ on the given sample (X, Y). Consider a naive estimator that
ignores the predictor f̂ and only trains on the labeled samples:

LTL
D1,D2(θ) = 1

n

m+n∑
i=m+1

ℓθ(Xi, Yi).

Although naive, this is a safe choice since it is an empirical risk minimizer. As n → ∞, the
loss converges to the population loss. However, it ignores all the information provided in f̂
and the unlabeled dataset, which makes it inefficient when the predictor f̂ is informative.
On the other hand, traditional self-training aims at minimizing the combined loss for
both labeled and unlabeled samples, where the pseudo-labels for unlabeled samples are
generated using f̂1:

LSL
D1,D2(θ) = 1

m + n

 m∑
i=1

ℓθ(Xi, f̂(Xi)) +
m+n∑

i=m+1
ℓθ(Xi, Yi)

 .

Note that this can also be viewed as first using f̂ to predict all the data, and then replacing
the originally labeled points with the known labels:

LSL
D1,D2(θ) = 1

m + n

m+n∑
i=1

ℓθ(Xi, f̂(Xi)) − 1
m + n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi)) + 1
m + n

m+n∑
i=m+1

ℓθ(Xi, Yi).

As is shown by the last equality, the self-training loss can be viewed as first using f̂ to
predict all the samples (including the labeled samples) and computing the average loss,
then replacing that part of the loss corresponding to the labeled samples with the loss
on the original labels. Although the loss uses the information arising from the unlabeled
samples and f̂ , the performance can be poor when the predictor is not accurate. Our
proposed doubly-robust loss instead replaces the coefficient 1/(m+n) with 1/n in the last
two terms:

LDR
D1,D2(θ) = 1

m + n

m+n∑
i=1

ℓθ(Xi, f̂(Xi)) − 1
n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi)) + 1
n

m+n∑
i=m+1

ℓθ(Xi, Yi).

(4.1)

This seemingly minor change has a major beneficial effect—the estimator becomes con-
sistent and doubly robust.

1There are several variants of the traditional self-training loss. For example, [119] introduce an ex-
tra weight (m + n)/n on the labeled samples, and add noise to the student model; [99] use confidence
thresholding to filter unreliable pseudo-labels. However, both of these alternatives still suffer from the
inconsistency issue. In this chapter we focus on the simplest form LSL.

52

Theorem 1 (Informal) Let θ⋆ be defined as the minimizer θ⋆ =
arg minθ E(X,Y)∼PX×PY |X [ℓθ(X, Y)]. Under certain regularity conditions, we have

∥∇θLDR
D1,D2(θ⋆)∥2 ≲

√

d
m+n , when Y ≡ f̂(X),√
d
n , otherwise.

On the other hand, there exists instances such that ∥∇θLSL
D1,D2

(θ⋆)∥2 ≥ C always holds
true no matter how large m, n are.

The result shows that the true parameter θ⋆ is also a local minimum of the doubly robust
loss, but not a local minimum of the original self-training loss. We provide an intuitive
interpretation here (including a visualization in Fig. 4.2):

• In the case when the given predictor is perfectly accurate, i.e., f̂(X) ≡ Y always
holds (which also means that Y |X = x is a deterministic function of x), the last two
terms cancel, and the loss minimizes the average loss, 1

m+n

∑m+n
i=1 ℓθ(Xi, f̂(Xi)), on

all of the provided data. The effective sample size is m + n, compared with effective
sample size n for training only on a labeled dataset using LTL. In this case, the loss
LDR is much better than LTL, and comparable to LSL. We may as well relax the
assumption of f̂(X) = Y to E[ℓθ(X, f̂(X))] = E[ℓθ(X, Y)]. As n grows larger, the
loss is approximately minimizing the average loss 1

m+n

∑m+n
i=1 ℓθ(Xi, f̂(Xi)).

• On the other hand, no matter how bad the given predictor is, the difference be-
tween the first two terms vanishes as either of m, n goes to infinity since the labeled
samples Xm+1, · · · , Xm+n arise from the same distribution as X1, · · · , Xm. Thus
asymptotically the loss minimizes 1

n

∑m+n
i=m+1 ℓθ(Xi, Yi), which discards the bad pre-

dictor f̂ and focuses only on the labeled dataset. Thus, in this case the loss LDR is
much better than LSL, and comparable to LTL.

Fig. 4.2: Visualization of intuitive function of the doubly-robust loss. When the teacher model is perfectly
accurate, the loss heavily weights the contribution from pseudo-labeled data. Meanwhile if the teacher
model is a poor predictor, the loss focuses on the contribution from the labeled data.

This loss is appropriate only when the covariate distributions between labeled and
unlabeled samples match. In the case where there is a distribution mismatch, we propose
an alternative loss; see Section 4.2.4.

53

4.2.2 Motivating example: Mean estimation

As a concrete example, in the case of one-dimensional mean estimation we take ℓθ(X, Y) =
(θ − Y)2. Our target is to find some θ⋆ that satisfies

θ⋆ = arg min
θ

E(X,Y)∼PX×PY |X [(θ − Y)2].

One can see that θ⋆ = E[Y]. In this case, the loss for training only on labeled data becomes

LTL
D1,D2(θ) = 1

n

m+n∑
i=m+1

(θ − Yi)2.

Moreover, the optimal parameter is θ̂TL = 1
n

∑m+n
i=m+1 Yi, which is a simple empirical aver-

age over all observed Y ’s.

For a given pre-existing predictor f̂ , the loss for self-training becomes

LSL
D1,D2(θ) = 1

m + n

 m∑
i=1

(θ − f̂(Xi))2 +
m+n∑

i=m+1
(θ − Yi)2

 .

It is straightforward to see that the minimizer of the loss is the unweighted average between
the unlabeled predictors f̂(Xi)’s and the labeled Yi’s:

θ⋆
SL = 1

m + n

 m∑
i=1

f̂(Xi) +
m+n∑

i=m+1
Yi

 .

In the case of m ≫ n, the mean estimator is almost the same as the average of all the
predicted values on the unlabeled dataset, which can be far from θ⋆ when the predictor f̂
is inaccurate.

On the other hand, for the proposed doubly robust estimator, we have

LDR
D1,D2(θ) = 1

m + n

m+n∑
i=1

(θ − f̂(Xi))2 − 1
n

m+n∑
i=m+1

(θ − f̂(Xi))2 + 1
n

m+n∑
i=m+1

(θ − Yi)2

= 1
m + n

m+n∑
i=1

(θ − f̂(Xi))2 + 1
n

m+n∑
i=m+1

2(f̂(Xi) − Yi)θ + Y 2
i − f̂(Xi)2.

Note that the loss is still convex, and we have

θ⋆
DR = 1

m + n

m+n∑
i=1

f̂(Xi) − 1
n

m+n∑
i=m+1

(f̂(Xi) − Yi).

This recovers the estimator in prediction-powered inference[2]. Assume that f̂ is indepen-
dent of the labeled data. We can calculate the mean-squared error of the three estimators
as follows.

54

Proposition 1 Let Var[f̂(X) − Y] = E[(f̂(X) − Y)2 − E[(f̂(X) − Y)]2]. We have

E[(θ⋆ − θ̂TL)2] = 1
n

Var[Y],

E[(θ⋆ − θ̂SL)2] ≤ 2m2

(m + n)2E[(f̂(X) − Y)]2 + 2m

(m + n)2 Var[f̂(X) − Y] + 2n

(m + n)2 Var[Y],

E[(θ⋆ − θ̂DR)2] ≤ 2 min
(

1
n

Var[Y] + m + 2n

(m + n)nVar[f̂(X)], m + 2n

(m + n)nVar[f̂(X) − Y]+

1
m + n

Var[Y]
)

.

As proof, consider the following: for the labeled-only estimator θ̂TL, we have

E[(θ⋆ − θ̂TL)2] = E

E[Y] − 1

n

m+n∑
i=m+1

Y

2
 = 1

n
Var[Y].

For the self-training loss, we have

E[(θ⋆ − θ̂SL)2] = E

E[Y] − 1

m + n

 m∑
i=1

f̂(Xi) +
m+n∑

i=m+1
Yi

2

≤ 2

E
(m

m + n

(
E[Y] − 1

m

m∑
i=1

f̂(Xi)
))2

+ E

 n

m + n

E[Y] − 1
n

m+n∑
i=m+1

Yi

2

≤ 2m2

(m + n)2E[(f̂(X) − Y)]2 + 2m

(m + n)2 Var[f̂(X) − Y] + 2n

(m + n)2 Var[Y].

For the doubly robust loss, on one hand, we have

E[(θ⋆ − θ̂DR)2] = E

E[Y] − 1

m + n

m+n∑
i=1

f̂(Xi) + 1
n

m+n∑
i=m+1

(f̂(Xi) − Yi)

2

≤ 2E

E[Y] − 1

n

m+n∑
i=m+1

Yi

2
+ 2E

E[f̂(X)] − 1

n

m+n∑
i=m+1

f̂(Xi)

2

+ 2E

(E[f̂(X)] − 1
m + n

m+n∑
i=1

f̂(Xi)
)2

= 2
n

Var[Y] +
(2

m + n
+ 2

n

)
Var[f̂(X)].

55

On the other hand, we have

E[(θ⋆ − θ̂DR)2] = E

E[Y] − 1

m + n

m+n∑
i=1

f̂(Xi) + 1
n

m+n∑
i=m+1

(f̂(Xi) − Yi)

2

≤ 2E

(E[Y] − 1
m + n

m+n∑
i=1

Yi

)2+ 2E

E[f̂(X) − Y] − 1

n

m+n∑
i=m+1

(f̂(Xi) − Yi)

2

+ 2E

(E[f̂(X) − Y] − 1
m + n

m+n∑
i=1

(f̂(Xi) − Yi)
)2

=
(2

m + n
+ 2

n

)
Var[f̂(X) − Y] + 2

m + n
Var[Y].

The proof is done by taking the minimum of the two upper bounds. The proposition
illustrates the double-robustness of θ̂DR—no matter how poor the estimator f̂(X) is,
the rate is always upper bounded by 4

n(Var[Y] + Var[f̂(X)]). On the other hand, when
f̂(X) is an accurate estimator of Y (i.e., Var[f̂(X) − Y] is small), the rate can be im-
proved to 2

m+nVar[Y]. In contrast, the self-training loss always has a non-vanishing term,
2m2

(m+n)2E[(f̂(X) − Y)]2, when m ≫ n, unless the predictor f̂ is accurate.

On the other hand, when f̂(x) = β̂⊤
(−1)x + β̂1 is a linear predictor trained on the

labeled data with β̂ = arg minβ=[β1,β(−1)]
1
n

∑m+n
i=m+1(β⊤

(−1)Xi + β1 − Yi)2, our estimator
reduces to the semi-supervised mean estimator in[132]. Let X̃ = [1, X]. In this case,
we also know that the self-training reduces to training only on labeled data, since θ̂TL is
also the minimizer of the self-training loss. We have the following result that reveals the
superiority of the doubly robust estimator compared to the other two options.

Proposition 2 ([132]) We establish the asymptotic behavior of various estimators when
f̂ is a linear predictor trained on the labeled data:

• Training only on labeled data θ̂TL is equivalent to self-training θ̂SL, which gives un-
biased estimator but with larger variance:

√
n(θ̂TL − θ⋆) → N (0,E[(Y − β⊤X̃)2] + β⊤

(−1)Σβ(−1)).

• Doubly Robust θ̂DR is unbiased with smaller variance:
√

n(θ̂DR − θ⋆) → N (0,E[(Y − β⊤X̃)2] + n

m + n
β⊤

(−1)Σβ(−1)).

Here β = arg minβ E[(Y − β⊤X̃)2] and Σ = E[(X − E[X])(X − E[X])⊤].

4.2.3 Guarantee for general loss

In the general case, we show that the doubly robust loss function continues to exhibit
desirable properties. In particular, as n, m goes to infinity, the global minimum of the

56

original loss is also a critical point of the new doubly robust loss, no matter how inaccurate
the predictor f̂ .

Let θ⋆ be the minimizer of EPX,Y
[ℓθ(X, Y)]. Let f̂ be a pre-existing model that does

not depend on the datasets D1, D2. We also make the following regularity assumptions.

Assumption 1 The loss ℓθ(x, y) is differentiable at θ⋆ for any x, y.

Assumption 2 The random variables ∇θℓθ(X, f̂(X)) and ∇θℓθ(X, Y) have bounded first
and second moments.

Given this assumption, we denote ΣY −f̂
θ = Cov[∇θℓθ(X, f̂(X)) − ∇θℓθ(X, Y)] and let

Σf̂
θ = Cov[∇θℓθ(X, f̂(X))], ΣY

θ = Cov[∇θℓθ(X, Y)].

Theorem 2 Under Assumptions 1 and 2, we have that with probability at least 1 − δ,

∥∇θLDR
D1,D2(θ⋆)∥2 ≤ C min

(
∥Σf̂

θ⋆∥2

√
d

(m + n)δ + ∥ΣY −f̂
θ⋆ ∥2

√
d

nδ
,

∥Σf̂
θ⋆∥2

√ d

(m + n)δ +
√

d

nδ

+ ∥ΣY
θ⋆∥2

√
d

nδ

)
,

where C is a universal constant, and LDR
D1,D2

is defined in Equation (4.1).

