
Counting Counts: Overcoming Counting Challenges

in Image Generation using Reinforcement Learning

Shaan Gill

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-19

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-19.html

April 24, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Counting Counts: Overcoming Counting Challenges in Image
Generation using Reinforcement Learning

by Shaan Gill

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Trevor Darrell
Research Advisor

Date

* * * * * * *

Professor Sergey Levine
Second Reader

Date

4/19/2024

4/19/2024

Counting Counts: Overcoming Counting Challenges in Image Generation using
Reinforcement Learning

by

Shaan Gill

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Chair
Professor Sergey Levine

Spring 2024

Counting Counts: Overcoming Counting Challenges in Image Generation using
Reinforcement Learning

Copyright 2024

by

Shaan Gill

1

Abstract

Counting Counts: Overcoming Counting Challenges in Image Generation using
Reinforcement Learning

by

Shaan Gill

Master of Science in Computer Science

University of California, Berkeley

Diffusion models have quickly become state-of-the-art for high-resolution image synthesis.
With an iterative forward and subsequent reverse diffusion process, diffusion models serve as
a flexible tool to sequentially generate outputs on downstream objectives. Past works such as
denoising diffusion policy optimization (DDPO) by Black et al. [2] have employed deep Re-
inforcement Learning (RL) techniques to directly fine-tune diffusion models for downstream
objectives. DDPO achieves success in optimizing text-to-image diffusion models for various
objectives but presents challenges in ensuring reliable semantic alignment for specific subsets
of tasks. Particularly, text-to-image Stable Diffusion models prompted with text prompts of
the form “N objects” fail to produce images consistent with the expected count, even after
DDPO prompt alignment fine-tuning. We term this as the N -objects counting problem,
characterized by the mismatch of the expected count and the count of generated objects
in the image. This research serves as progress towards solving the full class of N -objects
problems by focusing on a subset of the format “N [color] balls on white background”. We
advanced toward solving this problem by implementing several vision-informed reward func-
tions and training models using curriculum learning techniques. Our results demonstrated
that fine-tuning Stable Diffusion models under our proposed reward functions improved fi-
delity to the counts. Our fine-tuning resolved many empirically observed issues with the
baseline model, including the wide distribution of object counts among samples prompting
for N<=5. After fine-tuning, sampled images yielded a count distribution that was tightly
clustered around a normal distribution, with the mean closely aligned with the anticipated
count. Our curriculum learning approach improved these results with a marked difference
for the complex 7-balls case. Furthermore, our solution generalized to N -objects problems
beyond the subset of counting tasks we focused on. Our results convey promise for this tech-
nique as a solution to the overarching N -objects problem and for prompt-image alignment
for text-to-image diffusion models.

i

To my family

ii

Contents

Contents ii

List of Figures iii

List of Tables vi

1 Introduction 1
1.1 Problem . 1
1.2 Reinforcement Learning . 4
1.3 Diffusion Models . 5
1.4 Curriculum and Transfer Learning . 7
1.5 Object Detection and YOLO . 8

2 Methods and Experiments 11
2.1 Baseline and Ablations . 12
2.2 Reward Functions . 14
2.3 Curriculum Learning . 20

3 Results and Discussion 21
3.1 Results . 21
3.2 Discussion . 34
3.3 Limitations . 34
3.4 Future Work . 34

Bibliography 36

A Sample Images Across Reward Functions 37

iii

List of Figures

1.1 Sample Prompts and Generated Images The number of elements in the
image does not align with the number requested in the prompt. 2

1.2 Sample prompts and images from Black et al. [2]. The number of elements
in the image does not align with the number requested in the prompt, however,
such images still attain a high reward because of the presence of words related to
the requested count. 3

1.3 Baseline 1 Ball Samples Sample images generated with the baseline model for
the prompt “1 [color] ball on white background.” 4

1.4 Baseline 5 Balls Samples Sample images generated with the baseline model
for the prompt “5 [color] balls on white background.” 4

1.5 This diagram represents the sequence of learning modules in a curriculum learning
plan. Each node represents a learning module, with the size of the node indicating
the complexity of the module and directed edges representing the progression from
one module to the next. 8

1.6 Object Detection Results. Results of object detection are evidenced by the
rectangular outlines to identify detected balls of various sizes and fragments. We
found these bounding boxes to be consistent with human interpretation. 9

1.7 YOLO Identification of Ball Counts Distribution of ball counts identified by
the YOLO object detection model. 10

1.8 Hand Counted Ball IdentificationDistribution of ball counts identified through
manual counting for comparison. 10

2.1 Ablations The plot above showcases the reward mean curves across epochs for
our ablations experiment where we set diffusion timesteps T=[10,20,35,40,50].
The reward mean curves remain similar across this ablation. We utilized the
Linear Reward Function for these ablation experiments. 13

3.1 Reward Functions Comparison Comparison between Linear, Ratio, and Ex-
ponential Reward Functions. 21

3.2 Reward Functions Comparison Comparison between Hybrid, Accuracy, Rel-
ative, and Adaptive Threshold Reward Functions. 22

iv

3.3 Distribution of Ball Counts for Fine-tuned Model Top: Distribution of
ball counts in 50 samples from the baseline Stable Diffusion model for both the
N=[1,5] cases. Bottom: Distribution of ball counts in 50 samples from the fine-
tuned Stable Diffusion model for both the N=[1,5] cases. Results from the trained
distribution have a lower variance and are closer to the expected mean. 24

3.4 Fine-tuned 1 Ball Samples Sample images generated with the fine-tuned
model for the prompt “1 [color] ball on white background.” We did notice that
the background for many images had more of a brown or grey hue, but this was
also persistent in the baseline model samples, hence we treat it as a constant. . . 25

3.5 Fine-tuned 5 Balls Samples Sample images generated with the fine-tuned
model for the prompt “5 [color] balls on white background.” We did notice that
the background of fine-tuned samples was more white in hue compared to the
baseline. 25

3.6 Comparison of Count Distributions for Linear Training Using Varying
Samples per Epoch The plot above showcases that the 9 and 256 samples per
epoch models trained using the Linear Reward Function performed similarly well.
After being trained for 50 epochs, the large samples per epoch model attained a
mean of 3.92, a median of 4.0, and a variance of 2.97. We hypothesize that with
further epochs of training, the distribution will be comparable to or exceed the 9
samples per epoch model’s distribution. 26

3.7 Distribution of 7 Ball Counts for Fine-tuned Model The top figure is the
distribution of 50 samples after regular fine-tuning on the prompt “7 [color] balls
on white background.” The bottom figure is the distribution of 50 samples after
curriculum fine-tuning on the same prompt. The distribution for the curriculum
learning approach is better and has a lower variance than the regular approach. 29

3.8 Regular/Curriculum 1 Ball Reward Mean Plot The plot demonstrates
improvement in alignment to prompts for 1 ball prompts. 30

3.9 3 Balls Curriculum vs. Regular Fine-tuning Comparison of reward mean
during curriculum learning vs regular fine-tuning for 3 balls. 30

3.10 5 Balls Curriculum vs. Regular Fine-tuning Comparison of reward mean
during curriculum learning vs regular fine-tuning for 5 balls. 30

3.11 7 Balls Curriculum vs. Regular Fine-tuning Comparison of reward mean
during curriculum learning vs regular fine-tuning for 7 balls. 30

3.12 3 Cat Samples Generated Using Baseline Weights Note the frequency of
2 cats instead of the requested 3. 32

3.13 5 Cat Samples Generated Using Baseline Weights Note the frequency of
3 cats instead of the requested 5. 32

3.14 3 Cat Samples Generated Using Curriculum 3 Weights We see consider-
able improvements in the count in comparison to the baseline model. 32

3.15 5 Cat Samples Generated Using Curriculum 5 Weights We see consider-
able improvements in the count in comparison to the baseline model. 32

v

3.16 Cat Sample Images Note the quality of the image of cats is similar to the
original. 32

3.17 Distribution of Cat Counts Given Input Distribution of the number of cats
generated by the model, comparing the baseline and curriculum fine-tuned models
for the prompt “[3,5] cats.” . 33

A.1 Sample Images from Linear Reward Function Experiments We found
variation among the style of generated images using this reward function. For
example, the 1 sample per epoch model was prompted to generate an image of 5
red balls but generated 6 balls on popsicle sticks instead. Moreover, the 9 samples
per epoch balls are more hazy than the 256 samples per epoch balls. 37

A.2 Sample Images from Ratio, Exponential, and Hybrid Reward Function
Experiments Notice the slight variations of style. For example, the ratio balls
share characteristics with golf balls. 38

A.3 Sample Images from Relative, Accuracy, and Adaptive Threshold Re-
ward Function Experiments Notice the slight variations of style. For example,
the accuracy threshold balls are more matte than the relative balls. 38

vi

List of Tables

3.1 Statistical Summary of Model Performance by Reward Function for Prompts with
N=5 . 23

vii

Acknowledgments

I would like to express my heartfelt gratitude to a few remarkable individuals and groups
who have played a crucial role in my academic journey and personal growth.

