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Abstract

Advancements in Efficient Training Strategies for Modern Deep Learning: From Implicit Deep
Learning to Language Models and Beyond

by

Tanmay Gautam

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Somayeh Sojoudi, Chair

In the rapidly evolving landscape of machine learning, the surge in computing power and data has
propelled deep learning to the forefront of academic research. As the scale of models and datasets
continues to expand, an increasing emphasis is placed on algorithmic enhancements to tackle the
growing compute and memory requirements. Moreover, owing to its success across a wide range of
applications, the domain has seen a proliferation of diverse neural network architectures each with
their own unique training challenges. This thesis introduces efficient training methods for preva-
lent neural network architectures that leverage model structure for both resource and algorithmic
efficiency.

In the first part, we first present novel training algorithms with reduced computational and mem-
ory demands for implicit deep learning models and transformer-based language models. Specifi-
cally, we start by proposing an efficient sequential training method for implicit equilibrium models,
which eliminates the need to solve computationally expensive fixed-point equations and projection
steps within the existing training process. We then introduce variance-reduced zeroth-order meth-
ods to effectively fine-tune large language models using only memory-efficient inference passes.

In the second part, we shift our focus to exploring the application of differentiable optimization to
enhance training within meta-optimization and vector quantization. Specifically, for the former, we
propose a means to use structure presented by differentiable convex optimization to parameterize
novel first-order optimizers. For the latter, we introduce differentiable convex optimization as a
technique to improve backpropagation through vector quantization layers.

We hope that this work will offer fresh viewpoints to the research community and serve as a
foundation to further develop efficient training strategies for deep learning.
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Chapter 1

Introduction

The past decade has witnessed unprecedented advancements in the field of artificial intelligence
(AI) that have culminated in superhuman performance across a wide array of specialized tasks
within domains such as natural language processing and computer vision. The strides in AI have
been facilitated by a synergy of architectural innovation and computational improvements within
deep learning [1], [2].

Until recently, research efforts within deep learning were typically specialized, focusing on par-
ticular domains such as NLP or vision. In each application area, research aimed towards developing
tailored neural network architectures designed to address the specific challenges of the application.
For example, recurrent neural networks (RNNs) and their variants were used to process sequential
data typically seen within NLP. On the other hand, vision applications often employed Convolu-
tional Neural Networks due to their ability to efficiently handle visual data. The specialization was
seen as necessary, because different data modalities required tailored processing methodologies to
learn the underlying patterns. This spurred on a proliferation of architecture types across domains.

Recently, the introduction of transformers and implicit deep learning have brought about a
departure from developing domain-specific architectures. Transformer models are built upon the
notion of attention: a mechanism that accommodates long-term dependencies within sequential
data, enables parallel processing and remains compatible with backpropagation. In particular,
transformer-based architectures are now ubiquitous in state-of-the-art models, setting performance
benchmarks across both NLP and vision tasks. Implicit deep learning moves away from the no-
tion of neural networks as a stack of explicit, feed-forward layers and represents them implicitly
through a set of conditions that the output should satisfy. This paradigm offers an expressive model
class with several instantiations including Neural Ordinary Differential Equations, differentiable
optimization and Deep Equilibrium models. Concretely, in [3], implicit models are shown to gen-
eralize most of the popular deep learning architectures with promising performance across a wide
array of illustrative applications.

The emergence of new, expressive deep learning architectures has emphasized the significance
of developing efficient optimization strategies to unlock their complete performance potential.
More concretely, developing optimization strategies tailored towards different architecture-types
is foundational to efficient model training that learns effectively from data. This underscores the
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need for continual refinement of training techniques together with architecture design to fully re-
alize the potential of deep learning technologies.

This thesis contributes to a broader effort of developing tailored training strategies to address
the unique needs of state-of-the-art deep learning architectures. In Part I, we begin by examining
the resource-intensive nature of existing training methods for implicit deep learning and trans-
former models, and propose novel algorithms to overcome the prohibitive compute and memory
demands. In Part II our focus changes to exploring how the particular implicit deep learning in-
stantiation of differentiable optimization can be leveraged as a technique to enhance the training
process within meta-optimization and vector quantization.

Part I: Efficient Training Strategies for Deep Neural Architectures

In this part, we draw attention to training challenges faced by prevalent architectural types and pro-
pose optimization algorithms designed to mitigate each of the specific challenges. Specifically, we
aim to overcome the prohibitive compute and memory requirements of existing training methods
for implicit deep learning and transformer-based language models.

In Chapter 2, we highlight the drawbacks of the existing training method for implicit models
characterized via fixed-point equations: an end-to-end optimization scheme that leverages compu-
tationally cumbersome implicit differentiation and projection steps. We propose a novel sequential,
blockwise training algorithm for upper triangular implicit deep models that mitigates the need for
implicit differentiation and projection steps.

In Chapter 3, we address the large memory requirements of first-order methods when fine-
tuning transformer-based language models (LMs). Based on the observation that Zeroth-Order
(ZO) methods estimate gradients using only memory-efficient inference passes, we couple ZO
methods with variance reduction techniques to enhance stability and convergence for inference-
based LM fine-tuning. Our experiments demonstrate consistently improved performance over ex-
isting ZO fine-tuning benchmarks whilst retaining a significantly lower memory-footprint com-
pared to first-order methods.

Part II: Enhancing Training with Differentiable Optimization

In Part II, we focus on the application of differentiable optimization as a means to improve the
learning process of meta-optimization and vector quantization.

In Chapter 4, we demonstrate how convex optimization can be used to generalize many existing
first-order update rules. We then propose a new data-driven approach for optimization algorithm
design that leverages differentiable convex optimization (DCO). Using this previous optimization
experience can be used to propose novel update rules that efficiently solve new optimization tasks
sampled from the same underlying problem class. We demonstrate on illustrative experiments that
DCO optimizers are able to outperform prevalent first-order methods that are used in practice.

In Chapter 5, we leverage DCO to mitigate the training challenges posed by vector quantiza-
tion (VQ) layers. VQ-embedded models have shown impressive results in a range of applications
including image and speech generation. VQ operates as a parametric K-means algorithm that quan-
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tizes inputs using a single codebook vector in the forward pass. While powerful, this technique
faces practical challenges including codebook collapse, non-differentiability and lossy compres-
sion. To mitigate the aforementioned issues, we propose Soft Convex Quantization (SCQ) as a
direct substitute for VQ. SCQ works like a differentiable convex optimization (DCO) layer: in the
forward pass, we solve for the optimal convex combination of codebook vectors that quantize the
inputs. In the backward pass, we leverage differentiability through the optimality conditions of
the forward solution. We then introduce a scalable relaxation of the SCQ optimization and demon-
strate its efficacy on the CIFAR-10 [4], GTSRB [5] and LSUN [6] datasets. We train powerful SCQ
autoencoder models that significantly outperform matched VQ-based architectures, observing an
order of magnitude better image reconstruction and codebook usage with comparable quantization
runtime.
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Chapter 2

Sequential Training for Implicit Deep
Models

2.1 Introduction
Over the past decades, the rise in computing power and available data has propelled deep learning
to the forefront of machine learning research [1]. Deep learning has also found many applications
in control and decision problems, including estimation for power systems, control of autonomous
vehicles, and reinforcement learning for systems with uncertainty [7]–[9]. Current deep learning
models are built upon the notion of hierarchical architectures, where input information is processed
recursively through several forward-propagating, differentiable parametric layers [1]. Canonical
examples of this type are standard feed-forward neural networks (FFNs) and convolutional neural
networks (CNNs) commonly used to perform image classification [10], [11].

Recent work has proposed a new perspective wherein deep learning models can be analyzed
based on implicit prediction rules [3]. This framework, termed “implicit deep learning,” is based
on a model consisting of a prediction equation and a fixed-point equilibrium equation in a state
vector x ∈ Rn:

ŷ(u) = Cx+Du, (prediction equation)
x = ϕ(Ax+Bu), (fixed-point equation)

where ϕ : Rn → Rn is a nonlinear activation map, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, and
D ∈ Rq×p are model parameters, and where u ∈ Rp and ŷ ∈ Rq are respectively the input
and output. The fixed-point equation can be readily interpreted as a discrete-time linear time-
invariant (LTI) system composed with the nonlinearity ϕ evaluated at the system’s equilibrium.
The prediction equation is equivalent to the standard output equation seen in LTI systems.

The significance of implicit deep learning lies in its representational power: [3] illustrates how
it encapsulates most of the current neural network architectures as special cases, including feed-
forward, convolutional, and residual networks. This framework can be regarded as a more general
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model that offers greater capacity to possibly model novel prediction rules for deep learning that
may not necessarily be tied to any notion of “network” or “layers” [3].

Previously, the training of implicit models has relied on an end-to-end optimization approach
via (stochastic) projected gradient methods, where the gradient is found by implicitly differenti-
ating through the fixed-point equation [3]. This end-to-end approach for dense implicit models
suffers from some notable drawbacks. First, computing the gradient at each training step is non-
trivial, as it requires solving a separate fixed-point equation in a matrix variable. The gradient step
must be followed by a computationally cumbersome projection of the matrix variable A to ensure
well-posedness [3]. Furthermore, optimizing over all model parameters with a global objective
obscures the interpretability of the model, as we cannot gain insight into the contribution of each
subset of the parameters. Finally, it is known from conventional deep learning that end-to-end
optimization landscapes are highly chaotic when training large models [12].

Contributions
In this chapter, we focus on the efficient training of implicit models with a strictly upper block
triangular structure. We first motivate imposing this structure by relating strictly upper block tri-
angular implicit models to generalized dense block modules that constitute Dense Convolutional
Networks (DenseNets) and in turn highlight some of the strengths of implicit models with the
aforementioned structure via the advantages of DenseNets. Subsequently, we propose a novel se-
quential, greedy, blockwise training algorithm for implicit deep models with the assumed structure.
Unlike end-to-end training, the approach is interpretable and does not rely on projection steps or
implicit differentiation. We posit that this decomposition into blockwise training alleviates the
chaotic optimization landscapes that arise when performing end-to-end training on large implicit
models. We experimentally show that our sequential approach outperforms end-to-end training,
which aligns with prior findings in the conventional deep learning literature claiming that end-to-
end optimization is susceptible to poor local solutions. Finally, we theoretically prove that, for
ReLU implicit models, the training for more general, non-strictly upper triangular models (with
self-loops between feature blocks) is equivalent to the special case of strictly upper block triangular
training, a result novel to the literature.

Related Works
Implicit Deep Learning Implicit deep learning is largely inspired by the concurrent works [3],
[13]. In [3], implicit models are shown to generalize most of the popular deep learning archi-
tectures, sufficient conditions are proven for the uniqueness of their predictions, and methods to
assess their robustness are proposed. The paper [13] shows that implicit models are equivalent to
infinite-depth feed-forward networks, and that they provide memory-efficient state-of-the-art per-
formance for modeling sequential data. In [14], an alternative instantiation of an implicit layer is
introduced by means of an ordinary differential equation (ODE). In this framework, termed “neural
ODE,” the output of the implicit layer is the solution to the underyling ODE. This is shown to be
an expressive model class but requires solving an ordinary differential equation at test-time. Re-
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cent works have extended various aspects of the implicit deep learning framework, e.g., to model
graph-structured data [15], to multiscale modeling for image classification [16], and to estimate
their Lipschitz constants for the purposes of robustness analysis [17]. While implicit models have
been studied in a variety of contexts, their current training procedures rely upon end-to-end opti-
mization approaches.

