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Abstract

Novel Protein Evolution Models for Ancestral Sequence Reconstruction

by

Akshay Ravoor

Master of Science in Electrical Engineering & Computer Science

University of California, Berkeley

Professor Yun S. Song, Chair

Models of protein evolution are essential for a variety of applications, from phylogenetic
analysis and ancestral sequence reconstruction to variant e↵ect prediction and protein design.
A protein evolution model is typically characterized by a rate matrix Q which describes the
rate at which amino acids mutate into one another, and evolution is inferred under an
independent sites model (possibly with site rate variation). In this work we move beyond
classical models by leveraging the CherryML framework to e�ciently train new kinds of
models either doing away with the independent sites assumption (RNN) or the idea of global
rate matrices (SiteRM). Both the RNN and SiteRM models show improved performance
compared to WAG when evaluated on per-site likelihood. We then apply these two models
to ASR using the extant sequence reconstruction method and a variety of reconstruction
algorithms. We are able to use the SiteRM model to attain a performance competitive
with IQ-Tree and consistently outperform it in the longer sequence length datasets. Though
more validation is needed for the particular task of ASR, our results are promising for the
development of new protein evolution models under the CherryML paradigm.
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Chapter 1

Introduction

1.1 Protein Evolution Models

Understanding the evolution of proteins over time is crucial to a variety of applications in
biology such as phylogenetic tree reconstruction, ancestral sequence reconstruction, multi-
ple sequence alignments, variant e↵ect prediction, and protein design. Such protein evolu-
tion models can di↵er in their level of molecular granularity (DNA, RNA, amino acid, or
codons), use of site rate variation (invariable sites, � distributed site rates, or the probability-
distribution-free model), the treatment of insertions and deletions, and assumptions of i.i.d
(independent and identically distributed) sites.

Classically, the evolution of amino acids is described by phylogenetic models parametrized
by a 20 by 20 rate matrix Q under the assumption that molecules evolve down a phylogenetic
tree according to a continuous-time Markov process. The rows and columns of Q are indexed
by the 20 canonical amino acids present in most living beings, and the matrix describes the
rate at which each amino acid mutates into another. For example, given such a rate matrix
Q we can estimate the probability of the amino acid alanine (A) mutating into leucine (L)
after time t:

pQ(A
t�! L) = exp(Qt)i,j

where the ith row corresponds to alanine and the jth column corresponds to leucine. Classical
models make the further assumption of i.i.d sites, so the likelihood of protein sequence y of
length L evolving from sequence x also of length L after time t under the above rate matrix
Q would be:

p(y|x, t) =
LY

i=1

p(yi|xi, t) =
LY

i=1

exp(Qt)xi,yi

Formally, a model of protein evolution is a conditional distribution p(y|x, t, c) that de-
scribes the probability of sequence y arising from sequence x after time t with context c
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(which could be the protein family f , information about the structure of the protein, etc.).
As we will see models need not all prescribe to the above approach of using the same rate
matrix for each site. Indeed, a model of protein evolution need not use rate matrices at all.

Early Models

Early approaches to estimating the rate matrix for protein evolution relied on counting
methods. The Dayho↵ model [4] first generates a series of phylogenetic trees over multiple
MSAs (multiple sequence alignments). It then uses maximum parsimony to assign sequences
to ancestral states. Finally, it simply counts the number of transitions between each pair of
amino acids across all branches of the tree to produce a rate matrix.

A later model by Jones, Taylor, and Thornton (the JTT model) [13] estimates a rate
matrix with the same counting approach, but instead of using maximum parsimony to infer
ancestral states it uses an iterative process to count mutations and then prune pairs of
nearest neighbors in the estimated tree.

Both methods are biased as they assume a single mutation per site per branch and do
not account for evolutionary time (branch lengths) because of their reliance on a counting
based approach to matrix estimation.

Probabilistic Models

The first probabilistic (as opposed to counting based) model of protein evolution was pro-
posed by Whelan and Goldman (WAG) [31]. WAG takes a coordinate ascent approach by
alternating between estimating the maximum likelihood phylogenetic tree under the rate
matrix and estimating the maximum likelihood rate matrix from the tree. The model as-
sumes that each site evolves i.i.d. following a time-reversible continuous-time Markov Chain
parametrized by a global 20 by 20 transition rate matrix Q (which it seeks to estimate). The
resulting optimization problem takes the following form:

argmax
Q,T

P (D|T,Q) = argmax
Q,T

mY

i=1

P (Di|Ti, Q)

where D = (D1, D2, ..., Dm) are the m MSAs and T = (T1, T2, ..., Tm) are the estimated
trees for each MSA. However, finding the MLE phylogenetic tree for an MSA can be very
computationally expensive. WAG therefore uses a neighbor-joining tree estimation method
as a proxy for maximizing the likelihood before performing a zeroth-order optimization on the
branch lengths. Thus, given the estimated WAG matrix Q one can calculate the transition
likelihood of the model:

pWAG(y|x, t, f) =
LfY

i=1

exp(↵f
i Qt)xi,yi
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where the ↵’s can be used to account for di↵ering rates of evolution for each protein family f
and Lf is the alignment length of the MSA for protein family f . This methodology enabled
the WAG method to estimate rate matrices for much orders of magnitude more sequences
across more MSAs than previous MLE-based methods.

