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Abstract

Learning About The World Through Video Generation

by

Wilson Yan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Learning large-scale video generation models provides a key avenue to learn about the visual world
through internet-scale video data. Learning to generate accurate video requires a model to have a
deep understanding of real world concepts, such as motion, physics, object interactions, and 3D
consistency. In this dissertation, I will present my research that aims to address core bottlenecks in
fundamental architectures and scaling of video generation models, and well us applications of such
video models in downstream tasks.

In the first part of my dissertation, I will address computational bottlenecks in video generation mod-
els through developing various methods in learning well-compressed, spatio-temporal hierarchical
representations of video data. Specifically, I first present VideoGPT, where we learn a compressed
latent space with a simple 3D CNN autoencoder that downsamples pixel representations of video in
both space and time – resulting in orders of magnitudes of of savings in computation when learning
a video generation model in this latent space. Next, I investigate more efficient video generation
architectures in TECO that is able to scale to long sequences of videos. I then present ElasticTok, a
method that is able to more efficiently encode video data by leveraging adaptive representations
with variable-length encodings.

Next, I will focus on algorithmic approaches to scaling to longer context. In Large World Model,
we demonstrate core training methodologies to stably train long-context models on a mixtures of
language, video, and image data of up to millions of tokens.

Finally, I will present two studies on exploring the use of pre-trained video generation models
for downstream tasks. In the first paper, I present VIPER, where we use video prediction model
likehoods as reward signal to learn a reinforcement learning agent. I then present MoCA, where we
show that video generation models can be used to perform complex video editing tasks.
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Chapter 1

Introduction

Learning generally intelligent systems requires a deep understanding of the underlying physical
world, including concepts such as motion, physics, object interactions, and 3D understanding.
Recent developments in scaling language models on simple generative modeling objectives have
demonstrated astonishing capabilities in difficult tasks such as math, science, and coding. Anal-
ogously, can we leverage large-scale generative models on video data for artificial intelligence
systems to acquire knowledge about physical concepts? Intuitively, accurately generating short
videos requires understanding of basic motion, and simple 3D consistency such as when a camera
pans a little to the left or right. Generating even longer videos requires learning long-term depen-
dencies in data, such as crafting consistent narratives in a movie, or retaining global 3D consistency
when generating a virtual tour of a house.

Prior research in generative models already provide most of the tools need for scaling. Transform-
ers [267] are powerful, general-purpose machine learning architectures that have shown to work
on wide array of modalities such as language, audio, video, and proteins. Models are also easy to
scale to train on thousands of chips, with common model or activation sharding techniques such
as FSDP [68], tensor parallelism [228], and pipeline parallelism [110]. Lastly, recent progress in
generative modeling training objectives such as autoregressive over discrete tokens or diffusion
have demonstrated capabilities in modeling high complex distributions.

However, the extremely high dimensionality of video data remains a key bottleneck in video
generation models – a single 1080p HD 24FPS video that is one minute long is represented as
approximately 9 billion floats, or 36GB to even load onto a compute device. This results in
high computationally expensive models that are more costly to scale. Tokenization approaches in
language models have shown to be effective in reducing data dimensionality, enabling 4K tokens
to roughly encode 6 pages of text content, but a similar amount of encoded video tokens only
represents at most a few seconds video data. This becomes more prohibitively expensive when
scaling to larger resolution or longer video, even on existing large-scale compute clusters. As such,
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it becomes imperative to develop more efficient video generation architectures that can scale to both
high resolution and long video, while still being able to model these complex visual distributions.

In addition, it is less clear on how to leverage the knowledge learned about the world through video
generation models, as it is more difficult to similarly prompt these models for more general tasks as
in language models.

1.1 Contribution
In this dissertation, I present core contributions in designing scalable methods for video generation,
as well as applications of video generation models in downstream tasks.

Chapter 2 focuses on developing a simple, yet scalable method for video generation. In Chapter
3, I study the problem of long video generation, and associated architectural design choices in
better modeling global dependencies in longer video. Chapter 4 seeks to advance core fundamentals
in prior video autoencoder architectures, and enable models to scale to longer sequences through
adaptive tokenization for image and video data.

In Chapter 5, I focus on scaling to even longer videos and context lengths, as well as make
algorithmic and training improvements to stably and efficiently jointly train on a combination of
language and video.

The final part of my thesis investigates leveraging pretrained video generation models in downstream
applications. Chapter 6 uses a video generation as a reward model in learning reinforcement learning
agents, and Chapter 7 finetunes an existing video generation model to perform complex video editing
tasks.
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Chapter 2

VideoGPT: Video Generation Using
VQ-VAE and
Transformers

Figure 2.1: 64× 64 and 128× 128 video samples generated by VideoGPT

2.1 Introduction
Deep generative models of multiple types [130, 81, 264, 60] have seen incredible progress in the last
few years on multiple modalities including natural images [265, 306, 23, 129, 99, 124, 125, 266, 205,
262, 101, 39, 203], audio waveforms conditioned on language features [263, 185, 193, 19], natural
language in the form of text [196, 28], and music generation [56]. These results have been made
possible thanks to fundamental advances in deep learning architectures [95, 264, 265, 267, 306, 169]
as well as the availability of compute resources [120, 6] that are more powerful and plentiful than a
few years ago.
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While there have certainly been impressive efforts to model videos [272, 122, 257, 49], high-fidelity
natural videos is one notable modality that has not seen the same level of progress in generative
modeling as compared to images, audio, and text. This is reasonable since the complexity of
natural videos requires modeling correlations across both space and time with much higher input
dimensions. Video modeling is therefore a natural next challenge for current deep generative models.
The complexity of the problem also demands more compute resources which can also be deemed as
one important reason for the relatively slow progress in generative modeling of videos.

Why is it useful to build generative models of videos? Conditional and unconditional video
generation implicitly addresses the problem of video prediction and forecasting. Video predic-
tion [240, 70, 123, 234] can be seen as learning a generative model of future frames conditioned
on the past frames. Architectures developed for video generation can be useful in forecasting
applications for weather prediction [234], autonomous driving (for e.g., such as predicting the
future in more semantic and dense abstractions like segmentation masks [163]). Finally, building
generative models of the world around us is considered as one way to measure our understanding of
physical common sense and predictive intelligence [136].

Multiple classes of generative models have been shown to produce strikingly good samples such as
autoregressive models [264, 265, 188, 169, 196, 39], generative adversarial networks (GANs) [81,
195], variational autoencoders (VAEs) [130, 131, 174, 167, 262, 44], Flows [59, 60, 129, 99], vector
quantized VAE (VQ-VAE) [266, 205, 203], and lately diffusion and score matching models [233,
236, 101]. These different generative model families have their tradeoffs across various dimensions:
sampling speed, sample diversity, sample quality, optimization stability, compute requirements,
ease of evaluation, and so forth. Excluding score-matching models, at a broad level, one can group
these models into likelihood-based (PixelCNNs, iGPT, NVAE, VQ-VAE, Glow), and adversarial
generative models (GANs). The natural question is: What is a good model class to pick for studying
and scaling video generation?

First, we make a choice between likelihood-based and adversarial models. Likelihood-based models
are convenient to train since the objective is well understood, easy to optimize across a range of
batch sizes, and easy to evaluate. Given that videos already present a hard modeling challenge
due to the nature of the data, we believe likelihood-based models present fewer difficulties in the
optimization and evaluation, hence allowing us to focus on the architecture modeling1. Next, among
likelihood-based models, we pick autoregressive models simply because they have worked well on
discrete data in particular, have shown greater success in terms of sample quality [203], and have
well established training recipes and modeling architectures that take advantage of latest innovations
in Transformer architectures [267, 45, 100, 111].

1It is not the focus of this paper to say likelihood models are better than GANs for video modeling. This is purely a
design choice guided by our inclination to explore likelihood based generative models and non-empirically established
beliefs with respect to stability of training.
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Figure 2.2: We break down the training pipeline into two sequential stages: training VQ-VAE (Left)
and training an autoregressive transformer in the latent space (Right). The first stage is similar to
the original VQ-VAE training procedure. During the second stage, VQ-VAE encodes video data
to latent sequences as training data for the prior model. For inference, we first sample a latent
sequence from the prior, and then use VQ-VAE to decode the latent sequence to a video sample.

Finally, among autoregressive models, we consider the following question: Is it better to perform
autoregressive modeling in a downsampled latent space without spatio-temporal redundancies
compared to modeling at the atomic level of all pixels across space and time? Below, we present our
reasons for choosing the former: Natural images and videos contain a lot of spatial and temporal
redundancies and hence the reason we use image compression tools such as JPEG [274] and video
codecs such as MPEG [137] everyday. These redundancies can be removed by learning a denoised
downsampled encoding of the high resolution inputs. For example, 4x downsampling across
spatial and temporal dimensions results in 64x downsampled resolution so that the computation
of powerful deep generative models is spent on these more fewer and useful bits. As shown in
VQ-VAE [266], even a lossy decoder can transform the latents to generate sufficiently realistic
samples. This framework has in recent times produce high quality text-to-image generation models
such as DALL-E [203]. Furthermore, modeling in the latent space downsampled across space and
time instead of the pixel space improves sampling speed and compute requirements due to reduced
dimensionality.

The above line of reasoning leads us to our proposed model: VideoGPT2, a simple video generation
architecture that is a minimal adaptation of VQ-VAE and GPT architectures for videos. VideoGPT
employs 3D convolutions and transposed convolutions [255] along with axial attention [111, 100]
for the autoencoder in VQ-VAE, learning a downsampled set of discrete latents from raw pixels
of the video frames. These latents are then modeled using a strong autoregressive prior using a
GPT-like [196, 45, 39] architecture. The generated latents from the autoregressive prior are then
decoded to videos of the original resolution using the decoder of the VQ-VAE.

2We note that Video Transformers [284] also employ generative pre-training for videos using the Subscale Pixel
Networks (SPN) [169] architecture. Despite this, it is fair to use the GPT terminology for our model because our
architecture more closely resembles the vanilla Transformer in a manner similar to iGPT [39].
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Our results are highlighted below:

1. On the widely benchmarked BAIR Robot Pushing dataset [63], VideoGPT can generate realistic
samples that are competitive with existing methods such as TrIVD-GAN [164], achieving an FVD
of 103 when benchmarked with real samples, and an FVD* [205] of 94 when benchmarked with
reconstructions.

2. In addition, VideoGPT is able to generate realistic samples from complex natural video datasets,
such as UCF-101 and the Tumblr GIF dataset

3. We present careful ablation studies for the several architecture design choices in VideoGPT
including the benefit of axial attention blocks, the size of the VQ-VAE latent space, number of
codebooks, and the capacity (model size) of the autoregressive prior.

4. VideoGPT can easily be adapted for action conditional video generation. We present qualitative
results on the BAIR Robot Pushing dataset and Vizdoom simulator [127].

2.2 Background

VQ-VAE
The Vector Quantized Variational Autoencoder (VQ-VAE) [266] is a model that learns to compress
high dimensional data points into a discretized latent space and reconstruct them. The encoder
E(x)→ h first encodes x into a series of latent vectors h which is then discretized by performing
a nearest neighbors lookup in a codebook of embeddings C = {ei}Ki=1 of size K. The decoder
D(e)→ x̂ then learns to reconstruct x from the quantized encodings. The VQ-VAE is trained using
the following objective:

L = ∥x−D(e)∥22︸ ︷︷ ︸
Lrecon

+ ∥sg[E(x)]− e∥22︸ ︷︷ ︸
Lcodebook

+ β ∥sg[e]− E(x)∥22︸ ︷︷ ︸
Lcommit

where sg refers to a stop-gradient. The objective consists of a reconstruction loss Lrecon, a codebook
loss Lcodebook, and a commitment loss Lcommit. The reconstruction loss encourages the VQ-VAE
to learn good representations to accurately reconstruct data samples. The codebook loss brings
codebook embeddings closer to their corresponding encoder outputs, and the commitment loss
is weighted by a hyperparameter β and prevents the encoder outputs from fluctuating between
different code vectors.

An alternative replacement for the codebook loss described in [266] is to use an EMA update which
empirically shows faster training and convergence speed. In this paper, we use the EMA update
when training the VQ-VAE.
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GPT
GPT and Image-GPT [39] are a class of autoregressive transformers that have shown tremendous
success in modelling discrete data such as natural language and high dimensional images. These
models factorize the data distribution p(x) according to p(x) =

∏d
i=1 p(xi|x<i) through masked

self-attention mechanisms and are optimized through maximum likelihood. The architectures
employ multi-head self-attention blocks followed by pointwise MLP feedforward blocks following
the standard design from [267].
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Figure 2.3: Moving MNIST samples conditioned on a single given frame (red).

2.3 VideoGPT
Our primary contribution is VideoGPT, a new method to model complex video data in a computa-
tionally efficient manner. An overview of our method is shown in Fig 2.2.

Figure 2.4: Architecture of the attention residual block in the VQ-VAE as a replacement for standard
residual blocks.

Learning Latent Codes In order to learn a set of discrete latent codes, we first train a VQ-VAE on
the video data. The encoder architecture consists of a series of 3D convolutions that downsample
over space-time, followed by attention residual blocks. Each attention residual block is designed as
shown in Fig 2.4, where we use LayerNorm [9], and axial attention layers following [111, 100].

The architecture for the decoder is the reverse of the encoder, with attention residual blocks followed
by a series of 3D transposed convolution that upsample over space-time. The position encodings are
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learned spatio-temporal embeddings that are shared between all axial attention layers in the encoder
and decoder.

Learning a Prior The second stage of our method is to learn a prior over the VQ-VAE latent codes
from the first stage. We follow the Image-GPT architecture for prior network, except that we add
dropout layers after the feedforward and attention block layers for regularization.

Although the VQ-VAE is trained unconditionally, we can generate conditional samples by training
a conditional prior. We use two types of conditioning:

• Cross Attention: For video frame conditioning, we first feed the conditioned frames into
a 3D ResNet, and then perform cross-attention on the ResNet output representation during
prior network training.

• Conditional Norms: Similar to conditioning methods used in GANs, we parameterize the
gain and bias in the transformer Layer Normalization [9] layers as affine functions of the
conditional vector. This conditioning method is used for action and class-conditioning models.

2.4 Experiments
In the following section, we evaluate our method and design experiments to answer the following
questions:

• Can we generate high-fidelity samples from complex video datasets?

• How do different architecture design choices for VQ-VAE and prior network affect perfor-
mance?

Training Details
All image data is scaled to [−0.5, 0.5] before training. For VQ-VAE training, we use random
restarts for embeddings, and codebook initialization by copying encoder latents as described in
[56]. In addition, we found VQ-VAE training to be more stable (less codebook collapse) when
using Normalized MSE for the reconstruction loss, where MSE loss is divided by the variance
of the dataset. For all datasets except UCF-101, we train on 64 × 64 videos of sequence length
16. For the transformer, we train Sparse Transformers [45] with local and strided attention across
space-time. Exact architecture details and hyperparameters can be found in Appendix A.1. We
achieve all results with a maximum of 8 Quadro RTX 6000 GPUs (24 GB memory).
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Moving MNIST
For Moving MNIST, VQ-VAE downsamples input videos by a factor of 4 over space-time (64x
total reduction), and contains two residual layers with no axial-attention. We use a codebook of 512
codes, each 64-dim embeddings. To learn the single-frame conditional prior, we train a conditional
transformer with 384 hidden features, 4 heads, 8 layers, and a ResNet-18 single frame encoder.
Fig 2.3 shows several different generated trajectories conditioned on a single frame.

Figure 2.5: VQ-VAE reconstructions for BAIR Robot Pushing. The original videos are contained in
green boxes and reconstructions in blue.

Figure 2.6: BAIR Robot Pushing samples from a single-frame conditioned VideoGPT model.
Frames highlighting in red are conditioning frames. Although all videos follow the same starting
frame, the samples eventually diverge to varied trajectories.

BAIR Robot Pushing
For BAIR, VQ-VAE downsamples the inputs by a factor of 2x over each of height, width and time
dimensions. The embedding in the latent space is a 256-dimensional vector, which is discretized
through a codebook with 1024 codes. We use 4 axial-attention residual blocks for the VQ-VAE
encoder and a prior network with a hidden size of 512 and 16 layers.
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Quantitatively, Table 2.13 shows FVD results on BAIR, comparing our method with prior work.
Although our method does not achieve state of the art, it is able to produce very realistic samples
competitive with the best performing GANs.

Qualitatively, Fig 2.5 shows VQ-VAE reconstructions on BAIR. Fig 2.6 shows samples primed with
a single frames. We can see that our method is able to generate realistically looking samples. In
addition, we see that VideoGPT is able to sample different trajectories from the same initial frame,
showing that it is not simply copying the dataset.

Table 2.1: FVD on BAIR

Method3 FVD (↓)

SV2P 262.5
LVT 125.8
SAVP 116.4
DVD-GAN-FP 109.8
VideoGPT (ours) 103.3
TrIVD-GAN-FP 103.3
Video Transformer 94± 2
FitVid 93.6

Table 2.2: IS on UCF-101

Method4 IS (↑)

VGAN 8.31± 0.09
TGAN 11.85± 0.07

MoCoGAN 12.42± 0.03
Progressive VGAN 14.56± 0.05

TGAN-F 22.91± 0.19
VideoGPT (ours) 24.69± 0.30

TGANv2 28.87± 0.67
DVD-GAN 32.97± 1.7

ViZDoom
For ViZDoom, we use the same VQ-VAE and transformer architectures as for the BAIR dataset,
with the exception that the transformer is trained without single-frame conditioning. We collect
the training data by training a policy in each ViZDoom environment, and collecting rollouts of the
final trained policies. The total dataset size consists of 1000 episodes of length 100 trajectories,
split into an 8:1:1 train / validataion / test ratio. We experiment on the Health Gathering Supreme
and Battle2 ViZDoom environments, training both unconditional and action-conditioned priors.
VideoGPT is able to capture complex 3D camera movements and environment interactions. In
addition, action-conditioned samples are visually consistent with the input action sequence and
show a diverse range of backgrounds and scenarios under different random generations for the same
set of actions. Samples can be found in Appendix A.2.4

3SV2P [10], SAVP [139], DVD-GAN-FP [49], Video Transformer [284], Latent Video Transformer (LVT) [200],
and TrIVD-GAN [164] are our baselines

4VGAN [272], TGAN [216], MoCoGAN [257], Progressive VGAN [3], TGAN-F [121], TGANv2 [215], DVD-
GAN [49] are our baselines for IS on UCF-101.
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UCF-101
UCF-101 [237] is an action classification dataset with 13,320 videos from 101 different classes.
We train unconditional VideoGPT models on 16 frame 64× 64 and 128× 128 videos, where the
original videos have their shorter side scaled to 128 pixels, and then center cropped.

Table 2.2 shows results comparing Inception Score5 (IS) [217] calculations against various baselines.
Unconditionally generated samples are shown in Figure 2.7. Similarly observed in [49], we notice
that that VideoGPT easily overfits UCF-101 with a train loss of 3.40 and test loss of 3.12, suggesting
that UCF-101 may be too small a dataset of the relative complexity of the data itself, and more
exploration would be needed on larger datasets.

Tumblr GIF (TGIF)
TGIF [152] is a dataset of 103,068 selected GIFs from Tumblr, totalling around 100,000 hours of
video. Figure 2.8 shows samples from a trained unconditional VideoGPT model. We see that the
video sample generations are able to capture complex interactions, such as camera movement, scene
changes, and human and object dynamics. Unlike UCF-101, VideoGPT did not overfit on TGIF
with a train loss of 2.87 and test loss 2.86.

Figure 2.7: 128× 128 UCF-101 unconditional samples

Figure 2.8: 64× 64 TGIF unconditional samples

5Inception Score is calculated using the code at https://github.com/pfnet-research/tgan2

https://github.com/pfnet-research/tgan2
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Ablations
In this section, we perform ablations on various architectural design choices for VideoGPT.

Axial-attention in VQ-VAE increases reconstruction and generation quality.

Table 2.3: Ablation on attention in VQ-VAE. R-FVD is with reconstructed examples

VQ-VAE Architecture NMSE (↓) R-FVD (↓)

No Attention 0.0041 15.3
With Attention 0.0033 14.9

We compare VQ-VAE with and without axial attention blocks as shown in Table 2.3. Empirically,
incorporating axial attention into the VQ-VAE architecture improves reconstruction (NMSE) per-
formance, and has better reconstruction FVD. Note that in order to take into account the added
parameter count from attention layers, we increase the number of convolutional residual blocks in
the ”No Attention” version for better comparability. Fig 2.5 shows samples of videos reconstructed
by VQ-VAE with axial attention module.

Larger prior network capacity increases performance.

Table 2.4: Ablations comparing the number of transformer layers

Transformer Layers bits/dim FVD (↓)

2 2.84 120.4± 6.0
4 2.52 110.0± 2.4
8 2.39 103.3± 2.2

16 2.05 103.6± 2.0

Computational efficiency is a primary advantage of our method, where we can first use the VQ-VAE
to downsample by space-time before learning an autoregressive prior. Lower resolution latents
allow us to train a larger and more expressive prior network to learn complex data distributions
under memory constraints. We run an ablation on the prior network size which shows that a larger
transformer network produces better results. Table 2.4 shows the results of training transformers of
varied number of layers on BAIR. We can see that for BAIR, our method benefits from training
larger models, where the bits per dim shows substantial improvement in increasing layers, and FVD
and sample quality show increments in performance up until around 8 layers.
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A balanced temporal-spatial downsampling in VQ-VAE latent space increase performance.

Table 2.5: Ablations comparing different VideoGPT latent sizes on BAIR. R-FVD is the FVD of
VQ-VAE reconstructions, and FVD* is the FVD between samples generated by VideoGPT and
samples encoded-decoded from VQ-VAE. For each partition below, the total number of latents is
the same with varying amounts of spatio-temporal downsampling

Latent Size R-FVD (↓) FVD (↓) FVD* (↓)

4× 16× 16 82.1 135.4± 3.7 81.8± 2.3
16× 8× 8 108.1 166.9± 3.1 81.6± 2.2

8× 16× 16 49.9 124.7± 2.7 90.2± 2.4

1× 64× 64 41.6 126.7± 3.1 98.1± 3.6
4× 32× 32 28.3 104.6± 2.7 90.6± 2.7
16× 16× 16 32.8 113.4± 2.5 94.9± 1.7

2× 64× 64 22.4 124.3± 1.4 104.4± 2.5
8× 32× 32 14.9 103.6± 2.0 94.6± 1.5

4× 64× 64 15.7 109.4± 2.1 102.3± 2.8
16× 32× 32 10.1 118.4± 3.2 113.8± 3.3

A larger downsampling ratio results in a smaller latent code size, which allows us to train larger
and more expressive prior models. However, limiting the expressivity of the discrete latent codes
may introduce a bottleneck that results in poor VQ-VAE reconstruction and sample quality. Thus,
VideoGPT presents an inherent trade-off between the size of the latents, and the allowed capacity
of prior network. Table 2.5 shows FVD results from training VideoGPT on varying latent sizes
for BAIR. We can see that larger latents sizes have better reconstruction quality (lower R-FVD),
however, the largest latents 16 × 32 × 32 does not perform the best sample-quality-wise due to
limited compute constraints on prior model size. On the other hand, the smallest set of latents
4×16×16 and 16×8×8 have poor reconstruction quality and poor samples. There is a sweet-spot
in the trade-off at around 8× 32× 32 where we observe the best sample quality.

In addition to looking at the total number of latents, we also investigate the appropriate downsam-
pling for each latent resolution. Each partition in Table 2.5 shows latent sizes with the same number
of total latents, each with different spatio-temporal downsampling allocations. Unsurprisingly, we
find that a balance of downsampling ratio (2 × 2 × 2, corresponding to latent size 8 × 32 × 32)
between space and time is the best, as opposed to downsampling over only space or only time.

Further increasing the number of latent codes does not affect performance.
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Table 2.6: Ablations comparing the number of codebook codes

# of Codes R-FVD (↓) FVD (↓) bits/dim

256 18.2 103.8± 3.7 1.55
1024 14.9 103.6± 2.0 2.05
4096 11.3 103.9± 5.1 2.60

In Table 2.6, we show experimental results for running VideoGPT with different number of codes in
the codebooks. For all three runs, the VQ-VAE latent code vector has size 8× 32× 32. In the case
of BAIR, we find that reconstruction quality improves with increasing the number of codes due to
better expressivity in the discrete bottleneck. However, they ultimately do not affect sample quality.
This may be due to the fact that in the case of BAIR, using 256 codes surpasses a base threshold for
generation quality.

Using one VQ-VAE codebook instead of multiple improves performance.

Table 2.7: Ablations comparing the number of codebooks

Latent Size R-FVD (↓) FVD (↓) bits/dim

8× 32× 32× 1 14.9 103.6± 2.0 2.05
16× 16× 16× 2 17.2 106.3± 1.7 2.41
8× 16× 16× 4 17.7 131.4± 2.9 2.68
4× 16× 16× 8 23.1 135.7± 3.3 2.97

In our main results, we use one codebook for VQ-VAE. In Table 2.7, we compare VideoGPT with
different number of codebooks. Specifically, multiple codebooks is implemented by multiplying
VQ-VAE’s encode output channel dimension by C times, where C is the number of codebooks. The
encoder output is then sliced along channel dimension, and each slice is quantized through a separate
codebook. As a result, the size of the discrete latents are of dimension T ×H ×W ×C, as opposed
to T ×H×W when using a single codebook. Generally, multiple codebooks may be more favorable
over increasing the downsampling resolution as multiple codebooks allows a combinatorially better
scaling in bottleneck complexity. In our experiments, we increase the number of codebooks, and
reduce spatio-temporal resolutions on latent sizes to keep the size of the latent space constant.
We see that increasing the number of codebooks worsens sample quality performance, and the
best results are attained at the highest resolution with one codebook. Nevertheless, incorporating
multiple codebooks might shows its advantage when trained with a larger dataset or a different
VQ-VAE architecture design.
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2.5 Related Work
Video Predictiont The problem of video prediction [240] is quite related to video generation in that
the latter is one way to solve the former. Plenty of methods have been proposed for video prediction
on the BAIR Robot dataset [70, 63, 10, 54, 53, 139] where the future frames are predicted given the
past frame(s) and (or) action(s) of a robot arm moving across multiple objects thereby benchmarking
the ability of video models to capture object-robot interaction, object permanance, robot arm
motion, etc. Translating videos to videos is another paradigm to think about video prediction
with a prominent example being vid2vid [276]. The vid2vid framework uses automatically
generated supervision from more abstract information such as semantic segmentation [163] masks,
keypoints, poses, edge detectors, etc to further condition the GAN based video translation setup.

Video Generation Most modern generative modeling architectures allow for easy adaptation
of unconditional video generation to conditional versions through conditional batch-norm [23],
concatenation [218, 265], etc. Video Pixel Networks [123] propose a convolutional LSTM based
encoding of the past frames to be able to generate the next frame pixel by pixel autoregressively with
a PixelCNN [265] decoder. The architecture serves both as a video generative as well as predictive
model, optimized through log-likelihood loss at the pixel level. Subscale Video Transformers [284]
extend the idea of Subscale Pixel Networks [169] for video generation at the pixel level using the
subscale ordering across space and time. However, the sampling time and compute requirements are
large for these models. In the past, video specific architectures have been proposed for GAN based
video generation with primitive results by [272]. Recently, DVD-GAN proposed by [49] adopts a
BigGAN like architecture for videos with disentangled (axial) non-local [278] blocks across space
and time. They present a wide range of results, unconditional, past frame(s) conditional, and class
conditional video generation.