As proof, consider the following: we know that

∥∇θLDR
D1,D2(θ⋆) − E[∇θLDR

D1,D2(θ⋆)]∥2

=
∥∥∥ 1

m + n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi)) − E[∇θℓθ⋆(X, f̂(X))])+

1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi) − ∇θℓθ⋆(Xi, f̂(Xi))

− E[∇θℓθ⋆(X, Y) − ∇θℓθ⋆(X, f̂(X))]
)∥∥∥

2

≤
∥∥∥ 1

m + n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi)) − E[∇θℓθ⋆(X, f̂(X))])
∥∥∥

2
+

∥∥∥ 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi) − ∇θℓθ⋆(Xi, f̂(Xi))

− E[∇θℓθ⋆(X, Y) − ∇θℓθ⋆(X, f̂(X))]
)∥∥∥

2
.

From the multi-dimensional Chebyshev inequality[9, 73], we have that with probability
at least 1 − δ/2, for some universal constant C,

∥∥∥ 1
m + n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi)) − E[∇θℓθ⋆(X, f̂(X))])
∥∥∥

2
≤ C∥Σf̂

θ⋆∥2

√
d

(m + n)δ .

57

Similarly, we also have that with probability at least 1 − δ/2,

∥∥∥ 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi) − ∇θℓθ⋆(Xi, f̂(Xi)) − E[∇θℓθ⋆(X, Y) − ∇θℓθ⋆(X, f̂(X))]

)∥∥∥
2

≤ C∥ΣY −f̂
θ⋆ ∥2

√
d

nδ
.

Furthermore, note that

E[∇θLDR
D1,D2(θ⋆)] = E[∇θℓθ⋆(X, Y)] = ∇θE[ℓθ⋆(X, Y)] = 0.

Here we use Assumption 1 and Assumption 2 to ensure that the expectation and differ-
entiation are interchangeable. Thus we have that with probability at least 1 − δ,

∥∇θLDR
D1,D2(θ⋆)∥2 ≤ C

∥Σf̂
θ⋆∥2

√
d

(m + n)δ + ∥ΣY −f̂
θ⋆ ∥2

√
d

nδ

 .

On the other hand, we can also write the difference as

∥∇θLDR
D1,D2(θ⋆) − E[∇θLDR

D1,D2(θ⋆)]∥2

=
∥∥∥ 1

m + n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi)) − E[∇θℓθ⋆(X, f̂(X))])

+ 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi) − E[∇θℓθ⋆(X, Y)]

)

− 1
n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi) − E[∇θℓθ⋆(X, f̂(X))]

)∥∥∥
2

≤
∥∥∥ 1

m + n

m+n∑
i=1

(∇θℓθ⋆(Xi, f̂(Xi)) − E[∇θℓθ⋆(X, f̂(X))])
∥∥∥

2

+
∥∥∥ 1

n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi) − E[∇θℓθ⋆(X, Y)]

)∥∥∥
2

+
∥∥∥ 1

n

m+n∑
i=m+1

(
∇θℓθ⋆(Xi, Yi) − E[∇θℓθ⋆(X, f̂(X))]

)∥∥∥
2

≤ C

∥Σf̂
θ⋆∥2

√ d

(m + n)δ +
√

d

nδ

+ ∥ΣY
θ⋆∥2

√
d

nδ

 .

Here the last inequality uses the multi-dimensional Chebyshev inequality and it holds with
probability at least 1 − δ. This finishes the proof.

From the example of mean estimation we know that one can design instances such
that ∥∇θLSL

D1,D2
(θ⋆)∥2 ≥ C for some positive constant C.

When the loss ∇θLDR
D1,D2

is convex, the global minimum of ∇θLDR
D1,D2

converges to θ⋆

as both m, n go to infinity. When the loss ∇θLDR
D1,D2

is strongly convex, it also implies

58

that ∥θ̂ − θ⋆∥2 converges to zero as both m, n go to infinity, where θ̂ is the minimizer of
∇θLDR

D1,D2
.

When f̂ is a perfect predictor with f̂(X) ≡ Y (and Y |X = x is deterministic), one
has LDR

D1,D2
(θ⋆) = 1

m+n

∑m+n
i=1 ℓθ(Xi, Yi). The effective sample size is m + n instead of n in

LSL
D1,D2

(θ).

When f̂ is also trained from the labeled data, one may apply data splitting to achieve
the same guarantee up to a constant factor. In Theorem 2, we analyzed the double
robustness of the proposed loss function when the predictor f̂ is pre-existing and not
trained from the labeled dataset. In practice, one may only have access to the labeled and
unlabeled datasets without a pre-existing teacher model. In this case, one may choose to
split the labeled samples D2 into two parts. The last n/2 samples are used to train f̂ , and
the first n/2 samples are used in the doubly robust loss:

LDR2
D1,D2(θ) = 1

m

m∑
i=1

ℓθ(Xi, f̂(Xi)) − 2
n

m+n/2∑
i=m+1

1
π(Xi)

ℓθ(Xi, f̂(Xi)) + 2
n

m+n/2∑
i=m+1

1
π(Xi)

ℓθ(Xi, Yi).

Since f̂ is independent of all samples used in the above loss, the result in Theorem 2
continues to hold. Asymptotically, such a doubly robust estimator is never worse than the
estimator trained only on the labeled data.

4.2.4 The case of distribution mismatch

We also consider the case in which the marginal distributions of the covariates for the
labeled and unlabeled datasets are different. Assume in particular that we are given a
set of unlabeled samples, D1 = {X1, X2, · · · , Xm}, drawn from a fixed distribution PX , a
set of labeled samples, D2 = {(Xm+1, Ym+1), (Xm+2, Ym+2), · · · , (Xm+n, Ym+n)}, drawn
from some joint distribution QX ×PY |X , and a pre-trained model f̂ . In the case when the
labeled samples do not follow the same distribution as the unlabeled samples, we need to
introduce an importance weight π(x). This yields the following doubly robust estimator:

LDR2
D1,D2(θ) = 1

m

m∑
i=1

ℓθ(Xi, f̂(Xi)) − 1
n

m+n∑
i=m+1

1
π(Xi)

ℓθ(Xi, f̂(Xi)) + 1
n

m+n∑
i=m+1

1
π(Xi)

ℓθ(Xi, Yi).

Note that we not only introduce the importance weight π, but we also change the first
term from the average of all the m + n samples to the average of n samples.

Proposition 3 We have E[LDR2
D1,D2

(θ)] = EPX,Y
[ℓθ(X, Y)] as long as one of the following

two assumptions hold:

• For any x, π(x) = PX(x)
QX(x) .

• For any x, ℓθ(x, f̂(x)) = EY ∼PY |X=x
[ℓθ(x, Y)].

59

To prove this proposition, consider the following: we have

E[LDR2
D1,D2(θ)] = 1

m

m∑
i=1

EXi∼PX
[ℓθ(Xi, f̂(Xi))] − 1

n

m+n∑
i=m+1

EXi∼QX

[1
π(Xi)

ℓθ(Xi, f̂(Xi))
]

+ 1
n

m+n∑
i=m+1

EXi∼QX ,Yi∼PY |Xi

[1
π(Xi)

ℓθ(Xi, Yi)
]

= EX∼PX
[ℓθ(X, f̂(X))] − EX∼QX

[1
π(X)ℓθ(X, f̂(X))

]
+ EX∼QX ,Y ∼PY |X

[1
π(X)ℓθ(X, Y)

]
.

In the first case when π(x) ≡ PX(x)
QX(x) , we have

E[LDR2
D1,D2(θ)] = EX∼PX

[ℓθ(X, f̂(X))] − EX∼QX

[PX(X)
QX(X)ℓθ(X, f̂(X))

]
+ EX∼QX ,Y ∼PY |X

[PX(X)
QX(X)ℓθ(X, Y)

]
= EX∼PX

[ℓθ(X, f̂(X))] − EX∼PX

[
ℓθ(X, f̂(X))

]
+ EX∼PX ,Y ∼PY |X [ℓθ(X, Y)]

= EX,Y ∼PX,Y
[ℓθ(X, Y)] .

In the second case when ℓθ(x, f̂(x)) = EY ∼PY |X=x
[ℓθ(x, Y)], we have

E[LDR2
D1,D2(θ)] = EX∼PX

[ℓθ(X, f̂(X))] − EX∼QX

[1
π(X)ℓθ(X, f̂(X))

]
+ EX∼QX

EY ∼PY |X

[1
π(X)ℓθ(X, Y) | X

]
= EX∼PX

[ℓθ(X, f̂(X))] − EX∼QX

[1
π(X)ℓθ(X, f̂(X))

]
+ EX∼QX

[1
π(X)ℓθ(X, f̂(X))

]
= EX∼PX

[ℓθ(X, f̂(X))]
= EX,Y ∼PX,Y

[ℓθ(X, Y)] .

This finishes the proof. The proposition implies that as long as either π or f̂ is accurate,
the expectation of the loss is the same as that of the target loss. When the distributions
for the unlabeled and labeled samples match each other, this reduces to the case in the
previous sections. In this case, taking π(x) = 1 guarantees that the expectation of the
doubly robust loss is always the same as that of the target loss.

4.3 Experimental Results

To employ the new doubly robust loss in practical applications, we need to specify an
appropriate optimization procedure, in particular one that is based on (mini-batched)

60

stochastic gradient descent so as to exploit modern scalable machine learning methods.
In preliminary experiments we observed that directly minimizing the doubly robust loss
in Equation (4.1) with stohastic gradient can lead to instability, and thus, we propose
instead to minimize the curriculum-based loss in each epoch:

LDR,t
D1,D2

(θ) = 1
m + n

m+n∑
i=1

ℓθ(Xi, f̂(Xi)) − αt ·

 1
n

m+n∑
i=m+1

ℓθ(Xi, f̂(Xi)) − 1
n

m+n∑
i=m+1

ℓθ(Xi, Yi)

 .

As we show in the experiments below, this choice yields a stable algorithm. We set
αt = t/T , where T is the total number of epochs. For the object detection experiments,
we introduce the labeled samples only in the final epoch, setting αt = 0 for all epochs
before setting αt = 1 in the final epoch. Intuitively, we start from the training with
samples only from the pseudo-labels, and gradually introduce the labeled samples in the
doubly robust loss for fine-tuning.

We conduct experiments on both image classification task with ImageNet dataset [91]
and 3D object detection task with autonomous driving dataset nuScenes [10].

4.3.1 Image classification

4.3.1.1 Datasets and settings

We evaluate our doubly robust self-training method on the ImageNet100 dataset, which
contains a random subset of 100 classes from ImageNet-1k [91], with 120K training images
(approximately 1,200 samples per class) and 5,000 validation images (50 samples per
class). To further test the effectiveness of our algorithm in a low-data scenario, we create
a dataset that we refer to as mini-ImageNet100 by randomly sampling 100 images per
class from ImageNet100. Two models were evaluated: (1) DaViT-T [22], a popular vision
transformer architecture with state-of-the-art performance on ImageNet, and (2) ResNet50
[30], a classic convolutional network to verify the generality of our algorithm.

For the training, we use the same data augmentation and regularization strategies
following the common practice in [66, 62, 22]. We train all the models with a batch size of
1024 on 8 Tesla V100 GPUs (the batch size is reduced to 64 if the number of training data
is less than 1000). We use AdamW [68] optimizer and a simple triangular learning rate
schedule [98]. The weight decay is set to 0.05 and the maximal gradient norm is clipped
to 1.0. The stochastic depth drop rates are set to 0.1 for all models. During training, we
crop images randomly to 224 × 224, while a center crop is used during evaluation on the
validation set. We use a curriculum setting where the αt grows linearly or quadratically
from 0 to 1 throughout the training. To show the effectiveness of our method, we also
compare model training with different curriculum learning settings and varying numbers
of epochs.