Conventional Deep Learning Deep CNNs have recently garnered a great deal of acclaim due
to their success in the ImageNet competition [10], [18]–[20]. The emergence of deep architectures
has moved the spotlight on a new set of challenges, including the vanishing gradient problem and
parameter redundancy. In particular, architectures such as Residual Networks (ResNets) [18] and
Highway networks [19] tackle the vanishing gradient problem by directly passing signals from one
layer to the next using identity connections. This has been shown to improve both information
and gradient flow in said deep networks. Moreover, techniques such as Stochastic Depth used in
ResNets, where layers are randomly dropped during training, have also demonstrated that deep ar-
chitectures are often plagued by parameter redundancy when having many layers [21]. In [20], the
authors introduce the Dense Convolutional Network (DenseNet) for image classification, which
extends the notion of skip connections used in ResNets and Highway networks such that all layers
are connected directly with their subsequent layers. This network is composed of multiple dense
block modules wherein all convolutional layers are linked in a forward-propagating manner. As a
maximal amount of information is shared between layers in a dense block, DenseNets are known
to have improved gradient propagation and parameter efficiency [20]. While [3] shows how CNNs
and ResNets can be viewed as special cases of implicit models, we show that strictly upper trian-
gular models can be viewed as a generalization of a dense block seen in DenseNets. This enables
us to discuss the benefits of implicit models in terms of the benefits of DenseNets.

Layer-Wise Optimization The sequential, blockwise training approach proposed in this chapter
can be seen as a generalization of layer-wise optimization for traditional neural networks. The
paper [22] introduces greedy layer-wise training for deep neural networks, wherein the parameters
are optimized per-layer in a sequential manner to pre-train an initialization of the network, which is
then used in end-to-end optimization. This approach is motivated by the hypothesis that end-to-end
gradient-based optimization is susceptible to becoming stuck in poor local solutions, whereas an
individual layer’s sub-optimization has a more benign landscape, which is justified by the authors
experimentally. The work [23] extends the greedy layer-wise approach to convolutional neural
networks, and finds that the learned model outperforms the state-of-the-art end-to-end training
methods on the large-scale CIFAR-10 and ImageNet datasets.

Notations
Throughout this chapter, we define an implicit model using parameters A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rq×n, and D ∈ Rq×p with nonlinear activation map ϕ : Rn → Rn. The element-wise absolute
value of A is denoted by |A|. The Perron-Frobenius eigenvalue of |A|, i.e., the real eigenvalue
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larger than the modulus of all other eigenvalues, is denoted by λPF(|A|). The input matrix with m
input vectors u ∈ Rp is represented by U ∈ Rp×m, and similarly the target matrix with m output
vectors y ∈ Rq is represented by Y ∈ Rq×m. The notation ⌊α⌋ represents the floor operator on
scalar α. For a vector x ∈ Rn and natural number p, ∥x∥p denotes the ℓp-norm of x, whereas
for a matrix M ∈ Rm×n, ∥M∥F denotes the Frobenius norm and ∥M∥p represents the ℓp-induced
operator norm; ∥M∥p = supx∈Rn\{0}

∥Mx∥p
∥x∥p . The rectified linear unit is ReLU(·) = max{0, ·},

where, for the matrix M, the maximum is taken element-wise. If M ∈ Rn×n is square, then we
write diag(M) to mean the n-vector (M11,M22, . . . ,Mnn). Finally, U(a, b) denotes the uniform
probability distribution with support [a, b].

2.2 Background

Well-posedness of Implicit Models
The state x, characterized by the fixed-point equation, can be thought to represent the latent features
extracted from the input [3]. In general, however, the fixed-point equation may not necessarily be
well-posed in x—the activation map ϕ and matrix A must adhere to certain conditions to ensure
the existence of a unique solution x to the fixed-point equation. Unique solutions to the fixed-
point equation are desirable as this transfers to unique input-to-prediction mappings of the implicit
model. The recent work [3] has introduced rigorous and numerically tractable conditions under
which the fixed-point equation has a unique solution, which we recall in this section. In subse-
quent sections, we will show how such conditions can be incorporated into the training problem as
constraints to guarantee the well-posedness of the learned model. We begin with a few definitions.

Definition 1. A matrix A ∈ Rn×n is said to be well-posed with respect to ϕ if, for all b ∈ Rn, the
equation

x = ϕ(Ax+ b) (2.1)

has a unique solution x ∈ Rn.

We write A ∈WP(ϕ) to mean that A is well-posed with respect to ϕ.

Definition 2. A map ϕ : Rn → Rn is called component-wise non-expansive (CONE) if |ϕi(x) −
ϕi(y)| ≤ |xi − yi| for all x, y ∈ Rn and all i ∈ {1, 2, . . . , n}.

Note that ReLU, leaky ReLU, sigmoid, and tanh activation maps are all CONE maps. CONE
maps allow for a simple sufficient condition to ensure that the fixed-point equation is well-posed:

Jibberish 1 (Well-Posedness of CONE Maps [3]). Assume that ϕ is a CONE map. If λPF(|A|) <
1, then A ∈ WP(ϕ) and the fixed-point iteration x(0) = 0, x(t + 1) = ϕ(Ax(t) + b), t ∈
{0, 1, 2, . . . }, converges to the unique solution of (2.1).

We remark that the set APF := {A ∈ Rn×n : λPF(|A|) < 1} is not convex, but the inequality
λPF(|A|) < ∥A∥∞ implies that A∞ := {A ∈ Rn×n : ∥A∥∞ < 1} is a convex subset of APF,
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which is useful for efficiently treating the constraint A ∈ WP(ϕ) in the training problem. This
work focuses on models where ϕ satisfies the CONE property.

Training Problem
We now turn our attention to formalizing the training problem for the implicit model. Sup-
pose that we are given an input matrix U =

[
u1 · · · um

]
∈ Rp×m and a target matrix Y =[

y1 · · · ym
]
∈ Rq×m. The prediction and fixed-point equation of the implicit model can then be

written in matrix form as

Ŷ(U) = CX+DU, (2.2)
X = ϕ(AX+BU), (2.3)

where Ŷ(U) =
[
ŷ(u1) · · · ŷ(um)

]
∈ Rq×m. The training problem is then formulated as

min
A,B,C,D,X

L(Y,CX+DU) + P(A,B,C,D)

st X = ϕ(AX+BU), A ∈WP(ϕ),
(2.4)

where the loss function L is convex in its second argument, and P is an optional convex penalty
function. As shown in Theorem 1, when ϕ is a CONE map, it suffices to replace the constraint
A ∈ WP(ϕ) by the nonconvex constraint λPF(|A|) < 1. For efficient treatment, the nonconvex
constraint can be relaxed to the convex constraint ∥A∥∞ < 1.

2.3 Strictly Block Triangular Implicit Models
We begin by partitioning an implicit model of order n into L > 1 uniform parts as n = n1+· · ·+nL,
where ni = ⌊nL⌋ for i ∈ {1, 2, . . . , L−1} and nL = n−

∑L−1
i=1 ni. We may write the model matrices

in terms of blocks associated with each part of the partition:

A =


AL,L AL,L−1 · · · AL,1

AL−1,L AL−1,L−1 · · · AL−1,1

...
...

. . .
...

A1,L A1,L−1 · · · A1,1

 , B =


BL

BL−1

...
B1

 ,

C = [CL CL−1 · · · C1] , X =


XL

XL−1

...
X1

 ,

where Ai,j ∈ Rni×nj , Bi ∈ Rni×p, Ci ∈ Rq×ni , and Xi ∈ Rni×m for all i, j ∈ {1, 2, . . . , L}. Next,
we impose the following assumptions on our model.

Assumption 1. The activation map ϕ is a CONE map.
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As mentioned earlier, most common activation maps used in deep learning, e.g., ReLU, are
CONE maps, and therefore Assumption 1 is not restrictive. Moreover, this assumption allows the
use of convex constraints to enforce the desirable well-posedness guarantee upon the model.

Assumption 2. The prediction equation has no feed-through from the input; D = 0.

Since feed-forward neural networks with non-polynomial activation maps, e.g., ReLU maps,
are universal function approximators [24], and implicit models recover feed-forward neural net-
works with D = 0 and appropriate choices of A,B,C, it holds that the implicit model remains a
universal function approximator under Assumption 2.

Assumption 3. The matrix A is strictly upper block triangular, i.e., Ai,j = 0 for all pairs (i, j)
with i ≤ j.

Assumption 3 is not restrictive in practice, since an implicit model with such a matrix A is
able to represent standard network architectures used today, e.g., feed-forward, convolutional, and
residual networks [3]. In fact, feed-forward networks correspond to setting Ai,j = 0 for all pairs
(i, j) such that j ̸= i + 1, and therefore it is easily shown that our strictly upper block triangular
model matrix allows for precisely (L−2)n1nL+

1
2
(L−2)(L−3)n2

1 more nonzero parameters than
standard feed-forward models of the same model order n. Furthermore, Assumption 3 is justified
from a computational standpoint, since the condition A ∈ WP(ϕ) is trivially satisfied as ϕ is a
CONE map, allowing us to remove this constraint from the training problem.

Relation to DenseNets
While [3] has already established how implicit models can encapsulate a significant subset of
conventional architectures, we now highlight the relationship between implicit models with strictly
upper block triangular structure and dense block modules that constitute DenseNets as conceived
in [20].

Figure 2.1 illustrates a computational graph detailing how input information is propagated
through an implicit model under Assumptions 1–3. Note that this computational graph is char-
acterized by a forward-propagating structure with an exhaustive set of L(L + 1)/2 generalized,
weighted skip connections linking each pair of feature blocks including the input. Differences to
dense blocks, as proposed in [20], include that implicit models with said structure allow for ar-
bitrary linear transformations (not only convolutions) between feature blocks as well as weighted
skip connections throughout the model, including from the input to every feature block. This shows
that strictly upper block triangular implicit models are a generalization of dense blocks.

As a result of this characterization, implicit models with an upper block triangular structure di-
rectly inherit many of the benefits observed in DenseNets. Due to the exhaustive set of connections
between each feature block, the considered implicit models have maximal information flow. As
a consequence, such models are also bound to have a greater parameter efficiency. Finally, since
we connect each feature block directly to the output, the training procedure for such models will
benefit from improved gradient propagation.
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Figure 2.1: Computational graph for an implicit model with a strictly upper block triangular A
matrix.

2.4 Sequential Blockwise Training
Our approach is a greedy, sequential blockwise training method for strictly upper block triangular
implicit models. The training problem under Assumptions 1-3 reduces to

min
{Ai,j}1≤j<i≤L,

{Bi,Ci,Xi}Li=1

L(Y,
∑L

j=1CjXj)

st X1 = ϕ(B1U),

Xi = ϕ(
∑i−1

j=1 Ai,jXj +BiU),

i ∈ {2, . . . , L}.