Firstly, I want to express my deepest appreciation to Professor Trevor Darrell. Thank
you, Professor Darrell, for your support and for pushing me to be the best version of myself.
Additionally, I would like to thank Xudong Wang for the invaluable opportunity to conduct
research under his mentorship. Working with you significantly advanced my technical skills
and deepened my understanding of our field, inspiring me to conduct my research. I am also
very grateful to William Lin, who has provided significant support and contributed to my
research efforts. I would also like to extend a thank you to Anisha Iyer for her contributions
to this research.

To my family—Papo, Mumma, Noor, Amrita, and Robin—your unyielding support and
confidence in me have been the foundation of my achievements. Thank you for your endless
patience, guidance, and faith in my capabilities. I could not have reached this point without
your love and encouragement. You all mean the world to me.

Finally, I am grateful to all my friends, peers, the SEED Scholars Honors Program,
teaching assistants, graduate student instructors, and professors who have contributed to
my growth. Thank you for helping me blossom into the person I am today.

1

Chapter 1

Introduction

1.1 Problem

Over the last two decades, the field of generative artificial intelligence has witnessed ground-
breaking progress. The development of models and frameworks like generative pretrained
transformers (GPT), generative adversarial networks (GANs), and variational autoencoders
(VAEs) have significantly reshaped the landscape of generative artificial intelligence across
domains such as text and image generation. The ability to generate realistic and accurate
images through deep learning models has marked a significant milestone. Among these ad-
vancements, Stable Diffusion models have emerged as useful tools for generating images from
textual prompts, offering unbounded creative potential. However, a challenge among Stable
Diffusion models is ensuring the alignment between the attributes listed in text prompts
and their visual representation in generated images. Specifically, the accurate representation
of count remains a critical bottleneck in the overarching alignment challenge. It influences
the usefulness and relevance of the images produced by Stable Diffusion models in fields,
including automated content generation, educational resources, and creative settings. This
challenge is demonstrated in Figure 1.1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Sample Prompts and Generated Images The number of elements in the
image does not align with the number requested in the prompt.

The seminal work by Black et al. [2] on applying Deep Reinforcement Learning (RL) to
fine-tune Stable Diffusion processes constitutes a significant advancement towards solving
the overall alignment challenge. This work allows for fine-tuning large Stable Diffusion
models without having to curate new datasets. However, it revealed an intricate challenge:
fine-tuning for prompts structured like “N [objects]” proved unsuccessful. This limitation,
as identified by Black et al., stems from a mismatch in the number of objects requested
in the prompt and those present in the generated image, posing a significant barrier to
practical application. Black et al. noted that when optimizing for prompts following the form
“N animals”, denoising diffusion policy optimization (DDPO) exploits the reward function,
which utilizes LLaVA (Liu et al. [9]) in conjunction with a BERT score (Devlin et al. [4])
metric, by rendering text related to the requested number in the image. As a result, the
reward mean of samples increases due to the LLaVA and BERT model finding the generated
images to be synonymous with the prompts, attributable to the text present in the images.
This reward-hacking is depicted in Figure 1.2, where the generated images do not align with
the prompts.

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Sample prompts and images from Black et al. [2]. The number of elements
in the image does not align with the number requested in the prompt, however, such images
still attain a high reward because of the presence of words related to the requested count.

This research builds upon the foundation laid by Black et al. [2], focusing on refining
Deep Reinforcement Learning approaches to address the task of object counting in image
generation. By optimizing the accuracy of object representation, we aim to push the bound-
aries of what is achievable with Stable Diffusion models, extending their applicability, and
enhancing their practical value in real-world applications.

While the focus of our research remains to utilize deep RL to overcome the limitations of
denoising diffusion policy optimization, which failed on prompts of the form “N [objects]”,
we refined our scope to a more manageable subset. We concentrated our efforts on a more
fixed subset of the general problem — specifically, the task of generating images in response
to prompts of the form “N [color] balls on a white background,” for N in the range of 1 to 7.
Figures 1.3 and 1.4 illustrate the presence of the counting issue within this subset of prompts.
This decision allowed for a more precise examination of the object-counting problem within
a controlled environment, enhancing the relevance of our findings. We directly addressed the
counting problem by formulating reward functions based on the number of objects in the
image, inferred by an object detection module. We hypothesized that by formulating reward
functions that penalize any discrepancies between the number of objects specified in the
prompt and the number actually depicted in the image, we can correct the denoising process
of Stable Diffusion to generate the correct number of objects, regardless of application.

CHAPTER 1. INTRODUCTION 4

Figure 1.3: Baseline 1 Ball Sam-
ples Sample images generated with
the baseline model for the prompt “1
[color] ball on white background.”

Figure 1.4: Baseline 5 Balls Sam-
ples Sample images generated with
the baseline model for the prompt “5
[color] balls on white background.”

We believe that progressing towards solving this simpler count problem is a significant
contribution. The results demonstrated that fine-tuning count alignment results in more
accurate image generation. The resultant image sets and their distribution are smaller in
variance, higher in accuracy, and have a mean and median closer to the expected count. In
practice, our approach partially generalized beyond simple shapes to more complex objects,
in essence, serving as a source of transfer learning. Below is some preliminary information
important to our work.

1.2 Reinforcement Learning

Black et al. [2] demonstrate how problems involving sequential decision-making, such as
diffusion, can be addressed as Markov Decision Process (MDP) problems. An MDP is de-
fined by (S,A, ρ0, R), where each element stands for a different aspect of the decision-making
environment: S is the state space, A refers to the action space, ρ0 denotes the initial state dis-
tribution, and R represents the reward function. The Markov Property, the basis for MDPs,
asserts that the transition to the next state st+1 depends only on the current state st and the
action at, mathematically expressed as P (st+1|st, at) = P (st+1|st, at, st−1, at−1, . . . , s0, a0).
This property ensures that the environment’s future is conditionally independent of its past.
Under this framework, at a given timestep t, an agent observes the current state st ∈ S,
executes an action at ∈ A, earns a reward r, based on the function R(st, at), and moves to a

CHAPTER 1. INTRODUCTION 5

subsequent state st+1, which is determined probabilistically as st+1 ∼ P (st+1|st, at). A policy,
denoted as π(a|s), defines the RL agent’s behavior in the environment and is a probability
distribution over A, given the current state st. As the agent acts in the environment, the
states and actions can be aggregated to formulate a trajectory, τ = (s0, a0, s1, a1, . . . , sT , aT).
Under this setup, the goal of reinforcement learning is to maximize the expected cumulative
reward over trajectories sampled from the agent’s policy, written as JRL(π) (Black et al. [2]):

JRL(π) = Eτ∼p(τ |π)

[
T∑
t=0

R(st, at)

]

1.3 Diffusion Models

In this study, denoising diffusion probabilistic models (DDPM) are utilized to turn noise into
context-aligned images (Ho, Jain, and Abbeel [6]). More specifically, as stated by Black et al.
[2], we aim to learn a conditional diffusion probabilistic model (Sohl-Dickstein et al. [12],
Ho, Jain, and Abbeel [6]), denoted as the distribution p(x0|c) “over a dataset of samples x0

and corresponding contexts c” (Black et al. [2]). Conditional diffusion probabilistic models
differ from diffusion probabilistic models because they utilize the additional context c, which
allows for the generation of data given the context signal. In our use case, this allows images
to be generated from text prompts. As explained by Black et al. [2], we aim to learn the
distribution via denoising diffusion probabilistic models. Diffusion models function by having
a forward process q(xt|xt−1), consisting of a Markov chain of sequential diffusion steps that
add noise to data (Ho, Jain, and Abbeel [6]). Subsequently, “reversing the forward process
can be accomplished by training a neural network µθ(xt, c, t), with the following objective:

LDDPM(θ) = E(x0,c)∼p(x0,c),t∼U{0,T},xt∼q(xt|x0) ∥µ̃(x0, t)− µθ(xt, c, t)∥2

where µ̃ is the posterior mean of the forward process, a weighted average of x0 and xt”
(Black et al. [2]). The reverse process works by generating data from the noise iteratively
across timesteps, T to 0. The goal is to optimize the objective LDDPM(θ), which aims at
“maximizing a variational lower bound on the log-likelihood of the data” (Black et al. [2]).
The denoising process results in a sample distribution denoted as pθ(x0|c) (Black et al. [2]).

