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Abstract

Single-Shot View Synthesis using a Multiplexed Light Field Camera

by

Shamus Li

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Laura Waller, Chair

Recent advancements in imaging technologies have shifted from traditional 2D image capture
to more sophisticated methods that aim to capture additional dimensions—spatial, tempo-
ral, etc.—of a given scene. We present an approach to single-shot view synthesis using a
multiplexed light field camera, where sub-images are designed to overlap with each other to
achieve higher spatial and temporal resolution compared to conventional light field imaging.
We use a single capture from our optical system to achieve novel view synthesis.

Our system captures light fields through a lens array that intentionally overlaps views, en-
hancing both resolution and depth of field. This multiplexing approach is complemented by
a calibration process that aligns virtual camera poses, facilitating accurate reconstruction
without repeated pose estimation. We modify the forward model of Gaussian Splatting to
implicitly represent and reconstruct the light field from the multiplexed measurements.

We present synthetic experimental results that demonstrate the e�cacy of our system in
generating wide-angle, photorealistic 3D reconstructions of small scenes both in simulation
and the real world, and discuss extensions to a physical system. We achieve an optical
field of view of more than 70 degrees, and are able to accurately reconstruct more than 120
degrees with a single shot. Our physical system achieves 1.9 rays/pixel of multiplexing, a
90% increase in pixel information over a light field imaging system with no overlapping, and
we demonstrate higher-quality reconstructions on synthetic scenes with up to 2.5 rays/pixel
of multiplexing when compared to both traditional light field images as well as monocu-
lar Gaussian Splatting. Our method represents a potential step forward in the practical
application of view synthesis, particularly in dynamic environments with few cameras.
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Chapter 1

Introduction

The evolution of imaging technologies, from traditional film-based cameras to modern digital
sensors, have brought about significant advances in how we capture and interpret the world
around us. Conventionally, cameras have been designed to capture two-dimensional images,
focusing on the production of sharp, well-exposed photographs that represent a single per-
spective of a scene. However, the dimensionality of light extends far beyond the confines of
2D image planes. Light interacting with the environment carries information not only about
intensity, but also about direction, wavelength, and time. A parameterization of this is the
plenoptic function—P (✓,�,�, t, Vx, Vy, Vz), where ✓ and � is the direction of light, � is the
wavelength, t is time, and Vx, Vy, Vz is 3D origin of the light ray—which represents every
possible image from every viewpoint in a particular space-time chunk [2]. It is therefore nec-
essary to map this higher-dimension to a 2D grid to capture this lost information, leading
to sacrifices either in spatial or temporal resolution. The primary purpose of this work is to
design an optical coding to limit these tradeo↵s as much as possible.

The focus of my work is on rendering images from more viewpoints than were actually
captured, a technique called novel view synthesis. This is achieved by not only capturing the
2D intensity of light that hits each pixel, but also measuring the amount of light travelling
along each ray that intersects the sensor. We can model this ray in 5D by removing time
and wavelength from the plenoptic function, or in 4D as a parameterization of a line that
intersects two planes [15].

Traditionally, this representation, known as a light field, was explicitly represented and
required a dense grid of views to be captured. Recent techniques such as Neural Radiance
Fields (NeRF) have revolutionized the field by learning implicit scene representations that
enable high-quality image synthesis from novel viewpoints [14]. NeRF and its derivatives can
reconstruct a 3D scene from a relatively sparse set of input images captured from di↵erent
viewpoints. However, the capture of these views typically takes a long time and assumes a
static scene, heavily limiting their applicability in dynamic environments that change over
time.

Light field cameras, which simultaneously record multiple perspectives in one sensor
measurement, o↵er a potential solution to this problem. By capturing both spatial and
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Figure 1.1: We present an imaging system for single-shot view synthesis using a multiplexed
light field camera. The captured image on the sensor consists of multiple overlapping views.
The captured data is then processed through our view synthesis pipeline to generate novel
views of the scene. The system is calibrated by capturing images through individual lenslets,
allowing estimation of camera poses using structure-from-motion techniques.

angular information of light rays, light field cameras enable post-capture refocusing, depth
estimation, and view synthesis. However, traditional light field cameras—from camera arrays
to plenoptic cameras—face a fundamental trade-o↵ between spatial resolution and angular
resolution. Capturing more angular information typically results in a decrease in spatial
resolution and vice versa.

