
Drawing Biological Understanding From Machine Learning

Forest Yang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-187
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-187.html

August 30, 2024



Copyright © 2024, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Drawing Biological Understanding From Machine Learning

by

Forest Yang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Laurent El Ghaoui, Chair
Assistant Professor Nilah Ioannidis
Associate Professor Adam Yala

Summer 2024



Drawing Biological Understanding From Machine Learning

Copyright 2024
by

Forest Yang



1

Abstract

Drawing Biological Understanding From Machine Learning

by

Forest Yang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Laurent El Ghaoui, Chair

Large biological data, such as medical imaging and single-cell level genomic data, are rich
sources of biological information. Machine learning is a tool to extract that information
into a usable form, whether it be predictions for some prediction task or insights drawn
from the model. We explore three applications of machine learning to biology. One is on
using deep learning to perform metastatic cancer prognosis from CT images by predicting
lesion-level risks. We use the lesion-level risks to show that the model captures clinically
known indicators of risk. Next, we utilize the DeepLIFT and TF-MoDISco neural network
interpretation techniques to understand how DNA shape affects transcription factor binding.
Overall, we find that sequence features are more important for distinguishing bound sites,
but that shape features can modulate binding affinity. Finally, we the test the CellOracle and
SCENIC+ gene regulatory network inference frameworks in the context of reprogramming
fibroblasts to pluripotent cells, to prioritize key factors in reprogramming and recover their
effects on differentiation.
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Chapter 1

Introduction

Biology, the study of life, holds deep mysteries that govern how our bodies function, change,
and reproduce. Life emerged beginning from cyanobacteria as early as 3.4 billion years
ago and has gone through huge developments in diversity and complexity over time [9].
Modern humans have only existed for a small fraction of the time that life existed – around
300,000 years – and the age of human flourishing for an even smaller fraction – around 11,700
years. Biological datasets containing complex information have the potential to illuminate
the mechanisms of life that evolved over 3.4 billion years, by having machine learning models
extract patterns from them.

Biological data, from radiographic images of the body to genomic and epigenomic assays
of cells, are rapidly growing in number, availability, and resolution. The cost of sequencing
an entire human genome has gone from $7 million in 2007 to $600 in 2022 [126], and the rise
of single-cell data gives an incredibly detailed view of each individual cell. At the same time,
the fields of machine learning and data science are booming. The question of how to apply
these powerful modeling techniques in the real world is a salient one. Common industrial
applications involve using these models, including neural networks, to perform profitable
tasks, like advertisement optimization, task automation, and recommendation systems. More
ambitious aims such as self-driving, drug discovery, and automatic medical diagnoses are also
hotly being pursued, though machine learning approaches for these pursuits are only just
being deployed in real applications. Considering the rate of growth of biological data and
the amount of effort diverted towards singularly profit-oriented enterprises, there is likely far
more that can be done with biological data.

In this thesis, I will focus on methods for understanding biology using machine learn-
ing, including methods that use deep neural networks. This involves not only training a
deep neural network to accomplish some predictive task, but also interpreting the model
to understand what it has learned. Neural networks automatically learn complex patterns
that map each input to a prediction of its accompanying output; since networks can contain
hundreds of thousands to even hundreds of billions of parameters (by today’s standards, a
network of a couple million parameters is considered lightweight), they can automatically
uncover relationships that a human could not. The network’s predictions alone can certainly
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be useful, if we want to predict the output on new inputs. However, only using the model
for predictions without any interpretation misses out on understanding the basis for the
model’s predictions. This is dangerous as it could lead to deployment of a model that has
only learned incidental patterns that are not truly relevant to the task at hand, and may
delay the discovery of novel biological insights already found by the model. Therefore, I also
focus on interpreting the models trained in this thesis.

Specifically, we train a deep neural network to perform metastatic lung cancer prognosis
by predicting lesion-level risks and aggregating them. Model interpretation using the lesion-
level risks shows the model captures relevant risk factors. We also interpret a deep neural
network trained on sequence and shape features to predict transcription factor binding,
making use of the discriminative patterns learned by the model to derive insights on the
role of DNA shape in transcription factor binding. Lastly, we test methods that infer gene
regulatory networks from single-cell data on a single-cell dataset containing gene expression
and accessibility data for fibroblasts being reprogrammed to induced pluripotent stem cells.
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Chapter 2

Lesion Prioritization for Cancer
Prognosis

2.1 Background

Cancer prognosis

Cancer is the second-leading cause of death in the US and within cancer, lung cancer is the
leading cause of death [108]. Clearly, improving the treatment of this disease is of pivotal
importance for people’s health. Cancer prognosis refers to providing an outlook on the
survival of the patient. The clinical stage of a cancer is already prognostic: for example,
stage I lung cancer has a 5-year survival rate of about 80%, while stage III lung cancer has
a 5-year survival rate of about 25% [81]; more granular stages such as stage IB can provide
a more precise prognosis. Prognosis is useful for informing the patient and informing what
kind of treatment to give the patient; poorer prognoses may call for more intensive treatment
regimens. The good news is that survival rates for cancer are steadily improving due to the
constant development of new and improved treatments via clinical trials. Computational
models of prognosis can play a role in accelerating treatment development and therefore
increases in survival rate.

TNM staging Clinical stage is obtained through a system called TNM staging [98]. T,
N, and M represent characteristics of the cancer that are individually measured and then
combined to produce an overall stage. T (Tumor) describes the size and level of invasion
into adjacent tissues of the primary tumor, and ranges from T0 to T4. N (Node) denotes the
extent that the cancer has spread to nearby lymph nodes, which are nodes in the body that
filter fluid in the body for disease, and this measure ranges from N0 to N3. M (Metastasis)
indicates whether the cancer has metastasized, or spread to a different location, with M0
denoting no metastasis and M1 denoting metastasis. The combination of these characteristics
is combined into a stage from I through IV. For example, a T1N1M0 classification might
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result in a stage II diagnosis. The most severe diagnosis, stage IV, is synonymous with an
M1 classification, or metastatic cancer.

RECIST and treatment response assessment A related notion to prognosis is treat-
ment response assessment. The goal here is to determine whether the cancer is shrinking
or weakening in response to treatment. The clinical standard for this is RECIST 1.1 [84],
which compares the proportional change in sum of diameters of up to 5 lesions chosen by
a radiologist. A decrease in the sum of diameters by ≥ 30% corresponds to treatment re-
sponse, while an increase by ≥ 20% corresponds to progressive disease. In the interest of
implementing potentially life-saving drugs as soon as possible, treatment response and dis-
ease progression defined according to RECIST are FDA-recognized endpoints for assessing
the efficacy of drugs in clinical trials [99], because survival time, while the gold standard of
efficacy, takes a long time to observe.

However, the RECIST criterion suffers from inter-reader variability (estimated 95% confi-
dence interval: [−18.6%, 25.4%] around the measured change [86]) due to measurement error
and some arbitrariness in the choice of lesions. Furthermore, novel therapies like molecular
targeted therapy and immunotherapy produce different patterns of response in cancer that
may call for different criteria [85]. For example, in gastrointestinal stromal tumors treated
with a tyrosine kinase inhibitor, the Choi criteria, which also incorporate tumor density, were
shown to have better correlation with survival than RECIST [100]. By learning to perform
prognosis from data, a neural network could extract better measures of survival that are
tuned to a particular combination of cancer and treatment type.

Survival analysis

A good reference for survival analysis is [1].

Main definitions Survival analysis is the branch of statistics that deals with estimating
the time to an event, T . In oncology, the event considered is usually death, recurrence of
disease, or progression of disease; cancer prognosis is simply survival analysis applied to
cancer patients. The main object of interest is the survival function, S(t), defined as the
probability of surviving past time t:

S(t) := P(T > t).

The standard setup is that we observe n survival times t1, t2, . . . , tn ∈ R, potentially
accompanied by feature vectors x1, x2, . . . , xn ∈ Rd. Furthermore, some of the times are
censored, meaning they do not truly denote the time to the event, but represent a time when
the subject dropped out of the study, since subjects do not always remain under observation.
We let δ1, δ2, . . . , δn denote whether the event was observed for the ith subject:

δi =

{
1 event was observed for subject i

0 subject i was censored.
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Censoring is assumed to be independent of survival times for statistical reasons. Were
it not for censoring, we could estimate S(t) with the empirical survival function: Ŝ(t) =
1
n

∑n
i=1 1{ti > t}. However, in the presence of censoring, this is an underestimate, because

the true survival time of a censored subject i may be greater than t despite their censoring
time ti being less than t.

An object that is more convenient for estimating survival when there is censoring is
the hazard function, λ(t). This is defined as the density of the event occurring at time t
conditioned on survival up until time t. Thus, assuming that T is continuous with density
f(t), we have:

λ(t) = lim
∆t↓0

P(t ≤ T < t+∆t|T ≥ t)

∆t
= lim

∆t↓0

P(t ≤ T < t+∆t)

S(t)∆t
=

f(t)

S(t)
.

Note that the hazard function λ(t) and survival function S(t) are equivalent, in that
one may be obtained from the other. To obtain λ(t) from S(t), we can observe that since
f(t) = d

dt
P(T ≤ t) = d

dt
(1− S(t)) = −S ′(t), we have

λ(t) =
−S ′(t)

S(t)
.

To obtain S(t) from λ(t), we note that

λ(t) =
−S ′(t)

S(t)
= − d

dt
log(S(t)) =⇒ log(S(t))− log(S(0)) = −

∫ t

0

λ(s) ds

=⇒ S(t) = e−
∫ t
0 λ(s) ds = e−Λ(t),

because S(0) = P(T > 0) = 1 and Λ(t) =
∫ t

0
λ(s) ds denotes the cumulative hazard func-

tion. Note that a constant hazard λ(t) corresponds to an exponential distribution with rate
parameter λ: f(t) = λe−λt.

Basic estimators: Kaplan-Meier estimator and Cox model The Kaplan-Meier es-
timator [55] is a nonparametric estimator of S(t) using {(ti, δi)}ni=1. Features {x1, . . . , xn}
are not used. It is based on the idea that

S(t) = P(T > t) ≈ P(T > t(j)) = P(T > t(1))
P(T > t(2))

P(T > t(1))
. . .

P(T > t(j))

P(T > t(j−1))
,

where t(i) is the ith smallest survival time, t(j) is the greatest ti such that ti ≤ t, and for

simplicity we assume there are no ties.
P(T>t(i))

P(T>t(i−1))
= P(T > t(i)|T > t(i−1)) is the probability

of survival past time t(i) given survival past the previous time point t(i−1). A natural estimate
of this quantity is the number surviving at time t(i) divided by the number surviving just

before time t(i): 1−
δ(i)

n−i+1
, where δ(i) is the event indicator corresponding to time t(i). Thus,
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Figure 2.1: Kaplan-Meier curves from a recent study (2021) comparing immunotherapy and
chemotherapy applied to patients with non-small-cell metastatic lung cancer [93]. As shown
by the estimated survival curves, outcomes are better with the immunotherapy.

the Kaplan-Meier estimator is

Ŝ(t) =
∏
t(i)≤t

(
1−

δ(i)
n− i+ 1

)
.

Censored individuals contribute to the denominator of the fractions at times when they are
in the study, and do not contribute to the denominator at times when they have left the
study. This still makes use of censored individuals to estimate S(t), and its derivation is
motivated by the hazard λ(t). Example Kaplan-Meier curves for lung cancer patients treated
with Pembrolizumab and chemotherapy[93] are shown in Figure 2.1.

Given additionally features that are associated with each subject {(ti, δi, xi)}ni=1, the
proportional hazards assumption states that the features affect the hazard function multi-
plicatively based on some parameter β ∈ Rd:

λ(t|X) = λ0(t)e
β⊤X

where we have additionally specified the form of the multiplicative factor as eβ
⊤X . In a

seminal work [25], Cox proposed to maximize the partial log-likelihood function in order to
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find β:

L(β) =
n∏

i=1

δ(i)e
β⊤x(i)∑n

j=i e
β⊤x(j)

. (2.1)

Together with the proportional hazards assumption, this constitutes the celebrated Cox
model of survival analysis.

Deep learning for survival analysis

General approaches A simple approach to performing survival analysis with deep neural
networks is to crudely convert the problem to a binary classification problem, a common
problem type in deep learning, by binarizing survival times according to some cutoff, for
example, the median [70], or 2 years [60]. A downside is that this approach throws away
censored data that was censored before the cutoff. Another simple approach is to directly
regress against survival times [118], though again this does not properly handle censoring.
Some existing approaches that are more tailored to survival analysis are:

Faraggi-Simon, DeepSurv, Cox-nnet [32, 57, 21]: The linear model inside the ex-
ponential function in the Cox model is replaced with a neural network. Thus, instances of
eβ

⊤xi become efθ(xi) where fθ is a neural network. The partial log-likelihood following this
replacement is optimized with gradient descent.

Batched PLL [66]: For the individuals in the sum in the denominator of the partial
log-likelihood (2.1), Kvamme, Borgan, and Scheel (2019) propose to only include that are
in the current batch, and provide mathematical justification for this approach. This allows
dealing with large datasets and larger architectures, which cannot all fit in a single batch.

Nnet-survival [38]: Gensheimer and Balasubramanian (2019) propose a survival loss
function which divides the entire time interval into smaller sub-intervals and considers the
relationship of the survival time to each sub-interval.

Evaluation metrics The dominant metric for evaluating survival analysis models is C-
index. It can be stated as follows:

C-index =
concordant pairs

concordant pairs + discordant pairs
. (2.2)

A concordant pair is a pair of data points whose outcome ordering agrees with its pre-
dicted outcome ordering. A discordant pair is a pair of data points whose outcome ordering
disagrees with its predicted outcome ordering. The outcome is a survival time ti. The pre-
diction could be a risk score, si (it could also be a predicted survival time, in which case we
would reverse the following comparisons between si and sj). i and j are concordant if ti > tj
and si < sj. They are discordant if ti > tj and si > sj. The C-index can be interpreted as
the probability that if we draw a random pair of subjects, the prediction agrees with reality,
i.e.

C-index = P(si < sj|ti > tj).
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Thus, a C-index of 0.70 can be interpreted as the model being right 70% of the time on a
random pair of patients.

Another survival analysis metric is the Brier score, and both Brier score and C-index
can be adjusted for censoring using the inverse-probability-of-censoring weighting (IPCW)
[27] though at least in image-based deep learning for cancer prognosis, these have not seen
significant use.

A related metric to C-index is the area under the receiver operating characteristic curve,
or AUROC, often further abbreviated to AUC. While C-index deals with real-valued out-
comes, the AUC deals with binary outcomes, but can be understood as a special case of
C-index in the binary case. In fact, the AUC is known to equal to the probability that a
randomly chosen positive sample has a higher prediction than a randomly chosen negative
sample:

AUC = P(pi > pj|yi = 1, yj = 0).

Setting yi = ti and si = −pi, we exactly get back the probability definition of C-index. Thus,
AUC is a special case of C-index with binary survival times.

Cancer imaging Prior works in deep image-based cancer prognosis examine CT scans
containing images of cancer. Most deal with early stage cancer, in which the cancer has not
really spread beyond the primary lesion. Thus, their modus operandi is to extract an image
crop containing the primary lesion with some border, and to feed it to a convolutional neural
network (or potentially, a vision transformer, though this has not been explored as much) to
predict survival. Some works deal with 2D input patches, others deal with 3D input patches.
Also, some works handle more than one time-point, in which case a crop of the lesion at
each time point is extracted, and each is converted to a vector embedding, with a recurrent
neural network such as an LSTM being used to integrate information from embeddings
across timepoints. A previous work [70] that, like this thesis, deals with metastatic cancer,
considers lesions of at least 1cm in diameter and performs a size-weighted average of their
embeddings, and feeds that to their classification head to obtain their prediction. However
this results in them only considering up to 10 lesions per patient. Table 2.1 summarizes prior
work.

Goal and approach

Our goal is to design a neural network that functions similarly to a radiologist performing
TNM staging or using RECIST – it inspects radiographic images of cancer, typically a CT
scan, and based on the features of the cancer, outputs a measurement correlated with the
future survival of the patient. Furthermore, we aim to bake in an inherent degree of inter-
pretability to the network, as interpretability is especially important in medical applications.
We focus on metastatic cancer, where a patient can have numerous lesions, because this is a
challenging and underexplored problem – most prior works applying deep learning to cancer
prognosis focus on stages I-III cancer, inputting only one lesion to the network (Table 2.1).
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Ref Cancer Treatment NP NL NT Model Loss
AUC /
C-index

[47]
Lung,

Stage I-III
Radio-
therapy

771 1 1
Custom
3DCNN

Binary
(2 year)

0.70 AUC

[127]
Lung,

Stage III

Radio– &
chemo-
therapy

179 1 2–4
ResNet
+GRU

Binary
(2 year)

0.74 AUC

[60]
Lung,

Stage I-II
Surgery 800 1 1

Custom
3DCNN

Nnet-sur-
vival[38]

0.74 C

[70]
Colorectal,
Stage IV

Chemo– &
targeted
therapy

1028 1–10 2–4
Inception
+BiLSTM

Binary
(1 -year)

0.649 C

[130] Pancreatic∗ Unknown 205 1 1
3D-

ResNet18
+LSTM

NPLL 0.683 C

Table 2.1: Previous approaches on deep cancer prognosis from images. NP , NL, NT stand for
the number of patients, number of lesions considered per patient, and number of scans taken
at different time points considered respectively. If the model has “3D” in its name, inputs
are 3D lesion-centered CT patches. Otherwise, inputs are 2D patches. ∗: used contrast-
enhanced CT.

Thus, we develop the framework of lesion prioritization. This involves simultaneously
predicting survival and identifying high risk lesions. The philosophy behind this approach is
that the survival-based training objective can be exploited to automatically guide assignment
of risk scores to lesions, and in turn, the lesion-level risk scores lend interpretability to the
model. We implement this approach on synthetic and real data, showing in the synthetic
case that the approach can successfully recover which lesions are defined as malignant, and in
the real case, we show that our approach outperforms deep learning approaches on a dataset
of about two hundred patients, and we derive insights by interpreting the lesion-level risk
scores.

2.2 Outcome-aware Object Detection on Synthetic

Lesions

Introduction

We seek a method to, given radiology scans, simultaneously localize tumors and provide a
survival prognosis for each patient. One lens through which to view this task is outcome-
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aware object detection: can we detect tumors in such a way that makes use of our survival
predictions? Conversely, we can also view the task as object-aware outcome prediction:
performing a survival prognosis that is informed by identified tumors.

To test approaches in a controlled environment, where we know exactly how much a
given tumor affects survival time, we model tumors as randomly generated ellipses with
green ellipses being designated as benign and red ellipses as malignant. The survival time is
modeled as an exponential random variable whose parameter is determined by the number
and area of the red ellipses in the image. We further simulate the difficulty of the real life
problem by adding noise to the images to make them resemble medical images more. Having
multiple tumors or lesions per image models metastatic cancer.