Other examples of prior work with video generation of GANs include [216], [257], [3], [303]. In
addition, [215] and [121] propose more scalable and efficient GAN models for training on less
compute. Our approach builds on top of VQ-VAE [266] by adapting it for video generation. A clean
architecture with VQ-VAE for video generation has not been presented yet and we hope VideoGPT
is useful from that standpoint. While VQ-VAE-2 [205] proposes using multi-scale hierarchical
latents and SNAIL blocks [42] (and this setup has been applied to videos in [273]), the pipeline is
inherently complicated and hard to reproduce. For simplicity, ease of reproduction and presenting
the first VQ-VAE based video generation model with minimal complexity, we stick with a single
scale of discrete latents and transformers for the autoregressive priors, a design choice also adopted
in DALL-E [203].

2.6 Conclusion
We have presented VideoGPT, a new video generation architecture adapting VQ-VAE and Trans-
former models typically used for image generation to the domain of videos with minimal modi-
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fications. We have shown that VideoGPT is able to synthesize videos that are competitive with
state-of-the-art GAN based video generation models. We have also presented ablations on key
design choices used in VideoGPT which we hope is useful for future design of architectures in
video generation.
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Chapter 3

Temporally Consistent Transformers for
Video Generation

W� ��� ���

Figure 3.1: TECO generates sharp and consistent video predictions for hundreds of frames on
challenging datasets. The figure shows evenly spaced frames of the 264 frame predictions, after
being conditioned on 36 context frames. From top to bottom, the datasets are are DMLab, Minecraft,
Habitat, and Kinetics-600.
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Figure 3.2: TECO generates temporally consistent videos of high fidelity (low LPIPS) over hundreds
of frames while offering orders of magnitude faster sampling speed compared to previous video
generation models.

3.1 Introduction
Recent work in video generation has seen tremendous progress [104, 49, 293, 138, 75, 249, 164] in
producing high-fidelity and diverse samples on complex video data, which can largely be attributed
to a combination of increased computational resources and more compute efficient high-capacity
neural architectures. However, much of this progress has focused on generating short videos, where
models perform well by basing their predictions on only a handful of previous frames.

Video prediction models with short context windows can generate long videos in a sliding window
fashion. While the resulting videos can look impressive at first sight, they lack temporal consistency.
We would like models to predict temporally consistent videos — where the same content is generated
if a camera pans back to a previously observed location. On the other hand, the model should
imagine a new part of the scene for locations that have not yet been observed, and future predictions
should remain consistent to this newly imagined part of the scene.

Prior work has investigated techniques for modeling long-term dependencies, such as temporal
hierarchies [220] and strided sampling with frame-wise interpolation [75, 106]. Other methods
train on sparse sets of frames selected out of long videos [93, 231, 49, 215, 302], or model videos
via compressed representations [293, 200, 138, 224, 85, 273]. Refer to B.12 for more detailed
discussion on related work.

Despite this progress, many methods still have difficulty scaling to datasets with many long-range
dependencies. While Clockwork-VAE [220] trains on long sequences, it is limited by training time



CHAPTER 3. TEMPORALLY CONSISTENT TRANSFORMERS FOR
VIDEO GENERATION 19

TECO
Dec

Space Time 
Transformer

Space Time 
Transformer
(19K)2 = 386M

TECO Prior

Temporal Causal 
Transformer

(1.2K)2 = 1.44M

Spatial MaskGit
300*(64)2 = 1.22M

300 x 1282 x 3

x
75 × 162 = 19K

z

z

z
300 × 82 = 19K

300 × 22 = 1.2K

300 × 22 = 1.2K

h

z

300 × 82 = 19K

300 × 82 = 19K75 × 162 = 19K

x

^ z z

z

^ ^

x̂

…

…

x̂

ẑ
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Figure 3.3: The architectural design of TECO. (a) Prior work on video generation models over VQ
codes adopt a single spatio-temporal transformer over all codes. This is prohibitive when scaling to
long sequences due to the quadratic complexity of attention. (b) We propose a novel and efficient
architecture that aggressively downsamples in space before feeding into a temporal transformer,
and then expands back out with a spatial MaskGit that is separately applied per frame. In the figure,
the transformer blocks show the number of attention links. On training sequences of 300 frames,
TECO sees orders of magnitude more efficiency over existing models, allowing the use of larger
models for a given compute budget.

(due to recurrence) and difficult to scale to complex data. On the other hand, transformer-based
methods over latent spaces [293] scale poorly to long videos due to quadratic complexity in attention,
with long videos containing tens of thousands of tokens. Methods that train on subsets of tokens are
limited by truncated backpropagation through time [112, 199, 51] or naive temporal operations [94].

In addition, there generally do not exist benchmarks for properly evaluating temporal consistency
in video generation methods, where prior works either focus on generating long videos where
short-term dependencies are sufficient for accurate prediction [75, 231] and/or rely on metrics such
as FVD [261] which are more sensitive to image fidelity rather than capture long-range temporal
dependencies.

In this paper, we introduce a set of novel long-horizon video generation benchmarks, as well as
corresponding evaluation metrics to better capture temporal consistency. In addition, we propose
Temporally Consistent Video Transformer (TECO), a vector-quantized latent dynamics model
that effectively models long-term dependencies in a compact representation space using efficient
transformers. The key contributions are summarized as follows:
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• To better evaluate temporal consistency in video predictions, we propose 3 video datasets
with long-range dependencies including metrics, generated from 3D scenes in DMLab [15],
Minecraft [87], and Habitat [243, 219]

• We benchmark SOTA video generation models on the datasets and analyze capabilities of
each in learning long-horizon dependencies.

• We introduce TECO, an efficient and scalable video generation model that learns compressed
representations to allow for efficient training and generation. We show that TECO has strong
performance on a variety of difficult video prediction tasks, and is able to leverage long-term
temporal context to generate high quality videos with consistency while maintaining fast
sampling speed.

3.2 Preliminaries

VQ-GAN
VQ-GAN [65, 266] is an autoencoder that learns to compress data into discrete latents, consisting
of an encoder E, decoder G, codebook C, and discriminator D. Given an image x ∈ RH×W×3,
the encoder E maps x to its latent representation h ∈ RH′×W ′×D, which is quantized by nearest
neighbors lookup in a codebook of embeddings C = {ei}Ki=1 to produce z ∈ RH′×W ′×D. z is fed
through decoder G to reconstruct x. A straight-through estimator [18] is used to maintain gradient
flow through the quantization step. The codebook optimizes the following loss:

LVQ = ∥sg(h)− e∥22 + β ∥h− sg(e)∥22 (3.1)

where β = 0.25 is a hyperparameter, and e is the nearest-neighbors embedding from C. For
reconstruction, VQ-GAN replaces the original ℓ2 loss with a perceptual loss [309], LLPIPS. Finally,
in order to encourage higher-fidelity samples, patch-level discriminator D is trained to classify
between real and reconstructed images, with:

LGAN = logD(x) + log(1−D(x̂)) (3.2)

Overall, VQ-GAN optimizes the following loss:

min
E,G,C

max
D
LLPIPS + LVQ + λLGAN (3.3)

where λ =
∥∇GL

LLPIPS∥
2

∥∇GL
LGAN∥

2
+δ

is an adaptive weight, GL is the last decoder layer, δ = 10−6, and

LLPIPS is the same distance metric described in Zhang et al. [309].
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MaskGit
MaskGit [35] models distributions over discrete tokens, such as produced by a VQ-GAN. It generates
images with competitive sample quality to autoregressive models at a fraction of the sampling cost
by using a masked token prediction objective during training. Formally, we denote z ∈ ZH×W

as the discrete latent tokens representing an image. For each training step, we uniformly sample
t ∈ [0, 1) and randomly generate a mask m ∈ {0, 1}H×W with N = ⌈γHW ⌉ masked values, where
γ = cos

(
π
2
t
)
. Then, MaskGit learns to predict the masked tokens with the following objective

Lmask = −Ez∈D
[
log p(z | z ⊙m)

]
. (3.4)

During inference, because MaskGit has been trained to model any set of unconditional and condi-
tional probabilities, we can sample any subset of tokens per sampling iteration. [35] introduces a
confidence-based sampling mechanism whereas other work [140] proposes an iterative sample-and-
revise approach.

3.3 TECO
We present Temporally Consistent Video Transformer (TECO), a video generation model that more
efficiently scales to training on longer horizon videos.

Architectural Overview
Our proposed framework is shown in Figure 3.3, where x1:T consists of a sequence of video
frames. Our primary innovation centers around designing a more efficient architecture that can
scale to long sequences. Prior SOTA methods [293, 75, 270] over VQ-codes all train a single
spatio-temporal transformer to model every code, however, this becomes prohibitively expensive
with sequences containing tens of thousands of tokens. On the other hand, these models have shown
to be able to learn highly multi-modal distributions and scale well on complex video. As such, we
design the TECO architecture with the intention to retain its high-capacity scaling properties, while
ensuring orders of magnitude more efficient training and inference. In the following sections, we
motivate each component for our model, with several specific design choices to ensure efficiency
and scalability. TECO consists of four components:

Encoder: zt = E(xt, xt−1)

Temporal Transformer: ht = H(z≤t)

Spatial MaskGit: p(zt | ht−1)

Decoder: p(xt | zt, ht−1)

(3.5)

Encoder We can achieve compressed representations by leveraging spatio-temporal redundancy
in video data. To do this, we learn a CNN encoder zt = E(xt, xt−1) which encodes the current
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frame xt conditioned on the previous frame by channel-wise concatenating xt−1, and then quantizes
the output using codebook C to produce zt. We apply the VQ loss defined in Equation (3.1)
per timestep. In addition, we ℓ2-normalize the codebook and embeddings to encourage higher
codebook usage [297]. The first frame is concatenated with zeros and does not quantize z1 to
prevent information loss.

Temporal Transformer Compressed, discrete latents are more lossy and tend to require higher
spatial resolutions compared to continuous latents. Therefore, before modeling temporal informa-
tion, we apply a single strided convolution to downsample each discrete latent zt, where visually
simpler datasets allow for more downsampling and visually complex datasets require less downsam-
pling. Afterwards, we learn a large transformer to model temporal dependencies, and then apply
a transposed convolution to upsample our representation back to the original resolution of zt. In
summary, we use the following architecture:

ht = H(z<t) = ConvT(Transformer(Conv(z<t))) (3.6)

Decoder The decoder is an upsampling CNN that reconstructs x̂t = D(zt, ht), where zt can be
interpreted as the posterior of timestep t, and ht the output of the temporal transformer which
summarizes information from previous timesteps. zt and ht are concatenated channel-wise and
into the decoder. Together with the encoder, the decoder optimizes the following cross entropy
reconstruction loss

Lrecon = − 1
T

∑T
t=1 log p(xt | zt, ht). (3.7)

which encourages zt features to encode relative information between frames since the temporal
transformer output ht aggregates information over time, learning more compressed codes for
efficient modeling over longer sequences.

Spatial MaskGit Lastly, we use a MaskGit [35] to model the prior, p(zt | ht). We show that
using a MaskGit prior allows for not just faster but also higher quality sampling compared to an
autoregressive prior. During every training iteration, we follow prior work to sample a random mask
mt and optimize

Lprior = − 1
T

∑T
t=1 log p(zt | zt ⊙mt). (3.8)

where ht is concatenated channel-wise with masked zt to predict the masked tokens. During
generation, we follow Lee et al. [140], where we initially generate each frame in chunks of 8 at a
time and then go through 2 revise rounds of re-generating half the tokens each time.

Training Objective The final objective is the following:

LTECO = LVQ + Lrecon + Lprior (3.9)



CHAPTER 3. TEMPORALLY CONSISTENT TRANSFORMERS FOR
VIDEO GENERATION 23

DropLoss
We propose DropLoss, a simple trick to allow for more scalable and efficient training (Figure 3.4).
Due to its architecture design, TECO can be separated into two components: (1) learning temporal
representations, consisting of the encoder and the temporal transformer, and (2) predicting future
frames, consisting of the dynamics prior and decoder. We can increase training efficiency by
dropping out random timesteps that are not decoded and thus omitted from the reconstruction loss.
For example, given a video of T frames, we compute ht for all t ∈ {1, . . . , T}, and then compute
the losses Lprior and Lrecon for only 10% of the indices. Because random indices are selected each
iteration, the model still needs to learn to accurately predict all timesteps. This reduces training costs
significantly because the decoder and dynamics prior require non-trivial computations. DropLoss is
applicable to both a wide class of architectures and to tasks beyond video prediction.

x̂2

Model

x1 x2 x3 x4

x̂5

x5

Figure 3.4: DropLoss improves training scalability on longer sequences by only computing the
loss on a random subset of time indices for each training iteration. For TECO, we do not need to
compute the decoder and MaskGit for dropped out timesteps.

3.4 Experiments

Datasets
We introduce three challenging video datasets to better measure long-range consistency in video
prediction, centered around 3D environments in DMLab [15], Minecraft [87], and Habitat [219],
with videos of agents randomly traversing scenes of varying difficulty. These datasets require video
prediction models to re-produce observed parts of scenes, and newly generate unobserved parts. In
contrast, many existing video benchmarks do not have strong long-range dependencies, where a
model with limited context is sufficient. Refer to Appendix B.13 for further details on each dataset.

DMLab-40k DeepMind Lab is a simulator that procedurally generates random 3D mazes with
random floor and wall textures. We generate 40k action-conditioned 64× 64 videos of 300 frames
of an agent randomly traversing 7× 7 mazes by choosing random points in the maze and navigating
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to them via the shortest path. We train all models for both action-conditioned and unconditional
prediction (by periodically masking out actions) to enable both types of generations. We further
discuss the use cases of both action and unconditional models in Section 3.4.

Minecraft-200k This popular game features procedurally generated 3D worlds that contain
complex terrain such as hills, forests, rivers, and lakes. We collect 200k action-conditioned videos
of length 300 and resolution 128× 128 in Minecraft’s marsh biome. The player iterates between
walking forward for a random number of steps and randomly rotating left or right, resulting in parts
of the scene going out of view and coming back into view later. We train action-conditioned for
all models for ease of interpreting and evaluating, though it is generally easy for video models to
unconditionally learn these discrete actions.

Habitat-200k Habitat is a simulator for rendering trajectories through scans of real 3D scenes.
We compile ∼1400 indoor scans from HM3D [201], MatterPort3D [34], and Gibson [289] to
generate 200k action-conditioned videos of 300 frames at a resolution of 128 × 128 pixels. We
use Habitat’s in-built path traversal algorithm to construct action trajectories that move our agent
between randomly sampled locations. Similar to DMLab, we train all video models to perform both
unconditional and action-conditioned prediction.

Kinetics-600 Kinetics-600 [32] is a highly complex real-world video dataset, originally proposed
for action recognition. The dataset contains ∼400k videos of varying length of up to 300 frames.
We evaluate our method in the video prediction without actions (as they do not exist), generating 80
future frames conditioned on 20. In addition, we filter out videos shorter than 100 frames, leaving
392k videos that are split for training and evaluation. We use a resolution of 128 × 128 pixels.
Although Kinetics-600 does not have many long-range dependencies, we evaluate our method on
this dataset to show that it can scale to complex, natural video.

Baselines
We compare against SOTA baselines selected from several different families of models: latent-
variable-based variational models, autoregressive likelihood models, and diffusion models. In
addition, for efficiency, we train all models on VQ codes using a pretrained VQ-GAN for each
dataset. For our diffusion baseline, we follow [211] and use a VAE instead of a VQ-GAN. Note that
we do not have any GANs for our baselines, since to the best of our knowledge, there does not exist
a GAN that trains on latent space instead of raw pixels, an important aspect for properly scaling to
long video sequences.

Space-time Transformers We compare TECO to several variants of space-time transformers as
depicted in Figure 3.3: VideoGPT [293] (autoregressive over space-time), Phenaki [270] (MaskGit
over space-time full attention), MaskViT [85] (MaskGit over space-time axial attention), and
Hourglass transformers [182] (hierarchical autoregressive over space-time). Note that we do not



CHAPTER 3. TEMPORALLY CONSISTENT TRANSFORMERS FOR
VIDEO GENERATION 25

Figure 3.5: Quantitative comparisons between TECO and baseline methods in long-horizon temporal
consistency, showing LPIPS between generated and ground-truth frames for each timestep. Timestep
0 corresponds to the first predicted frame (conditioning frames are not included in the plot). Our
method is able to remain more temporally consistent over hundreds of timesteps of prediction
compared to SOTA models.

Table 3.1: Quantitative evaluation on all four datasets. Detailed results in Appendix B.10.

DMLab Minecraft
Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FitVid 176 12.0 0.356 0.491 956 13.0 0.343 0.519
CW-VAE 125 12.6 0.372 0.465 397 13.4 0.338 0.441
Perceiver AR 96 11.2 0.304 0.487 76 13.2 0.323 0.441
Latent FDM 181 17.8 0.588 0.222 167 13.4 0.349 0.429
TECO (ours) 48 21.9 0.703 0.157 116 15.4 0.381 0.340

Habitat Kinetics-600
Method FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Perceiver AR 164 12.8 0.405 0.676 1022 13.4 0.310 0.404
Latent FDM 433 12.5 0.311 0.582 960 13.2 0.334 0.413
TECO (ours) 73 12.8 0.363 0.604 799 13.8 0.341 0.381
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Figure 3.6: 3D visualization of predicted trajectories in DMLab for each model, generating 156
frames conditioned on 144. TECO is the only model that retain maze consistency with ground-
truth, whereas baselines tend to extend out of the maze or create fictitious corridors that did not
exist. Video predictions use only the first-person RGB frames. Refer to Appendix B.13 for
more details on 3D evaluation. A video corresponding to this figure is available at: https:
//wilson1yan.github.io/teco.

include the text-conditioning for Phenaki as it is irrelevant in our case. We only evaluate these
models on DMLab, as Table 3.2 and Table 3.1 show that Perceiver-AR (a space-time transformer
with improvements specifically for learning long dependencies) is a stronger baseline.

FitVid FitVid [11] is a state-of-the-art variational video model based on CNNs and LSTMs that

https://wilson1yan.github.io/teco
https://wilson1yan.github.io/teco
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Table 3.2: TECO substantially outperforms similar video generation models that use space-time
transformers.

Model FVD↓ PSNR↑ SSIM↑ LPIPS↓

TATS 156 11.1 0.296 0.468
Phenaki 725 11.0 0.202 0.474
MaskViT 76 12.4 0.360 0.435
Hourglass 110 11.7 0.335 0.458
TECO (ours) 48 21.9 0.703 0.157

scales to complex video by leveraging efficient architectural design choices in its encoder and
decoder.

Clockwork VAE CW-VAE [220] is a variational video model that is designed to learn long-range
dependencies through a hierarchy of latent variables with exponentially slower tick speeds for each
new level.

Perceiver AR We use Perceiver AR [94] as our AR baseline over VQ-GAN discrete latents,
which has been show to be an effective generative model that can efficiently incorporate long-range
sequential dependencies. Conceptually, this baseline is similar to HARP [224] with a Perceiver AR
as the prior instead of a sparse transformer [45]. We choose Perceiver AR over other autoregressive
baselines such as VideoGPT [293] or TATS [75] primarily due to the prohibitive costs of transformers
when applied to tens of thousands of tokens.

Latent FDM We train a Latent FDM model for our diffusion baseline. Although FDM [93] is
originally trained on pixel observations, we also train in latent space for a more fair comparison with
our method and other baselines, as training on long sequences in pixel space is too expensive. We
follow LDM [211] to separately train an autoencoder to encode each frame into a set of continuous
latents.

Experimental Setup
Training All models are trained for 1 million iterations under fixed compute budgets allocated
for each dataset (measured in TPU-v3 days) on TPU-v3 instances ranging from v3-8 to v3-128
TPU pods (similar to 4 V100s to 64 V100s) with training times of roughly 3-5 days. For DMLab,
Minecraft, and Habitat we train all models on full 300 frames videos, and 100 frames for Kinetics-
600. Our VQ-GANs are trained on 8 A5000 GPUs, taking about 2-4 days for each dataset, and
downsample all videos to 16× 16 grids of discrete latents per frame regardless of original video
resolution. More details on exact hyperparameters and compute budgets for each dataset can be
found in Appendix B.14.
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Evaluation

Standard methods for evaluating video prediction quality (FVD [261] or per-frame metrics PSNR [113],
SSIM [282], and LPIPS [309]) do not measure long-consistency well. FVD is more sensitive to
image fidelity, and relies on an I3D network trained on short Kinetics-600 clips. Evaluations using
PSNR, SSIM, and LPIPS generally require sampling hundreds of futures and compare the sample
that most accurately matches ground-truth. However, this does not align well with the goal of
temporal consistency, as we would like the model to deterministically re-generate observed parts of
the environment, and not accidentally generate the correct future after many samples.

Therefore, we propose a modified evaluation metric using PSNR, SSIM, and LPIPS that better
measures temporal consistency in video generation by leveraging sufficient conditioning. Intuitively,
if a video model is conditioned with enough information, future predictions should be approximately
deterministic, meaning that only one sample should be needed to expect an accurate match with
ground-truth. In the case of 3D environments, we can approximately make generation deterministic
by conditioning on past frames (after the model has already seen most of the 3D environment) and
actions (to remove stochasticity of movement). As such, for DMLab, Minecraft, and Habitat, we
condition on 144 past frames as well as actions, and measure PSNR, SSIM, and LPIPS with 156
future ground-truth frames. However, note that per-frame metrics only capture temporal consistency,
and do not capture a video model’s ability to model the stochasticity of video data. Therefore,
we also compute FVD on 300 frame videos, conditioned on 36 frames (264 predicted frames).
For Kinetics-600, we evaluate FVD on 100 frame videos, conditioned on 20 frames (80 predicted
frames). We compute all metrics over batches of 256 examples, averaged over 4 runs to make 1024
total samples.

Benchmark Results
DMLab & Minecraft Table 3.1 shows quantitative results on the DMLab and Minecraft datasets.
TECO performs the best across all metrics for both datasets when training on the full 300 frame
videos. Figure 3.6 shows sample trajectories and 3D visualizations of the generated DMLab mazes,
where TECO is able to generate more consistent 3D mazes. For both datasets, CW-VAE, FitVid,
and Perceiver AR can produce sharp predictions, but do not model long-horizon context well, with
per-frame metrics sharply dropping as the future prediction horizon increases as seen in Figure B.10.
Latent FDM has consistent predictions, but high FVD most likely due to FVD being sensitive to
high frequency errors.

Habitat Table 3.1 shows results for our Habitat dataset. We only evaluate our strongest baselines,
Perceiver AR and Latent FDM due to the need to implement model parallelism. Because of high
complexity of Habitat videos, all models generally perform equally as bad in per-frame metrics.
However, TECO has significantly better FVD. Qualitatively, Latent FDM quickly collapses to
blurred predictions with poor sample quality, and Perceiver AR generates high quality frames,
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though less temporally consistent than TECO: agents in Habitat videos navigate to far points in the
scene and back whereas Perceiver AR tends to generate samples where the agent constantly turns.
TECO generates traversals of a scene that match the data distribution more closely.

Kinetics-600 Table 3.1 shows FVD for predicting 80 128 × 128 frames conditioned on 20 for
Kinetics-600. Although Kinetics-600 does not have many long-range dependencies, we found
that TECO is able to produce more stable generations that degrade slower by incorporating longer
contexts. In contrast, Perceiver AR tends to degrade quickly, with Latent FDM performing in
between.

Sampling Speed Figure 3.5 reports sampling speed for all models on Minecraft. We observed
similar results for the different model sizes used on other datasets. FitVid and CW-VAE are both
significantly faster that other methods, but have poor sample quality. On the other end, Perceiver
AR and Latent FDM can produce high quality samples, but are 20-60x slower than TECO, which
has comparably fast sampling speed while retaining high sample quality.

Ablations
In this section, we perform ablations on various architectural decisions of our model. For simplicity,
we evaluate our methods on short sequences of 16 frames from Something-Something-v2 (SSv2), as
it provides insight into scaling our method on complex real-world data more similar to Kinetics-600
while being computationally cheaper to run.

Details can be found in the Appendix, Table B.1. We demonstrate that using VQ-latent dynamics
with a MaskGit prior outperforms other formulations for latent dynamics models such as variational
methods. In addition, we show that conditional encodings learn better representations for video
predictions. We also ablate the codebook size, showing that although there exists an optimal
codebook size, it does not matter too much as along as there are not too many codes, which may
the prior more difficult to learn. Lastly, we show the benefits of DropLoss, with up to 60% faster
training and a minimal increase in FVD. The benefits are greater for longer sequences, and allow
video models to better account for long horizon context with little cost in performance.

Further Insights
We highlight a few key experimental insights for designing long-horizon video generation models.
Further details can be found in Appendix B.9 and Appendix B.7.

Trade-off between fidelity and learning long-range dependencies Given a network with fixed
capacity, there exists an inherent trade-off between generating high fidelity and temporally con-
sistent videos. We find that long-horizon information can be prioritized through bottlenecking
representations, whereas allocating more computation towards higher resolution representations
encourages higher fidelity. Due to TECO learning more compact representations, it achieves a better
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trade-off between fidelity and temporal consistency compared to our baseline models, demonstrated
by better PSNR / SSIM / LPIPS, in addition to FVD.

Although frame quality saturates early-on, long-term consistency improves when training
longer During training, we observe an interesting phenomenon where short-horizon metrics tend
to saturate earlier on during training, while long-horizon metrics continue to improve until end of
training. We hypothesize that this may be due to the likelihood objective, where modeling bits from
neighboring frames is easier than learning long-horizon bits scattered throughout the video. This
finding motivates the use of an efficient video architecture for TECO, which can be trained for more
gradient steps given a fixed computational budget.

3.5 Discussion
We introduced TECO, an efficient video prediction model that leverages hundreds of frames of
temporal context, as well as a comprehensive benchmark to evaluate long-horizon consistency. Our
evaluation demonstrated that TECO accurately incorporates long-range context, outperforming
SOTA baselines across a wide range of datasets. In addition, we introduce several difficult video
datasets, which we hope make it easier to evaluate temporal consistency in future video prediction
models. We identify several limitations as directions for future work:

• Although we show that PSNR, SSIM, and LPIPS can be reliable metrics to measure consis-
tency when video models are properly conditioned, there remains room for better evaluation
metrics that provide a reliable signal as the prediction horizon grows, since new parts of a
scene that are generated are unlikely to correlate with ground truth.

• Our focus was on learning a compressed tokens and an expressive prior, which we combined
with a simple full attention transformer as the sequence model. Leveraging prior work on
efficient sequence models [47, 275, 305, 83, 94] would likely allow for further scaling.

• We trained all models on top of pretrained VQ-GAN codes to reduce the data dimensionality.
This compression step lets us train on longer sequences at a cost of reconstruction error,
which causes noticeable artifacts in Kinetics-600, such as corrupted text and incoherent faces.
Although TECO can train directly on pixels, a ℓ2 loss results in slightly blurry predictions.
Training directly on pixels with diffusion or GAN losses would be promising.

3.6 Acknowledgements
This work was in part supported by Panasonic through BAIR Commons, Darpa RACER, the Hong
Kong Centre for Logistics Robotics, and BMW. In addition, we thank teh TRC program (https:
//sites.research.google/trc/about/) and Cirrascale Cloud Services (https://
cirrascale.com/) for providing compute resources.

https://sites.research.google/trc/about/
https://sites.research.google/trc/about/
https://cirrascale.com/
https://cirrascale.com/


31

Chapter 4

ElasticTok: Adaptive Tokenization for Image
and Video
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Figure 4.1: ElasticTok adaptively represent video based on information available. (Top) Ground-
truth video frames. (Middle) Reconstructed frames with varying token usage. (Bottom) The bottom
section depicts how ElasticTok dynamically adjusts token allocation over time, with the percentage
of tokens used correlating to different content complexities in the video.
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4.1 Introduction
Efficient video tokenization remains a key bottleneck in learning general purpose vision models that
are capable of processing long video sequences – a crucial aspect towards developing intelligent
agents for the visual world. Prevailing approaches [266, 65, 300, 293] are restricted to encoding
videos to a fixed number of tokens irrespective of the visual content of the original video. As a result,
being able to reliably encode with little information loss requires increasing the number of tokens
to account for the worst case, highly complex visual inputs. However, this in turn causes many
wasted tokens on simpler data, and leads to significant computational challenges for downstream
training, where encoding a video or trajectory can require tens or even hundreds of millions of
tokens, resulting in substantial computational costs and inefficiency [155, 27, 156]. On the other
hand, using a too few number of tokens will result in lossy encodings, and fundamentally limit the
capabilities of vision models when processing more complex visual data.