This work introduces a novel approach to single-shot view synthesis using a multiplexed
light field camera. By intentionally overlapping the views captured by a lens array, it is
possible to achieve a higher space-bandwidth product than would be possible with non-
overlapping monocular views. This is ideal for highly dynamic scenes in the mesoscale,
making the system limited only by the capabilities of the camera sensor. In addition, by
fixing the optics, we only need to calibrate the camera parameters once per camera, skipping
a costly and potentially inaccurate pose estimation step in future reconstructions. We modify
Gaussian Splatting to handle training from a single multiplexed image such that instead of
rendering one image for each training pass, we render one image from each viewpoint in the
camera and combine them to create the multiplexed image. We calibrate our camera using
a traditional structure-from-motion pipeline. We demonstrate the e�cacy of our system
through both simulation and real-world experiments. We achieve an optical field of view
of more than 70 degrees, and are able to accurately reconstruct more 120 degrees with a
single shot. Our physical system achieves 1.9 rays/pixel of multiplexing, a 90% increase in
pixel information over a light field imaging system with no overlapping, and we demonstrate
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higher-quality reconstructions on synthetic scenes with up to 2.5 rays/pixel of multiplexing
when compared to both traditional light field images as well as monocular Gaussian Splatting.

1.1 Related Work

Light Field Imaging

Light field cameras passively capture 4D space-angle information in a single shot, enabling
3D reconstructions, amongst other applications. Light field imaging has been a crucial re-
search area in computational photography and computer vision, focusing on capturing the
full dimensionality of light rays in a scene. The plenoptic function, introduced by Adel-
son and Bergen, parameterizes light rays by their position, direction, wavelength, and time,
encapsulating the entirety of visual information available in a scene [2]. Unlike traditional
imaging techniques that capture only the intensity of light at each point, light field imag-
ing captures the intensity of light rays as a function of space and angle. This additional
information enables computational capabilities not possible with conventional cameras.

The core component of a light field camera is a microlens array placed in front of the
image sensor. Each microlens captures light rays from di↵erent directions and focuses them
onto the sensor, allowing each pixel to receive light information from a specific direction. The
captured light field data can be represented as a four-dimensional function, L(u, v, s, t), where
(u, v) denote spatial coordinates and (s, t) represent angular coordinates of the light rays.
Light field cameras can be modeled as an array of cameras, each capturing a slightly di↵erent
perspective of the scene. Consequently, the captured data comprises a series of sub-images,
each representing a slightly di↵erent viewpoint. This multi-view data enables refocusing and
depth of field changes, disparity and depth calculation, as well as 3D reconstruction [8].

Implementations of light field cameras, such as the plenoptic camera proposed by Adelson
and Wang [1] and notably by Ng et al [15], use a microlens array placed in front of an image
sensor to capture multiple views of a scene from slightly di↵erent perspectives in a single
shot. An alternative light field camera design is a camera array, which allows for for new
viewpoints to be generated by interpolating between captured images [27]. These works
demonstrated the concept of interpreting 2D images as slices of a 4D light field function,
facilitating e�cient creation and display of new views without requiring depth information
or feature matching.

However, traditional light field cameras face significant trade-o↵s between spatial and
angular resolutions. Capturing more angular information typically results in a decrease in
spatial resolution and vice versa. This trade-o↵ limits the applicability of traditional light
field cameras in scenarios requiring high-resolution imaging and wide fields of view. Subse-
quent works have aimed to improve the spatial and angular resolution trade-o↵s inherent in
these systems. Georgiev and Intwala proposed a system using a hexagonal array of twenty
larger lenslets in order to reduce gaps between lenslets [5]; Lumsdaine and Georgiev intro-
duced the concept of the focused plenoptic camera, which improves the spatial resolution
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by simply adjusting the placement of the microlens array relative to the sensor [10]; and
Perwaß and Wietzke presented a 3D camera which achieves improved depth estimation with
a multi-focal microlens array. While these methods improve upon traditional designs, they
do not fully overcome the inherent trade-o↵s.

Lenslet array-based capture schemes have also been widely used in microscopy for 3D
depth imaging [17, 22]. In particular, Fourier Light Field Microscopy (FLFM) has emerged
as a powerful technique in computational microscopy. FLFM operates by placing a microlens
array at the Fourier plane of the imaging system, which creates a three-dimensional shift-
invariant point spread function (PSF), enabling the reconstruction of volumetric information
from a single two-dimensional (2D) measurement. [6]. This approach has been further refined
with techniques like Fourier Di↵userscope, which introduces a di↵user at the Fourier plane
to encode additional spatial information and improve reconstruction quality [9]. Our work
draws inspiration from FLFM but extends the concept to mesoscale imaging of objects in
the millimeter to centimeter range.

The main idea of light field imaging is to encode additional angular information into
the captured data, which can then enable synthetic refocusing, volume reconstruction, or
neural reconstruction from a single sensor measurement. We introduce an optical system
physically similar to that proposed by Georgiev and Intwala, but with a key di↵erence: our
system is designed to intentionally overlap the images from each lenslet onto the sensor,
a new idea. By overlapping the views captured by the lens array, we e↵ectively increase
the amount of information—space-bandwith product—captured without sacrificing spatial
resolution, enabling higher-resolution and wider field-of-view imaging.