To tackle this task, we make use of a classic object detection architecture, the region
proposal network from Faster R-CNN [94], which achieved state of the art object detection
performance and very fast prediction speed by predicting bounding box classification and
regression outputs across the entire image by using different position-wise vectors from the
same convolutional encoding. In addition to the existing bounding box classification and
regression heads, we introduce two additional heads, an outcome-relevant bounding box
classification head, and a risk head. We train the network to perform two tasks: object
detection (bounding box classification and regression losses), and survival prognosis (negative
partial log-likelihood loss). Furthermore, we apply L1 regularization to the outputs of the
outcome-relevant classification head, so that it assigns probabilities of 0 to non-outcome-
relevant objects and thus acts as a relevant object selector.

We experiment with different weightings for the components of our loss function. On
the clean data, we find that for a wide range of weightings, the model’s predicted risks have
C-index close to the optimum, which is achieved by the ground truth risks that generated
the survival times. With a reasonable weighting on the object detection component of
the loss and the L1 penalty, the model achieves near perfect object detection performance
and “outcome-relevant” object detection performance. In the presence of noise, survival
prognosis and object detection performance are well-preserved, but the outcome-relevant
object detection performance drops noticeably. This underscores the challenge of learning
to detect the more survival-relevant lesions in complex, noisy medical images.

Synthetic data construction

Clean image construction Each clean image consists of red and green ellipses randomly
scattered against a white background. To generate the ellipses for an image, first, the
number of ellipses is sampled from a Poisson(5) distribution. The color of each ellipse is
randomly selected to be red or green with equal probability. The center of each ellipse is
chosen uniformly at random from the square [−4, 4] × [−4, 4]. The width is drawn from a
N(0.7, 0.0625) distribution truncated from below to ensure non-trivial size, and the height is
set to be a Uniform(0.5, 1.5) variable times the width. The orientation, or angle of the ellipse
is drawn uniformly at random from [0, 360◦). Finally, the ellipses are drawn into the image
one-by-one with these parameters selected randomly in this way independently of previous
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Figure 2.2: Example clean image of 7 randomly generated lesions.

ellipses, but if the current ellipse overlaps another ellipse, the current ellipse is resampled. In
the unlikely event this sampling repeatedly fails due to the previous ellipses covering most
of the available space, the entire sampling is restarted. An example of an image randomly
generated in this manner is shown in Figure 2.2.

Survival model We model the survival time for each image using a proportional hazards
assumption with constant baseline hazard λ0 and a multiplicative factor, or hazard ratio,
that only depends on the red ellipses in the image.

λ(t | Image) = λ0e
β1nred+β2Ared . (2.3)

This causes the survival time of each image to be exponentially distributed:

T | Image ∼ Exp(λ0e
β1nred+β2Ared).

nred is the number of ellipses that are red, and Aarea is the fraction of the area of the image
that is red. We set β1 = 0.5 and β2 = 20. For each image, we set its survival time by
sampling from its survival time distribution. The choice of the baseline hazard λ0 simply
determines the scale of the survival times and therefore does not affect results; scaling λ0 by
a constant c corresponds to scaling the sampled survival times by 1

c
. The resulting C-index

between sampled survival times and ground truth hazards (2.3) was 0.761, and represents
the best possible C-index a predictor could get.

Based on the ground truth values of β = [β1 β2]
⊤, we can interpret each additional red

ellipse as multiplying the hazard by e0.5 = 1.65, and each 1% of the image that is red as
multiplying the hazard by e0.2 = 1.22. Note that the survival time is independent of the
green ellipses in the image. This encodes the fact that precisely the red ellipses are the
malignant lesions in the image, responsible for decreasing the patient’s survival time.
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Adding noise to clean images To obtain more realistic looking images, we perform the
following steps to generate noisy images from clean images. In Figure 2.3 which demonstrates
the process, the shown ellipses are larger than they would be in the actual dataset, as
hopefully this makes the transformations easier to visualize.

1. Grayscale: for a particular color, either red or green, we extract only the lesions of
that color and convert to a grayscale image, where the lesions have the value 1 and the
background 0.

2. Jumble: we fray the edges of each ellipse by applying the following “jumble” filter:

C =
1

45


1 1 1 1 1
1 3 3 3 1
1 3 5 3 1
1 3 3 3 1
1 1 1 1 1

 .

Note that the entries of C define a probability distribution. We apply C by replacing
each pixel with a random pixel in the 5 × 5 grid around it according to the distribu-
tion defined by C. This can be thought of as a “sampling” version of a convolution
operation.

3. Smooth: we smooth things over by applying C again, this time as a standard convo-
lutional filter.

4. Gaussian noise: we add correlated Gaussian noise to the image for texture. We set the
covariance between two pixels to be σ2 exp(−∥x−x′∥2/5) where x, x′ are the locations
of the two pixels. For efficiency, for a given pixel, we only consider correlations in a
9× 9 region around it, and during implementation, we generate each 3× 3 block of the
image at a time, scanning across the first row of 3 × 3s, then going to the next row,
etc. When generating each 3 × 3 block, we sample from the Gaussian defined above
conditioned on the values of the blocks to its left, above, and above left, which have
already been generated. We set the mean intensity of red ellipses to 450 and the mean
intensity of green ellipses to 400, and vary the noise parameter σ2.

Architecture and losses

We modify the region proposal network of [94], adding to the existing classification head β
and regression head β̂, the outcome aware classification head β̂ and risk prediction head Z.
To review, at the end of some convolutional encoder, a feature map of dimension (a, f, h, w)
is output, where (h,w) are the spatial dimensions, a is the number of “anchor boxes” (base
bounding boxes per position, a concept introduced by [94]), and f is the number of features
at each anchor box × position. Each head operates on the f -dimensional embedding at each
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Figure 2.3: Demonstration of noise-adding procedure to images of synthetic lesions. The
process is done for each color, red and green, individually, and the results are summed
together. The process is shown for the green lesions in the above image.

anchor box × position individually, producing a prediction for each anchor box × position.
β predicts the probability of an actual object being present. B̂ predicts precise bounding
box coordinates. β̃ predicts the probability of an outcome-relevant object being present.
Z predicts the risk score of the object in the bounding box. A schematic of the resulting
network is shown in Figure 2.4.

Our loss function is shown below:

L = Los(⟨Z, β ⊙ β̃⟩, t) + α(Lbb(B̂, B) + Lcls(β,By)) + µ∥β̃∥1. (2.4)

Los is the negative partial log-likelihood loss, restricted to the samples in the current batch
(as justified in [66]). The overall predicted risk for an image (the log hazard ratio, analogous
to β⊤x in the Cox model λ(t | x) = λ0(t | x)eβ⊤x) is generated by ⟨Z, β ⊙ β̃⟩. In other
words, we multiply the risks Z with the object probabilities β and the outcome-aware object
probabilities β̃ position-wise, then sum it all up. Lbb is the regression loss based on log-
transformed bounding box coordinates relative to the current anchor box from [94], and
Lcls is a simple binary classification loss – the sum of these two components is the object
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I X U
Xγ Uθ

β̃β̃η

Z
Zϕ

B̂
B̂ζ

β
βξ

× Los

t

B

By

Lbb

Lcls + L

ℓ1(3, 216, 216) (f, 27, 27) (9, f, 27, 27)

(9, 27, 27)

(9, 27, 27)

(9, 27, 27)

(9, 27, 27, 4)

L = Los(⟨Z, β ⊙ β̃⟩, t) + α(Lbb(B̂, B) + Lcls(β,By)) + µ∥β̃∥1.

Figure 2.4: Schematic of outcome aware object detection network used on synthetic lesion
data. In our implementation, the convolutional encoder, which maps I → U , contains 8
convolutional layers, similar to a VGG, each head contains 1-3 position-wise fully connected
layers, and we set the number of channels to f = 256. The dimensions output by each layer
reveal the amount of downsampling at each stage.

detection component which is weighted by a parameter α. Then, apply an L1 penalty on
β̃ weighted by a parameter µ, encouraging β̃ to be as sparse as possible. Since the only
other place β̃ appears is ⟨Z, β ⊙ β̃⟩, β̃ will ideally be 0 wherever β is 0, because the result
at that position would be 0 regardless. Thus, β̃ can be viewed as selecting a subset of
the objects selected by β. Additionally, β̃ will be encouraged to be 0 at objects that do
not contribute to the true risk, because accurate risk predictions need not assign weight to
irrelevant objects. It will not be able to be 0 at relevant objects, because this would harm the
survival prediction performance. Together, this encourages β̃ to output the probability (or
if the interpretation of “probability” at this point has been marred, a nonnegative weight in
[0, 1], a “psuedo-probability”) of an outcome-relevant object being present at each position.

Results

To test our approach, we train our model on a train set of 3,000 images and a validation set of
2,000 images and evaluate on a test set of 10,000 images. The inputs to the loss (2.4) are the
outputs of our architecture, β, B̂, β̃, and Z, which are derived solely from the input image
I, the ground truth bounding box information B (coordinates) and By (presence labels),
and survival times t, for all the samples in the batch. We use Adam [62] with a constant
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learning rate of 0.001. We first evaluate our approach on clean data to get a sense of how
our approach performs in an idealized, noiseless setting on three tasks: survival prognosis,
object detection, and outcome-relevant object detection. Furthermore, we vary α, the object
detection weight, and µ, the L1 penalty weight, from 0.1 to 300, in order to see how different
weightings of loss function components affect performance on different tasks. The evaluation
metrics used are:

1. C-index: the standard survival analysis metric, as defined in (2.2).

2. mAP@50: the mean average precision at 50, a classic object detection metric used in
standard benchmarks [30, 69]. It computes the average precision of bounding boxes
ranked by object probability to detect ground truth bounding boxes, counting true
positives as boxes with an IOU of ≥ 0.5 with a ground truth box. After a predicted
box has been assigned to a ground truth box, the ground truth box is removed. We
use non-maximal suppression to prune the list of predicted bounding boxes. Since we
only have one object class (lesion), mAP is equivalent to AP.

3. Red mAP@50: the red or relevant mean average precision at 50. This replaces the
ground truth bounding boxes with the bounding boxes of the red ellipses, which are the
relevant objects. Instead of using predicted object probabilities (β) to rank bounding
boxes, we use predicted relevant object probabilities (β̃).

Our results on clean data are summarized in Table 2.2. The top table shows the performance
when µ = 0, i.e. there is no L1 penalty, and α is varied from 0.1 to 300. As expected, for
very low values of α (α = 0.1, 1), the object detection performance as exhibited by mAP@50
suffers, because it is being overwhelmed by the survival prediction task. For very high values
of α (α = 100, 300), the prognosis performance drops slightly, from a C-index of ≥ 0.760 to
0.757, showing that too high of a weight on object detection does interfere with prognosis,
but only slightly. For a sweet spot of α ∈ {10, 30, 50}, both very high prognosis performance
(essentially hitting the theoretical maximum 0.761 on this data) and detection performance
(mAP@50 = 0.99) are achieved. Another observation is that since there is no L1 penalty, β̃
has no motivation to select outcome-relevant objects, so the performance at outcome-relevant
object detection measured by red mAP@50 is poor.

The bottom half of Table 2.2 analyzes the effect of varying µ from 0.1 to 300, with α = 50
fixed. We observe that for low values of µ (µ ∈ {0.1, 1, 10}), β̃ learns to distinguish relevant
objects (red ellipses) from non-relevant objects (green ellipses) very well without disturbing
performance on the other two tasks, as reflected by red mAP@50 values of close to 0.99.
Moreover, it has done so through learning β̃ to minimize the negative partial log-likelihood
with risk formulation ⟨Z, β⊙ β̃ while putting an L1 constraint on β̃, as opposed to explicitly
supervising β̃ with which objects are relevant. For higher values of µ, e.g. µ ∈ {100, 300},
counterintuitively, the red mAP@50 performance drops to below 0.7. An explanation could
be that too high of an L1 penalty forces β̃ to become 0 even on relevant objects, though
interestingly, the C-index does not suffer at this point. Alternatively, perhaps the extreme
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Figure 2.5: Example detection by a model with α = 50, µ = 50.

L1 penalty causes β̃ to behave in erratically in some sense, where it loses the ability to
properly order locations in the image according to their probability of containing an object.
Somehow, this is compensated for by Z, so the prognosis performance stays the same. An
example detection and outcome-aware detection for the same input by the α = 50, µ = 50
model are shown in Figure 2.5.

µ = 0
α = 0.1 α = 1 α = 10 α = 30 α = 50 α = 100 α = 300

C-index 0.762 0.762 0.761 0.760 0.760 0.757 0.757
mAP@50 (β) 0.158 0.909 0.989 0.990 0.990 0.990 0.990

Red mAP@50 (β̃) 0.036 0.115 0.061 0.158 0.187 0.114 0.073

α = 50
µ = 0.1 µ = 1 µ = 10 µ = 30 µ = 50 µ = 100 µ = 300

C-index 0.760 0.757 0.760 0.760 0.758 0.759 0.759
mAP@50 (β) 0.990 0.990 0.990 0.990 0.990 0.989 0.989

Red mAP@50 (β̃) 0.987 0.984 0.989 0.705 0.989 0.687 0.638

Table 2.2: Survival prognosis, object detection, and outcome-relevant object detection results
on clean data.
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Next, we investigate the performance of the α = 50, µ = 50 network on noisy images at
different noise levels (σ2 ∈ {100, 500, 1000, 5000, 10000}). An example of each level of noise
as well as plots showing the performance on each task for each level of noise are shown in
Figure 2.6. Performance drops on all three tasks, but at worst the C-index drops from about
0.760 to about 0.750, and mAP@50 from 0.99 to 0.988. In comparison, the red mAP@50
drops precipitously, from about 0.99 to under 0.65. This points to an interesting conclusion:
when a task has direct supervision, as in the case of the prognosis and object detection tasks,
its performance is relatively robust to noise. However, when a task is supervised indirectly
or semi-supervised, as is β̃, which is meant to learn to predict relevant-object-probability
through survival prediction plus an L1 penalty, performance on it is more vulnerable to noise.

Figure 2.6: Top: example of different noise variances applied to the same input image. The
mean intensity of red ellipses is 450 and that of green ellipses is 400. Bottom: Plots of
performance on each task, varying the noise variance.
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Discussion

Our goal was to design a neural network architecture that could predict an outcome while
performing object detection, and on top of that detect specifically which objects are relevant
to predicting the outcome. We addressed this with a modified region-proposal network with
an additional outcome-relevant object classification head and an outcome contribution head
(in our case, since the final predicted outcome was a risk score, this head predicted a risk
score for each position of the image). Just by training on outcomes (survival times) and
bounding boxes of all objects (red and green ellipse bounding boxes), without explicitly
telling the model which objects were relevant, our model was able to identify the relevant
objects (red ellipses) with very high accuracy on a clean dataset.

However, the performance of the model on relevant object detection was brittle to both
the L1 regularization parameter µ and to noisiness in the images. In contrast, performance
on survival prognosis and relevant object detection was quite stable. It appears that our
indirect method of learning which objects are outcome-relevant is more brittle than losses
that involve direct supervision for the desired task. Perhaps in future work, the formulation
of our architecture and loss function could be iterated upon to produce a more robust learning
of relevant objects, which would be crucial to deployment on actual medical images which
contain lots of irrelevant to slightly relevant information that is effectively noise. On the
other hand, our results also suggest that having doctors explicitly label which lesions are
more relevant for the survival of the patient can perform better than trying to infer relevance
from image and survival data alone.

2.3 Metastatic Lung Cancer Prognosis via Deep

Image-Based Lesion Prioritization

Introduction

Lung cancer is the leading cause of cancer death worldwide due to its high incidence coupled
with high mortality rate, and it is caused by smoking in about 80-90% [107] of cases.

Here, we design and evaluate a deep cancer prognosis model, which is a deep neural
network that estimates cancer patient survival from computed tomography (CT) scans. It
differs from prior deep cancer prognosis models in that it targets metastatic cancer, where
a patient can have numerous lesions present in their CT scan, and it has an extra layer
of interpretability. Accurate prognoses can better inform treatment decisions, accelerate
treatment development, and an interpretable model could help understand the disease and
instill confidence in the predictions. A metastatic cancer prognosis model is particularly
useful for treatment development, since most cancer treatments being developed are focused
on metastatic cancer. Towards these goals, we propose metastatic cancer prognosis by deep
image-based lesion prioritization.
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Lesion prioritization assigns a risk to each individual lesion, where risk signifies the
impact of a lesion on patient survival. A simple, intuitive, and clinically utilized measure of
the risk of a lesion is its size, hence the use of size-based Response Evaluation Criteria in
Solid Tumors (RECIST) [84] and TNM staging clinical criteria. We hypothesize that a deep
learning model could produce more informed risk estimates by accounting for factors other
than lesion size.

Lesion-level risk predictions, as opposed to previous approaches which only predict patient-
level risk, lend interpretability. A doctor could peruse the lesions identified as high-risk and,
in case these contradict medical intuitions, know to trust the model less, or in case these
conform to medical intuitions, have more confidence in the model. In more ambiguous cases,
high risk lesions selected by the model may offer new insight as to what constitutes a dan-
gerous lesion. For treatment development, changes in high risk lesions at followup may be
more informative about treatment efficacy than RECIST, where the choice of which lesions
to measure is subjective.

Our approach uses a convolutional neural network (CNN) to predict lesion risks and
formulates patient risk as an aggregation of lesion risks. Thus, in the process of learning to
correlate patient risk with survival, the model learns to correlate lesion risk with the impact
of the lesion on survival. Our contributions are as follows:

• We propose and implement lesion prioritization, which predicts lesion-level risks and
then aggregates them to predict patient survival, as a framework for deep metastatic
lung cancer prognosis.

• We show that our model outperforms alternative deep learning approaches in a low
data regime (∼200 patients) on metastatic lung cancer.

• By using the predicted lesion risks for model interpretation, we find that the model
predicts higher risks for lesions outside the lung, particularly in bone. Furthermore, we
found that predicted lesion risk is predictive of whether a lesion will grow, suggesting
sensitivity of the model to a proliferation phenotype.

Dataset

Our dataset consists of 258 patients with non-small cell lung cancer from a phase III clinical
trial. 198 (77%) of cases are stage IV, and 246 (95%) are adenocarcinoma (Table 2.3).
The median survival is 1 year and 6.5 months, with observed survival for 186 patients and
censoring times for the other 72. The full survival distribution is shown in Figure 2.7.