The seminal Le-Gascuel (LG) model [16] builds upon WAG by doing away with the
constant sites assumption and incorporates site rate variation by positing that sites in a
protein evolve under scalar multiples of the global transition-rate matrix Q. The potentially
di↵ering scalars (↵f

1 ,↵
f
2 , ...,↵

f
Lf
) for each site are known as the site rates. Thus the likelihood

under the LG model is:

pLG(y|x, t, f) =
LfY

i=1

exp(↵f
i Qt)xi,yi

In order to limit the number of model parameters (400 +
Pm

f=1 Lf where m denotes the
total number of protein families; notation from [22]), the LG model will use a pre-defined
number of rate categories (e.g. 20) indicating that each site rate ↵f

i will belong to one
of these categories (so the model only has to estimate a number of site rates equal to the
number of rate categories). Furthermore, the rate categories are often constrained to follow
some distribution such as the � model of site-rate variation.

Nonetheless, the LG model remains one of the most popular models of protein evolution
for phylogenetic tree reconstruction and is heavily utilized in popular libraries like IQ-Tree
[17] and PhyML [9].

1.2 Ancestral Sequence Reconstruction

A primary motivation behind the development of molecular evolution models is to under-
stand how genes and proteins evolve in response to changing environments. Without intact
DNA evidence for true ancestral sequences (e.g. from fossils), scientists rely on the devel-
opment of such protein evolution models to infer the ancestral sequences of extant proteins.
Ancestral sequence reconstruction (ASR) has not only been used to draw insights into the
early history of life on Earth, but has more recently been leveraged as a tool for designing
novel proteins. Ancestral sequences often possess several valuable properties like thermosta-
bility and broad substrate binding range while also preserving the desirable properties of
their extant descendants [10]. Such approaches have greatly benefited from advances in
DNA sequencing technology and computational phylogenetic analysis and have been put to
use in molecular ecology, the development of vaccines for viral diseases, and the discovery of
novel substances in biotechnology and pharmaceutical companies [24, 3, 26, 2, 6, 35, 34, 12].

Figure 1.1 shows the most common formulation of an ASR problem. A set of known
extant sequences shown as red squares labelled with letters are the leaves of a phylogenetic
tree. We seek to infer (reconstruct) the internal nodes (ancestors) of the tree which are
shown as yellow circles labelled with numbers. Time flows down the tree from the root node
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(oldest ancestral sequence) to the leaves (extant sequences), with branch lengths usually
corresponding to some measurement of evolutionary time. Note that the branch lengths are
not shown to scale; the extant sequences need not have arisen at exactly the same time.

In many cases, datasets consist of only extant sequences and it falls on researchers to
infer the tree topology. Thus ASR methods will often have to search over the space of
phylogenetic trees before reconstructing ancestral nodes. Sometimes only the reconstructed
sequence of the root node (the “oldest” ancestor) is desired, while other times the trajectory
of evolution along the tree is of interest as in the study of viral disease.

Figure 1.1: An example of a phylogenetic tree associated with the ASR problem. Yellow
nodes are inferred from the tree topology and known sequences of the red nodes. Branch
lengths are not to scale. Image taken from [5].

In this work we delegate the reconstruction of the tree to other programs and focus just
on the process of reconstructing ancestral sequences under a fixed topology.

Maximum Parsimony

Among the first and conceptually simple reconstruction methods was maximum parsimony,
with the earliest implementation being Fitch’s algorithm [8].

Parsimony methods seek to assign ancestral character states in a given tree so as to min-
imize the total number of character state changes necessary to produce the states observed
at the leaves. Scientists can also perform weighted parsimony which uses some cost func-
tion (e.g. a rate matrix) to penalize character state changes instead of all transitions being
equally costly as in unweighted parsimony.
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Although maximum parsimony methods are simple, e�cient, and sometimes comparable
in accuracy to other more complex reconstruction algorithms (described in subsequent sec-
tions), its use is presently relatively limited [28]. Parsimony ignores branch lengths and so
does not account for variation in time among lineages. Parsimony also assumes the mini-
mum amount of character changes imposed by the data meaning the amount of homoplasy
is minimized. This may not be appropriate under some rapid evolution settings. Lastly,
parsimony methods have no statistical justification and are not statistically consistent.