Novel View Synthesis

Novel view synthesis requires recovery of a 3D representation of an object or scene from 2D
input images. Existing methods often utilize point clouds [12], voxel grids [13], or signed
distance functions [16] to represent the target. These approaches typically require a large
set of training images and corresponding camera pose estimates to achieve accurate results.
Practical applications of high-quality 3D reconstructions include generating 3D models for
assets in animation, creating training environments for robotics simulations, and enhancing
biological analysis.

Neural Radiance Fields (NeRFs) have emerged as a powerful technique for novel view
synthesis [14]. NeRFs model appearance and geometry using radiance fields that map spatial
coordinates and view direction to density and color values. This approach uses a dense set
of images to train the network, which learns to predict the color and density of points in
3D space, allowing for high-quality view synthesis from novel viewpoints. Research has
demonstrated that a small multi-layer perceptron (MLP) with positionally-encoded input
coordinates can accurately represent a target scene [23]. Through standard volume rendering
procedures, rays can be sampled, evaluated, and converted to image pixels, with the model
optimizing the mean squared error between the outputted RGB values and the training
images. The radiance field can be rendered as images, depth maps, or converted to a mesh
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for downstream applications. NeRFs have demonstrated impressive results in capturing fine
details and complex lighting e↵ects, but they assume a stationary and unchanging target
scene across all training images, rely on accurate camera pose estimates from structure-from-
motion algorithms like COLMAP [20], and are slow and computationally expensive to train,
taking hours for a single scene [14].

Significant optimizations have improved the e�ciency of NeRF-based methods. For in-
stance, techniques have dramatically increased training speed [24], and some approaches,
such as Plenoxels, enable faster training without neural networks [19]. PixelNeRF and simi-
lar works suggest that training with a few input images might be feasible [28, 25]. However,
these few-image input methods generally infer the missing views in the scene. Our system
captures a larger area of the scene and encodes it into a single image, ensuring the training
images more accurately represent the scene and allowing for real-time data capture.

Several extensions and improvements to NeRF have been proposed to address its limi-
tations. D-NeRF adapts NeRF for dynamic scenes by incorporating temporal information,
allowing for the synthesis of scenes that change over time [18]. MonoNeRF attempts to
generalize NeRF to monocular videos, enabling view synthesis without precise camera poses
[4]. However, these methods still face challenges in terms of training time and computational
resources.

An alternative approach to view synthesis is Gaussian Splatting, which leverages the in-
herent sparsity in 3D scenes by representing scenes using 3D Gaussian functions–”Gaussians”–
optimized for position, orientation, size, and color [7]. This method can render high-quality
images in real time while preserving image reconstruction quality, making it a state-of-the-art
technique for novel view synthesis.

We adapt Gaussian Splatting to handle multiplexed images captured by our light field
camera. Because our images have a higher space-bandwidth product than traditional monoc-
ular views, we are able to create a higher-fidelity reconstruction than existing methods. The
overarching goal is to achieve a wider field of view with our camera using intentionally mul-
tiplexed data, enabling e�cient and accurate reconstruction of photorealistic volumes from
a single capture without needing to predict or general additional views in the training data.

Compressed Sensing

Compressed sensing is an imaging technique that enables signals to be acquired with fewer
measurements by exploiting the underlying structure of the signal for high-quality recon-
struction [3]. Typically, capturing a signal requires measurements at twice the maximum
spatial frequency of the signal—as per the Shannon-Nyquist sampling theorem—to ensure
all information is captured. However, signals are often compressible, and the sum of more in-
formation can be captured with a single sensor pixel by spreading out the sparse information
contained in the signal through multiplexing, e↵ectively resulting in more useful informa-
tion. One of the key benefits of compressed sensing is its ability to significantly reduce
acquisition time and data storage requirements, which is particularly useful for high-speed
or high-resolution 3D imaging applications.
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Compressed sensing is particularly e↵ective when signals exhibit sparsity in some domain.
This is highly relevant to computational imaging applications, many of which aim to recon-
struct a high-dimensional scene from a limited number of measurements. The compressed
sensing paradigm represents a powerful tool in imaging system design, where the sensing
hardware is viewed as an encoder rather than a direct signal approximator. This concept
has already made a significant impact in fields such as MRI and computed tomography,
accelerating scan speeds by reducing the number of samples required [11]. In compressed
sensing, the sensing process involves capturing multiplexed measurements, which are linear
combinations of the signal’s components. These measurements are then processed using al-
gorithms that exploit the sparsity of the signal to reconstruct the original high-dimensional
data. This approach contrasts with traditional methods that directly sample each component
of the signal individually. By encoding multiple dimensions of the optical image, compressed
sensing enables the recovery of detailed scene information from fewer measurements. In
the context of optical design, this raises the question of how to design optics that encode
additional dimensions of optical images such that sparse recovery can successfully and accu-
rately reconstruct the image. Specifically, in this work, we explore how optical design can be
leveraged to extract larger space-bandwidth product light fields from a single measurement.