61

10 20 30 40 50 60 70 80 90 100
Labeled Data Fraction (%)

15
20
25
30
35
40
45
50
55

To
p-

1
A

cc
 (%

)

16.0 16.9

23.9

29.8
32.8

36.5
39.6

43.1
45.0 47.8

17.0
18.2

24.4
29.7

31.9
35.2

37.3
39.7 41.2

42.8

19.4 20.3

28.0

34.0
37.6

41.4
43.8

46.1
47.7 47.8

23.3
25.8

32.6

37.0
39.7

45.5
48.4

51.4 51.5 51.8

Labeled Only
Psuedo Only
Labeled + Pseudo
Doubly-Robust (Ours)

10 20 30 40 50 60 70 80 90 100
Labeled Data Fraction (%)

40

50

60

70

80

To
p-

5
A

cc
 (%

)

39.7 40.0

50.0

58.0

62.6
66.3

69.9 72.6
75.2

77.1

38.6 39

48.9

55.0
58.0

62.4
65.6

67.8 69.5 70.3

42.0
44.5

54.6

62.7
66.7

71.8 73.4 75.3
77.2 77.1

50.5
54.0

62.1

67.9
70.3

74.6
77.9 79.4 79.9 80.0

Labeled Only
Psuedo Only
Labeled + Pseudo
Doubly-Robust (Ours)

(a) Top-1 on DaViT (b) Top-5 on DaViT

10 20 30 40 50 60 70 80 90 100
Labeled Data Fraction (%)

15

20

25

30

35

40

45

50

To
p-

1
A

cc
 (%

)

15.7

21.6

25.8
29.1

31.7
34.8

37.0
40.0

43.6 46.7

15.6

20.8

24.8
27.3

28.9
32.6 33.9

35.7
37.6

39.5

16.5

23.1

28.9

33.0
36.8

40.3
43.5

45.8 46.6 46.7

20.5

25.0

32.0

37.0

41.9
43.9

46.8
48.4 49.9 51.4

Labeled Only
Psuedo Only
Labeled + Pseudo
Doubly-Robust (Ours)

10 20 30 40 50 60 70 80 90 100
Labeled Data Fraction (%)

40

50

60

70

80

To
p-

5
A

cc
 (%

)

38.3

48.2

54.1
58.4

62.1
66.3

68.4
71.8 74.9

77.0

35.8

44.9

50.3
53.7

56.0
59.8

62.1
64.4 65.7

67.9

38.6

50.5

57.9

63.0
67.6 71.1

73.7
75.0 76.6 77.0

43.3

55.1

63.4
66.9

70.5
72.9

74.9 76.8 77.6 79.0

Labeled Only
Psuedo Only
Labeled + Pseudo
Doubly-Robust (Ours)

(c) Top-1 on ResNet50 (d) Top-5 on ResNet50
Fig. 4.3: Comparisons on ImageNet100 using two different network architectures. Both Top-1 and Top-5
accuracies are reported. All models are trained for 20 epochs.

4.3.1.2 Baselines

To provide a comparative evaluation of doubly robust self-training, we establish three
baselines: (1) ‘Labeled Only’ for training on labeled data only (partial training set) with
a loss LTL, (2) ‘Pseudo Only’ for training with pseudo labels generated for all training
samples, and (3) ‘Labeled + Pseudo’ for a mixture of pseudo-labels and labeled data, with
the loss LSL. See the Appendix for further implementation details and ablations.

4.3.1.3 Results on ImageNet100

We first conduct experiments on ImageNet100 by training the model for 20 epochs using
different fractions of labeled data from 1% to 100%. From the results shown in Fig. 4.3,
we observe that: (1) Our model outperforms all baseline methods on both two networks
by large margins. For example, we achieve 5.5% and 5.3% gains (Top-1 Acc) on DaViT
over the ‘Labeled + Pseudo’ method for 20% and 80% labeled data, respectively. (2) The
‘Labeled + Pseudo’ method consistently beats the ‘Labeled Only’ baseline. (3) While
‘Pseudo Only’ works for smaller fractions of the labeled data (less than 30%) on DaViT,
it is inferior to ‘Labeled Only’ on ResNet50.

4.3.1.4 Results on mini-ImageNet100

We also perform comparisons on mini-ImageNet100 to demonstrate the performance when
the total data volume is limited. From the results in Table 4.1, we see our model generally

62

Labeled Data Percent Labeled Only Pseudo Only Labeled + Pseudo Doubly robust Loss
top1 top5 top1 top5 top1 top5 top1 top5

1 2.72 9.18 2.81 9.57 2.73 9.55 2.75 9.73
5 3.92 13.34 4.27 13.66 4.27 14.4 4.89 16.38
10 6.76 20.84 7.27 21.64 7.65 22.48 8.01 21.90
20 12.3 31.3 13.46 30.79 13.94 32.63 13.50 32.17
50 20.69 46.86 20.92 45.2 24.9 50.77 25.31 51.61
80 27.37 55.57 25.57 50.85 30.63 58.85 30.75 59.41
100 31.07 60.62 28.95 55.35 34.33 62.78 34.01 63.04

Table 4.1: Comparisons of doubly-robust loss with baselines on mini-ImageNet100, all models trained
for 100 epochs.

outperforms all baselines. As the dataset size decreases and the number of training epochs
increases, the gain of our algorithm becomes smaller. This is expected, as (1) the models
are not adequately trained and thus have noise issues, and (2) there are an insufficient
number of ground truth labels to compute the last term of our loss function. In extreme
cases, there is only one labeled sample (1%) per class.

4.3.1.5 Ablation Studies

First, we perform ablation studies on varying learning curriculum settings. There are three
options for the curriculum setting: 1) αt = 1 throughout the whole training, 2) grows
linearly with training iterations αt = t/T , 3) grows quadratically with training iterations
αt = (t/T)2. From results in Table 4.2, we see: the first option achieves comparable
performance with the ‘Naive Labeled + Pseudo’ baseline. Both the linear and quadratic
strategies show significant performance improvements: the linear one works better when
more labeled data is available, e.g., 70% and 90%, while the quadratic one prefers less
labeled data, e.g. 30% and 50%.

Methods 30% GTs 50% GTs 70% GTs 90% GTs
top1 top5 top1 top5 top1 top5 top1 top5

Naive Labeled + Pseudo 28.01 54.63 37.6 66.72 43.76 73.42 47.74 77.15
doubly robust, αt = 1 28.43 56.65 38.06 67.18 43.22 73.18 48.52 77.21
doubly robust, αt = t/T (linear) 30.87 60.98 40.18 71.06 46.60 75.80 50.44 78.88
doubly robust, αt = (t/T)2 (quadratic) 31.15 61.29 40.86 71.14 45.50 75.11 49.64 77.77

Table 4.2: Ablation study on different curriculum settings on ImageNet-100. All models are trained in
20 epochs.

Next, we conduct experiments on different training epochs. The results are shown in
Table 4.3. Our model is consistently superior to the baselines. And we can observe the
gain is larger when the number of training epochs is relatively small, e.g. 20 and 50.

In our original experiments, we mostly focus on a teacher model that is not super
accurate, since our method reduces to the original pseudo-labeling when the teacher model
is completely correct for all labels. In this experiment, we fully train the teacher model
with 300 epochs on ImageNet-100, leading to the accuracy of the teacher model as high
as 88.0%. From Figure 4.4, we show that even in this case, our method outperforms the
original pseudo-labeling baseline.

63

Training epochs Labeled Only Pseudo Only Labeled + Pseudo doubly robust Loss
top1 top5 top1 top5 top1 top5 top1 top5

20 16.02 39.68 17.02 38.64 19.38 41.96 21.88 47.18
50 25.00 51.21 28.90 53.74 30.36 57.04 36.65 65.68
100 35.57 64.66 44.43 71.56 42.44 68.94 45.98 70.66

Table 4.3: Ablation study on the number of epochs. All models are trained using 10% labeled data on
ImageNet-100.

20 50 80 100
Labeled Data Fraction (%)

65

70

75

80

85

90

To
p-

1
A

cc
 (%

)

63.6

81.2

85.5
88.0

64.9

82.9

87.0
89.4

67.2

85.5
87.6

90.6

Labeled Only
Labeled + Pseudo
Doubly-Robust (Ours)

Fig. 4.4: Results on ImageNet-100 using fully trained (300 epochs) DaViT-T with different data fractions.

4.3.1.6 Comparisons with previous SOTAs on CIFAR-10 and CiFAR-100

We compare with another 11 baselines in terms of error rate on CIFAR-10-4K and CIFAR-
100-10K under the same settings (i.e., Wide ResNet-28-2 for CIFAR-10 and WRN-28-8
for CIFAR-100). We show that our method is only 0.04 inferior to the best method Meta
Pseudo Labels for CIFAR-10-4K, and achieves the best performance for CIFAR-100-10K.

4.3.2 3D object detection

4.3.2.1 Doubly robust object detection

Given a visual representation of a scene, 3D object detection aims to generate a set of
3D bounding box predictions {bi}i∈[m+n] and a set of corresponding class predictions
{ci}i∈[m+n]. Thus, each single ground-truth annotation Yi ∈ Y is a set Yi = (bi, ci)
containing a box and a class. During training, the object detector is supervised with a
sum of the box regression loss Lloc and the classification loss Lcls, i.e. Lobj = Lloc + Lcls.

In the self-training protocol for object detection, pseudo-labels for a given scene Xi

are selected from the labeler predictions f(Xi) based on some user-defined criteria (typ-
ically the model’s detection confidence). Unlike in standard classification or regression,
Yi will contain a differing number of labels depending on the number of objects in the

64

Method CIFAR-10-4K (error rate, %) CIFAR-100-10K (error rate, %)
Pseudo-Labeling 16.09 36.21

LGA + VAT 12.06 –
Mean Teacher 9.19 35.83

ICT 7.66 –
SWA 5.00 28.80

MixMatch 4.95 25.88
ReMixMatch 4.72 23.03

EnAET 5.35 –
UDA 4.32 24.50

FixMatch 4.31 23.18
Meta Pesudo Labels 3.89 –

Ours 3.93 22.30

Table 4.4: Comparisons with previous SOTAs on CiFAR-10 and CIFAR-100.

scene. Furthermore, the number of extracted pseudo-labels f(Xi) will generally not be
equal to the number of scene ground-truth labels Yi due to false positive/negative detec-
tions. Therefore it makes sense to express the doubly robust loss function in terms of the
individual box labels as opposed to the scene-level labels. We define the doubly robust
object detection loss as follows:

LDR
obj(θ) = 1

M + Nps

M+Nps∑
i=1

ℓθ(Xi, f(Xi)) − 1
Nps

M+Nps∑
i=M+1

ℓθ(X ′
i, f(X ′

i)) + 1
N

M+N∑
i=M+1

ℓθ(Xi, Yi)

where M is the total number of pseudo-label boxes from the unlabeled split, N is the total
number of labeled boxes, X ′

i is the scene with pseudo-label boxes from the labeled split,
and Nps is the total number of pseudo-label boxes from the labeled split. We note that the
last two terms now contain summations over a differing number of boxes, a consequence of
the discrepancy between the number of manually labeled boxes and pseudo-labeled boxes.
Both components of the object detection loss (localization/classification) adopt this form
of doubly robust loss.

Labeled Data Fraction Labeled Only Labeled + Pseudo Doubly robust Loss
mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑

1/24 7.56 18.01 7.60 17.32 8.18 18.33
1/16 11.15 20.55 11.60 21.03 12.30 22.10
1/4 25.66 41.41 28.36 43.88 27.48 43.18

Table 4.5: Performance comparison on nuScenes val set.

4.3.2.2 Setting

Our experiments follow the standard approach for semi-supervised detection: we first
initialize two detectors, the teacher (i.e., labeler) and the student. First, a random split of
varying sizes is selected from the nuScenes training set. We pre-train the teacher network
using the ground-truth annotations in this split. Following this, we freeze the weights in

65

the teacher model and then use it to generate pseudo-labels on the entire training set.
The student network is then trained on a combination of the pseudo-labels and ground-
truth labels originating from the original split. In all of our semi-supervised experiments,
we use CenterPoint with a PointPillars backbone as our 3D detection model [127, 48].
The teacher pre-training and student training are both conducted for 10 epochs on 3
NVIDIA RTX A6000 GPUs. We follow the standard nuScenes training setting outlined
in [141], with the exception of disabling ground-truth paste augmentation during training
to prevent data leakage from the labeled split. To select the pseudo-labels to be used
in training the student, we simply filter the teacher predictions by detection confidence,
using all detections above a chosen threshold. We use a threshold of 0.3 for all classes, as
in [79]. In order to conduct training in a batch-wise manner, we compute the loss over only
the samples contained within the batch. We construct each batch to have a consistent
ratio of labeled/unlabeled samples to ensure the loss is well-defined for the batch.

4.3.2.3 Main Results

Training Setting mAP
1400 labeled frames + doubly robust training 11.53

1750 labeled frames + baseline training 11.60

Table 4.6: mAP comparison between two labeled data training settings, illustrating a 20% improvement
in data efficiency using the doubly-robust loss with equivalent mAP.

After semi-supervised training, we evaluate our student model performance on the
nuScenes val set. We compare three settings: training the student model with only the
available labeled data (i.e., equivalent to teacher training), training the student model
on the combination of labeled/teacher-labeled data using the naive self-training loss, and
training the student model on the combination of labeled/teacher-labeled data using our
proposed doubly robust loss. We report results for training with 1/24, 1/16, and 1/4 of
the total labels in Table 4.5. We find that the doubly robust loss improves both mAP
and NDS over using only labeled data and the naive baseline in the lower label regime,
whereas performance is slightly degraded when more labels are available. To illustrate the
data efficiency gains using our doubly-robust loss, we compare performance between two
settings: 1400 labeled frames using doubly-robust training, and 1750 labeled frames using
the baseline SSL loss. Shown in Fig. 4.6, we show that using 20% fewer labeled frames,
we are able to achieve equivalent performance with our doubly-robust loss to that of the
naive loss. Furthermore, we also show a per-class performance breakdown in Table 4.7.
We find that the doubly robust loss consistently improves performance for both common
(car, pedestrian) and rare classes. Notably, the doubly robust loss is even able to improve
upon the teacher in classes for which pseudo-label training decreases performance when
using the naive training (e.g., barriers and traffic cones).