The lesions of each patient are segmented by one to four radiologists (average: 2.92), each
radiologist producing a distinct segmentation mask. The median of the per-patient lesion
count, averaged over radiologists, is 10.7, with interquartile range [5, 19.4], reflecting a high
number of lesions per patient due to the advanced levels of cancer present (Table 2.4. The
median spacing of a CT in mm is (0.78125, 0.78125, 5) and the median shape is (512, 512, 131).
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Stage Count
IV 198 (77%)
III 23 (9%)
I-II 31 (12%)
Unk. 6 (2%)

Treatment Count
A 92 (36%)
B 84 (33%)
C 82 (32%)

Table 2.3: The cancer stage and treatment composition of the dataset. The patients are
from a phase III clinical trial testing the three treatments.

Figure 2.7: The survival distribution estimated using the Kaplan-Meier method from 258
patients with non-small cell lung cancer.

Percentile Min 10th 25th 50th 75th 90th Max

Number of lesions 1 2.8 5 10.7 19.4 36.8 232

Table 2.4: Number of lesions per patient. The number of lesions per patient is equal to the
number of connected components in a radiologist’s segmentation, averaged over radiologists.
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Lesions vary widely in size, shape, and location. Axial slices from the chest of two
example CT images are shown in Figure 2.8. A breakdown of lesions by organ is shown in
Table 2.5. Lesions occur frequently in the lung, mediastinum, bone, liver, and unlabeled
regions, with rare occurrences in the spleen, kidney, and stomach. An ideal lesion scoring
model models risk for a wide range of lesion characteristics and surrounding tissues.

Figure 2.8: Chest axial slices with lesions highlighted. Note the small, round nature of the
lesions of the patient on the left and the large, irregular nature of the lesions of the patient
on the right. The patient on the left had a survival time of 283 days and the patient on the
right had a survival time of 855 days.

Other Lung Mediastinum Liver Spleen Kidney Stomach Bone

% of lesions 23.6% 35.0% 18.6% 8.5% 0.2% 0.2% 0.3% 13.6%

Table 2.5: Distribution of lesions across organs. Lesions occur frequently in the lung, medi-
astinum, bone, liver, and unlabeled regions, with rare occurrences in the spleen, kidney, and
stomach.

Method

Conceptually, our approach maps each lesion of a patient to a lesion-level risk score, and
aggregates the lesion risk scores to form a patient-level risk score, trained using the negative
proportional log likelihood (NPLL) loss [57, 66]. We extract a 2d × 2d patch of each lesion
of a patient where d is the lesion bounding box diameter and resize it to 72 × 72. If the
patch would go out of image bounds, we shrink it isotropically until it is no longer so.
Furthermore, each image is normalized to lie within [0, 1] using the minimum and maximum
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CT voxel values (−1024, 3071). Then we feed the lesion patch to a ResNet18 lesion scoring
network to obtain risk score rli and the lesion volume to a fully connected size scaler network
to obtain scaling factor sli . The number of input channels of the ResNet18 is set to 1 and the
number of output features is set to 1 because we are using grayscale images and outputting a
single scalar value, the lesion risk. The size scaler network has two hidden layers, each with
128 neurons, and GeLU activation on each hidden neuron and output neuron. The patient
risk score is the sum of the scaled lesion risks:

rp =

nlp∑
i=1

rlisli

where nlp is the number of lesions in the annotation. The rationale is that a vision network
(here, a ResNet18) can identify image-based features that distinguish between risky and less
risky lesions to produce a risk rli , and we inject size information, which is clearly relevant to
survival, by scaling by the size-based scaling factors sli .

In practice, we limit the number of lesions considered per patient annotation to 40.
During training, we consider each annotation as a distinct example, but in evaluation, we
average scores produced by different annotations for the same patient. A schematic of the
approach is shown in Figure 2.9.

Figure 2.9: A schematic of the proposed approach. The patient risk scores are trained using
the NPLL loss.

During training (and on the validation set), we perform standard data augmentations
to each lesion patch, namely: random shifting, scaling, flipping, and rotation. Specifically,
independently for both dimensions, shifting by a random fraction in [−0.25, 0.25], scaling
by a random factor in [0.85, 1.15], flipping with probability 0.5, and finally, applying a
random multiple-of-90 degree rotation. Also, during training, lesions are extracted based
the annotation of a random radiologist to generate the prediction. During testing, no data
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augmentation is done, and we average the predictions resulting from all the annotations to
produce the final test prediction.

For accurate evaluation, we run 4-fold cross validation, partitioning the dataset into 4
equally sized parts with matched joint survival × treatment distributions, using two parts
for training and one for validation and test each, cycling the parts 4 times to obtain 4
splits. With 258 patients, we felt that a sample size of one-fourth (≈ 64) of the patients was
appropriate to obtain meaningful C-indices on the validation set and test set, which limited
the number of folds we considered to 4.

Results

Overall, we found our model components to be performant, and the approach of aggregat-
ing lesion risks across all or near-all lesions to outperform other deep CT-based prognosis
approaches on metastatic cancer.

Comparison to pretraining

We assessed the efficacy of a ResNet18 trained from scratch for the lesion scoring network
by comparing with pretrained models finetuned on our task – a ResNet50 pretrained on
ImageNet, and a ResNet50 pretrained on radiological image tasks [76]. Overall, while pre-
training obtained higher training performance, the test and validation performance were not
significantly higher. Interestingly, the ImageNet-pretrained network overfitted severely, while
the radiological image-pretrained network only overfitted slightly, though the validation and
test performances were similar. Pretraining on ImageNet, which is a very large collection of
diverse natural images, likely leads to learning a larger repertoire of image features, allowing
the model to grasp patterns correlated with the outcome more quickly. However, most of
these features likely have little to do with the relationship between radiological image and
outcome, leading to poor generalization. See Figure 2.10 and the first three rows of Table 2.6.

Figure 2.10: Training, validation, and test C-indices of lesion networks trained from a pre-
trained initialization and ResNet18 trained from scratch.
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Size scaler ablations

Next, we assessed the effect of the size scaler on performance. In the “no FC network”
ablation, we replaced the fully connected size scaler network with multiplication by a learned
constant, changing the scaling factor from a nonlinear to a linear function of volume. In
another ablation, we removed the size scaler entirely and simply summed the lesion risks
to generate patient risk. The ablation results are shown graphically in Figure 2.11 and
summarized as metrics in rows 4 and 5 of Table 2.6.

A linear function of volume (0.658 test C-index) performed similarly to a nonlinear one
(0.662), but removing size-based scaling altogether performed slightly worse (0.633). This
emphasizes the benefit of including lesion size information for prognosis, though there may be
room to optimize the way it is incorporated. On the other hand, performance does not drop
too much, suggesting our method may still be applied when size information is unavailable.
However, the large epoch-to-epoch fluctuations of the validation curves, particularly the one
for the “no size scaler” model, present a challenge for comparing method performance.

Figure 2.11: Training, validation, and test C-indices of different size scaler settings.

Comparison to alternative models

Though a main benefit of lesion-level risks is interpretability, we compared the survival
prediction performance of our approach with that of other viable deep learning approaches
to ensure a reasonable level of performance.

Our approach outperformed other deep learning approaches on our data. The alternatives
were, predicting survival from a size-weighted average embedding of the 5 largest lesions,
similarly to [70], and using whole CT volumes as input. When using whole CT volumes,
we resampled all volumes to a spacing of (0.78125, 0.78125, 5), used a (480, 480, 120)-shaped
crop, and performed analogous data augmentations to the ones done on 2D lesion patches.

Our method outperformed both approaches (Table 2.6). Outperforming lesion averaging
suggests that in metastatic cancer, accumulating risk over all lesions is more accurate than
basing risk on a summary derived from large lesions. Finally, the whole volume approach
likely performed the worst due to data scarcity. Our dataset has 258 patients, while a
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successful whole volume-based approach in lung cancer detection used over 10,000 patients
[77]. Learning generalizable patterns from whole volumes necessitates a large amount of
training data (unique patients), due to the extremely high amount of information contained
within an entire CT scan (480 × 480 ≈ 27.6 million features per image, granted a large
fraction are blank voxels), the bulk of which is likely irrelevant to survival prediction.

Figure 2.12: Training, validation, and test C-indices of different deep CT-based survival
prediction approaches.

Train Valid Test

ImageNet
ResNet50*

0.782±0.06 0.662±0.03 0.631±0.04

RadImgNet
ResNet50*

0.660±0.03 0.640±0.01 0.645±0.03

Proposed 0.658±0.02 0.656±0.04 0.662±0.02
No FC
network

0.632±0.02 0.643±0.01 0.658±0.02

No size
scaler

0.621±0.03 0.577±0.06 0.633±0.02

Mean of
largest 5

0.643±0.03 0.565±0.03 0.567±0.03

Whole
volume

0.713±0.01 0.572±0.03 0.535±0.02

Table 2.6: Model C-indices from 4-fold cross validation. For the starred models, the best
validation checkpoint was chosen for evaluation, while for the other models, the last model
checkpoint (after 30 epochs) was chosen.
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Consistency of risks across runs

Here we assess how consistent our model is by computing the correlation between lesion-
level risks from models trained on different folds. We also do the same for patient-level risks.
Because of our 4-fold cross validation procedure, each patient and their lesions constitutes a
training example for two models, a validation example for one model, and a test sample for
one model. Thus, we are correlating training predictions and validation and test predictions
between different models, which still provides a measure of the generalizability of our method.
The lesion-level correlations are shown in Figure 2.13 and the patient-level correlations are
in Figure 2.14.

Figure 2.13: Correlations between lesion-level risks predicted by 4 models trained via 4-fold
cross validation.

The lesion-level correlations are moderately positive, indicating our model learns gener-
alizable image-based notions of risk. The pearson correlations exceed the spearman corre-
lations, suggesting that while there might be substantial uncertainty in the risk of a large
proportion of lesions, very high risk lesions are reliably predicted as high risk. As might be
expected, the patient-level correlations are higher than the lesion-level correlations, due to
the denoising effect of aggregating lesion risks to form an overall assessment of risk for the
patient.

Interpretation using lesion risks

By assigning risk at the lesion level, one can better understand the medical reasoning of
the model and what kinds of lesions predict a better or worse prognosis. The following
interpretability analyses all use lesion risks predicted by a trained model from an arbitrarily
chosen split on its test set.
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Figure 2.14: Correlations between patient-level risks predicted by 4 models trained via 4-fold
cross validation.

Lesion risks outside the lung are higher

The distributions of lesion risks in each organ were obtained using radiologist-annotated
organ masks and plotted in Figure 2.15. Interestingly, the risk distribution in the lung
is lower than in other organs, recapitulating the increased risk associated with metastasis.
Furthermore, the model highlights bone lesions as particularly high risk, agreeing with the
observed association of bone metastases with morbidity [26].

Lesion risk is correlated with lesion growth

Intuitively, risky lesions are more likely to grow. To see whether this notion is borne out in
the risk predictions of our model, we tested the hypothesis that the mean risk of growing
lesions exceeds the mean risk of shrinking lesions. We labeled a lesion as growing or shrinking
if it came from an annotation with a second timepoint available (89.6%) based on whether
its volume increased in the second timepoint. Note interreader variability is high – the
probability a pair of radiologists agrees on whether the same lesion grows or shrinks is 0.827,
while the probability a lesion shrinks is 0.673.

Because lesion risks from the same patient are likely correlated, instead of using a t-test,
we used a mixed linear model including patient identity coefficients to test our hypothesis.
Let rij denote the risk of the jth lesion of the ith patient, yij the binary variable equal to 1
if lij grew and 0 otherwise, ci the risk coefficient for ith patient, and w the risk coefficient of
lesion growth. Then we fit the mixed linear model

rij ∼ ci + wyij + ϵij
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where ϵij is Gaussian noise. We did not use a t-test because lesion risks from the same
patient are likely to be correlated.

The p-value on the test set was 0.006, indicating significantly higher risk among growing
lesions. The risk distributions are shown in Figure 2.16. Thus, we extracted from the model
that growing lesions negatively predict survival, and are partially identifiable from CT image
features.

Visualization of high and low risk lesions

We visualized the top 5 highest predicted risk lesions and the top 5 lowest predicted risk
lesions on the test set in Figure 2.17. We observe that the highest risk lesions are bone
lesions, agreeing with our earlier observation that predicted risks in bone are the highest.
The lowest risk lesions are well contained within the lung as opposed to near the edges,
suggesting that the model picked up on high-margin containment in the original organ as a
predictor of low risk cancer. This agrees with lesions exhibiting a higher degree of infiltration
into neighboring tissues being staged more severely.

Risk saliency maps

Class activation maps (CAM) [135] are a visualization method applicable to convolutional
neural networks whose final section consists of global average pooling followed by a linear
layer. They highlight regions of the input image based on their contribution to the prediction.
CAMs are visualized for various image patches containing lesions in Figure 2.18. In some
cases where the model predicts a low risk, the entire input is highlighted as low risk, as
in the image in the first row. This could correspond to the neighboring tissue playing a
more significant role in the model’s prediction than the lesion itself. In higher risk cases,
sometimes the regions highlighted as high risk are slightly offset relative to the actual lesion
in the image, like in rows 3 and 4, whereas other times they are focused on the actual lesion,
like in rows 2 and 5. Further research is necessary to determine whether this is due to
the detection of biologically significant features at the tumor boundary, or due to difficulty
identifying the lesion in the image.

Discussion

By formulating patient risk as the aggregation of lesion risks, we were able to design an
intepretable and data-efficient deep learning model for metastatic lung cancer prognosis.
This approach can be directly extended to other forms of metastatic cancer and other forms
of disease which present as multiple lesions in the same patient. We found a more granular
formulation of the prognosis task, like NPLL or nnet-survival, to have better performance
than binary classification, which discards information in the labels. Summing lesion risks
(scaled based on size) is intuitive and injects an inductive bias as to how patient risk is
formed that alleviates with data scarcity relative to the high dimensionality of the CT images.
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Also, we were able to confirm that the model is truly learning survival-related patterns by
interpreting the lesion risks. We found that it recapitulates the danger of metastasis and
predicts growing lesions as riskier, even after accounting for within-patient correlation. The
saliency maps on top of the lesion patches are difficult for a layperson to interpret. From the
maps, it appears as though the model detects lesions, though this is hard to confirm, because
the lesions are in the center of each patch, making it easier for them to be highlighted on
accident. Having a radiologist interpret the saliency maps would help shed light on what
biological features the model focuses on.

A challenge is that the limited number of patients makes training and evaluating models
difficult, as hold-out performance is prone to sudden, high fluctuations. We did not find
stochastic weight averaging [51] or an exponential moving average of model weights from
previous epochs to be helpful, as this usually decreased performance. Advancements in
stabilizing models would be very helpful in high complexity, low data regimes like ours.

2.4 Related work

Multiple instance learning

Our approach can be cast in the framework of multiple instance learning, with lesions as
the instances. To our knowledge, this is first time a multiple instance learning approach
has been applied to metastatic cancer prognosis, viewing lesions as instances. However,
applying multiple instance learning to histopathological images to diagnose cancer subtype
[48] or perform cancer prognosis [131] is indeed an established, related, approach. In this
case though, the images are of cancer tissue at microscopic resolution where the cells can be
seen, not a CT scan of the body. The instances here are patches of the extremely large 2D
histopathological images.

Cancer diagnosis and risk models

A related task is to diagnose cancer from medical images. A model that classifies skin cancer
with dermatologist-level performance [29] has been obtained, as well as a highly accurate
(AUC > 0.9) breast cancer detection model from mammography images [104].

A perhaps more related task to ours is cancer risk prediction – predicting the chance
of later developing cancer based on a current medical scan. Predicting the time at which
one will develop cancer is akin to prognosis, with the event “death” replaced with “cancer
development.” This was done successfully for lung cancer risk using whole 3D CT volumes
(Sybil, [78]), and breast cancer risk using mammography images (Mirai, [128]), both achiev-
ing C-indices of around 0.75. Both this problem and ours are survival analysis problems that
have to do with cancer, but this one is pre-cancer while ours is post-cancer, and our solution
explicitly utilizes existing lesions. Furthermore, the aforementioned risk models had training
data available for on the order of tens of thousands of patients, allowing them to effectively
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learn from entire images without overfitting. Data from metastatic cancer patients is scarcer,
but these studies highlight the potential of larger scale approaches for more accurate and
powerful cancer prognosis models.
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Figure 2.15: Violin plots showing the distribution of predicted lesion risks in each organ.
Top: train, bottom: test. The distributions for the train lesions and test lesions are similar.
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Figure 2.16: Risk distributions for growing and shrinking lesions. The white dots represent
medians.

Figure 2.17: The top row shows the 5 highest risk lesions on the test set. The bottom row
shows the 5 lowest risk lesions on the test set. Lesions, including other ones in the same
image, are colored according to their risks, with blue denoting low risk and red denoting
high risk. Due to the small size of the low risk lesions, arrows pointing to them are drawn.
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Figure 2.18: Class activation maps (CAM) [135] with respect to risk predictions for an array
of lesions. First column, input image; second column, CAM overlaid on image; third column,
lesion segmentation overlaid on image. For CAMs, red denotes high risk; blue denotes low
risk.
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Chapter 3

Interpreting DNA shape in a deep TF
binding model

This work was done with Ryan Keivanfar, a PhD candidate in computational biology at UC
Berkeley and UCSF.

Overview Here we input DNA shape in addition to DNA sequence to a deep neural net-
work to predict transcription factor (TF) binding. Then, we utilize interpretation methods
like DeepLIFT [105] and TF-MoDISco [106] to understand how DNA shape features are used
to predict TF binding.

3.1 Background

TF binding and gene regulation

TFs are proteins that bind to DNA to regulate gene expression at the transcriptional level.
Cells perform functions via proteins, and each protein is created by transcription of a gene
into mRNA, followed by translation of the mRNA into protein. Thus, TFs control the
function of a cell. TF binding can activate DNA that is in an inactive or closed state
[133], induce specific DNA conformations that affect gene expression [114], and recruit other
proteins, including the critical pre-initiation complex that holds down RNA polymerase as it
transcribes the gene [112] (Figure 3.1). In addition to activating functions, TFs can also serve
repressive functions [97]. By better understanding TF binding mechanisms, we can better
understand regulatory biology and obtain a clearer functional map of the human genome.

TF binding is often experimentally measured through an assay called ChIP-seq, which
stands for chromatin immunoprecipitation with sequencing. In this assay, first, formaldehyde
is applied to cross-link the TF of interest to DNA at locations where it has bound. Then,
the DNA is sonicated, shearing it apart at locations where it is not cross-linked. This leaves
behind DNA fragments that were bound to the TF or other proteins. In order to target



CHAPTER 3. INTERPRETING DNA SHAPE IN A DEEP TF BINDING MODEL 35

Figure 3.1: Activator TFs recruit the transcription pre-initiation complex, causing the gene
in the figure to be transcribed. Taken from [112]. An enhancer is a regulatory region far
from the transcription start site (TSS), while a promoter is the regulatory region immediately
preceding the TSS.

fragments that specifically bound the TF of interest, an antibody for the TF is used with
incubation and centrifugation. Finally, the relevant DNA fragments are un-linked from the
protein, sequenced, and mapped to the genome to determine the binding sites of the TF.
A typical post-processing step is peak-calling, where the resulting read counts (the number
of times each base of the genome appeared in some fragment) are converted into peaks, or
intervals in the genome that are significantly enriched with reads, and thus likely represent
true binding sites for the TF of interest.