Our work employs compressed sensing in conjunction with multiplexed light field imag-
ing to enhance the capabilities of traditional imaging systems. By integrating intentional
overlapping views into the optical design, we can encode more scene information into each
captured image. When compared to existing light field cameras, our approach achieves a
higher space-bandwidth product with the same number of measurements. When compared
to existing novel view synthesis techniques, our method significantly reduces the number of
measurements needed for accurate reconstruction, improving the practicality of novel view
synthesis, especially in dynamic environments.
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Chapter 2

Building a Multiplexed Light Field

Camera

The objective of this imaging system is to capture a comprehensive representation of a scene
in a single shot by multiplexing multiple perspective images into a single image. The core
of our optical design achieves this through a lens array that overlaps the views from each
lenslet, providing an angular field of view and resolution not possible without overlapping.
This approach is inspired by Fourier light field microscopy [6] but is applied here to mesoscale
objects in the millimeter to centimeter range.

2.1 Optical Design

Our imaging system consists of a large-aperture photography lens placed backwards, a lens
array, an aperture array, and a regular full-frame sensor (see Figure 2.3). The large-aperture
main lens is reversed to enable focusing at closer distances, allowing us to image smaller
objects placed very close to the lens (less than 2 cm). This proximity maximizes the angular
range of captured light rays—the perspective shift between overlapping views. Although
reversing the lens slightly increases magnification, it creates a larger perspective shift among
the sub-lens images, maximizing the angular range of the overall light field capture.

The lens array, positioned immediately behind the main lens, consists of an array of
small lenses (lenslets) that create separate overlapping views onto the sensor pixels. Our
system aims to be a more a↵ordable and compact alternative to a traditional camera array,
such as proposed in [27], by capturing all sub-images onto a single sensor. In traditional
imaging systems, any overlap would be clipped by the aperture so that each pixel on the
sensor only receives light from one ray/sub-lens, but we propose controlling the amount of
clipping to control the amount of overlap between the images from adjacent lenslets. By
overlapping sub-lens views and reconstructing them computationally, we are able to capture
more e↵ective information with a wider baseline between the views. We use rays per pixel—
where each ray comes from a di↵erent lenslet—as the overlap metric to balance the need for
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Figure 2.1: Example of captured images with optical crosstalk. Optical crosstalk occurs
when light intended for one section of the sensor inadvertently reaches the area designated
for another lens, causing undesired image artifacts.

perspective shift with the clarity of sub-images:

Rays/pixel =
1

N

NX

i=1

ni (2.1)

where N is the total number of pixels on the sensor, and ni is the number of lenslets
contributing light to pixel i. A value of 1 indicates no multiplexing, and higher values of the
overlap metric correspond to increased multiplexing. A good rough heuristic is that adjacent
images should overlap by approximately 50%, meaning that each sub-image shares half of
its area on the sensor with neighboring sub-images, leaving the other half dedicated to that
sub-image. This corresponds to of 1.5 rays per pixel.

In addition, the leftmost and rightmost perspectives of the scene, as well as the topmost
and bottommost views, should have the largest possible baseline—the widest possible angular
range. The ideal angular field of view (AFOV) of the system—the horizontal angle, from
the optical axis, of light that can be captured by the lens—is dictated by the main lens’
numerical aperture (NA) and focal length. Assuming an ideal thin lens and that the entire
sensor is utilized, the AFOV can be calculated using the formula:

AFOV = 2 arctan

✓
w

2 · f

◆
(2.2)

where w is the sensor width and f is the focal length of the main lens.
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Figure 2.2: The aperture array mitigates optical crosstalk by blocking stray light between
lenslets; increases the depth of field by limiting the e↵ective aperture size for each sub-lens;
and controls the amount of overlap. While it does block a significant amount of light, at the
mesoscale this is not an issue.

An essential component in this design is the aperture array, a grid of 2 mm diameter
small apertures placed at the center of each lenslet. The aperture array has three e↵ects.
First, it reduces optical crosstalk—when light rays intended for one lenslet overlap and spill
over into another lenslet’s view. The aperture array acts as a physical barrier to minimize
stray light, ensuring each light ray is correctly mapped to its intended lenslet. Second, it also
extends the e↵ective depth-of-field by limiting the aperture size of each sub-image formed
by the lenslets (see Figure 2.2. Lastly, it controls the amount of overlap between adjacent
images; by using arrays with di↵erent aperture diameters, we can manage how much the sub-
images overlap on the sensor. Figure 2.3 describes configuration of the optical system. All
optical components are placed as close together as possible to reduce the e↵ects of free-space
propagation.