Maximum Likelihood ASR

Following prior parsimony based methods, maximum likelihood (ML) became the go-to
method for reconstructing protein ancestral states in a phylogeny [7, 33, 15]. By leveraging
a probabilistic model of protein evolution, ML allowed for a more accurate characterization
of ancient sequences.

Like parsimony, ML requires a phylogenetic tree and the extant sequences at the leaves
of the tree. Unlike parsimony, ML also requires a model of protein evolution, the simplest
of which is a single substitution matrix like in the WAG model [31]. Consequently the
tree must also have resolved branch lengths. Indeed, this can be seen as a strength of
ML since parsimony methods completely ignore branch lengths and so do not account for
the evolutionary distance between two nodes. Furthermore, the use of an explicit protein
evolution model can account for the fact that not all transitions are equally likely (e.g.
positively charged amino acids are more likely to mutate into another positively charged
amino acids than a negatively charged one).

Marginal methods reconstruct the sequence for a single node using marginal likelihoods
that integrate over the probabilities of amino acids in other nodes of the tree. Consider a
binary phylogenetic tree with some node of interest u (perhaps the root) and two descendants
u1 and u2 with respective branch lengths t1 and t2. First let us consider reconstruction of
a single ancestral character with Lu(i) as the conditional probability of observing the data
at the leaves of the subtree rooted at node u given that the state of u is i. Then with some
basic protein evolution model p(y|x, t) and ⌦ as the set of available character states we can
write:

Lu(i) = (
X

j12⌦

p(j1|i, t1) · Lu1(j1))(
X

j22⌦

p(j2|i, t2) · Lu2(j2))

which is known as Felsenstein’s pruning algorithm [7].
The probabilistic approach considers two types of ancestral reconstruction: the marginal

and joint reconstructions. The above is the marginal reconstruction and is akin to a greedy
optimization since we locally optimize the likelihoods of each ancestral node but do not
necessarily arrive at the globally optimal solution to the problem.

One can also incorporate a prior to arrive at the probabilities P (u = i|S) of each state i
of a given ancestral node u, where S represents the observed values at all leaves of the tree.
Using Bayes formula, we obtain:
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p(u = i|S) = p(u = i)p(S|u = i)

P (S)
=

⇡ip(S|u = i)

P (S)

where ⇡i is the equilibrium frequency of character i. The likelihood of the data can be
obtained from the above steps with Felsenstein’s pruning algorithm [7].

A subsequent methodological development brought about a joint reconstruction method
across all nodes, thereby maximizing the likelihood of the entire dataset [23]. While joint
reconstruction conceptually provides a maximum likelihood method for providing a complete
evolutionary history of each site, it is not widely used in practice [28]. This is in part
because empirical research indicates that marginal reconstruction is more suitable when one
wants the sequence at a particular node, like in molecular restoration studies, whereas joint
reconstruction is more suitable when one counts changes at each site [25]. Especially for
molecular recovery tasks, marginal reconstruction is the preferred method [25].

1.3 Problem Statement

In this work, we pursue two primary goals:

1. In chapter 2, we seek to develop novel models of protein evolution under the framework
of p(y|x, t, c), doing away with the assumptions of prior works that a family must be
parameterized under a single rate matrix with various scaling factors (rate categories).
Furthermore, we attempt to move away from the independent-sites model of evolution.

2. In chapter 3, we test these new models on an important downstream task, ancestral
sequence reconstruction (ASR). We compare their performance with existing ASR
tools.
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Chapter 2

Novel Models of Protein Evolution

2.1 CherryML

While the LG estimation method greatly improved the speed and accuracy of estimating
MLE rate matrices, it is still bottlenecked by the process of alternately estimating the entire
tree topology and rate matrices due to the need to marginalize ancestral states of each tree
(which is usually accomplished with Felsenstein’s pruning algorithm [7]). To estimate our
protein evolution models we leverage a recent method called CherryML [21] which replaces
the full joint likelihood over the tree with a composite likelihood over just the cherries. In
practice, it turns out that the optimizing the maximum composite likelihood over cherries
works just as well as the full likelihood, with a ¡50% relative loss of statistical e�ciency for
the LG model while being over a thousand times faster [21]:

argmax
Q,T

P (D|T,Q) ⇡ argmax
Q,C

P (D|C,Q) = argmax
Q,C

Y

(x,y)2C

PQ(x|y, tx$y)

where C are the set of cherries in the tree T and we use a model of protein evolution Q
which in this example is a rate matrix.

CherryML also quantizes transition times into buckets; the original paper states that a
few hundred poins are su�cient to achieve an error as low as 1% [21]. These two techniques–
maximum composite likelihood over cherries and time quantization–are depicted in figure 2.1
and vastly speed up the process of estimating rate matrices for classical models. This method
has been shown to improve the estimation of LG matrices by several orders of magnitude
[21].