In this work, we mainly derive TF binding labels from ChIP-seq experiment peaks. Other
TF binding assays exist, but there is a wealth of ChIP-seq data available from genomic
data consortia such as the Encyclopedia of DNA Elements (ENCODE) [24] and Roadmap
Epigenomics [11]. Previous seminal works in genomic deep learning [136, 8] used these data as
well. Other assays include ChIP-exo [95] and ChIP-nexus [44], which increase the resolution
of ChIP-seq reads by trimming the ends of cross-linked fragments with exonuclease digestion.
CUT&Run [109] and CUT&TAG [58] use an enzyme to cut DNA instead of sonication. These
assays find binding sites in vivo, that is, in DNA from cells from a living organism. There
are also in vitro assays, such as systematic evolution of ligands by exponential enrichment
(SELEX) and protein binding microarrays (PBMs) [10], which find binding sites in short,
artificial strands of DNA called oligonucleotides. Here, the goal is to more precisely isolate
the specificity of a TF by looking at “pure” sequences without interference from complex
genome interactions.

Sequence and shape readout

Traditionally, TF binding is understood through TFs’ preferred sequence motifs, which are
short patterns made up of the four DNA nucleotides, A (adenine), C (cytosine), G (guanine),
and T (thymine). For example, the Max transcription factor, which is a member of the basic
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Figure 3.2: Example of the position probability matrix and information content matrix
representation of a sequence motif.

helix-loop-helix (bHLH) family, has the sequence motif CACGTG. USF1, also a bHLH TF,
has the same sequence motif, highlighting the redundancy that exists between certain pairs
of TFs’ motifs. A more precise representation of a motif is its position probability matrix,
which contains the probability of observing each nucleotide at each position. For visualizing
the importance of each base, this matrix is often converted to the information content matrix,
which weights each position by its specificity (2 minus base 2 entropy). An example is shown
in Figure 3.2. Note that DNA is double stranded, and we are actually representing both
strands with the sequence of one. We could just as well represent the same stretch of DNA
with the sequence of the other strand, but reversed, to maintain the biological 5’ to 3’
direction. Thus, a motif is functionally equivalent to its reverse complement, e.g. TCAGCA
for TGCTGA.

To make things difficult, however, TFs with very similar sequence motifs can have very
different binding locations along the genome. For example, two yeast bHLH transcription
factors, Tye7 and Cbf1, were found to have very similar sequence motifs but very different
bound regions [39]. It was shown that differences in their binding sites were explained by
DNA shape values flanking the motif or equivalently by considering dinucleotides (2-mers,
combinations of two nucleotides) in the flanking regions. Furthermore, it was also recently
found that in addition to their motifs, TFs weakly bind to short tandem repeats, which are
repetitive stretches of DNA such as CACACA. . . [46]. Alternative forms of TF binding have
gained attention recently and warrant further study [101], as we still lack a comprehensive
understanding of TF binding targets and mechanisms.

An established dichotomy in TF binding is that of sequence readout versus shape readout.
Sequence readout refers to when TFs recognize, or physically contact, the bases of DNA,
through chemical interactions between the amino acid residues of the TF and the bases
themselves. The double-helix structure of DNA has two grooves, or spaces between the two
strands that wind around together with the strands — the minor groove and the major
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Figure 3.3: The chemical pattern corresponding to each basepair, which is a sequence of
hydrogen bond acceptors, donors, inert hydrogens, and methyl groups, as viewed in the
major and the minor groove. The uniqueness of the patterns in the major grooves allows
the bases to be recognized in the major groove from their chemical patterns. The same is
not true of the patterns in the minor groove, as G-C and C-G have the same minor groove
pattern. Taken from Chapter 7 of Molecular Biology of the Cell, 4th editon [5].

groove (imagine ascending DNA as if it were a twisted ladder — the side of the ladder you
are on is the groove you are in). One side is the minor groove, and the other side is the
major groove). Each of the four valid basepairs, A-T, C-G, G-C, and T-A, exposes a different
chemical pattern in the major groove, allowing a TF to recognize a particular sequence of
bases by contacting the major groove [5]. However, the minor groove chemical patterns are
redundant, leading researchers to conclude that sequence readout primarily happens in the
major groove [96]. Figure 3.3 displays the chemical patterns of the different basepairs in the
minor and major groove.

Shape readout refers to when TFs recognize geometric parameters of the double helix
called shape features, as opposed to the bases themselves. Shape features include helical
twist, minor groove width, propeller twist, and roll. These shape features are depicted in
Figure 3.4. Electrostatic potential is also included as a shape feature, since it has been found
relevant to DNA shape [12]. The repertoire of shape features has been expanded to include
ones like buckle and shear [52] but for simplicity, here, we focus on the earlier five. These
basepair resolution features are obtained from the DNAshapeR package [121]. DNAshapeR
is essentially a 5-mer-to-shape lookup table, where each 5-mer (ordered combination of 5
nucleotides, e.g., GGTCA), is mapped to its corresponding shape feature values. These
values were obtained by averaging over occurrences of the 5-mer in Monte Carlo simula-
tions [115], and were shown to agree well with experimentally measured DNA shape. The
computational efficiency of this method is a plus; rather than running expensive simulations,
predicting DNA shape amounts to scanning a length 5 window across the sequence. Similarly
to sequence motifs, one can consider shape motifs. ShapeMF [102] is a method that finds
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Figure 3.4: Diagram illustrating what geometric aspect of DNA each shape feature measures.
Taken from the supplement of [115]. Helical twist is inter-basepair (inter-bp) rotation around
the helical axis. Propeller twist is intra-basepair (intra-bp) rotation. Roll is inter-bp rotation
around the basepair axis.

Figure 3.5: Example of a helical twist and a minor groove width shape motif for the NRF1
transcription factor. Taken from from [102], which proposed the ShapeMF algorithm.

shape motifs from a set of sequences. Shape motifs are visualized by showing a measure of
central tendency (e.g. mean) at each position along with the spread (e.g. standard deviation)
as a shaded width at each position. Example shape motifs are shown in Figure 3.5.

Finding cases of shape readout has been approached in various ways. One approach has
been comparing the performance of sequence-only models to that of sequence + shape models
of transcription factor binding and showing that the addition of shape features produces a
gain in performance, suggesting evidence of shape readout, but this has heretofore mainly
been done for shallow models [52, 39, 137, 75]. Furthermore, these works find that including
2-mer or 3-mer features more or less recovers the performance of adding shape features.
This shows that the information contained in shape features is simliar to that which is
contained in k-mer (k ≥ 2) features. One could argue that if a specific combination of
nucleotides is required to help explain binding, and its individual component nucleotides are
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insufficient, then it is more likely that the combination induces binding through a favorable
DNA conformation, rather than by reading each individual base, because in that case we
would expect the individual component nucleotides to be predictive. Another approach is
to show that the DNA shape of the preferred sequence is similar to the DNA shape of the
bound sequence [3, 115], based on the logic that the sequence might be preferred because it
is already physically close to its configuration when bound by the TF. In a work specifically
aiming to deconvolve the contribution of sequence and shape [2], amino acids of the Exd-Scr
protein complex that have a narrow minor groove preference at a particular position in the
complex’s binding site were mutated, and this was shown to result in preference for a wider
minor groove. Combined with the fact that the amino acid contacts to the narrow minor
groove were found to not form hydrogen bonds in earlier work [53], this was considered a
strong case of shape readout. Nonetheless, many of the cases presented for shape readout
have been rather implicit in nature, and I believe that clarifying the definition of shape
readout with more explicit examples of what it actually is would help guide explorations in
this field.

Genomic deep learning interpretability

Here, we assume we have a neural network that has been trained on genomic sequences to
predict some property, such as transcription factor binding, gene expression, or accessibility
(whether the inputted DNA is accessible, i.e. active in a particular cell type). We wish
to interpret the model, or understand the basis for its decisions. Since much is unknown
about the mapping from genomic sequence to function, this could be used to discover new
genomic mechanisms. Identification of previously characterized phenomena would also be
useful as a form of validation of both model and yet-to-be-confirmed theories. Since neural
networks have been demonstrated to learn highly complex patterns, there is great potential
for extracting insights by interpreting a neural network trained on some genomic prediction
task.

DeepLIFT

DeepLIFT [105] is an attribution method, which means that it assigns a score to each input
feature representing its contribution to the prediction. More precisely given an input vector
x ∈ Rd whose prediction is ŷ = f(x) and a “reference” input x0 ∈ Rd whose prediction is
ŷ0 = f(x0), DeepLIFT computes an attribution vector a ∈ Rd such that the ith attribution
is the contribution of the ith input feature to the prediction. This is reinforced by having
the attributions sum to the difference from reference:

d∑
i=1

ai = ŷ − ŷ0,

so that we can interpret ai as how much xi “personally” contributes to the difference of the
prediction from the reference prediction.
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Figure 3.6: Schematic of DeepLIFT.

DeepLIFT operates through a backpropagation-like procedure where attributions starting
from the output layer get passed back to the previous layer with some involvement of the
weights connecting the layers and the neural activations of the input and the reference input.
In fact, it was shown that DeepLIFT can be viewed precisely as backpropagation with the
derivative of the activation function replaced with the slope between the input and reference
input activations [6]. Thus, DeepLIFT computes a sort of smoothed gradient, helping with
the issue of neuron saturation causing gradients to vanish. Comparison with the activations
of the reference input allows one to more comprehensively capture the contribution of a
particular neuron. A schematic of DeepLIFT is shown in Figure 3.6.

In practice, when working with DNA sequences, input times gradient is a cruder, perhaps
more accessible, yet still effective attribution method. Mathematically, this means taking x⊙
∇xf(x) as the attributions, where ⊙ denotes element-wise multiplication and x ∈ {0, 1}4×L

is a one-hot encoded DNA sequence (each column represents a base at a position in the
sequence, with a 1 for the entry corresponding to the base at that position and a 0 for the
entry of every other base). Example attributions computed from DeepLIFT vs. from input
times gradient are compared in Figure 3.7.

TF-MoDISco

TF-MoDISco [106] is a method to compute motifs from attributions for genomic inputs. It
can be broken down at a high level into three steps.

1. Seqlet extraction
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Figure 3.7: Comparison of DeepLIFT and input × gradient attributions for an input se-
quence. In this example, DeepLIFT tamps down gradient noise between the two attribution
peaks that denote regions of importance to the model.

• The first step is to extract high attribution windows called seqlets from the pro-
vided input sequences. To do so, the total attribution in every window in every
input sequence is computed, and a threshold is determined by fitting a Laplacian
distribution to the distribution of window attributions and choosing the optimal
threshold that discriminates between the actual distribution and this Laplacian
null. Then, seqlets are found by iteratively taking windows passing the thresh-
old from highest attribution to lowest, and removing any seqlets which overlap a
taken seqlet by over 50%.

2. Similarity-based clustering of seqlets

• Then, a similarity graph is constructed by computing the continuous Jaccard
similarity between each pair of seqlets. Actually, for computational efficiency, the
Jaccard similarity, which is relatively expensive, is only computed for a seqlet’s
500 nearest neighbors according to a cheaper k-mer based similarity metric. Then,
seqlets are clustered based on this graph to produce clusters. Each cluster will
correspond to a motif.

3. Aggregation to form motifs

• To generate the motif for a cluster, the seqlets in a cluster are aligned and averaged
in attribution space to produce the motif.

There are many additional implementation details, such as running the clustering twice
using seqlets updated from the previous clustering, and a step that splits apart clusters that
contain meaningfully different subclusters. For a comprehensive description of the algorithm,
see the manuscript [106] as well as the clean implementation of the algorithm, tfmodisco-lite
[103]. A schematic of the simplified breakdown of TF-MoDISco is provided in Figure 3.8.
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Figure 3.8: A simplified schematic of TF-MoDISco

.

In the default representation of a TF-MoDISco motif, the height of each letter equals
the average attribution score given to that nucleotide at that position across the aligned
seqlets in the cluster. Thus, the height of a letter corresponds to how important it is for
the genomic task. Interestingly, when we use DeepLIFT attributions with respect to TF
binding classificaton tasks, the TF-MoDISco motifs are extremely similar to the standard
information content matrices used to visualize classical sequence motifs. Figure 3.9 shows
the information content matrix representation of the CTCF motif from the CIS-BP [125]
database of transcription factor motifs, along with an attribution-based CTCF motif from
TF-MoDISco.

Because one has access to the underlying sequences of the seqlets in a TF-MoDISco
cluster, it is straightforward to construct a classical motif representation from a TF-MoDISco
cluster instead of an attribution-based one. One can simply count the frequency of each
nucleotide at each position, convert the frequencies to probabilities by dividing by the number
of seqlets, and then convert the probability matrix into the information content matrix.
Mathematically, assuming a motif of length L, letting F ∈ N4×L denote the frequency
matrix, P ∈ [0, 1]4×L the probability matrix, I ∈ R4×L the information content matrix, and
(x(k))nk=1 ⊂ {0, 1}4×L the one-hot encoded sequences of the n seqlets, we have

Fij =
n∑

k=1

x
(k)
ij

Pij =
1

n
Fij

Iij = Pij log

(
Pij

bi

)
,

where bi is the background frequency of the ith nucleotide, and is around 0.25 if all four
nucleotides occur similarly often.
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Figure 3.9: The top two rows are a figure taken from the Basset paper [59]. The top row
displays the CTCF motif from the CIS-BP database, where letter heights equal per-position
information content times the probability of each nucleotide. The middle row are the weights
of a filter from the Basset convolutional neural network, indicating that neural networks learn
parameters that resemble motifs. The bottom row is a motif extracted by TF-MoDISco from
the attributions of a model trained to predict CTCF ChIP-seq. Though letter heights here
represent DeepLIFT attribution, the precise variations in letter heights match those of the
official information content-based motif very well.

3.2 Overview of the DeepShape model

Architecture

Here we present the DeepShape model, which takes in both bp-level sequence and shape
features for an input DNA sequence and outputs binding probabilities for a list of given
targets. DeepShape is a modified version of DeeperDeepSEA [19], which is a simple but
effective convolutional neural network that only takes in sequence features. Figure 3.11
shows a diagram of the unmodified DeeperDeepSEA architecture. Sequence features come
as a 4 by sequence length one-hot encoding of the DNA sequence, while shape features
come as a 5 by sequence length real-valued matrix, with each row containing the values of
a particular shape feature along the sequence. DeepShape processes both of these inputs
in separate input branches, and then uses their combined embeddings to perform various
genomic classification tasks. The 5 shape features we use are minor groove width (MGW),
helical twist (HelT), propeller twist (ProT), roll (Roll), and electrostatic potential (EP).

The modifications made to DeeperDeepSEA to obtain DeepShape are as follows. First,
the first two convolutional layers were copied to obtain two separate input branches of two
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Figure 3.10: Schematic overview of the DeepShape model. DeepShape is a convolutional
neural network that takes in DNA sequence and DNA shape features in separate initial
branches. The outputs of each branch are concatenated and fed to the rest of the network
to predict genomic outputs.

convolutional layers each. The sequence input was fed into one branch and the shape input
was fed into the other, and the outputs of each branch were subsequently combined and fed
into the rest of the network. This captures the idea that different modalities may require
some initial processing to arrive at compatible representations, and a schematic of this is
presented in Figure 3.10. Furthermore, a hyperparameter search over filter width and number
of filters per convolutional layer found that a constant 450 filters per convolutional layer with
filter width 4 performed better than the original configuration in which the number of filters
increased along the network according to the sequence 320-480-960, and the filter width was
8. Thus, the convolutional parameters were changed to the higher performing ones.

Prediction task details

DeepShape can be trained on any task that involves predicting one or multiple binary labels
for an input genomic sequence. We focus on an instance of DeepShape that takes in 1000bp
sequences from the human genome as input, and predicts whether the center 200bp of the
input sequence has at least 100bp of overlap with peaks from the 919 DNase accessibility,
histone modification ChIP-seq, and TF ChIP-seq experiments used to train DeepSEA [136].
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Figure 3.11: Diagram of the DeeperDeepSEA architecture. It consists of 6 convolutional
layers followed by flattening and fully connected layers. ReLU [37], batch norm, [50], max
pooling, and dropout [113] are employed throughout the network.
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The output for an input sequence is a length 919 vector containing the probability of overlap
for each target. For TF ChIP-seq experiments, peaks correspond to binding sites, so the
network thus predicts the probability of TF binding around the center of the input sequence.

We utilize the Selene [19] library, a PyTorch-based genomic deep learning framework.
1000bp intervals in the human genome are sampled randomly from a predefined set of larger
human genome intervals that are likely to contain TF activity in some cell type. Each
shape feature is normalized to lie within the range [0, 1]. The 919-target model is trained
for 960,000 steps with a batch size of 64 using stochastic gradient descent (SGD), with a
constant learning rate of 0.08, a weight decay parameter of 1e-6 [65], and a momentum
parameter of 0.9. The loss function is the standard binary cross entropy loss used for binary
classification problems. We split the data into training, validation, and test sets based on
chromosome, with chromosomes 6 and 7 reserved for validation and chromosomes 8 and 9
for test. When training different replicates, we change the validation and test chromosomes.

Model performance

In Figure 3.12, we compare the performance of the 919-target DeepShape over 6 replicates to
that of DeeperDeepSEA, modified to use the same filter parameters as DeepShape. The only
difference between the two models is that DeepShape takes in shape features in addition to
sequence features via a separate input branch. We use the area under the receiver operating
characteristic curve (ROC AUC, or AUC for brevity) and average precision to measure
binary classification performance. We observe that under both metrics, both models obtain
about the same performance. Therefore, the addition of shape features did not produce a
meaningful gain in performance. This is in line with previous works which demonstrated
that shape features perform similarly to using k-mer sequence features in shallow models
where k ≥ 2 [52, 39, 137, 75].

We conclude that shape features are mostly redundant in the context of deep models,
which can recover the relevant shape information from sequence. This may be perceived as
an expected result, as the shape features are directly derived from the surrounding 5-mer
[115], but note that pretrained features have been found to significantly improve downstream
performance in vision [20] and text [92], and one can think of these precomputed shape
features as pretrained features. Perhaps the simplicity of the 5-mer lookup table prevents
them from contributing new information.