2.2 Methods

The choice of components is driven by the need to maximize the field of view. The main
lens and lens array were selected to have similar cross-sectional diameters to ensure that
the e↵ects of the main lens are most e↵ectively represented by the outer sub-lenses. For
our system, we used a Canon TV-16 25mm f/0.78 lens for its extremely wide aperture,
which allows a high amount of light gathering and angular coverage. The lens array, sourced



CHAPTER 2. BUILDING A MULTIPLEXED LIGHT FIELD CAMERA 10

from Edmund Optics, measures 46 mm x 46 mm, with individual lenslets measuring 4 mm
x 3 mm and an e↵ective focal length of 38.10 mm. We use a subset of these lenslets in a
7 x 6 grid, resulting in 42 sub-views. The camera sensor used is a Canon RP full-frame
camera sensor. We manufactured our own aperture array with 1 mm thick aluminum and an
aperture diameter of 2 mm. Using our main lens with our sensor size, the calculated AFOV
is 71.4 degrees. We outline a way to empirically test these results in Chapter 3. Based on
the ratio of the blocked area to the total area of each lenslet, we determine that 75% of the
light is blocked. We mounted all of the components using optical mounts on an optical table.

Using the main lens in reverse results in increased magnification and allows us to focus
on objects placed very close (less than 1 cm) to the lens, which maximizes the angular range
and perspective shift captured by the lenslets. However, designing a lighting system that
stays clear of the camera yet appropriately illuminates the object is challenging. We used
only direct overhead lighting on the object, which restricts us to using objects that can be
e↵ectively lit from above. We ensure the background was as dark as possible to reduce noise
and spurious features in the reconstruction. To focus our image, we place the object as close
to the main lens as possible, and then translate the sensor to the focal plane with respect to
the object placement.

In a traditional imaging system with a single lens that uses the entire sensor, the reso-
lution is maximized as each pixel on the sensor contributes directly to the final image. In
our multiplexed light field camera system, multiple perspective images are projected onto
the same sensor, leading to a decrease in resolution. However, the resolution decrease in our
system is less significant compared to a traditional light field camera because our images
overlap. The use of a large-aperture lens in our system introduces significant magnification,
which impacts the depth of field. The aperture array helps mitigate some e↵ects of the re-
duced DoF by limiting the aperture size of each sub-image formed by the lenslets (see Figure
2.2.

Our system can be modeled as an array of independent cameras that are optically over-
lapping. Each lenslet captures a slightly di↵erent perspective of the scene, contributing to a
comprehensive light field capture. Importantly, the cameras do not share intrinsic parame-
ters; they are functionally di↵erent cameras due to the warping introduced by the wide-angle
lens. This configuration is not shift-invariant, making it di�cult to calibrate using traditional
methods for linear shift-invariant systems.
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Figure 2.3: Each lenslet in the array functions as an individual camera, capturing a slightly
di↵erent, overlapping perspective of the scene. This setup is analogous to an array of cameras
that collectively capture a comprehensive light field.
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Chapter 3

Novel View Synthesis for Multiplexing

3.1 Camera Calibration

Since we are modeling our system as an array of overlapping camera views, our reconstruction
algorithm requires accurate estimation of the intrinsic and extrinsic parameters for each view.
We employ a version of the standard structure-from-motion (SfM) pipeline using COLMAP
[20, 21], initialized with DUSt3R [26], a deep learning-based method to predict 3D point
clouds from single images.

Our calibration procedure involves capturing images through individual lenslets to isolate
each view. We achieve this by covering all other lenslets and capturing images through each
lenslet individually. This process is repeated for all lenslets in the array, e↵ectively simulating
the capture of the scene from multiple, slightly di↵erent viewpoints. This method ensures
that each image corresponds to the perspective from a single lenslet. Additionally, we capture
the e↵ective field of view (FOV) of each lenslet by using a large light source in front of the
system, which helps define the boundaries of each lenslet’s coverage. Since we have 7 x 6
lenslets, this results in 42 calibration images and an additional 42 sub-view extent images.

The captured images are processed using COLMAP, a robust and accurate SfM pipeline
commonly used in neural radiance field (NeRF) methods. COLMAP uses scale-invariant
feature transform (SIFT) keypoints extracted from each image to match the same points
between di↵erent views. SIFT keypoints are invariant to scale and rotation, making them
suitable for matching across images with slight viewpoint changes. The matched keypoints
provide the basis for reconstructing the 3D scene structure and refining the camera param-
eters through bundle adjustment. Since our scenes typically involve small objects and the
individual lenslet images occupy a small portion of the input image, preprocessing is neces-
sary. We crop the images to the region of interest before the usual downsampling step in
order to enhance feature detection and matching on the non-sparse areas, and then apply
the inverse operation on the reconstructed camera parameters. It is important that intrinsic
parameters are not shared across each of the calibration images, unlike NeRF reconstruction
from video, because each lenslet may have di↵erent intrinsic parameters due to manufactur-
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Figure 3.1: COLMAP reconstruction result showing the estimated camera poses and sparse
3D point cloud from calibration images. The calibration images shown are a subset of the
42 images used. The sparse point cloud indicates the rough 3D structure of the scene.

ing variations and optical distortions. Figure 3.1 shows a sample COLMAP reconstruction
result from calibration images, indicating the estimated camera poses and sparse 3D point
cloud, where the red frustums represent the reconstructed camera poses.