Car Ped Truck Bus Trailer Barrier Traffic Cone
Labeled Only 48.6 30.6 8.5 6.2 4.0 6.8 4.4

Labeled + Pseudo 48.8 30.9 8.8 7.5 5.7 6.7 4.0
Improvement +0.2 +0.3 +0.3 +1.3 +1.7 -0.1 -0.4

Doubly robust Loss 51.5 32.9 9.6 8.2 5.2 7.2 4.5
Improvement +2.9 +2.3 +1.1 +2.0 +1.2 +0.4 +0.1

Table 4.7: Per-class mAP (%) comparison on nuScenes val set using 1/16 of total labels in training.

66

4.3.2.4 Ablation Studies

We compare our approach to another semi-supervised baseline on the 3D object detection
task, Pseudo-labeling and confirmation bias [5]. We shows that in multiple settings, our
approach surpasses the baseline performance (results shown in Tab. 4.8).

To demonstrate that appropriate quality pseudo-labels are used to train the student
detector, we performance ablation experiments varying the detection threshold used to
extract pseudo-labels from the teacher model predictions. As shown in Tab. 4.9, we show
that training with a threshold of τ = 0.3 outperforms training with a more stringent
threshold, and is the appropriate experimental setting for our main experiments.

Table 4.8: Performance comparison with pseudo-labeling baseline on nuScenes val set.

Labeled Fraction Labeled Only Labeled + Pseudo Doubly robust Loss Pseudo-Labeling + Confirmation Bias
mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑

1/24 7.56 18.01 7.60 17.32 8.18 18.33 7.80 16.86
1/16 11.15 20.55 11.60 21.03 12.30 22.10 12.15 22.89

Table 4.9: Doubly Robust Loss performance comparison with differing detection thresholds for pseudo-
labels.

Labeled Data Fraction
τ = 0.3 τ = 0.5

Labeled+Pseudo Doubly Robust Loss Labeled+Pseudo Doubly Robust Loss
mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑ mAP↑ NDS↑

1/24 7.56 18.01 8.18 18.33 7.15 15.82 4.37 13.17
1/16 11.15 20.55 12.30 22.10 11.05 21.22 8.09 19.70

4.4 Discussion

In this chapter, we propose a novel theoretically-grounded approach to semi-supervised
learning, which we dub doubly-robust self-training. In this approach, we replace the stan-
dard self-training SSL loss function with a simple re-weighted modification. Theoretically,
we analyzed the double-robustness property of the proposed loss, demonstrating its statis-
tical efficiency when the pseudo-labels are accurate. Empirically, we perform experiments
on both image classification and 3D object detection on ImageNet and nuScenes, respec-
tively. For both tasks, doubly-robust training outperforms the naive training loss across
a variety of labeled data settings.

Although our scheme for doubly-robust self-labeling is simple to implement and effec-
tive, several key factors limit its potential use in real-world autolabeling systems. First, we
note that the improvement is performance over the baseline autolabeling approach is quite
moderate (i.e. 1-2 mAP on 3D object detection), so on its own our improved loss function
design cannot fully replicate accuracy achieved using human-labeled data. Another issue
arises from the instability encountered during training with the doubly-robust loss. In our
experiments, we address this using a curriculum-based loss to help stabilize training, how-
ever more work needs to be done to better understand this instability and develop a more
robust method for training. A further significant drawback is the assumption underlying
our theoretical analysis that the labeled and unlabeled data both arise from the same
distribution; in reality, this is very rarely the case. Developing an improved algorithm

67

which is sound in this scenario is another direction needed to make the doubly-robust loss
applicable in real self-driving functions.

While further improving semi-supervised learning to aid in large-scale 3D autolabeling
still has a ways to come, our combined theoretical and empirical analysis offers an improved
understanding of self-labeling that can be easily implemented to offer modest improvement
in performance. Doubly-robust self-training pushes the capability of autolabeling forward,
aiding in efforts to reduce the significant data labeling costs associated with training 3D
perception models for self-driving.

68

Chapter 5

Prediction Enhanced Autolabeling

In this chapter, we will continue our investigation of data-efficient 3D vision. As op-
posed to our generalized doubly-robust training approach introduced in Chapter 4, in
this chapter we will focus on exploring semi-supervised 3D object detection specifically
for autonomous driving, aiming to exploit other parts of the autonomy stack to improve
label-efficient perception. We introduce a novel approach, TrajSSL, which leverages mo-
tion forecasting models to generate synthetic object tracks which are then used in com-
bination with teacher-generated pseudo-labels. Our approach shows strong performance
in experiments, outperforming both the standard SSL baseline, as well as our previously
introduced doubly-robust self-training.

5.1 Background

The autonomy stack used to power the “brain" of AVs can be broken up into four key parts:
perception, prediction, planning and control. Perception, the main focus of this thesis,
allows for the vehicle to sense the world around it. Prediction tries to infer the motion of
other dynamic objects in the scene. Planning uses the inferred object trajectories and the
goal of the ego vehicle to develop an optimal route through the scene. Control sends raw
control signals to the vehicle to enable it’s driving. The four of these are summarized in Fig
5.1. Our previous discussions in this thesis have focused solely on improving perception
on its own. Other works have explored the possibility of end-to-end autonomous driving,
in which all stages of the autonomy stack are learned simultaneously [31]. However,
we consider a different philosophy: leveraging downstream tasks in the autonomy stack
to improve perception from a label-efficiency perspective. We note that the prediction
pipeline is a form of generative modeling, producing synthetic object trajectories based
on previously perceived objects. This synthetic scene data can then be used to enrich
semi-supervised training; the following parts of this section will provide more background
details.

5.1.1 Semi-Supervised 3D Object Detection

All pseudo-labeling-based approaches to SSL seek to address a key challenge: what is the
best strategy for maximizing supervision from high-quality pseudo-labels during training,
while minimizing supervision from low-quality ones? In order to address this problem,
we first need a quantifiable measure of pseudo-label quality. In the previous chapter,
we address this problem from a general perspective, using consistency between pseudo-
labels and ground-truth labels on labeled data as a way of quantifying the quality of the
teacher model. In the context of object detection, a rudimentary approach is to simply
use the teacher model detection confidence score as a proxy for pseudo-label quality.
However, particularly for a teacher model trained on a limited dataset, the confidence

69

Fig. 5.1: Visualization of the autonomy stack for AVs including four key functions: perception, prediction,
planning and control.

score is often weakly correlated with a pseudo-label’s true agreement with a ground truth
label [79]. Many other alternative measures have been developed which improve over this
rudimentary baseline.

Initial works on semi-supervised object detection primarily focused on the 2D detec-
tion task [64, 39, 102, 100, 136, 137]. STAC [100] strongly augments inputs to the student
model to enforce augmentation consistency between pseudo-labels. Unbiased teacher [64]
uses an exponential moving average (EMA) to update the teacher model during student
training. More recent works have also investigated semi-supervised 3D object detection
[79, 112, 56, 63, 16, 134]. SESS [134] utilizes three consistency losses to enforce agree-
ment between perturbed variations of the input data. 3DIoUMatch [112] utilizes an IoU
estimation module score as a confidence threshold filter. DetMatch [79] takes a multi-
modal approach, using agreement between camera model pseudo-labels and LiDAR model
pseudo-labels to filter pseudo-labels. HSSDA [63] uses an improved strong data augmenta-
tion scheme in combination with hierarchical supervision based on pseudo-label quality to
improve training. Playbacks for UDA [129] adopts a temporal refinement of pseudo-labels,
using a tracking interpolation/extrapolation module to improve pseudo-label quality in the
context of unsupervised domain adaptation.

5.1.2 Temporal 3D Object Detection

In the autonomous driving setting in which object detection is inherently linked to navigat-
ing dynamic scenes over time, temporal sequence inputs offer an opportunity for improved
detection performance. Several methods for multi-frame 3D object detection have been
proposed in the literature [14, 27, 85, 125], ranging in complexity from simple point cloud
concatenation [127] to multi-level fusion and refinement schemes [85]. Point concatena-
tion, in which points from multiple frames are directly appended into a single point cloud,
is the most common and straightforward approach, but is limited by computation costs
associated with increasingly large point clouds. MPPNet [14] and 3DAL [85] use a two-
stage refinement where inputs from multiple frames are used to improve bounding box
estimates. MoDAR leverages motion forecasting as a vehicle for propagating temporal in-
formation, generating virtual points which are added to the point cloud [57]. However, few
works have explored leveraging temporal inputs in the context of semi-supervised object

70

Fig. 5.2: Overview of our proposed method TrajSSL. In addition to a teacher-student SSL framework, we
introduce a trajectory prediction model (AgentFormer) which predicts future object trajectories based on
past pseudo-label tracks. The inference output of this model is combined with the perception pseudo-labels
and an IoU=matching process is performed. Pseudo-labels are then weighted during supervision based on
the degree to which they agree with the forecasted trajectories. Meanwhile, predictions which don’t match
already existing pseudo-labels are added to the training process as down-weighted pseudo-labels.

detection.

5.1.3 Motion Prediction

Decision-making in robots/autonomous vehicles navigating dynamic scenes requires an
awareness of the motion of other agents in the scene. Trajectory prediction uses the
historical motion of other agents in combination with scene-level information (e.g. HD
maps) to forecast future agent trajectories. A variety of approaches to exist to trajectory
prediction [131, 92, 108, 65, 21], generally relying on neural generative modeling to pro-
duce future object trajectories. Agentformer [131] jointly models both temporal and social
interactions between agents in the scene, generating trajectories using a conditional vari-
ational autoencoder (CVAE) generative model. A few works have also examined training
prediction models in a label-efficient manner [120, 11], although this direction remains
generally unexplored.

5.2 TrajSSL

In this section, we introduce our proposed approach TrajSSL, and describe in detail both
the generation of synthetic trajectories, and the semi-supervised training of a student
model leveraging these trajectory outputs. An overview of our approach is shown in Fig.
5.2.

71

Fig. 5.3: Overview of Agentformer architecture. Figure adapted from [131].

5.2.1 Teacher-Student Framework

TrajSSL is built on the frequently-used teacher-student paradigm of SSL. For our exper-
iments, we employ a CenterPoint [127] with PointPillars [48] backbone as our detector
models, however any off-the-shelf 3D detector is compatible with this paradigm. First,
the teacher model T is pre-trained on the labeled data samples Dl until convergence.
During student training, the teacher model performs inference on the unlabeled dataset
to generate pseudo-labels. The student model S is then trained on the combination of
labeled samples {(xl

i, yl
i)}i and pseudo-labeled samples {(xu

i , T(xu
i))}i. During student

model training, the teacher detector is improved using an EMA:

θT = αθT + (1 − α)θS (5.1)

where α is the EMA momentum and θT, θS are the teacher and student model parameters,
respectively.

5.2.2 Trajectory Generation

During the teacher pre-training stage, we additionally pre-train a trajectory prediction
model for use in the downstream training. For our work, we adopt Agentformer [131]
as our motion forecasting model of choice, although our method is compatible with any
off-the-shelf model. An overview of Agentformer’s architecture is included in Fig. 5.3.
Agentformer takes two sets of inputs: a set of agent histories, {(x−H

i , x−H+1
i , ..., x0

i }N
i=1

for up to H + 1 timesteps, and optionally an HD scene-level semantic map. As out-
put, Agentformer generates a set of future trajectory predictions for each input agent,
{(p1

i , p2
i , ..., pT

i }N
i=1 for up to T future timesteps. In this initial stage, Agentformer is

pre-trained using the same labeled data split available for semi-supervised training. Af-
ter completing the pre-training stage, we run teacher model inference on the unlabeled
dataset, followed by a multi-object tracker, to generate linked pseudo-label tracks to be
used as inputs to Agentformer. Next, we run trajectory prediction inference on all frames
of pseudo-labeled scenes, grouping prediction outputs according to their timestamp. Thus,
for a sample in the unlabeled set with scene timestamp t, it now has a set of predicted agent

72

Fig. 5.4: Illustrated process of generation trajectories from pseudo-labels. First, we pre-train both our
teacher detector model and our trajectory prediction model using the available labeled scene data. Next,
we use the teacher model to run inference on the unlabeled scene data. Next, we link the produced pseudo-
labels into tracks of objects across time. Lastly, we feed these tracks into prediction model to generate
synthetic trajectories.

locations grouped by prediction context frames: {pt−T
i , pt−T +1

i , ..., pt−1
i }. A summary of

this process is shown in Fig. 5.4.