(2.5)

With the partition of n into L blocks, we may iteratively increment the model order of the
implicit model by ni and train each added block individually, while holding previously optimized
fixed-point parameters constant and re-optimizing the auxiliary parameters. We formalize this
approach in Algorithm 1. Due to the strictly upper block triangular structure assumed upon A,
the first subproblem (2.6) only optimizes over subblocks of the B, C, and X matrices. The ith

subproblem optimizes over {Ai,j}i−1
j=1, Bi, Xi and auxiliary blocks {Cj}ij=1. Here feature blocks

{Xj}i−1
j=1 are fixed and obtained as optimizers of the previous subproblems. The sequence of opti-

mizations in Algorithm 1 occurs only once, so that the obtained subblocks can be concatenated to
form the model matrices A, B and C. Figure 2.2 depicts a visual representation of the optimization
sequence.

Remark 1. Our proposed approach can be applied to both regression and classification tasks. For
regression, the convex loss can be chosen to be the mean-squared error (MSE) loss

L(Y, Ŷ) =
1

2
∥Y − Ŷ∥2F , (2.8)
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Algorithm 1 Sequential Greedy Training for Implicit Models

Input: Input U ∈ Rp×m, target Y ∈ Rq×m .
Parameters: Model order n > 1, partition size L > 1.
Design choices: Loss L, activation map ϕ.
Return: A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n.

begin training
1. Partition n = n1+ · · ·+nL with ni = ⌊nL⌋ for i ∈ {1, 2, . . . , L− 1} and nL = n−

∑L−1
i=1 ni.

2. Solve optimization
min

B1,C1,X1

L(Y,C1X1) st X1 = ϕ(B1U). (2.6)

for i ∈ {2, 3, . . . , L} do
3. Solve optimization

min
{Ai,j}i−1

j=1,Bi,

{Cj}ij=1,Xi

L(Y,
∑i

j=1CjXj)

st Xi = ϕ(
∑i−1

j=1 Ai,jXj +BiU).

(2.7)

end for
end training

while multi-class classification can be accommodated using a combination of the softmax and
negative cross-entropy loss:

L(Y, Ŷ) = log(1⊤ × exp(Ŷ))1− Tr(Y⊤Ŷ). (2.9)

Remark 2. Each subproblem can be solved using gradient-based local search heuristics imple-
mented with automatic differentiation software. Note that the ith subproblem can be decomposed
into a regression upon the target using both a feedforward component and direct linear (skip) con-
tributions from the previous feature blocks. As such, this sequential approach avoids the need for
implicit differentiation.

Remark 3. Even though our approach sets up a uniform partition of the model order n, this partition
can be chosen arbitrarily. The reason the algorithm is initialized with a uniform partition is that the
training complexity is equally distributed amongst all subproblems.

Remark 4. Inherent to our approach is the restriction of A as a strictly upper block triangular
matrix. This assumption alleviates the requirement to project A onto the well-posedness ball
at each iteration of the gradient-based optimization method. In particular, when considering the
convex constraint ∥A∥∞ < 1 sufficient for well-posedness, our method saves running a bisection
method with complexity O(n3) at each projected gradient update.
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Figure 2.2: Illustration of the proposed sequential blockwise training scheme. Blocks in (light)
green are optimized initially, whereas the blocks in (dark) blue are optimized towards the end of
the algorithm. The auxiliary C blocks are re-optimized at every iteration.

Remark 5. Our approach puts less strain on the memory requirements during the training procedure
as compared to the end-to-end optimization. For the former, the ith subproblem only requires
optimizing a subset of ni(

∑i−1
j=1 nj +m+ p) + q

∑i
j=1 nj parameters, whereas the latter optimizes

over n(n+m+p+q) parameters simultaneously. In the case where we have a large order model and
n≫ ni, each optimization of the blockwise method needs to update significantly fewer parameters
at a time than in the end-to-end method.

Remark 6. The greedy blockwise approach also lends itself to an increased interpretability of the
implicit model parameters. Within an end-to-end training approach of a dense implicit model, we
lack insight into how the parameters are working together to minimize the loss. Our approach
directly supervises the training for each subblock of parameters. In the first optimization, blocks
B1, C1, and X1 attempt to directly regress upon the target. For the ith optimization, the additional
fixed-point parameters {Ai,j}i−1

j=1, Bi, and Xi attempt to improve the regression by offering greater
modeling capacity while auxiliary parameters {Cj}ij=1 re-weight the contribution of each feature
block {Xj}ij=1.

Alternating Minimization for Implicit Models
While local search presents a valid means to solve the subproblems of Algorithm 1, we also propose
an efficient alternating minimization heuristic for models trained under the squared Euclidean loss.

Assumption 4. The training problem uses the squared Euclidean loss (2.8).

When considering the training problem of implicit models with Euclidean loss, we can formu-
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late the ith subproblem in Algorithm 1 as follows:

min
{Ai,j}i−1

j=1,Bi,

{Cj}ij=1,Xi

∥Y −
∑i

j=1CjXj∥2F

st Xi = ϕ(
∑i−1

j=1Ai,jXj +BiU).

(2.10)

Rather than using a local search method to solve (2.10), we can leverage an alternating minimiza-
tion heuristic. This subroutine is formalized in Algorithm 2. It decomposes each subproblem
into alternating between solving a least squares problem and a single hidden-layer neural network
training problem, each with global optimality guarantees. Each least squares problem (3.14) can be
solved to global optimality with a computational complexity of O

(
(
∑i

j=1 nj)
3
)

, while there exist
guarantees for solving the shallow training problem to (near) global optimality via local search
heuristics [25], [26].

Extension to Non-Strict Upper Triangular ReLU Models
In this section, we relax Assumption 3 to allow for A to be upper triangular, i.e., we now assume
that Ai,j = 0 for all pairs (i, j) with i < j and Ai,i is upper triangular for all i. This new model
structure allows for self-loops at all of the feature blocks Xi (i.e., self-loops at the circular nodes
in Figure 2.1). In this case, the ith subproblem (2.7) in the blockwise sequential approach becomes

min
{Ai,j}ij=1,Bi,

{Cj}ij=1,Xi

L(Y,
∑i

j=1 CjXj)

st Xi = ϕ(
∑i

j=1Ai,jXj +BiU),

−1 < diag(Ai,i) < 1,
(Ai,i)kl = 0 for all k > l,

(2.13)

for i ∈ {1, 2, . . . , L}, where the constraints −1 < diag(Ai,i) < 1 are linear constraints ensuring
that the triangular matrix A is well-posed with respect to ϕ, as guaranteed by Theorem 1. The
difficulty in the new problem (2.13) is the fact that the constraint on the variable Xi is now an
implicit equality constraint. In general, this requires the use of implicit differentiation at each step
of a gradient-based optimization algorithm, making each of the subproblems nontrivial to solve,
and eliminating the immediate applicability of the alternating subroutine of Algorithm 2. Despite
this challenge, we prove in Theorem 2 that for ReLU models, the feasible set of (2.13) is equiva-
lently expressed in terms of an explicit equality constraint, making the ith subproblem equivalent
to a re-weighted subproblem under our original strictly upper block triangular assumption. For the
sake of exposition, we assume that nj = 1. We generalize the result to arbitrary nj in Section 2.6.

Jibberish 2. Assume that ϕ = ReLU and nj = 1 for all j ∈ {1, 2, . . . , L}, and let Xi ∈ R1×m.
Then, there exist {Ai,j}ij=1,Bi, {Cj}ij=1 that together with Xi are feasible for (2.13) if and only

if there exist γ1, . . . , γi−1, λ1, . . . , λp ∈ R such that Xi = ReLU
(∑i−1

j=1 γjXj +
∑p

k=1 λkUk

)
,

where Uk is the kth row of U.
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Algorithm 2 Alternating Minimization Subroutine

Input: Features {Xj}i−1
j=1 from first i− 1 subproblems.

Parameters: Number of alternating iterations T .
Return: {Ai,j}i−1

j=1, Bi, Xi, and {Cj}ij=1.

begin subroutine
1. Initialize Xi.
for t ∈ {1, 2, . . . , T} do

2. Solve least squares optimization

min
{Cj}ij=1

∥Y −
i∑

j=1

CjXj∥2F . (2.11)

3. Solve single hidden-layer ReLU training problem

min
Ãi,Xi

∥Ỹ −CiXi∥2F

st Xi = ϕ(ÃiŨi),
(2.12)

with Ỹ = Y −
∑i−1

j=1CjXj ,

Ãi =
[
Ai,i−1 · · · Ai,1 Bi

]
,

and
Ũi =

[
X⊤

i−1 · · · X⊤
1 U⊤]⊤ .

end for
end subroutine

Proof. Notice that, since nj = 1 for all j, every block of A is a scalar, so we write Ai,j = aij .
Similarly, denote the kth element of the row vector Bi by bik.

Suppose that {aij}ij=1, Bi, and {Cj}ij=1, together with Xi, are feasible for (2.13). Then −1 <
aii < 1 and

Xi = ReLU

( i∑
j=1

aijXj +

p∑
k=1

bikUk

)
.
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Let l ∈ {1, 2, . . . ,m}. If Xil ̸= 0, then we have that

0 < Xil = ReLU

( i∑
j=1

aijXjl +

p∑
k=1

bikUkl

)

=
i∑

j=1

aijXjl +

p∑
k=1

bikUkl.

Hence, Xil =
∑i−1

j=1
aij

1−aii
Xjl +

∑p
k=1

1
1−aii

bikUkl = ReLU
(∑i−1

j=1
aij

1−aii
Xjl +

∑p
k=1

1
1−aii

bikUkl

)
.

On the other hand, if Xil = 0, then
∑i

j=1 aijXjl+
∑p

k=1 bikUkl =
∑i−1

j=1 aijXjl+
∑p

k=1 bikUkl ≤ 0,
so
∑i−1

j=1
aij

1−aii
Xjl +

∑p
k=1

bik
1−aii

Ukl ≤ 0, which implies that again

Xil = ReLU

(
i−1∑
j=1

aij
1− aii

Xjl +

p∑
k=1

bik
1− aii

Ukl

)
.

Thus, it holds that

Xi = ReLU

( i−1∑
j=1

aij
1− aii

Xj +

p∑
k=1

bik
1− aii

Uk

)
,

which proves the forward direction with γj =
aij

1−aii
and λk =

bik
1−aii

.
Now, suppose there exist γ1, . . . , γi−1, λ1, . . . , λp ∈ R such that

Xi = ReLU

(
i−1∑
j=1

γjXj +

p∑
k=1

λkUk

)
.

Then, let ϵ > 0 and define {Ai,j}ij=1 ⊆ R,Bi ∈ R1×p by Ai,i = aii := 1− ϵ, Ai,j = (1−aii)γj for
all j ∈ {1, 2, . . . , i − 1}, and (Bi)k = (1 − aii)λk for all k ∈ {1, 2, . . . , p}. Let {Cj}ij=1 ⊆ Rq×1

be arbitrary. Then, by construction −1 < diag(Ai,i) = aii = 1 − ϵ < 1 and (Ai,i)kl = 0 for all
k > l. Reversing the steps of the forward direction proof also shows that our parameter choice
yields Xi = ReLU

(∑i
j=1Ai,jXj +BiU

)
. Thus, {Ai,j}ij=1,Bi, {Cj}ij=1, together with Xi, are

feasible for (2.13).

Theorem 2 shows that the implicit constraint in the non-strict training problem (2.13) may be
equivalently replaced by an explicit constraint, avoiding the need to use implicit differentiation in
solving the optimization for non-strict models.