COLMAP relies on good initialization to converge to an accurate solution, especially
in the absence of metadata such as focal lengths. There are failure modes associated with
COLMAP, particularly with symmetric objects. The symmetry can create ambiguities in
the location of camera views, leading to flattened or compressed point clouds, as illustrated
in Figures 3.2 (a) and (b). COLMAP creates an initial pair of images and then itera-
tively refines the solution with additional images through bundle adjustment. Without
good initialization—due to a lack of features in the image—COLMAP’s performance is un-
reliable. To improve the initialization, we employ DUSt3R, a deep learning method that
predicts dense 3D point clouds iteratively from pairwise images. DUSt3R leverages learned
priors from large datasets to provide a rough estimate of the scene structure and camera
poses. Although DUSt3R is less precise than COLMAP, it is usually able to provide a stable
starting point for optimization. We extract the focal lengths and initial camera poses from
the DUSt3R estimation and use them to initialize COLMAP’s estimation. We find that this
significantly improves the convergence rate and accuracy of COLMAP compared to random
initialization.

Another way to measure the AFOV when we have the predicted 3D points and camera
poses from COLMAP is to select a point in the 3D scene and measure the angle between
the most extreme camera views that observe that point. Specifically, for a given 3D point,
we compute the vectors from the point to the camera centers of the leftmost and rightmost
cameras that see it. The angle between these two vectors represents the angular field of view
for that point. Using this method on one of our COLMAP reconstructions in Chapter 4.2, we
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Figure 3.2: (a-b) COLMAP failure modes. Due to the symmetry of this object, there exists
some ambiguity in the location of the camera views, leading to point clouds that are flattened
or compressed. (c) shows a successful reconstruction.

measured an AFOV of 90.62 degrees between the most extreme cameras for the closest SfM
point. This provides empirical validation of our system’s ability to capture a wide angular
range.

One significant advantage of our imaging system is that the calibration process only needs
to occur once. Unlike traditional novel view synthesis techniques that require recalibration
for each new scene, our system maintains its calibration across di↵erent objects. This reduces
the computational load and improves the reliability of the reconstruction results. It also
means that we can calibrate based on a known object and then reconstruct an object that
would be di�cult to estimate with COLMAP, such as objects with few features or challenging
textures.
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3.2 Gaussian Splatting Optimization

Our reconstruction pipeline builds upon Gaussian Splatting [7], the state-of-the-art tech-
nique for novel view synthesis. Gaussian Splatting models the scene as a continuous field
of oriented 3D Gaussians, a flexible and expressive scene representation capable of repre-
senting our objects with a relatively small number of Gaussians—on the order of 20,000.
The 3D Gaussians are initialized using the sparse point cloud produced from the SfM pro-
cess in COLMAP. During optimization, the algorithm refines the Gaussians’ 3D positions,
opacities, anisotropic covariances, and spherical harmonic coe�cients for color representa-
tion. In addition, adaptive density control steps add or prune Gaussians based on if they
require densification or if their transparency is too low, respectively. A key contribution of
this method is the fast and di↵erentiable rendering process, which is designed to fully utilize
GPU operations to enable fast training speed and real-time rendering. It involves splitting
the screen into 16 x 16 tiles, projecting the Gaussians onto the 2D image plane, sorting, and
applying standard ↵-blending.

Our solution adapts this technique to work with multiplexed light field images captured
by our system, enabling reconstruction from a single image. The primary challenge in adapt-
ing Gaussian Splatting for our system is the need to handle multiplexed images. To address
this, we modify the image formation model in Gaussian Splatting to simulate the multiplexed
image formation by sampling the Gaussian representation at multiple viewpoints correspond-
ing to the calibration data. Instead of rendering one image for each training pass, we render
one image from each viewpoint in the camera and then combine them to create the multi-
plexed image. We create a composite image by integrating the sampled views, simulating
the multiplexed image formation process of our hardware light field camera.

An inherent issue with our multiplexing approach is the ambiguity regarding which lenslet
a particular ray originated from, especially in the overlapping regions. This can result
in artifacts such as multiple copies of the object in the final Gaussian Splatting render.
To mitigate this, we captured the full view extent of each lenslet by covering all other
lenslets and using a large light source. This allowed us to define the valid regions for each
lenslet’s contribution. During training, we apply an out-of-bounds regularization to penalize
Gaussians that contribute to regions outside the expected FOV of each lenslet. Specifically,
after rendering each lenslet’s image, we extract the pixels that fall outside the known circular
FOV for that lenslet and apply an L1 loss to these pixels. This encourages the model to
suppress contributions in out-of-bounds areas, reducing ambiguity. In addition, we add a 3D
total variation (TV) regularizer to smooth the spatial distribution of Gaussians for higher
image fidelity.