5.2.3 Matched Prediction Pseudo-label Weighting

After trajectory generation, we now have a set of additional labels to aid in the training
of the student detector in addition to the teacher-generated pseudo-labels. The first key
insight we exploit is using object forecasts as a measure of temporal consistency. If our
prediction model predicts a consistent localization for an agent in the scene at a given
future timestamp for differing input temporal frames, we argue that this hallucinated
object exhibits a strong temporal consistency. Furthermore, if a pseudo-label overlaps
with one of these forecasted objects, we can deduce it is likely a higher-quality label,
and less likely to be a false positive detection. Thus, by computing the overlap between
pseudo-labels and prediction boxes, we have an effective metric for suppressing spurious
detections, and emphasizing high-quality labels. To do so, we first compute a maximum
IoU between the pseudo-labels and each set of grouped prediction outputs, grouped by
context frame. We set a threshold τmin_iou to use for determining whether a pseudo-label
and prediction output are successfully “matched". Then, we calculate a per pseudo-label
weight based on the number of overlaps meeting the IoU threshold. For the ith pseudo-
label, we express this quantitatively as:

wi = α +
t−1∑

j=t−T

β1{max(IoU(xi, {p|p ∈ pj})) ≥ τmin_iou} (5.2)

where 1 is the indicator function and α and β are hyperparameters. The upshot of this
weighting scheme is a linear scale for which a greater number of overlapping prediction
outputs generates a higher weight. These weights are then used during pseudo-label
supervised learning, explained in Sec 5.2.5.

73

Fig. 5.5: Comparison between a scene containing only teacher-generated pseudo-labels (in green), and
the scene augmented with both pseudo-labels and predicted trajectory boxes (in red). Overlapping red
and green boxes indicate pseudo-labels exhibiting a high degree of temporal consistency, which are further
emphasized during student training. Green boxes without overlap indicate pseudo-labels exhibiting a low
degree of temporal consistency, and hence more likely to be a false positive detection. Unmatched red
boxes indicate potential missed detections by the teacher model, and are also added as soft targets during
training.

5.2.4 Unmatched Prediction-Enhanced Training

While our pseudo-label prediction matching module acts as a filter for pseudo-labels, we
also want to be able to correct for the other main source of pseudo-label inaccuracies:
false negative (i.e. missed) detections. Our second key insight is in regards to unmatched
prediction outputs; we note that objects that are missed detections by the teacher model
in the current frame, but are successfully tracked in any preceding frames can be recovered
based on the forecasted trajectory. Therefore, we propose directly inserting unmatched
prediction outputs into the pseudo-label set used during training. To determine unmatched
predictions, we once again calculate the maximum IoU between each prediction box and
the pseudo-label set. We set a threshold τmax_iou, which is used as the maximum IoU
any prediction box can have with a pseudo-label and still be considered “unmatched". We
note that in general τmax_iou ̸= τmin_iou. While we can directly treat each unmatched
detection in a manner equal to a teacher model detection, objects generated by the motion
forecasting model are also affected by inaccuracies inherent to predicting future scenes, and
thus should not be treated as equivalent to a perceived object. Instead we generate a set
of linearly decreasing weights γt−1, γt−2, ..., γt−T , where γt−1 ≤ 1, corresponding to a given
prediction context frame. We then add each unmatched prediction and assign it the γ value
corresponding to the context frame used to generate it. Since our trajectory prediction
model becomes less accurate the further in the future it forecasts, we weight unmatched
predictions from more recent context frames with greater weight than predictions from
further in the past.

5.2.5 Training Objective

During semi-supervised training, we freeze the teacher model weights and only train the
student model. We supervise the student model S with two loss functions: Ll and Lu,

74

corresponding to the loss on unlabeled and labeled data, respectively.

Ll =
∑

i

Lreg(S(xl
i), yl

i) + Lcls(S(xl
i), yl

i) (5.3)

Lu =
∑

i

(∑
j

wijLreg(S(xu
i)j , T(xu

i)j) + wijLcls(S(xu
i)j , T(xu

i)j)

+
∑

k

wikLreg(S(xu
i)k, p̃ik) + wikLcls(S(xu

i)k, p̃ik)
) (5.4)

where Lcls is the classification loss, Lreg is the bounding box regression loss, wij is the
weight corresponding to the jth pseudo-label of the ith frame, and p̃ik is the kth unmatched
prediction output of the ith frame. During training, we enforce a 1:1 batch ratio of labeled
scenes to unlabeled scenes. Thus, the total training objective is defined as simply the sum
of the two losses:

Ltot = Lu + Ll (5.5)

5.3 Experimental Results

Fig. 5.6: Qualitative results comparison between (a) baseline confidence thresholding SSL approach and
(b) TrajSSL. Green boxes indicate ground truth objects, and red indicate model predictions. Visually,
we can see that the model trained using TrajSSL performs significantly better, identifying many objects
missed by the baseline model, while also generally predicting more accurate bounding box shape and
orientation.

To validate our approach, we perform experiments on the nuScenes dataset [10]. Al-
though nuScenes object labels are broken down into ten classes, we restrict our evaluation
to the three classes compatible with Agentformer’s released models: trucks, cars, and
busses. For a comparison baseline, we adopt unbiased teacher [64] with a tuned confidence

75

threshold filtering, which we denote as “confidence thresholding", as similarly proposed in
[79].

5.3.1 Implementation Details

We implement our approach using Centerpoint PointPillars as the detection backbones,
and Agentformer as our trajectory prediction model. During the pre-training stage, we
pre-train both the teacher detection model and Agentformer on the same split of labeled
nuScenes training data. For pre-training the detection model, we follow the standard
nuScenes training setting outlined in [141], while for pre-training Agentformer we follow
the training scheme used in the official implementation [131], with the exception of training
DLow [130].

After running teacher model inference on the unlabeled data, we first filter the ex-
tracted pseudo-labels with a detection confidence of τconf = 0.3. To link the extracted
pseudo-labels into tracks, we use the greedy tracking algorithm used in [127]. When run-
ning AgentFormer inference, we forecast trajectories only for tracks containing at least
two frames of past context, while allowing for up to four frames of input. AgentFormer
produces up to 12 future frames of trajectory data (6 seconds for 0.5 second keyframe
spacing in nuScenes), and we extract predictions on all scene frames for which there is
at least a single future frame in the dataset. As AgentFormer only predicts the (x, y)
location of an agent in BEV space, we assign the other bounding box attributes of the
predicted object according to the attributes of the pseudo-label in the present context
frame. Although AgentFormer is capable of producing multiple modes of trajectories for
each agent, we extract only the single most probable trajectory for the sake of simplicity.

When matching Agentformer’s predictions with teacher model pseudolabels, we set
tmin_iou = 0.3 as the minimum IoU to count a pseudo-label as being matched to a pre-
diction box. For determining each pseudo-label’s weight, we choose α = 10 and β = 2
for the hyperparameters in Eq. 5.2. For a pseudo-label unmatched to any predictions, we
maintain its weight at w = 1. To determine which prediction boxes remain unmatched,
we set tmax_iou = 0.1 as the maximum IoU a prediction output can have with an existing
pseudo-label. We select the weight parameter to be linearly scaled between γt−1 = 0.75
and γt−5 = 0.25.

During the semi-supervised training of the student model, we construct batches with
20 samples, consisting of 10 labeled and 10 unlabeled samples. We conduct training for 10
epochs, using an AdamW optimizer [70] with learning rate 10−4. All training is performed
on three NVIDIA A6000 GPUs. As in [79], we use a confidence threshold of τconf = 0.3.
We adopt the same weak-strong augmentation scheme used in 3DIoUMatch [112], in which
the data input to the student network is strongly augmented, whereas the data input to
the teacher network is weakly augmented. For strong augmentations of the point cloud,
we use random flipping, random rotation, and random uniform scaling. For the weak
augmentation, we use only random point sub-sampling.

76

5.3.2 Main Results

We evaluate TrajSSL on the nuScenes dataset for three different labeled data settings:
training with 5% labeled data, 10% labeled data, and 20% labeled data. We summarize
these results in Tab. 5.1, and additionally include qualitative results for visualization
in Fig. 5.6. Across all three settings, TrajSSL improves performance over the confidence
thresholding baseline with generally strong performance for all three classes. In the setting
with the least labeled data available, we see the most significant performance gains from
TrajSSL; in particular, the car and bus classes see an improvement of 1.4 and 4.7 mAP
points over the baseline. As the labeled data available increases and the teacher model
becomes stronger (hence there exists fewer false positives/negatives to correct for), the
relative improvement gained by TrajSSL decreases, though is still noticeable. Addition-
ally, we also compare our approach to doubly-robust training [140], a more general SSL
framework. Across all settings and classes, TrajSSL outperforms doubly-robust train-
ing. Notably, in the 20% labeled data setting, in which doubly-robust training fails to
improve over the confidence thresholding baseline, TrajSSL is still able to gain modest
improvements in the bus and truck classes.

Table 5.1: Performance (mAP) comparison on nuScenes validation dataset for car, truck and bus class
on a variety of labeled data fraction settings. Our proposed TrajSSL improves performance over previous
semi-supervised approaches across all classes in a wide variety of settings. *our re-implementation

Method 5% 10% 20%
car truck bus car truck bus car truck bus

Labeled Only 49.1 8.7 3.2 61.0 14.2 8.6 66.9 23.0 22.5
SSL Baseline* 52.9 11.2 4.6 63.2 15.8 9.9 70.9 24.4 27.0
Improvement +3.8 +2.5 +1.4 +2.2 +1.6 +1.3 +4.0 +1.4 +4.5

Doubly Robust Training* 53.7 11.0 5.9 64.1 14.7 11.0 70.9 24.3 26.4
Improvement +4.6 +2.3 +2.7 +3.1 + 0.5 +2.4 +4.0 +1.3 +3.9

Ours 54.3 11.4 9.3 64.7 15.7 11.9 70.1 24.8 27.5
Improvement +5.2 +2.7 +6.1 +3.7 +1.5 +3.3 +3.2 +1.8 +5.0

5.3.3 Ablation Studies

In this section, we perform ablation studies on the various aspects of our TrajSSL frame-
work. We perform all ablation experiments using the 5% labeled training data setting.

5.3.3.1 False Positive/Negative Compensation

The first set of ablation experiments we perform is to verify the improvement gained from
our two strategies for suppressing false positives and directly correcting false negatives.
We summarize the results of these experiments in Tab. 5.2. We find the most signifi-
cant improvement arises from the up-weighting of pseudo-labels which are matched to a
prediction output; while the improvement to the truck class is modest, the bus and car
class see an improvement of +4.3 mAP and +1.2 mAP, respectively. This supports our
hypothesis of temporal consistency established through trajectory forecasts being a good
metric for pseudo-label quality.

77

Our second key component, direct addition of prediction outputs to correct false nega-
tives, results in a further modest increase in performance, improving the car and bus class
by +0.2 mAP and +0.4 mAP, respectively while truck class mAP remains unchanged.
While the ability to directly replace false negatives with forecasted objects is limited by
the quality of the pseudo-label tracks used as input to Agentformer, nonetheless a consis-
tent improvement verifies that unmatched prediction objects contain useful information
gained from temporal context and can improve the student model training.

Table 5.2: Ablation of two main strategies of TrajSSL.

Car Truck Bus
Labeled Only 49.1 8.7 3.2

+ Teacher-Student SSL 52.9 11.2 4.6
+ Matched Prediction Pseudo-label Weighting 54.1 11.4 8.9

+ Unmatched Prediction Addition 54.3 11.4 9.3

5.3.3.2 Trajectory Time Horizon

Table 5.3: AgentFormer prediction accuracy for varying future frame timestamps.

ADE (m) FDE (m)
10 Frame Predictions 3.31 6.26
5 Frame Predictions 1.68 2.66
2 Frame Predictions 0.90 1.11

The next key aspect of our approach we want to verify is the utility of Agentformer’s
future predictions, especially in this setting in which it is trained on limited data. To
do so, we perform experiments using a varying number of temporal frame outputs from
Agentformer, which is capable of predicting up to 12 frames (6 seconds in the context
of nuScenes) into the future. We include the results in Tab. 5.4. We see that adopting
TrajSSL for even one single frame of trajectory outputs significantly improves performance
over the non-temporal baseline. Increasing the number of Agentformer output frames
to 5 frames results in a further increase in mAP, although the improvement is far less
dramatic then the jump from one to two frames, due to the declining accuracy of trajectory
prediction models as they predict further into the future. Going further to 8 or 10 frames
degrades performance from using 5 frames for both the car and bus class, while slightly
improving the truck class by +0.1 mAP, indicating forecasted objects this far into the
future aren’t accurate enough to successfully integrate into TrajSSL. Hence we select 5
frames as the optimum used in our main experiments.

In addition to our direct ablation studies on the number of predictions frames used
in TrajSSL, we also quantitatively evaluate Agentformer’s performance when pre-trained
on 5% of the nuScenes training set. We use two metrics to evaluate prediction accuracy:
average displacement error (ADE) and final displacement error (FDE). Average displace-
ment error is an average of the displacement between the prediction and the ground truth
object across the entire trajectory, whereas the final displacement error is simply the dis-
placement for the furthest future prediction. We summarize these results in Tab. 5.3. For
10 frames of future predictions, we the FDE is 6.26 meters, larger than the average vehicle
size, indicating that bounding boxes output by AgentFormer are unlikely to be succesfully
matched to an existing object/pseudo-label. However, for 5 frames of future predictions,

78

the FDE is a more reasonable 2.66 meters, roughly on the scale of the size of an average
vehicle and thus more useful in our SSL scheme.