2.5 Conclusion
In this chapter, we introduce a sequential, greedy algorithm for training triangular implicit deep
models in a blockwise fashion. We show how the corresponding subproblems can be decomposed
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into a subroutine that alternates between a least squares optimization and an easily solved single
hidden-layer neural network training problem. We theoretically prove that, for the more general
non-strictly triangular ReLU implicit models, the challenging implicit constraints can be equiv-
alently replaced by more tractable explicit constraints, allowing for our algorithm to be applied
to such models. Experiments on function interpolation, as well as MNIST and Fashion-MNIST
classification tasks, show that our algorithm learns models with superior performance, parame-
ter efficiency and training time as compared to end-to-end optimization of dense implicit models.
This makes the proposed sequential algorithm a promising new approach for training implicit deep
models.

2.6 Supplementary Information: Generalization of Theorem 2
Below, we generalize Theorem 2 to the case where the partition sizes nj may be larger than unity.
The result shows that, again, the implicit constraint on Xi may be replaced by equivalent explicit
ones.

Jibberish 3. Assume that ϕ = ReLU, and let Xi ∈ Rni×m. Then, there exists {Ai,j}ij=1,Bi, {Cj}ij=1

that together with Xi are feasible for (2.13) if and only if, for all k ∈ {1, 2, . . . , ni} and all l ∈
{1, 2, . . . ,m}, there exists γ(1)

k1 , . . . , γ
(1)
kn1
∈ R, . . . , γ(i−1)

k1 , . . . , γ
(i−1)
kni−1

∈ R, γ(i)
k(k+1), . . . , γ

(i)
kni
∈ R,

and λk1, . . . , λkp ∈ R such that

(Xi)kl = ReLU

( ni∑
r=k+1

γ
(i)
kr (Xi)rl

+
i−1∑
j=1

nj∑
r=1

γ
(j)
kr (Xj)rl +

p∑
r=1

λkr(U)rl

)
.

(2.14)

Proof. Suppose that {Ai,j}ij=1,Bi, {Cj}ij=1, together with Xi, are feasible for (2.13). Then −1 <
diag(Ai,i) < 1, (Ai,i)kl = 0 for all k > l, and

Xi = ReLU

( i∑
j=1

Ai,jXj +BiU

)
.
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Let k ∈ {1, 2, . . . , ni} and l ∈ {1, 2, . . . ,m}. If (Xi)kl ̸= 0, then we have that

0 < (Xi)kl

= ReLU

( i∑
j=1

nj∑
r=1

(Ai,j)kr(Xj)rl +

p∑
r=1

(Bi)kr(U)rl

)

=
i∑

j=1

nj∑
r=1

(Ai,j)kr(Xj)rl +

p∑
r=1

(Bi)kr(U)rl

=

ni∑
r=1

(Ai,i)kr(Xi)rl +
i−1∑
j=1

nj∑
r=1

(Ai,j)kr(Xj)rl

+

p∑
r=1

(Bi)kr(U)rl

=

ni∑
r=k

(Ai,i)kr(Xi)rl +
i−1∑
j=1

nj∑
r=1

(Ai,j)kr(Xj)rl

+

p∑
r=1

(Bi)kr(U)rl,

so

(Xi)kl =

ni∑
r=k+1

(Ai,i)kr
1− (Ai,i)kk

(Xi)rl

+
i−1∑
j=1

nj∑
r=1

(Ai,j)kr
1− (Ai,i)kk

(Xj)rl

+

p∑
r=1

(Bi)kr
1− (Ai,i)kk

(U)rl

= ReLU

( ni∑
r=k+1

(Ai,i)kr
1− (Ai,i)kk

(Xi)rl

+
i−1∑
j=1

nj∑
r=1

(Ai,j)kr
1− (Ai,i)kk

(Xj)rl

+

p∑
r=1

(Bi)kr
1− (Ai,i)kk

(U)rl

)
.
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On the other hand, if (Xi)kl = 0, then

0 ≥
i∑

j=1

nj∑
r=1

(Ai,j)kr(Xj)rl +

p∑
r=1

(Bi)kr(U)rl

=

ni∑
r=1

(Ai,i)kr(Xi)rl +
i−1∑
j=1

nj∑
r=1

(Ai,j)kr(Xj)rl

+

p∑
r=1

(Bi)kr(U)rl

=

ni∑
r=k+1

(Ai,i)kr(Xi)rl +
i−1∑
j=1

nj∑
r=1

(Ai,j)kr(Xj)rl

+

p∑
r=1

(Bi)kr(U)rl,

so

0 ≥
ni∑

r=k+1

(Ai,i)kr
1− (Ai,i)kk

(Xi)rl +
i−1∑
j=1

nj∑
r=1

(Ai,j)kr
1− (Ai,i)kk

(Xj)rl

+

p∑
r=1

(Bi)kr
1− (Ai,i)kk

(U)rl,

which implies that again

(Xi)kl = ReLU

( ni∑
r=k+1

(Ai,i)kr
1− (Ai,i)kk

(Xi)rl

+
i−1∑
j=1

nj∑
r=1

(Ai,j)kr
1− (Ai,i)kk

(Xj)rl

+

p∑
r=1

(Bi)kr
1− (Ai,i)kk

(U)rl

)
.

Thus, (2.14) holds with γ
(j)
kr =

(Ai,j)kr
1−(Ai,i)kk

and λkr =
(Bi)kr

1−(Ai,i)kk
, which proves the forward direction.

Now, suppose that, for all k ∈ {1, 2, . . . , ni} and all l ∈ {1, 2, . . . ,m}, there exists γ(1)
k1 , . . . , γ

(1)
kn1
∈

R, . . . , γ(i−1)
k1 , . . . , γ

(i−1)
kni−1

∈ R, γ(i)
k(k+1), . . . , γ

(i)
kni
∈ R, and λk1, . . . , λkp ∈ R such that (2.14)

holds. Then, let ϵ > 0 and define Ai,j ∈ Rni×nj for j ∈ {1, 2, . . . , i} and Bi ∈ Rni×p by
(Ai,i)kk = 1− ϵ for all k ∈ {1, 2, . . . , ni}, (Ai,i)kl = 0 for all k > l, (Ai,i)kr = (1− (Ai,i)kk)γ

(i)
kr

for all k < r, (Ai,j)kr = (1 − (Ai,i)kk)γ
(j)
kr for all k ∈ {1, 2, . . . , ni}, all r ∈ {1, 2, . . . , nj},
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and all j ∈ {1, 2, . . . , i − 1}, and (Bi) = (1 − (Ai,i)kk)λkr for all k ∈ {1, 2, . . . , ni} and all
r ∈ {1, 2, . . . , p}. Let {Cj}ij=1 ⊆ Rq×1 be arbitrary. Then, it is clear by construction that
−1 < diag(Ai,i) = (1 − ϵ)1ni

< 1 (where 1ni
is the ni-vector of all ones), and (Ai,i)kl = 0

for all k > l. Reversing the steps of the forward direction proof also shows that our choice of

parameters yields Xi = ReLU

(∑i
j=1Ai,jXj +BiU

)
, so {Ai,j}ij=1,Bi, {Cj}ij=1, together with

Xi, are feasible for (2.13).
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Chapter 3

Zeroth-Order Methods for Fine-tuning
Language Models

3.1 Introduction
In recent years, language models (LMs) have exhibited exceptional performance in a vast array
of domains within natural language processing (NLP) [27]–[29].This development has generated
immense excitement within the research community and has propelled the advancement of the
aforementioned models to the forefront of deep learning research.

Fine-tuning LMs has been the dominant strategy for adapting pre-trained models to specialized
downstream tasks [30]. Fine-tuning often relies on first-order methods, such as stochastic gradient
descent (SGD) [31] or Adam [32]. However, as LMs are scaled up, backpropagation [33] becomes
prohibitive in terms of memory requirements. More concretely, [34] show that fine-tuning an OPT-
13B model with full-parameter or parameter efficient fine-tuning (PEFT) using Adam requires 12×
and 6×more memory than inference, respectively. This is due to the need to cache activations dur-
ing the forward pass as well as gradients and optimizer states during the backward pass. This has
given rise to memory-efficient inference-based adaptation methods, including in-context learning
(ICL) and zeroth-order (ZO) optimization.

While ZO methods have been studied for decades [35], [36], it is only recently that these have
been applied to fine-tune LMs [34]. In [34], authors propose the Memory-Efficient Zeroth-Order
Optimizer (MeZO) and demonstrate its superior performance against ICL with a memory footprint
equivalent to that of inference. By virtue of estimating gradients through loss computations, ZO
methods are compatible with settings where gradients are non-accessible or infeasible to compute,
e.g. when considering non-differentiable objectives or black-box access of LMs.

However, ZO methods still face challenges in large-scale settings. According to [34], MeZO
requires a high number of iterations to achieve a good fine-tuning performance and works only
in settings where the optimization trajectory is sufficiently well-behaved, i.e. when fine-tuning is
coupled with appropriately crafted task prompts. As such, we revisit ZO optimization under the
standard (non-prompted) fine-tuning setting. Through empirical studies, we probed further and
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identified that the method also contends with i) instability for smaller batch sizes, and ii) a notable
convergence gap to first-order (FO) fine-tuning methods in non-prompted settings (see Figures
3.1a, 3.1b, 3.1c).

In this chapter, we demonstrate that variance-reduction enhances the stability and convergence
properties of ZO methods in the large-scale LM fine-tuning setting. Based on our observation
that ZO methods benefit from improved stability with larger batch sizes, we propose the Mem-
ory Efficient Zeroth-Order Stochastic Variance-Reduced Gradient (MeZO-SVRG) method: a ZO
algorithm that combines fullbatch and minibatch information to yield asymptotically unbiased,
low-variance gradient estimators. Our specific contributions are enumerated below.

1. We perform empirical studies across a range of problem scales to investigate the potential
limitations of MeZO. We identified its susceptibility to unstable behavior for smaller batch
sizes and convergence issues in spurious optimization landscapes as improvement avenues.

2. We propose MeZO-SVRG: an efficient variant of the ZO-SVRG method that uses in-place
operations to achieve a minimal memory footprint and leverages gradient estimators com-
puted with single perturbation vectors to exploit data parallelism for speed.

3. We fine-tune masked and autoregressive LMs (model scales up to 7B) on GLUE [37] and
SuperGLUE [38] tasks. MeZO-SVRG achieves consistent performance improvements with
up to 20% increase in test accuracies over MeZO across all models and tasks. MeZO-SVRG
achieves superior performance to MeZO in both full- and partial-parameter fine-tuning, in
both full (FP32) and half (BF16) precision and under standard non-prompt settings.

4. MeZO-SVRG stands out by consistently surpassing MeZO’s test accuracy in only half as
many GPU-hours.

5. We show that MeZO-SVRG significantly reduces the required memory footprint compared
to first-order methods, i.e. by at least 2× for considered autoregressive models. Furthermore,
our experiments highlight that MeZO-SVRG’s memory savings progressively improve com-
pared to SGD with larger batch sizes.

6. We establish convergence guarantees for MeZO-SVRG when equipped with gradient esti-
mators that are computed using single perturbation vectors.