Consequently, the objective of “denoising diffusion reinforcement learning (DDRL) is to
maximize a reward signal r defined on the samples and contexts:

JDDRL(θ) = Ec∼p(c),x0∼pθ(x0|c)[r(x0, c)]

CHAPTER 1. INTRODUCTION 6

for some context distribution p(c) of our choosing” (Black et al. [2]). We assume the
presence of a pretrained diffusion model, using Stable Diffusion v1.4 (Rombach et al. [11])
as the base model for experiments. We chose to employ this model because it is “a latent
text-to-image diffusion model capable of generating photo-realistic images given any text
input”(Rombach et al.[11]). Our novel contribution to this objective comes from our vision-
informed reward functions.

DDPO

Diffusion probabilistic models have been utilized in a variety of applications, ranging from
image generation to video synthesis. Black et al. [2] introduced an innovative approach for
fine-tuning such models, denoising diffusion policy optimization (DDPO). DDPO is tailored
to train diffusion models to meet specific downstream objectives defined by the reward func-
tion. By conceptualizing the denoising process as a multi-step decision-making task, Black
et al. [2] defined a class of policy gradient algorithms that enabled them to train denoising
diffusion as an RL problem.

DDPO directly optimizes the RL objective using policy gradient estimators. Under
DDPO, Black et al. [2] implemented two variants: the score function policy gradient es-
timator, commonly known as REINFORCE, and an importance sampling estimator. The
REINFORCE variant computes gradients using data generated by the current model pa-
rameters, ideal for single-step optimizations. The importance sampling variant, on the other
hand, is suited for multiple optimization steps, employing trajectories from prior model
parameters for gradient estimation. It is defined as (Black et al. [2]):

∇θJDDRL = E
[∑T

t=0
pθ(xt−1|xt,c)

pθold (xt−1|xt,c)
∇θ log pθ(xt−1|xt, c)r(x0, c)

]
(DDPOIS)

Per Black et al. [2]’s analysis, they found the importance sampling variant “...to be
the most effective algorithm...likely due to the increased number of optimization steps”.
Particularly, this led to the importance sampling variant to achieve high rewards among
samples earlier in training. Accordingly, we utilized the importance sampling variant for our
experiments as well.

In their work, Black et al. [2] applied this methodology to fine-tune text-to-image diffusion
models, focusing on tasks such as image compressibility, alignment, and aesthetic quality.
Building on the foundation they established, our research extends their work to specifically
address the challenges of accurate object counting in images, an issue briefly mentioned in
their appendix.

CHAPTER 1. INTRODUCTION 7

1.4 Curriculum and Transfer Learning

Curriculum and transfer learning serve as meta-algorithms to improve the training of machine
learning algorithms. Both methods of learning can be applied to complete complex or out-of-
domain tasks by first introducing the agent to subtasks related to the target task. Transfer
learning entails training an agent on particular source tasks to accelerate the learning of
a policy for a more complex target task (Zhuang et al. [14]). This method of learning
is especially useful in environments where a source task can be formulated that is similar
enough, but not as complex as the target task. When the target task is too complex for just
a singular source task, curriculum learning is a more advantageous approach.

In practice, curriculum learning is similar to transfer learning as it relies on training on
source tasks to gain coverage and knowledge to complete a target task. However, curriculum
learning involves creating a directed acyclic graph of tasks (Narvekar et al. [10]). Each
node represents a set of tasks, a module, and the edges determine the sequence of learning.
Modules can range in complexity from exploration-level modules, focusing on exploring a
given environment, to task-level modules. The formulation of a curriculum involves defining
modules and training using some order of those modules. We define the simplest form as
Sequential Curriculum Learning, where the modules across episodes of training are linearly
related in complexity. Selecting an appropriate curriculum graph is critical for the effective
transfer of learned behaviors and knowledge across task domains. In theory, curriculum
learning enables the sequential transfer of policies and knowledge from the various subtasks.
We found both transfer learning and curriculum learning to be relevant to our research
experiments.

CHAPTER 1. INTRODUCTION 8

Figure 1.5: This diagram represents the sequence of learning modules in a curriculum learning
plan. Each node represents a learning module, with the size of the node indicating the
complexity of the module and directed edges representing the progression from one module
to the next.

1.5 Object Detection and YOLO

Object detection in machine learning enables a variety of applications. Modern object de-
tection methods rely on deep learning, and given an image, provide the user with a set
of bounding boxes, class labels, and confidences. The task of object detection is typically
a supervised learning problem but has a wide history of alternative approaches, including
breakthroughs in unsupervised methods. The object detector we employed in our reward
functions was YOLO: You Only Look Once (Fang et al. [5]). We also tested two other object
detectors: CutLER (Wang et al. [13]) and DETR (Carion et al. [3]). The metrics we used
for selecting our object detector were speed and accuracy. Speed was required as its use in
reward functions requires that it be able to generate a proper reward very quickly in the
training of the model. YOLO proved to be significantly faster than the other two meth-
ods. We assessed accuracy by creating a set of images, each generated under the prompt “5
[color] balls on a white background”. Using each object detector, we calculated the counts
of balls in these images and compared the distribution of these detector-generated counts to
a human-labeled count distribution. Once again, we found that YOLO performed the best.

The underlying architecture of YOLO utilizes a convolutional neural network that pre-
dicts both bounding boxes and corresponding class probabilities (Fang et al. [5]). This
approach allows YOLO to look at the whole image only once and detect objects more effi-
ciently than methods that predict objects individually or via multiple scans. YOLO divides

CHAPTER 1. INTRODUCTION 9

the input image into a grid and each grid cell predicts bounding boxes and scores that in-
dicate the possibility of objects of a given class (Kundu [8]). These scores are determined
by how confident the model is that a box contains an object in addition to how accurate it
thinks the bounding box is (Kundu [8]). “The model is trained using a ‘bipartite matching
loss’ which compares the predicted classes and bounding boxes of each of the K=100 object
queries to the ground truth annotations (so if an image only contains 4 objects, 96 anno-
tations will just have a ‘no object’ as class and ‘no bounding box’ as bounding box). The
Hungarian matching algorithm is used to create an optimal one-to-one mapping between
each of the N queries and each of the N annotations. Next, standard cross-entropy (for the
classes) and a linear combination of the L1 and generalized intersection over union loss (for
the bounding boxes) are used to optimize the parameters of the model” (Abai [1], Carion
et al. [3]).

We utilized a YOLO model fine-tuned for balloons using the Matterport Balloon De-
tection dataset (Abai [1]). The balloon fine-tuning enabled the model to detect spherical
objects with higher accuracy. As a result, YOLO became our preferred choice for the object
detection task.

Figure 1.6: Object Detection Results. Results of object detection are evidenced by the
rectangular outlines to identify detected balls of various sizes and fragments. We found these
bounding boxes to be consistent with human interpretation.

Figures 1.7 and 1.8 show that the distribution of counts using YOLO and hand counts
were similar, albeit with some minor differences. Despite these differences in outputs, these
results determined that YOLO’s performance was sufficient.

CHAPTER 1. INTRODUCTION 10

Figure 1.7: YOLO Identification
of Ball Counts Distribution of ball
counts identified by the YOLO ob-
ject detection model.