The overall loss function L used during our training process is thus defined as follows:

L = (1� �1)L1 + �1LD-SSIM + �2LFOV + �3LTV. (3.1)

The 3D TV regularization is defined as follows:
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LTV =
X

i,j,k

q
(vi+1,j,k � vi,j,k)

2 + (vi,j+1,k � vi,j,k)
2 + (vi,j,k+1 � vi,j,k)

2 (3.2)

where vi,j,k represents the Gaussian parameters at voxel position (i, j, k).
In the original Gaussian Splatting implementation, there is an operation that resets the

opacity of the Gaussians after a few thousand iterations to prevent overfitting. However,
we observed that this reset mechanism led to poor reconstruction performance in our setup.
Thus, we disabled the opacity reset operation, allowing the model to better preserve the fine
details in the multiplexed images.
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Chapter 4

Experimental Results

Note: this chapter presents work done jointly with Vi Tran.

4.1 Simulation Experiments

To evaluate the e↵ectiveness of our multiplexed light field camera system, we conducted a
series of simulation experiments. These experiments aimed to validate our approach in a
controlled environment where ground truth data is available. We used the Lego scene from
the Blender dataset [14] to generate synthetic scenes with known camera parameters and
viewpoints. The synthetic scenes were generated by positioning multiple virtual cameras
around the Lego scene and capturing images from these viewpoints. We then synthetically
combine these images into a single composite image as input for Gaussian Splatting. During
the training step, we query images from every sub-view camera position and combine the
images to calculate the loss with the training image. This approach allowed us to control the
level of multiplexing by adjusting the number of virtual cameras and the degree of overlap
between their images. We trained the algorithm on an RTX 3090 GPU.

In our simulations, we varied the level of multiplexing from 1.0 to 3.5 rays per pixel.
We quantitatively evaluated the reconstruction quality using Peak Signal-to-Noise Ratio
(PSNR), a standard metric used to measure the quality of reconstructed images compared to
the ground truth, with higher PSNR values indicating better reconstruction fidelity. Our re-
sults demonstrated that even with significant multiplexing, our method outperformed Gaus-
sian splatting with a single view. Figure 4.1 shows the performance comparison between
single-lens and multilens cameras on the lego scene. Specifically, the advantage of the mul-
tilens system is most pronounced around 2.0 rays per pixel, which corresponds to a 100%
increase in resolution. It is important to note that the rays per pixel metric may not be
representative when based on the field of view of the system, as a more sparse object can
tolerate more multiplexing when the actual image overlap is less. An additional multiplexing
metric is taking the rays per pixel on the captured images, which is discussed in more detail
in Chapter 4.2.
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Figure 4.1: Performance comparison between single-lens and multilens cameras in simulation
on the Lego scene. The multilens camera consistently outperforms the single-lens camera,
achieving higher PSNR values, particularly around 2.0 rays per pixel.
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Figure 4.2: Synthetic reconstruction results with di↵erent amounts of multiplexing: (a)
and (b) show the raw composite image and the reconstruction result at 1.5 rays per pixel,
respectively. (c) and (d) show the raw composite image and the reconstruction result at 2.0
rays per pixel. The images demonstrate that higher levels of multiplexing lead to increased
artifacts in the reconstructed scenes.

At higher levels of multiplexing, such as above 2.5 rays per pixel, artifacts begin to appear
in the reconstructed images. These artifacts are primarily due to the increased ambiguity
in the source of rays, making it challenging to accurately disentangle the multiple views
e↵ectively Figure 4.2 illustrates the synthetic results with di↵erent amounts of multiplex-
ing. Thus, while our multiplexed light field camera system can handle moderate levels of
multiplexing e↵ectively, there exists a trade-o↵ between the amount of multiplexing and the
reconstruction quality—although a scene with higher sparsity may tolerate higher level of
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multiplexing.

4.2 Real-World Experiments

Building upon the simulation results, we conducted a series of real-world experiments using
the multiplexed light field camera system described in Chapter 2.2. We captured a multi-
plexed image and 42 calibration images of a small cluster of Nerds candy, as well as 42 images
of each of the sub-view FOVs by placing a full-field light in front of the system. We then
evaluated the reconstruction performance using our modified Gaussian Splatting pipeline.

We calculated the amount of multiplexing for our real-world system in two ways. First,
we calculated amount of overlap using Equation 2.1 and using the sub-view FOV images for
the lenslet contributions, leading to 6.5 rays/pixel. However, if we use the calibration images
for the lenslet contributions, the multiplexing is actually 1.9 rays/pixel, indicating that the
object actually takes up a very small amount of the full field of view.

In the first set of experiments, we used the calibration images as input, e↵ectively sim-
ulating a scenario with no multiplexing. Figure 4.3 shows the results of these experiments.
The PSNR for the no multiplexing scenario was measured at 30.04. The calibration ren-
derings demonstrated high-quality results for a wide range of front-facing angles. However,
beyond a 90 degrees rotation of the object, the reconstruction quality begins to degrade.