3.2 Background

Zeroth-Order Gradient Estimators
Consider solving the unconstrained optimization

min
θ∈Rd

f(θ) :=
1

n

n∑
i=1

fi(θ), (3.1)
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Figure 3.1: (a) Shows that MeZO [34] is unable to attain the optimal value when solving least-
squares (LS) problems unlike our proposed MeZO-SVRG. In (b) and (c), MeZO is used for MNIST
[39] classification and fine-tuning RoBERTa-large on SST-2 [40], respectively, with varying batch
sizes. These illustrate MeZO’s instability w.r.t. smaller batch sizes.

where f : Rd → R is a non-convex objective. Note that (3.1) is akin to the standard empirical risk
minimization framework, where each fi is the objective evaluated for one of n training samples.
For an iterative ZO algorithm, we need to find a means to approximate the gradient. We can define
the following stochastic perturbation simultaneous approximation (SPSA) gradient estimator [35]:

∇̂fi(θ) :=
fi(θ + µzi)− fi(θ − µzi)

2µ
zi for i ∈ [n], (3.2)

where ∇̂ denotes a gradient estimator, zi ∈ Rd is a random vector sampled from a standard normal
distribution, and µ > 0 is a perturbation scalar. The extension p-SPSA computes the average of
p distinct SPSA estimates. Throughout this work, we consider the default setting of p = 1 as we
didn’t observe empirical benefits of setting p > 1. The SPSA gradient estimate is an asymptot-
ically unbiased estimator of the true gradient as µ → 0 when each component in zi is mutually
independent and zero-mean [35].

Now suppose we have a minibatch I ⊂ [n] of size b. This allows us to define the following:

∇̂fI(θ) :=
1

b

∑
i∈I

∇̂fi(θ), (3.3)

and by extension,

∇̂f(θ) := ∇̂f[n](θ). (3.4)

Observe that the gradient estimator in (3.3) requires 2b function queries and sampling b random
vectors. In practice, there are two strategies to compute estimators (3.3) and (3.4): accumulate the
minibatch estimator in-place by sequentially computing each samplewise estimator, or parallelize
the operation by computing the samplewise estimators simultaneously. The trade-off between
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the two strategies is that the former has a minimal memory footprint (scales with dimension of
problem) but takes longer, while the latter effectively parallelizes the operation but has to store b
vectors.

Thus, we define another set of ZO gradient estimators that accommodate data parallelism: we
perturb each samplewise SPSA estimator in the same direction z ∈ Rd. For minibatch I ⊂ [n] of
size b we can construct

∇̄fI(θ) :=
1
b

∑
i∈I [fi(θ + µz)− fi(θ − µz)]

2µ
z, (3.5)

and

∇̄f(θ) := ∇̄f[n](θ). (3.6)

From an implementation standpoint, estimators (3.5) and (3.6) can exploit data parallelism
across the batch I and benefit from a minimal required memory footprint.

Memory-efficient ZO-SGD (MeZO)
In [34], the authors propose a memory-efficient ZO-SGD optimizer (MeZO) to fine-tune LMs.
MeZO is a ZO-SGD algorithm that estimates gradients based on the two-point SPSA estimator
introduced in (3.5).

Definition 3. (ZO-SGD) Consider solving optimization (3.1). ZO-SGD is an iterative ZO opti-
mizer characterized with update rule

θ(t+1) := θ(t) − η∇̄fI(θ(t)),

for learning rate η > 0, and SPSA estimator ∇̄fI(θ(t)) over minibatch I ∈ [n].

Implementing a vanilla ZO-SGD algorithm requires twice the memory footprint of inference
due to the need to store the perturbation vector z ∈ Rd. In [34], an in-place implementation of
the algorithm is proposed, where the requirement of storing a full set of perturbation scalars is
mitigated by merely storing a single random seed and regenerating the perturbation vector when
required. This brings the memory cost of MeZO down to that of inference (see Section 3.12 for
more details on the implementation).

ZO-SVRG
The Zeroth-Order Stochastic Variance Reduced Gradient (ZO-SVRG) [41] method periodically
combines a fullbatch gradient estimator with the minibatch estimator to mitigate the stochasticity
of the latter. This variance reduction helps achieve a faster convergence rate compared to ZO-SGD
[41]. While the full algorithm is presented in Section 3.10, the update rule is:

θ(t+1) ← θ(t) − η[∇̂fIt(θ(t))− ∇̂fIt(θ̄) + ∇̂f(θ̄)] (3.7)
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where η > 0 is the learning rate, It is a minibatch sampled at iteration t, θ(t) is the parameter
state at iteration t, and θ̄ is the last parameter state at which the fullbatch gradient estimator was
computed. Throughout this work, we let q ∈ N denote the regularity of fullbatch SPSA computa-
tions, i.e. every q steps the fullbatch SPSA estimator is computed.

3.3 Our proposed method: MeZO-SVRG
In this section, we describe the proposed MeZO-SVRG method. We first motivate our method by
discussing the observed limitations of MeZO and outline practical implementation concerns when
using ZO-SVRG [41] to mitigate these. We then introduce MeZO-SVRG as a variant of ZO-SVRG
that minimizes memory usage with in-place operations and accommodates data parallelism in its
gradient estimators.

MeZO Limitations
In [34], authors mention that MeZO requires a suitable task prompt to perform well; under this
setting the optimization trajectory is more well-behaved. This suggests that the applicability of
MeZO is restricted to settings where the optimization landscape is sufficiently well-behaved and
cannot be extended to more complex tasks such as pre-training. Moreover, the careful design of
prompts for real-world fine-tuning tasks also demands additional effort and may not always be
practical. This motivates developing a method that delivers robust performance independently of
any reliance on input prompts.

While MeZO has demonstrated promise in fine-tuning settings, our empirical findings suggest
that it still faces the following challenges: i) it is susceptible to instability when using smaller batch
sizes, and ii) a considerable performance gap with respect to first-order (FO) fine-tuning exists in
the non-prompted setting. We illustrate these issues in Figures 3.1a, 3.1b and 3.1c. The details
of the experiments are provided in Appendix 3.9. These observations motivate using variance-
reduction techniques that leverage larger batch information to improve stability and convergence
of ZO methods in the large-scale problem settings.

ZO-SVRG Implementation Concerns
Memory Footprint. Recalling θ ∈ Rd, the ZO-SVRG method has a minimum memory require-
ment of storing d values. A naive implementation of ZO-SVRG presented in Algorithm 4 (see
Appendix 3.10) would require an additional 2d of memory space for storing the fullbatch gradient
estimator and parameter state θ̄ used in (3.7). Moreover, computing and storing ∇̂fIt(θ(t)) and
∇̂fIt(θ̄) also accrues an additional d values of memory each. Thus, a naive implementation of
Algorithm 4 would require a minimum memory budget equivalent to 5× the memory budget of
inference, which is prohibitive for sufficiently large d.

Iteration Speed Concerns. The original ZO-SVRG method is proposed with the inefficient
gradient estimators introduced in (3.3) and (3.4). In both, SPSA estimators are computed for
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individual samples and averaged over the batch. Consider computing (3.3) with batch size b. If we
want to fully parallelize operations, we require computing and storing b many ∇̂fi(u) estimators.
However, this increases the memory footprint. To save on memory usage, in-place operations can
be used. However, this has the effect of drastically reducing the computation speed as we need to
sequentially compute each of the b estimators in (3.3).

MeZO-SVRG
We propose MeZO-SVRG: a variant of ZO-SVRG that improves iteration speed by using esti-
mators (3.5), (3.6) and reduces the memory footprint with in-place operations. The method is
summarized in Algorithm 3.

Efficient Gradient Estimation. We utilize the efficient gradient estimators introduced in (3.5)
and (3.6) that perturb the entire batch in a single direction. These estimators accommodate data
parallelism offered by modern ML frameworks. Furthermore, we can utilize the “resampling trick”
introduced in [34] to reduce the memory footprint when computing each of (3.5) and (3.6); each
estimator requires a memory footprint equivalent to the problem dimension d (see Appendix 3.12
for the memory-efficient SPSA computation procedure). Thus, using estimators (3.5) and (3.6),
eliminates the memory/speed trade-off plaguing the ZO-SVRG implementation and get the best of
both worlds.

Algorithm 3 Memory-Efficient ZO-SVRG (MeZO-SVRG)
Input: Total iterations T , learning rates η1, η2 > 0, minibatch size b, parameters θ0, iterations between full-batch
gradient q ∈ N
begin method
for t = 0, . . . , T do

if t mod q = 0 then
1. g← ∇̄f(θ(t))

2. θ̄ ← θ(t)

3. update: θ(t+1) ← θ(t) − η1g #in-place
else

4. Choose mini-batch It of size b
5. θ(t) ← θ(t) − η2∇̄fIt

(θ(t)) #in-place

6. θ(t) ← θ(t) + η2∇̄fIt
(θ̄) #in-place

7. update: θ(t+1) ← θ(t) − η2g #in-place
end if

end for
end

In-place Operations for Memory Efficiency. MeZO-SVRG leverages in-place operations to
minimize memory allocation for new variable definitions. Memory space is required for the current
state of the d parameters, a copy of the parameter state after each fullbatch SPSA computation as
well as the fullbatch SPSA estimator itself. This requires a minimum memory requirement of
storing 3d values. The minibatch updates can then be computed in-place in Lines 5, 6, and 7; thus,
MeZO-SVRG achieves a reduced minimum memory footprint to 3× that of inference.
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Figure 3.2: Performance of MeZO-SVRG, MeZO and FO-SGD when fine-tuning RoBERTa-large
on the SST-2 [40] dataset. The dashed line serves as a reference to the training loss/test accuracy
achieved by FO-SGD. (a) MeZO-SVRG is able to significantly reduce the convergence gap to
FO-SGD compared to MeZO. (b) MeZO-SVRG attains a considerably better test accuracy than
MeZO.

Remark 7. As MeZO-SVRG queries the loss function with an inference pass through a network, it
minimizes the storage of activations and intermediate variables. The memory footprint of MeZO-
SVRG thus mainly stems from retaining copies of the fullbatch gradient estimator and parameters.
Therefore, this method scales well with increasing batch sizes. Table 3.3 shows that for increas-
ing batch sizes of up to 64, MeZO-SVRG yields more than 70% memory savings compared to
first-order SGD (FO-SGD) on the RoBERTa-large [42] model. Similarly, MeZO-SVRG improves
significantly on memory usage compared to FO-SGD for large context lengths and a fixed batch
size (consistently 2× smaller footprint, see Figure 3.3).

Remark 8. By storing θ̄ in Line 2 (Algorithm 3), we can keep recomputing the fullbatch estimator
on demand without storing g. This would lower the memory footprint of MeZO-SVRG to 2× that
of inference. However, as computing the fullbatch estimator can slow down the iteration speed,
throughout our experiments we store it.

Remark 9. The memory analysis above does not account for any constant implementation overhead
or intermediate activation storage during a forward pass of a network. Thus, in practice the memory
usage ratio between MeZO and MeZO-SVRG is smaller (see Table 3.3).