Nonetheless, because of the interest in shape readout as a binding mechanism, interpret-
ing DeepShape remains valuable for understanding how shape features predict TF binding.
First, we permute the shape features between different input sequences in the same test
batch, destroying the relationship between shape features and outcome, to see how this im-
pacts model performance on all targets. We expect to see a larger drop in performance for
targets that rely more on shape information. The results of this perturbation experiment
are shown in Figure 3.13, and as expected, performance drops across the board, with larger
drops for certain targets. Thus, relevant information is being extracted from the shape fea-
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Figure 3.12: Performance of DeepShape (sequence + shape) and DeeperDeepSEA (sequence
only) modified to have the same filter parameters as DeepShape across 6 replicates for
the 919-target setup. The ROC AUC and average precision are computed for each target,
and then averaged across targets to produce the scalar performance measure achieved by a
replicate. Both models perform about the same, suggesting that the shape features are not
adding new information.

tures. In particular, the HepG2|MafK transcription factor target experiences a large drop,
suggesting that shape information is particularly relevant in MafK binding in HepG2 cells.

3.3 Attribution-based DeepShape analyses

In this section, we use DeepLIFT [105] to compute target-specific attributions for DeepShape
trained on 919 targets and we run TF-MoDISco [106] on DeepLIFT attributions to extract
motifs. In order to extract shape motifs in addition to the standard sequence motifs, we
quaternize each shape feature using feature quartiles as cutoffs, to put them in the same
format as one-hot encoded sequence features. This allows us to run TF-MoDISco on shape
features with minimal modifications to the TF-MoDISco code. We use the implementation
of DeepLIFT from Captum1 [63] and tf-modiscolite [103].

1There is a bug in Captum’s max-pooling attributions, as noted here: https://x.com/jmschreiber91/
status/1782837223064539515. We implemented our own, lightweight fix.

https://x.com/jmschreiber91/status/1782837223064539515
https://x.com/jmschreiber91/status/1782837223064539515
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Figure 3.13: Performance before (x-axis) and after (y-axis) permuting shape features, aver-
aged over the 6 replicates for each of the 919 targets. ROC AUC (left) and average precision
(right) are shown. The dashed lines are y = x, so the vertical distance below the line equals
the drop in performance after shape permutation. All of the dots lie below the line, indicat-
ing a consistent decrease in performance. TFs have higher AUCs than histone modification
targets, but lower average precision. This is because average precision is mediated by the
frequency of a target, and histone modifications are more frequent in the genome than TF
binding. Higher AUCs for TF targets means that it is easier to tell a random positive from
a random negative for TF binding than for histone modifications. MafK, BRF, and Pol
targets show pronounced drops, suggesting higher relevance of shape information for these
DNA-binding proteins. Very high AUC TF targets do not drop by much, suggesting that
these TFs possess very obvious sequence motifs and do not require much shape information
to distinguish their binding.

Target-level shape attribution is mostly a constant fraction of
sequence attribution

We compare the usage of sequence features versus shape features in predicting TF binding,
based on DeepLIFT attributions. Hypothetically, TFs that employ shape readout would
have a higher ratio of shape to sequence attribution than TFs that primarily use sequence
readout. Figure 3.14 plots the overall sequence and shape attribution for each TF target.
Most targets hew to the line of best fit, where shape attribution is approximately 0.27
times sequence attribution, indicating that sequence features are generally more relevant for
predicting TF binding.

Interestingly, the ratio of shape to sequence attribution is quite consistent across different
TFs, suggesting uniformity in the influence of shape readout relative to sequence readout.
However, such uniformity in the actual biophysics of binding across different TFs seems
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unlikely. Instead, this uniformity might result from redundant information being extracted
from both feature types. If shape features were simply a noisy version of sequence features,
we would also expect them to have a small, constant fraction of the sequence features’ attri-
bution. Targets above the line, such as HepG2|MafK, have higher shape-to-sequence attri-
bution ratios, implying a greater role for shape readout in their binding. Thus, HepG2|MafK
is included in further analyses.

Figure 3.14: Overall sequence and shape attribution per TF target, averaged over 6 repli-
cates. We compute the overall sequence attribution for a target as follows. For each positive
(i.e., bound by the given TF in the given cell type) sequence, we sum all sequence attri-
butions across the sequence to obtain a single value, and average this value across positive
sequences. We obtain the overall shape attribution for a TF target analogously. The best-fit
line, y = 0.269x− 0.005, captures most of the targets. We label some targets which deviate
from the line.

Shape motifs tend to highlight extreme values and brief segments

Figure 3.15 displays example motifs obtained by inputting DeepLIFT attributions to TF-
MoDISco to explain HepG2|MafK binding predictions. The sequence motif (Figure 3.15a)
matches the canonical TGCTGA(G/C)TCAGCA palindromic MafK motif [56], showcasing
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the ability of deep learning to learn true biological motifs, and the ability of interpretation
methods to extract them. On the other hand, the extracted Roll motif (Figure 3.15b) may
represent a new biological pattern for MafK binding. Notably, it mainly highlights three
Roll value peaks. Thus, high Roll values within a MafK binding site appear to facilitate
MafK binding.

Figure 3.15: A sequence and a shape motif found by TF-MoDISco. Example occurrences
of each motif are listed underneath the motif. For shape motif occurrences, the underlying
sequence is shown underneath the shape. a, Sequence motif 0 for HepG2|MafK. The sequence
motif matches the canonical TGCTGA(G/C)TCAGCA palindromic MafK motif. b, Roll
motif 0 for HepG2|MafK.

Figure 3.16a shows that in fact, shape motifs tend to highlight extreme feature values in
general. For each shape feature, the distribution of highlighted feature values compiled across
the motifs of different targets is shown to be skewed toward the extremes of the background
distribution of feature values. This suggests that DNA shape at binding sites tends to have
extreme characteristics, even in its unbound state. Figure 3.16b shows that sequence motifs
tend to have more highlighted positions than shape motifs, suggesting that sequence motifs
better capture the classic conception of a motif being a contiguous stretch of DNA that
transcription factors bind to, whereas shape motifs often highlight specific positions or small
fragments of DNA that subtly increase binding affinity.

A flanking shape motif increases binding affinity to the canonical
HepG2|MafK sequence motif

Next, we examine the interaction between a sequence motif and a ProT motif identified by
TF-MoDISco for HepG2|MafK (Figure 3.17). The sequence motif matches the canonical
TGCTGA(C/G)TCAGCA MafK motif, while the ProT motif features a high attribution
region with a peak followed by a pronounced dip. High attribution positions are visually
represented by tall letters for sequence motifs and red dots for shape motifs. The ProT motif
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Figure 3.16: Analysis of highlighted positions in motifs. Here, a highlighted position is
defined as a position in the motif with a high attribution relative to the rest of the motif.
a, The distribution of shape feature values in the background (blue) vs. the distribution of
shape feature values at highlighted positions in motifs. b, The average number of highlighted
positions in a motif for each feature type.

often co-occurs with the sequence motif at the end of the sequence motif and the nearby
flanking region. Here, an occurrence of a motif is defined as a seqlet within the corresponding
TF-MoDISco motif cluster. In Figure 3.17d, examples of co-occurrences show that the ProT
dip corresponds to an A-tract or T-tract flanking the sequence motif, which previous studies
have shown significantly affect DNA shape [96]. The ProT motif may therefore constitute an
instance of A-tracts/T-tracts influencing TF binding through their effects on DNA shape.

While informative, sequence motifs alone do not fully capture TF binding. Nearby DNA
shape can influence TF binding, potentially enabling binding to a weak sequence motif or
preventing binding to a strong sequence motif. To evaluate the role of the ProT motif, we
compared the experimental binding affinity of sequence motif-only occurrences with that of
sequence motif–ProT motif co-occurrences. As shown in Figure 3.17c, strong sequence motif
occurrences that co-occur with the ProT motif have higher binding affinity as measured by
ChIP-seq enrichment signal (ChIP-score) than those that do not co-occur with the ProT
motif (p-value = 1.0e-3, one-sided t-test). This corroborates previous findings that shape
features in flanking regions can modulate binding to a canonical sequence motif [39, 129].

Sequence motifs outweigh shape motifs for predicting TF binding

To compare the predictive value of sequence and shape motifs for TF binding, we extracted
the five most predictive sequence motifs and five most predictive shape motifs for each TF
target. Then, we used the combined set of 10 motifs to predict TF binding from sequence.
Each 400bp input sequence was featurized by representing each motif as a probability distri-
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Figure 3.17: Co-occurrence analysis of a HepG2|MafK sequence motif and ProT motif found
by TF-MoDISco. a, Sequence logo for the sequence motif (top) and average profile with
spread for the ProT motif (bottom). High attribution regions of motifs are highlighted. b,
Number of occurrences of each motif and co-occurrences. A co-occurrence was defined as a
pair of occurrences from each motif, such that their highlighted regions overlap or are within
10bp of each other. c, ChIP-seq scores of strong sequence motif occurrences (>90 percentile
Pearson similarity of attributions) that co-occur and do not co-occur with the ProT motif.
d, Three examples of strong sequence motif occurrences that co-occur with the ProT motif.
For each occurrence, the ProT sequence is shown on top, and the underlying nucleotide
sequence is shown below. Highlighted regions correspond to the highlighted region in the
motif. e, Three examples of strong sequence motif occurrences that do not co-occur with
the ProT motif.

bution at each position based on motif cluster seqlets, calculating the motif vs. background
log-likelihood ratio for each window [41], and taking the maximum score across all windows.
This represents the strength of the strongest match to the motif within the sequence. Given
a set of M motifs, this featurizes the sequence as an M -dimensional vector. We run logistic
regression and gradient boosting on the 10-dimensional feature vectors resulting from these
motifs. This process is diagrammed in Figure 3.18a.
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In about 90% of cases (Figure 3.18c, left), both logistic regression and gradient boosting
importance scores identified a sequence motif as the most important input feature, indicating
that TF binding is primarily captured by sequence motifs. However, there was little (< 30%)
overlap between targets where a shape motif had the highest logistic regression importance
score and targets where a shape motif had the highest gradient boosting importance score.
This suggests that these TF targets do not have a particular affinity for shape motifs, but
have binding that is hard to explain with a single motif in general.

In Figure 3.18d, we evaluated the impact of ablating each motif from the gradient boosting
classifier and retraining on the remaining nine motifs. Performance drops across targets are
grouped by the rank of the drop within sequence motifs or shape motifs. The highest
sequence motif AUC drop significantly exceeds others, showing that a single sequence motif
is often the primary determinant of TF binding. The sequence motif with the second highest
AUC drop typically belongs to another TF and represents the effect of co-binding. Despite
sequence motifs’ primary role in TF binding, shape motifs still add some predictive value.
This is evidenced by the highest AUC drop from ablating a shape motif still being significant
(Figure 3.18d). If shape motifs did not add predictive value, ablating one would not result
in a noticeable positive AUC drop.

HepG2|MafK sequence-level attributions vary in the ratio of
shape attribution to sequence attribution

In Figure 3.19a, the total sequence and shape attributions for individual sequences bound by
HepG2|MafK are plotted. We observe a moderate variation in the ratio of shape to sequence
attribution across individual sequences, unlike the uniform pattern seen across TF targets.
A low shape attribution ratio sequence (Figure 3.19c) features a strong MafK sequence
motif, with a matching Roll motif, but its ProT sequence does not match the ProT motif,
as it lacks the characteristic dip of the ProT motif. Conversely, a high shape attribution
ratio sequence (Figure 3.19b) has a weaker sequence motif, but stronger shape features. Its
Roll sequence contains high attribution peaks, like the Roll motif, and its ProT sequence
exemplifies the ProT motif dip and has many high attribution positions. This suggests that
the shape-to-sequence attribution ratio captures differences in binding mechanisms across
sequences.

High and low shape-to-sequence attribution ratio sequences are
associated with different chromatin states

To capture any systematic biological differences between low and high shape-to-sequence
attribution ratio sequences, we examine their chromatin state annotations. We obtain anno-
tations for the human HepG2 cell line from ChromHMM [28], a hidden Markov model that
uses histone modification and CTCF binding marks as input, and outputs promoter, en-
hancer, transcription region, and heterochromatin annotations across the genome. A bound
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Figure 3.18: Predicting TF binding with TF-MoDISco-derived sequence motifs and shape
motifs. a, Diagram of motif-based binding prediction experiment setup. b, TF composition
of TF targets. c, The percentage of TF targets where out of the 10 selected motifs, a se-
quence / shape motif was deemed most important, according to logistic regression coefficient
significance and gradient boosting feature importance. d, Performance drops resulting from
ablating each individual motif and retraining the gradient boosting model. “ith sequence
(shape) motif” refers to the sequence (shape) motif for that TF target which resulted in the
ith highest AUC drop.

sequence was labeled as the annotation with the greatest overlap with its central 400bp re-
gion, which is also the location of the binding site. We then compare the annotations of low
and high ratio sequences for the HepG2|MafK and HepG2|CEBPB targets in Figure 3.20
and Figure 3.21 respectively. HepG2|MafK as an overall target had a high shape-to-sequence
attribution ratio, while the HepG2|CEBPB target had a low overall shape-to-sequence at-
tribution ratio (Figure 3.14). However, both targets demonstrate interesting variation in
chromatin properties as attribution ratio varies within their bound sequences.

High shape ratio HepG2|MafK-bound binding sites more often occur in heterochromatin
and less often in enhancers than their low ratio counterparts (Figure 3.20c,d). Oppositely,
high shape ratio HepG2|CEBPB-bound binding sites more often occur in enhancers and
less often in heterochromatin than low ratio ones (Figure 3.21c,d). Interestingly as well,
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Figure 3.19: Sequence-level sequence and shape attributions of HepG2|MafK-bound se-
quences. a, Each HepG2|MafK-bound sequence is plotted as a point. The x-value is the
sum of all sequence attributions across the sequence and the y-value is the sum of all shape
attributions across the sequence. Sequences with higher shape attribution to sequence at-
tribution ratios lie above the steeper red line and those with lower ratios lie below the less
steep red line. b, A high ratio sequence, where shape attribution makes up more of the
total attribution. c, A low ratio sequence, where total attribution is dominated by sequence
attribution.

low shape ratio HepG2|CEBPB-bound sites occur in transcribed regions more often than
high ratio ones. Together, this shows that the shape-to-sequence attribution ratio is related
to biological properties of the sequence, but it can have opposite relationships in different
targets. The prevalence of HepG2|MafK binding sites in heterochromatin may be related to
the known role of MafK as a silencer that acts by remodeling chromatin [35].

High shape-to-sequence attribution ratio sequences differ from
low ratio sequences in motif occurrences

Because a high shape-to-sequence attribution ratio indicates that shape features contribute
a higher proportion of DeepShape’s prediction, we suspect that shape information is more
important in high ratio sequences. However, it is helpful to further characterize high ratio
sequences to better understand how DNA shape is impacting TF binding. A hypothesis is
that high shape-to-sequence attribution ratio sequences have a higher ratio of shape motifs to
sequence motifs than low ratio sequences. We test this hypothesis by computing the number
of sequence and shape motif occurrences in high and low ratio sequences, for HepG2|MafK
and HepG2|CEBPB. For each target, we restrict to the 5 most predictive motifs per feature
type in terms of AUC, and count the number of occurrences in the high and low ratio



CHAPTER 3. INTERPRETING DNA SHAPE IN A DEEP TF BINDING MODEL 56

Figure 3.20: ChromHMM annotations of HepG2|MafK-bound sequences. a, Total sequence
and shape attribution plotted for each HepG2|Mafk-bound sequence. Each sequence (dot) is
colored with its assigned ChromHMM state. Sequences that did not overlap any annotation
are labeled “Unmatched”. High ratio sequences (n = 989) lie above the higher slope red line,
and low ratio sequences (n = 989) lie below the lower slope red line. Only sequences with a
minimum attribution sum, those above the black line, are considered. b, Total sequence and
shape attribution plot for HepG2|Mafk-bound sequences annotated as ChromHMM state 4,
strong enhancer. c, Number of low shape-to-sequence ratio sequences (left bar at each x-axis
position) and high shape-to-sequence ratio sequences (right bar) annotated as each state.
d, Number of low and high ratio sequences for each state as a table, with p-values from a
two-sided Fisher’s exact test.

subsets identified previously, each being around 1000 sequences. To call occurrences, we
use the position-wise probability distribution representation of each motif to compute log
likelihood ratio scores of windows across 400bp input sequences, like in the previous section
on using motifs to predict TF binding, and use the 95th percentile over a negative set of
sequences of the maximum motif score across the sequence as the occurrence threshold.
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Figure 3.21: ChromHMM annotations of HepG2|CEBPB-bound sequences. a, Total se-
quence and shape attribution plotted for each HepG2|CEBPB-bound sequence. Each se-
quence (dot) is colored with its assigned ChromHMM state. Sequences that did not overlap
any annotation are labeled “Unmatched”. High ratio sequences (n = 949) lie above the
higher slope red line, and low ratio sequences (n = 949) lie below the lower slope red line.
Only sequences above the black line are considered. b, Total sequence and shape attribution
plot for ChromHMM state 4, strong enhancer-annotated HepG2|CEBPB-bound sequences.
c, Number of low shape-to-sequence ratio sequences (left bar at each x-axis position) and
high shape-to-sequence ratio sequences (right bar) annotated as each state. d, Number of
low and high ratio sequences for each state as a table, with p-values from a two-sided Fisher’s
exact test.

The resulting total motif count across all 5 motifs considered for each feature type in low
and high ratio sequences is shown in Table 3.1. For the HepG2|MafK target, as one might
expect, shape motifs occur much more frequently in high ratio sequences, while sequence
motifs occur about equally often in high and low ratio sequences. Thus, for this target,
higher importance of shape information can be explained by the DNA shape exhibiting
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HepG2|MafK

Sequence EP HelT MGW ProT Roll

MOC in LRS 2120 425 961 579 887 627
MOC in HRS 2114 2226 2017 1735 1739 1539

HepG2|CEBPB
Sequence EP HelT MGW ProT Roll

MOC in LRS 885 1083 610 1242 682 1009
MOC in HRS 361 264 421 271 342 370

Table 3.1: Motif occurrence counts in low and high shape-to-sequence attribution ratio
HepG2|MafK and HepG2|CEBPB sequences. MOC: motif occurrence count, LRS: low ratio
sequences, HRS: high ratio sequences.

more shape motifs. For the HepG2|CEBPB target, counterintuitively, not just sequence
motifs, but shape motifs too occur much more frequently in low ratio sequences. Thus, low
ratio sequences are characterized by strong motif occurrences. Perhaps for this target, shape
motifs capture different variants of the main CEBPB sequence motif, which occurs starkly
more often in low ratio sequences (846 vs. 166 for low vs. high ratio sequence, Figure 3.23).