Table 5.4: Ablation of number of prediction frames used in TrajSSL.

Car Truck Bus
+1 Frame (SSL Baseline) 52.9 11.2 4.6

+2 Frames 53.9 11.0 8.5
+5 Frames 54.3 11.4 9.3
+8 Frames 53.8 11.5 8.7
+10 Frames 53.9 11.5 8.8

5.3.3.3 Linear Extrapolation Baseline Comparison

A further ablation study we perform is to directly probe the necessity of a complex neural
model (such as Agentformer) for generating the future forecasts of scene objects. As a
baseline, we consider performing a linear extrapolation using the model-predicted velocity
of each object to predict future object locations, after which we use our already proposed
weighting mechanism. We compare these two approaches in Tab. 5.5. Using the linear
extrapolation approach is still able to improve the SSL baseline on both the car and bus
class. However, across all three classes, predicting future trajectories using Agentformer
noticeably outperforms the simple linear extrapolation approach. We attribute this to
the fact that a) the teacher model (particularly when pre-trained on limited data) is poor
at predicting velocity accurately, making linear extrapolation less accurate and b) par-
ticularly for longer time-horizon forecasting, linear extrapolation is too simple to capture
the complex scene dynamics to accurately predict agent trajectories. Thus, a powerful
trajectory prediction model, even when trained on a sparse dataset, is a key ingredient to
maximizing the effectiveness of TrajSSL.

Table 5.5: Comparison of our approach using Agentformer versus using a linear extrapolation.

Car Truck Bus
SSL Baseline 52.9 11.2 4.6

Prediction Model (AgentFormer) 54.3 11.4 9.3
Linear Extrapolation 53.2 11.0 8.4

5.3.3.4 Weighting Hyperparameters

Table 5.6: Impact of weighting parameters α, β.

Car Truck Bus
α = 2, β = 0 53.5 11.4 7.2
α = 5, β = 0 53.5 11.2 7.8
α = 10, β = 0 53.9 11.0 8.5
α = 10, β = 2 54.3 11.4 9.3
α = 20, β = 2 53.6 10.9 8.2

To determine the optimal values of various hyperparameters associated with assigning
pseudo-label weight values, we perform a series of experiments. First, we consider the
weighting hyperparameters associated with pseudo-labels matched to predictions, α and

79

β. We include the experimental results in Tab. 5.6. We first perform experiments with
β = 0, i.e. a weighting scheme in which any pseudo-label matched to any number of
prediction boxes gets the same weight. However, we find that introducing a non-zero β,
i.e. increasing a pseudo-label’s weight as agreement with more temporal context frame
predictions increases, further improves upon the static weighting scheme. Thus we adopt
this weighting scheme with α = 10, β = 2 into our final model.

Table 5.7: Impact of weighting parameter γ.

Car Truck Bus
γ = 0 54.1 11.4 8.9
γ = 1 53.4 10.7 4.8

γ = 0.5 53.9 11.5 9.2
γ = 0.25 54.3 11.3 9.1

γt−1 = 0.75, γt−5 = 0.25 54.3 11.4 9.3
γt−1 = 1.0, γt−5 = 0.5 54.2 11.3 9.4

The other weighting hyperparameter we consider is the value of weights assigned to
unmatched prediction boxes added during training, previously introduced as γ. We sum-
marize these experiments in Tab. 5.7. First, we consider simply choosing γ = 1, meaning
we simply treat added prediction boxes as identical to teacher pseudo-labels. However,
we find this approach decreases mAP relative to simply not adding any of the prediction
boxes. Setting γ < 1, such as γ = 0.5 or γ = 0.25, is able to slightly increase mAP over the
baseline of not adding any prediction boxes. However, we find that a variable weighting
scheme, in which γ is scaled based on the nearest-in-time context frame used to generate
the trajectory, is able to further improve our results. We choose a linearly-scaled weighting
mechanism, in which γt−1 = 0.75 and γt−5 = 0.25, for our final choise of hyperparameters.

5.3.3.5 Matching Threshold

Table 5.8: Ablation experiments on τmin_iou.

Car Truck Bus
τmin_iou = 0.3 54.3 11.4 9.3
τmin_iou = 0.5 52.8 10.6 4.8

Another set of ablations we perform is on the IoU threshold τmin_iou between pseudo-
labels and prediction outputs when determining which pseudo-labels to up-weight. We
include the results in Tab. 5.8. We find that increasing the IoU threshold to 0.5 decreases
performance significantly, thus we set τmin_iou = 0.3 in all our experiments.

5.4 Discussion

In this chapter, we proposed a novel framework for semi-supervised 3D object detection in
autonomous driving scenarios based on leveraging trajectory prediction models to enhance
pseudo-label training, which we dub TrajSSL. TrajSSL uses outputs from Agentformer, a
trajectory forecasting model, to enhance the training of the student detector in two key
ways: first, it uses these predicted objects to locate higher-quality pseudo-labels and up-
weight them during the training process. Second, unmatched outputs are used to directly

80

compensate for missed detections. On experiments using the nuScenes dataset, TrajSSL
outperforms previous SSL approaches in a wide variety of settings, demonstrating the
success of our prediction-enhanced approach to SSL and opening the possibility toward
more creative ways of leveraging the autonomy stack to improve perception data efficiency.

Although TrajSSL is able to improve upon the state-of-the-art, it still has several
limitations. TrajSSL is fundamentally limited by the challenge of training a trajectory
forecasting model using the limited data available in a semi-supervised setting. Label-
efficient training of these forecasting models are still relatively unexplored, and offer the
potential to improve the performance of our method. Additionally, our implementation
of TrajSSL only operates on vehicles of a similar class due to the challenge of modeling
the paths of agents with vastly different velocity scales. Expanding TrajSSL to function
on the other dynamic objects in driving scenes, such as pedestrians, is another key future
direction.

In addition to improving upon previously introduced SSL techniques for 3D object de-
tection, TrajSSL also takes a novel philosophy to data-efficient perception through lever-
aging the AV stack in an unconventional manner. This work serves as a promising starting
point toward leveraging the power of motion forecasting as not only a critical function in
aiding self-driving planners, but also as a tool to improve AV perception.

81

Chapter 6

Conclusion

In this dissertation, we introduce our multi-faceted work toward developing efficient vision
for self-driving cars. We consider efficiency as defined by four metrics: accuracy, latency,
compute, and data. In Chapter 2, we consider tackling perception from a hardware and
latency angle, and introduce a novel form of optoelectronic reservoir computing which
combines a delay-based reservoir computer with pre-processing through a set of untrained
convolutional layers. With limited hardware, our implementation can reduce training time
by up to a factor of 10x when compared to training a standard CNN model using digital
hardware. In Chapter 3, we introduce our novel algorithm for LiDAR-camera fusion-based
3D object detection, CFF, which aims to address efficiency from the latency perspective.
Through leveraging a sparse feature fusion scheme projecting only a set of key camera
pixels to birds-eye-view, CFF achieves accuracy competitive with other fusion approaches
while significantly reducing runtime latency. In Chapters 4 and 5, we address the problem
of data efficiency, aiming to improve semi-supervised learning for 3D object detection.
In Chapter 4, we introduce a novel theoretically-grounded approach to semi-supervised
learning, which we dub doubly-robust self-training. Through a simple modification of the
standard self-training loss function, we deliver a self-training method more theoretically
sound across scenarios of both low-quality pseudo-labels and high-quality pseudo-labels.
Empirically, we evaluate our method for both image classification and 3D object detec-
tion and are able to achieve superior performance to the self-labeling baseline. Lastly,
in Chapter 5, we introduce another approach to semi-supervised 3D object detection,
TrajSSL, which leverages the motion prediction part of the autonomy stack to improve
perception data efficiency. Through using prediction model outputs to establish tempo-
ral consistency and correct for both false positive and false negative detections, TrajSSL
improves upon the state-of-the-art for semi-supervised 3D object detection with a highly
creative approach with significant potential for future improvement. Although the goal
of full self-driving still remains elusive, our work paves the way for novel outside the box
approaches to realizing efficient self-driving cars.

82

Bibliography

[1] Alata, R., Pauwels, J., Van der Sande, G., Bouwens, A., Haelterman, M., Massar, S.:
Phase noise robustness of a coherent spatially parallel optical reservoir. In: 2019 Con-
ference on Lasers and Electro-Optics Europe European Quantum Electronics Con-
ference (CLEO/Europe-EQEC). pp. 1–1 (2019). https://doi.org/10.1109/CLEOE-
EQEC.2019.8872207

[2] Angelopoulos, A.N., Bates, S., Fannjiang, C., Jordan, M.I., Zrnic, T.: Prediction-
powered inference. arXiv preprint arXiv:2301.09633 (2023)

[3] Antonik, P., Marsal, N., Rontani, D.: Large-scale spatiotemporal photonic reservoir
computer for image classification. IEEE Journal of Selected Topics in Quantum
Electronics 26(1), 1–12 (2020)

[4] Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre,
J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single
dynamical node as complex system. Nature Communications 2, 466–468 (2011)

[5] Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling
and confirmation bias in deep semi-supervised learning. In: 2020 International Joint
Conference on Neural Networks (IJCNN). IEEE (2020)

[6] Bai, X., Hu, Z., Zhu, X., Huang, Q., Chen, Y., Fu, H., Tai, C.L.: TransFusion:
Robust Lidar-Camera Fusion for 3d Object Detection with Transformers. CVPR
(2022)

[7] Berthelot, D., Carlini, N., Cubuk, E.D., Kurakin, A., Sohn, K., Zhang, H., Raffel,
C.: Remixmatch: Semi-supervised learning with distribution alignment and aug-
mentation anchoring. arXiv preprint arXiv:1911.09785 (2019)

[8] Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel,
C.: Mixmatch: A holistic approach to semi-supervised learning. arXiv preprint
arXiv:1905.02249 (2019)

[9] Bibby, J.M., Mardia, K.V., Kent, J.T.: Multivariate Analysis. Academic Press
(1979)

[10] Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. arXiv preprint arXiv:1903.11027 (2019)

[11] Chen, G., Chen, Z., Fan, S., Zhang, K.: Unsupervised sampling promoting for
stochastic human trajectory prediction. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 17874–17884 (2023)

[12] Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection net-
work for autonomous driving. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 6526–6534. IEEE Computer Society, Los
Alamitos, CA, USA (jul 2017). https://doi.org/10.1109/CVPR.2017.691, https:
//doi.ieeecomputersociety.org/10.1109/CVPR.2017.691

83

https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.691
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.691

[13] Chen, X., Zhang, T., Wang, Y., Wang, Y., Zhao, H.: Futr3d: A unified sensor fusion
framework for 3d detection. arXiv preprint arXiv:2203.10642 (2022)

[14] Chen, X., Shi, S., Zhu, B., Cheung, K.C., Xu, H., Li, H.: Mppnet: Multi-frame fea-
ture intertwining with proxy points for 3d temporal object detection. In: Computer
Vision – ECCV 2022: 17th European Conference. pp. 680–697 (2022)

[15] Chen, Z., Li, Z., Zhang, S., Fang, L., Jiang, Q., Zhao, F., Zhou, B., Zhao, H.:
Autoalign: Pixel-instance feature aggregation for multi-modal 3d object detection.
arXiv preprint arXiv:2201.06493 (2022)

[16] Chen, Z., Jing, L., Yang, L., Li, Y., Li, B.: Class-level confidence based 3d semi-
supervised learning. In: Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV). pp. 633–642 (January 2023)

[17] Chollet, F.: Keras documentation: Simple mnist convnet (Jun 2015), https://
keras.io/examples/vision/mnist_convnet/

[18] Cireşan, D., Meier, U., Gambardella, L., Schmidhuber, J.: Deep, big, simple neural
nets for handwritten digit recognition. Neural computing 22(12), 3207–3220. (2010)

[19] Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable con-
volutional networks. In: 2017 IEEE International Conference on Computer Vision
(ICCV). pp. 764–773 (2017). https://doi.org/10.1109/ICCV.2017.89

[20] De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh,
G., Tuytelaars, T.: A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence 44(7), 3366–
3385 (2021)

[21] Deo, N., Wolff, E., Beijbom, O.: Multimodal trajectory prediction conditioned on
lane-graph traversals. In: 5th Annual Conference on Robot Learning (2021)

[22] Ding, M., Xiao, B., Codella, N., Luo, P., Wang, J., Yuan, L.: Davit: Dual attention
vision transformers. In: Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIV. pp. 74–92. Springer
(2022)

[23] Eldesokey, A., Felsberg, M., Khan, F.S.: Confidence propagation
through cnns for guided sparse depth regression. IEEE Transactions on
Pattern Analysis and Machine Intelligence 42(10), 2423–2436 (2020).
https://doi.org/10.1109/TPAMI.2019.2929170

[24] Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: A survey. Interna-
tional Journal of Computer Vision 129, 1789–1819 (2021)