Figure 1.8: Hand Counted Ball
Identification Distribution of ball
counts identified through manual
counting for comparison.

Object detection in our research served the purpose of identifying the number of balls in
the images rendered by the diffusion model we fine-tuned. Object detection on generated
images becomes an interesting problem, as Stable Diffusion can often generate “in-between”
images that don’t fully match any class. This issue meant that the counting problem for
more complex image prompts, such as the prompts “N turtles” and “N raccoons” that we
had seen previously, is unfeasible to approach with a local object detection-based reward
function. Although approaches for detecting such objects and figures exist, such as Segment
Anything (Kirillov et al. [7]), we were constrained by our computational resources. Thus
we decided to focus on a subset of the problem, balls, aiming to find generalization among
results. The detected number of balls and their locations were used in the reward function
to compare the number of balls generated to the number of balls demanded by the prompt.
Additionally, the bounding box and confidence information informed us of how reliable the
ball prediction was. For instance, a ball with a bounding box deviating significantly from a
square would not be considered a proper ball by our standards as it should not be likely for
a spherical ball to be in a bounding box that has a significantly larger width than height or
vice versa.

11

Chapter 2

Methods and Experiments

The main component of our study’s RL approach was the design and implementation of
specialized reward functions. These functions were formulated to align with our primary
downstream objective: accurately producing the correct count of objects.

The reward functions consisted of two parts: a processing portion, which takes the out-
put of the object detection network and calculates the number of identified balls based on
the validation of bounding box dimensions, and a reward function portion that acts as a
function of the expected count. The processing portion’s main purpose was to take the
list of bounding boxes that meet the confidence threshold criteria and remove significantly
overlapping bounding boxes, which happened when the object detector erroneously iden-
tified one ball twice. We determined a confidence threshold of 0.90 to be appropriate for
our experiments because we wanted to consider only reliable detections in our function to
ensure the integrity of our detected count. This high confidence threshold helped minimize
the chances of false positives, where the object detection network might have mistakenly
identified non-ball objects, like shadows, as balls. The processing function then sorted the
remaining balls into “good balls” and “bad balls”. Good balls are the default while bad
balls are those that only partially appear, for instance being cut off by the boundary of the
image. We screened these by considering the aspect ratios of the bounding boxes provided
by the YOLO network, and if a bounding box deviated significantly from 1 we considered
the ball a bad ball. Accordingly, the processing portion returns a list of good balls and a list
of bad balls. The reward calculation portion then relied on a function of the three inputs:
the prompt, the list of good balls, and the list of bad balls. Our reward function framework
was pivotal for testing our hypothesis, as it allowed us to train the model in varying ways.
Much like the original DDPO implementation, these rewards were not used as-is, rather they
were normalized for training.

We tested seven different reward function methods, all under the general framework of
comparing the total number of balls (the sum of the number of good and bad balls) with

CHAPTER 2. METHODS AND EXPERIMENTS 12

the expected number. Each function had a maximum reward of 100, which indicated that
the number of balls in the image aligns perfectly with the expected number of balls. Our
experiments involved assigning models a specific prompt structure, “N [color] balls on a
white background,” and utilizing a reward function, from the seven we curated, for training.
N was predetermined for each model as one of the following: 1, 3, 5, or 7. The colors used
for these prompts were drawn at random from a set including red, green, blue, orange, and
yellow. The rationale and differences between each of the seven reward functions will be
discussed in the subsequent sections.

A challenge became apparent when prompting for images with larger values of N, partic-
ularly with N set to 7. When prompted with a smaller N, the model would generate counts
that were mostly around the mean with reasonable variance. However, when N was greater
than 5, the count distribution would have a much higher variance. Achieving accurate counts
for larger N s proved difficult, suggesting the natural progression in difficulty would be cre-
ating a larger number of balls. This insight led us to adopt multiple curriculum learning
approaches. We structured our curriculums to start off with simple tasks, such as generating
small counts or focusing on color, before moving to training on more complex tasks, such as
generating larger counts. By methodically increasing the complexity of modules, we aimed
to improve the model’s capacity for accurate count generation. The curriculum learning
approaches will be discussed in depth later in this section.

2.1 Baseline and Ablations

Our research aimed to show that RL fine-tuning for count is effective, hence we created a
baseline to compare to. In Stable Diffusion models, the number of timesteps T plays a critical
role in image generation and quality. We conducted several ablations of hyperparameters,
specifically focusing on the effects of training diffusion timesteps on training, reward, and
image quality. Figure 2.1 illustrates the reward mean of samples across epochs when training
on the prompt “5 [color] balls on white background” for T=[10, 20, 35, 40, 50]. All timesteps
performed sufficiently well for many epochs, illustrated through the increasing reward mean.
We did notice that the T=50 case fails after 250 epochs, but we attributed this to too high
of a learning rate. If timesteps were fundamental for generating prompted counts, we would
expect to see differing reward mean curves as more timesteps would allow the model to
generate more prompt-aligned images. In that case, the model with T=10 would never learn
or increase in reward mean because it would never have enough timesteps to generate 5 ball
instances. We would also expect the T=50 to start at a higher reward mean if timesteps were
critical for count generation. This would imply that the count problem could be solved with
more timesteps alone. However, this was not the case, and the ablation demonstrates that
counts emerge very early in timestep enumeration, which is why all training curves start at
a similar reward mean and are increasing. When looking at sample images from the various
timestep models, we noticed that counts converged for all the models, meaning that many

CHAPTER 2. METHODS AND EXPERIMENTS 13

timesteps are not essential to solving the counting problem since the counting inconsistency
is a result of the Stable Diffusion model’s misunderstanding of count.

Figure 2.1: Ablations The plot above showcases the reward mean curves across epochs for
our ablations experiment where we set diffusion timesteps T=[10,20,35,40,50]. The reward
mean curves remain similar across this ablation. We utilized the Linear Reward Function
for these ablation experiments.

This diffusion timestep ablation experiments demonstrated that the increase in reward
mean is not a result of refinement from additional timesteps, but rather the impact of the
fine-tuning on the Stable Diffusion model. We noticed that images generated with fewer
timesteps had a lower resolution and no distinct foreground and background. Although
fewer timesteps had a lower computational cost, because we were focused on both practical
image generation and count, we found that 30 timesteps was a good balance between reward
function performance, image quality, and computational cost.

As our final hyperparameters, we apply:

• Diffusion Timesteps: 30

• Learning rate: 3× 10−5

• Optimizer: AdamW

• Batch size: 3

CHAPTER 2. METHODS AND EXPERIMENTS 14

• Sample Per Iteration: 9

• Epochs: 300

• DDPO Gradient updates per iteration: 1

Other hyperparameters such as the Clip Range and Optimizer β values were set to the
values utilized by Black et al. [2]. Although we were unable to utilize multiple optimization
steps during our training due to memory constraints, we found our model performance to
be satisfactory. Our Stable Diffusion model of choice for all experiments was the CompVis
Stable Diffusion v1.4 model (Rombach et al. [11]). We utilize reward mean across samples
as an evaluation metric for training.

To empirically validate the effectiveness of our RL-based fine-tuning approach, we adopted
a sampling-based evaluation strategy. In order to compare our fine-tuned results to the base-
line model weights results, we generated two sets of 50 sample images, for prompts formatted
as “N balls on white background” — one set before applying our fine-tuning training and
one set afterward. These image sample sets facilitated the plotting of count frequency dis-
tributions, providing a direct means to observe and compare the impact of our fine-tuning
process on the model’s performance. We chose the distribution of count frequencies as our
primary metric of comparison because it provides a comprehensive overview of the model’s
accuracy and consistency in object count generation. By comparing metrics like the vari-
ance, accuracy, and mean of the object counts across these two sets of images, we could
examine how fine-tuning impacts the distribution. We empirically saw that the distribu-
tions for smaller Ns were relatively adequate, but N=5 resulted in a distribution with high
variance, hence N=5 served as a significant baseline of comparison. This is evident in the
top two plots of Figures 3.3, which illustrate the counts when prompted with 1 [color] ball
and 5 [color] balls using the baseline model. The base Stable Diffusion model fails to gen-
erate the expected count reliably when N is larger than 1. Having established a baseline
and demonstrated variability in our model’s performance, we conducted experiments with
several reward functions.