In this work, we leverage the results from CherryML to estimate new kinds of protein
evolution models using the (x, y, t) triples drawn from cherries of the estimated tree as
“datapoints”.
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Figure 2.1: Image taken from CherryML paper [21]. Cherries (dark blue, joined by red
branches) are iteratively pruned from the estimated tree and quantized into (x, y, t) transi-
tions.

2.2 Training and Testing Data

We use protein families and sequences from the TrRosetta dataset [32] with each being
sampled down to 1,024 sequences to speed up tree inference. Sequences consist of the 20
amino acids as well as a gap character ‘-’.

Trees are estimated using FastTree 2.1 [20] under the WAG model and a single rate
category. Once estimated, each tree is split along a single edge to create two subtrees of
roughly equal leaves. One tree is designated as the train tree, and its (x, y, t) transitions are
in the train set for that family. The other tree is the test tree, and its transitions are in the
test set for that family. Splitting the tree along a single edge instead of randomly assigning
transitions to either the train or test set allows us to maximize the evolutionary divergence
between the train and test sets while still retaining a similar distribution of transition times
as shown in figure 2.2. In this way we can train a model on particular families while still
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valuating it on held-out transitions for that same family.

Figure 2.2: Comparison of transition times between the test and train dataset as drawn from
1000 random families.

2.3 RNN Model

To stay relatively close to proven and tested classical models, we use an RNN decoder that
attempts to strictly generalize the WAG model [14]. The RNN uses the context of previously
predicted positions in a sequence to predict a rate matrix at each subsequent position, which
then goes through a matrix exponential layer to give a distribution over output tokens based
on the input sequence at that position in x. More formally, with hi being the hidden state
of the RNN at position i, we have:

p(yi|y[: i� 1], x[: i], t) = exp(tQ(hi))xi,yi

whereQ(hi) is a contextual site-specific rate matrix outputted by the RNN to decode position
i. It is worth noting that setting the recurrent connections hi to 0 the RNN recovers exactly
the WAG model. In this way we hope that the RNN can learn updates to the WAG model
instead of vastly overfit site-specific rate matrices. This also influenced the decision to not
use xi as input to the generation of the rate matrix as position i.

To get around having to optimize the rate matrix directly (a constrained optimization
problem), we instead parameterize the rate matrix Q with a vector ✓ and an upper triangular
matrix ⇥ as described in CherryML [21].

Letting ⇡ = Softmax(✓) and S = Softplus(⇥ + ⇥T ) we take the o↵-diagonal entries of

Q to be
q

1
⇡

T

S
p
⇡ (where operations are performed entry-wise). The diagonal entries of Q
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are then uniquely determined. Thus the neural network is actually adding an unconstrained
error term to ✓ and ⇥ instead of the final rate matrix Q. We can then directly optimize ✓
and ⇥ in an unconstrained fashion.

Our best performing architecture was a 2-layer LSTM with a hidden state size of 1024.
We use 1,000 randomly selected families in our training set for the RNN model.

2.4 SiteRM Model

We also use a protein evolution model that learns a distinct rate matrix for each site of a
specific protein family, hereafter referred to as the SiteRM model [22]. With Qf

1 , ..., Q
f
L as

site-specific rate matrices for an MSA of length L from family f , our model predicts:

pSiteRM(y|x, t, f) =
LY

i=1

exp(tQf
i )xi,yi

Given the training transitions for a family, we use CherryML’s transition-rate matrix
estimation procedure separately at each site to get the site-specific rate matrices Qf

i . Since
the model is heavily over-parameterized due to there being only ⇡ 256 pairs of amino acids
at each site in a family (1024 sequences, 512 in the train set, 256 leaves), we regularize the
site-specific rate matrices with the LG model rate matrix under 20 rate categories. We find
that in practice a mixing coe�cient of � = 0.5 works quite well. Using CherryML, we are
able to estimate a rate matrix for a site in a family approximately every second.

We trained the SiteRM model on the same 1,000 families used to train the RNN. By
nature of the model, it does not generalize at all to unseen families.

2.5 Results

To evaluate the performance of our new models we aggregate per-site transition likelihoods
over the 1,000 training families (in-families) and another 1,000 held-out families (families for
which the models have never seen either the train or test set).

It has been shown that large contiguous sequences of gap characters resulting from inser-
tion and deletion events can trivialize prediction for an autoregressive model like the RNN (it
can mindlessly keep predicting gaps) [14]. To get around this, we renormalize the likelihood
conditioned on the true character at that site not being a gap character [14]. In this way we
eliminate the influence of models “cheating” by predicting gaps when in a gappy region and
assess only their performance in non-gap regions.