Intuitively, we would want do learn a model that adaptively encodes visual input in a data-dependent
manner to variable length encodings, similar to how existing works in image and video compres-
sion [207, 148, 48, 41] compress data to a varying number of bytes. Taking inspiration from this,
we introduce ElasticTok, a method that conditions on prior frames to adaptively encode a frame
into a variable number of tokens. To enable this in a computationally scalable way, we propose a
masking technique that drops a random number of tokens at the end of each frame’s token encoding.
During inference, ElasticTok can dynamically allocate tokens when needed – more complex data
can leverage more tokens, while simpler data only needs a few tokens.

Our empirical evaluations demonstrate the effectiveness of ElasticTok, highlighted below.

• We show that ElasticTok can leverage adaptive tokenization to efficiently represent long videos
with up to 2-5x fewer tokens.

• We show that ElasticTok enables flexibility in downstream vision-language tasks, allowing users
to allocate tokens based on their compute budget.

• We show that ElasticTok allows leveraging different objectives during inference to adaptively
trade off various semantic aspects of images.

4.2 Method
In this section, we present ElasticTok, a scalable adaptive visual tokenizer than can efficiently
encode image and video. At a high level, we leverage a specialized random masking scheme when
training any standard autoencoder to learn our elastic encodings. In the following sections, we
provide a more detailed description of our model – first covering the simpler single block case
(image / short video), and then moving on to the multi block case (longer video). An overview of
our method is shown in Figure 4.2.
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Training
First, we consider a single-block case in which we want to learn elastic codes over an image or
a short video chunk (e.g., 4 frames). Let x represent a sequence of input frames, where images
are considered as 1 frame videos. Our proposed method extends upon any existing variants of
autoencoders (VQ-VAE [266], FSQ [172], VAE [130]) by incorporating additional masking of the
encoder tokens.

For each training input x, we first uniformly sample the number of tokens to keep
ℓ ∼ U({Mmin, . . . ,Mmax}), where Mmin and Mmax define the supported range of encoding lengths.
Mmax is generally set as N , the maximum number of tokens the encoder can output (e.g., 2048 or
4096), and Mmin a lower bound such as 128 or 256. We found this lower bound necessary as we
found that sampling too few tokens could destabilize training. After sampling ℓ, we then compute
its mask m, defined as a binary vector of length N with the first ℓ values set to 1. Input x and
mask m are then fed into the encoder E(x,m) to compute z. z is masked as zm = z ⊙m, and fed
through the decoder D(zm) to produce x̂. Finally, our model optimizes a reconstruction loss, with
potentially auxiliary losses depending on the exact autoencoder being used (e.g., KL for VAE or VQ
loss for VQ-VAE). Although our method is generally architecture invariant, we opt to use ViTs [62]
as our encoder and decoders for simplicity.

Figure 4.2: ElasticTok adaptively encodes image and video to variable length outputs based on
the complexity of the input data. Single block uses an Encoder-Decoder pipeline with a sampled
latent mask. Multi-block extends this with a Block Causal Mask to handle longer video sequences.
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We can extend our method to process longer video by breaking up video into blocks, with sizes
defined by the number of frames used for the single block model (e.g 4 frames per block). The
training process remains the same as the single block case, with two key differences: (1) masks for
each multi block video sequence are sampled independently for each block, and (2) a block causal
mask (block size N ) is used in the encoder and decoder. The number of blocks is constrained only
by the transformer’s context size. We utilize a prior long-context method [156] to train ElasticTok
on longer videos. Architecturally, there are no added parameters which we found useful when
progressively training our model from single block to multi block.

Exact details of our model’s forward pass are described in Algorithm 1.

Inference
There are two primary ways to use ElasticTok for inference – by specify a target encoding length,
or a target reconstruction threshold.

Target encoding lengths. This method is simple to implement, as it only requires generating the
correct mask and running the input through the encoder. However, although such inference is simple
and efficient, it is difficult from a user’s perspective due to lack of knowledge of how many tokens
to specify.

Target reconstruction threshold. This method presents a more intuitive inference approach
that will automatically adaptively allocate tokens between different inputs based on a specified
reconstruction threshold (e.g., target pixel-wise MSE loss). Visual content that is easy to reconstruct
may require fewer tokens to meet the threshold whereas more complex inputs may require more
tokens. Doing so requires a search process over different encoding lengths to determine lowest
encoding length that still satisfies the given threshold.

We consider a few different search algorithms, detailed below:

• Full Search: Exhaustive search over every possible number of tokens lengths, and treat the result
as ground truth. We use our discrete latent with max 4096 tokens.

• Binned Search (100): Similar to Full Search, but only evaluate on 100 uniformly spaced token
lengths.

• Binary Search: We perform search using binary search, where the token length is the ”array
index”, and the evaluated reconstruction loss is the ”array value.” Note that this assumes that
reconstruction loss is monotonic with respect to token length, which is generally close to true, but
not fully accurate, hence error in the result produced.

• Neural Regression: We collect 100k examples of paired (image / video, token length) data, and
finetune our autoencoder to directly regress the number of tokens given an image or video.
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Each search algorithm has its own trade-off between accuracy and efficiency – we further examine
this relationship in Section 4.3.

In the multi block case, we iteratively perform the search process for each block in a block
autoregressive manner, using caching similar to in language models. Algorithm 2 provides more
details on the exact inference process.

Algorithm 1 Training
Required: Input video x. Tokens per block B.
Required: Encoder E. Decoder D
x← PatchifyRearrange(x) // B × L×D
Nb ← L/B
for i in {0, . . . , Nb − 1} do

Sample ℓi ∼ U({Mmin, . . . ,Mmax})
Initialize masks mi ← 0B
Fill masks mi[: ℓi] = 1

end for
Concatenate masks m← (m0, . . . ,mNb−1)
Encode z ← E(x,m) // B × L×Dz

Mask out along sequence length zm ← z ⊙m
Decode x̂← D(zm)
Compute loss L(x̂, x) // e.g., MSE + LPIPS

Algorithm 2 Inference
Required: Input sequence x. Tokens per block B.

Required: Encoder E. Decoder D
Required: Target reconstruction threshold t
x← PatchifyRearrange(x) // B × L×D
Nb ← L/B
Initialize KV cache c of length L
for i in {0, . . . , Nb − 1} do

// See Section 2.2 for search algorithms
ℓi,mi, c ← SearchAlgo(xiB:(i+1)B, c, t,D,E)

Encode zi ← E(xiB:(i+1)B,mi, c)⊙mi

end for
Return z ← (z0, . . . , zNb−1)

4.3 Experiments
In this section, we introduce our evaluation setup and present the results of pretraining ElasticTok
to adaptively represent images and videos, as well as its performance on downstream tasks.

Experimental Setup
Model details. We train 200M parameter discrete and continuous autoencoders on images and
video sequences. For learning discrete representations, we use FSQ [171], while for continuous
representations, we use a VAE [130]. Both models employ ViT encoders and decoders. Similar to
prior works [65], we optimize both a pixel-wise reconstruction loss (MSE) and a perceptual loss
(LPIPS) [119]. Notably, we do not use a GAN [81], as we find it more difficult to stably train when
progressively extending to much longer sequences (e.g. 1000+ frames), which we leave to future
work, as it is not the main focus of this paper.

Training details. All models are jointly trained on 256 × 256 images and 24 FPS videos. Each
video block consists of 4 frames, and joint training is conducted by treating images as single-frame
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videos, replicating each image 4 times to match the block size. Each block is encoded into 2048 or
4096 tokens by the continuous and discrete autoencoders, respectively. Following prior research
in LWM [155] on scaling sequence length, we begin by training our models on single-block cases
(images and short videos) and progressively extend the context length to cover up to 40-second
videos (512K to 1M tokens). We train our long video models using v4-512 TPUs from Google
Cloud on the COYO-700M image dataset and a custom dataset consisting of 6M videos scraped
from the web. We additionally train an image-only model on ImageNet using v4-256 TPUs. Details
for further training details can be find in Appendix C.2, and data details in Appendix C.3

Baselines. We compare our proposed method against fixed token baselines trained at a varying
token capacities. The architecture, training processes, and total FLOPs are exactly the same as our
method with the only difference being restricted to one fixed mask, instead of sampling variable
masks.
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Figure 4.3: ElasticTok adaptively encodes image and video to variable length outputs based
on the complexity of the input data. (Top) Ground-truth video frames. (Middle) Reconstructed
frames with varying token usage. (Bottom) The bottom section depicts how ElasticTok dynamically
adjusts token allocation over time, with the percentage of tokens used correlating to different content
complexities in the video.
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Main Results
Intuitively, the advantages of our elastic tokenization allow variable length codes that can depend
on the visual content of a given image or video. Figure 4.3 shows some qualitative examples that
demonstrate this. All images and videos are provided the same MSE reconstruction quality (0.003)
threshold to satisfy, and require different number of tokens depending on the complexity the images.
Simpler images such as the blue cushion require fewer tokens, while more complex images such as
the painting or recipe have details that require more tokens to properly encode. For the provided
video example, we generally see larger token usage spikes in the event of a scene change or faster
motion, such as when the phone animates a transition screen, or when the finger scrolls up in the
newsfeed. More qualitative examples can be found at: largeworldmodel.github.io/elastictok.

3.5x

1.3x

5x

2.4x

1.3x

Figure 4.4: Performance comparison between baseline and ElasticTok on ImageNet and Video.
The y-axis shows the percentage of samples that satisfy the reconstruction threshold, while the
x-axis represents the percentage of tokens used. (Left) On image, ElasticTok achieves a 3.5x and
1.3x efficiency boost at different reconstruction thresholds. (Right) On video, ElasticTok shows a
5x and 2.4x improvement over the baseline, maintaining superior performance while using fewer
tokens. Figure C.1 in Appendix C.4 shows reference examples of reconstruction quality for an
image at different thresholds.

Figure 4.4 shows quantitative comparisons between our method and different fixed token baselines
trained at each token length. In order to show the benefits of elastic token representations, we
compute a quantitative metric that measures the percentage of images or videos blocks in which a

http://largeworldmodel.github.io/elastictok
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model satisfies a specified reconstruction (MSE) threshold. As shown, our method can leverage
its elastic representations to achieve similar reconstruction satisfactory percentages compared to
baselines while using 1.3x - 5x fewer tokens, depending on the given threshold. Generally, more lax
(0.015) reconstruction thresholds present larger performance improvements due to more room to
use fewer than max tokens. In contrast, more strict (0.001) thresholds usually almost always require
all tokens. Different thresholds may be useful for different cases, where more lossy encodings can
be used for simple VQA tasks, while more accurate reconstructions are useful for tasks such as
image / video generation. Table 4.1 shows similar results for the continuous variant of our model,
compared against a single baseline model fixed to 50% token usage.

Table 4.2 shows results comparing ElasticTok against a quality baseline. In which we first run
inference using our model with a given threshold, and then compute which token length baseline is
needed to match the quality (worst-case MSE over video blocks) of our model. Note that our model
can use a different number of tokens each video block, where as the baseline uses the same number
of tokens for all blocks. The adaptivity of our model helps match baseline model quality with lower
average token usage.

Figure 4.5 shows qualitative examples of progressive reconstruction quality as we increase the
number of tokens. Different visual inputs will saturate reconstruction quality at a different number of
tokens. This flexibility allows us to use a large number of tokens for very hard images (e.g.inputs with
detailed fine-grained text), while saving tokens on inputs that are easier to reconstruct. Figure 4.6
shows the performance of our method as we increase the sequence length of the model – performing
better as sequence length increases due to being able to leverage long context for more accurate
reconstruction. However, performance degrades at the max context length (1M tokens), which we
hypothesize is due to not enough training due to our relatively limited compute budget for that
context size.

Takeaway: ElasticTok offers significant advantages in image and video reconstruction by using
variable-length codes that depend on content complexity. Qualitatively, simpler images require
fewer tokens, while more complex ones need more tokens for accurate encoding. Quantitatively,
elastic tokenization achieves similar reconstruction quality compared to fixed token baselines
while using up to 5x fewer tokens

Downstream Tasks
In order to evaluate the quality of our learned representations, we finetune a pretrained language
model with our visual tokens, and evaluate on text-image and text-video VQA tasks. We use
OpenLLaMA-3B [76], and finetune with visual tokens from the continuous variant of our model
(max 2048 tokens). We finetune the entire model for 80M text-image pairs from COYO-700m [30],
and chat finetune with data from [38]. For video, we continue to train on WebVid10M [12] and
finetune on Video-ChatGPT [166] instruct data. Figure 4.7 shows evaluation results on GQA [5],
POPE [151], MSVD-QA [291], and MSRVTT-QA [291] at a varying number of input inference
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Table 4.1: Performance comparison between base-
line and ElasticTok across different reconstruction
thresholds with the continuous token model. Per-
centage shows the proportion of video blocks that
satisify the given reconstruction threshold. Our
model can satisfy more video blocks.

Threshold
0.001 0.003 0.015

Baseline 40% 78% 99%
Ours 50% 88% 99%

Table 4.2: Comparing performance of our
Quality Baseline and ElasticTok at differ-
ent reconstruction thresholds. Our model
can use fewer tokens to reach the same
quality (match worse-case MSE) as the
baseline model.

Threshold
0.001 0.003 0.015

Baseline 78% 57% 15%
Ours 75% 37% 9.4%

GT More Tokens Used0% 100%

Figure 4.5: Loss progressively declines as more tokens are used. The top row illustrates the
impact on text clarity, while the bottom row shows the effect on image sharpness. The graphs on
the right quantify the reconstruction loss relative to token usage percentage, showing a rapid decline
as more tokens are consumed.

tokens. Benchmark performance generally increases at the number inference tokens increases,
suggesting the usefulness of our model as a means for users to potentially be able to flexibly choose
how many tokens use, as a compute / accuracy trade-off, especially useful for users with more
limited compute / API call budgets. Lastly, Table 4.3 shows that our VLM finetuned on our adaptive
tokens can match the performance of a VLM finetuned on a fixed token (50% tokens) baseline
tokenizer, suggesting that there is little to no loss in accuracy when switching to ElasticTok as the
tokenizer, with additional added adaptivity benefits.
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Figure 4.6: Progressive performance increase with more frames. Performance improves with
increasing sequence length, peaking around 100 frames before a slight decline. (Note the log scale
for the x-axis)

Figure 4.7: The accuracy and compute trade-
off with varying percentages of tokens used.
This allows users to adjust the accuracy based on
computational budget.

GQA POPE MSVD MSRVTT

Ours 54% 82% 52% 37%
Baseline 54% 82% 53% 37%

Table 4.3: Comparison of our method with
baseline on image and video benchmarks. Our
method can match the performance of the base-
line trained on a fixed number (100%) of tokens.
However, baseline models are restricted to a fixed
token output, and require full pretraining a new
model for every possible token length, whereas
ElasticTok only requires a single model to gener-
alize to all token lengths.

Inference
Speed. Table 4.4 shows comparisons of the accuracy and inference speed (NFEs) for each of these
methods. Error rate is computed as the relative error between the ground truth number of tokens
used, and the number of tokens returned by each method. NFE (Number of Function Evaluations)
is the number of forward passes that are needed. In generally, methods closer to exhaustive search
(Full / Binned Search) are more accurate, while methods that orders of magnitudes faster generally
have much higher error around 5 − 10%. Users with less compute available for inference may
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want to use the faster inference methods at a slight cost to token encoding accuracy. Users with a
lot of compute can leverage more exhaustive approaches while retaining fast inference speed by
computing search for token lengths as parallel batches.

Target Objective. One benefit of computing elastic tokens is that we can switch to any target
objective during inference, and can adaptively tokenize visual content based on certain visual
preferences, or aspects that users want to prioritize by allocating more tokens to. For example,
Figure 4.8 shows qualitative examples comparing running inference using an MSE objective versus
using a CLIP loss (image-image cosine distance) On average, thresholds are set so that both models
as the same average number of tokens over the dataset, but OCR capabilities of CLIP allow it to
show preference towards allocating more tokens in reconstructing the text (bottom images), while
deprioritizing other images such as the fine-grained details in the bottom image. In general, any
scalar function is usable, and does not need to be differentiable (e.g., running OCR detection, and
computing a more direct text reconstruction metric, or running segmentation and priortizing object
clarity).

Takeaway: ElasticTok allows multiple adaptive inference methods: full search is the most
accurate but slow, while faster methods like neural regression slightly sacrifice accuracy (5-10%
error) for speed. Users with less compute can opt for faster methods with a slight accuracy
loss. Additionally, inference objectives can be adapted to prioritize specific content, such as
focusing on text over other image features, allowing for flexible token allocation based on user
preferences.

Inference Method Error Rate NFEs

Full Search 0% 4096
Binned Search (100) 0.5% 100
Binary Search 7% 12
Neural Regression 9% 1

Table 4.4: Comparison of inference methods
showing their respective error rates, number of
function evaluations (NFEs). Note that while
Full and Binned Search are more computation-
ally expensive, they could also benefit more from
parallel function evaluations if compute is avail-
able.

GT MSE CLIP

3101, 1166

437, 1704

437692, 1953 
1704

1252, 2008

76% Tokens 28% Tokens

30% Tokens 50% Tokens

Figure 4.8: Comparison of different loss func-
tions for inference. Inference with a CLIP
model (cosine distance) prioritizes textual recon-
struction (bottom) while deprioritizing other de-
tailed visual features (top).
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Frequency Analysis
We hypothesize that visual content that tends to have more fine-grained details, and high-frequncy
features tends to use a higher number of tokens. To investigate this, we run inference on 2k videos
(5s, 32 blocks), and also compute an approximate frequency metric for each video block. For each
frame in a video block, we convert it to grayscale, run a Sobel edge detection filter (horizontal /
vertical), and compute average gradient magnitudes. Figure 4.9 shows scatter plots and correlation
for the single and multi block cases. For the single block case, the correlation between encoding
length and amount of high-frequency detail is quite high (0.77). The multi block case is lower
(0.67), which is most likely due to slight decorrelation from being able to leverage past frames
(conditional encoding) in videos.

Takeaway: Pearson correlation shows that ElasticTok adaptively allocate number of tokens for
videos with more detailed visual content and high-frequency features require more tokens for
encoding.

Figure 4.9: Comparison of token usage versus frequency magnitude in single-block and multi-
block frequency analysis. Both scatter plots show a strong positive correlation between frequency
magnitude and token usage in a single-block setting a multi-block setting. The red lines represent
the linear regression fits for each case.

4.4 Related Work
Adaptive Representation. There have been a lot of research studies on learning adaptive or ordered
representations. Early work on nested dropout [209] proposes using dropout [239] in the context of
autoencoders to learn ordered representations. In this approach, an index is sampled from a prior
distribution, and all units with an index larger than the sampled one are dropped. Similar to our Elas-
ticTok , this method imposes an inherent ordering on the representation dimensions. Units that are
dropped less frequently encode more important information, while those that are dropped more often
encode less critical details. Other works study adaptive architectures based on context size [128],
slimmable neural networks that train a network by sampling multiple sub-networks of different
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channel numbers simultaneously, where the weights are shared among different widths [141, 296],
adaptive width and depth in BERT [108], or dropping random layers during training to increase
robustness to pruning [69, 109]. Dieleman et al. [57] learns a variable-rate representation on audio
applied to speech. Transframer [181] uses variable-length DCT representations with transformers
for general image and frame-level video prediction tasks. Matryoshka representation learning [135]
explores adding nested substructures inside the standard Transformer block. However, none of the
previous works consider learning elastic representations in autoencoders for long sequences like
videos. Our work provides a scalable solution for representing videos with elastic representations.

Tokenization. Representing visual images with a set of discrete tokens has been extensively
studied, such as in VQVAE [266, 205] and VQGAN [297]. Recent research has highlighted
several shortcomings of traditional tokenization methods, including low vocabulary utilization.
In response, alternative approaches like FSQ have been explored [172, 301]. These discrete
visual tokens facilitate integration with next-token prediction in language models and multimodal
models [301, 155, 290, 279]. Parallel to this, other studies have investigated the use of continuous
embeddings for representing images and videos [153, 158, 312]. Other research proposes next-scale
prediction [248], which employs hierarchical multi-scale modeling to first capture coarse details,
followed by finer ones. However, this approach requires a manually defined hierarchy and uses
a fixed number of tokens. Our work, while complementary to these efforts, focuses on adaptive
representation and can be directly applied to both discrete and continuous approaches.

Compression. Adaptive learning for images and video have also been well-studied in the context
of variable-rate compression. JPEG [48] remains one of the most popular lossy image compression
algorithms in the world, using a combination of DCT with quantization followed by entropy coding.
For video, codecs such as H264 [285], H265 [242], VP9 [179], and AV1 [92] are popularly used
compression algorithms. Prior works have additionally explored extending neural networks to learn
more effective compressors. Theis et al. [247] and Minnen et al. [173] introduce methods that
leverage CNNs to learn effective variable bit-rate compression algorithms over images competitive
with JPEG. Li et al. [148], Mentzer et al. [170], and Li et al. [147] extend neural networks to learn
how to effectively compress videos. While similar to our work in that these methods also learn
adaptive encodings, these compression methods are more difficult to utilize for downstream training
and generation tasks due to lack of direct compatibility. In contrast, our work builds upon existing
tokenization strategies (VAE, FSQ) that have shown to work well for such downstream tasks, as
well as take advantage of the adaptive representations to better utilize compute.

4.5 Discussion and Conclusion
In this work, we propose an elastic representation approach address the inefficiencies of traditional
video encoding approaches by introducing an adaptive encoding method that selectively encodes new
information based on the context of previous frames. By dynamically allocating resources, it reduces
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computational costs while maintaining high-quality video representation. The proposed technique
of dropping tokens at the end of each sequence allows the model to prioritize essential information,
ensuring scalability and efficiency during inference. Our ElasticTok method demonstrates strong
performance in both video representation and downstream tasks.

Lastly, we identify some limitations of our method, as well as possible directions for future work.

• Masking schemes: Our model currently slightly underperforms baselines at the tail ends of
encoding lengths, which we hypothesize may be partially due to conflicting representations that
the model needs to learn in each case (low frequency, global encodings vs high frequency, local
encodings). Preliminary investigations showed that changing the way tokens are distributed (as
opposed to our method of left-aligned tokens) improved reconstruction accuracy. Future work
may also explore learnable encoding masks to dynamically select which tokens to keep for each
input.

• Other temporal modalities: Although our primary focus was on image and video, our method
is generally modality-agnostic and can be extended to any temporal data, such as audio and
decision-making trajectories (e.g., state, action, reward).

• Conditional encoding and different training objectives: Our focus was on leveraging temporal
encoding to achieve more efficient tokenization while retaining high reconstructed visual quality.
However, our method can be explored more broadly as a means of encouraging meaningful lossy
encodings. For example, robotics models can learn text-conditioned visual encoders that capture
only task-relevant information from an image. In other scenarios, different reconstruction objec-
tives could prioritize facial or textual reconstruction while ignoring background reconstruction
accuracy.
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Chapter 5

World Model on Million-Length Video and
Language With Blockwise RingAttention

5.1 Introduction
Enabling long-context understanding remains a key challenge in scaling existing sequence mod-
els—a crucial step toward developing generally intelligent models that can process and operate over
extended temporal horizons, potentially involving millions of tokens. Current modeling approaches
are predominantly limited to processing short sequences, whether in the form of language, images,
or video clips [28, 253, 254, 186, 27, 245]. As a result, these models fall short when tasked with
understanding complex, long-form language and visual contexts.

Figure 5.1: Comparison of context size in state-of-the-art LLMs. Our model and concurrent
work Gemini 1.5 both achieve a 1M context size, significantly outperforming other LLMs.
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Figure 5.2: Retrieval comparisons against Gemini Pro and GPT-4. Needle retrieval comparisons
against Gemini Pro and GPT-4 for each respective max context length – 32K and 128K. Our model
performs competitively while being able to extend to 8x longer context length. Note that in order to
show fine-grained results, the x-axis is log-scale from 0-128K, and linear-scale from 128K-1M.

However, training models to process sequences that exceed millions of tokens is a significant
challenge due to the high memory and computational costs, as well as the lack of long-context data.
In this work, we address these challenges by leveraging Blockwise RingAttention [156, 154], a
technique that scales context size without approximations or overheads, enabling efficient training
on long sequences. We curate an extensive dataset of long-form videos and books from public
sources, covering a wide variety of activities and narrative structures. To address the scarcity of
long-form conversational datasets, we developed a model-based question-answering technique,
where a short-context model generates training data from books, significantly enhancing the model’s
chat capabilities over long sequences. To mitigate computational costs, we gradually extended
context size from an initial 4K tokens to 1M tokens, achieving a cost-effective and scalable approach
for long-context modeling.

Following this, we further train our long-context language model to incorporate visual modalities,
such as image and video. Contrary to existing popular vision-language models [157, 186, 38],
we opt to additionally optimize next-token prediction losses for image and video (generation)
with a VQGAN [65] encoder. We encountered various challenges training on mixed modalities
(video, image, text). To balance their unique characteristics - sequential information, visual detail,
and linguistic content - we implement an efficient masked sequence packing strategy, as well as
introduce careful loss balancing to retain short context accuracy. This approach handles varying
sequence lengths more effectively than standard methods. We also optimized the ratio of image,
video, and text inputs in each batch, proposing an empirically effective balance for cross-modality
learning. Since our model aims to model both textual and visual projections of the world through a
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large context window, drawing inspiration from prior work on world models [27, 88], we name our
work as Large World Model (LWM).

Our contributions are threefold: (a) we train one of the largest context size transformers to date
on long text documents and videos and achieved competitive results on long video understanding
and long context fact retrieval. (b) We discover a range of challenges associated with training
on long sequences and propose solutions for them: loss weighting to balance language and vi-
sion, masked sequence packing with loss re-weighting to effectively train with different sequence
lengths, and model-generating question-answering for effective attention. (c) We provide an open-
source and optimized implementation for training with millions of tokens in context, as well as
a family of Llama-based 1M context models capable of processing long documents (LWM-Text,
LWM-Text-Chat) and videos (LWM, LWM-Chat) of 1M tokens.

5.2 Method overview
We train a large autoregressive transformer model with a large context window of up to one million
tokens, building upon Llama2 7B [254]. To achieve this goal, we implement a two-stage training
strategy. In Stage I (Section 5.3), we extend the context to 1M tokens using book-length texts. This
is followed by Stage II (Section 5.4), where we conduct joint training on diverse long multimodal
sequences, incorporating text-image data, text-video data, and book-length texts. Our model
architecture is the standard autoregressive transformer design, as illustrated in Figure 5.3. For a
comprehensive overview of our training stages and the datasets employed, please refer to Figure
5.4.

5.3 Stage I: Learning Long-Context Language Models
This stage aims at first developing LWM-Text and LWM-Text-Chat, a set of long-context lan-
guage models learned by training on progressively increasing sequence length data, and modifying
positional encoding parameters to account for longer sequence lengths (see Section 5.3). In Sec-
tion 5.3, we show how to construct model-generated question-answering data for enabling long
sequence conversations.