Remark 10. In practice, fine-tuning datasets can be large enough that computing fullbatch SPSA
estimators is infeasible (e.g. more than 105 training examples). MeZO-SVRG can be adapted so
that the fullbatch estimator is approximated with a large batch estimator (e.g. with 512 or 1024
samples). In this case, the updates blend minibatch and large batch (as opposed to fullbatch)
information.
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Additional Learning Rate. In Algorithm 3, we also include two independent learning rates
η1 and η2 for the fullbatch and minibatch updates as shown in Lines 3 and Lines 5-7, respectively,
of Algorithm 3. This design choice is based on our empirical observation that fullbatch updates
are more accommodating of larger learning rates than minibatch steps. In our experiments we find
that setting η1 > η2 improves convergence speed (see Appendices 3.13, 3.14, 3.15).

DistilBert Full-Precision (FP32) RoBERTa-large Full-Precision (FP32)

Method MNLI QNLI SST-2 CoLA MNLI QNLI SST-2 CoLA

MeZO (Full FT) 36 (1.09) 50 (0.69) 52 (0.68) 63 (0.64) 43 (0.94) 59 (0.58) 56 (0.69) 68 (0.51)
MeZO-SVRG (Full FT) 46 (0.08) 68 (0.23) 72 (0.02) 68 (0.28) 49 (0.81) 80 (0.28) 84 (0.13) 79 (0.06)
FO-SGD (Full FT) 59 (0.01) 78 (0.04) 88 (0.01) 70 (0.02) 85 (0.03) 89 (0.01) 96 (0.11) 85 (0.01)

MeZO (Partial FT) 35 (1.09) 52 (0.69) 51 (0.70) 60 (0.64) 42 (1.07) 50 (0.69) 54 (0.68) 65 (0.59)
MeZO-SVRG (Partial FT) 47 (0.28) 65 (0.29) 74 (0.10) 67 (0.36) 43 (0.82) 67 (0.46) 72 (0.59) 79 (0.35)
FO-SGD (Partial FT) 48 (0.26) 59 (0.42) 85 (0.05) 66 (0.45) 52 (0.99) 72 (0.60) 89 (0.58) 84 (0.41)

Table 3.1: Experiments on DistilBert and RoBERTa-large. We show the test accuracies and fine-
tuning losses (in parentheses) of MeZO-SVRG and MeZO for both full/partial-parameter FT. We
also provide results for FO-SGD as an upper-bound benchmark on performance. MeZO-SVRG
consistently outperforms MeZO and significantly closes the gap to FO-SGD. Detailed results are
given in Tables 3.12 and 3.14.

GPT2 Full-Precision (FP32) OPT-2.7B Full-Precision (FP32) OPT-6.7B Half-Precision (BF16)

Method MNLI SST-2 CoLA MNLI SST-2 CoLA SST-2 BoolQ

MeZO 41 (0.65) 59 (0.32) 61 (0.35) 42 (1.09) 61 (0.65) 62 (0.58) 74 (0.53) 65 (0.63)
MeZO-SVRG 53 (0.41) 65 (0.20) 69 (0.25) 52 (0.81) 65 (0.55) 67 (0.53) 77 (0.52) 69 (0.57)
FO-SGD 69 (0.59) 72 (0.23) 78 (0.38) 78 (0.33) 98 (0.02) 94 (0.17) 91 (0.10) 84 (0.29)

Table 3.2: Experiments on AR models. We show the test accuracies and fine-tuning losses (in
parentheses) of MeZO-SVRG and MeZO for full-parameter FT. For reference we also provide
results for FO-SGD as an upper-bound benchmark on performance. MeZO-SVRG consistently
outperforms MeZO and approaches FO-SGD performance. Detailed results are found in Tables
3.17, 3.18 and 3.24.

Storage Efficiency of MeZO-SVRG. Parameter-efficient fine-tuning (PEFT) reduces the size
of fine-tuned model checkpoints by optimizing only a small subset of parameters, e.g. LoRA [43]
and prefix-tuning [44]. Both MeZO and MeZO-SVRG have the benefit of being able to recover
an entire fine-tuning trajectory by storing a single seed and the difference of loss scalars in (3.5) at
each step. The stored seed can regenerate step-wise seeds to recover the perturbation vectors z used
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Memory Usage in GB for RoBERTa-large
Largest OPT/GPT that can fit Fixed context length (cl=128) Fixed batch size (bs=64)

Method A100 (40GB) H100 (80GB) bs = 16 bs = 32 bs = 64 cl = 256 cl = 512

MeZO 6.7B 13B 2.07 (69%) 2.21 (79%) 2.51 (88%) 3.35 5.97
MeZO-SVRG 2.7B 6.7B 4.36 (35%) 4.51 (58%) 4.72 (76%) 5.13 8.02
FO-SGD 1.6B 2.7B 6.74 10.67 18.55 OOM OOM
FO-Adam 350M 1.3B 10.44 14.33 22.41 OOM OOM

Table 3.3: Shows the largest AR models that can fit on single 40, 80GB GPUs. We also measure the
memory usage under different batch sizes (bs) and context lengths (cl) when fine-tuning RoBERTa-
large. Percentages indicate the memory savings with respect to FO-SGD.

for each SPSA computation. Together with the stored difference in loss values, we can recover the
exact gradient estimators used in the fine-tuning process without needing to perform any forward
passes. This allows recovering any model checkpoint along the fine-tuning trajectory. As we store
only the initial random seed and a sequence of difference of loss scalars, we can achieve significant
storage efficiency.

Compatibility with Non-differentiable Objectives and PEFT. As MeZO-SVRG uses only
forward passes and a difference of loss values to estimate the gradient, it is applicable to settings
where gradients are inaccessible or infeasible to compute, e.g. when considering non-differentiable
objectives such as ranking in RLHF [45] or access to model gradients is restricted. Similar to
MeZO, MeZO-SVRG also remains compatible with PEFT (e.g. LoRA [43], prefix-tuning [44]).

3.4 Experiments
In this section, we evaluate MeZO-SVRG on a variety of fine-tuning tasks by comparing the perfor-
mance against MeZO [34] and memory usage against first-order stochastic gradient descent (FO-
SGD) [31] and first-order Adam (FO-Adam) [32]. We demonstrate empirically that MeZO-SVRG
performs well in the absence of input prompts: it is able to significantly reduce the performance
gap to FO methods and consistently surpasses MeZO’s performance on a variety of fine-tuning
tasks with significantly lower computation time. Furthermore, MeZO-SVRG necessitates a con-
siderably smaller memory footprint compared to FO-SGD and FO-Adam.

Setup. We evaluate on both full (FP32) and half (BF16) precision. We detail the experiment
results for the BF16 setting in Section 3.17.We mainly consider a prompt-free fine-tuning setting
(more challenging loss landscape) but include prompted results for RoBERTa-large [42] in Section
3.14. All experiments are run on a single GPU; specifically, we consider Nvidia A100 40GB
or H100 80GB GPUs. We evaluate the algorithms under two fine-tuning strategies: full- and
partial-parameter fine-tuning. In the latter we fine-tune the last layers of the chosen models. We
define a query as one forward pass for a single sample. For a fair comparison between MeZO and
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MeZO-SVRG, we ensured that the total number of queries used by both remains the same; thus,
as MeZO-SVRG accrues more queries per step due to the fullbatch gradient estimates, MeZO was
run for more steps. Further details of the experiment setup and implementation are provided in
Sections 3.11 and 3.12.

Dataset. We fine-tune on tasks from the NLP GLUE and SuperGLUE benchmarks: Multi-
Genre Natural Language Inference Corpus (MNLI), Stanford Question Answering Dataset (QNLI),
Stanford Sentiment Treebank (SST-2), Corpus of Linguistic Acceptability (CoLA), and BoolQ
[37], [38], [40], [46], [47]. Similar to [34], for each task, our experiments are conducted in a
many-shot fine-tuning setting: 512 training examples, 256 validation examples and 256 test sam-
ples are randomly sampled from the dataset.

Language Models. We considered Distilbert [48] and RoBERTa-large as our masked LMs.
Details on the hyperparameter configuration used for these experiments are provided in Section
3.13, 3.14 and 3.17. We extend our evaluation to fine-tuning larger autoregressive (AR) models.
We consider the GPT2 [49], OPT-2.7B, and OPT-6.7B [50] models. The hyperparameter configu-
rations used for these experiments are detailed in Section 3.15 and 3.17.

LM Fine-tuning Performance

GPT2 OPT-2.7B

Method MNLI QNLI SST-2 CoLA MNLI QNLI SST-2 CoLA

MeZO 0.4 5.5 19.4 2.8 2.6 5.3 48 55
MeZO-SVRG 0.3 1.9 5.6 2.2 1.1 2.7 25 1.4

Table 3.4: Required GPU-hrs to achieve equivalent performance levels for MeZO-SVRG and
MeZO.

MeZO-SVRG significantly outperforms MeZO in both the fine-tuning loss convergence
and test accuracy. On all models and tasks, MeZO-SVRG improves on the test accuracy over
MeZO: we see an improvement of up to 20% in Tables 3.1, 3.2 and Figure 3.2b. MeZO-SVRG
also consistently achieves an improved fine-tuning loss compared to MeZO. This is particularly
evident in Figure 3.2a. Additional results are presented in Sections 3.13, 3.14 and 3.15.

MeZO-SVRG works well on both full and partial fine-tuning. The improvement over
MeZO is consistent across both fine-tuning modes. In partial fine-tuning, MeZO-SVRG often
achieves comparable performance to FO-SGD (within 5%) on several tasks (see Table 3.1).

MeZO-SVRG closes the gap to FO-SGD in training convergence and matches the test
accuracy. Tables 3.1 and 3.2 demonstrate how MeZO-SVRG closes the performance gap with
FO-SGD compared to MeZO.

MeZO-SVRG’s superior performance to MeZO extends to the low (half) precision (BF16)
setting. We summarize the half-precision results in Section 3.17.
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Figure 3.3: Shows the minimum memory usage on autoregressive models (batch size = 1, use max
context length of model). MeZO-SVRG yields a 2× smaller memory footprint over FO-SGD.

MeZO-SVRG can fit larger models on the same hardware than FO-SGD. We measure the
minimum memory requirement to fine-tune (full-parameter) the considered autoregressive models
using the different methods. We fine-tune GPT2, OPT-2.7B and OPT-6.7B on MNLI by setting
the input sequence length to the maximum context length of the LM and report the peak GPU
memory consumption for batch size = 1. Table 3.3 shows that MeZO-SVRG consistently yields a
significantly improved memory footprint compared to FO-SGD (approximately 2× across consid-
ered autoregressive models). More details on how memory profiling was done is summarized in
Section 3.16.

MeZO-SVRG’s memory savings progressively improve over FO-SGD and FO-Adam with
increasing batch size and context lengths. For this experiment, we consider the masked model
RoBERTa-large. Again we fine-tune on the MNLI dataset using a single Nvidia A100 40GB GPU
and set the input sequence length to a constant size of 128. We measure the peak GPU memory
consumption for the different methods for varying batch sizes {16, 32, 64}. Figure 3.3 shows
that for a fixed model (RoBERTa-large) and context length (128), MeZO-SVRG exhibits memory
savings of up to 76% w.r.t FO-SGD. We also vary the context lengths {256, 512} of the input for
a fixed batch size (64). Again we observe significant benefits for MeZO-SVRG over FO-SGD: the
latter is subject to out-of-memory errors when running this setting with 40GB GPUs.

MeZO-SVRG consumes more memory than MeZO due to its need to store copies of the pa-
rameters and fullbatch SPSA estimators (see Algorithm 9), but compensates by delivering notable
gains in test performance and computation time.