2.2 Reward Functions

Linear Reward Function

The Linear Reward Function was the first and best-performing reward function. This reward
function begins with a base reward of 100, and linearly penalizes the absolute difference
between the expected number of balls versus the total number of balls as follows: reward←
reward − 15 × |totalBoxes − expectedCount|. This penalization adjusts the reward based
on the difference between the total count of detected objects, totalBoxes, and the expected
count specified in the prompt, expectedCount. Afterward, there incurs an additional penalty

CHAPTER 2. METHODS AND EXPERIMENTS 15

given on how many of the total balls were bad balls. This is written as reward← reward−
5× |badBoxes|. This part of the reward function attempts to penalize balls being generated
on the edges of the image (ones that are half spheres). Thus an image that maximizes reward
would be one that has the same number of balls as expected and all of those balls would be
“good”. We believe this function performed the best because it penalized deviations from
the target count on a linear schedule, providing a direct gradient signal to the model. This
reward structure may have simplified the optimization pathway, guiding the model towards
higher rewards.

Ratio Reward Function

The Ratio Reward Function was intended as an analog for the linear reward function under
the dynamic count curriculum learning approach. This again is a natural reward function,

which is given by reward← reward−100×
(

|totalBoxes - expectedCount|
expectedCount

)
. This introduces another

scaling factor of the expected count. The logic behind this is that penalization should also
have a dependence on how many balls were expected instead of just the absolute difference.
This is because the difference between generating 2 balls when 1 was expected should be
penalized more than the difference between generating 8 balls when 7 are expected. One
represents a 100% increase in number of balls, while the other is only a 14%. Given this
quality of the reward function, we studied this reward function under the dynamic count
curriculum and regular fine-tuning. Under the dynamic count curriculum, instead of seeing
a fixed number of prompted balls, we prompted for various quantities of balls per epoch of
training. Similar to the Linear Reward function, we followed with an additional penalty for
bad balls: reward← reward− 5× |badBoxes|.

Exponential Reward Function

We also attempted to make a reward that penalizes heavily when off by a small amount,
and less severely when off by a significant margin. The penalization strategy is as follows:
reward ← reward× α|totalBoxes−expectedCount|. Here, α is a constant less than 1, and its expo-
nentiation by the absolute difference between expectedCount and totalBoxes forms the basis
of our penalty calculation. We empirically found α=0.75 to work the best. The exponential
function ensures that the biggest jump in penalty occurs when the count is off by 1, critically
penalizing near-misses. Beyond being off by 1, each additional count error results in a smaller
relative increase in penalty, understanding that large miscounts are more indicative of more
systemic issues with the Stable Diffusion model. This penalization strategy highlights the
fact that Stable Diffusion models are often off by a small count, thus penalties for small
miscounts should be more significant.

CHAPTER 2. METHODS AND EXPERIMENTS 16

Hybrid Reward Function

The Hybrid Reward Function represents a dynamic approach to penalizing deviations from
the expected object count. This function was inspired by the Linear and Exponential Re-
ward Functions. It is defined by a dual-phase penalization strategy, where for deviations
larger than a certain threshold, a linear penalty is applied: reward ← reward − 15 ×
|totalBoxes − expectedCount|. For smaller deviations, the penalty becomes exponential:
reward← reward× (0.75)|totalBoxes−expectedCount|. Based on empirical experiments on thresh-
olds between 1 and 4, we established a threshold of 3. This methodology was designed to
accurately reflect the severity of counting errors, applying harsher penalties for minor mis-
counts which seemed to be a bottleneck. The hybrid model thus adjusts its penalization
mechanism based on the error magnitude, acknowledging that different types of errors have
varied impacts on the model’s performance.

Relative Reward Function

The Relative Reward Function is a variation of the Ratio Reward Function and focuses on
penalizing the relative error in the detected object count compared to the expected count as

well. The penalization formula is articulated as reward← reward−β×
(

|totalBoxes−expectedCount|
expectedCount

)
,

introducing a variable β multiplier allowing for an increase or decrease in severity for de-
viation. We experimented with β=[80,70,50,30] and found that 50 performed the best.
A more effective smaller multiplier suggested a more lenient approach to penalization,
possibly to encourage exploration or to stabilize the model’s training by limiting drastic
jumps in reward. Additionally, the function incorporates a penalty for bad balls given by
reward← reward− 5× badBoxes× (1+ relativeError). By scaling the penalty for badBoxes
with (1 + relativeError), we made it such that penalties are not flat but instead grow with
the relative error. This means that the more inaccurately the model counts (i.e., the higher
the relative error), the more it is penalized for each bad detection. As such, this function
penalizes inaccuracy and badBoxes more severely than the Ratio Reward Function.

Accuracy Reward Function

Emphasizing the importance of accurate object detection, the Accuracy Reward Function
scales the reward based on the accuracy of the count. This function prioritizes exact match
precision over relative error adjustments. It works on the principle that the reward should
directly reflect the proportion of identified objects. The function works as follows: reward←
reward × accuracy and reward ← reward − (badRatio × reward), where accuracy = 1 −
|totalBoxes−expectedCount|

expectedCount
, and badRatio reflects the proportion of inaccurately detected objects,

badBoxes
max(1,totalCount)

. Unlike the other functions, which scale penalties based on the absolute or
relative error, or adjust penalties based on deviation size, the Accuracy Function incentivizes
precision in detection and ball consistency.

CHAPTER 2. METHODS AND EXPERIMENTS 17

Adaptive Threshold Reward Function

This function adapts its threshold for penalization based on the model’s historical per-
formance: reward ← reward − adaptivePenalty × |total − expectedCount|. This function
calculates the deviation from the expected account, and using an adaptive threshold that
gets updated across epochs, selects an adaptivePenalty. This allows the model to gradu-
ally refine its sensitivity to errors through feedback from its own performance. The reward
function applies a larger penalty for discrepancies that exceed the threshold and a smaller
penalty for count differences less than or equal to the threshold. This dynamic approach
ensures that the model is penalized proportionally more when, after epochs of progressive
learning, it produces images that resemble less refined or past fine-tuning stages. This pol-
icy is intuitive because because we expect the model’s performance to consistently improve
over time, without regressing to less accurate stages of image generation. This self-adjusting
mechanism aims to calibrate the model’s penalization threshold across epochs, encouraging
a more efficient learning process tailored to the model’s changing accuracy.

Emerging Patterns

Through our experiments, we observed that focusing on refining the count accuracy did not
adversely affect the model’s ability to accurately align with the specified colors and objects.
This was a significant finding because it indicated that training for count refinement could
continue without severely compromising holistic prompt alignment. However, we observed
that the training under differing reward functions impacted the style of balls in the images,
with some models generating more or less detailed balls. These variations will be further
discussed in the Results and Discussion sections. Moreover, we did see that once we reached
each training’s “upper bound”, subsequent training did not increase the reward mean and
there seemed to be a degradation of image quality. To adjust for this, we utilized model
checkpoints prior to the upper bound for our analysis and evaluation.

CHAPTER 2. METHODS AND EXPERIMENTS 18

Pseudocode for the Reward functions

Algorithm 1 Counter Reward Function

Require: Object detection pipeline obj detector, Base reward base reward, Image list
images, Prompt list prompts

Ensure: A list of scores corresponding to each image and prompt
function Postprocess(boundingBoxes)

Filter boundingBoxes to remove duplicates and separate into goodBoxes and
badBoxes, badBoxes being bounding boxes that have disproportionate aspect ratio

return goodBoxes, badBoxes
end function
function Reward(images, prompts)

Initialize scores
for each image in images do

boundingBoxes← obj detector(image) ▷ returns list of bounding boxes
goodBoxes, badBoxes ← Postprocess(boundingBoxes)
totalBoxes← length of goodBoxes + length of badBoxes
reward← base reward
Determine expectedCount based on prompt
if linear then

reward← reward− 15× |totalBoxes− expectedCount|
reward← reward− 5× length of badBoxes

else if ratio then
reward← reward− 100×

(
|totalBoxes−expectedCount|

expectedCount

)
reward← reward− 5× length of badBoxes

else if exponential then
reward← reward× α|totalBoxes−expectedCount|

end if
Append updated reward to scores

end for
return scores

end function

CHAPTER 2. METHODS AND EXPERIMENTS 19

Algorithm 2 Counter Reward Function Cont.