Figure 2.3 shows the performance of the RNN and SiteRM model compared to the clas-
sical WAG model (all trained on the same 1,000 families). We observe that the RNN and
SiteRM models exhibit strong performance on in-family transitions, both significantly out-
performing WAG across all time bins. Unfortunately, the RNN performance drops to that
of WAG on the held-out family transitions. Nevertheless, this does confirm that the RNN
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model functions as a strict generalization of WAG: it outperforms WAG on families in its
training set, but does no worse than WAG when presented with sequences from an unknown
family.

Given that the RNN’s performance boost is limited to families it has seen, we also
evaluated a much smaller RNN that could be rapidly trained on a set of families of interest.
However, this RNN exhibited decreased performance even on in-family transitions and the
idea was discarded.

In-family Held-out family

Figure 2.3: In-family and held-out family per-site likelihoods over temporal distance between
sequences. The e↵ect of gap characters has been normalized out. The RNN outperforms
WAG on in-family transitions but reduces to WAG on held-out transitions. SiteRM has
comparable performance to the RNN, sometimes even beating it.
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Chapter 3

Ancestral Sequence Reconstruction

We now apply three of the protein evolution models trained in the previous section–WAG,
SiteRM, and the RNN–to ancestral sequence reconstruction and compare their performance
against IQ-Tree [17], a widely used tool for phylogenetic analysis and reconstruction that
supports a variety of evolution models and settings.

3.1 Datasets

Problems with Previous Evaluation Methods

Despite the profusion of protein evolution models available to users seeking to perform ASR,
there exist relatively few reliable methods for assessing the true performance of ASR methods.
This problem stems from the di�culty in obtaining phylogenetic trees with access to ground
truth states for ancestral nodes.

Computational studies have largely focused on benchmarking performance against simu-
lated data [19]. However, this can bias the dataset depending on the evolution model used to
simulate said data [30]. Predictably, the model used to simulate the data will often have the
best performance on it. Many of these simulated datasets can be very simplistic in nature
with maximum parsimony outperforming many state-of-the-art methods.

Previous studies have more often sought to achieve faster and more accurate estimation
of rate matrices under known methods, thus allowing them to directly compare likelihoods
of trees and how often their method is selected as the best-fit model under existing toolkits
[17, 18].

Only a single experimentally determined dataset (via directed evolution) is easily acces-
sible [24], but its extant samples are extremely limited in sequence divergence. Moreover,
concerns have been raised over its relevance to natural evolution and applicability to real
biological systems that have evolved on a geological timescale [29].

We tried to derive an experimental viral dataset from COVID and influenza samples
collected in the wild using Nextstrain [11], but available samples were too low in sequence
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divergence (at most 10% in the cases we investigated) to perform e↵ective ASR.
As such, the predominant ASR evaluation methodology which relies on simulated dataset

raises problems when attempting to benchmark our new protein evolution models. For
example, the SiteRM model [22] has many more parameters than the models used to simulate
these datasets. The simulation methods also operate on an independent sites model while
our RNN model does not so coevolving sites and other naturally arising properties may not
be e↵ectively captured. In order to avoid the potential problem of evaluating our models on
data simulated with potentially inferior models of evolution, we turn to a recently proposed
method by Sennett et Theobald known as extant sequence reconstruction (ESR) [29].

Extant Sequence Reconstruction

ESR enables the evaluation of ASR methods on any dataset, needing only an MSA over the
extant sequences and optionally the tree topology. There is no need to have access to the
ground true ancestral sequences.

The basic idea is rather simple. Instead of reconstructing the state of an unknown
ancestral node, we remove an extant sequence (a leaf) from the dataset and use an ASR
method to recover its sequence. Since we know its true sequence, we have a ground truth to
evaluate against. The central idea is illustrated in Figure 3.1.

The procedure is justified by the time-reversible assumption underlying the phylogenetic
tree (used by all known existing ASR and tree reconstruction methods). Also known as
Felsenstein’s pulley principle [7], this property means that there is e↵ectively no distinction
between ancestor and descendant. Thus the tree can be re-rooted at a leaf node of choice
and we can perform ASR with the leaf as the ancestral node to reconstruct. In this way
ESR can be thought of as a kind of sequence-level cross-validation. Henceforth ESR and
ASR may be used interchangeably, since ESR is just ASR on a re-rooted tree and we have
no true ancestral sequence datasets.

It is also worth nothing that ESR holds merit of its own when considering viral evolution.
For example, scientists might be interested in predicting the characteristics of next year’s
influenza strain. Reconstructing a new extant sequence given previous ones is exactly the
problem ESR aims to solve.