In Figure 3.22, we visualize some specific HepG2|MafK motifs as well as occurrence counts
for each visualized motif in low and ratio HepG2|MafK sequences. We find that palindromic
motifs (sequence motif 1, HelT motif 1, ProT motif 3, Roll motif 2) are skewed towards low
ratio sequences, while asymmetric motifs are skewed towards high ratio sequences. This sug-
gests that the occurrence of a full, palindromic, TGCTCA(G/C)TGAGCA MafK sequence
motif results in a low shape-to-sequence attribution ratio due to binding obviously being
explained by the occurrence of this strong sequence motif. Palindromic shape motifs are also
likely to accompany occurrences of the palindromic sequence motif. In Figure 3.23, we per-
form the same visualization for HepG2|CEBPB. Here, we see that the main CEBPB sequence
motif has a very strong skew towards low ratio sequences, again supporting the idea that low
ratio sequences often contain strong sequence motif occurrences, in which shape information
is not needed. Interestingly, the palindromic CEBPB shape motifs are less skewed towards
low ratio sequences, which is the opposite of what was seen for HepG2|MafK. Perhaps this
is due to the sequence motif itself being almost but not quite palindromic in most of its
occurrences.

In Figure 3.24, we examine the relative positioning of HepG2|Mafk shape motifs with
respect to the main sequence motif, sequence motif 0, when they co-occur. To do so, we
compute a pileup of each shape motif’s high attribution region relative to the sequence
motif over all co-occurrences. We find, looking at the top plot, shape motifs all occur less
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Figure 3.22: Selected predictive HepG2|MafK motifs and occurrence counts in high and low
ratio HepG2|MafK-bound sequences.

frequently, normalized for sequence motif occurrences, in negative sequences. In the bottom
plot, we see that high ratio sequences feature much higher occurrences of the asymmetric
shape motifs, suggesting that they could be compensating for weaker sequence motifs. On
the other hand, occurrences of the palindromic shape motifs are similarly or more frequent
in low ratio sequences. Interestingly, for Roll motif 2, there is a low but noticeable peak on
the weak side of the sequence motif for high ratio sequences, suggesting that the weak side
of a sequence motif can be compensated for by the proper shape, and that this manifests as
a higher shape ratio sequence.

3.4 Discussion

DeepShape is a highly accurate deep predictor of TF binding (∼0.945 AUROC averaged
over 6 replicates, 690 TF targets) taking both sequence and shape features as input. Though
shape features may not significantly improve performance, they are still utilized in mean-
ingful ways, as exhibited by consistent performance drops upon shape feature permutation.
Examining targets with particularly high shape attribution or performance drops following
shape permutation (e.g., HepG2|MafK) can identify cases in which shape information is
particularly relevant in TF binding.
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Figure 3.23: Selected predictive HepG2|CEBPB motifs and occurrence counts in high and
low ratio HepG2|CEBPB-bound sequences.

We find that extreme shape feature values in a few binding site positions are generally
how shape features contribute to the model’s binding predictions. This points to DNA shape
effecting binding in a different manner than DNA sequence. The increased binding affinity of
shape motif–sequence motif co-occurrences as compared to sequence motif-only occurrences
corroborates that DNA shape modulates TF binding preferences.

Nonetheless, we find that sequence motifs are the main driver of TF binding in our
experiment comparing shape and sequence motifs for TF binding prediction. Also, the total
shape attribution of most TFs being so close to 0.27 of the total sequence attribution suggests
that for most TFs, the model utilizes sequence and shape features in redundant ways, with
sequence attribution being higher suggesting higher signal density in sequence features.

Comparing high shape-to-sequence attribution ratio bound sequences to low ratio ones
for HepG2|MafK and HepG2|CEBPB, we observe an interesting discrepancy: active regions
are more prevalent in low ratio sequences for HepG2|MafK, but more prevalent in high ratio
sequences for HepG2|CEBPB. The behavior for HepG2|MafK seems to be explained by the
fact that MafK homodimers are repressors due to the lack of an activation domain [56], and
based on looking at HepG2|MafK sequence motifs 0 and 1, high ratio sequences appear to
correspond to homodimeric sites, while low ratio sequences appear to correspond to AP-1
heterodimers. We did not find a similar explanation for HepG2|CEBPB, though we observed
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Figure 3.24: Pileups of HepG2|MafK shape motif occurrences (specifically, the high attribu-
tion portion of the shape motif, which is highlighted in the insets), relative to sequence motif
0, when they co-occur. The y axis is shape motif occurrence count divided by sequence motif
occurrence count. The sequence motif is visualized under each pileup to clearly illustrate
what part of the sequence motif each shape motif co-occurs with. Top: positive (bound) se-
quences vs. negative (unbound) sequences, bottom: low shape-to-sequence attribution ratio
positive sequences vs. high ratio positive sequences.

that high ratio HepG2|CEBPB binding sites were more palindromic in sequence and shape,
and that low ratio sites often had ATGA for the initial part of the motif instead of ATTG.

This work shows that by employing interpretation methods such as DeepLIFT and TF-
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MoDISco, input shape features can be used to understand the effect of DNA shape on TF
binding. Overall, we find that shape plays a secondary role to sequence, but highlights
interesting discrepancies in types of binding sites. Still though, the role of shape is difficult
to cleanly disentangle from that of sequence, which may be inevitable due to redundancy in
the information provided by these features.
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Chapter 4

Benchmarking Gene Regulatory
Networks

4.1 Background

Overview of gene regulatory networks

All of an individual’s cells contain the same DNA sequence, yet they vary dramatically in
appearance and function. Stomach cells resist acid and absorb nutrients, bone cells form
strong, rigid structures, and brain cells conduct electrical impulses. Variation in function
despite the same genetic code is possible because in different cell types, genes can be expressed
in varying amounts. In a given cell type, genes that are relevant to the function of the cell
type are significantly expressed, while genes that are only relevant in other cell types are
weakly or not expressed. Gene expression is controlled by regulators, which are biological
entities that have the ability to influence gene expression through a variety of mechanisms.
The resulting networks of genes, and the regulators that control them, are termed gene
regulatory networks.

To be more precise, the expression level of a gene refers to the amount of protein product
that is being produced from the gene. According to the fundamental law of molecular biology
known as the central dogma, a gene is first transcribed into messenger RNA (mRNA) by
RNA polymerase, and then the messenger RNA is translated into protein by a ribosome
(Figure 4.1). The gene itself is merely a section of DNA that serves as a blueprint for a
protein; proteins are the primary agents that enact cellular functions. One would ideally
quantify the expression of a gene as the amount of the protein it codes for that is present
in the cell. However, often, gene expression is instead quantified as the amount of mRNA
transcribed from the gene present in the cell, because mRNA can be measured at a much
more massive scale than protein. The amount of mRNA is an imperfect proxy for the amount
of protein, because mRNA still needs to be translated, and different mRNAs have different
translation efficiencies. Nonetheless, based on the current state of technology, mRNA-based
assays are the main tool for generating large gene expression datasets.
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Figure 4.1: The central dogma of molecular biology. Taken from [23].

Transcription factors bind to DNA to control the rate of transcription of their target
genes. Certain transcription factors form the pre-initiation complex that is essential for
stabilizing RNA polymerase and unwinding DNA so that it can be transcribed (recall Fig-
ure 3.1). Other transcription factors can interact with this complex through protein-protein
interactions [112] to increase transcription. In eukaryotes, DNA is packaged into nucleo-
somes, which are coils of DNA wrapped around complexes of histones. DNA that is tightly
packed into nucleosomes (heterochromatin) is inaccessible to the transcriptional machin-
ery. Transcription factors can activate transcription by displacing nucleosomes, releasing the
DNA and allowing it to be transcribed. Transcription factors can also recruit chromatin
modifiers that bestow activating marks on chromatin, such as histone acetylation and his-
tone phosphorylation [79]. In addition to activating roles, transcription factors can serve as
repressors, by interfering with RNA polymerase during transcription initiation [97], blocking
activators by binding to their binding sites, and recruiting repressive chromatin modifications
like histone deacetylation and histone methylation [120]. To complicate matters further, a
transcription factor can act as an activator in certain contexts and as a repressor in others
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[22].
Transcription factors (TFs) are themselves proteins that are coded for by a gene. Thus,

a TF can and often does regulate other TFs, even itself. TFs that serve crucial roles in
the maintenance or progression of a particular cell type are called master regulators and
often regulate a high number of target genes. For example, GATA-1 is considered a master
regulator of red blood cell development [36]. Because TFs regulate transcription by binding
to DNA, which is detectable through assays and motif scans, and expression assays measure
the presence of TFs as well, the regulators considered in current gene regulatory network
inference methods are restricted to TFs.

More formally, a gene regulatory network is a graph where each node represents a gene
that may or may not code for a TF, and an edge is placed between TF A and gene B if
and only if A regulates the expression of B. In that case, we say that B is a target of A.
Conceptually, this graph is inherently directed, with the edge pointing from A to B, and
current methods strive to infer directionality based on binding information. Past methods
based on correlation metrics could not infer directionality between two genes that are both
TFs. One may also associate a sign and a magnitude to each edge, denoting the polarity
and strength of the relationship respectively.

Networks depend on cellular context, as the genes involved in blood cell differentiation
differ from those that underlie neuronal differentiation. We desire to infer these networks
because they provide a picture of the regulatory processes for a particular cellular setting. If
the network reveals a TF to target many genes, it is implicated as a key regulator. This can
lead to a better understanding of the cellular setting, especially if that TF was not known
to be a key regulator before. A gene regulatory network can also be used to simulate the
effect of a change in transcription factor expression levels, by propagating the changes along
the network edges to determine the resulting gene expression profile. Kamimoto et al. [54]
pioneered this approach to recover the cell-fate-effects of perturbing transcription factors in
hematopoiesis and zebrafish embryonic development.

Gene regulatory network (GRN) inference has broad and highly impactful applications.
Cancer occurs when cells mutate and divide uncontrollably, developing ways of bypassing
mechanisms that kill aberrant cells. Analyzing the gene regulatory networks under which
cancer develops can pinpoint the cause of cancer, leading to improved treatment and pre-
vention. Alternatively, analyzing altered, cancerous regulatory networks can similarly unveil
how the cancer survives and develops to more advanced states, leading to better treatments
for slowing cancer progression. Gene regulatory networks can be similarly applied to other
diseases whose causes are not well understood. Another application is organoids, which are
synthetic tissues grown to resemble a particular tissue for the purpose of studying disease
or replacing tissue. Knowing how transcription factors drive differentiation into a particular
tissue is directly addressed by GRNs and can improve generation of these tissues. Finally,
GRNs could aid assisted reproduction. In in vitro fertilization, a key problem is construct-
ing a cellular environment that will produce healthy egg cells, which calls for knowing which
transcription factors drive egg cell differentiation [119]. Furthermore, in vitro gametogenesis
(IVG), the production of gametes via reprogramming of a somatic cell to a pluripotent or



CHAPTER 4. BENCHMARKING GENE REGULATORY NETWORKS 66

stem-like state, followed by differentiation into a functional gamete, has been achieved suc-
cessfully in mice [82]. IVG is hotly being pursued in both humans and animals, and GRNs
have the potential to increase its efficiency.

Challenges in GRN inference

While promising, GRN inference is a challenging task. In 2012, the 5th Dialogue on Reverse
Engineering Assessment and Methods (DREAM5) tested 35 different GRN inference methods
on recovering known TF-gene interactions in a synthetic network, E. coli, and yeast [73].
Each of the 35 methods got about 2.5% AUPRC on recovering the yeast network, not much
better than random, highlighting the difficulty of inferring true regulatory interactions in
eukaryotic organisms from expression data alone. The poor performance in this early era
of GRN inference mainly had to do with the limited amount of data used to infer the
networks and the lack of integration of TF binding information. Nowadays, single-cell RNA-
seq (scRNA-seq) provides thousands of expression profiles per experiment, making for much
richer expression datasets, and current GRN inference methods also integrate accessibility
data to infer causality.

However, there are still fundamental challenges. Current methods lack time resolution
in accounting for the effect of TF expression on target gene expression. To an extent, this
is captured by modeling pseudotime, but such methods still do not explicitly model TF
binding, transcription, translation, and protein and mRNA decay times. Furthermore, a
host of regulatory biology is ignored by only focusing on transcription factors. The effects of
cell-cell communication by signal transduction [7], small RNAs [87] and post-translational
modifications are unaccounted for by only focusing on TF regulators. Also, the inherent
noisiness of biological data may pose a challenge.

Finally, GRN inference can be ill-defined and difficult to evaluate. The meaning of
“regulates” is difficult to pin down and can include recruiting transcriptional machinery,
making regulatory regions accessible, recruiting activating or repressing marks, or blocking
other factors from binding. Designing an assay to verify all of these TF-gene interactions so
as to obtain a ground truth network is difficult. It is also unclear, mathematically, how to
combine a chain of direct effects to obtain a net indirect effect. Multiplying edge weights
and summing over possible paths is done to compute the total indirect effect of A on B
[33], but it is hard to tell if this is valid. Also, intermediate gene expression changes may
change the network topology itself, rendering its reuse at different steps of the paths invalid.
Methods may also neglect regulation by theft, in which a TF regulates a gene by stealing its
regulators. For example, in fibroblast reprogramming, OCT4 and SOX2 make new regions
accessible, which draw AP-1 to themselves, stealing AP-1 from regions near fibroblast genes
[83].
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Review of GRN inference approaches

Correlation methods One approach is to compute the correlation between the expression
of each pair of genes, using some metric. A TF is inferred to regulate a gene if the expression
levels of the TF and the gene are highly correlated across samples. Metrics used include
pearson correlation, spearman correlation, mutual information, and partial correlation [67,
16, 31, 74, 61]. This type of approach has the advantage of being simple, but is blind to which
gene regulates which if both are TFs due to metrics being symmetric, and may be inaccurate
because correlations typically do not account for the effect of other variables. Thus, a TF
that has a subtle but important effect on a gene may have a low correlation and be missed.
Some correlation methods employ techniques to address these issues, such as employing the
data processing inequality to prune away mutual information-based edges that represent
indirect regulations [74], and using partial correlation from the inverse covariance matrix
[61], which for Gaussians is nonzero if and only if the variables are dependent conditioned
on all other variables. This tries to highlight interactions whose effects cannot be explained
through other interactions.

Regression methods Another approach is to learn a predictor that predicts gene expres-
sion from the TF expression, and to use TF-gene coefficients or importance scores as the edge
weights. Commonly used models include linear regression with L1 regularization [111, 43,
68], random forests [49], and gradient boosted trees [80]. As a given gene in a given cell type
only has a few TF regulators out of a large pool of potential TFs, this is a sparse regression
problem, which is why the L1 penalty is used. The L1 penalty is a convex penalty with
sparsity-inducing properties. However, methods based on nonconvex L0 and L 1

2
penalties

have also shown promise [91]. The linear regression problem can be formulated as follows:

Y = XW + ε,

where Y ∈ Rm×n is a matrix containing gene expression values for n genes over m samples,
X ∈ Rm×p is a matrix containing gene expression values for p TFs, W ∈ Rn×p is a learned
matrix of coefficients that describe the effect of the expression of each TF on the expression
of each gene, and ε ∈ Rm×n is the error matrix in this model. Letting M·,j denote the jth
column of a matrix and assuming an L1 penalty, this leads to the objective

min
W·,j∈Rp

∥Y·,j −XW·,j∥22 + λ∥W·,j∥1

for each gene j = 1, 2, . . . , n. If using a random forest or gradient boosted trees, letting Mi,·
denote the ith row of a matrix, the objective is instead

min
fj

n∑
i=1

(Yij − fj(Xi,·))
2

for each j = 1, 2, . . . , n, where fj is optimized over the corresponding function class (random
forest or gradient boosted trees). For assigning a signed weight to each potential interaction



CHAPTER 4. BENCHMARKING GENE REGULATORY NETWORKS 68

in linear regression models, the coefficientWij itself can be used. For an unsigned importance
score, the absolute value |Wij|, or the coefficient p-value can be used. A previous work infers
networks at various levels of sparsity and uses the first sparsity level at which the interaction
exists as a more sophisticated, but potentially more principled measure [91]. For random
forests, the cumulative variance explained by the variable averaged over the trees in the
forest is used [49]. One must be careful to ensure importance scores are comparable across
different genes. For example, for the random forest measure, the variance of each gene is
first normalized to 1.

ODE-based methods Other methods view changes in gene expression from the perspec-
tive of differential equations, and derive inference models from them [13, 124]. In practice,
the resulting GRN inference algorithms work out to a kind of regression method. For exam-
ple, Inferelator [13] considers the kinetic equation

τ
dy

dt
= −y + g(β⊤z(x))

where y represents the expression level of a particular gene, x is a vector containing the
expression levels of putative regulators, and z is a vector derived from x. β is a learned
vector of coefficients, τ is the time constant, and g is a thresholding function:

g(β⊤x) =


β⊤x ymin ≤ β⊤x < ymax

ymin β⊤x < ymin

ymax β⊤x ≥ ymax

.

Thus, for steady state conditions in which dy
dt

= 0, they obtain the equation

y = g(β⊤z(x)),

and for time series data with time points t1, t2, . . . , tT , they obtain the equation

τ
ym+1 − ym
tm+1 − tm

+ ym = g(β⊤z(x)).

They solve these equations using an L1-regularized linear regression method, LARS, with the
labels as the quantities on the left hand side and the predictions as on the right hand side.
For the time series data, the time constant τ is determined by alternately minimizing the
loss over τ and the regression parameters until convergence. Inferelator 2.0 [72] improves the
dynamical modeling aspect using Markov chain Monte Carlo methods, obtaining improved
predictive performance.

Single-cell and integrative methods With the advent of single-cell data [123], modern
GRN inference methods take the same methodology as previous ones but apply them to
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single-cell data, and include an additional step of identifying TF binding sites to disam-
biguate causality [18, 4, 40, 110, 34, 134, 124, 14]. Various ways of finding binding sites
include incorporating TF binding data such as ChIP-seq, incorporating (single-cell) accessi-
bility data, such as (sc)ATAC-seq, and motif scanning. An earlier work showed that incor-
porating ChIP-seq data into sparse regression models greatly improved recovery of ground
truth interactions, but their evaluation is somewhat confounded by overlap between the data
defining the ground truth and the data incorporated into their model [91]. SCENIC [4], one
of the first of the modern methods mentioned above, applies GENIE3 or GRNBoost2 to
scRNA-seq data and additionally runs RcisTarget [4] to filter for direct interactions, which
searches for TF binding motifs near gene TSSs. CellOracle [54] incorporates single-cell ac-
cessibility data by linking distal enhancers to promoters using Cicero [17]. TFs are linked to
these regions by and scanning them for motifs. Then, the TFs linked to the regions that are
linked to a gene (the promoter and enhancers linked to the promoter) are used to predict
the expression of the gene. Overall, these integrative approaches significantly improve GRN
inference accuracy over previous approaches only utilizing gene expression data.