Progressive Training Towards Long Context
Learning long-range dependencies over sequences of millions of tokens requires (1) memory
efficient training to scale to such long sequences, as well as a need to (2) compute efficient training
to extend the context of our base language model. We outline our approach to these challenges,
detailing our methods for training on long sequences, designs for efficiency and stability, and
experimental setup.
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Figure 5.3: Model Architecture. The LWM model is an autoregressive transformer trained on
sequences of multimodal tokens. Each video frame is tokenized into 256 tokens using VQGAN,
while text is processed using a Byte-Pair Encoding (BPE) tokenizer. These tokens—both image
and text—are combined and input into the transformer to autoregressively predict the next token.
The model can handle various input-output modalities, including text, image, video, and text-video
pairs. To distinguish between images and text, special tokens <vision> and </vision> are
used for image and video frames, with <eof> and <eov> marking the end of these sequences. For
simplicity, delimiters are not shown in the figure.

Training on long sequences has become prohibitively expensive due to memory constraints imposed
by the quadratic complexity of attention weight computations. To address these computational
limitations, we leverage recent advancements in scaling context window size, particularly Blockwise
RingAttention [156]. This approach theoretically allows for an infinite context, bounded only by
available devices. We further enhance performance by fusing it with FlashAttention [52] using
Pallas [21] to optimize performance compared with using XLA compiler. Notably, with enough
tokens per device—already a given—the communication cost during sequence parallelism is fully
overlapped by computation, resulting in no additional overhead.

For better efficiency, we adopt a training approach inspired by prior research on extending con-
text [117], where our model is trained on progressively longer sequence lengths, starting from 32K
tokens and ending at 1M tokens in increasing powers of two. Intuitively, this allows the model to
save compute by first learning shorter-range dependencies before moving onto longer sequences.
For extending positional embeddings to longer contexts, we adopt a simple, scaled-up version of
the approach explored in [212], where the θ parameter for RoPE [241] is scaled in proportion to
the context length. We found this approach to be stable for extending positional embeddings with
larger context lengths due to its simplicity, requiring the tuning of only a single hyperparameter.
Specifically, we scale the θ parameter for RoPE alongside increases in context window sizes –
the values are shown in Table D.1. The progressive training of growing context sizes is shown in
Figure 5.4.

We initialize from LLaMA-2 7B [254] as base language model and progressively increase the
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Figure 5.4: Curated dataset and training process with progressively increasing data length
and complexity. The diagram outlines a two-stage training process. Stage 1 extends text-based
understanding using books datasets of increasing document lengths and token counts. Stage 2
integrates vision-language training. Pie charts display token distribution, showing that images and
short-frame videos dominate visual data, while mid-length text examples lead in the text corpus.
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effective context length of the model across 5 stages: 32K, 128K, 256K, 512K, and 1M. For each
stage, we train on different filtered versions of the Books3 dataset from The Pile [74]. Table D.1
details information about each training stage, such as the number of tokens, total time, and the
Books3 dataset filtering constraints. Each successive run is initialized from the prior sequence
length.

Model-Generated Question-Answering For Effective Context
We construct a simple question-answering dataset to develop long-context chat capabilities. First,
we split documents from the Books3 dataset into fixed chunks of 1,000 tokens, feed each chunk
into our short-context language model, and prompt it to generate a question-answer pair based on
the content. To create longer examples (e.g., 32K tokens), we concatenate adjacent chunks and
append the relevant question-answer pairs toward the end of the sequence in a chat format. The key
intuition is that the model must learn to focus on any part of the context to answer the questions, as
the relevant information can appear anywhere within the sequence.

For chat fine-tuning, we train each model on a mix of the UltraChat conversation dataset [58] and
our custom question-answering dataset, using approximately a 7:3 ratio. We found it crucial to
pre-pack the UltraChat data to the training sequence length and keep these examples separate from
our question-answering data. This separation is necessary because UltraChat data generally contains
a much higher proportion of loss tokens (due to densely packed, short questions in chat), whereas
our question-answering data has long questions in chat thus a significantly lower percentage of loss
tokens per sequence (¡ 1%). This difference arises from the long documents in the given context
of our question-answering data, which are not included in loss calculations. Table D.2 provides
further training details for each run. Notably, we do not employ progressive training for any of the
chat models; instead, we initialize them from their respective pretrained models at the same context
length.

Takeaway: Stage I training focuses on progressively increasing sequence lengths using a curated
dataset. The method is simple yet effective: training starts with shorter sequences (32K tokens)
and gradually scales up to 1M tokens. Positional embeddings are also scaled to support extended
context lengths. Model-generated question-answering further aids the model in learning to
process long-sequence information.

Language Evaluation Results
Short Context Tasks

Table 5.1 presents a comparative analysis between the Llama2-7B model with a 4K context and its
context-expanded counterparts, ranging from 32K to 1M. The evaluation spans various language
tasks, demonstrating that expanding the context size does not compromise performance on short-
context tasks. In fact, the results suggest that models with larger context capacities perform equally
well, if not better, across these tasks. This evidence indicates the absence of negative effects
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from context expansion, highlighting the models’ capability to adapt to different task requirements
without losing efficiency in shorter contexts.

Table 5.1: Performance evaluation across language tasks, comparing Llama-2 7B (4K context
window) and context-expanded variants of LWM-Text (32K to 1M). The results demonstrate that
increasing context length does not significantly degrade performance on tasks with shorter contexts.

LWM-Text
Task / Metric Llama-2 7B 32k 128k 256k 512k 1M

arc challenge/acc 0.40 0.43 0.45 0.44 0.44 0.43
arc challenge/acc norm 0.43 0.47 0.47 0.46 0.46 0.46
hellaswag/acc 0.57 0.57 0.57 0.57 0.56 0.57
hellaswag/acc norm 0.77 0.76 0.76 0.76 0.75 0.75
mmlu 0.39 0.4 0.41 0.41 0.36 0.35
openbookqa/acc 0.32 0.33 0.31 0.32 0.33 0.30
openbookqa/acc norm 0.44 0.44 0.44 0.43 0.41 0.41

Retrieval Task: Single Information

We evaluate on the popular Needle In A Haystack task [80] – more specifically an version [7] that
finds and retrieves random numbers assigned to randomized cities from the context. Figure 5.2 shows
that we can scale to far larger contexts compared to the current best available LLMs. Figure D.4 in
Appendix shows nearly perfect retrieval accuracy over the entire context of our 1M context model.
Appendix D.2 shows more single needle retrieval results for our other shorter context length models.

Retrieval Task: Multiple Information

We additionally examine the performance of our model on more complex variant of the needle
retrieval task by mixing in multiple needles, as well as trying to retrieve a specific subset of them.
Figure 5.5 shows multi-needle retrieval results under different settings. Our model generalizes well
when retrieving a single needle from multiple needles in context, with slight degradation when
asked to retrieve more than one needle. Table 5.3 shows multi-needle comparisons between our
model, Gemini Pro, and GPT-4, where our model is able to perform competitively or better than
GPT-4 at retrieving one needle, or slightly lower performance when retrieving more than one needle.
Furthermore, our model is also able to perform well and extend to longer context lengths of up to
1M tokens. However, we note that we see degradation in accuracy while increasing the difficulty
of the needle retrieval task, suggesting that there is still more room to improve on the 1M context
utilization of our model. We believe that our released model will provide a foundation for future
work on developing longer context models, as well as encourage more challenging benchmarks
that contain difficult long-range tasks that require higher levels of synthesis, rather than pure fact
retrieval.
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Table 5.3: Multi Needle in a Haystack

Context Length Model N = 2, R = 2 N = 4, R = 1 N = 4, R = 2

32K
Gemini Pro 0.34 0.44 0.6
GPT-4 0.97 0.95 0.9
LWM-Text-1M (Ours) 0.84 0.97 0.84

128K
Gemini Pro - - -
GPT-4 0.92 0.8 0.82
LWM-Text-1M (Ours) 0.83 0.98 0.83

1M
Gemini Pro - - -
GPT-4 - - -
LWM-Text-1M (Ours) 0.67 0.84 0.69

Evaluation on LOFT

Table 5.2: Evaluations on some benchmarks in the LOFT dataset.

Setting: 512K Context LWM (512K) GPT-4o (128K) Claude 3 Opus (200K)

Quora 0.38 0.23 0.37
NQ 0.37 0.22 0.37
HotPotQA 0.72 0.21 0.32

We further evaluate our model on a coverage of the LOFT [142] dataset collection, we provides a
more natural set of benchmarks that examine capabilities for long-context models in the context of
document retrieval, and RAG. The benchmark includes tasks such as duplication detection (Quora 1),
document retrieval (HotpotQA [295]), and retrieval-based question-answering (NQ 2). Each dataset
contains a corpus of 1000s of documents, and the model is asked to retrieve a set of document ids
pertaining to its specific task (Quora, HotpotQA). For RAG (NQ dataset), the model is asked to
answer the question using the given context. Table 5.2 shows evaluations results on 512K context
length against various language model baselines.

Takeaway: Long context capabilities enables our model to outperform SoTA models due to
their inherently limited shorter contexts. This demonstrates the effectiveness of our training
methods for 1M context models.

1https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
2https://ai.google.com/research/NaturalQuestions

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://ai.google.com/research/NaturalQuestions
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Figure 5.5: Retrieval of multiple information. Multiple needles retrieval task with LWM-1M. N
is the number of facts in the context, and R is the number of given facts model is asked to retrieve.

5.4 Stage II: Extending to Long-Context Vision-Language
Our second stage aims to effectively joint train on long video and language sequences. We
will introduce architecture modifications for LWM and LWM-Chat to incorporate vision input in
Section 5.4. Training on varying sequence lengths is discussed in Section 5.4. The evaluation results
are shown in Section 5.4. In this phase, we enhance the capabilities of the previously developed 1M
context language model, by finetuning it on vision-language data of various lengths. The datasets
used and the steps involved in the training process are illustrated in Figure 5.4.

Architectural Modifications For Vision
We use the pretrained VQGAN [65] from aMUSEd [190] that tokenizes 256× 256 input images to
16×16 discrete tokens. Videos are tokenized by applying the VQGAN per-frame, and concatenating
the codes together. In order to distinguish between modalities when generating, as well as knowing
when to switch, we introduce mechanisms to mark the end of text generation / beginning of vision
generation, and vice-versa. For defining the end of vision generation, we introduce new tokens,
<eof> and <eov>, that represent end of frame (at the end of each video frame that is not the last
video frame in the sequence), and end of vision (at the end of each single image, or at the end of the
last frame in a video) boundaries respectively. For defining the end of text generation, we wrap the
vision tokens with <vision> and </vision> (as text) text tokens. The model is trained with
interleaved concatenations of vision and text tokens, and predicted autoregressively (see Figure 5.3).

Training Steps
We initialize from our LWM-Text-1M text model, and perform a similar process of progressive
training on a large amount of combined text-image and text-video data, with the exception that we
do not additionally scale RoPE θ, as it already supports up to 1M context. Table D.3 shows details
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for each training stage, where the model is initialized from the prior shorter sequence length stage.
For each stage, we train on the following data:

• LWM-1K: We train on large set of text-image dataset comprising of a mix of LAION-2B-en [222]
and COYO-700M [30]. The datasets were filtered to only include images with at least 256
resolution – in total roughly 1B text-image pairs. During training, we concatenate the text-
image pairs and randomly swap the order of the modalities to model both text-image generation,
unconditional image generation, and image captioning. We pack text-image pairs to sequences of
1K tokens.

• LWM-8K: We train on a text-video dataset mix of WebVid10M [13] and 3M InternVid10M [281]
examples. Similar to prior works [102, 104, 270], we jointly train on both images and video with
a 50-50 ratio of each modality. We pack images to sequences of 8K tokens, and 30 frame videos
at 4FPS. Similar to image training, we randomly swap the order of modalities for each text-video
pair.

• LWM-Chat-32K/128K/1M: For the final 3 stages, we train on a combined mix of chat data
for each downstream task: (1) text-image generation, (2) image understanding, (3) text-video
generation, and (4) video understanding. We construct a simple version of text-image and text-
video chat data by sampling random subsets of the pretraining data augmented with chat format.
For image understanding, we using the image chat instruct data from ShareGPT4V [38]. Lastly,
for the video understanding chat data, we use a combined mix of Valley-Instruct-73K [165] and
Video-ChatGPT-100K instruct data [166]. For all short context data (image generation, image
understanding, video generation), we pack sequences to the training context length. During
packing, we found it crucial to mask out the attention so that each text-vision pair only attends to
itself, as well as re-weighting losses to make computation identical to training in a non-packed +
padding training regime. For video understanding data, we uniformly sample a max number of
frames to fit the training context length of the model if the video is too long. During training, We
allocate 25% of each batch to each of the 4 downstream tasks.

For the first two stages of training (LWM-1K and LWM-8K), we additionally mix 16% of the
batch to be pure text data from OpenLLaMA [76], as we found it beneficial to preserve language
capabilities while training on vision data.

Takeaway: Stage II training incorporates image and video understanding. Building on Stage I, it
gradually increases sequence lengths while utilizing a carefully selected image and video dataset.
Importantly, we found our proper task-specific masked sequence packing and loss weighting
crucial to retain short context performance during our progressive training. Appendix D.5 shows
ablations when not using our training method on short text-image understanding benchmarks.
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00:00:00 01:01:51

User: What vehicle was the person dressed in the t-rex costume riding?

GPT-4V: I’m sorry, I can’t provide assistance with that request.

Gemini Pro Vision: A motorized scooter.

Video-LLaVA: The person dressed in a t-rex costume was riding a truck.

LWM (Ours): The person dressed in a t-rex costume was riding a motorcycle.

User: What color jacket was the girl on the trampoline wearing?

GPT-4V: The sequence provided does not include a definitive image of a girl on a trampoline; therefore, I cannot 
describe the color of the jacket.

Gemini Pro Vision: The girl on the trampoline was wearing a green jacket.

Video-LLaVA: The girl on the trampoline was wearing a black jacket.

LWM (Ours): The girl on the trampoline was wearing a blue jacket.

…
1 hour YouTube compilation with > 500 clips

Figure 5.6: LWM outperforms other models in answering questions about a 1-hour YouTube
video. This figure compares LWM-Chat-1M with commercial models like Gemini Pro Vision
and GPT-4V, along with open-source models. The test involves answering questions based on an
hour-long YouTube compilation containing over 500 video clips. LWM demonstrates superior
performance in providing accurate answers requiring comprehension of extended video content.

Vision-Language Evaluation Results
Long Video Understanding

Although vision-language model [153, 186, 245] can ingest long videos, this is commonly done by
performing large temporal subsampling of video frames due to limited context length. For example,
Video-LLaVA [153] is restricted to uniformly sampling 8 frames from a video, no matter how long
the original video may be. As such, models may lose more fine-grained temporal information that is
important for accurately answering any questions about the video. In contrast, our model is trained
on long sequences of 1M tokens, and as a result, can simultaneously attend thousands of frames of
videos to retrieve fine-grained information over short time intervals. Figure 5.6 shows an example
of our model correctly answering questions about a long, 1-hour YouTube compilation consisting of
more than 500 individual clips. Our baseline methods, on the other hand, generally have difficulty
answering the questions due to a limited number of frames. More results are shown in Figure D.11
and Appendix D.4.
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Image Understanding and Short Video Understanding

We evaluate LWM on standard benchmarks for image and short video understanding, with results
presented in Table 5.4. Our model performs comparably to baselines but falls short of state-of-the-
art (SOTA) models. This performance gap is not unexpected, given that SOTA models leverage
vision backbones that have undergone extensive CLIP training [198]. In contrast, LWM utilizes
discrete tokens from an off-the-shelf model [190]. Discrete tokens result in greater information loss,
particularly for OCR-like textual data, compared to continuous CLIP embeddings. Moreover, our
model learns text-image alignment from scratch, while CLIP-based models benefit from large-scale
pretraining. This work primarily focuses on long-context methodology, and we defer additional
training to future work due to computational constraints. A straightforward approach to improving
benchmark scores would be to incorporate CLIP embeddings as additional input. Despite not
achieving SOTA scores on these short video benchmarks, we believe LWM provides valuable
insights for future long-context language and video understanding and generation. The model’s
performance could be enhanced through additional training and minor modifications. We include
qualitative image understanding examples in Appendix D.3 and qualitative video understanding
examples in Appendix D.4.

Image and Video Generation

Thanks to a unified any-to-any architecture, our model can not only perform image/video captioning
and question-answering but also generate images and videos from text. Figure 5.7 demonstrates
examples of these capabilities. For autoregressive sampling, we employ classifier-free guidance [98]
on the logits, similar to previous works [298, 71]. In the unconditional branch, we initialize each
sequence with <bos><vision>. For additional image and video generation examples, please
refer to Appendices D.6 and D.7, respectively.

Takeaway: LWM excels in long video understanding by processing significantly more frames
than previous models, resulting in better fine-grained information retrieval. Although it under-
performs compared to state-of-the-art models in short video and image understanding due to
less training and a less effective tokenizer, it shows promise for future improvements. Moreover,
its unified any-to-any architecture allows for versatile image and video generation from text.

Table 5.4: Image Understanding Benchmarks (left) and Video Understanding Benchmarks (right)

Method Visual Token VQAv2 GQA SQA

MiniGPT-4 CLIP - 30.8 25.4
Otter CLIP - 38.1 27.2
InstructBLIP CLIP - 49.2 60.5
LLaVA-1.5 CLIP 78.5 62.0 66.8

LWM (ours) VQGAN 55.8 44.8 47.7

Method MSVD MSRVTT TGIF

VideoChat 56.3 45 34.4
LLaMA-Adapte 54.9 43.8 -
Video-LLaMA 51.6 29.6 -
Video-ChatGPT 64.9 49.3 51.4

LWM (ours) 55.9 44.1 40.9



CHAPTER 5. WORLD MODEL ON MILLION-LENGTH VIDEO AND LANGUAGE WITH
BLOCKWISE RINGATTENTION 57

A black dog An elephant 
under the sea

A cube made 
of denim

A glass of wine A yellow and black 
bus cruising through 

a rainforest

Fireworks exploding in the sky

Waves crashing against the shore

Figure 5.7: LWM’s ability to generate both static images and dynamic videos from text is
shown. The top row illustrates image generation (A glass of wine), while the bottom two rows show
video generation (Waves crashing against the shore).
5.5 Related Works
Our research builds upon existing efforts to extend the context windows of language models,
enabling them to process more tokens [40, 260, 160]. These approaches often employ innovative
extrapolation techniques to expand pretrained positional encodings, followed by model finetuning
on longer context data. In contrast, our model takes a straightforward approach by incrementally
increasing θ in RoPE positional encodings alongside expanding the training context window sizes,
which we found to be effective. Additionally, there have been investigations into architectures that
avoid modeling pairwise interactions, such as sparse attention and sliding window techniques [45,
17]. Prior research has explored sequence parallelization [150, 132, inter alia], though it is not
optimized for blockwise transformers or compatible with memory-efficient attention, both of
which are critical for large context training. Our work further leverages large context transformer
techniques [156, 154] to capture exact pairwise interactions in extended sequences for enhanced
performance. Load-balancing strategies, such as skipping causal masked computation [22, 146]
offer room for further optimization. Concurrent developments like Gemini 1.5 [206] reach 1M
tokens context size in language and video.

Additionally, our approach relates closely to advances in instruction tuning [244, 43, 77], which
focus on finetuning models with conversational data to boost their performance across diverse
language tasks. We aim to extend these capabilities to the domain of long-sequence understanding
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in both video and language tasks. To achieve this, we extend the model’s context size by training
on comprehensive datasets, including books and long videos, and finetune on model-generated
question-answering datasets to enhance its ability to handle extended conversational sequences.

Furthermore, our research draws from work on integrating vision capabilities into language mod-
els [158, 153, 8, 308, 118, 4]. These efforts frequently utilize continuous embeddings [198, 149]
to encode visual information into embeddings for inputting into language models. While these
approaches benefit from CLIP’s cross-modal understanding to encode textual information from
images, their ability to predict text from visual input is limited, as is their capacity to learn from
diverse visual-language formats. In contrast, our autoregressive model, which processes ”tokens in,
tokens out,” allows greater flexibility in modeling various formats, including image-text, text-image,
text-video, video-text, and pure formats like video, image, or text. Our method is compatible with
these prior works, making it an interesting future direction to combine continuous embeddings as
input with discrete tokens and a long-context autoregressive model.

5.6 Conclusion
In conclusion, this paper tackles the critical challenge of enabling long-context understanding in
sequence models, which is vital for developing generally intelligent systems capable of processing
large temporal sequences. By exploring the development of 1M context language and video-
language models, the work sets new benchmarks in language retrieval and long video understanding.
We outline approaches to data curation and progressive context extension, accompanied by an
efficient open-source implementation for scalable training on long sequences. Moreover, we
open-source a family of 7B parameter models capable of handling over 1M tokens in text and video.

Limitations. While this work successfully develop a large large context of over 1M text and video
tokens, and demonstrate promising results in processing hour-long videos and long documents,
there are still some limitations that need to be addressed:

• More capable reasoning. This work does not address how to teach a model to reason over a 1M
context window. Being able to understand complex documents and/or videos and reason step by
step for a million steps is crucial for developing more capable intelligence.

• Improved tokenization and embedding. This work uses a vanilla image tokenizer for images and
frame-by-frame tokenization for videos. Future work could explore video tokenization that takes
time redundancy into account, as well as including continuous embeddings as input to enrich
image understanding.

• Limited scale. We experimented with a 7B-parameter model trained on about 500B tokens, yet
our largest training runs are still significantly smaller than contemporary AI models, which often
surpass tens of trillions of tokens and 100B parameters. This scale disparity may limit the direct
applicability of our findings to these larger scales.
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Chapter 6

Video Prediction Models as Rewards for
Reinforcement Learning

6.1 Introduction

Frozen Video Prediction Model

x1 x2 x3 x4

r3= ln p𝜃( x4 | x1:3 )

Figure 6.1: VIPER uses the next-token likeli-
hoods of a frozen video prediction model as
a general reward function for various tasks.

Manually designing a reward function is laborious
and often leads to undesirable outcomes [208]. This
is a major bottleneck for developing general decision
making agents with reinforcement learning (RL). A
more scalable approach is to learn complex behaviors
from videos, which can be easily acquired at scale
for many applications (e.g., Youtube videos).

Previous approaches that learn behaviors from videos
reward the similarity between the agent’s current ob-
servation and the expert data distribution [225, 226,
191, 252]. Since their rewards only condition on the
current observation, they cannot capture temporally
meaningful behaviors. Moreover, the approaches
with adversarial training schemes [191, 252] often
result in mode collapse, which hinders generalization.

Other works fill in actions for the (action-free) videos using an inverse dynamics model [251,
50]. Dai et al. [50] leverage recent advances in generative modeling to capture multi-modal and
temporally-coherent behaviors from large-scale video data. However, this multi-stage approach
requires performing expensive video model rollouts to then label actions with a learned inverse
dynamics model.
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(a) DeepMind Control Suite
(15 tasks)

(b) Robot Learning Benchmark
(6 tasks)

(c) Atari
(7 tasks)

Figure 6.2: VIPER achieves expert-level control directly from pixels without access to ground truth
rewards or expert actions on 28 reinforcement learning benchmark tasks.

In this paper, we propose using Video Prediction Rewards (VIPER) for reinforcement learning.
VIPER first learns a video prediction model from expert videos. We then train an agent using
reinforcement learning to maximize the log-likelihood of agent trajectories estimated by the video
prediction model, as illustrated in Figure 6.1. Directly leveraging the video model’s likelihoods as a
reward signal encourages the agent to match the video model’s trajectory distribution. Additionally,
rewards specified by video models inherently measure the temporal consistency of behavior, unlike
observation-level rewards. Further, evaluating likelihoods is significantly faster than performing
video model rollouts, enabling faster training times and more interactions with the environment.

We summarize the three key contributions of this paper as follows:

• We present VIPER: a novel, scalable reward specification algorithm which leverages rapid
improvements in generative modeling to provide RL agents with rewards from unlabeled
videos.

• We perform an extensive evaluation, and show that VIPER can achieve expert-level control
without task rewards on 15 DMC tasks [259], 6 RLBench tasks [115], and 7 Atari tasks [16]
(see examples in Figure 6.2 and Appendix E.5).

• We demonstrate that VIPER generalizes to different environments for which no training data
was provided, enabling cross-embodiment generalization for tabletop manipulation.

Along the way, we discuss important implementation details that improve the robustness of VIPER.

6.2 Related Work
Learning from observations is an active research area which has led to many advances in imitation
learning and inverse reinforcement learning [183, 1, 313]. This line of research is motivated by the
fact that learning policies from expert videos is a scalable way of learning a wide variety of complex
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tasks, which does not require access to ground truth rewards, expert actions, or interaction with the
expert. Scalable solutions to this problem would enable learning policies using the vast quantity of
videos on the internet. Enabling policy learning from expert videos can be largely categorized into
two approaches: (1) Behavioral cloning [192] on expert videos labelled with predicted actions and
(2) reinforcement learning with a reward function learned from expert videos.

Labelling videos with predicted actions An intuitive way of leveraging action-free expert videos
is to guess which action leads to each transition in expert videos, then to mimic the predicted
actions. Labelling videos with actions can be done using an inverse dynamics model, p(a|s, s′),
which models an action distribution given the current and next observations. An inverse dynamics
model can be learned from environment interactions [184, 251, 189] or a curated action-labelled
dataset [14, 221]. Offline reinforcement learning [145] can be also used instead of behavioral
cloning for more efficient use of video data with predicted actions [221]. However, the performance
of this approach heavily depends on the quality of action labels predicted by an inverse dynamics
model and the quantity and diversity of training data.

Reinforcement learning with videos Leveraging data from online interaction can further improve
policies trained using unlabelled video data. To guide policy learning, many approaches have
learned a reward function from videos by estimating the progress of tasks [225, 226, 161, 144] or
the divergence between expert and agent trajectories [252, 191]. Adversarial imitation learning
approaches [252, 191] learn a discriminator that discriminates transitions from the expert data and
the rollouts of the current policy. Training a policy to maximize the discriminator error leads to
similar expert and policy behaviors. However, the discriminator is prone to mode collapse, as it often
finds spurious associations between task-irrelevant features and expert/agent labels [314, 114], which
requires a variety of techniques to stabilize the adversarial training process [46]. In contrast, VIPER
directly models the expert video distribution using recent generative modeling techniques [66, 292],
which offers stable training and strong generalization.

Using video models as policies Recently, UniPi [50] uses advances in text-conditioned video
generation models [214] to plan a trajectory. Once the future video trajectory is generated, UniPi
executes the plan by inferring low-level controls using a learned inverse dynamics model. Instead
of using slow video generations for planning, VIPER uses video prediction likelihoods to guide
online learning of a policy.
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6.3 Video Prediction Rewards
Algorithm 3 VIPER
Train video prediction model pθ on expert videos.
While (not converged) Choose action: at ∼ π(xt)
Step environment: xt+1 ← env(at)
Fill in reward: rt ← ln pθ(xt+1 | xt−k:t) + βrexpl

t

Add transition (xt, at, rt, xt+1) to replay buffer.
Train π from replay buffer using any RL algorithm.

In this section, we propose Video Prediction Rewards (VIPER), which learns complex behaviors by
leveraging the log-likelihoods of pre-trained video prediction models for reward specification. Our
method does not require any ground truth rewards or action annotations, and only requires videos of
desired agent behaviors. VIPER implements rewards as part of the environment, and can be paired
with any RL algorithm. We overview the key components of our method below.

Video Modeling
Likelihood-based video models are a popular paradigm of generative models trained to model the
data distribution by maximizing an exact or lower bound on the log-likelihood of the data. These
models have demonstrated their ability to fit highly multi-modal distributions and produce samples
depicting complex dynamics, motion, and behaviors [230, 105, 103, 269].