Evaluation Data

With ESR as our evaluation method, we are able to continue using the trRosetta dataset for
which we have already estimated trees with branch lengths. We selected 13 families from the
1,000 used to train the RNN, WAG, and SiteRM models. We used the test trees associated
with these 13 families to benchmark the performance of these 3 models on ASR, using 25
iterations of extant selection.

We weren’t able to benchmark on all 1,000 families due to runtime limitations but hope
to work with larger datasets in future work. While reconstructing the root of a given tree is
linear in the sequence length and number of nodes, there remain large constant factors that
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Figure 3.1: Illustration of two iterations of extant sequence reconstruction (ESR). Gray
nodes are internal without ground truth sequences, blue nodes are leafs in the original tree
(top) with ground truth sequences, and yellow nodes are the extant sequences to be inferred
during ESR. In the iteration shown on the left, we select a random leaf node (L2) from
the original tree and make it the new root. The new root’s sequence is inferred from the
remaining leaves (L1 and L3 in this case). A similar procedure occurs on the right with L3
being the selected leaf in that iteration. Since both L2 and L3 were originally leafs, we can
evaluate against their ground truth sequences.

need to be optimized on a method-by-method basis (for example, reconstructing di↵erent
parts of the tree in parallel). Such optimizations were not undertaken in this project due to
the large number of methods we initially tried to test.

The 13 particular families which we evaluated on were chosen because they coincided
with the set of families used in a previous work [19] whose performance we hoped to compare
against. Prior ASR works often evaluate on small numbers of families [19, 24, 1] (and even
smaller trees than ours), so we believe 13 families is an acceptable amount.

Unfortunately, we found too many issues with the methodology of the paper [19] we
intended to compare against to use it as an accurate comparison. The simulation settings
used to generate the trees were general and not su�ciently tuned to the specific families.
Moreover, our implementation of maximum parsimony consistently outperformed all other
methods benchmarked in the paper (the original paper did not show parsimony results). This
should not be the case as a great deal of work has shown that parsimony, while sometimes
competitive, generally loses out to likelihood based methods on realistic trees [28].

A summary of the datasets and families chosen for evaluation is shown below in Table
3.1. The third column indicates the average percentage of the alignment which is composed
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of gap characters and the fourth column is the average branch length in the test tree.

Table 3.1: Summary statistics of ASR evaluation datasets. Shows the average percentage
of gaps in each sequence of the family’s training alignment as well as the average transition
time across those train samples.

trRosetta Alignment Avg. % Average Description

ID Length of Gaps Transition

5leo 93 28.28 0.6094 Bacterial SH3 domain

3l11 104 19.08 0.5251 Zinc finger, C3HC4 type

3gxh 156 19.52 0.6034 Beta-lactamase hydrolase-like protein

4tse 157 18.25 0.6410 Mind bomb SH3 repeat domain

1c25 161 38.19 0.8591 Rhodanese-like domain

5hd9 194 19.43 0.5857 Podovirus DNA encapsidation protein

6gap 213 24.12 0.6793 Reovirus viral attachment protein sigma 1

2d4c 231 6.696 0.4712 BAR domain

1raj 257 5.666 1.014 Viral RNA-dependent RNA polymerase

2hjh 325 13.69 0.4764 Sir2 family

4be2 368 13.00 0.7464 Retroviral integrase C-terminal SH3 domain

5tip 436 12.96 0.4733 Eukaryotic DNA virus major capsid protein

3hky 564 34.51 0.9168 Viral RNA dependent RNA polymerase

3.2 Methods

We autoregressively decode each character of y in sequential order. As a simple example
consider a tree with root y connected to a single leaf x by an edge of length t (there are only
two nodes in this tree). To decode the ith character of y, our first method tries optimizing
the following expression:

argmax
yi

P (yi|xi, y[1 : i� 1], t)

where the probability function P (·) is further parameterized by a particular protein evolution
model (WAG, SiteRM, or RNN). Note that under an independent sites model the prior
context of x and y are not used, so the inner expression simplifies to P (yi|xi, t). Under the
RNN, this previous context matters, however.

We call this expression the forward likelihood since it simulates maximizing the likelihood
of transitioning from a known state xi into the unknown state yi. We also try optimizing
what we will refer to as the backwards likelihood:

argmax
yi

P (xi|y[1 : i� 1], yi, t)
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which is analogous to transitioning from the unknown state yi into xi. In practice our models
perform much better with the backwards likelihood, and from now on whenever not specified
we use the backwards likelihood to optimize the transition between two sequences.

We can go further by multiplying with a prior. As all of our models fundamentally use a
rate matrix approach, we use the stationary distribution of the rate matrix for that position
as the prior:

argmax
yi

(⇡(yi)P (xi|y[1 : i� 1], yi, t))

which is essentially maximum a posteriori estimation. We found that using the prior
marginally improved results and so use it for all our analyses.