Require: Object detection pipeline obj detector, Base reward base reward, Image list
images, Prompt list prompts, Threshold adaptive threshold

Ensure: A list of scores corresponding to each image and prompt
function Postprocess(boundingBoxes)

Filter boundingBoxes to remove duplicates and separate into goodBoxes and
badBoxes, based on aspect ratio

return goodBoxes, badBoxes
end function
function Reward(images, prompts)

Initialize scores
for each image in images do

boundingBoxes← obj detector(image) ▷ Detect objects
goodBoxes, badBoxes ← Postprocess(boundingBoxes)
totalBoxes← number of goodBoxes + number of badBoxes
reward← base reward
Determine expectedCount based on prompt
if hybrid then

if abs(totalBoxes− expectedCount) > 3 then
reward← reward− 15× abs(totalBoxes− expectedCount)

else
reward← reward× (0.75)abs(totalBoxes−expectedCount)

end if
reward← reward− 5× length of badBoxes

else if relative then
relativeError ← abs(totalBoxes− expectedCount)/max(expectedCount, 1)
reward← reward− β × relativeError
reward← reward− 5× length of badBoxes× (1 + relativeError)

else if accuracy then
accuracy ← max(0, 1− abs(totalBoxes− expectedCount)/expectedCount)
reward← reward× accuracy
reward← reward× (1− length of badBoxes/max(totalBoxes, 1))

else if adaptive then
deviation← abs(totalBoxes− expectedCount)
if deviation > adaptive threshold then

reward← reward− 20× deviation
else

reward← reward− 10× deviation
end if
Update adaptive threshold based on deviation

end if
Append updated reward to scores

end for
return scores

end function

CHAPTER 2. METHODS AND EXPERIMENTS 20

2.3 Curriculum Learning

In our research, we observed a notable trend: as N increased, both our reward function
and the Stable Diffusion model demonstrated diminishing results in generating the correct
count. Specifically, our reward function failed to capture all appropriate bounding boxes for
larger N s, and the fine-tuned Stable Diffusion model began to generate extraneous image
elements such as cameras, photography studios, and lighting fixtures. This observation led
us to hypothesize that the complexity of generating a large number of objects might be the
underlying issue. To address this, we employed curriculum learning strategies, theorizing
that training with a gradual increase in task complexity could improve learning outcomes.
We implemented:

• Color-Based Curriculum: This curriculum strategy involved a three-stage learning
process focusing on color differentiation. The agent was first trained on the prompt
“1 red ball on white background”, and then progressed to being trained on different
colored 1 ball prompts. Lastly, it was trained on N=5 different colored balls. We
conducted this curriculum learning experiment prior to training our models. It did not
produce significant improvements compared to training directly on multiple different
colored balls, indicating that color variance was not a bottleneck.

• Dynamic Count Curriculum: This curriculum involved dynamically altering the
count of objects within a single training episode. Across each epoch, sample prompts
had a random number of balls, between 1 and 7, and the reward function took this into
account. In theory, each epoch served as a module with varying levels of complexity.
However, this approach was not as effective as the learning from one epoch did not
effectively transfer to the next, having no persistence of learned patterns.

• Sequential Count Curriculum: The most effective approach was a sequential cur-
riculum learning strategy. In this method, we began training on a small count of multi-
colored balls (e.g., “1 [red, blue, green, yellow, orange] ball on white background”) and
linearly increased the count across training episodes. We trained on 1, 3, 5, and finally
7 balls. This approach effectively facilitated the sequential transfer of learned knowl-
edge across counts. The details and results of this approach are discussed in the results
section.

For each curriculum learning approach, the model weights from the end of the previous
training module were loaded when transitioning to the next module. It is important to note
that we had to decrease the learning rate from 3e-5 to 3e-6 for adequate curriculum training
for larger N s. Our curriculum learning strategies emphasize the importance of thoroughly
testing the sequence and complexity of tasks in a curriculum.

21

Chapter 3

Results and Discussion

3.1 Results

Our experiments achieved significant results in shrinking the distribution of generated counts
for balls. Various versions of the seven reward functions were tested to see which performed
the best for both our training and practical effectiveness metrics. Figures 3.1 and 3.2 depict
the progression of the reward mean for sample images across training for the reward function
variants.

Figure 3.1: Reward Functions Comparison Comparison between Linear, Ratio, and
Exponential Reward Functions.

CHAPTER 3. RESULTS AND DISCUSSION 22

Figure 3.2: Reward Functions Comparison Comparison between Hybrid, Accuracy, Rel-
ative, and Adaptive Threshold Reward Functions.

Several functions facilitated constructive learning, evidenced by the increasing reward
means, however, some functions performed much better than others. It is important to note
that, because we had different penalization strategies across reward functions, the reward
mean across epochs alone is not an adequate indicator that reinforcement learning is effective
for resolving the N object problem. The sampling-based evaluation metrics and distribution
serve as better indicators of the impact fine-tuning has on model performance.

Specifically, the mean, median, and variance are important statistics in evaluating our
approach’s performance. A mean or median that is close to the expected count demonstrates
a model’s ability to consistently generate images with accurate counts. In an ideally fine-
tuned model for N=5, the mean and median would both be 5. This is because such a model
should generate samples whose count distribution resembles a tight normal distribution. This
would imply that, on average, the model successfully follows the numerical count given in the
prompt. Furthermore, a low variance and standard deviation indicate stability in a model’s
performance, ensuring that the generated counts are not only accurate but also consistent
upon multiple inferences. Our results demonstrate a decrease in mean and variance for both
the N=1 and N=5 cases across several reward functions. Refer to Figure 3.3 and Table
3.1 for statistics for the N=5 case. We found that when fine-tuning for N > 5, model
performance diminished significantly, hence we utilized a curriculum learning approach to
achieve adequate results for N=7.

CHAPTER 3. RESULTS AND DISCUSSION 23

Table 3.1: Statistical Summary of Model Performance by Reward Function for Prompts with
N=5

Function Mean Median Variance Standard Deviation Accuracy

Baseline 9.64 7.50 79.54 8.92 4.00
Linear 4.74 5.00 2.56 1.60 32.00
Ratio 5.28 5.00 4.04 2.01 30.00
Exponential 3.24 3.00 3.53 1.88 10.00
Hybrid 8.22 4.00 435.32 20.86 10.00
Relative 4.58 4.00 4.70 2.17 18.00
Accuracy 9.42 4.50 436.29 20.89 14.00
Adaptive Threshold 4.24 4.00 4.88 2.21 12.00

Per our statistical evaluation, the Linear Reward Function proved to optimize evaluation
criteria the best, massively shrinking down the baseline distribution and shifting the count
mean from 9.64 to 4.74 and median from 7.5 to 5 when prompted to generate 5 balls.
Additionally, the linear model displayed effective training, as demonstrated by a reward
mean that remained stable and never seriously declined. The linear function also showcased
the lowest variance among all tested functions. This low variance indicates that its learned
representation of count best aligns with our expectations. We also note significant increases
in accuracy from 82% to 98% for the 1-ball case and 4% to 32% for the 5-ball case when the
linear function was utilized for fine-tuning. Refer to Figures 3.3, 3.4, and 3.5.

CHAPTER 3. RESULTS AND DISCUSSION 24

Figure 3.3: Distribution of Ball Counts for Fine-tuned Model Top: Distribution of
ball counts in 50 samples from the baseline Stable Diffusion model for both the N=[1,5] cases.
Bottom: Distribution of ball counts in 50 samples from the fine-tuned Stable Diffusion model
for both the N=[1,5] cases. Results from the trained distribution have a lower variance and
are closer to the expected mean.

CHAPTER 3. RESULTS AND DISCUSSION 25

Figure 3.4: Fine-tuned 1 Ball Sam-
ples Sample images generated with
the fine-tuned model for the prompt
“1 [color] ball on white background.”
We did notice that the background for
many images had more of a brown or
grey hue, but this was also persistent
in the baseline model samples, hence
we treat it as a constant.