Computation Time
We compare the speed of MeZO-SVRG and MeZO by measuring the total GPU-hours required
to achieve a certain performance threshold. For a fair comparison, we set the threshold to a level
attained by both methods, namely, MeZO’s peak test accuracy. Table 3.4 shows that for GPT2
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and OPT-2.7B, MeZO-SVRG consistently achieves superior test accuracy with less than half the
GPU-hours.

Understanding MeZO-SVRG
To better understand how the perturbation scale µ and regularity of full-batch update steps deter-
mined by q impact the MeZO-SVRG performance, we perform ablation studies in Section 3.12
with DistilBert on the MNLI dataset. For large fine-tuning datasets, estimating the full-batch gra-
dient can be impractical. Therefore, we included an ablation study to examine the impact on
MeZO-SVRG performance when substituting the full-batch gradient estimator with a large-batch
estimator. Results in Table 3.10 suggest that large-batch estimators pose an effective alternative to
full-batch estimators.

3.5 Convergence Theory
In this section, we provide a convergence analysis of MeZO-SVRG. We start by showing that our
estimator is unbiased w.r.t. a minibatch set I. We assume I is drawn either uniformly random with
or without replacement.

Lemma 1.

EI∇̄fI(θ) = ∇̄f(θ) (3.8)

We denote uI = ∇̄fI(θ)− ∇̄fI(θ′)− EI [∇̄fI(θ)− ∇̄fI(θ′)] and uI = ui for I = {i}. This
ui is a key component from the idea of control covariates [51] in reducing variance.

Lemma 2.
∑n

i=1 ui = 0 and EI [uiuj] = 0 where i, j ∈ I and i ̸= j.

Assumptions. A1: Functions {fi} are L-smooth, i.e., ∥∇fi(θ) − ∇fi(θ′)∥ ≤ L∥θ − θ′∥22.
A2: The variance of stochastic gradients is bounded as 1

n

∑n
i=1 ∥fi(θ)− f(θ′)∥22 ≤ σ2.

With the two Lemmas and assumptions, the following holds.

Jibberish 4. Assume A1 and A2 holds. Let learning rates η = η1 = η2. Then, MeZO-SVRG
satisfies

E[∥∇f(θ(T ))∥22] ≤
f(θ(0))− f ∗

T γ̄
+

Lµ2

T γ̄
+

c

qγ̄
(3.9)

where γ̄ and c are functions of learning rate η, dimension d, minibatch size b and L, σ. Moreover,
by setting

µ =
1√
dT

, η =
ρ

L
, q = ⌈ d

31ρ
⌉,

where ρ is a universal constant, MeZO-SVRG satisfies

E[∥∇f(θ(T ))∥22] = O

(
d

T
+

1(b < n)

b

)
. (3.10)
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Theorem 4 demonstrates a linear convergence, inverse proportional to iteration T and q. The
second term in Eq. (3.9) expresses the effect of µ, the magnitude of perturbation, which is small
in practice. In Eq. (3.10), q is proportional to the problem dimension d, which can balance overall
computational cost. It also reveals the effect of batch size b, indicating larger batch sizes are
preferred in terms of iteration counts, which coincide with our empirical observation.

Remark 11. The derivation of Theorem 4 heavily relies on mathematical machinery and flows
of original SVRG [52] and ZO-SVRG [41]. However, note the gradient estimators in MeZO-
SVRG and ZO-SVRG are different, e.g. different scaling, a single perturbation vector z vs multiple
perturbation vectors {zi} against RandGradEst [41]. This requires careful examination often
with different derivation like Lemma 1, 2, while making sure random vector z is conditioned
consistently over sequence of derivations in [41]. A proof sketch clarifying main distinct steps
is provided in Appendix 3.8.

3.6 Related work
Zeroth-Order Optimization. Zeroth-order (ZO) methods solve optimization problems without
using gradient information. This class of methods typically estimates the gradient from function
queries. Convergence theory has been developed for ZO stochastic gradient descent (ZO-SGD)
in both convex [53]–[55] and non-convex settings [41], [56]. However, these bounds generally
depend on the number of parameters d. In [34], authors demonstrate via fine-tuning experiments
that after pre-training and the inclusion of task prompts, the loss landscape is well-behaved enough
and can be traversed by ZO-SGD. [57] benchmarks the performance of ZO methods in the context
of LM fine-tuning. However, to the best of our knowledge, we are the first to explore the direction
of variance-reduced ZO optimization for fine-tuning LMs.

Memory-efficient Backpropagation Strategies. LLMs are typically fine-tuned by using FO
methods such as SGD [31] and Adam [32]. Several methods have been proposed to handle the
memory overheads of backpropagation, for e.g. sparsifying gradients [58], [59] and quantizing
gradients to lower bit precisions [60], [61]. Other techniques to save activation memory during
forward and backward pass include Gradient checkpointing [62] and Flash Attention [63].

Gradient-free Adaptation of LLMs. The pre-training stage gives LLMs the ability to general-
ize to tasks for which it has not been explicitly trained. This form of adaptation requires instruction
prompts and is referred to as in-context learning (ICL). While ICL enables quick adaptation of the
model to specific tasks, drawbacks of this approach include that current models are constrained to
limited context window and are sensitive to both the choice of input prompts and demonstrations
[34]. Moreover, it has been empirically demonstrated that ICL on large models performs worse
than full fine-tuning on medium-scale models [64]. Another paradigm of adapting LLMs without
using gradients is by using evolutionary algorithms [65], [66], however the effectiveness of these
methods has not been verified beyond smaller LMs.
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3.7 Conclusion
This chapter introduces MeZO-SVRG: a variance-reduced ZO method that addresses the challenge
of fine-tuning LLMs under memory constraints. MeZO-SVRG is a variant of ZO-SVRG that
exploits in-place operations for memory-frugality and gradient estimators that accommodate data
parallelism for iteration speed. The method combines fullbatch and minibatch information to yield
low variance gradient estimators. We demonstrate empirically that MeZO-SVRG outperforms
MeZO consistently on a variety of LM fine-tuning tasks, even in a challenging non-prompted
setting, and requires significantly less GPU-hours to achieve this performance. Furthermore, we
show that across model types and fine-tuning tasks, MeZO-SVRG is able to considerably close the
performance gap to SGD while benefiting from a 2× reduction in memory utilization.

We are excited to further explore the potential of MeZO-SVRG. In particular, we aim to ex-
amine MeZO-SVRG’s performance when coupled with PEFT (LoRA, prefix-tuning) and settings
where gradient-information is unavailable, e.g. prompt-tuning black-box models that are acces-
sible only through an API. Finally, our work paves the way for exploring a broader spectrum of
variance reduction techniques for ZO methods in the context of LM fine-tuning.
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3.8 Additional Results: Proof of Theorem
Throughout the proof, we drop bold notations θ, z,u→ θ, z, u for notational simplicity.

Lemma 3.

EI∇̄fI(θ) = ∇̄f(θ) (3.11)

Proof.

EI∇̄fI(θ) =
1

b
EI
∑
i∈I

fi(θ + µz)− fi(θ − µz)

2µ
z

=
1

b

b

n

n∑
i=1

fi(θ + µz)− fi(θ − µz)

2µ
z

= ∇̄f(θ)

The first and third equality comes from the definition of ∇̄fI , ∇̄f and the second equality holds
due to re-ordering under the assumption a minibatch set is sampled uniformly random or random
with permutation.

We denote uI = ∇̄fI(θ)− ∇̄fI(θ′)− EI [∇̄fI(θ)− ∇̄fI(θ′)] and uI = ui for I = {i}.

Lemma 4.
∑n

i=1 ui = 0 and EI [uiuj] = 0 where i, j ∈ I and i ̸= j.

Proof. By definition,
∑n

i=1 ∇̄fi(θ) = n∇̄f(θ). It is immediate to see
∑n

i=1 EI [∇̄fI(θ)] = n∇̄f(θ),
similar to Lemma 3. Therefore

∑n
i=1 ui = 0 holds. Conditioned on other randomness, e.g. pertur-

bation z, EI [uiuj] = 0 as i, j are independent.

Assumptions. A1: Functions {fi} are L-smooth, i.e. ∥∇fi(θ)−∇fi(θ′)∥ ≤ L∥θ− θ′∥22. A2:
The variance of stochastic gradients is bounded as 1

n

∑n
i=1 ∥fi(θ)− f(θ′)∥22 ≤ σ2.

Equipped with two Lemmas, the following holds

Jibberish 5. Assume A1 and A2 holds. Let learning rate η = η1 = η2. Then, MeZO-SVRG
satisfies

E[∥∇f(θ(T ))∥22] ≤
f(θ(0))− f ∗

T γ̄
+

Lµ2

T γ̄
+

c

qγ̄
(3.12)

where γ̄ and c are the functions of stepsize η, dimension d, mini-batch size b and L, σ. Moreover,
by setting

µ =
1√
dT

, η =
ρ

L
, q = ⌈ d

31ρ
⌉

where ρ is a universal constant, MeZO-SVRG satisfies

E[∥∇f(θ(T ))∥22] = O

(
d

T
+

1(b < n)

b

)
. (3.13)
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Proof. We rely on the proof provided by [41]. Note that we need to make sure that certain im-
portant steps and Lemmas still hold under MeZO-SVRG’s gradient estimators. We start by using
d∇̄f as our gradient estimate, through which Lemma 1 and 2 (in in [41]) hold by matching the
scale of gradient to RandGradEst in [41]. Lemma 3 is used for Eq. (36) (Proposition 1 of [41]).
Lemma 4 is used for Lemma 4, 5 in [41]. Eq. (40) (Proposition 1 of [41]) holds because of a dif-
ferent conditional expectation, i.e., E = EzEI|z = EzEI , rather than E = E{zi}EI|{zi} = E{zi}EI
where z and {zi} are random perturbations. The rest of proof follows through algebraic inequali-
ties based on Lemmas 1,2, 4,5, and function assumptions, to derive convergence analysis. Finally
we scale down learning rate η by d to adopt the gradient estimate of our definition.

3.9 Additional Results: Exploring the Limits of MeZO
Empirically

MNIST classification and RoBERTa-large fine-tuning
We ran experiments to better understand shortcomings in MeZO [34]. Two settings were consid-
ered: performing MNIST [39] classification with a two-layer MLP (25K parameters) and fine-
tuning RoBERTa-large (350M parameters) on the SST-2 [40] dataset. In the former, we used a
two-layer feedforward network with 32 and 16 hidden units respectively. In the latter, we per-
formed full-parameter fine-tuning. In [34], authors also remark that a simple instruction prompt is
needed for the algorithm to succeed in fine-tuning tasks, i.e. it requires a sufficiently well-behaved
optimization trajectory. While this, in itself, can be noted as a drawback, we adopted their pro-
posed prompts in the experiment [34]. The training and fine-tuning runs are illustrated in Figures
3.1b and 3.1c. The hyperparameters selected for the runs are summarized in Tables 3.5 and 3.6.
We paid particular attention to the effect of varying batch size on the algorithm performance. We
also varied the perturbation scale µ used in the SPSA estimates (3.5). No improvement was found
in reducing µ from the default setting used in MeZO (µ = 1e− 3) and thus we present results only
for that configuration [34]. The largest learning rate values used in the grid search were selected
for the MeZO runs. As an upper bound reference on performance, we also include the training
curves for the FO-SGD algorithm. From both Figures 3.1b and 3.1c, it is clear the MeZO has to
contend with instability incurred at smaller batch sizes.