Approaches to GRN evaluation

Unfortunately, there is no broadly agreed-upon benchmark for evaluating different GRN
inference methods, though benchmarks like DREAM5 [73] and BEELINE [89] exist. This is
a big problem, because without a broadly accepted benchmark, it is difficult to truly know
how methods perform relative to each other. With so many different methods out there,
each with their own specific implementation, choosing one becomes a paralyzing task. A
challenge here is that different methods take in different sets of data; some use single-cell
data, some use multi-ome data, some use pseudotime, etc. This makes it hard to compile
datasets that a broad range of methods can be evaluated fairly on.

One approach to evaluating inferred GRNs is to compile a set of verified TF-target
interactions and compare the ranking returned by each method against this set. For example,
datasets of interactions compiled from the literature, like ImmGen [45] and the integrated
Stem-cell Molecular interactions Database (iScMiD) [71], exist. Furthermore, TF-target
regulations can be obtained through experiments in which a TF perturbation experiments.
The list of differentially expressed genes can be considered a broad set of targets, including
indirect targets. Direct targets can be identified by intersecting differentially expressed
genes with the perturbed TF ChIP-seq binding peaks, and one-level-down indirect targets
by finding genes whose TSSs contain a motif of a direct target [90]. However, this approach
does not detect distal regulation. Also, the relative expression changes of the differentially
expressed genes is not taken into account for evaluation, even though this could be useful
for evaluating inferred GRNs.

Another evaluation approach is to test recovery of known biological phenomena. This
involves inferring a GRN from a certain cellular context, drawing conclusions from the GRN,
and comparing them against true biology. This was done to evaluate Pando in the context
of human brain organoids [34], and CellOracle was able to recover known drivers and their
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effects in mouse hematopoiesis and zebrafish embryogenesis [54]. This type of evaluation is
promising, as it is evaluating GRNs on what they are ultimately likely to be used for, but this
is prone to confirmation bias, as nothing prevents a researcher from only presenting model-
derived conclusions that agree with what is known. It is important to improve the soundness
of this type of evaluation by predefining a set of biological conclusions to be recovered, and
testing recovery of these predefined conclusions.

4.2 Recovering reprogramming factors

Overview

Takahashi and Yamanaka [116] discovered that overexpressing the four transcription factors
OCT4, SOX2, KLF4, and MYC (OSKM) could reprogram mouse skin cells into pluripotent
stem cells that were similar to embryonic stem cells. The induction of human pluripotent
stem cells using the same four factors followed soon after [117], as well as using a different
set: OCT4, SOX2, NANOG, and LIN28 [132]. These induced pluripotent stem cells (iPSCs)
theoretically have the ability to differentiate into any type of cell in the human body, giv-
ing them great potential for medical research and use. Other TF combinations capable of
iPSC induction have since been discovered, such as SALL4, NANOG, ESRRB, and LIN28
(SNEL) [15], OCT4, SOX2, and KLF4 (OSK) [15], and SOX2, KLF4, and MYC (SKM)
[122]. Interestingly, these combinations generally lead to fewer iPSCs than OSKM, but a
greater fraction of high quality iPSCs.

One test of GRN inference methods is their ability to recover the effects of these repro-
gramming factors, given single-cell data containing pluripotent stem cells. This tests whether
GRNs are useful for identifying TFs that can achieve a particular cell fate. CellOracle [54]
explicitly aims to predict the effect of TF perturbations on cell differentiation, visualizing the
overall effect as a vector field on top of the cell population. Thus, here, we apply CellOracle
to a single cell atlas of human fibroblasts being reprogrammed to iPSCs [83]. This entails
constructing GRNs from the data with CellOracle, running network analysis and perturba-
tion simulation, and analyzing the results in light of the fact that the above combinations of
factors can reprogram mature cells to pluripotent stem cells.

Dataset of human fibroblasts reprogrammed with OSKM

We use a dataset containing scRNA-seq and scATAC-seq data of human skin cells (fibrob-
lasts), reprogrammed by overexpressing OSKM via a Sendai virus system [83]. The scRNA-
seq data contains gene expression data for 59,378 quality-controlled cells, but to shorten
computation time we downsample to 12,000 cells. Similarly, we downsample the scATAC-
seq data, which contains accessibility values for 62,599 quality-controlled cells across 530,910
genome regions, to 1,000 cells, as the scATAC-seq data processing step of CellOracle is very
time consuming. A UMAP dimensionality reduction of the scRNA-seq cells colored by cell
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Figure 4.2: Dimension-reduced (UMAP) fibroblast reprogramming single-cell gene expres-
sion data (scRNA-seq). Fibroblasts (blue, Fib) travel upward in the visualization during
reprogramming, progressing through fibroblast-like, intermediate, and pre-iPSC states. Suc-
cessfully reprogrammed iPSCs lie in a distinct cluster far from the other cells.

type and pseudotime is shown in Figure 4.2. Pseudotime is an estimate of the position of
a cell along its differentiation trajectory, with pseudotime values lying between 0 (initial
state) and 1 (final differentiated state). The UMAP coordinates and cell type clusters were
provided by the authors in their data, while pseudotime was computed from the scRNA-seq
data using diffusion pseudotime [42] through the CellOracle package.

Results of CellOracle

We apply CellOracle [54] to the human fibroblast reprogramming dataset. First, a base
GRN is constructed from the scATAC-seq data by linking regions to co-accessible genes with
Cicero [88], linking TFs to regions by motif scanning, and then linking TFs to the regions’
genes. Then, CellOracle trains a linear model to predict gene expression from the expression
of TFs linked to each gene. A different set of linear models is trained for each cluster of
cells. The linear regression coefficients are used to further prune the GRN links. Finally, the
resulting GRNs are used to simulate the effect of knocking out a TF by setting its expression
to 0, and mapping the resulting change in expression to a change in cell identity. Also, the
degree of each TF node is used to prioritize major regulators.

We use CellOracle to simulate the effect of knocking out each OSKM factor individually,
and the effect of knocking them all out together. The results are shown in Figure 4.3. Since
OSKM drives differentiation towards the iPSC-like clusters at the top of the embedding,
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we would expect the effect of knocking these factors out to go against this differentiation,
represented by downward arrows and purple squares in the visualizations. We can think of
a purple region in a TF-KO visualization as a cluster of cells that the TF helps reprogram.
Interestingly, we find that each OSKM TF does not uniformly help all cells reprogram.
Each has its green regions, in which it may be in fact hindering reprogramming. However,
their purple and green regions are complementary, and the effect of the combined knockout
(bottom right) is the closest to all purple, which could explain why the combination of all
four factors is effective for reprogramming.

Figure 4.3: The pseudotime differentiation field, and the differentiation fields from simulat-
ing knocking out each of the OSKM factors individually, and all together. Purple denotes
negative inner product between the pseudotime and KO field (knockout goes against differ-
entiation) while green denotes positive inner product (knockout accelerates differentiation).

Next, we expand our scope to all TFs and see how well CellOracle can prioritize OSKM
as reprogramming factors. To do so, we calculate the negative perturbation score for the 100
TFs with the highest degree averaged over clusters. The negative perturbation score, which
is a functionality already provided by CellOracle, computes the sum of the inner products
between KO effect map and pseudotime map over all purple regions (negative inner product
regions) in the KO effect map. A bigger (more negative) negative perturbation score indicates
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a higher contribution to the differentiation of fibroblasts to iPSCs. The TFs with the top 30
negative perturbation scores (we negate them so that they are positive, for a more intuitive
score) are shown in Figure 4.4.

Figure 4.4: Left: highest degree TFs, averaged over clusters (both in-degree, number of
its regulators and out-degree, number of its targets, are counted). Right: highest negative
perturbation score TFs.

We find that OSKM are all included in the top 30 negative perturbation score TFs
(OCT4 is aliased as POU5F1). They are ranked 2, 18, 8, and 3, respectively. The negative
perturbation score seems to better measure reprogramming potential than total degree, for
which OKM are ranked 11, N/A, 9, and 2, respectively. However, it would be difficult to
recover the specific combination of OSKM just from the list. This points to a limitation
of using GRNs to prioritize combinations of factors for reprogramming. Biological domain
knowledge is needed, though the GRN-based approach could potentially be improved by
ranking perturbations of combinations of TFs, and improving modeling such that the effect
of complex, combinatorial perturbations can be adequately captured.

Results of SCENIC+

Next we run SCENIC+ [14] on the fibroblast reprogramming dataset. Since SCENIC+ re-
quires multiome data and the fibroblast reprogramming scRNA-seq and scATAC-seq datasets
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are separate, we use the provided Harmony integration embedding [64] to assign each
scATAC-seq cell the expression data of its nearest scRNA-seq cell in the embedding. Briefly,
SCENIC+ computes topics from the accessibility matrix using LDA, and binarizes the top-
ics to generate region sets. Also, SCENIC+ computes differentially accessible regions for
clusters in the data to generate additional region sets. Then, a comprehensive set of re-
gions is subjected to a motif scan, wherein the regions are ranked by motif score for each
motif. Then this ranking database is used to find enriched motifs for each region set; the
TFs of the enriched motifs are assigned to the corresponding regions. Regions are linked
to genes by training a gradient boosting model to predict gene expression from region ac-
cessibility and taking the most important regions for each gene. A TF-to-gene expression
gradient boosting model where all TFs are used is also trained. To assemble the eRegulons
(a TF and its TF-region-gene triplets), each combination of TF-gene and region-gene rela-
tionship signs is considered, namely, positive-positive, positive-negative, negative-positive,
and negative-negative, determined by the correlation coefficient between TF expression or
region accessibility and gene expression. For each TF and sign combination, TF-region-gene
triplets such that the TF-gene and region-gene pairs satisfy the sign combination are con-
sidered. The resultant target genes are pruned based on ranking them by the TF-to-gene
gradient boosting important scores. eRegulons with less than 10 target genes are discarded.

We sort the eRegulons by number of target genes in Figure 4.5. Direct refers to eRegulons
based on motifs that are directly attributed to the TF through a ChIP-seq experiment in
the same species. Extended refers to motifs annotated to the TF through orthology or motif
similarity. There were 102 direct eRegulons and 58 extended eRegulons. In addition, we
combine the genes in all the eRegulons associated to a TF, and sort TFs by total target
gene count in the neighboring plot. We observe that OSKM are perhaps better prioritized
by degree here (ranks 5, 12, 9, 10) than in the CellOracle networks (ranks 11, N/A, 9, and
2).

Next, we use SCENIC+ to simulate the effect of knocking out OSKM. SCENIC+ follows
the same procedure as CellOracle, except instead of a linear model, a gradient boosting
model is used to predict gene expression from the expression of TFs regulating the gene.
Furthermore, CellOracle repeatedly applies their linear models to a difference vector to
update it, in which the entry corresponding to the knocked-out TF is set to 0 at each iteration.
On the other hand, SCENIC+ repeatedly applies their GB models to the expression vector
with the entry corresponding to the knocked-out TF set to 0 at the beginning of the first
iteration. The SCENIC+ final difference vector is taken as the difference between the final
expression vector and the initial expression vector.

The results of SCENIC+ OSKM-KO simulation are shown in Figure 4.6. Unlike the
effects predicted by CellOracle, the effects predicted by SCENIC+ for each factor are more
similar to each other, though they still are all predicted to inhibit reprogramming upon
knockout. This may stem from CellOracle’s application of the TF perturbation at each iter-
ation of simulation, vs. SCENIC+ only applying it at the beginning. Biologically, applying
it at every iteration corresponds to permanent or long-lasting perturbation, while applying
it only once corresponds to an instantaneous perturbation.
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Figure 4.5: Top 30 eRegulons and TFs found by SCENIC+ on the fibroblast reprogramming
dataset sorted by number of target genes.

Discussion

Through application to a fibroblast reprogramming dataset, we show that single-cell-based
GRN inference methods like CellOracle and SCENIC+ can identify important gene regu-
lators and their predicted effects on cell identity. There were differences in the network
structures inferred by the two methods, with the overall highest degree node for CellOr-
acle, EGR1, not even appearing in the top 30 for SCENIC+. Both methods still were able
to recover the OSKM reprogramming factors when prioritizing TFs by degree, and nega-
tive perturbation score (predicted amount of inhibition of reprogramming) for CellOracle.
SCENIC+’s use of topic modeling for accessibility may capture broader patterns of regulation
than CellOracle’s linking of enhancers to promoters based on co-accessibility. Furthermore,
SCENIC+ utilizes the accessibility to predict gene expression and form links in the network,
while CellOracle only uses TF expression, granted the TFs are selected based on accessi-
bility. SCENIC+ learns a single network encompassing regulatory patterns across the cell
population, while CellOracle learns a different network for each cluster. In terms of simu-
lation, CellOracle predicted notable differences between the roles in reprogramming played
by different factors, while SCENIC+ did not reveal as large differences. This is likely due to
the different network structures learned by each method.

To better benchmark GRN inference methods for simulating effects on cell identity,
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Figure 4.6: SCENIC+ simulated effects of OSKM knockout.

datasets in which the precise trajectory in cell-embedding space induced by a particular
perturbation has been determined experimentally are needed, so that the accuracy of dif-
ferent methods can be quantitatively compared. Testing a greater volume of methods and
datasets would also help understand the overall utility of GRN inference methods, though
potentially challenging due to differences in datasets and required inputs for different meth-
ods. For further investigating cellular reprogramming, applying GRN inference methods to
a dataset containing naturally differentiating pluripotent stem cells would show whether the
role of OSKM in reprogramming could be recovered by observing “natural” data.
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[14] Carmen Bravo González-Blas et al. “SCENIC+: single-cell multiomic inference of
enhancers and gene regulatory networks”. en. In: Nature Methods 20.9 (Sept. 2023),
pp. 1355–1367. issn: 1548-7105. doi: 10.1038/s41592-023-01938-4. url: https:
//www.nature.com/articles/s41592-023-01938-4.

[15] Yosef Buganim et al. “The Developmental Potential of iPSCs Is Greatly Influenced by
Reprogramming Factor Selection”. In: Cell stem cell 15.3 (Sept. 2014), pp. 295–309.
issn: 1934-5909. doi: 10.1016/j.stem.2014.07.003. url: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4170792/.

[16] A. J. Butte and I. S. Kohane. “Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements”. eng. In: Pacific Symposium
on Biocomputing. Pacific Symposium on Biocomputing (2000), pp. 418–429. issn:
2335-6928. doi: 10.1142/9789814447331_0040.

[17] Junyue Cao et al. “The single-cell transcriptional landscape of mammalian organo-
genesis”. en. In: Nature 566.7745 (Feb. 2019), pp. 496–502. issn: 1476-4687. doi:
10.1038/s41586-019-0969-x. url: https://www.nature.com/articles/s41586-
019-0969-x.

[18] Thalia E. Chan, Michael P. H. Stumpf, and Ann C. Babtie. “Gene Regulatory Network
Inference from Single-Cell Data Using Multivariate Information Measures”. eng. In:
Cell Systems 5.3 (Sept. 2017), 251–267.e3. issn: 2405-4712. doi: 10.1016/j.cels.
2017.08.014.

https://doi.org/10.1385/1-59745-097-9:245
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690637/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690637/
https://doi.org/10.1038/nbt1010-1045
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607281/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607281/
https://doi.org/10.1021/cb200155t
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241897/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241897/
https://doi.org/10.1186/gb-2006-7-5-r36
https://doi.org/10.1186/gb-2006-7-5-r36
https://doi.org/10.1186/gb-2006-7-5-r36
https://doi.org/10.1038/s41592-023-01938-4
https://www.nature.com/articles/s41592-023-01938-4
https://www.nature.com/articles/s41592-023-01938-4
https://doi.org/10.1016/j.stem.2014.07.003
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170792/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170792/
https://doi.org/10.1142/9789814447331_0040
https://doi.org/10.1038/s41586-019-0969-x
https://www.nature.com/articles/s41586-019-0969-x
https://www.nature.com/articles/s41586-019-0969-x
https://doi.org/10.1016/j.cels.2017.08.014
https://doi.org/10.1016/j.cels.2017.08.014


BIBLIOGRAPHY 79

[19] Kathleen M. Chen et al. “Selene: a PyTorch-based deep learning library for sequence
data”. en. In: Nature Methods 16.4 (Apr. 2019), pp. 315–318. issn: 1548-7091, 1548-
7105. doi: 10 . 1038 / s41592 - 019 - 0360 - 8. url: https : / / www . nature . com /
articles/s41592-019-0360-8.

[20] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual Rep-
resentations”. In: arXiv:2002.05709 (June 2020). arXiv:2002.05709 [cs, stat]. doi:
10.48550/arXiv.2002.05709. url: http://arxiv.org/abs/2002.05709.

[21] Travers Ching, Xun Zhu, and Lana X. Garmire. “Cox-nnet: An artificial neural net-
work method for prognosis prediction of high-throughput omics data”. en. In: PLOS
Computational Biology 14.4 (Apr. 2018), e1006076. issn: 1553-7358. doi: 10.1371/
journal . pcbi . 1006076. url: https : / / journals . plos . org / ploscompbiol /
article?id=10.1371/journal.pcbi.1006076.

[22] Maria Ciofani et al. “A validated regulatory network for Th17 cell specification”.
eng. In: Cell 151.2 (Oct. 2012), pp. 289–303. issn: 1097-4172. doi: 10.1016/j.cell.
2012.09.016.

[23] Suzanne Clancy and William Brown. “Translation: DNA to mRNA to Protein”. In:
Nature Education 1.1 (2008), p. 101.

[24] The ENCODE Project Consortium. “An integrated encyclopedia of DNA elements in
the human genome”. en. In: Nature 489.7414 (Sept. 2012), pp. 57–74. issn: 0028-0836,
1476-4687. doi: 10.1038/nature11247. url: https://www.nature.com/articles/
nature11247.

[25] D. R. Cox. “Regression Models and Life-Tables”. en. In: Journal of the Royal Sta-
tistical Society Series B: Statistical Methodology 34.2 (Jan. 1972), pp. 187–202. issn:
1369-7412, 1467-9868. doi: 10.1111/j.2517-6161.1972.tb00899.x. url: https:
//academic.oup.com/jrsssb/article/34/2/187/7027194.

[26] Chiara D’Antonio et al. “Bone and brain metastasis in lung cancer: recent advances
in therapeutic strategies”. In: Therapeutic Advances in Medical Oncology 6.3 (May
2014), pp. 101–114. issn: 1758-8340. doi: 10.1177/1758834014521110. url: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC3987652/.