Composite Likelihood Over Leaves

Our first method reconstructs the sequence of the root of the tree y from only the n sequences
of the leaves x(1), x(2), ..., x(n) and and their corresponding transition times t1, t2, ..., tn. Each
transition time ti is exactly the sum of the branch lengths along the path from y to the ith
leaf.

We optimize a composite log likelihood over all the n leaves of the tree to reconstruct
the root character by character. Letting x(j)

i be the ith character of the jth leaf’s sequence
we have:

argmax
yi

nX

j=1

log (⇡(yi)p(x
(j)
i |y[1 : i� 1], yi, ti))

where we repeat the procedure character by character from i = 1 to i = L. Like before, only
the RNN model requires the context of previously predicted tokens of y[1 : i� 1].

Recursive Strategies

A full composite likelihood over all the leaves runs into the potential problem of transition
times that are too long since the leaves can be very far from the root. Transitioning from
such a large number of leaves also tends to generate more gappy sequences since many models
seem to treat the gap character as an unknown state (so all leaves contribute to the gap state
while each contributes to potentially di↵erent non-gap states). The second set of approaches
we tried were a selection of recursive strategies that decreased both the number of terms in
the likelihood and the length of the transitions.

First we tried a fully recursive strategy in which we reconstruct each node from its direct
children. If needed, we recursively reconstruct the children. Thus we end up reconstructing
the tree from the bottom up (nodes that are parents of leaves, then parents of those nodes,
etc.).
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We then tried reconstructing each node from descendants which were not its direct chil-
dren. Specifically, we choose a minimum distance T and traverse the tree from the unknown
node to find its closest descendants that are at least T away. The node is reconstructed from
those descendants, with the procedure recursing as before in case the sequence of any of those
descendants is unknown. This ended up improving our performance as well as speeding up
the runtime of the algorithm.

Setting T equal to twice the average branch works well in practice, perhaps due to the
similarity between these transition times and the training transition times which were drawn
from cherries.

Initialization With Parsimony

With many of the above methods we found models tending to produce excessive numbers
of gap characters. Though this was in part alleviated by shifting from forward likelihood
decoding to backwards likelihood decoding, reconstructed roots were still much often shorter
in length than desired. To address this problem we tried a variety of strategies that initialized
states with parsimony (which already worked quite well).

One method iteratively updates sequences in the tree from their surrounding nodes. With
maximum parsimony states available for all nodes, we are able to include both descendants
and ancestors in the composite likelihood transition function. Some attempted strategies
included using all nodes along a path to the unknown node in the composite likelihood
or using a nodes direct ancestors (up to a certain distance) as well as its descendants.
This iteration would be performed repeatedly on all nodes in the tree in a random order.
Unfortunately, this method performed quite poorly in practice and often even decreased the
fidelity of the reconstructed root. Without access to ground truth states for internal nodes
we were unable to assess whether the procedure improved their reconstructed states which
would be a major motivation for this method.

Our best performing strategy was to use the locations of gaps as predicted by maximum
parsimony as input to the decoding process. More specifically, we constrained models to
predict a gap character in a particular position if the maximum parsimony reconstruction
had already predicted a gap in that position. If maximum parsimony did not have a gap at
a position, the model was constrained to predicting a non-gap character.

3.3 Results

We benchmark against IQ-Tree, a widely used tool for phylogenetic analysis and maximum
likelihood reconstruction, as our SOTA benchmark [17].

Our test trees all contain around 500 leaves each. However, IQ-Tree works best with a
number of sequences equal to half the alignment length; the program warns the user that
the problem may be overparameterized if too many sequences are used and requests that the
MSA size be reduced.
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To fix this, we also evaluate reconstruction on a version of the tree with subsampled
leaves. For example, in the 3hky dataset with an alignment length of 564 leaves we evaluate
on a version of the tree in which we prune all but 282 leaves. The kept leaves either consist
of the set of furthest leaves or the set of leaves in the middle of the list of leaves sorted by
distance from the root.

This results in us having two “di�culties” of each tree to reconstruct: one using the
IQ-Tree optimal number of leaves at the furthest distance (furthest leaves) and one using
the optimal number of leaves at a medial distance (middle leaves). We choose not to use the
version of the tree with all leaves (or the closest leaves) since the problem becomes much
easier with our models being able to just predict the root from the closest leafs (and ignore
the others that are further away).

Following prior ASR works [24, 19, 1], we use average percent identity as our method
for evaluating the correctness of reconstructed roots (extant sequences in ESR). To calculate
this we divide the number of correctly reconstructed sites by the total number of sites.

We found that using backwards likelihood decoding and stationary distribution priors
categorically improved reconstructions. Likewise, using maximum parsimony initialization
for gap states dramatically mitigated the tendencies of models like the RNN to predict too
many gaps. Further, the decoding method using descendants at a distance of at least twice
the average branch length from the unknown node worked best (also utilizing these these
techniques of backwards likelihood, priors, and fitch initialization).