Our method can integrate any video model that supports computing likelihoods over the joint
distribution factorized in the following form:

log p(x1:T ) =
T∑
t=1

log p(xt | x1:t−1), (6.1)

where x1:T is the full video consisting of T frames, x1, . . . , xT . When using video models with
limited context length k, it is common to approximate likelihoods of an entire video sequence with
its subsequences of length k as follows:

log p(x1:T ) ≈
T∑
t=1

log p(xt | xmax(1,t−k):t−1). (6.2)

In this paper, we use an autoregressive transformer model based on VideoGPT [292, 224] as our
video generation model. We first train a VQ-GAN [66] to encode individual frames xt into discrete
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Figure 6.3: Aggregate results across 15 DMC tasks, 7 Atari games, and 6 RLBench tasks. DMC
results are provided for DrQ and DreamerV3 (Dv3) RL agents. Atari and RLBench results are
reported for DreamerV3. Atari scores are computed using Human-Normalized Mean.

codes zt. Next, we learn an autoregressive transformer to model the distribution of codes z through
the following maximum likelihood objective:

max
θ

T∑
t=1

Z∑
i=1

log pθ(z
i
t | z1:i−1

t , z1:t−1), (6.3)

where zit is the i-th code of the t-th frame, and Z is the total number of codes per frame. Computing
the exact conditional likelihoods pθ(xt | x1:t−1) is intractable, as it requires marginalizing over all
possible combinations of codes. Instead, we use the conditional likelihoods over the latent codes
pθ(zt | z1:t−1) as an approximation. In our experiments, we show that these likelihoods are sufficient
to capture the underlying dynamics of the videos.

Note that our choice of video model does not preclude the use of other video generation models, such
as MaskGIT-based models [299, 269, 86] or diffusion models [105, 230]. However, we opted for an
autoregressive model due to the favorable properties of being able to model complex distributions
while retaining fast likelihood computation. Video model comparisons are performed in Section 6.4.

Reward Formulation
Given a pretrained video model, VIPER proposes an intuitive reward that maximizes the conditional
log-likelihoods for each transition (xt, at, xt+1) observed by the agent:

rVIPER
t

.
= ln pθ(xt+1 | x1:t). (6.4)

This reward incentivizes the agent to find the most likely trajectory under the expert video distribution
as modeled by the video model. However, the most probable sequence does not necessarily capture
the distribution of behaviors we want the agent to learn.

For example, when flipping a weighted coin with p(heads = 0.6) 1000 times, typical sequences
will count roughly 600 heads and 400 tails, in contrast to the most probable sequence of 1000 heads
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that will basically never be seen in practice [227]. Similarly, the most likely image under a density
model trained on MNIST images is often the image of only background without a digit, despite this
never occurring in the dataset [180]. In the reinforcement learning setting, an additional issue is that
solely optimizing a dense reward such as rVIPER

t can lead to early convergence to local optima.

To overcome these challenges, we take the more principled approach of matching the agent’s
trajectory distribution q(x1:T ) to the sequence distribution pθ(x1:T ) of the video model by minimizing
the KL-divergence between the two distributions [250, 90]:

KL
[
q(x1:T )

∥∥ p(x1:T )
]
= Eq

[
− ln pθ(x1:T )

]
cross-entropy

− H
[
q(x1:T )

]
entropy

=−
T∑
t=1

[
Eq

[
ln pθ(xt+1 | x1:t)

rVIPER
t

]
+ H

[
q(xt+1 | x1:t)

]
exploration term

]
,

(6.5)

The KL objective shows that for the agent to match the video distribution under the video prediction
model, it has to not only maximize the VIPER reward but also balance this reward while maintaining
high entropy over its input sequences [116]. In the reinforcement learning literature, the entropy
bonus over input trajectories corresponds to an exploration term that encourages the agent to explore
and inhabit a diverse distribution of sequences within the regions of high probability under the video
prediction model. This results in the final reward function that the agent maximizes:

rKL
t

.
= rVIPER

t + β rexplt , (6.6)

where β determines the amount of exploration. To efficiently compute the likelihood reward, we
approximate the context frames with a sliding window as discussed in Equation (6.2):

rVIPER
t ≈ ln pθ(xt+1 | xmax(1,t−k):t). (6.7)

Figure 6.1 shows the process of computing rewards using log probabilities under the video prediction
model. VIPER is agnostic to the choice of exploration reward and in this paper we opt for
Plan2Explore [223] and RND [29].

Data Curation
In this work, we explore whether VIPER provides adequate reward signal for learning low-level
control. We utilize the video model likelihoods provided by an autoregressive video prediction
model pre-trained on data from a wide variety of environments. We curate data by collecting expert
video trajectories from task oracles and motion planning algorithms with access to state information.
Fine-tuning large text-conditioned video models [214, 269, 230] on expert videos would likely
lead to improved generalization performance beyond the curated dataset, and would make for an
interesting future research direction. We explore the favorable generalization capabilities of video
models trained on small datasets, and explore how this leads to more general reward functions in
Section 6.4.
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6.4 Experiments
We evaluate VIPER on 28 different tasks across the three domains shown in Figure 6.2. We utilize
15 tasks from the DeepMind Control (DMC) suite [259], 7 tasks from the Atari Gym suite [24],
and 6 tasks from the Robot Learning Benchmark (RLBench) [115]. We compare VIPER agents
to variants of Adversarial Motion Priors (AMP) [191], which uses adversarial training to learn
behaviors from reward-free and action-free expert data. All agents are trained using raw pixel
observations from the environment, with no access to state information or task rewards. In our
experiments, we aim to answer the following questions:

1. Does VIPER provide an adequate learning signal for solving a variety of tasks? (Section 6.4)

2. Do video models trained on many different tasks still provide useful rewards? (Section 6.4)

3. Can the rewards generalize to novel scenarios where no expert data is available? (Section 6.4)

4. How does the video model data quality and quantity affect the learned rewards? (Section 6.4)

5. What implementation details matter when using video model likelihoods as rewards? (Sec-
tion 6.4)

Video Model Training Details
Training data To collect expert videos in DMC and Atari tasks, Task Oracle RL agents are
trained until convergence with access to ground truth state information and task rewards. After
training, videos of the top k episodes out of 1000 episode rollouts for each task are sampled as expert
videos, where k = 50 and 100 for DMC and Atari, respectively. For RLBench, a sampling-based
motion planning algorithm with access to full state information is used to gather 100 demos for
each task, where selected tasks range from “easy” to “medium”.

Video model training We train a single autoregressive video model for each suite of tasks.
Example images for each suite are shown in Appendix E.5. For DMC, we train a single VQ-GAN
across all tasks that encodes 64× 64 images to 8× 8 discrete codes. Similarly for RLBench and
Atari, we train VQ-GANs across all tasks within each domain, but encode 64×64 images to 16×16
discrete codes. In practice, the level of VQ compression depends on the visual complexity of the
environment – more texturally simple environments (e.g., DMC) allow for higher levels of spatial
compression. We follow the original VQ-GAN architecture [66], consisting of a CNN encoder and
decoder. We train VQ-GAN with a batch size of 128 and learning rate 10−4 for 200k iterations.

To train our video models, we encode each frame of the trajectory and stack the codes temporally to
form an encoded 3D video tensor. Similar to VideoGPT [292], the encoded VQ codes for all video
frames are jointly modeled using an autoregressive transformer in raster scan order. For DMC and
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Atari, we train on 16 frames at a time with a one-hot label for task conditioning. For RLBench,
we train both single-task and multi-task video models on 4 frames with frame skip 4. We add the
one-hot task label for the multi-task model used in our cross-embodiment generalization experiments
in Section 6.4. We perform task conditioning identical to the class conditioning mechanism in
VideoGPT, with learned gains and biases specific to each task ID for each normalization layer.

T = 0 T = 16 T = 32 T = 48 T = 64

Figure 6.4: Video model rollouts for 3 differ-
ent evaluation environments.

Figure 6.4 shows example video model rollouts for
each domain. In general, our video models are able to
accurately capture the dynamics of each environment
to produce probable futures. Further details on model
architecture and hyperparameters can be found in
Appendix E.2. All models are trained on TPUv3-
8 instances which are approximately similar to 4
Nvidia V100 GPUs.

Video Model Likelihoods
as Rewards for Reinforcement Learning
To learn behaviors from expert videos, we provide
reward signals using Equation (6.6) in VIPER and
the discriminator error in AMP. Both VIPER and
AMP are agnostic to the choice of RL algorithm; but, in this paper, we evaluate our approach
and baselines with two popular RL algorithms: DrQ [133] and DreamerV3 [91]. We use Random
Network Distillation [29] (model-free) as the exploration objective for DrQ, and Plan2Explore
[223] (model-based) for DreamerV3. Hyperparameters for each choice of RL algorithm are shown
in Appendix E.3. We compare VIPER to two variants of the AMP algorithm: the single-task variant
where only expert videos for the specific task are provided to the agent, and the multi-task case
where expert videos for all tasks are provided to the agent.

As outlined in Algorithm 3, we compute Equation (6.6) for every environment step to label the
transition with a reward before adding it to the replay buffer for policy optimization. In practice,
batching Equation (6.6) across multiple environments and leveraging parallel likelihood evaluation
leads to only a small decrease in training speed. DMC agents were trained using 1 Nvidia V100
GPU, while Atari and RLBench agents were trained using 1 Nvidia A100 GPU.

We first verify whether VIPER provides meaningful rewards aligned with the ground truth task
rewards. Figure 6.5 visualizes the ground truth task rewards and our log-likelihood rewards
(Equation (6.7)) for a reference (expert) trajectory and a random out-of-distribution trajectory. In
the reward curves on the left, VIPER starts to predict high rewards for the expert transitions once
the transitions becomes distinguishable from a random trajectory, while it consistently outputs
low rewards for out-of-distribution transitions. The return plot on the right clearly shows positive
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correlation between returns of the ground truth reward and our proposed reward.
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Figure 6.5: VIPER incentivizes the agent
to maximize trajectory likelihood under the
video model. As such, it provides high re-
wards for reference (expert) sequences, and
low rewards for unlikely behaviors. Mean
rewards rVIPER and returns are computed
across 40 trajectories.

Then, we measure the task rewards when training
RL agents with predicted rewards from VIPER and
baselines and report the aggregated results for each
suite and algorithm in Figure 6.3. The full results
can be found in Appendix E.4.

In DMC, VIPER achieves near expert-level perfor-
mance from pixels with our video prediction rewards
alone. Although VIPER slightly underperforms Task
Oracle, this is surprising as the Task Oracle uses
full state information along with dense task rewards.
VIPER outperforms both variants of AMP. Worth not-
ing is the drastic performance difference between the
single-task and multi-task AMP algorithms. This per-
formance gap can possibly be attributed to mode col-
lapse, whereby the discriminator classifies all frames
for the current task as fake samples, leading to an un-
informative reward signal for the agent. Likelihood-
based video models, such as VIPER, are less suscep-
tible to mode collapse than adversarial methods.

In Atari, VIPER approaches the performance of the
Task Oracle trained with the original sparse task re-
ward, and outperforms the AMP baseline. Shown in
Figure 6.6, we found that masking the scoreboard in
each Atari environment when training the video model improved downstream RL performance.

Since the video model learns to predict all aspects of the data distribution, including the scoreboard,
it tends to provide noisier reward signal during policy training when the agent encounters out-of-
distributions scores not seen by the video model. For example, expert demos for Pong only contain
videos where the player scores and the opponent’s score is always zero. During policy training, we
observe that the Pong agent tends to exhibit more erratic behaviors as soon as the opponent scores
at least one point, whereas when masking the scoreboard, learned policies are generally more stable.
These results suggest the potential benefits of finetuning large video models on expert demos to
learn more generalizable priors, as opposed to training from scratch.

For RLBench, VIPER outperforms the Task Oracle because RLBench tasks provide very sparse
rewards after long sequences of actions, which pose a challenging objective for RL agents. VIPER
instead provides a dense reward extracted from the expert videos, which helps learn these challenging
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tasks. When training the video model, we found it beneficial to train at a reduced frame rate,
accomplished by subsampling video sequences by a factor of 4. Otherwise, we observed the
video model would assign high likelihoods to stationary trajectories, resulting in learned policies
rarely moving and interacting with the scene. We hypothesize that this may be partially due to
the high control frequency of the environment, along with the initial slow acceleration of the
robot arm in demonstrations, resulting in very little movement between adjacent frames. When
calculating likelihoods for reward computation, we similarly input observations strided by time,
e.g., p(xt | xt−4, xt−8, . . . ).

No Mask

Mask
0 5M 10M

0.0

0.5

1.0

Task Oracle
Mask
No Mask

Figure 6.6: RL training curves on Atari
Pong when using VIPER trained with or
without masking the scoreboard.

Generalization of Video Prediction Rewards
Prior works in the space of large, pretrained generative
models have shown a powerful ability to generalize be-
yond the original training data, demonstrated by their
ability to produce novel generations (e.g., unseen text
captions for image or video generation [214, 269, 230])
as well as learn more generalizable models from lim-
ited finetuning data [50, 283]. Both capabilities provide
promising directions for extending large video genera-
tion models to VIPER, where we can leverage text-video
models to capture priors specified by text commands,
or finetune on a small set of demonstrations to learn a
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Figure 6.7: Sampled video predictions for in distribution reference videos (Train) and an OOD
arm/task combination (OOD). The video model displays cross-embodiment generalization to
arm/task combination not observed in the training data. Video model generalization can enable
specifying new tasks where no reference data is available.
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task-specific prior that better generalizes to novel states.
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Figure 6.8: (Left) Training curve for RL agent
trained with VIPER on OOD task. (Right) Task-
conditional likelihood for reference and random
trajectory for an OOD task.

In this section, we seek to understand how this
generalization can be used to learn more gen-
eral reward functions. We train a model on two
datasets of different robot arms, and evaluate
the cross-embodiment generalization capabili-
ties of the model. Specifically, we gather demon-
strations for 23 tasks on the Rethink Robotics
Sawyer Arm, and demonstrations for 30 tasks
on the Franka Panda robotic arm, where only 20
tasks are overlapping between arms. We then
train a task-conditioned autoregressive video
model on these demonstration videos and evaluate the video model by querying unseen arm/task
combinations, where a single initial frame is used for open loop predictions.

Sample video model rollouts for in distribution training tasks and an OOD arm/task combination
are shown in Figure 6.7. Even though the video model was not directly trained on demonstrations
of the Franka Panda arm to solve the saucepan task in RLBench, it is able to generate reasonable
trajectories for the arm and task combination. Figure 6.8 further validates this observation by
assigning higher likelihood to expert videos (Ref) compared to random robot trajectories (Rand).
We observe that these generalization capabilities also extend to downstream RL, where we use our
trained video model with VIPER to learn a policy for the Franka Robot arm to solve an OOD task
without requiring demos for that specific task and arm combination. Figure E.10 further extends
this analysis to include more in distribution and out of distribution tasks. These results demonstrate
a promising direction for future work in applying VIPER to larger scale video models that will be
able to better generalize and learn desired behaviors only through a few demonstrations.

Impact of Data Quality and Quantity
Learning from sub-optimal data is an important feature of learned reward models, as large-scale
video data may often contain suboptimal solutions to a given task. As such, we evaluate VIPER’s
ability to learn rewards from sub-optimal data.

We train video models with suboptimal (good) data, which has 50-75% returns of the expert data.
In Figure 6.9, VIPER learns the suboptimal behaviors provided in the suboptimal video data. This
suboptimal VIPER can be still useful if combined with a sparse task reward, comparable to an agent
learned from dense task rewards.

Additionally, we evaluate how VIPER performs under different video dataset sizes. As shown
in Figure 6.10, VIPER can learn a meaningful reward function only with one expert trajectory,



CHAPTER 6. VIDEO PREDICTION MODELS AS REWARDS FOR REINFORCEMENT
LEARNING 71

although adding more videos quickly improves the performance of VIPER, with diminishing returns
after 50 trajectories.
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Figure 6.9: Atari performance with VIPER
models trained on suboptimal data.
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Figure 6.10: DMC performance with VIPER
trained on different dataset sizes, where N is
the number of expert trajectories. *Original
dataset size.

Ablation Studies
In this section, we study the contributions of various design decisions when using video prediction
models as rewards: (1) how to weight the exploration objective, (2) which video model to use, and
(3) what context length to use. Ablation studies are performed across DMC tasks.

Exploration objective As discussed in section 6.3, an exploration objective may help the RL
agent learn a distribution of behaviors that closely matches the distribution of the original data
and generalizes, while preventing locally optimal solutions. In Figure 6.11, we ablate the β
parameter introduced in Equation 6.6 using a VideoGPT-like model as the VIPER backbone. β = 0
corresponds to no exploration objective, whereas β = 1 signifies equal weighting between rVIPER

and rexpl. We ablate the exploration objective using the Plan2Explore [223] reward, which provides
the agent with a reward proportional to the disagreement between an ensemble of one-step dynamics
models. Using no exploration objective causes the policy’s behavior to collapse, while increasing
the weight of the exploration objective leads to improved performance.

Video model Although our experiments focus on using an autoregressive VideoGPT-like model
to compute likelihoods, VIPER generally allows for any video model that supports computing
conditional likelihoods or implicit densities.

Figure 6.11 shows additional ablations replacing our VideoGPT model with a similarly sized
MaskGIT [36] model, where frames are modeled with MaskGIT over space, and autoregressive
over time. MaskGIT performs substantially worse than the VideoGPT model, which is possibly
due to noisier likelihoods from parallel likelihood computation. In addition, while VideoGPT only
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Figure 6.11: Effect of exploration reward term, video model choice, and context length on down-
stream RL performance. An equally weighted exploration reward term and longer video model
context leads to improved performance. MaskGIT substantially underperforms VideoGPT as a
choice of video model. The BYOL model performs moderately due to the deterministic architecture
not properly handling multi-modality.

requires 1 forward pass to compute likelihood, MaskGIT requires as many as 8 forward passes
on the sequence of tokens for a frame, resulting in an approximately 8× slowdown in reward
computation, and 2.5× in overall RL training.

Finally, we evaluate the performance of a video model that computes implicit densities using a
negative distance metric between online predictions and target encodings with a recurrent Bootstrap
Your Own Latent (BYOL) architecture [84, 82]. We refer the reader to Appendix E.1 for more details
about the implementation. While BYOL outperforms MaskGIT in Figure 6.11, its deterministic
recurrent architecture is unable to predict accurate embeddings more than a few steps into the future.
This limits the ability of the learned reward function to capture temporal dynamics. We observe that
agents trained with BYOL often end up in a stationary pose, which achieves high reward from the
BYOL model.

Context length The context length k of the video model is an important choice in determining how
much history to incorporate into the conditional likelihood. At the limit where k = 0, the reward is
the unconditional likelihood over each frame. Such a choice would lead to stationary behavior on
many tasks. Figure 6.11 shows that increasing the context length can help improve performance
when leveraging a VideoGPT-based model for downstream RL tasks, subject to diminishing returns.
We hypothesize that a longer context length may help for long-horizon tasks.
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6.5 Conclusion
This paper presents Video Prediction Rewards (VIPER), a general algorithm that enables agents
to learn behaviors from videos of experts. To achieve this, we leverage a simple pre-trained
autoregressive video model to provide rewards for a reinforcement learning agent. These rewards
are parameterized as the conditional probabilities of a particular frame given a context past of
frames. In addition, we include an entropy maximization objective to ensure that the agent learns
diverse behaviors which match the video model’s trajectory distribution. VIPER succeeds across
3 benchmarks and 28 tasks, including the DeepMind Control Suite, Atari, and the Reinforcement
Learning Benchmark. We find that simple data augmentation techniques can dramatically improve
the effectiveness of VIPER. We also show that VIPER generalizes to out-of-distribution tasks for
which no demonstrations were provided. Moreover, VIPER can learn reward functions for a wide
variety of tasks using a single video model, outperforming AMP [191], which suffers from mode
collapse as the diversity of the expert videos increases.

Limitations of our work include that VIPER is trained using in-domain data of expert agents, which
is not a readily-available data source in the real world. Additionally, video prediction rewards trained
on stochastic data may lead the agent to prefer states that minimize the video model’s uncertainty,
which may lead to sub-optimal behaviors. This challenge may be present for cases where either the
environment is stochastic or the demonstrator provides noisy demonstrations. Moreover, selecting
the right trade-off between VQCode size and context length has a significant impact on the quality of
the learned rewards, with small VQCodes failing to model important components of the environment
(e.g., the ball in Atari Breakout) and short context lengths leading to myopic behaviors which results
in poor performance. Exploring alternative video model architectures for VIPER would likely be a
fruitful research direction.

To improve the generalization capabilities of VIPER, larger pre-trained video models are necessary.
Future work will explore how fine-tuning or human preferences can be used to improve video
prediction rewards. Using text-to-video models remain another interesting direction for future
work in extracting text-conditioned task-specific priors from a pretrained video model. In addition,
extending this line of work to leverage Video Diffusion Models [105] as video prediction rewards
may lead to interesting outcomes.
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Chapter 7

Motion-Conditioned Image Animation for
Video Editing

Apricots hanging off a tree -> Apples falling off a tree

A panda playing in a pile of leaves -> A panda playing in a pile of color ribbons 

Figure 7.1: MoCA is able to generate a diverse range of edits, such as object replacement, style
changes, and motion edits. The frames in the top row in each example represent the source video
while the bottom ones show the edited frames by MoCA. The source and editing prompts are shown
above each example.
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7.1 Introduction
Recent advancements in image and video generation models have seen tremendous progress, with
existing models able to synthesize highly complex images [202, 204, 210, 214, 37] or videos [269,
229, 20, 103, 79] given textual descriptions. Outside of generating purely novel content, these
models have shown to be powerful tools in achieving advanced image and video editing capabilities
for downstream content creation.

Given a source video, a caption of the source video, and an editing textual prompt, a video editing
method should produce a new video that is aligned with the provided editing prompt while retaining
faithfulness to all other non-edited characteristics of the original source video. Video edit types can
be broadly split into two main categories of spatial and temporal edits. Spatial edits generally consist
of image-based edits extended to video, such as editing a video in the style of Van Gogh, inserting
an object into the scene, or changing the background. Due to the added temporal dimension in
video, we can also change the underlying motion of the object, such as making a panda play in a
pile of ribbons, or replacing apricots in a video with apples and making them fall off a tree (see
Figure 7.1).

Current methods in video editing focus more on spatial editing problems while ignoring the motion
editing problem. Proposed methods leverage pre-trained text-to-image or video models for editing
by further fine-tuning with conditioning on auxiliary information such as depth maps or edge
maps [67, 307], fine-tuning for each edit example [287, 177, 213, 126, 73], or exploiting the
diffusion process to restrict the generated edits to share similar features and structures with the
source content [96, 159, 31, 258, 168, 294, 78]. Notably, most proposed methods either in image
or video editing are generally specialized only to a subset of editing tasks and do not perform
well on others. For example, methods to utilize depth or edge maps of the video [67, 307] find it
more difficult to perform motion edits due to adherence to the original video structure. As such,
it becomes important to assess video editing capabilities across a wide range of different edits in
order to better understand their advantages and disadvantages.

In this paper, we present two key contributions for video editing. First, we introduce a simple yet
strong approach for video editing, Motion-Conditioned Image Animation (MoCA), that decomposes
the problem into image editing and image animation. We first use the existing image editing
methods to edit the first video frame, then produce an edited video using a motion-conditioned
image animation model. We use an optical flow representation of the source video using a pretrained
RAFT [246] model as the motion conditioning to retain the original motion characteristics of the
source video. In the video edits consisting of a motion edit, we drop out this motion conditioning.
Through our extensive experiments and human evaluations, we show that this simple baseline
outperforms the state-of-the-art video editing models across a wide range of edit types.

Secondly, we introduce a dataset of 250+ video edits that comprehensively covers a wide range of
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video editing types. We combine existing datasets for video editing, and introduce our own subset
of curated videos from YouTube-8M [2] with a stronger emphasis in including motion-based edits
due to a general lacking of such examples in current public video editing datasets [288]. Using our
combined dataset, we comprehensively benchmark prior video editing methods along a range of
pre-categorized edits types, such as style, background, object, and motion-based edits via human
evaluation and automatic metrics. Additionally, we perform an analysis of the alignment between
the automatic metrics for measuring video editing quality and human judgement.

7.2 Related Work
By the remarkable progress in text conditional image and video generation models, text-guided
image and video editing have emerged as key editing tools that enable average users and artists
to create new content easily from existing photos or videos. In this section, we will discuss the
existing works on diffusion-based text-driven image and video editing and their applicability to
various manipulation tasks.

Text-driven Image Editing
Prior works have proposed a variety of methods for text-conditioned image editing. One family of
such image editing methods focus on using diffusion models, and produce image edits by altering
the backward diffusion process. SDEdit [168] is a simple image editing approach that applies
various diffusion noise levels to an input source image, and produces image edits by sampling back
out through the diffusion process conditioned on an edit prompt. Plug-and-Play [258] samples edited
videos initialized from the DDIM [235] inversion, with selected visual features copied between
the source and generated images during diffusion sampling. Prompt-to-Prompt [96] (P2P) enables
general edit types (style changes, object replacement, changing texture) through replacing self and
cross attention of the generated image with the attention maps of the source image during diffusion
sampling. Null-Text Inversion [176] extends P2P to enable better editing performance when editing
real images through optimizing null text embeddings to allow for more faithful reconstruction of
the source image during diffusion sample.

Another class of image editing techniques that allow for more global changes in visual features
are built on ControlNet [307] or T2I-Adapters [178], where pretrained text-to-image models are
augmented and finetuned to incorporate conditioning information, such as depth maps or contour
maps computed from edge detection algorithms.

Most prior image editing methods are generally constrained structurally, and have a more difficult
time producing image edits with large pose changes, such as editing an image of a bird to spread
its wings. MasaCtrl [31] achieves this through mutual self-attention, where select self-attention
layers in the diffusion networks attend to the keys and values of the corresponding layers of the
source image during the diffusion process. Larger pose changes are enabled by only enabling
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mutual self-attention replacement during later diffusion timesteps. Imagic [126] similarly achieves
image edits with larger pose changes through a text embedding optimization and model fine-tuning
process.

Lastly, the Instruct-Pix2Pix [26] family of models propose to treat the image editing problem as a
supervised learning problem. Core work around these model requires collecting supervised data as
pairs of (text editing instructions and images before/after the edit), and fine-tuning a pre-trained
text-to-image model on the collected data.

In this paper, we focus on video editing, as it provides a more challenging task in accomplishing
complex edits over both space and time.

Text-driven Video Editing
Video editing similarly can be deployed for various manipulation tasks including style transfer, object
or scene manipulations, and motion editing. However, these manipulation tasks are more challenging
in videos since the generated content should be consistent across frames. Most of the existing
works in video editing focus more on the first two manipulation types while ignoring the motion
editing problem, as they generally propose video editing methods that leverage pretrained text-to-
image models. Pix2Video [33] and FateZero [194] both propose different variants of extending
self-attention with cross-frame attention. TokenFlow [78] Rerender a Video [294], and CoDef [187]
perform video edits through image editing techniques and propagating edited features temporally
using estimated motions by computing temporal inter-frame correspondences [78], optical flow
estimation and warping [294], or estimating canonical images and temporal deformation fields
using optical flow of the source video [187], respectively.

Methods such as Gen-1 [67], VideoComposer [277], and ControlVideo [310] train text-to-video
models with additional conditioning inputs such as depth maps or motion vectors to allow for
controllability of general structure in the resulting video edits.

Tune-a-Video [287] and Dreamix [177] both propose fine-tuning a pre-trained diffusion model for
each source video, where Tune-a-Video finetunes a pretrained text-to-image model and Dreamix
fine-tunes a pre-trained text–to-video model. For both methods, edits are produced using the
fine-tuned video model to sample back out conditioned on given the edit prompts.