[25] Hafizovic, S., Heer, F., Ugniwenko, T., Frey, U., Blau, A., Ziegler,
C., Hierlemann, A.: A cmos-based microelectrode array for interaction
with neuronal cultures. Journal of Neuroscience Methods 164(1), 93–106
(2007). https://doi.org/https://doi.org/10.1016/j.jneumeth.2007.04.006, https://
www.sciencedirect.com/science/article/pii/S0165027007001781

84

https://keras.io/examples/vision/mnist_convnet/
https://keras.io/examples/vision/mnist_convnet/
https://www.sciencedirect.com/science/article/pii/S0165027007001781
https://www.sciencedirect.com/science/article/pii/S0165027007001781

[26] Harkhoe, K., Verschaffelt, G., Katumba, A., Bienstman, P., Van der
Sande, G.: Demonstrating delay-based reservoir computing using a com-
pact photonic integrated chip. Opt. Express 28(3), 3086–3096 (Feb 2020).
https://doi.org/10.1364/OE.382556, http://www.opticsexpress.org/abstract.
cfm?URI=oe-28-3-3086

[27] He, C., Li, R., Zhang, Y., Li, S., Zhang, L.: Msf: Motion-guided sequential fusion
for efficient 3d object detection from point cloud sequences. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
5196–5205 (June 2023)

[28] He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: 2017 IEEE
International Conference on Computer Vision (ICCV). pp. 2980–2988 (2017).
https://doi.org/10.1109/ICCV.2017.322

[29] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

[30] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778 (2016)

[31] Hu, Y., Yang, J., Chen, L., Li, K., Sima, C., Zhu, X., Chai, S., Du, S., Lin, T.,
Wang, W., Lu, L., Jia, X., Liu, Q., Dai, J., Qiao, Y., Li, H.: Planning-oriented
autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2023)

[32] Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine:
Theory and applications. Neurocomputing 70(1), 489–501 (2006).
https://doi.org/https://doi.org/10.1016/j.neucom.2005.12.126

[33] Jacobson, P., Shirao, M., Yu, K., Su, G.L., Wu, M.C.: Image classification using
delay-based optoelectronic reservoir computing. In: Jalali, B., Kitayama, K. (eds.)
AI and Optical Data Sciences II. vol. 11703, pp. 120 – 126. International Society
for Optics and Photonics, SPIE (2021). https://doi.org/10.1117/12.2578062, https:
//doi.org/10.1117/12.2578062

[34] Jacobson, P., Shirao, M., Yu, K., Su, G.L., Wu, M.C.: Hybrid convolutional opto-
electronic reservoir computing for image recognition. Journal of Lightwave Technol-
ogy 40(3), 692–699 (2022). https://doi.org/10.1109/JLT.2021.3124520

[35] Jacobson, P., Zhou, Y., Zhan, W., Tomizuka, M., Wu, M.C.: Center feature fu-
sion: Selective multi-sensor fusion of center-based objects. In: 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA). pp. 8312–8318 (2023).
https://doi.org/10.1109/ICRA48891.2023.10160616

[36] Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science 304, 78–80 (2004)

[37] Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks. Technical Report GMD Report 148, German National Research Center
for Information Technology (2001)

85

http://www.opticsexpress.org/abstract.cfm?URI=oe-28-3-3086
http://www.opticsexpress.org/abstract.cfm?URI=oe-28-3-3086
https://doi.org/10.1117/12.2578062
https://doi.org/10.1117/12.2578062

[38] Jaritz, M., Charette, R.D., Wirbel, E., Perrotton, X., Nashashibi, F.: Sparse
and dense data with cnns: Depth completion and semantic segmentation.
In: 2018 International Conference on 3D Vision (3DV). pp. 52–60 (2018).
https://doi.org/10.1109/3DV.2018.00017

[39] Jeong, J., Lee, S., Kim, J., Kwak, N.: Consistency-based semi-supervised learning
for object detection. In: Advances in Neural Information Processing Systems (2019)

[40] Jeyachandran, S.: Introducing the 5th-generation waymo driver: Informed by expe-
rience, designed for scale, engineered to tackle more environments. https://waymo.
com/blog/2020/03/introducing-5th-generation-waymo-driver/ (2020)

[41] Jiang, C.M., Najibi, M., Qi, C.R., Zhou, Y., Anguelov, D.: Improving the intra-class
long-tail in 3d detection via rare example mining. In: Computer Vision–ECCV 2022:
17th European Conference. pp. 158–175. Springer (2022)

[42] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., Dollár, P., Girshick, R.: Segment anything.
In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV). pp.
3992–4003 (2023). https://doi.org/10.1109/ICCV51070.2023.00371

[43] Krizhevsky, A.: Learning multiple layers of features from tiny images pp. 32–33
(2009), https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[44] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems
(NeurIPS). pp. 1097–1105 (2012)

[45] Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: Fast
depth completion on the cpu. In: 2018 15th Conference on Computer and Robot
Vision (CRV). pp. 16–22. IEEE (2018)

[46] Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.: Joint 3d proposal gener-
ation and object detection from view aggregation. IROS (2018)

[47] Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: 5th In-
ternational Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net (2017), https:
//openreview.net/forum?id=BJ6oOfqge

[48] Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars:
Fast encoders for object detection from point clouds. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) pp. 12689–12697 (2019)

[49] Larger, L., Baylón-Fuentes, A., Martinenghi, R., Udaltsov, V.S., Chembo, Y.K.,
Jacquot, M.: High-speed photonic reservoir computing using a time-delay-based
architecture: Million words per second classification. Physical Review X 17, 011015
(2017)

[50] Larger, L., Soriano, M.C., Brunner, D., Appeltant, L., Gutierrez, J.M., Pesquera,
L., Mirasso, C.R., Fischer, I.: Photonic information processing beyond turing: an
optoelectronic implementation of reservoir computing. Optics Express 20(3), 3241
(2012)

86

https://waymo.com/blog/2020/03/introducing-5th-generation-waymo-driver/
https://waymo.com/blog/2020/03/introducing-5th-generation-waymo-driver/
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=BJ6oOfqge
https://openreview.net/forum?id=BJ6oOfqge

[51] Lassig, R., Lorenz, M., Sissimatos, E., Wicker, I., Buch-
ner, T.: Robotics outlook 2030: How intelligence and mobility
will shape the future. https://www.bcg.com/publications/2021/
how-intelligence-and-mobility-will-shape-the-future-of-the-robotics-industry
(2021)

[52] LeCun, Y.: The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/ https://ci.nii.ac.jp/naid/10027939599/
en/

[53] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

[54] Lee, D.H.: Pseudo-label : The simple and efficient semi-supervised learning method
for deep neural networks. ICML 2013 Workshop : Challenges in Representation
Learning (WREPL) (07 2013)

[55] Lee, R.H., Mulder, E.B., Hopkins, J.B.: Mechanical neural networks: Architected
materials that learn behaviors. Science Robotics 7 (2022)

[56] Li, J., Liu, Z., Hou, J., Liang, D.: Dds3d: Dense pseudo-labels with dynamic thresh-
old for semi-supervised 3d object detection. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA) (2023)

[57] Li, Y., Qi, C.R., Zhou, Y., Liu, C., Anguelov, D.: Modar: Using motion forecasting
for 3d object detection in point cloud sequences. In: 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 9329–9339 (2023)

[58] Li, Y., Yu, A.W., Meng, T., Caine, B., Ngiam, J., Peng, D., Shen, J., Wu, B., Lu,
Y., Zhou, D., Le, Q.V., Yuille, A., Tan, M.: Deepfusion: Lidar-camera deep fusion
for multi-modal 3d object detection. In: CVPR (2022)

[59] Li, Y., Bao, H., Ge, Z., Yang, J., Sun, J., Li, Z.: Bevstereo: Enhancing
depth estimation in multi-view 3d object detection with temporal stereo. Pro-
ceedings of the AAAI Conference on Artificial Intelligence 37(2), 1486–1494 (Jun
2023). https://doi.org/10.1609/aaai.v37i2.25234, https://ojs.aaai.org/index.
php/AAAI/article/view/25234

[60] Li, Z., Wang, W., Li, H., Xie, E., Sima, C., Lu, T., Qiao, Y., Dai, J.: Bevformer:
Learning bird’s-eye-view representation from multi-camera images via spatiotempo-
ral transformers. arXiv preprint arXiv:2203.17270 (2022)

[61] Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor
3d object detection. In: ECCV (2018)

[62] Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. pp. 2980–2988 (2017)

[63] Liu, C., Gao, C., Liu, F., Li, P., Meng, D., Gao, X.: Hierarchical supervision and
shuffle data augmentation for 3d semi-supervised object detection. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)

[64] Liu, Y.C., Ma, C.Y., He, Z., Kuo, C.W., Chen, K., Zhang, P., Wu, B., Kira, Z.,
Vajda, P.: Unbiased teacher for semi-supervised object detection. In: Proceedings
of the International Conference on Learning Representations (ICLR) (2021)

87

https://www.bcg.com/publications/2021/how-intelligence-and-mobility-will-shape-the-future-of-the-robotics-industry
https://www.bcg.com/publications/2021/how-intelligence-and-mobility-will-shape-the-future-of-the-robotics-industry
https://ci.nii.ac.jp/naid/10027939599/en/
https://ci.nii.ac.jp/naid/10027939599/en/
https://ojs.aaai.org/index.php/AAAI/article/view/25234
https://ojs.aaai.org/index.php/AAAI/article/view/25234

[65] Liu, Y., Zhang, J., Fang, L., Jiang, Q., Zhou, B.: Multimodal motion prediction
with stacked transformers. Computer Vision and Pattern Recognition (2021)

[66] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows (2021)

[67] Liu, Z., Tang, H., Amini, A., Yang, X., Mao, H., Rus, D., Han, S.: Bevfusion: Multi-
task multi-sensor fusion with unified bird’s-eye view representation. arXiv (2022)

[68] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

[69] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)

[70] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations (2019)

[71] Maass, W., Natschlager, T., Markram, H.: Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
Computation 14(11), 2531–2560 (2002)

[72] Maksymov, I.S.: Analogue and physical reservoir computing using water
waves: Applications in power engineering and beyond. Energies 16(14) (2023).
https://doi.org/10.3390/en16145366, https://www.mdpi.com/1996-1073/16/14/
5366

[73] Marshall, A.W., Olkin, I.: Multivariate chebyshev inequalities. The Annals of Math-
ematical Statistics pp. 1001–1014 (1960)

[74] Mousavian, A., Anguelov, D., Flynn, J., Košecká, J.: 3d bounding box es-
timation using deep learning and geometry. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 5632–5640 (2017).
https://doi.org/10.1109/CVPR.2017.597

[75] Nakajima, K., Hauser, H., Kang, R., Guglielmino, E., Caldwell, D., Pfeifer,
R.: A soft body as a reservoir: case studies in a dynamic model of
octopus-inspired soft robotic arm. Frontiers in Computational Neuroscience
7 (2013). https://doi.org/10.3389/fncom.2013.00091, https://www.frontiersin.
org/articles/10.3389/fncom.2013.00091

[76] Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering 22(10), 1345–1359 (2010)

[77] Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering 22(10), 1345–1359 (2010)

[78] Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M.,
Massar, S.: Optoelectronic reservoir computing. Scientific Reports 2, 1–6 (2012)

[79] Park, J., Xu, C., Zhou, Y., Tomizuka, M., Zhan, W.: Detmatch: Two teachers are
better than one for joint 2D and 3D semi-supervised object detection. Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel (2022)

[80] Philion, J., Fidler, S.: Lift, splat, shoot: Encoding images from arbitrary camera
rigs by implicitly unprojecting to 3d. In: Proceedings of the European Conference
on Computer Vision (2020)

88

https://www.mdpi.com/1996-1073/16/14/5366
https://www.mdpi.com/1996-1073/16/14/5366
https://www.frontiersin.org/articles/10.3389/fncom.2013.00091
https://www.frontiersin.org/articles/10.3389/fncom.2013.00091

[81] Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detection
in point clouds. In: Proceedings of the IEEE International Conference on Computer
Vision (2019)

[82] Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object
detection from rgb-d data. arXiv preprint arXiv:1711.08488 (2017)

[83] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. arXiv preprint arXiv:1612.00593 (2016)

[84] Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

[85] Qi, C.R., Zhou, Y., Najibi, M., Sun, P., Vo, K., Deng, B., Anguelov, D.: Offboard
3D object detection from point cloud sequences. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2021)

[86] Qian, R., Garg, D., Wang, Y., You, Y., Belongie, S., Hariharan, B., Campbell, M.,
Weinberger, K.Q., Chao, W.L.: End-to-end pseudo-lidar for image-based 3d object
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 5881–5890 (2020)

[87] Ravindran, R., Santora, M.J., Jamali, M.M.: Multi-object detection and tracking,
based on dnn, for autonomous vehicles: A review. IEEE Sensors Journal 21(5),
5668–5677 (2021). https://doi.org/10.1109/JSEN.2020.3041615

[88] Reading, C., Harakeh, A., Chae, J., Waslander, S.L.: Categorical depth distribution
network for monocular 3d object detection. CVPR (2021)