Each datapoint was computed over 25 ESR iterations, with each iteration being the
reconstruction of a tree with a di↵erent leaf at the root. The final results for our models
over both di�culties are shown below in Figures 3.2a and 3.2b.

Comparing the two plots, we can see that models generally perform better when using
leaves closer to the root (middle leaves) than those further away (furthest leaves) as expected.
Our SiteRM model generally outperforms the state-of-the-art IQ-Tree, though it does seem
to lose out on shorter alignments. Its consistent performance over IQ-Tree in the longer
alignment sequences is worth noting (325, 368, 436, and 564). On the other hand, the RNN
unfortunately seems to collapse back down to WAG’s performance.

Furthermore, maximum parsimony (Fitch’s algorithm) performs very well and quite of-
ten beats WAG and sometimes even IQ-Tree. Surprising as this might be, it turns out
that maximum parsimony generally performs quite well in ASR literature. In some paper
we attempted to replicate [19], we found that maximum parsimony outperformed all listed
methods benchmarked in that paper (though the work did not itself include maximum par-
simony as a method). In another [24] maximum parsimony performed on par with other
state-of-the-art methods.

There does not seem to be an observable trend between alignment length and accuracy
of the reconstruction, which could speak to the highly specialized nature of ASR. Namely,
that the molecular properties of the protein family being reconstructed might matter more
than superficial characteristics like the sequence length. Of course, this could also be an
issue with our evaluation methodology and so merits further investigation regardless.
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(a) Reconstruction over leaves in the middle of the tree.

(b) Reconstruction over leaves at the bottom of the tree.

Figure 3.2: Reconstructing extant root over 25 ESR iterations using a number of leaves equal
to half the alignment length with the method using descendants at twice the average branch
length away. Leaf selection is either those in the middle of the tree or those furthest from
the root.
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Chapter 4

Conclusion

4.1 Discussion

Both the RNN [14] and SiteRM [22] models show increased performance over the classical
WAG model when compared against single sequence-to-sequence transitions. Although the
RNN seems to perform no better than WAG on ASR and only the SiteRM model’s perfor-
mance carries over, we have shown that we can build deep models that strictly generalize
classical models. It is possible that the RNN could perform better than WAG on other
downstream tasks.

Nevertheless, we have shown that SiteRM model with relatively simple reconstruction
algorithms can generally outperform the state-of-the-art program IQ-Tree on the families in
our evaluation set. Moreoever, the consistently higher performance of SiteRM in the longer
sequence length domain shows promise.

4.2 Future Work

First and foremost, future work will require much more care and e↵ort in choosing evaluation
datasets. In the early stages of the project we had intended to use datasets from prior
ASR papers [19, 24], but after working with them for some time found them to be either
disastrously biased or very limited in sequence divergence. Searching for varied, model-
independent or su�ciently expressive datasets is a challenging task but one which will greatly
improve confidence in benchmark results.

Otherwise if continuing with ESR, more attention needs to be paid to the particular
families chosen. It is di�cult to obtain consistent measurements when the reconstruction
performance across di↵erent families varies so much. While it is possible that this is simply
caused by the arrangement/prevalence of gaps in the di↵erent alignments, it might also be
caused by some molecular properties of the sequences that are unable to be captured in
our current framework. If nothing else, we should at least evaluate on a much larger set of
families which will require code optimizations to improve runtime.
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There is also a dire need for better metrics than average percent identity. Although this
is the approach used by nearly all the prior ASR work we have investigated, it need not
correlate with the e�cacy or functional performance of the reconstructed protein. More
biologically accurate evaluation metrics could allow for other more complex methods like
posterior decoding to show their worth (posterior decoding has been shown in some capacity
to improve stability of the reconstructed protein, but this is not captured by percent identity).

While we could continue to iterate on the RNN to see if its performance can pass that
of WAG on ASR (for example, initializing with SiteRM site-specific rate matrices), future
work should likely be devoted to exploring more expressive deep models of protein evolution.
Attention-based models will be a much stronger movement away from independent-sites
models and, given their exceptional performance on other tasks like NLP, likely do a much
better job than any RNN. Leveraging pre-trained models like ESM [27] could also do away
with the need for including families of interest in the train-set.

Lastly, there is a strong case to be made for moving away from gap-aware models (revert-
ing from 21 by 21 rate matrices to 20 by 20 matrices). Our treatment of gaps as an additional
character presented problems during ASR with the best solution being to not predict them
at all (and instead use maximum parsimony to predict gap states). The tendency for models
to treat gaps as a kind of missing data instead of as an indel event presented significant
problems in ASR.
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