Figure 3.5: Fine-tuned 5 Balls
Samples Sample images generated
with the fine-tuned model for the
prompt “5 [color] balls on white back-
ground.” We did notice that the back-
ground of fine-tuned samples was
more white in hue compared to the
baseline.

Although the linear function performed the best statistically and was robust in train-
ing, we observed a slight haziness around each ball in the generated images. This did not
undermine the efficacy of the reward function, but it prompted us to investigate potential
causes for the haziness, particularly the influence of samples per epoch on image fidelity. In
the training context, we focus on samples per epoch since our experiments utilized a single
optimization step across the generated samples. In the original DDPO framework, a batch
size of 64 was used with 4 optimization steps, resulting in 256 samples per epoch. Due to
constraints on our computational resources, our experiments utilized 9 samples per epoch.

To assess whether the number of samples per epoch was significantly affecting training,
especially in terms of image quality and alignment with the prompts, we conducted additional
experimental runs. We discovered that too few samples per epoch resulted in the generation
of undesirable shapes or details and a slower learning process. This was expected because the
models lacked sufficient performance data, provided via comprehensive rewards, to establish
a robust gradient for training, leading to erratic training and performance trajectories. For
experiments with a greater number of samples per epoch, we focused on a model trained

CHAPTER 3. RESULTS AND DISCUSSION 26

with 256 samples per epoch over 50 epochs. The training of the 256-sample variant was
limited to 50 epochs due to resource and time constraints.

Figure 3.6 compares the count distribution for the 9 and 256 samples per epoch models.
The results validated that the 256-sample model performed similarly to the 9-sample model in
terms of statistical metrics and reward function effectiveness. Moreover, the 256 samples per
epoch model resulted in better image fidelity, having no signs of haziness or glow. Samples
images are located in the Appendix. A longer training duration with this configuration
might yield results that may not only match but potentially exceed those of the 9 samples
per epoch model in terms of both statistical metrics and visual alignment.

Figure 3.6: Comparison of Count Distributions for Linear Training Using Varying
Samples per Epoch The plot above showcases that the 9 and 256 samples per epoch models
trained using the Linear Reward Function performed similarly well. After being trained for
50 epochs, the large samples per epoch model attained a mean of 3.92, a median of 4.0, and
a variance of 2.97. We hypothesize that with further epochs of training, the distribution will
be comparable to or exceed the 9 samples per epoch model’s distribution.

The Ratio Reward Function also performed well, generating the second-lowest variance
and a mean close to 5. We originally trained the ratio model using the dynamic count
curriculum, however, those experiments led to unsatisfactory results as the model would
forget what it had learned across epochs. We postulate that the Ratio Reward Function did

CHAPTER 3. RESULTS AND DISCUSSION 27

not perform well with the dynamic count curriculum because the ratio reward incentivizes
generating more accurate counts for smaller Ns. Consequently, we believe that the Ratio
Reward Function teaches the Stable Diffusion model to take less of the prompt into account
for larger N as it understands the greatest priority is to minimize the penalty on the smaller
count prompts since the difference of being off for a smaller count is more substantial. We
then trained a model using the ratio function, but with prompts with constant N=5, like
the linear models. This led to the ratio function results presented in Table 3.1. However,
we discovered that the balls generated in sample images shared characteristics with golf
balls. For example, many balls were covered in dimples and were small in size in relation
to the entire image, much like golf balls. Refer to the Appendix for a sample image. This
slight misalignment with the expectations of the prompt, which only instructed for balls of
ambiguous type, in addition to the fact that its sample distribution is higher in variance and
lower in accuracy, leads to its evaluation as the second-best reward function for the counting
task.

We noticed that the training and sample images for the Exponential Reward Function
performed poorly for all α values we tested, thus the results from those experiments are not
noteworthy. Some intuition on why this function might have performed poorly is that the
distribution before training had a high variance. In this case, when an image was generated
with a significantly different number of balls than specified in the prompt, the increase in
reward for slight improvements was marginal and did not provide as strong a signal as a
more linear reward function would have.

For the Hybrid, Accuracy, Relative, and Adaptive Threshold Reward Functions, we no-
ticed some interesting trends. The Relative and Adaptive Threshold Reward Functions had
promising results, paralleling the performance of the linear and ratio functions in both train-
ing efficacy and statistical evaluation. This followed intuitively as the Relative approach was
an adaptation of the Ratio Reward function, and the Adaptive Threshold Reward Function
penalized on a linear schedule, much like the Linear Reward function. However, after 125
epochs, these models exhibited dramatic declines in performance; they essentially “forgot”
how to generate balls correctly. Upon further training, only the Relative reward function
managed to recover post-150 epochs, as evidenced by a rebound in the reward means in
Figure 3.2. This suggests some resilience or ability to recalibrate the learning trajectory
under DDPO.

On the other hand, the Hybrid and Accuracy reward functions performed very poorly
under statistical evaluation. Both functions exhibited increasing reward means, plateauing
near 80. However, when sampled, they generated images containing upwards of 120 balls,
which significantly affected the variance and standard deviation metrics, as shown in Table
3.1. Moreover, they had surprisingly similar results in terms of generated sample images.
Repeated sampling from these models produced nearly identical images, despite being trained
under different reward functions. This phenomenon suggests that there might be some

CHAPTER 3. RESULTS AND DISCUSSION 28

convergent learning behaviors or that similar penalization is inadvertently taking place across
these models. This behavior was unexpected and starkly different from the other reward
functions, which produced images with somewhat distinctive stylistic variations such as
having different color tones, ball sizes, or image depths.

These observations raise questions about the underlying mechanisms of model training
and hint at the possibility that certain reward configurations might lead to a homogeniza-
tion of learning patterns. Further investigation into these phenomena could shed light on
optimizing reward functions for not just accuracy and consistency for the counting task, but
also for maintaining diversity across generated content for other objectives outside of just
count.

The secondary focus of the reward functions was to see what function would work best for
curriculum learning. We chose to employ the Linear Reward Function because it performed
the best, both for the distribution comparison and the training reward mean. For our
experiments, we utilized N=[1,3,5,7] for the sequential curriculum approach and loaded the
weights from the previous module when conducting training for the current module. We
hoped that training using this approach would lead to adequate results for prompts where
N > 5, having chosen N=7 as our value of choice. Figures 3.9, 3.10, 3.11 demonstrate
the positive effect curriculum learning had on training on counting larger Ns. Specifically,
utilizing curriculum learning for N=[3,7] resulted in stark differences in the reward mean
compared to training for such Ns without curriculum learning. As evident in Figures 3.9
and 3.11, the reward means start at a much higher point at epoch 0 and continually increase.

CHAPTER 3. RESULTS AND DISCUSSION 29

Figure 3.7: Distribution of 7 Ball Counts for Fine-tuned Model The top figure is
the distribution of 50 samples after regular fine-tuning on the prompt “7 [color] balls on
white background.” The bottom figure is the distribution of 50 samples after curriculum
fine-tuning on the same prompt. The distribution for the curriculum learning approach is
better and has a lower variance than the regular approach.

Figure 3.7 showcases the distribution of counts for N=7 after regular training and after
curriculum learning. Although not flawless, curriculum learning results in much better accu-
racy, mean, and standard deviation. The distribution with regular fine-tuning for the 7 balls
looked similar to that of the baseline model, whereas the curriculum learning distribution
seemed more adequate. In Figure 3.10, we observe that curriculum learning and regular fine-
tuning achieve comparable results for 5 balls. However, at 7 balls, the distinction becomes
much more clear: regular fine-tuning yields only marginal gains, whereas curriculum learning
leads to significant improvements in the reward mean. We believe this can be attributed
to the fact that training on previous modules in the curriculum formulates a generalizable

CHAPTER 3. RESULTS AND DISCUSSION 30

policy that acquires knowledge and learns patterns for generating count. When transferred
for larger N s, this knowledge can be extrapolated to quickly learn how to generate the new
prompted count. Our experiments shed light on the importance of curriculum learning for
solving the counting problem.

Figure 3.8: Regular/Curriculum
1 Ball Reward Mean Plot The
plot demonstrates improvement in
alignment to prompts for 1 ball
prompts.

Figure 3.9: 3 Balls Curriculum vs.
Regular Fine-tuning Comparison
of reward mean during curriculum
learning vs regular fine-tuning for 3
balls.