Most prior works tend to target specific types of edits and evaluate on their own constructed sets of
edit prompts. As such, the benefits of each method across different kinds of edits are less clear, and
motivates us to propose a benchmark centered around a more rigorous analysis of the pros and cons
of each method. In addition, we propose our own video editing method that leverages existing text
conditional image editing models to edit the first frame of a source video and extrapolate its future
frames via a motion conditional video generation diffusion model to enable alignment of the edit
with the source video and the editing prompt.
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Figure 7.2: An overview of MoCA. Given a source video, we compute its optical flow, and apply
image editing techniques on the first frame. To produce the resulting video edit, we sample our
model conditioned on motion, the edited first frame, and the edit caption. For motion-based edits,
we dropout the optical flow conditioning.

7.3 Background
Conditional latent diffusion models. Diffusion models learn to generate samples from a training
distribution by reversing a gradual noising process. At the sampling time starting from a Gaussian
noise, the model generates less noisy samples in T time-steps where each time-step, t, corresponds
with a specific noise level [55]. In latent diffusion models for each input image x, this noising and
denoising process is applied on the latent space, z = E(x), of a pretrained variational autoencoder
with encoder E , resulting in more efficient training and sampling steps. In a text-conditional latent
diffusion model, text features are extracted from a pre-trained language model, and then fed into
the latent diffusion U-Net blocks via cross-attention modules. In addition to the text conditioning,
the image or video generation models can be also conditioned on an additional input image by
concatenating its features with the noisy latent features at each time-step, zt, and adding extra input
channels to the first convolutional layer of the U-Net [26, 79, 304]. The network will be trained
to predict the noise added to the noisy latent features given image and text conditioning inputs,
respectively.

Classifier free guidance. Classifier-free guidance was proposed in [97] and is widely used to
improve the fidelity and diversity of the generated samples and their correspondence with the
conditioning input in a diffusion model. During training, the diffusion model is trained jointly in a
conditional and unconditional setting where the conditioning input is set to NULL with a specific
frequency. At inference, the generated samples are guided to be more faithful to the conditioning
input while being further away from the NULL input with a guidance scale s >= 1.
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7.4 MoCA
Inspired by the success of image conditioning for video generation [79, 304] and text-driven image
editing methods [96, 256, 26, 213, 307], we introduce a simple yet strong baseline for text-driven
video editing that can be deployed in a wide range of video editing applications. We decompose the
video editing problem into image editing, and motion-conditioned image animation. We choose to
adopt this decomposition, as (1) image editing has shown large success, with the growing availability
of more capable image editors that are able to edit a variety of complex editing prompts, and (2) the
recent success of image animation methods for video generation to model temporal dynamics in
videos [79, 304]. As a simple approach, we could first leverage image editing techniques to edit the
first frame given the editing prompt, and then use an image animation model to predict the rest of
the frames. However, this typically results in videos that diverge from the motion of the original
source video, which is important to retain especially for edits that only target to change the style,
or background of the video. Therefore, for these cases, we propose to additionally condition on a
motion representation of the video. When editing video motion, we dropout conditioning on the
motion and predict future frames conditioned only on the edited image. An overview of MoCA is
presented in Figure 7.2.

To achieve this, we train a latent diffusion video generation model conditioned on (1) a text prompt,
(2) an image as the first frame of each video, and (3) an optical flow representing the motion in the
video. We use a variational autoencoder (VAE) pre-trained on an internal image database to encode
an input video with shape T × 3×H ×W frame-wise to a tensor of shape T ×C ×H ′ ×W ′. We
learn the diffusion process on this latent space and finally decode the latent to the video pixel space
via its decoder. We use a pre-trained Flan-T5-XXL [162] text encoder to extract text features, cT ,
and feed them into the model via cross-attention modules. At inference time, we edit the first frame
of the source video via off-the-shelf text-based image editing models [96, 168] and use that as the
image conditioning input while using the optical flow estimation of the source video as the motion
conditioning. In the case where motion edits are desired, we dropout the motion-conditioning.

Image Editing We leverage a diverse range of existing image editing methods, and find certain
editing methods to be useful for specific editing types. We have found Prompt-to-Prompt [96]
effective for style, background, and object replacement edits, and SDEdit [307] for multi-spatial
edits that contain larger feature and pose changes. For motion-only edits, we keep the original
source frame.

Image conditioning. Inspired by Emu-video [79], to condition the video generation model on the
first frame as an input, cI , we encode the first frame using the same auto-encoder, E(cI), repeat it T
times to have the same shape as the video latent features, and then concatenate it channel-wise with
the noisy latent features at each time-step.

Motion conditioning. To condition the video generation model on the optical flow motion repre-
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sentation, cM , we convert the optical flow into an RGB video, encode each frame using the same
auto-encoder, E(toRGB(cM)) and concatenate it channel-wise with the noisy latent and image
conditioning features at each time-step. Since conversion to RGB re-normalizes the frames, we
additionally compute an average flow magnitude term, and condition the video model on it. This
conditioning is performed similar to the diffusion time-step conditioning.

Classifier free guidance for three conditionings. Similar to [26, 79], we leverage classifier-free
guidance with respect to all three conditioning inputs to control faithfulness to each of the inputs
at inference time. During training, we randomly set each of the individual conditioning inputs
and their pairwise combination to NULL for 10% of the examples, respectively. To train for both
motion-conditioned image animation, and image animation only, we train with 50% dropout on
motion conditioning. We have therefore, three guidance scales for the text, image, and motion
conditioning inputs that we adjust based on the editing application. During inference, we use the
following conditioning order to compute the classifier guidance, where vθ is the output from the
U-Net, and ṽθ is used to denoise the input image:

ṽθ(zt, cM , cT , cI) = vθ(zt,∅,∅,∅)

+ sI · (vθ(zt,∅,∅, cI)− vθ(zt,∅,∅,∅))

+ sT · (vθ(zt,∅, cT , cI)− vθ(zt,∅,∅, cI))

+ sM · (vθ(zt, cM , cT , cI)− vθ(zt,∅, cT , cI))

7.5 Experiments

Implementation Details
Our video generation model is built from a text-to-image U-Net based latent diffusion model
pre-trained on our internal database of 400M (image, text) pairs. Similar to earlier works in video
generation [229, 20, 79], we expand this 2D U-Net to video generation by adding temporal modules
consisting of 1D temporal convolution layers and 1D temporal attention blocks after each spatial
convolution and attention block, respectively.

We initialize all the spatial parameters from the pre-trained text-to-image model and fine-tune all
the temporal and spatial layers of our video prediction model, with 1.4B trainable parameters, on
an internal licensed dataset consisting of 34M pairs of video-text samples. We sample random
256× 256 2-second clips from each video using a frame rate of 4 frames per second with the first
frame as the conditioning image. Videos are encoded via the pre-trained VAE to the 4× 8× 32× 32
resolution. We additionally use RAFT [246] to extract an estimated optical flow representation
for each video during training. Similar to [79], we train our model using zero terminal-SNR and
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v-prediction, on a batch size of 512 split across 32 A100 GPUs. During inference we use 64 DDIM
steps for sampling.

Evaluation Dataset

LOVEU
TGVE

Dreamix
Dataset

Our
Dataset

Style 35 1 11
Background 35 1 7
Object 35 7 14
Motion 0 2 68
Multi-Spatial 35 0 0
Multi-Motion 0 0 17
Total 140 14 117

# Unique Videos 35 9 37
Avg Edits Per Video 4 1.56 3.16

Table 7.1: Details for each individual dataset in the VideoEdit benchmark, as well the total
distribution of edits types. Our custom curated dataset focuses more heavily on motion editing due
to the general lack of motion edits available in the combined LOVU-TGVE and Dreamix datasets.

We introduce a dataset of 271 edit tasks, defined as a set of (source video, edit prompt) pairs
designed to comprehensively evaluate and benchmark video editing capabilities of current methods.
Our dataset consists of a combination of existing video editing datasets, as well as our own curated
subset:

• LOVEU-TGVE Dataset [288]: comprises of 35 source videos, with 4 different manipulation
tasks proposed for each video (140 edits total). We filtered out videos with human faces and
hands.

• Dreamix Dataset [177]: consists of 14 videos downloaded from the dreamix paper website,
with edits primarily focusing on scene changes with motion.

• Our Custom Dataset: we curate an additional 37 videos from YouTube-8m [2], focused on
including a diverse range of motion edits as well as a composition of scene and motion edits
(117 edits total).

We group each edit task into one of following edit types, some of which are explored in [288, 177]:
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Figure 7.3: Comparison of our method against baselines for a given video editing task. Our
method is able to accurately edit both the spatial and temporal properties of the source video.

• Style: changes in the composition of the video, such as making the video reflect a specific
artistic style (crayon drawing, oil painting, impressionism),

• Object: adding or replacing objects in the scene, such as replacing a lion with a zebra, or
placing a hat on a person’s head,

• Background: changes in the background scene of the video, such as replacing a snowy
mountain background with a desert,

• Motion: changes in the motion of an entity compared to the source video, such as making a
monkey jump, or a car turn in a different direction,

• Multi-Spatial: a combination of style, object, and background changes in the video,

• Multi-Motion: a combination of style, object, and background changes in addition to a motion
change.

Table 7.1 shows a break-down of the number of videos and edits of each type for each dataset.
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Baselines
We compare against a set of SOTA baselines to comprehensively target different families of video
editing models.

• TokenFlow is a tuning-free text-to-image based editing model [78]. It leverages a pre-trained
text-to-image diffusion model to edit videos by computing and propagating spatial edits
across temporal correspondences found in the original source videos. We use the public repo 1

to run this baseline.

• Tune-a-Video is a fine-tuning text-to-image based editing model [287]. For each edit task,
Tune-a-Video extends a pre-trained text-to-image diffusion model to the temporal domain and
fine-tunes the weights on a given source video. During inference, the edit result is generated
through a DDIM initialized sampling using the fine-tuned model conditioned on the edit
prompt. We use the public repo 2 to run this baseline.

• Drẽamix is a fine-tuning text-to-video based editing model [177]. It fine-tunes a text-to-video
model for each source video, and edits are generated by sampling at different levels of noise
strengths, conditioned on the edit prompt. Due to the lack of public code and models, we
perform Dreamix fine-tuning using our own internal text-to-video model (as indicated by the
tilde). Our text-to-video model follows the same training parameters and model architecture
(LDM) as MoCA, only without the initial concatenating for image and motion conditioning.

• MasaCtrl is a tuning-free text-to-video based editing model [31]. Originally presented in
the text-to-image domain, MasaCtrl enables more robust structural (e.g. pose) changes in
image edits compared to the prior methods. It replaces self-attention layers with mutual
self-attention to query correlated local structures and textures from a source image. We extend
MasaCtrl to the video domain using our text-to-video model (same as that of the Drẽamix
baseline). Importantly here, we found it crucial to only apply mutual self-attention layers in
the spatial, and not temporal transformer layers of our network.

• Gen-1 is a tuning-free video editing model [67]. Gen-1 video-to-video model generates a
video conditioned on a given edit prompt and a depth map of the source video. We use the
public web interface in generating edit results.

• VideoComposer is a tuning-free text-to-video generation model [277]. VideoComposer is a
motion-conditioned video model that can generate videos conditioned on a single image, and
desired motion extracted from the source video. We use the public repo 3 to run this baseline.
When generating edits, we condition VideoComposer on the same edited image as given to
our method.

1https://github.com/omerbt/TokenFlow
2https://github.com/showlab/Tune-A-Video
3https://github.com/damo-vilab/videocomposer

https://github.com/omerbt/TokenFlow
https://github.com/showlab/Tune-A-Video
https://github.com/damo-vilab/videocomposer
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Style BG Object Motion M-S M-M Total

Drẽamix [177] 53% 53% 63% 81% 49% 65% 63%
Gen-1 [67] 66% 40% 80% 99% 57% 90% 74%
MasaCtrl [31] 74% 72% 80% 76% 71% 65% 75%
Tune-a-Video [287] 53% 67% 70% 86% 74% 85% 72%
TokenFlow [78] 70% 77% 63% 83% 83% 85% 76%
VideoComposer [277] 78% 76% 92% 84% 74% 85% 82%

Table 7.2: Human evaluation results for preference of our method over each of the baselines.
User ratings generally show greater preference for our method, with the exception of Gen-1 for
background edits, and Drẽamix for multi-spatial edits. BG is Background, M-S is Multi-Spatial,
and M-M is Multi-Motion.

All baselines are run in their native resolutions and frame rates, and spatio-temporally down-sampled
to 256 resolution, 4 frames per second for fair comparisons to our method. For each method and
(video, edit prompt) pair, we perform a hyper-parameter sweep to generate 10 candidate edits, and
use human evaluators to select the best edit. The hyper-parameter sweeps vary for each method,
with some over one to three hyper-parameters while still restricted to the same max 10 candidate
generations.

Human Evaluation
Methodology We use crowd-sourced workers from Amazon Mechanical Turk (AMT) for our
human evaluations. For each task given the source video and the editing prompt, evaluators are
asked to perform a binary selection on their preferred video edit out of two given edits, one from our
proposed method. Inspired by the JUICE metric introduced in [79], they are also required to choose
the reasoning for their selection as either a better consistency with the source video or a higher
alignment with the editing prompt or both. The same task is given to five different evaluators, and
the overall preferred video edit is selected through a majority vote. We evaluate paired comparisons
between our method and all given baselines, and report the final metrics as the percentage of video
edit examples for which our method is preferred.

Results Table 7.2 shows human evaluation results comparing our method against each of the
baselines, partitioned by edit type. A value of 50% means that both methods perform equally, with
values greater than 50% showing a stronger human preference towards the edits produced by our
method. Evaluators significantly preferred our method over all other baselines. When examining
results split by edit type, human raters showed a larger gap in preference for our method’s motion
edits, with a more narrow gap on spatial edits. Gen-1 notably shows capabilities in background
edits, as seen by the 40% preference for our method, and 60% for Gen-1. We hypothesize that
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Style BG Object Motion M-S M-M Total

ImageCLIP
Msim 45% 43% 47% 63% 44% 50% 51%
Mdir 80% 72% 74% 53% 81% 66% 68%
Mgeo 78% 71% 70% 50% 82% 67% 67%

VideoCLIP
Msim 42% 44% 53% 74% 40% 51% 55%
Mdir 78% 74% 77% 59% 76% 73% 72%
Mgeo 79% 72% 77% 56% 71% 78% 69%

Table 7.3: Classification accuracy of each CLIP-based automatic metric, considering binary
human decisions comparing MoCA edits against different baselines as the ground truth labels.
Note that random guessing achieves roughly 50% accuracy. Mdir and Mgeo, standing for CLIP
text-video directional and geometric similarity scores, show relatively high accuracy (up to 80%) on
spatial-based edits, such as style, background, object, and multi-spatial. However, both methods
have a much harder time selecting the correct motion-based edits.

since background edits require larger visual feature deviations from the original source video, Gen-1
performs well on this task by generating high quality videos. However, it is less preferred on other
video edit types since it does not preserve the visual features and style of the source video due to
only conditioning on depth maps.

Drẽamix shows similarly competitive results in the spatial edits, but struggles more on the motion
edits. We found that Drẽamix has a tendency to overfit to the motion of the source video, even
when adjusting the number of fine-tuning steps. MasaCtrl shows strong motion-editing abilities, but
struggles more with spatial edits, especially those with larger feature changes, due to its reliance
on mutual self-attention on visual features of the source content. Tune-a-Video has strong spatial
editing capabilities, but generates less temporally coherent motion, and performs poorly on the
motion edits. Similarly, TokenFlow has a reasonable performance in spatial edits, but struggles
with motion edits due to its reliance on a pre-trained text-to-image model. Lastly, VideoComposer
generally struggles to remain faithful to the image conditioning input, or produces less temporally
coherent motions.

Lastly, Figure 7.4 shows the distribution of factors selected in which human raters preferred our
method over baselines. In general human raters preferred MoCA due to its stronger alignment with
the edit prompt. VideoComposer shows a slightly different distribution, of which we hypothesize
may be due to the fact that it would generally produce videos with high text-video alignment, but
may deviate far from the source or edited image, thus the higher distribution in selecting consistency
with the source video as a deciding factor. An example video edit by all models is shown in
Figure 7.3.
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Automatic Evaluation
In addition to presenting human evaluation results, we also investigate automatic evaluation metrics
using pre-trained Video and Image CLIP models [197, 280]. We perform an analysis over several
CLIP-based metrics to measure video editing quality.

CLIP video similarity score. Given a source video Vsource and an edit result Vedit, we first measure
faithfulness between the source video and the resulting edited video:

Msim = EV (Vsource) · EV (Vedit)

where EV is the VideoCLIP encoder.

CLIP text-video directional similarity score. Given a source prompt Tsource and an edit prompt
Tedit, we measure the edit quality using a CLIP text-video directional similarity metric [72, 26],
defined as:

∆T = ET (Tedit)− ET (Tsource)

∆V = EV (Vedit)− EV (Vsource)

Mdir =
∆V ·∆T

∥∆V ∥2 ∥∆T∥2
where ET is the VideoCLIP text encoder. This metric measures the consistency of the change
between the two videos (in CLIP space) with the change between the two prompts.

CLIP text-video geometric similarity score. Lastly, since both metrics are important in measuring
the overall editing quality [26], we consider an additional metric consisting of the geometric average
of both metrics which would be penalized if one of the metrics is too low.

Mgeo =
√

Msim ∗Mdir

We similarly compute these scores using a pre-trained image-CLIP encoder as the average of
per-frame similarity scores.

Correlation between automatic and human scores. In order to measure the alignment of each
evaluation metric to the human judgements, we treat the paired edit selection task as a binary
classification problem, where for each pair of given video edits, we compute the ground-truth label
as the majority vote among human raters. Table 7.3 shows the classification results for each of the
automatic evaluation metrics using both Image and Video-based CLIP models.We use the original
L/14 Image CLIP model, and a VideoCLIP model introduced in [280]. Note that random guessing
would achieve roughly 50% accuracy.

Both encoder models show similar trends across all metrics, where even the highest measured
overall accuracy (72%) for Mdir using VideoCLIP is still far off from perfectly aligning with human
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judgement. When split by edit type, metrics computed for spatial-type edits (style, background,
object, multi-spatial) are most aligned with human raters (up to 80% accurate), whereas motion-
based edits are more difficult to automatically evaluate (56% for motion-only edits). We hypothesize
that this may be due to both models having only elementary understanding of motion, and being
more biased towards spatial features of videos.

For further comparisons of our method and baselines, we use the two metrics with highest observed
correlations, Mdir and Mgeo. Results are shown in Table 7.4, where our method outperforms all
baseline methods. Table F.2 in the Supplementary shows a more detailed breakdown of evaluation
results by edit type. However, in general, we note that due to the relatively low correlation between
automatic metrics and human ratings, human judgements are more reliable in these evaluations.

Effect of Motion Conditioning
Lastly, we perform an ablation study on the motion conditioning introduced in our method. Table 7.5
shows a comparison between our method with and without the motion conditioning support. Both
models are trained on the same data for the same amount of iterations. We only perform evaluations
on a subset of edit types (Style, Object, Background, Multi-Spatial) as our method does not use
motion conditioning for the other motion-based edits (sM = 0). For spatial edits, we find we are
able to better preserve the original motion of the entities through motion conditioning. Figure 7.5
Shows an example of when motion conditioning is beneficial in our model.

7.6 Discussion
We introduced MoCA, a method that decomposes the video editing problem into spatial and temporal
components. Spatial edits are applied to the first frame of a source video, and then extrapolated
using a motion-conditioned image animation model to preserve the motion of the original video. In
addition, we allow motion editing by removing the motion conditioning and letting the animation
model generate new frames according to the motion described in the edit prompt. We demonstrate
that this simple method is a strong baseline outperforming existing methods on video editing. In
addition, we introduce a new curated subset of video edits focused on motion editing, as well as a
comprehensive analysis and benchmarking across a wide range of other video edits. By providing
this comprehensive framework, we aim to facilitate the assessment of advancements and abilities of
video editing techniques in subsequent research. We identify several limitations as directions for
future work.
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Figure 7.4: Percentage of each reason selected
when human evaluators prefer MoCA edits to
each of the baselines. The reasons for picking
one model over another on each video edit could
be either its better alignment with the edit prompt,
higher consistency with the source video, or both.
Generally, human raters preferred our method in
terms of better alignment with the desired edit
prompt.

Method Mdir(↑) Mgeo(↑)

MoCA 0.145 0.301
Drẽamix [177] 0.107 0.252
Gen-1 [67] 0.111 0.254
MasaCtrl [31] 0.090 0.231
Tune-a-Video [287] 0.116 0.265
TokenFlow [78] 0.098 0.235
VideoComposer [277] 0.128 0.278

Table 7.4: Automatic scores evaluating the edit-
ing quality of each model. We compute the
VideoCILP-based Mdir and Mgeo scores as the
CLIP text-video directional and geometric sim-
ilarity scores, respectively, averaged across all
edit tasks for each baseline. Our method shows
higher editing capabilities compared to the base-
line methods.
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Figure 7.5: MoCA edits for “A boat sailing
on the moon” with and without motion
conditioning. Using motion conditioning
allows the model to more faithfully follow
the boat’s movement in the original source
video. Without motion conditioning, the
model tends to generate more random move-
ment directions, such as moving backwards.

Style Obj BG M-S Tot

sM = 0 57% 60% 57% 57% 58%

Table 7.5: Ablation study on the motion
conditioning in MoCA comparing the video
edits conditioned on the motion of the source
video against those without any motion con-
ditioning. Human raters show a preference
to our model with motion conditioning.

• Analysis in Section 7.5 showed that all existing evaluation metrics for video editing are
rather lacking in their alignment with human judgement. As such, there remains room for
developing more accurate evaluation metrics for video editing, as human evaluations can
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be time consuming or expensive when using crowd sourced workers. In addition, a strong
automatic metric may be useful for automatic selection of desired edits for hyperparameter
searching or when comparing results from different random seeds.

• Due to our reliance on video extrapolation as means for video editing, our method has less
fidelity when preserving any aspects of source videos that is introduced after the first frame,
such as longer videos, or videos with more camera motion. Further work may involve
incorporating other conditioning schemes that aim to preserve these parts of source videos,
similar to our proposal of augmenting a video extrapolation model with motion conditioning
to preserve motion changes.
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Chapter 8

Conclusion

In this dissertation, I focused on developing techniques that better enable scaling video generation
models. Importantly, this includes scaling on two axes - model size and sequence length. Scaling
model sizes allows the model more complex video distributions, and scaling context lengths enables
better learning important bits of information over longer videos, such as long-term 3D consistency
or object permanence – all of which are crucial for eventually developing intelligent systems that
can navigate with and interact the real world.

Chapters 2, 3, and 4 demonstrated a series of research contributions in efficient scaling of video
models through first learning spatio-temporally compressed representations through architectural
modifications in both the autoencoder and video generation models, as well as incorporating
adaptivity during the learning process to further boost downstream efficiency gains.

Chapter 5 focused on extending video models to even longer context, spanning potentially hours of
video, and millions of tokens. We introduced various training methodologies and training tricks
necessary for stable, and efficient learning.

Chapters 6 and 7 investigated leveraging the underlying understanding of the world learned through
large-scale video pre-training, and using these models for downstream tasks. We showed that such
models can be used to efficiently learn reinforcement learning agents by using a video prediction
model likelihood as a reward functions. In addition, we showed that such a model can also be used
for effective complex spatio-temporal video editing tasks.

Although substantial progress has been made towards scaling video generation models, there is still
much future work to be done. Existing video generation models are still severely underfitting its
data – video models currently benefit from heavy data filtering, only keeping very high quality data
for the model to focus learning on. In addition, dense text captions and the usage of classifier-free
guidance techniques during inference massively improve video generation quality, suggesting that
less conditional distributions are still too difficult for existing video models to learn, even for shorter
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video. Longer video presents an even more difficult problem due to the nature of exponentially
branching futures with time. As such, there is still a large amount of potential in developing more
efficient video architectures that can not only scale to more complex distributions well, as well
as better scale to longer contexts – problems that could be potentially addressed with architecture
design and further compressed tokenization.

Lastly, although we are currently knowledgeable in terms of scaling video generation models, it
is less clear of how to exactly leverage the learned understanding of the world. I am additionally
interested in exploring the applications of video generation models to algorithms that involve visual
planning, such as model-based reinforcement learning algorithms. I am also interested in eventually
developing omni-modal models that jointly model many modalities such as video, language, and
audio, which in turn provides a clearer interface to use any acquired world knowledge.
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Appendix A

Appendix For Chapter 2

A.1 Architecture Details and Hyperparameters

VQ-VAE Encoder and Decoder
Table A.1: Hyperparameters of VQ-VAE encoder and decoder models for each dataset

MMNIST BAIR / RoboNet / ViZDoom UCF-101 / TGIF

Input size 16× 64× 64 16× 64× 64 16× 64× 64
Latent size 4× 16× 16 8× 32× 32 4× 32× 32
β 0.25 0.25 0.25
Batch size 32 32 32
Learning rate 7× 10−4 7× 10−4 7× 10−4

Hidden units 240 240 240
Residual units 128 128 128
Residual layers 2 4 4
Uses attention No Yes Yes
Codebook size 512 1024 1024
Codebook dim 64 256 256
Encoder filter 3 3 3
Upsample filter 4 4 4
Training steps 20k 100K 100K
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Prior Networks
Table A.2: Hyperparameters of prior networks for each dataset

MMNIST BAIR / RoboNet ViZDoom UCF-101 / TGIF

Input size 4× 16× 16 8× 32× 32 8× 32× 32 4× 32× 32
Cond sizes 1× 64× 64 3× 64× 64, 64 60/315 n/a
Batch size 32 32 32 32
Learning rate 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Vocabulary size 512 1024 1024 1024
Attention heads 4 4 4 8
Attention layers 8 16 16 20
Embedding size 192 512 512 1024
FFN dim 384 2048 2048 4096
Resnet depth 18 34 n/a n/a
Resnet units 512 512 n/a n/a
Dropout 0.1 0.2 0.2 0.2
Training steps 80k 150K 150K 200K / 600K
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A.2 ViZDoom Samples

Figure A.1: Samples for ViZDoom health gathering supreme environment. (Top) shows uncondi-
tionally generated samples. (Bottom) shows samples conditioned on the same action sequence (turn
right and go straight).