Next, we trained on only the multiplexed image. We obtained camera parameters for each
of the sub-views by running the COLMAP SfM pipeline with the calibration images. Using
the calibrated camera poses, we trained on one image using our modified Gaussian Splatting
model. When training with the multiplexed, we observed a maximum PSNR of 26.35 with
multiplexing. However, despite the relatively high PSNR, many artifacts and issues were
apparent in the results. The multiplexed images exhibited problems such as smeared results
(Figure 4.4a), double images (Figure 4.4b), and out-of-view renderings (Figure 4.4c). It
is also worth noting that in all of the above cases, the volumetric reconstruction in the
real-world experiments did not fully converge. These issues likely stem from mismatch
between our model assumptions and the actual physical system. It is likely that with further
tweaking of the reconstruction software, these results will improve to match the quality of
the simulation results.

One idea for improving reconstruction quality is to add a total variation (TV) regulariza-
tion term to views from non-captured sides to maintain structural stability. By applying TV
regularization on far-away views, we can encourage the model to produce smoother and more
coherent reconstructions, potentially mitigating artifacts caused by insu�cient or ambiguous
data. Another idea is to revisit the opacity reset that we disable in the training algorithm,
or increase the density learning rate so that the algorithm can learn to prune unnecessary
Gaussians at a higher rate.
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Figure 4.3: (a) Raw multiplexed image captured by our light field camera system. The
image shows multiple overlapping views of the scene, each slightly shifted in perspective.
(b-c) Gaussian Splatting reconstruction results at 0 degrees and 60 degrees from the optical
axis, respectively. (d) Volumetric visualization of the Gaussians at full opacity and 10% size.
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Figure 4.4: Test view renderings of the real-world reconstruction with multiplexing: (a)
Results with high multiplexing, showing some smearing due to overlapping perspectives. (b)
Double rendering with less multiplexing, indicating multiple object instances. (c) Out-of-
view rendering, where parts of the scene appear outside the expected field of view.
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Chapter 5

Conclusion

This work presents a novel approach to single-shot view synthesis using a multiplexed light
field camera. Our camera system is designed to capture datasets for novel view synthesis
much more quickly than traditional single-lens cameras, making it particularly practical for
space-time methods to reconstruct videos from scenes. In simulation experiments, our system
demonstrated superior performance compared to traditional single-view methods. Using
the Blender dataset, we achieved higher PSNR scores than traditional single-lens systems,
indicating that scenarios exist where multiple views achieve higher fidelity both with and
without multiplexing. With multiplexing, we can physically capture more than 70 degrees
of AFOV, and accurately reconstruct more than 120 degrees from one capture, showcasing
the system’s potential to capture higher resolution in a single shot. Our physical system
achieves 1.9 rays/pixel of multiplexing, a 90% increase in pixel information over a light field
imaging system with no overlapping, and we demonstrate higher-quality reconstructions on
synthetic scenes with up to 2.5 rays/pixel of multiplexing when compared to both traditional
light field images as well as monocular Gaussian Splatting.

In real-world experiments, we successfully captured multiplexed images of various small
objects and scenes. The results indicate that we can achieve very good reconstructions
without multiplexing. However, the multiplexed images currently su↵er from artifacts, which
we believe are due to an implementation bug rather than a fundamental limitation of our
imaging system. One primary challenge is dealing with inherent ambiguities in overlapping
images, especially when capturing symmetric objects. This ambiguity can lead to artifacts in
the reconstructed images, as the system struggles to distinguish between di↵erent overlapping
views.

The performance of our system in real-world scenarios is sometimes limited by the quality
of the calibration process and the precision of pose estimation. While COLMAP provides
robust pose estimation, it can be sensitive to the quality and features of the captured images,
particularly for small objects. We addressed this limitation by using DUSt3R initialization,
which improves pose estimation consistency.

Future work will focus on several key areas to further enhance the capabilities and appli-
cations of our multiplexed light field camera system. We will investigate the model mismatch
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issues we are currently experiencing to identify and resolve the implementation bugs caus-
ing artifacts in the multiplexed images. By leveraging the fast capture capabilities of our
system, we aim to extend our method for 3D video capture and reconstruction. This will
involve addressing the challenges of temporal coherence and handling the additional com-
plexity introduced by moving objects. We also plan to explore multi-shot approaches to
achieve 360-degree 3D reconstructions with minimal captures.

Our system has promising applications in microscopy, macro photography, and 3D object
reconstruction. Due to the large amount of magnification, our system is best suited for
mesoscale imaging. It serves as a companion to view synthesis methods that predict other
angles and feed into Gaussian Splatting, augmenting the abilities of single-view cameras to
provide more e↵ective information in one shot. The core contribution of this work is the
development of hardware additions that improve the amount of scene information captured
in a single shot when compared to monocular cameras, enabling much greater e�ciency when
using novel view synthesis techniques.
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