[89] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama,
M., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 28.
Curran Associates, Inc. (2015), https://proceedings.neurips.cc/paper_files/
paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

[90] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 10674–10685 (2022).
https://doi.org/10.1109/CVPR52688.2022.01042

[91] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: ImageNet large scale visual recog-
nition challenge. International Journal of Computer Vision 115, 211–252 (2015)

[92] Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data. In: Computer
Vision – ECCV 2020: 16th European Conference (2020)

[93] Shen, Y., Harris, N.C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun,
X., Zhao, S., Larochelle, H., Englund, D., Solja, M.: Deep learning with coherent
nanophotonic circuits. Nature Photonics 11, 441–447 (2017)

89

https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

[94] Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.:
Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. In:
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 10526–10535. IEEE Computer Society, Los Alamitos, CA,
USA (jun 2020). https://doi.org/10.1109/CVPR42600.2020.01054, https://doi.
ieeecomputersociety.org/10.1109/CVPR42600.2020.01054

[95] Shin, K., Kwon, Y.P., Tomizuka, M.: Roarnet: A robust 3d object detection based
on region approximation refinement. In: 2019 IEEE Intelligent Vehicles Symposium
(IV). pp. 2510–2515 (2019). https://doi.org/10.1109/IVS.2019.8813895

[96] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. CoRR abs/1409.1556 (2014), https://api.semanticscholar.org/
CorpusID:14124313

[97] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale im-
age recognition. In: International Conference on Learning Representations (ICLR)
(2015)

[98] Smith, L.N., Topin, N.: Super-convergence: Very fast training of neural networks
using large learning rates. In: Artificial Intelligence and Machine Learning for Multi-
Domain Operations Applications. vol. 11006, p. 1100612. International Society for
Optics and Photonics (2019)

[99] Sohn, K., Berthelot, D., Li, C.L., Zhang, Z., Carlini, N., Cubuk, E.D., Kurakin,
A., Zhang, H., Raffel, C.: Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)

[100] Sohn, K., Zhang, Z., Li, C.L., Zhang, H., Lee, C.Y., Pfister, T.: A simple semi-
supervised learning framework for object detection. In: arXiv:2005.04757 (2020)

[101] Takano, K., Sugano, C., Inubushi, M., Yoshimura, K., Sunada, S., Kanno, K.,
Uchida, A.: Compact reservoir computing with a photonic integrated circuit. Optics
Express 26(22), 29424–29439 (2018)

[102] Tang, Y., Chen, W., Luo, Y., Zhang, Y.: Humble teachers teach better students for
semi-supervised object detection. 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) pp. 3131–3140 (2021)

[103] Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In: Guyon, I.,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett,
R. (eds.) Advances in Neural Information Processing Systems. vol. 30. Curran
Associates, Inc. (2017), https://proceedings.neurips.cc/paper_files/paper/
2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf

[104] Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Meth-
ods for the Solution of Ill-Posed Problems, vol. 328. Springer, New York, NY, USA
(1995)

[105] Tingting Liang, Hongwei Xie, K.Y.Z.X.Z.L.Y.W.T.T.B.W., Tang, Z.: BEVFusion:
A Simple and Robust LiDAR-Camera Fusion Framework. In: Neural Information
Processing Systems (NeurIPS) (2022)

90

https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.01054
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.01054
https://api.semanticscholar.org/CorpusID:14124313
https://api.semanticscholar.org/CorpusID:14124313
https://proceedings.neurips.cc/paper_files/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68053af2923e00204c3ca7c6a3150cf7-Paper.pdf

[106] Van Gansbeke, W., Neven, D., De Brabandere, B., Van Gool, L.: Sparse and
noisy lidar completion with rgb guidance and uncertainty. In: 2019 16th In-
ternational Conference on Machine Vision Applications (MVA). pp. 1–6 (2019).
https://doi.org/10.23919/MVA.2019.8757939

[107] Vandoorne, K., Mechet, P., Vaerenbergh, T.V., Fiers, M., Morthier, G., Verstraeten,
D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demonstration of
reservoir computing on a silicon photonics chip. Nature Communications 5, 3541
(2014)

[108] Varadarajan, B., Hefny, A., Srivastava, A., Refaat, K.S., Nayakanti, N., Cornman,
A., Chen, K., Douillard, B., Lam, C.P., Anguelov, D., Sapp, B.: Multipath++:
Efficient information fusion and trajectory aggregation for behavior prediction. In:
2022 International Conference on Robotics and Automation (ICRA). pp. 7814–7821
(2022)

[109] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.)
Advances in Neural Information Processing Systems. vol. 30. Curran Associates,
Inc. (2017), https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[110] Vora, S., Lang, A.H., Helou, B., Beijbom, O.: Pointpainting: Sequential fusion for
3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2020)

[111] Wang, C., Ma, C., Zhu, M., Yang, X.: Pointaugmenting: Cross-modal augmentation
for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11794–11803 (2021)

[112] Wang, H., Cong, Y., Litany, O., Gao, Y., Guibas, L.J.: 3dioumatch: Leverag-
ing iou prediction for semi-supervised 3d object detection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14615–
14624 (2021)

[113] Wang, T., Pang, J., Lin, D.: Monocular 3d object detection with depth from motion.
In: European Conference on Computer Vision (ECCV) (2022)

[114] Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.:
Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection
for autonomous driving. In: CVPR (2019)

[115] Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG)
(2019)

[116] Wang, Z., Jia, K.: Frustum convnet: Sliding frustums to aggregate local point-
wise features for amodal 3d object detection. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp. 1742–1749. IEEE (2019)

[117] Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. Journal of
Big Data 3(1), 1–40 (2016)

91

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[118] Xia, Q., Yang, J.J.: Memristive crossbar arrays for brain-inspired computing. Nature
Materials 18, 309–323 (2019)

[119] Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves
ImageNet classification. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 10687–10698 (2020)

[120] Xu, C., Li, T., Tang, C., Sun, L., Keutzer, K., Tomizuka, M., Fathi, A., Zhan, W.:
Pretram: Self-supervised pre-training via connecting trajectory and map. arXiv
preprint arXiv:2204.10435 (2022)

[121] Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., Li, H.: Depth completion from sparse
lidar data with depth-normal constraints. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV) (October 2019)

[122] Xuu, S., Zhou, D., Fang, J., Yin, J., Bin, Z., Zhang, L.: Fusionpainting: Multimodal
fusion with adaptive attention for 3d object detection. In: ITSC (2021)

[123] Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection. Sen-
sors 18(10) (2018). https://doi.org/10.3390/s18103337, https://www.mdpi.com/
1424-8220/18/10/3337

[124] Yang, B., Luo, W., Urtasun, R.: Pixor: Real-time 3d object detection from point
clouds. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
pp. 7652–7660 (2018), https://api.semanticscholar.org/CorpusID:52238978

[125] Yang, Z., Zhou, Y., Chen, Z., Ngiam, J.: 3d-man: 3d multi-frame attention net-
work for object detection. In: 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 1863–1872 (2021)

[126] Yao, X.S., Maleki, L.: Optoelectronic oscillator for photonic systems. IEEE Journal
of Quantum Electronics 32(7), 1141–1149 (1996)

[127] Yin, T., Zhou, X., Krähenbühl, P.: Center-based 3d object detection and tracking.
CVPR (2021)

[128] Yin, T., Zhou, X., Krähenbühl, P.: Multimodal virtual point 3d detection. NeurIPS
(2021)

[129] You, Y., Diaz-Ruiz, C.A., Wang, Y., Chao, W.L., Hariharan, B., Campbell, M.,
Weinberger, K.Q.: Exploiting playbacks in unsupervised domain adaptation for 3d
object detection in self-driving cars. In: 2022 International Conference on Robotics
and Automation (ICRA). pp. 5070–5077 (2022)

[130] Yuan, Y., Kitani, K.: Dlow: Diversifying latent flows for diverse human motion pre-
diction. In: Proceedings of the European Conference on Computer Vision (ECCV)
(2020)

[131] Yuan, Y., Weng, X., Ou, Y., Kitani, K.: Agentformer: Agent-aware transform-
ers for socio-temporal multi-agent forecasting. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021)

[132] Zhang, A., Brown, L.D., Cai, T.T.: Semi-supervised inference: General theory and
estimation of means. Annals of Statistics 47, 2538–2566 (2019)

92

https://www.mdpi.com/1424-8220/18/10/3337
https://www.mdpi.com/1424-8220/18/10/3337
https://api.semanticscholar.org/CorpusID:52238978

[133] Zhang, X., Kwon, K., Henriksson, J., Luo, J., Wu, M.C.: A large-scale
microelectromechanical-systems-based silicon photonics lidar. Nature 603, 253–258
(2022)

[134] Zhao, N., Chua, T.S., Lee, G.H.: Sess: Self-ensembling semi-supervised 3d object
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2020)

[135] Zhao, Q., Zhu, B.: Towards the fundamental limits of knowledge transfer over finite
domains. arXiv preprint arXiv:2310.07838 (2023)

[136] Zhou, H., Ge, Z., Liu, S., Mao, W., Li, Z., Yu, H., Sun, J.: Dense teacher: Dense
pseudo-labels for semi-supervised object detection. In: Avidan, S., Brostow, G.,
Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. pp.
35–50 (2022)

[137] Zhou, Q., Yu, C., Wang, Z., Qian, Q., Li, H.: Instant-teaching: An end-to-end
semi-supervised object detection framework. In: 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 4079–4088 (2021)

[138] Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. In: arXiv preprint
arXiv:1904.07850 (2019)

[139] Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: CVPR (2018)

[140] Zhu, B., Ding, M., Jacobson, P., Wu, M., Zhan, W., Jordan, M., Jiao, J.: Doubly-
robust self-training. In: Advances in Neural Information Processing Systems. vol. 36,
pp. 41413–41431 (2023)

[141] Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and sampling
for point cloud 3d object detection. arXiv preprint arXiv:1908.09492 (2019)

[142] Zhu, X.J.: Semi-supervised learning literature survey (2005)

93

	Contents
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 AV Sensors
	1.1.1 Camera
	1.1.2 LiDAR
	1.1.3 Radar
	1.1.4 Ultrasonic Sensing
	1.1.5 Sensor Fusion

	1.2 Computing Hardware for Perception
	1.2.1 Digital Hardware for Training
	1.2.2 Neuromorphic Acceleration

	1.3 Learning Algorithms for Perception
	1.4 Data for Perception
	1.5 Outline of the Dissertation

	2 Reservoir Computing for Accelerated Computer Vision
	2.1 Reservoir Computing Introduction
	2.2 Delay-based RC
	2.2.1 Conceptual Outline
	2.2.2 Optoelectronic Hardware Implementation
	2.2.3 Limitations

	2.3 Hybrid Convolutional RC
	2.3.1 Overview
	2.3.2 Convolutional Preprocessing and Masking
	2.3.3 Hardware Implementation
	2.3.4 Simulation Software

	2.4 Experimental Results
	2.4.1 Parameter Optimization
	2.4.2 Untrained Hybrid RC
	2.4.3 Trained Hybrid RC
	2.4.4 Experimental Comparison
	2.4.5 CIFAR-10 Experiments

	2.5 Discussion

	3 Efficient LiDAR-Camera Fusion
	3.1 3D Object Detection Overview
	3.1.1 LiDAR-based 3D Object Detection
	3.1.2 Camera-based 3D Object Detection
	3.1.3 Multi-modal Fusion

	3.2 Center Feature Fusion
	3.2.1 Overview
	3.2.2 LiDAR Backbone
	3.2.3 Camera Backbone
	3.2.4 Point Cloud-Guided Depth Generation
	3.2.5 Selective Bird's-eye-view Projection
	3.2.6 3D Detection Heads
	3.2.7 Model Training

	3.3 Experimental Results
	3.3.1 Dataset
	3.3.2 Main Results
	3.3.3 Ablation Studies

	3.4 Discussion

	4 Doubly-Robust Self-Training
	4.1 Semi-Supervised Learning Overview
	4.1.1 Pseudo-labeling Approaches
	4.1.2 Semi-supervised Learning for Vision

	4.2 Doubly-Robust Self-Training
	4.2.1 Overview
	4.2.2 Motivating example: Mean estimation
	4.2.3 Guarantee for general loss
	4.2.4 The case of distribution mismatch

	4.3 Experimental Results
	4.3.1 Image classification
	4.3.2 3D object detection

	4.4 Discussion

	5 Prediction Enhanced Autolabeling
	5.1 Background
	5.1.1 Semi-Supervised 3D Object Detection
	5.1.2 Temporal 3D Object Detection
	5.1.3 Motion Prediction

	5.2 TrajSSL
	5.2.1 Teacher-Student Framework
	5.2.2 Trajectory Generation
	5.2.3 Matched Prediction Pseudo-label Weighting
	5.2.4 Unmatched Prediction-Enhanced Training
	5.2.5 Training Objective

	5.3 Experimental Results
	5.3.1 Implementation Details
	5.3.2 Main Results
	5.3.3 Ablation Studies

	5.4 Discussion

	6 Conclusion
	Bibliography
	Bibliography