Figure A.2: Samples for ViZDoom battle2 environment. (Top) shows unconditionally generated
samples. (Bottom) shows three samples conditioned on the same action sequence (moving forward
and right).
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Appendix B

Appendix For Chapter 3

B.1 Sampling Process
Given a sequence of conditioning frames, o1, . . . , ot, we encode each frame using the pretrained VQ-
GAN to produce x1, . . . , xt, and then use the conditional encoder to compute z1, . . . , zt. In order to
generate the next frame, we use the temporal transformer to compute ht, and feed it into the MaskGit
dynamics prior to predict ẑt+1. Let zt+1 = ẑt+1 and feed it through the temporal transformer and
MaskGit to predict ẑt+2. We repeat this process until the entire trajectory is predicted, ẑt+1, . . . , ẑT .
In order to decode back into frames, we first decode into the VQ-GAN latents, and then decode
to RGB using the VQ-GAN decoder. Note that generation can be completely done in latent space,
and rendering back to RGB can be done in parallel over time once the latents for all timesteps are
computed.
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B.2 Samples

DMLab
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Figure B.1: 156 frames generated conditioned on 144 (action-conditioned)
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Figure B.2: 264 frames generated conditioned on 36 (no action-conditioning)
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Figure B.3: 3D visualizations of the resulting generated DMLab mazes
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Minecraft
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Figure B.4: 156 frames generated conditioned on 144 (action-conditioned)
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Figure B.5: 264 frames generated conditioned on 36 (action-conditioned)
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Habitat
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Figure B.6: 156 frames generated conditioned on 144 (action-conditioned)
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Figure B.7: 264 frames generated conditioned on 36 (no action-conditioning)
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Kinetics-600
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Figure B.8: 80 frames generated conditioned on 20 (no top-k sampling)
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Figure B.9: 80 frames generated conditioned on 20 (with top-k sampling)
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B.3 Performance versus Horizon
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(a) DMLab
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(b) Minecraft
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Figure B.10: All plots shows PSNR, SSIM, and LPIPS on 150 predicted frames conditioned on 144
frames. The 144 conditioned frames are not shown on the graphs and timestep 0 corresponds to the
first predicted frame

Figure B.10 shows PSNR, SSIM, and LPIPS as a function of prediction horizon for each dataset.
Generally, each plot reflected the corresponding aggregated metrics in Table 3.1. For DMLab,
TECO shows much better temporal consistency for the full trajectory, with Latent FDM coming
in second. CW-VAE is able retain some consistency but drops fairly quickly. Lastly, FitVid and
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Perceiver AR lose consistency very quickly. We see a similar trend in Minecraft, with Latent
FDM coming closer in matching TECO. For Habitat, all methods generally have trouble producing
consistent predictions, primarily due to the difficulty of the environment.
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B.4 Performance versus Training Sequence Length
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Figure B.11: DMLab
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Figure B.12: Minecraft

Figure B.11 and Figure B.12 show plots comparing performance with training models on different
sequence lengths. Under a fixed compute budget and batch size, training on shorter videos enables
us to scale to larger models. This can also be interpreted as model capacity or FLOPs allocated per
image. In general, training on shorter videos enables higher quality frames (per-image) but at a
cost of worse temporal consistency due to reduced context length. We can see a very clear trend in
DMLab, in that TECO is able to better scale on longer sequences, and correspondingly benefits
from it. Latent FDM has trouble when training on full sequences. We hypothesize that this may be
due to diffusion models being less amenable towards downsamples, it it needs to model and predict
noise. In Minecraft, we see the best performance at around 50-100 training frames, where a model
has higher fidelity image predictions, and also has sufficient context.
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B.5 Sampling Time
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TECO (ours) 186
Latent FDM 3606
Perceiver-AR 8443
CW-VAE 0.062
FitVid 0.074



APPENDIX B. APPENDIX FOR CHAPTER 3 135

B.6 Ablations
DropLoss Rate FVD Train Step (ms)

0.8 187 125
0.6 186 143
0.4 184 155
0.2 184 167
0.0 182 182

(a) DropLoss Rates

Posteriors FVD

VQ (+ MaskGit prior) (ours) 189
OneHot (+ MaskGit prior) 199
OneHot (+ Block AR prior) 209
OneHot (+ Independent prior) 228
Argmax (+ MaskGit prior) 336

(b) Posteriors

Dynamics Prior FVD

MaskGit (ours) 189
Independent 220
Autoregressive 207

(c) Prior Networks

Conditional Encoding FVD

Yes (ours) 189
No 208

(d) Conditional Encoding

Number of Codes FVD

64 191
256 195

1024 186
4096 200

(e) VQ Codebook Size

Table B.1: Ablations comparing alternative prior, posterior, and codebook designs

FVD
Size 2× 2 4× 4

Base 204 189
Small Enc 214 191
Small Dec 232 198

(a) Encoder and Decoder

FVD
Layers Width 2× 2 4× 4

8 768 204 189
8 384 260 196
2 768 216 202

(b) Temporal Transformer

FVD
Layers Width 2× 2 4× 4

8 768 204 189
8 384 228 193
2 768 228 201

(c) MaskGit Prior

Table B.2: Ablations on scaling different parts of TECO.

FVD (↓) PSNR (↑) SSIM (↑) LPIPS (↓) Train Step Time (ms)

TECO (ours) 48 21.9 0.703 0.157 151
MaskGit 950 19.3 0.605 0.274 167
Autoregressive 44 20.1 0.640 0.197 267

Table B.3: DMLab dataset comparisons against similar model as TECO without latent dynamics,
and Maskgit or AR model on VQ-GAN tokens directly.
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Table B.3 shows comparisons between TECO and alternative architectures that do not use latent
dynamics. Architecturally, MaskGit and Autoregressive are very similar to TECO, with a few small
changes: (1) there is no CNN decoder and (2) MaskGit and AR directly predict the VQ-GAN latents
(as opposed to the learned VQ latents in TECO). In terms of training time, MaskGit and AR are a
little slower since they operate on 16× 16 latents instead of 8× 8 latents for TECO. In addition,
conditioning for the AR model is done using cross attention, as channel-wise concatenation does
not work well due to unidirectioal masking. Both models without latent dynamics have worse
temporal consistency, as well as overall sample quality. We hypothesize that TECO has better
temporal consistency due to weak bottlenecking of latent representation, as a lot of time can be
spent modeling likelihood of imperceptible image / video statistics. MaskGit shows very high FVD
due to a tendency to collapse in later frames of prediction, which FVD is sensitive to.
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B.7 Metrics During Training

Figure B.14: Comparing FVD and LPIPS evaluation metrics over the course of training. FVD tends
to saturate earlier (200k) while LPIPS keeps on improving up until 1M iterations.

Figure B.14 shows plots of FVD (over chunks of generatd 16 frame video) and LPIPS during
training, evaluated at saved model checkpoints every 50k iterations over 1M iterations. We can see
that although FVD (measuring frame fidelity) tends to saturate early on during training (at around
200k iterations), the long-term consistency metric (LPIPS) continues to improve until the end of
training. We hypothesize that this may be due to the model first learning the ”easier bits” more local
in time, and then learning long-horizon bits once the easier bits have been learned.

B.8 High Quality Spatio-Temporal Compression

Model Dataset FVD↓

TATS
DMLab 54
Minecraft 226

TECO
DMLab 7
Minecraft 53

Table B.4: Reconstruction FVD comparing TATS Video VQGAN to TECO
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Table B.4 compares reconstruction FVD between TECO and TATS. At the same compression rate
(same number of discrete codes), TECO learns far better spatio-temporal codes that TATS, with
more of a difference on more visually complex scenes (Minecraft vs DMLab).
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B.9 Trade-off Between Fidelity and Learning Long-Range
Dependencies

Downsample Resolution FVD↓ PSNR↑ SSIM↑ LPIPS↓

1× 1 44 20.4 0.666 0.170
2× 2 38 18.6 0.597 0.221
4× 4 33 17.7 0.578 0.242

Table B.5: Comparing different input resolutions to the temporal transformer

Latent FDM Arch FVD↓ PSNR↑ SSIM↑ LPIPS↓

More downsampling + lower resolution computations 181 17.8 0.588 0.222
Less downsample + higher resolution computations 94 15.6 0.501 0.277

Table B.6: omparing different Latent FDM architectures with more computation at different
resolutions

Table B.5 and Table B.6 show a trade-off between fidelity (frame or image quality) and temporal
consistency (long-range dependencies) for video prediction architectures (both TECO, and Latent
FDM).
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B.10 Full Experimental Results

TPU-v3 Days Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↑

TECO (ours) 32 169M 27.5 22.4 0.709 0.155
Latent FDM 32 31M 181 17.8 0.588 0.222
Perceiver-AR 32 30M 96.3 11.2 0.304 0.487
CW-VAE 32 111M 125 12.6 0.372 0.465
FitVid 32 165M 176 12.0 0.356 0.491

Table B.7: DMLab

TPU-v3 Days Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↑

TECO (ours) 80 274M 116 15.4 0.381 0.340
Latent FDM 80 33M 167 13.4 0.349 0.429
Perceiver-AR 80 166M 76.3 13.2 0.323 0.441
CW-VAE 80 140M 397 13.4 0.338 0.441
FitVid 80 176M 956 13.0 0.343 0.519

Table B.8: Minecraft

TPU-v3 Days Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↑

TECO (ours) 275 386M 76.3 12.8 0.363 0.604
Latent FDM 275 87M 433 12.5 0.311 0.582
Perceiver-AR 275 200M 164 12.8 0.405 0.676

Table B.9: Habitat
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TPU-v3 Days Params FVD ↓

TECO (ours) 640 1.09B 649± 16.5
Latent FDM 640 831M 960± 52.7
Perceiver-AR 640 1.06B 607± 6.98

(a) Using top-k sampling for Perceiver AR and TECO

TPU-v3 Days Params FVD ↓

TECO (ours) 640 1.09B 799± 23.4
Latent FDM 640 831M 960± 52.7
Perceiver-AR 640 1.06B 1022± 32.4

(b) No top-k sampling

Table B.10: Kinetics
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Figure B.15: FVD on Kinetics-600 with different top-k values for Perceiver-AR and TECO



APPENDIX B. APPENDIX FOR CHAPTER 3 142

B.11 Scaling Results

TPU-v3
Days

Train
Seq Len Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

TECO (ours) 32

300 169M 48.2 21.9 0.703 0.157
200 169M 59.7 19.9 0.628 0.187
100 86M 63.9 15.4 0.476 0.322
50 195M 52.7 13.9 0.418 0.383

Latent FDM 32

300 31M 181 17.8 0.588 0.222
200 62M 66.4 17.7 0.561 0.253
100 80M 55.6 15.5 0.468 0.336
50 110M 68.3 14.0 0.414 0.385

Table B.11: DM Lab scaling

TPU-v3
Days

Train
Seq Len Params FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

TECO (ours) 80

300 274M 116 15.4 0.381 0.340
200 261M 109.5 15.4 0.379 0.343
100 257M 85.1 15.7 0.385 0.325
50 140M 80.7 14.8 0.369 0.360

Latent FDM 80

300 33M 167 13.4 0.349 0.429
200 80M 104.9 15.0 0.384 0.366
100 69M 92.8 15.1 0.390 0.358
50 186M 85.6 14.8 0.378 0.372

Table B.12: Minecraft scaling
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B.12 Related Work
Video Generation Prior video generation methods can be divided into a few classes of models:
variational models, exact likelihood models, and GANs. SV2P [10], SVP [53], SVG [268], and
FitVid [11] are variational video generation methods models videos through stochastic latent
dynamics, optimized using the ELBO [130] objective extended in time. SAVP [139] adds an
adversarial [81] loss to encourage more realistic and high-fidelity generation quality. Diffusion
models [101, 232] have recently emerged as a powerful class of variational generative models which
learn to iteratively denoise an initial noise sample to generate high-quality images. There have been
several recent works that extend diffusion models to video, through temporal attention [104, 93],
3D convolutions [107], or channel stacking [271]. Unlike variational models, autoregressive models
(AR) and flows [134] model videos by optimizing exact likelihood. Video Pixel Networks [123]
and Subscale Video Transformers [284] autoregressively model each pixel. For more compute
efficient training, some prior methods [293, 138, 224, 200, 273] propose to learn an AR model
in a spatio-temporally compressed latent space of a discrete autoencoder, which has shown to be
orders of magnitudes more efficient compared to pixel-based methods. Instead of a VQ-GAN, [138],
learns a frame conditional autoencoder through a flow mechanism. Lastly, GANs [81] offer an
alternative method to training video models. MoCoGAN [257] generates videos by disentangling
style and motion. MoCoGAN-HD [249] can efficiently extend to larger resolutions by learning
to navigate the latent space of a pretrained image generator. TGANv2 [215], DVD-GAN [49],
StyleGAN-V [231], and TrIVD-GAN [164] introduce various methods to scale to complex video,
such as proposing sparse training, or more efficient discriminator design.

The main focus of this work lies with video prediction, a specific interpretation of conditional video
generation. Most prior methods are trained autoregressive in time, so they can be easily extended
to video prediction. Video Diffusion, although trained unconditionally proposes reconstruction
guidance for prediction. GANs generally require training a separate model for video prediction.
However, some methods such as MoCoGAN-HD and DI-GAN can approximate frame conditioning
by inverting the generator to compute a corresponding latent for a frame.

Long-Horizon Video Generation CW-VAE [220] learns a hierarchy of stochastic latents to better
model long term temporal dynamics, and is able to generate videos with long-term consistency for
hundreds of frames. TATS [75] extends VideoGPT which allows for sampling of arbitrarily long
videos using a sliding window. In addition, TATs and CogVideo [106] propose strided sampling as
a simple method to incorporate longer horizon contexts. StyleGAN-V [231] and DI-GAN [302]
learn continuous-time representations for videos which allow for sampling of arbitrary long videos
as well. [25] proposes an efficient video GAN architecture that is able to generate high resolution
videos of 128 frames on complex video data for dynamic scenes and horseback riding. FDM [93]
proposes a diffusion model that is trained to be able to flexibly condition on a wide range of sampled
frames to better incorporate context of arbitrarily long videos. [143] is able to leverage a hierarchical
prediction framework using semantic segmentations to generate long videos.
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Long-Horizon Video Understanding Outside of generative modeling, prior work such as
MeMViT [286] and Vis4mer [175] introduce architectures for modeling long-horizon dependencies
in videos.
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B.13 Dataset Details

DMLab
We generate random 7× 7 mazes split into four quadrants, with each quadrant containing a random
combination of wall and floor textures. We generate 40k trajectories of 300 frames, each 64× 64
images. Actions in this environment consist of 20◦ left turn, 20◦ right turn, and walk forward. In
order to maximally traverse the maze, we code an agent that traverses to the furthest unvisited
point in the maze, with some added noise for stochasticity. Since the maze is a grid, we can easily
hard-code a navigation policy to move to any specified point in the maze.

For 3D visualizations, we also collect depth, camera intrinsics and camera extrinsics (pose) for
each timestep. Given this information, we can project RGB points into a 3D coordinate space and
reconstruct the maze as a 3D pointcloud. Note that since videos are generated only using RGB as
input, they do not have groundtruth depth and pose. Therefore, we train depth and pose estimators
that are used during evaluation. Specifically, we train a depth estimator to map from RGB frame to
depth, and a pose estimator that takes in two adjacent RGB frames and predicts the relative change
in orientation. During evaluation, we are given an initial ground truth orientation that we apply
sequentially to predicted frames.

Although the GQN Mazes [64] already exists as a video prediction dataset, it is difficult to properly
measure temporal consistency. The 3D scenes are relatively simple, and it does not have actions to
help reduce stochasticity in using metrics such as PSNR, SSIM, and LPIPS. As a result, FVD is
the reliable metric used in GQN Mazes, but tends to be sensitive to noise in video predictions. In
addition, we perform 3D visualizations using our dataset that are not possible with GQN Mazes.

Minecraft
We generate 200k trajectories (each of a different Minecraft world) of 300 128 × 128 frames in
the Minecraft marsh biome. We hardcode an agent to randomly traverse the surroundings by
taking left, right, and forward actions with different probabilities. In addition, we let the agent
constantly jump, which we found to help traverse simple hills, and prevent itself from drowning. We
specifically chose the marsh biome, as it contains hilly turns with sparse collections of trees that act
as clear landmarks for consistent generation. Forest and jungle biomes tend to be too dense for any
meanginfully clear consistency, as all surroundings look nearly identical. On the other hand, plains
biomes had the opposite issue where the surroundings were completely flat. Mountain biomes were
too hilly and difficult to traverse.

We opt to introduce an alternative to the MineRL Navigate [87] since this dataset primarily consists
of human demonstrations of people navigating to specific points. This means that trajectories usually
follow a relatively straight line, so there are not many long-term dependencies in this dataset, as
only a few past frames of context are necessary for prediction.
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Habitat
Habitat is a 3D simulator that can render realistic trajectories in scans of 3D scenes. We compile
roughly 1400 3D scans from HM3D [201], MatterPort3D [34] and Gibson [289], and generate a
total of 200k trajectories of 300 128 × 128 frames. We use the in-built path traversal algorithm
provided in Habitat to construct action trajectories that allow our agent to move between randomly
sampled locations in the 3D scene. Similar to Minecraft and DMLab, the agent action space consists
of left turn, right turn, and move forward.
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B.14 Hyperparameters

VQ-GAN & VAE

DMLab / Minecraft Habitat / Kinetics-600

GPU Days 16 32
Resolution 64 / 128 128
Batch Size 64 64
LR 3× 10−4 3× 10−4

Num Res Blocks 2 2
Attention Resolutions 16 16
Channel Mult 1,2,2,2 1,2,3,4
Base Channels 128 128
Latent Size (VQ-GAN) 16× 16 16× 16
Embedding Dim (VQ-GAN) 256 256
Codebook Size (VQ-GAN) 1024 8192
Latent Size (VAE) 16× 16× 4 16× 16× 8



APPENDIX B. APPENDIX FOR CHAPTER 3 148

TECO

Hyperparameters DMLab Minecraft Habitat Kinetics-600

TPU-v3 Days 32 80 275 640
Params 169M 274M 386M 1.09B
Resolution 64 128 128 128
Batch Size 32 32 32 32
Sequence Length 300 300 300 100
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
DropLoss Rate 0.9 0.9 0.9 0.9

Encoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 2 4 4 8

Codebook
Size 1024 1024 1024 1024
Embedding Dim 32 32 32 32

Decoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 4 8 8 10

Temporal
Transformer

Downsample Factor 8 8 4 2
Hidden Dim 1024 1024 1024 1536
Feedforward Dim 4096 4096 4096 6144
Heads 16 16 16 24
Layers 8 12 8 24
Dropout 0 0 0 0

MaskGit

Mask Schedule cosine cosine cosine cosine
Hidden Dim 512 768 1024 1024
Feedforward Dim 2048 3072 4096 4096
Heads 8 12 16 16
Layers 8 6 16 24
Dropout 0 0 0 0
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Train Sequence Length
(Fewer FLOPs per Frame)

Hyperparameters 300 200 100 50

TPU-v3 Days 32 32 32 32
Params 169M 169M 86M 195M
Resolution 64 64 64 64
Batch Size 32 32 32 32
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
DropLoss Rate 0.9 0.85 0.85 0.85

Encoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 2 2 2 2

Codebook
Size 1024 1024 1024 1024
Embedding Dim 32 32 32 32

Decoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 4 4 4 4

Temporal
Transformer

Downsample Factor 8 8 2 2
Hidden Dim 1024 1024 512 1024
Feedforward Dim 4096 4096 2048 4096
Heads 16 16 8 16
Layers 8 8 8 8
Dropout 0 0 0 0

MaskGit

Mask Schedule cosine cosine cosine cosine
Hidden Dim 512 512 512 768
Feedforward Dim 2048 2048 2048 3072
Heads 8 8 8 12
Layers 8 8 8 8
Dropout 0 0 0 0

Table B.13: Hyperparameters for scaling TECO on DMLab
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Train Sequence Length
(Fewer FLOPs per Frame)

Hyperparameters 300 200 100 50

TPU-v3 Days 80 80 80 80
Params 274M 261M 257M 140M
Resolution 128 128 128 128
Batch Size 32 32 32 32
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
DropLoss Rate 0.9 0.85 0.25 0.25

Encoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 4 4 4 4

Codebook
Size 1024 1024 1024 1024
Embedding Dim 32 32 32 32

Decoder Depths 256, 512 256, 512 256, 512 256, 512
Blocks 8 8 8 8

Temporal
Transformer

Downsample Factor 8 4 2 2
Hidden Dim 1024 1024 1024 512
Feedforward Dim 4096 4096 4096 2048
Heads 16 16 16 8
Layers 12 12 12 12
Dropout 0 0 0 0

MaskGit

Mask Schedule cosine cosine cosine cosine
Hidden Dim 768 768 768 768
Feedforward Dim 3072 3072 3072 3072
Heads 12 12 12 12
Layers 6 6 6 8
Dropout 0 0 0 0

Table B.14: Hyperparameters for scaling TECO on Minecraft
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Latent FDM

Hyperparameters DMLab Minecraft Habitat Kinetics-600

TPU-v3 Days 32 80 275 640
Params 31M 33M 87M 831M
Resolution 64 128 128 128
Batch Size 32 32 32 32
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Optimizer Adam Adam Adam Adam
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
Base Channels 128 128 128 256
Num Res Blocks 1,1,1,2 1,1,2,2 1,2,2,4 2,2,2,2
Head Dim 64 64 64 64
Attention Resolutions 4,2 4,2 4,2 8,4,2
Dropout 0 0 0 0
Channel Mult 1,1,1,2 1,2,2,2 1,2,2,4 1,2,3,8

Table B.15: Hyperparameters for Latent FDM
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Train Sequence Length
(Fewer FLOPs per Frame)

Hyperparameters 300 200 100 50

TPU-v3 Days 32 32 32 32
Params 31M 62M 80M 110M
Resolution 64 64 64 64
Batch Size 32 32 32 32
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Optimizer Adam Adam Adam Adam
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
Base Channels 128 128 128 192
Num Res Blocks 1,1,1,2 1,1,2,2,4 2,2,2,2 3,3,3,3
Head Dim 64 64 64 64
Attention Resolutions 4,2 4,1 4,2 8,4,2
Dropout 0 0 0 0
Channel Mult 1,1,1,2 1,1,2,2,4 1,2,3,4 1,2,3,4

Table B.16: Hyperparameters for scaling Latent FDM on DMLab
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Train Sequence Length
(Fewer FLOPs per Frame)

Hyperparameters 300 200 100 50

TPU-v3 Days 80 80 80 80
Params 33M 80M 69M 186M
Resolution 128 128 128 128
Batch Size 32 32 32 32
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule cosine cosine cosine cosine
Optimizer Adam Adam Adam Adam
Warmup Steps 10k 10k 10k 10k
Total Training Steps 1M 1M 1M 1M
Base Channels 128 128 128 192
Num Res Blocks 1,1,2,2 2,2,2,2 3,3,3,3 2,2,2,2
Head Dim 64 64 64 64
Attention Resolutions 4,2 4,2 8,4,2 8,4,2
Dropout 0 0 0 0
Channel Mult 1,2,2,2 1,2,3,4 1,2,2,3 1,2,3,4

Table B.17: Hyperparameters for scaling Latent FDM on Minecraft
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CW-VAE

Hyperparameters DMLab Minecraft

TPU-v3 Days 32 80
Params 111M 140M
Resolution 64 128
Batch Size 32 32
LR 1× 10−4 1× 10−4

LR Schedule cosine cosine
Optimizer Adam Adam
Warmup Steps 10k 10k
Total Training Steps 1M 1M

Encoder
Kernels 4,4,4 4,4,4
Filters 256,512,1024 256,512,1024

Decoder
Depths 256,512 256,512
Blocks 4 8

Dynamics

Levels 3 3
Abs Factor 6 6
Enc Dense Layers 3 3
Enc Dense Embed 1024 1024
Cell Stoch Size 128 256
Cell Deter Size 1024 1024
Cell Embed Size 1024 1024
Cell Min Stddev 0.001 0.001

Table B.18: Hyperparameters for CW-VAE
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FitVid

Hyperparameters DMLab Minecraft

TPU-v3 Days 32 80
Params 165M 176M
Resolution 64 128
Batch Size 32 32
LR 1× 10−4 1× 10−4

LR Schedule cosine cosine
Optimizer Adam Adam
Warmup Steps 10k 10k
Total Training Steps 1M 1M
g Dim 256 256
RNN Size 512 768
z Dim 64 128
Filters 128,128,256,512 128,128,256,512

Table B.19: Hyperparameters for FitVid
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Appendix C

Appendix For Chapter 4

C.1 Model configuration

ElasticTok-VAE (Continuous) ElasticTok-FSQ (Discrete)

Parameters 210M 210M
Frame Resolution 256× 256 256× 256
Block Size (Mmax) 2048 tokens (4 frames) 4096 tokens (4 frames)
Mmin 128 tokens 256 tokens
Max Number of Frames 1024 1024
Patch Size (T, H, W) (2, 8, 8) (1, 8, 8)
Hidden Size 1024 1024
FFN Size 2048 2048
Encoder Layers 10 10
Decoder Layers 10 10
RoPE Theta 5000000 50000000
Max Sequence Length 512K 1M
FSQ Dims N/A 8, 8, 8, 5, 5, 5 (64k codes)
VAE Dim 8 N/A
KL Weight 1e-8 N/A

C.2 Training Details
The tables below showing trainin details for each of our models. Our Long Video model is trained
on a mix of images and video (Batch Split), and each run (e.g. Long Video (2)) is initialized from
the previous run (e.g. Long Video (1)). For the discrete (FSQ) model, each block has 4k tokens
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(256 blocks = 1M tokens), and the continuous (VAE) model has 2k tokens in each block (256 blocks
= 512K tokens).

ImageNet Video (1) Video (2) Video (3)

Batch Size 256 256 256 256
# Blocks 1 1 2 4
Batch Split (Image / Video) 100%/0% 50%/50% 50%/50% 25%/75%
Total Iterations 200k 200k 80k 50k
Learning Rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Optimizer AdamW AdamW AdamW AdamW
Weight Decay 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Warmup Iterations 10k 10k 5k 2k

Video (4) Video (5) Video (6) Video (7)

Batch Size 64 16 8 4
# Blocks 16 64 128 256
Batch Split (Image / Video) 25%/75% 25%/75% 25%/75% 25%/75%
Total Iterations 10k 1k 500 200
Learning Rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Optimizer AdamW AdamW AdamW AdamW
Weight Decay 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Warmup Iterations 1k 200 100 25

C.3 Data curation details
Image Data We use COYO-700M [30] for our text-image data. We filter out images with less
than 256× 256 images. After accounting for stale links, we are left with roughly 350M text-image
pairs. For better text correspondance, we further generate synthetic captions for each image using
the mooondream2 model.

Video Data To collect our video data, we first scrape Common Crawl to collect video links. After
deduplication, we download each video and split then into individual scenes using PySceneDetect.
For each scene we run various filtering metrics, such as OCR detection, NSFW scoring, motion
score, and aesthetic scoring. Filtering metrics are aggregated over each scene in a video, and used
to select a final subset of 6M videos ranging from 4 seconds to 2 minutes in length.

https://huggingface.co/vikhyatk/moondream2
https://www.scenedetect.com/
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C.4 Reconstruction Examples by MSE
We include the reconstructed images at different Mean Squared Error (MSE) loss thresholds in
Figure C.1 as a reference for how the images appear at various MSE thresholds.

0.0040.0070.010.020.04

GT Recon With MSE

Figure C.1: Comparison of reconstructed image quality at varying MSE thresholds. The
ground truth (GT) image is displayed on the left, followed by reconstructions at different MSE
thresholds (0.04, 0.02, 0.01, 0.007, and 0.004), showing progressive improvement in fidelity as the
threshold decreases.
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Appendix For Chapter 5

D.1 Further Details
Model Flops Utilization. We trained our models using TPUv4-1024, which is approximately equiv-
alent to 450 A100s, with a batch size of 8M using FSDP [68] and BlockwiseRingAttention [156]
for large contexts. Figure D.1 shows the model FLOPS utilization (MFU) for each training stage.
Blue color bars show language training and orange color bars show vision-language training. Our
training achieves good MFUs even for very large context sizes.

Training Loss Curves. Figure D.2 and Figure D.3 show the training loss curves for each stage of
training the language and vision-language models respectively.

Training Hyperparameters. See Appendix D.8

Scaling Inference. We additionally scale our inference code to support million-length sequences by
implementing RingAttention for decoding. Inference for such long sequences requires a minimum
of v4-128 with a TPU mesh sharding of 32 tensor parallelism, and 4 sequence parallelism (ring
dimension). We perform inference in pure single precision, where additional improvements can be
made through techniques in scalability such as quantization.
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Figure D.1: High MFU training across sequence lengths. Model flops utilization (MFU) of each
training stage for LWM-Text (top), and LWM / LWM-Chat (bottom)

Table D.1: LWM-Text Training Stages

32K 128K 256K 512K 1M

Parameters 7B 7B 7B 7B 7B
Sequence Length 215 217 218 219 220

RoPE θ 1M 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M 4M
Total Tokens 4.8B 12B 12B 3B 1.8B
Wall Clock 8h 45h 83h 47h 58h
Compute (TPU) v4-512 v4-512 v4-512 v4-512 v4-512
Doc Length 10K-100K 100K-200K 200K-500K 500K-1M 1M+
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Figure D.2: Training progress over multiple days for LWM-Text. Train loss curve for each
training stage for LWM-Text models.