Figure 3.10: 5 Balls Curriculum
vs. Regular Fine-tuning Compar-
ison of reward mean during curricu-
lum learning vs regular fine-tuning
for 5 balls.

Figure 3.11: 7 Balls Curriculum
vs. Regular Fine-tuning Compar-
ison of reward mean during curricu-
lum learning vs regular fine-tuning
for 7 balls.

The main hypothesis of the report was to establish if it was possible to fix the counting
problem on balls using reinforcement learning, and if this would lead to sufficient generaliza-

CHAPTER 3. RESULTS AND DISCUSSION 31

tion in providing more accurate counts in generating other kinds of images. Using transfer
learning by loading the ball-count model weights from the curriculum learning approaches
for N=[3,5], we wanted to see if the counting knowledge that was learned by the policy
would generalize to the case of generating “[3,5] cats”. Figure 3.17 shows an improvement in
generating the proper number of cats when 50 sample images were generated from the base-
line Stable Diffusion model versus the curriculum-trained model. Fortunately, this increase
in count accuracy did not appear to lead to significant degradation of the image quality.

CHAPTER 3. RESULTS AND DISCUSSION 32

Figure 3.12: 3 Cat Samples Gen-
erated Using Baseline Weights
Note the frequency of 2 cats instead
of the requested 3.

Figure 3.13: 5 Cat Samples Gen-
erated Using Baseline Weights
Note the frequency of 3 cats instead
of the requested 5.

Figure 3.14: 3 Cat Samples
Generated Using Curriculum 3
Weights We see considerable im-
provements in the count in compari-
son to the baseline model.

Figure 3.15: 5 Cat Samples
Generated Using Curriculum 5
Weights We see considerable im-
provements in the count in compari-
son to the baseline model.

Figure 3.16: Cat Sample Images Note the quality of the image of cats is similar to the
original.

CHAPTER 3. RESULTS AND DISCUSSION 33

Figure 3.17: Distribution of Cat Counts Given Input Distribution of the
number of cats generated by the model, comparing the baseline and curriculum
fine-tuned models for the prompt “[3,5] cats.”

In Figure 3.17, the yellow bars on the left plots denote the number of correct counts when
prompted to generate 3 cats using both the baseline and curriculum fine-tuned weights. The
increase in mean and accuracy demonstrates improved prompt alignment. On the right,
the prompt was to generate 5 cats, and the correct amount of cats is denoted by the red
bars. While this was not able to be optimized completely, compared to the baseline Stable
Diffusion model, the fine-tuned model distribution has an accuracy of 400% more than the
baseline and a mean closer to 5. This represents a significant improvement compared to the
baseline, especially in the context of knowing that the model was solely trained on correcting
the counts of balls. This demonstrates that the learning for counting balls has effectively
generalized to include counting cats as well. This example of transfer learning shows that
the counting strategy developed for simple ball scenarios is adaptable and can be applied to
counting objects across different categories. These results hint at the notion that the model
has an intrinsic representation of count, which enabled the transfer learning.

CHAPTER 3. RESULTS AND DISCUSSION 34

3.2 Discussion

The results from our reinforcement learning-based approach to address the counting problem
in image generation have been encouraging, especially with the Linear Reward Function.
The curriculum learning strategy demonstrated its efficacy by improving performance on
more challenging prompts following N > 5, suggesting a practical way of training models
on progressively complex tasks such as larger counts. Our findings confirm the potential of
reinforcement learning not only in enhancing the accuracy of counts but also in maintaining
the quality and prompt alignment of generated images. Additionally, the transfer learning
results, specifically the generalization from counting balls to counting cats, provide a com-
pelling proof of concept that the techniques developed for one domain can be extrapolated
to another. This transfer-learning is a critical finding as it ensures that fine-tuned Stable
Diffusion models can function across various tasks in creative or commercial settings.

3.3 Limitations

However, several limitations must be acknowledged:

• Model Dependence on Samples per Epoch: Our experiments showed a depen-
dency on the number of samples per epoch, with larger sample sizes providing better
image fidelity. This dependency can pose a challenge in computationally-constrained
environments and might limit the scalability of our approach. Moreover, it is not in-
herently clear whether a greater number of samples per epoch results in equivalent
refinement compared to the fewer samples we utilized.

• Generalization Capability: While we observed promising results in generalizing
from balls to cats, this may not apply to all categories or more complex objects. We
understood that the Stable Diffusion model was trained on images of colorful balls, but
we do not know if the counting principle extrapolates for artificially generated objects,
such as objects created by the user in the prompt. The generalization capabilities of
the model are still an area that requires further exploration and validation.

• Complexity of Prompts: Our experiments utilized short prompts focusing on balls
on a background. We do not know how more complex prompts may interfere with
count performance, warranting further investigation.

3.4 Future Work

Future studies should focus on addressing these limitations. An intriguing area for future
research would be to experiment with different reward functions within our curriculum learn-
ing framework. We only utilized the Linear Reward Function for our curriculum learning

CHAPTER 3. RESULTS AND DISCUSSION 35

approach, so assessing the impact of different reward functions could provide valuable insight
into training effectiveness and adaptation to complex tasks.

In conclusion, our study highlights the potential of using reinforcement learning to en-
hance Stable Diffusion image generation, for tasks such as object counting, while also shed-
ding light on the complexities and challenges that coincide with these tasks.

36

Bibliography

[1] Zoheb Abai. zoheb/yolos-small-balloon. https://huggingface.co/zoheb/yolos-
small-balloon. Accessed: 2024-04-18.

[2] Kevin Black et al. Training Diffusion Models with Reinforcement Learning. 2023. arXiv:
2305.13301 [cs.LG].

[3] Nicolas Carion et al. End-to-End Object Detection with Transformers. 2020. arXiv:
2005.12872 [cs.CV].

[4] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[5] Yuxin Fang et al. You Only Look at One Sequence: Rethinking Transformer in Vision
through Object Detection. 2021. arXiv: 2106.00666. url: https://arxiv.org/abs/
2106.00666.

[6] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models.
2020. arXiv: 2006.11239 [cs.LG].

[7] Alexander Kirillov et al. Segment Anything. 2023. arXiv: 2304.02643 [cs.CV].

[8] Rohit Kundu. YOLO: Algorithm for Object Detection Explained. https : / / www .

v7labs.com/blog/yolo-object-detection. Accessed: 2024-04-18.

[9] Haotian Liu et al. Visual Instruction Tuning. 2023. arXiv: 2304.08485 [cs.LG].

[10] Sanmit Narvekar et al. Curriculum Learning for Reinforcement Learning Domains: A
Framework and Survey. 2020. arXiv: 2003.04960 [cs.LG].

[11] Robin Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models.
2022. arXiv: 2112.10752 [cs.CV].

[12] Jascha Sohl-Dickstein et al. Deep Unsupervised Learning using Nonequilibrium Ther-
modynamics. 2015. arXiv: 1503.03585 [cs.LG].

[13] Xudong Wang et al. Cut and Learn for Unsupervised Object Detection and Instance
Segmentation. 2023. arXiv: 2301.11320 [cs.CV].

[14] Fuzhen Zhuang et al. A Comprehensive Survey on Transfer Learning. 2020. arXiv:
1911.02685 [cs.LG].

37

Appendix A

Sample Images Across Reward
Functions

Figure A.1: Sample Images from Linear Reward Function Experiments We found
variation among the style of generated images using this reward function. For example, the
1 sample per epoch model was prompted to generate an image of 5 red balls but generated
6 balls on popsicle sticks instead. Moreover, the 9 samples per epoch balls are more hazy
than the 256 samples per epoch balls.

APPENDIX A. SAMPLE IMAGES ACROSS REWARD FUNCTIONS 38

Figure A.2: Sample Images from Ratio, Exponential, and Hybrid Reward Func-
tion Experiments Notice the slight variations of style. For example, the ratio balls share
characteristics with golf balls.

Figure A.3: Sample Images from Relative, Accuracy, and Adaptive Threshold
Reward Function Experiments Notice the slight variations of style. For example, the
accuracy threshold balls are more matte than the relative balls.

	ApprovalPage_ShaanGill
	UC_Berkeley_Thesis_Template___Shaan (1)