[27] Gaohong Dong et al. “The inverse-probability-of-censoring weighting (IPCW) ad-
justed win ratio statistic: an unbiased estimator in the presence of right censoring”.
In: Journal of biopharmaceutical statistics 30.5 (Sept. 2020), pp. 882–899. issn: 1054-
3406. doi: 10.1080/10543406.2020.1757692. url: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC7538385/.

[28] Jason Ernst and Manolis Kellis. “ChromHMM: automating chromatin-state discovery
and characterization”. en. In: Nature Methods 9.3 (Mar. 2012), pp. 215–216. issn:
1548-7105. doi: 10.1038/nmeth.1906. url: https://www.nature.com/articles/
nmeth.1906.

https://doi.org/10.1038/s41592-019-0360-8
https://www.nature.com/articles/s41592-019-0360-8
https://www.nature.com/articles/s41592-019-0360-8
https://doi.org/10.48550/arXiv.2002.05709
http://arxiv.org/abs/2002.05709
https://doi.org/10.1371/journal.pcbi.1006076
https://doi.org/10.1371/journal.pcbi.1006076
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006076
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006076
https://doi.org/10.1016/j.cell.2012.09.016
https://doi.org/10.1016/j.cell.2012.09.016
https://doi.org/10.1038/nature11247
https://www.nature.com/articles/nature11247
https://www.nature.com/articles/nature11247
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://academic.oup.com/jrsssb/article/34/2/187/7027194
https://academic.oup.com/jrsssb/article/34/2/187/7027194
https://doi.org/10.1177/1758834014521110
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987652/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987652/
https://doi.org/10.1080/10543406.2020.1757692
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538385/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538385/
https://doi.org/10.1038/nmeth.1906
https://www.nature.com/articles/nmeth.1906
https://www.nature.com/articles/nmeth.1906


BIBLIOGRAPHY 80

[29] Andre Esteva et al. “Dermatologist-level classification of skin cancer with deep neural
networks”. en. In: Nature 542.7639 (Feb. 2017), pp. 115–118. issn: 1476-4687. doi:
10.1038/nature21056. url: https://www.nature.com/articles/nature21056.

[30] Mark Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”. en.
In: International Journal of Computer Vision 88.2 (June 2010), pp. 303–338. issn:
0920-5691, 1573-1405. doi: 10.1007/s11263-009-0275-4. url: http://link.
springer.com/10.1007/s11263-009-0275-4.

[31] Jeremiah J. Faith et al. “Large-Scale Mapping and Validation of Escherichia coli
Transcriptional Regulation from a Compendium of Expression Profiles”. en. In: PLOS
Biology 5.1 (Jan. 2007), e8. issn: 1545-7885. doi: 10.1371/journal.pbio.0050008.
url: https://journals.plos.org/plosbiology/article?id=10.1371/journal.
pbio.0050008.

[32] David Faraggi and Richard Simon. “A neural network model for survival data”. en.
In: Statistics in Medicine 14.1 (Jan. 1995), pp. 73–82. issn: 0277-6715, 1097-0258.
doi: 10.1002/sim.4780140108. url: https://onlinelibrary.wiley.com/doi/
10.1002/sim.4780140108.

[33] Soheil Feizi et al. “Network deconvolution as a general method to distinguish direct
dependencies in networks”. en. In: Nature Biotechnology 31.8 (Aug. 2013), pp. 726–
733. issn: 1546-1696. doi: 10.1038/nbt.2635. url: https://www.nature.com/
articles/nbt.2635.

[34] Jonas Simon Fleck et al. “Inferring and perturbing cell fate regulomes in human brain
organoids”. en. In: Nature 621.7978 (Sept. 2023), pp. 365–372. issn: 1476-4687. doi:
10.1038/s41586- 022- 05279- 8. url: https://www.nature.com/articles/
s41586-022-05279-8.

[35] Nitsan Fourier et al. “MafK Mediates Chromatin Remodeling to Silence IRF8 Ex-
pression in Non-immune Cells in a Cell Type-SpecificManner”. eng. In: Journal of
Molecular Biology 432.16 (July 2020), pp. 4544–4560. issn: 1089-8638. doi: 10.1016/
j.jmb.2020.06.005.

[36] Y Fujiwara et al. “Arrested development of embryonic red cell precursors in mouse em-
bryos lacking transcription factor GATA-1.” In: Proceedings of the National Academy
of Sciences of the United States of America 93.22 (Oct. 1996), pp. 12355–12358. issn:
0027-8424. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC37995/.

[37] Kunihiko Fukushima. “Visual Feature Extraction by a Multilayered Network of Ana-
log Threshold Elements”. In: IEEE Transactions on Systems Science and Cybernetics
5.4 (Oct. 1969), pp. 322–333. issn: 2168-2887. doi: 10.1109/TSSC.1969.300225.
url: https://ieeexplore.ieee.org/document/4082265.

https://doi.org/10.1038/nature21056
https://www.nature.com/articles/nature21056
https://doi.org/10.1007/s11263-009-0275-4
http://link.springer.com/10.1007/s11263-009-0275-4
http://link.springer.com/10.1007/s11263-009-0275-4
https://doi.org/10.1371/journal.pbio.0050008
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0050008
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0050008
https://doi.org/10.1002/sim.4780140108
https://onlinelibrary.wiley.com/doi/10.1002/sim.4780140108
https://onlinelibrary.wiley.com/doi/10.1002/sim.4780140108
https://doi.org/10.1038/nbt.2635
https://www.nature.com/articles/nbt.2635
https://www.nature.com/articles/nbt.2635
https://doi.org/10.1038/s41586-022-05279-8
https://www.nature.com/articles/s41586-022-05279-8
https://www.nature.com/articles/s41586-022-05279-8
https://doi.org/10.1016/j.jmb.2020.06.005
https://doi.org/10.1016/j.jmb.2020.06.005
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC37995/
https://doi.org/10.1109/TSSC.1969.300225
https://ieeexplore.ieee.org/document/4082265


BIBLIOGRAPHY 81

[38] Michael F. Gensheimer and Balasubramanian Narasimhan. “A Scalable Discrete-
Time Survival Model for Neural Networks”. In: PeerJ 7 (Jan. 2019). arXiv:1805.00917
[cs, stat], e6257. issn: 2167-8359. doi: 10.7717/peerj.6257. url: http://arxiv.
org/abs/1805.00917.

[39] Raluca Gordân et al. “Genomic regions flanking E-box binding sites influence DNA
binding specificity of bHLH transcription factors through DNA shape”. In: Cell re-
ports 3.4 (Apr. 2013), pp. 1093–1104. issn: 2211-1247. doi: 10.1016/j.celrep.
2013.03.014. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640701/.

[40] Jeffrey M. Granja et al. “ArchR is a scalable software package for integrative single-cell
chromatin accessibility analysis”. en. In: Nature Genetics 53.3 (Mar. 2021), pp. 403–
411. issn: 1546-1718. doi: 10.1038/s41588-021-00790-6. url: https://www.
nature.com/articles/s41588-021-00790-6.

[41] Charles E. Grant, Timothy L. Bailey, and William Stafford Noble. “FIMO: scanning
for occurrences of a given motif”. eng. In: Bioinformatics (Oxford, England) 27.7 (Apr.
2011), pp. 1017–1018. issn: 1367-4811. doi: 10.1093/bioinformatics/btr064.

[42] Laleh Haghverdi et al. “Diffusion pseudotime robustly reconstructs lineage branch-
ing”. en. In: Nature Methods 13.10 (Oct. 2016), pp. 845–848. issn: 1548-7105. doi:
10.1038/nmeth.3971. url: https://www.nature.com/articles/nmeth.3971.

[43] Anne-Claire Haury et al. “TIGRESS: Trustful Inference of Gene REgulation using
Stability Selection”. In: arXiv:1205.1181 (May 2012). arXiv:1205.1181 [q-bio, stat].
doi: 10.48550/arXiv.1205.1181. url: http://arxiv.org/abs/1205.1181.

[44] Qiye He, Jeff Johnston, and Julia Zeitlinger. “ChIP-nexus enables improved detection
of in vivo transcription factor binding footprints”. en. In: Nature Biotechnology 33.4
(Apr. 2015), pp. 395–401. issn: 1546-1696. doi: 10.1038/nbt.3121. url: https:
//www.nature.com/articles/nbt.3121.

[45] Tracy S. P. Heng et al. “The Immunological Genome Project: networks of gene ex-
pression in immune cells”. en. In: Nature Immunology 9.10 (Oct. 2008), pp. 1091–
1094. issn: 1529-2916. doi: 10.1038/ni1008-1091. url: https://www.nature.
com/articles/ni1008-1091.

[46] Connor A. Horton et al. “Short tandem repeats bind transcription factors to tune eu-
karyotic gene expression”. en. In: Science 381.6664 (Sept. 2023), eadd1250. issn: 0036-
8075, 1095-9203. doi: 10.1126/science.add1250. url: https://www.science.org/
doi/10.1126/science.add1250.

[47] Ahmed Hosny et al. “Deep learning for lung cancer prognostication: A retrospective
multi-cohort radiomics study”. eng. In: PLoS medicine 15.11 (Nov. 2018), e1002711.
issn: 1549-1676. doi: 10.1371/journal.pmed.1002711.

https://doi.org/10.7717/peerj.6257
http://arxiv.org/abs/1805.00917
http://arxiv.org/abs/1805.00917
https://doi.org/10.1016/j.celrep.2013.03.014
https://doi.org/10.1016/j.celrep.2013.03.014
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640701/
https://doi.org/10.1038/s41588-021-00790-6
https://www.nature.com/articles/s41588-021-00790-6
https://www.nature.com/articles/s41588-021-00790-6
https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1038/nmeth.3971
https://www.nature.com/articles/nmeth.3971
https://doi.org/10.48550/arXiv.1205.1181
http://arxiv.org/abs/1205.1181
https://doi.org/10.1038/nbt.3121
https://www.nature.com/articles/nbt.3121
https://www.nature.com/articles/nbt.3121
https://doi.org/10.1038/ni1008-1091
https://www.nature.com/articles/ni1008-1091
https://www.nature.com/articles/ni1008-1091
https://doi.org/10.1126/science.add1250
https://www.science.org/doi/10.1126/science.add1250
https://www.science.org/doi/10.1126/science.add1250
https://doi.org/10.1371/journal.pmed.1002711


BIBLIOGRAPHY 82

[48] Le Hou et al. “Patch-Based Convolutional Neural Network for Whole Slide Tis-
sue Image Classification”. In: 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). June 2016, pp. 2424–2433. doi: 10.1109/CVPR.2016.
266. url: https://ieeexplore.ieee.org/document/7780635/;jsessionid=
D5D56F1F9600730D70B5C22F0434A42A.

[49] Vân Anh Huynh-Thu et al. “Inferring Regulatory Networks from Expression Data
Using Tree-Based Methods”. en. In: PLOS ONE 5.9 (Sept. 2010), e12776. issn: 1932-
6203. doi: 10.1371/journal.pone.0012776. url: https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0012776.

[50] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift”. In: arXiv:1502.03167 (Mar.
2015). arXiv:1502.03167 [cs]. doi: 10.48550/arXiv.1502.03167. url: http://
arxiv.org/abs/1502.03167.

[51] Pavel Izmailov et al. “Averaging Weights Leads to Wider Optima and Better Gen-
eralization”. In: arXiv:1803.05407 (Feb. 2019). arXiv:1803.05407 [cs, stat]. doi: 10.
48550/arXiv.1803.05407. url: http://arxiv.org/abs/1803.05407.

[52] Li J et al. “Expanding the repertoire of DNA shape features for genome-scale studies
of transcription factor binding”. en. In: Nucleic acids research 45.22 (Dec. 2017). issn:
1362-4962. doi: 10.1093/nar/gkx1145. url: https://pubmed.ncbi.nlm.nih.gov/
29165643/.

[53] Rohit Joshi et al. “Functional Specificity of a Hox Protein Mediated by the Recogni-
tion of Minor Groove Structure”. en. In: Cell 131.3 (Nov. 2007), pp. 530–543. issn:
00928674. doi: 10 . 1016 / j . cell . 2007 . 09 . 024. url: https : / / linkinghub .
elsevier.com/retrieve/pii/S0092867407012123.

[54] Kenji Kamimoto et al. “Dissecting cell identity via network inference and in silico
gene perturbation”. en. In: Nature 614.7949 (Feb. 2023), pp. 742–751. issn: 1476-
4687. doi: 10.1038/s41586- 022- 05688- 9. url: https://www.nature.com/
articles/s41586-022-05688-9.

[55] E. L. Kaplan and Paul Meier. “Nonparametric Estimation from Incomplete Obser-
vations”. en. In: Journal of the American Statistical Association 53.282 (June 1958),
pp. 457–481. issn: 0162-1459, 1537-274X. doi: 10.1080/01621459.1958.10501452.
url: http://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501452.

[56] Fumiki Katsuoka and Masayuki Yamamoto. “Small Maf proteins (MafF, MafG, MafK):
History, structure and function”. In: Gene 586.2 (July 2016), pp. 197–205. issn: 0378-
1119. doi: 10.1016/j.gene.2016.03.058. url: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4911266/.

https://doi.org/10.1109/CVPR.2016.266
https://doi.org/10.1109/CVPR.2016.266
https://ieeexplore.ieee.org/document/7780635/;jsessionid=D5D56F1F9600730D70B5C22F0434A42A
https://ieeexplore.ieee.org/document/7780635/;jsessionid=D5D56F1F9600730D70B5C22F0434A42A
https://doi.org/10.1371/journal.pone.0012776
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012776
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0012776
https://doi.org/10.48550/arXiv.1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.48550/arXiv.1803.05407
https://doi.org/10.48550/arXiv.1803.05407
http://arxiv.org/abs/1803.05407
https://doi.org/10.1093/nar/gkx1145
https://pubmed.ncbi.nlm.nih.gov/29165643/
https://pubmed.ncbi.nlm.nih.gov/29165643/
https://doi.org/10.1016/j.cell.2007.09.024
https://linkinghub.elsevier.com/retrieve/pii/S0092867407012123
https://linkinghub.elsevier.com/retrieve/pii/S0092867407012123
https://doi.org/10.1038/s41586-022-05688-9
https://www.nature.com/articles/s41586-022-05688-9
https://www.nature.com/articles/s41586-022-05688-9
https://doi.org/10.1080/01621459.1958.10501452
http://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501452
https://doi.org/10.1016/j.gene.2016.03.058
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911266/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911266/


BIBLIOGRAPHY 83

[57] Jared Katzman et al. “DeepSurv: Personalized Treatment Recommender System Us-
ing A Cox Proportional Hazards Deep Neural Network”. In: BMC Medical Research
Methodology 18.1 (Dec. 2018). arXiv:1606.00931 [cs, stat], p. 24. issn: 1471-2288. doi:
10.1186/s12874-018-0482-1. url: http://arxiv.org/abs/1606.00931.

[58] Hatice S. Kaya-Okur et al. “CUT&Tag for efficient epigenomic profiling of small
samples and single cells”. en. In: Nature Communications 10.1 (Apr. 2019), p. 1930.
issn: 2041-1723. doi: 10.1038/s41467-019-09982-5. url: https://www.nature.
com/articles/s41467-019-09982-5.

[59] David R. Kelley, Jasper Snoek, and John L. Rinn. “Basset: learning the regula-
tory code of the accessible genome with deep convolutional neural networks”. en.
In: Genome Research 26.7 (July 2016), pp. 990–999. issn: 1088-9051, 1549-5469. doi:
10.1101/gr.200535.115. url: http://genome.cshlp.org/lookup/doi/10.1101/
gr.200535.115.

[60] Hyungjin Kim et al. “Preoperative ct-based deep learning model for predicting disease-
free survival in patients with lung adenocarcinomas”. en. In: Radiology 296.1 (July
2020), pp. 216–224. issn: 0033-8419, 1527-1315. doi: 10.1148/radiol.2020192764.
url: http://pubs.rsna.org/doi/10.1148/radiol.2020192764 (visited on
09/07/2023).

[61] Seongho Kim. “ppcor: An R Package for a Fast Calculation to Semi-partial Correla-
tion Coefficients”. In: Communications for statistical applications and methods 22.6
(Nov. 2015), pp. 665–674. issn: 2287-7843. doi: 10.5351/CSAM.2015.22.6.665.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681537/.

[62] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: arXiv:1412.6980 (Jan. 2017). doi: 10.48550/arXiv.1412.6980. url: http:
//arxiv.org/abs/1412.6980.

[63] Narine Kokhlikyan et al. Captum: A unified and generic model interpretability library
for PyTorch. 2020. arXiv: 2009.07896 [cs.LG].

[64] Ilya Korsunsky et al. “Fast, sensitive and accurate integration of single-cell data with
Harmony”. en. In: Nature Methods 16.12 (Dec. 2019), pp. 1289–1296. issn: 1548-7105.
doi: 10.1038/s41592-019-0619-0. url: https://www.nature.com/articles/
s41592-019-0619-0.

[65] Anders Krogh and John A. Hertz. “A simple weight decay can improve general-
ization”. In: Proceedings of the 4th International Conference on Neural Information
Processing Systems. NIPS’91. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., Dec. 1991, pp. 950–957. isbn: 9781558602229.

[66] H̊avard Kvamme, Ørnulf Borgan, and Ida Scheel. “Time-to-Event Prediction with
Neural Networks and Cox Regression”. In: (Sept. 2019). arXiv:1907.00825 [cs, stat].
doi: 10.48550/arXiv.1907.00825. url: http://arxiv.org/abs/1907.00825.

https://doi.org/10.1186/s12874-018-0482-1
http://arxiv.org/abs/1606.00931
https://doi.org/10.1038/s41467-019-09982-5
https://www.nature.com/articles/s41467-019-09982-5
https://www.nature.com/articles/s41467-019-09982-5
https://doi.org/10.1101/gr.200535.115
http://genome.cshlp.org/lookup/doi/10.1101/gr.200535.115
http://genome.cshlp.org/lookup/doi/10.1101/gr.200535.115
https://doi.org/10.1148/radiol.2020192764
http://pubs.rsna.org/doi/10.1148/radiol.2020192764
https://doi.org/10.5351/CSAM.2015.22.6.665
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681537/
https://doi.org/10.48550/arXiv.1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2009.07896
https://doi.org/10.1038/s41592-019-0619-0
https://www.nature.com/articles/s41592-019-0619-0
https://www.nature.com/articles/s41592-019-0619-0
https://doi.org/10.48550/arXiv.1907.00825
http://arxiv.org/abs/1907.00825


BIBLIOGRAPHY 84

[67] Peter Langfelder and Steve Horvath. “WGCNA: an R package for weighted correlation
network analysis”. In: BMC Bioinformatics 9.1 (Dec. 2008), p. 559. issn: 1471-2105.
doi: 10.1186/1471-2105-9-559. url: https://doi.org/10.1186/1471-2105-9-
559.
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