Figure D.3: Training progress over multiple days for LWM. Train loss curve for
each training stage for LWM and LWM-Chat models. Note that losses consist of a combination
of losses of different modalities, and may not be directly comparable across stages. The sharp
peak in the middle of 1K training is due to newly incporating EOF and EOV tokens into the vision
codebook.
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Table D.2: LWM-Text-Chat Training Details

128K 256K 512K 1M

Parameters 7B 7B 7B 7B
Sequence Length 217 218 219 220

RoPE θ 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M
Total Tokens 1.2B 1.2B 1.2B 1.2B
Wall Clock 6h 10h 20h 40h
Compute (TPU) v4-512 v4-512 v4-512 v4-512

Table D.3: LWM and LWM-Chat Training Stages

1K 8K Chat-32K Chat-128K Chat-1M

Parameters 7B 7B 7B 7B 7B
Sequence Length 210 213 215 217 220

RoPE θ 50M 50M 50M 50M 50M
Tokens per Batch 8M 8M 8M 8M 8M
Total Tokens 363B 107B 10B 3.5B 0.4B
Wall Clock 83h 32h 10h 6h 8h
Compute (TPU) v4-1024 v4-1024 v4-1024 v4-1024 v4-1024
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D.2 More Single-Needle Retrieval Results

Figure D.4: Needle retrieval task using the LWM-Text-Chat-1M model. The model demonstrates
near-perfect retrieval accuracy across various positions within the 1M context window, as reflected
by consistently high scores at different depth percentages and context lengths.

Figure D.5: Single needle retrieval accuracy for the LWM-Text-Chat-256K model. The model
achieves near-perfect retrieval performance across various positions in the 256K context window, as
shown by consistently high scores across all depth percentages and context lengths.
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Figure D.6: Single needle retrieval accuracy for the LWM-Text-Chat-512K model. The model
demonstrates near-perfect retrieval performance across different positions within the 512K context
window, as indicated by consistently high scores at varying depth percentages and context lengths.
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D.3 More Image Understanding Examples

User: If you were a photographer looking to capture this 
location’s essence, what time of day and weather 
conditions would you choose? Describe the reasons 
behind your choice.

Assistant: I would choose the time of day to be during 
sunset. The image features a wooden dock extending into 
a calm lake, which is a perfect setting for a serene and 
picturesque scene. The sunset casts a warm, golden light 
on the lake, enhancing the tranquility of the scene. 
Additionally, the weather conditions appear to be cool and 
cloudy, which complements the natural beauty of the lake 
and the wooden dock. The combination of these elements 
creates a visually appealing and calming atmosphere, 
which would make it an ideal time to capture the moment.

Assistant: In this creative twist on a 
classic work of art, the woman’s face is 
transformed into a dog’s face, creating a 
visually striking and unexpected 
representation. The artwork could be 
seen as a commentary on the limitations 
of human understanding, as well as the 
potential for deeper connection and 
understanding between humans and 
animals.

User: Describe how this creative twist on 
a classic work of art might be interpreted 
differently by various audiences. 

Figure D.7: Question answering based on image input using LWM. The assistant provides detailed
responses to questions about capturing the essence of a serene lakeside scene and interpreting a
creative twist on a classic artwork featuring a dog.
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D.4 More Video Understanding Examples

…

00:00:00 00:59:59

User: How many lemons were in the person’s car?

GPT-4V: Sorry, I can’t help with identifying or making 
assumptions about the content in these images.
Gemini Pro Vision: I am not able to count the number of lemons 
in the person’s car because I cannot see any lemons in the 
video.
Video-LLaVA: The video does not provide an exact number of 
lemons in the persons’ car.

LWM (Ours): There are three lemons in the person’s car.

Figure D.8: LWM demonstrates video understanding over a 1-hour video. The figure shows a
comparison of different AI systems responding to a question about the number of lemons in a
person’s car. While GPT-4V, Gemini Pro Vision, and Video-LLAVA fail to provide a correct
response, LWM accurately identifies that there are three lemons in the car.
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…

00:00:00 01:02:50

User: What animal was standing on a piano?

GPT-4V: I’m sorry, I cannot provide assistance with these 
requests.

Gemini Pro Vision: There is no piano in the video.

Video-LLaVA: A dog was standing on a piano in the video.

LWM (Ours): The animal standing on a piano was a cat.

Figure D.9: LWM demonstrates video understanding over a 1-hour video. The figure compares AI
systems’ responses to the question ’What animal was standing on a piano?’ While GPT-4V, Gemini
Pro Vision, and Video-LLAVA provide incorrect or incomplete answers, LWM correctly identifies
that the animal standing on the piano was a cat.
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00:11 00:54 01:37 02:20 03:03 03:46

User: What is the video about?

Assistant: The video is about a man who talks to the camera 
and shows a tree with apples on it. He then proceeds to pick 

apples and puts them into a bow.

(a) The assistant answers questions about a 4-minute video of a man talks to the
camera and shows a tree of apples.

00:23 01:52 03:22 04:51 06:20 07:50

User: Who is the person in the video 
likely to be?

Assistant: The person in the video is likely to be a politician 
or representative from the White House.

User: Where is the video happening?

Assistant: The video is taking place in the Oval Office of the 
White House, where President Joe Biden is speaking to the 

press

(b) The assistant answers a question regarding a 8-minute video of president
speaking to the press in the Oval Office.

00:00 00:06 00:15 00:20 00:27 00:34

User: Provide a comprehensive 
description of the video

Assistant: In the video, a giraffe is seen running towards a 
high dive in a pool. As the giraffe reaches the dive, it jumps 

into the water, causing a solace. The giraffe then swims 
towards the surface of the pool, creating a small solace as 
it hits the water. The giraffe’s movements are graceful and 

elegant, showcasing its agility and grace.

User: What is unusual about this 
video?

Assistant: The video is unusual because it 
shows a giraffe diving into a pool.

(c) The assistant answers a question about a 30-second video of a giraffe.

Figure D.10: Answering questions about videos using LWM. The assistant responds to various user
questions regarding different types of videos, ranging from a video about a man picking apples to a
press briefing in the White House, and even a humorous video of a giraffe diving into a pool.
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User: What is the video about?

Assistant: The video is about a man who is changing a tire on 
a car. He demonstrates how to change a tire by using a jack 

and a spare tire

00:32 01:23 02:14 03:06 03:57 04:49

(a) The assistant answers a question about a 5-minute video of a man changing a car tire. The
process involves using a jack and a spare tire.

00:06 00:28 00:51 01:14 01:37 02:00

User: What is the video about?

Assistant: In the video, a person is riding a dirt bike on a dirt 
trail. The trail is surrounded by trees and there are other 

people riding bikes in the background. The person is wearing 
a helmet and is riding at a high speed

User: What’s the color of the 
person’s gloves?

Assistant: The person is wearing red gloves

(b) The assistant provides answers based on a 2-minute video of a person riding a dirt bike
along a forest trail. The rider wears a helmet and red gloves, traveling at high speed.

Figure D.11: The system (LWM) successfully answers questions about video content.
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D.5 More Evaluations of Text and Vision-Text Models

Masked Sequence Packing Ablation.
As mentioned in Section 5.4, correctly masking the attentions and re-weighting losses is crucial for
some aspects of downstream tasks, particularly image understanding. Table D.4 shows a comparison
of our model with and without packing corrections. Naively packing shows large degradation in
accuracy across image understanding tasks. We hypothesize naive packing degrades performance
due to down-weighting text token answers which are shorter, which is an important aspect for good
image understanding benchmark performance.

Table D.4: Ablation study comparing standard independent packing and our masked sequence
packing mechanisms across three tasks. Results show that masked sequence packing significantly
improves performance across all tasks.

VQAv2 SQA POPE

Standard independent packing 48.3 34.8 62.5
Masked sequence packing (Ours) 55.8 47.7 75.2

Chat Evaluation
We additionally evaluate the our model on MT-Bench [311] to test its conversation ability. Table D.5
shows the MT-Bench scores of for each of our models. Table D.6 illustrates the relationship between
the mix of chat and fact retrieval tasks and the performance on MT-Bench score and Needle Retrieval
accuracy. As the proportion of chat increases and fact retrieval decreases, the MT-Bench score
improves, indicating better chat performance measured by MT-Bench. Conversely, Needle Retrieval
accuracy decreases, suggesting a trade-off where increasing chat interaction capabilities may reduce
the system’s precision in retrieving specific information or ’needles’ from input context. Across
different context sizes, we found that the model supporting longer input sequences encounters a
slight decrease in MT-Bench score. We hypothesize that this is because we chose to train with fewer
examples on longer sequence training and can be improved by simply training on more data. In
addition, this trade-off may be resolved by acquiring higher quality long-context chat data that is
closer to the chat distribution of the UltraChat dataset.
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Table D.5: Results on MT-Bench across different
context sizes. Despite less training on longer se-
quence lengths, they show only a slight decrease
in conversational ability.

Model MT-Bench

LWM-Text-Chat-128k 4.62
LWM-Text-Chat-256k 5
LWM-Text-Chat-512k 4.83
LWM-Text-Chat-1M 4.19

Table D.6: Relationship between the mix of chat
and fact retrieval tasks and the performance on
MT-Bench score and Needle Retrieval accuracy.

Chat / QA Mix MT-Bench Needle Acc

0% / 100% 2.42 100%
40% / 60% 4.14 100%
70% / 30% 4.62 96%
90% / 10% 5.1 55%
100% / 0% 5.8 31%
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D.6 More Image Generation Examples
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A black dog A blue colored pizza A cube made of denim A glass of wine

A yellow and black bus 
cruising through a rainforest

Oil painting of a couple in 
formal attire caught in the 

rain without umbrellas

A couch in a cozy living 
room

A carrot to the left of 
broccoli

Fisheye lens of a turtle 
in a forest

A blue colored dog Stained glass windows 
depicting hamburgers and 

french fries

A pink car

A cube made of brick An elephant under the 
sea

A yellow book and red 
vase

A city skyline at night

Figure D.12: Images generation using LWM, showcasing various scenes and objects.
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D.7 More Video Generation Examples

A bustling street in London with red telephones booths and Big Ben in the background

Fireworks exploding in the sky

Camera pans left to right on mango slices sitting on a table

Slow motion flower petals falling on the ground

A boat sailing on a stormy ocean

A burning campfire in a forest

Waves crashing against the shore

A ball thrown in the air

Figure D.13: Video sequences generated using LWM, showing various scenes.
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D.8 Training Hyperparameters

Table D.7: LWM-Text Training Stages

32K 128K 256K 512K 1M

Parameters 7B 7B 7B 7B 7B
Initialize From LLaMA-2 7B Text-32K Text-128K Text-256K Text-512K
Precision float32 float32 float32 float32 float32
Sequence Length 215 217 218 219 220

RoPE θ 1M 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M 4M
Total Tokens 4.8B 12B 12B 3B 1.8B
Total Steps 1200 3000 3000 720 450
LR Schedule Constant Constant Constant Constant Constant
LR Warmup Steps 100 200 200 50 25
LR 4× 10−5 4× 10−5 4× 10−5 4× 10−5 4× 10−5

Compute (TPU) v4-512 v4-512 v4-512 v4-512 v4-512
Mesh Sharding 1,-1,4,1 1,-1,8,1 1,-1,16,1 1,-1,16,2 1,-1,16,4

Table D.8: LWM-Text-Chat Training Details

128K 256K 512K 1M

Parameters 7B 7B 7B 7B
Initialize From Text-128K Text-256K Text-512K Text-1M
Precision float32 float32 float32 float32
Sequence Length 217 218 219 220

RoPE θ 10M 10M 25M 50M
Tokens per Batch 4M 4M 4M 4M
Total Tokens 1.2B 1.2B 1.2B 1.2B
Total Steps 300 300 300 300
LR Schedule Constant Constant Constant Constant
LR Warmup Steps 25 25 25 25
LR 4× 10−5 4× 10−5 4× 10−5 4× 10−5

Compute (TPU) v4-512 v4-512 v4-512 v4-512
Mesh Sharding 1,-1,4,1 1,-1,8,1 1,-1,16,1 1,-1,16,2
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Table D.9: LWM / LWM-Chat Training Stages

1K 8K 32K 128K 1M

Parameters 7B 7B 7B 7B 7B
Initialize From Text-1M 1K 8K 32K 128K
Precision float32 float32 float32 float32 float32
Sequence Length 210 213 215 217 220

RoPE θ 50M 50M 50M 50M 50M
Tokens per Batch 8M 8M 8M 8M 8M
Total Tokens 363B 107B 10B 3.5B 0.4B
Total Steps 45000 14000 1200 450 50
LR Schedule Cosine Cosine Cosine Cosine Cosine
LR Warmup Steps 1000 500 100 50 5
Max LR 6× 10−4 6× 10−4 8× 10−5 8× 10−5 8× 10−5

Min LR 6× 10−5 6× 10−5 8× 10−5 8× 10−5 8× 10−5

Compute (TPU) v4-1024 v4-1024 v4-1024 v4-1024 v4-1024
Mesh Sharding 1,-1,1,1 1,-1,1,1 1.-1.4,1 1.-1.8,1 1,-1,16,4
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E.1 Bootstrap Your Own Latent Details
Model Architecture. The BYOL model used in this work derives from the recurrent BYOL-Explore
architecture proposed in [84], with a few modifications. Namely Guo et al. propose BYOL-Explore,
a multi-step predictive latent world model. The BYOL-Explore architecture trains an online network
using targets generated by an exponential moving average target network on future observations.
Observations ot are first encoded into an observation representation fθ(ot). Online predictions are
computed by then encoding the observation representation using a closed-loop RNN hc

θ(fθ(ot)).
Guo et al. also pass actions into the closed loop RNN, but we wish to learn an action-free reward
mechanism that can be trained solely from videos. At each timestep, the carry bt from the closed
loop RNN is then fed into an open-loop RNN ho

θ which predicts open-loop representations K steps
into the future: (bt,k ∈ RM)K−1

k=1 , where bt,k = ho
θ(bt,k−1). The original BYOL-Explore architecture

feeds actions at+k+1 as inputs to the open loop cell ho
θ as well, but we opt to omit these inputs for

the same reason outlined above.

Given the deterministic RNN architecture used to predict online targets, omitting the action condi-
tioning may lead to poor performance in multi-modal or stochastic environments. A more principled
approach would utilize a probabilistic recurrent state space model [61, 89] to account for the
multi-modality of futue states. We leave this approach to future work.

Finally, a predictor head gθ(bt,k) outputs online predictions. We refer the reader to [84] for a figure
of the outlined architecture.

The target network is an observation encoder fϕ whose parameters are an exponential moving
average of fθ. The loss function for the online network is then defined as:
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LBYOL-Explore(θ, t, k) =

∥∥∥∥ gθ(bt,k)

∥gθ(bt,k)∥2
− sg

(
fϕ(ot+k)

∥fϕ(ot+k)∥2

)∥∥∥∥2

2

,

LBYOL-Explore(θ) =
1

B(T − 1)

T−2∑
t=0

1

K(t)

K(t)∑
k=1

LBYOL-Explore(θ, t, k),

where K(t) = min(K,T − 1− t) is the valid open-loop horizon for a trajectory of length T and
sg is the stop-gradient operator.

Computing Rewards. The uncertainty associated with the transition (ot, at, ot+1) is the sum of the
corresponding prediction losses:

ℓt =
∑

p+q=t+1

LBYOL-Explore(θ, j, p, q),

where 0 ≤ p ≤ T−2, 1 ≤ q ≤ K and 0 ≤ t ≤ T−2. This accumulates all the losses corresponding
to the latent dynamics model uncertainties relative to the observation ot+1. For our purposes, we
calculate rewards as rt = −ℓt, which is equivalent to negating the reward used in the original
BYOL-Explore formulation, and can be interpreted as negating the exploration objective to ensure
that the agent stays close to the trajectory distribution found in the original dataset.
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E.2 Video Model Hyperparameters
Table E.1: Hyperparameters and training details for all VQ-GAN models

DMC Atari
RLBench

(single + multi task)

Input size 64× 64× 3 64× 64× 3 64× 64× 3
Latent size 8× 8 16× 16 16× 16
β (commitment loss coefficient) 0.25 0.25 0.25
Batch size 128 128 128
Learning rate 10−4 10−4 10−4

Learning rate schedule constant constant constant
Training steps 200k 200k 200k
Base channels 128 128 128
Ch mult [1, 1, 2, 2] [1, 2, 2] [1, 2, 2]
Num res blocks 1 1 2
Codebook size 1024 1024 1024
Codebook dimension 64 64 64
Perceptual loss weight 0.1 0.1 0.1
Disc base features 32 32 32
Disc gradient penalty weight 108 108 108

Disc max hidden feature size 512 512 512
Disc mbstd group size 4 4 4
Disc mbstd num features 1 1 1
Disc loss weight 0.1 0.1 0.1
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Table E.2: Hyperparameters and training details for all VideoGPT and MaskGit models

DMC Atari
RLBench

(single task)
RLBench

(multi-task)

Sequence length 16 16 4 4
Frame skip 1 1 4 4
Latent size 8× 8 16× 16 16× 16 16× 16
Number of classes 16 8 n/a 34
Batch size 32 32 32 32
Learning rate 10−4 10−4 10−4 10−4

Learning rate schedule constant constant constant constant
Training steps 500k 500k 500k 500k
Adam (β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Hidden dim 256 512 256 512
Feedforward dim 1024 2048 1024 2048
Number of heads 8 8 8 8
Number of layers 8 8 8 8
Dropout 0 0 0 0
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E.3 Reinforcement Learning Hyperparameters
Table E.3: Hyperparameters and training details for DreamerV3

DMC Atari
RLBench

(single task)
RLBench

(multi-task)

General
Replay Capacity (FIFO) 106 106 106 106

Start learning (prefill) 0 0 0 0
Batch Size 16 16 16 16
Batch length 64 64 64 64
MLP Size 2× 512 4× 1024 4× 1024 4× 1024
Activation LayerNorm + swish

World Model
RSSM Size 512 4096 4096 4096
Number of Latents 32 32 32 32
Classes per Latent 32 32 32 32
KL Balancing 0.667 0.667 0.667 0.667

Actor Critic
Imagination Horizon 15 15 15 15
Discount 0.995 0.995 0.995 0.995
Return Lambda 0.95 0.95 0.95 0.95
Target Update Interval 50 50 50 50

All Optimizers
Gradient Clipping 100 100 100 100
Learning Rate 10−4 10−4 10−4 10−4

Adam epsilon 10−6 10−6 10−6 10−6

Plan2Explore
Ensemble size 10 10 10 10
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Table E.4: Hyperparameters and training details for DrQ

DMC

Actor Critic
MLP Size 256× 256
CNN Features 32× 64× 128× 256
CNN Filters 3× 3× 3× 3
CNN Strides 2× 2× 2× 2
Learning Rate 3e− 4
Discount 0.99
Number of Critics 2
τ 0.005
Init Temperature 0.1
Augmentations Random crop
Random Network Distillation
RND CNN Features 32× 64× 64
RND MLP Size 512× 512
RND learning rate 3e− 4
RND Exploration Weight 1
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E.4 Environment Training Curves

0 1M 2M

0.0
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Push button
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0.4
0.6

Reach target

0 1M 2M
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0.4
0.8
1.2

Take lid off saucepan

0 1M 2M

0.0
0.4
0.8
1.2

Take umbrella out of 
 umbrella stand

0 1M 2M

0.0
0.3
0.6
0.9

Toilet seat down

Task Oracle VIPER AMP

Figure E.1: Results across 6 Reinforcement Learning Benchmark tasks, with mean and standard
deviation computed across 3 seeds.
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Pong
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Task Oracle VIPER AMP

Figure E.2: Results across 7 Atari tasks. Scores computed using Human-Normalized Mean across 3
seeds.
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Figure E.3: Results across 15 DeepMind Control Suite tasks, with mean and standard deviation
computed across 3 seeds. AMP runs were stopped early due to poor performance.
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E.5 Training Environments

Figure E.4: A single autoregressive video model is trained on 30 tasks for the Franka Panda and 23
tasks for the ReThink Robotics Sawyer, using 16× 16 VQCodes and a context length of 4, with
frame skip 4.
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Figure E.5: A single task-conditioned autoregressive video model is trained on 15 DeepMind
Control Tasks, using 8× 8 VQCodes and a context length of 16.

Figure E.6: A single autoregressive video model is trained on 7 Atari tasks, using 16× 16 VQCodes
and a context length of 16.
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E.6 Visualizing Video Prediction Uncertainty
Video model uncertainty can be visualized by upsampling the conditional likelihoods over VQCodes.
Since VQCodes tend to model local features, this provides a useful tool for analyzing which regions
of the image the video model is uncertain about. We visualize video prediction uncertainty for three
environments below:
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Figure E.7: Uncertainty visualized for a reference trajectory (top) and a random trajectory (bottom).
Brighter values correspond to higher likelihoods. For the random trajectory, the video model assigns
lower likelihoods to regions of the image containing the ball. This is especially true for random
trajectories, where the video model, trained solely on expert trajectories, cannot accurately predict
what happens when the agent plays sub-optimally.
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Figure E.8: Uncertainty visualized for a random trajectory from the dmc cartpole balance task.
Brighter values correspond to higher likelihoods.
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Figure E.9: Uncertainty visualized for a reference trajectory (top) and a random trajectory (bottom).
Brighter values correspond to higher likelihoods. Notice the high uncertainty over the position
of objects on the table for the first frame. This corresponds to the unconditional likelihood (with
no context). Since the position of the saucepan is randomized for every episode, the video model
assigns some uncertainty to this initial configuration. For the random trajectory, there is high
uncertainty assigned to the position of the arm since the video model has not seen trajectories that
display poor behavior.
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E.7 VIPER Out-of-distribution Analysis
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Figure E.10: Predicted rVIPER on various RLBench tasks. We evalute 10 trajectories for each task.
*Training data for the VIPER model.
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Appendix For Chapter 7

F.1 Qualitative Examples
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Three cows graze together in a 
green pasture.

Three cows graze together in a green 
pasture, pointillism style.

A close up slow motion video of a butterfly 
drinking nectar out of a yellow flower

A close up slow motion video of a butterfly drinking 
nectar out of a yellow flower, anime style

STYLE

Figure F.1: Comparisons for style video edit prompts



APPENDIX F. APPENDIX FOR CHAPTER 7 195

Swans gliding over a lake.

Swans gliding over a lake near 
a coral reef.

A beautiful lotus in river water 
on a rainy day.

A beautiful lotus in river water on a rainy day 
with New York City in the background

BACKGROUND
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Figure F.2: Comparisons for background video edit prompts
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A beautiful lotus in river water on 
a rainy day.

A beautiful poppy flower in river water 
on a rainy day.

A duck swimming on water

A swan swimming on water

OBJECT

Figure F.3: Comparisons for object video edit prompts
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Rain falling on a stone pathway in 
super slow motion

Snow falling on a fantasy landscape in 
super slow motion, dramatic lightning

The sun setting with clouds moving 
around it

The moon setting with clouds moving 
around it, reflecting on a flooded road

MULTI-SPATIAL

Figure F.4: Comparisons for multi-spatial video edit prompts
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A baboon eating a fruit

A baboon drops a fruit onto the ground
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Riding a boat over the ocean

Huge waves crash while riding a 
boat over the ocean

MOTION

Figure F.5: Comparisons for motion video edit prompts
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A bird sitting on a rock in a river

A red cardinal takes flight off a rock
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A bright pink flower

Timelapse of an orange lily fully 
blooming

MULTI MOTION

Figure F.6: Comparisons for multi-motion video edit prompts
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F.2 Automatic Evaluation Results
We provide a more detailed comparison on different video editing methods using the VideoCLIP-
based Mgeo metric in Table F.2. The results confirm the superiority of MoCA to other methods for
all edit tasks. Additionally, we analyze the Spearman correlation [238] between automatic metrics
introduced in Section 7.5 and human judgements. The results in Table F.1 suggest the VideoCLIP
based Mgeo and Mdir metrics as the most reliable automatic metric in evaluating the performance of
video editing models.

Style BG Object Motion M-S M-M Total

ImageCLIP

Msim -0.095 -0.102 -0.042 0.174 -0.076 -0.025 -0.006
Mdir 0.238 0.290 0.161 0.035 0.219 0.141 0.150
Mgeo 0.240 0.288 0.156 0.047 0.209 0.137 0.152

VideoCLIP

Msim -0.080 -0.128 0.010 0.323 -0.080 0.006 0.036
Mdir 0.290 0.328 0.183 0.049 0.202 0.189 0.189
Mgeo 0.300 0.304 0.189 0.140 0.201 0.205 0.203

Table F.1: [238] correlation measuring the alignment between human judgements for editing
quality and various CLIP-based metrics. Among all six metrics in the table, Mgeo and Mdir scores
computed with a VideoCLIP model show the highest correlation with human ratings. Trends are
similar to classification results shown in Table 7.3, with higher correlation in spatial edits, and lower
for motion-based edits.

Method Style B-G Object Motion M-S M-M

MoCA 0.331 0.375 0.370 0.185 0.349 0.334
Drẽamix 0.2223 0.304 0.356 0.141 0.290 0.321
Gen-1 0.254 0.317 0.295 0.146 0.309 0.209
MasaCtrl 0.225 0.253 0.295 0.154 0.270 0.283
Tune-a-Video 0.223 0.261 0.346 0.164 0.303 0.273
TokenFlow 0.206 0.239 0.314 0.0963 0.301 0.226
VideoComposer 0.259 0.328 0.326 0.187 0.301 0.202

Table F.2: Mgeo metric computed for each model based on VideoCLIP features, averaged over
all edit examples per manipulation type. This table presents a more detailed split of results shown
in Table 7.4 by edit type.


	Contents
	List of Figures
	List of Tables
	Introduction
	Contribution

	VideoGPT: Video Generation Using VQ-VAE and Transformers
	Introduction
	Background
	VideoGPT
	Experiments
	Related Work
	Conclusion

	Temporally Consistent Transformers for Video Generation
	Introduction
	Preliminaries
	TECO
	Experiments
	Discussion
	Acknowledgements

	ElasticTok: Adaptive Tokenization for Image and Video
	Introduction
	Method
	Experiments
	Related Work
	Discussion and Conclusion

	World Model on Million-Length Video and Language With Blockwise RingAttention
	Introduction
	Method overview
	Stage I: Learning Long-Context Language Models
	Stage II: Extending to Long-Context Vision-Language
	Related Works
	Conclusion

	Video Prediction Models as Rewards for Reinforcement Learning
	Introduction
	Related Work
	Video Prediction Rewards
	Experiments
	Conclusion
	Acknowledgments

	Motion-Conditioned Image Animation for Video Editing
	Introduction
	Related Work
	Background
	MoCA
	Experiments
	Discussion

	Conclusion
	Bibliography
	Appendix For Chapter 2
	Architecture Details and Hyperparameters
	ViZDoom Samples

	Appendix For Chapter 3
	Sampling Process
	Samples
	Performance versus Horizon
	Performance versus Training Sequence Length
	Sampling Time
	Ablations
	Metrics During Training
	High Quality Spatio-Temporal Compression
	Trade-off Between Fidelity and Learning Long-Range Dependencies
	Full Experimental Results
	Scaling Results
	Related Work
	Dataset Details
	Hyperparameters

	Appendix For Chapter 4
	Model configuration
	Training Details
	Data curation details
	Reconstruction Examples by MSE

	Appendix For Chapter 5
	Further Details
	More Single-Needle Retrieval Results
	More Image Understanding Examples
	More Video Understanding Examples
	More Evaluations of Text and Vision-Text Models
	More Image Generation Examples
	More Video Generation Examples
	Training Hyperparameters

	Appendix For Chapter 6
	Bootstrap Your Own Latent Details
	Video Model Hyperparameters
	Reinforcement Learning Hyperparameters
	Environment Training Curves
	Training Environments
	Visualizing Video Prediction Uncertainty
	VIPER Out-of-distribution Analysis

	Appendix For Chapter 7
	Qualitative Examples
	Automatic Evaluation Results