Solving Least Squares
To make the aforementioned observations even more apparent, we examined the performance of
MeZO on a simple linear least-squares (LS) problem. Specifically we solve

min
w∈Rd

∥Xw − y∥22, (3.14)

where X ∈ Rn×d is a randomly generated matrix, w ∈ Rd is fixed a priori, and y ∈ Rn =
Xw + noise is the target labels. In our experiment, we focus on the 100-dimensional problem, i.e.
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Table 3.5: The hyperparameter grid optimized over in the initial the small-scale MNIST [39]
classification experiments.

Algorithm Hyperparameters Values

MeZO Batch size {32, 64, 128}×
Learning rate {1e− 3, 1e− 4}×
µ {1e− 3, 1e− 4, 1e− 5}

FO-SGD Batch size {64}×
Learning rate {1e− 3}

Table 3.6: The hyperparameter grid optimized over in the initial RoBERTa-large [42] fine-tuning
experiments.

Algorithm Hyperparameters Values

MeZO Batch size {16, 32, 64}×
Learning rate {1e− 5, 1e− 6}×
µ {1e− 3, 1e− 4, 1e− 5}

FO-SGD Batch size {64}×
Learning rate {1e− 5}

with d = 100 and n = 1000. For comparison, we also report the performances of our proposed
MeZO-SVRG and FO-SGD. The hyperparameter configurations used are presented in Table 3.7.
Figure 3.1a makes it clear that MeZO is unable to attain the optimal value and yields a performance
gap w.r.t. MeZO-SVRG and FO-SGD.
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Table 3.7: The hyperparameters used for the Least Squares (LS) convergence experiment.

Algorithm Hyperparameters Values

MeZO Batch size {32}×
Learning rate {1e− 3}×
µ {1e− 3}

MeZO-SVRG Batch size {32}×
Learning rate (η1) {1e− 3}×
Learning rate (η2) {1e− 4}×
µ {1e− 3}×
q {2}

FO-SGD Batch size {32}×
Learning rate {1e− 3}

3.10 Additional Results: Zeroth-Order Stochastic
Variance-Reduced Gradient

For the sake of completeness, we present the ZO-SVRG algorithm proposed in [41]. This algorithm
was proposed without a focus on memory efficiency, in contrast to our MeZO-SVRG, which offers
significant memory-saving advantages, particularly in the context of fine-tuning large-scale LMs.

Algorithm 4 ZO-SVRG [41]
Input: Total iterations T , learning rate η > 0, minibatch size b, parameters θ0, iterations between fullbatch estima-
tors q ∈ N
begin method
for t = 0, . . . , T do

if t mod q = 0 then
1. g← ∇̂f(θ(t))

2. θ̄ ← θ(t)

end if
3. Choose mini-batch It of size b
4. ĝ← ∇̂fIt

(θ(t))
5. ḡ← ∇̂fIt(θ̄)
6. Compute gradient blending: vt ← ĝ− ḡ + g
7. update: θ(t+1) ← θ(t) − ηv(t)

end for
end
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3.11 Additional Results: Experiment Setup

Datasets
For experiments on LMs, we considered fine-tuning on classification datasets. Specifically, we
focused on the following datasets from the General Language Understanding Evaluation (GLUE)
[37] benchmark: Multi-Genre Natural Language Inference (MNLI) [46], Question Natural Lan-
guage Inference (QNLI) [37] for sentence pair classification, Stanford Sentiment Treebank (SST-2)
[40] for sentiment analysis, and Corpus of Linguistic Acceptability (CoLA) [47]. To incorporate a
more challenging task, we also evaluated on the BoolQ dataset from the SuperGLUE [38] bench-
mark.

The datasets are imported from the Huggingface datasets library. We randomly sampled
512 examples for training, 256 for validation and 256 for testing.

Model
In our implementation, we used models from the Huggingface transformers package. As we
considered classification datasets, we instantiated models from the AutoModelsForSequence
Classification and OPTModelsForSequenceClassification classes. These li-
braries add a classification head on top of the considered pre-trained model. For the prompted
experiment setting, we instantiate from the RobertaModelForPromptFinetuning custom
class implemented in the MeZO repository [34].

Tables 3.8 and 3.9 summarize the models that where considered in our experiments. For the
masked models both full- and partial parameter fine-tuning was performed.

Model Total Trainable Parameters (×106) Partial Fine-tuning Layers Partial Fine-tuning Nr. of Parameters (×106)

DistilBert 66
[
transformer.layer.5

classifier

]
8

RoBERTa-large 355


roberta.encoder.layer.20
roberta.encoder.layer.21
roberta.encoder.layer.22
roberta.encoder.layer.23

classifier

 38

Table 3.8: An overview of the masked LMs used in the experiments. Both full- and partial-
parameter fine-tuning was considered for these LLMs.
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Model Total Trainable Parameters (×106)

GPT2 (gpt2-xl) 1557

OPT-2.7B (facebook/opt-2.7B) 2651

OPT-6.7B (facebook/opt-6.7B) 6658

Table 3.9: An overview of the autoregressive LMs used in the experiments.

3.12 Additional Results: MeZO-SVRG Implementation and
Ablations

Memory-efficient SPSA
In our implementation we adopt the memory-efficient strategy of computing the SPSA estimator
as proposed in [34]. Rather than sampling and storing the entire perturbation vector z ∈ Rd, we
sample a random seed and use it to regenerate the random vector when required. This allows
in-place perturbations of the optimization parameters which minimizes the memory footprint. The
memory-efficient perturbation routine is shown in 5. The parameters are perturbed in groups rather
than individually, i.e. in Algorithm 5, each θi denotes a parameter group (e.g. an entire weight ma-
trix). The scaling factor s ∈ {1,−2} is used to perturb the parameters in a forward and backward
direction as required in central difference approximations.

Algorithm 5 Memory-Efficient Parameter Perturbation
Design choices: Scaling factor s ∈ {1,−2}, perturbation size µ
Input: Parameters θ, random seed r
Return: Updated parameters θ

begin method
1. Set random seed r
for θi ∈ θ do

2. zi ∼ N (0, 1)
3. θi ← θi + s ∗ zi ∗ µ

end for
end

In this work, experiments were conducted with single SPSA estimators which require exactly 2
forward passes. In p-SPSA, p estimators are computed and averaged. A total of 2p forward passes
are required to compute a p-SPSA estimator. We used the default setting of p = 1 suggested in
[34] for both MeZO and MeZO-SVRG implementations.
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Role of the Perturbation Parameter
We investigated the role of the perturbation parameter µ in MeZO-SVRG. Recall that µ defines
the forward and backward perturbation scale when computing SPSA estimators (3.5) and (3.6).
We know from [35] that the SPSA estimator is asymptotically unbiased as µ → 0. We wanted to
see the practical effects of different µ settings for MeZO-SVRG. Thus we carried out an ablation
study where the perturbation parameter was varied. We fine-tune DistilBert [48] on the MNLI [46]
dataset. The experiment settings are summarized in Figure 3.4b.

Figure 3.4a shows how the different values of µ affected the fine-tuning process of the MeZO-
SVRG algorithm. We observe that for a sufficiently small values of µ (i.e. smaller than 1e− 1) we
see no noticeable difference in performance, while larger µ result in diverging behaviour. Similar
findings were also empirically corroborated in [34]. Thus, throughout our work we used the default
value of µ = 1e− 3.
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Effects of Varying Perturbation Scale
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(a)

Algorithm Hyperparameters Values

MeZO-SVRG Batch size {64}×
Learning rate (η1) {1e− 4}×
Learning rate (η2) {1e− 6}×
µ {1, 0.5, 1e− 1, 1e− 2, 1e− 4}×
q {2}×
Total Steps {200}

(b)

Figure 3.4: a) Shows the effects of varying the perturbation scale on the performance of MeZO-
SVRG. b) Shows the hyperparameter settings used in this experiment.

Role of q
The parameter q plays a significant role in the performance of MeZO-SVRG (Algorithm 3). Con-
cretely, q determines the frequency of fullbatch update steps in the algorithm: smaller q increases
the regularity of fullbatch updates. We perform an ablation to better understand the extent to
which fullbatch updates help or hinder the MeZO-SVRG performance. We consider the task of
fine-tuning the DistilBert [48] model on the MNLI [46] dataset. The experiment setup is summa-
rized in Figure 3.5b.

Figure 3.5a shows the training curves of MeZO-SVRG for different settings of q over 3500
steps. Increasing the frequency of fullbatch update steps enhances the convergence rate. However,
our findings also indicate that a combination of fullbatch and minibatch updates (with q ≥ 2) con-
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tributes to a more stable algorithm performance compared to exclusively using fullbatch updates
(when q = 1).
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Algorithm Hyperparameters Values

MeZO-SVRG Batch size {64}×
Learning rate (η1) {1e− 4}×
Learning rate (η2) {1e− 6}×
µ {1e− 3}×
q {1, 2, 5, 10}×
Total Steps {3500}

(b)

Figure 3.5: a) Shows the effects of varying q on the convergence performance MeZO-SVRG. b)
Shows the hyperparameter settings used in this experiment.

Improved Robustness to Batch Size
In Figures 3.1a, 3.1b and 3.1c we emphasize one of the practical drawbacks of MeZO with respect
to instability with small batch sizes. We saw this behavior even in the more benign prompted
setting. In Figure 3.6, we compare the behavior of MeZO-SVRG and MeZO when fine-tuning
RoBERTa-large [42] on the SST-2 dataset in the prompt-free setting. The plot showcases MeZO-
SVRG’s advantage as a low-variance method with improved robustness to different batch sizes.
In particular, MeZO’s tendencies of diverging with smaller batch sizes are mitigated by MeZO-
SVRG. Note that this improvement already becomes apparent over the first 100 iterations of fine-
tuning.

Approximating Fullbatch Estimators with Large Batches
For sufficiently large training datasets, estimating the fullbatch gradient estimator is prohibitive
and time-consuming. Thus we carry out an ablation study to see the effects on the MeZO-SVRG
performance when approximating the fullbatch gradient estimator with a large-batch estimator.
Specifically, we carry out partial-parameter fine-tuning of DistilBert on a training set of 512 sam-
ples for 8000 steps. We choose a mini-batch size of 64 which is consistent across experiment
runs. This ablation study is carried out in the half-precision (BF16) setting. We approximate the
fullbatch (512 samples) with large batch sizes of 256 and 128. The fine-tuning performances are
summarized in Table 3.10. The obtained results are comparable, suggesting that the large batch-
based gradient estimation offers a viable approximation of the fullbatch gradient estimator.
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Figure 3.6: Shows improved robustness to smaller batch sizes for MeZO-SVRG compared to
MeZO when fine-tuning RoBERTa-large on the SST-2 dataset.

Table 3.10: Performance of partial-parameter fine-tuning of DistilBert with half-precision when
approximating the fullbatch with large batch sizes. Partial FT refers to partial-parameter fine-
tuning (see Section 3.11 for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

SST-2 (Full FT) MeZO-SVRG (fullbatch= 512) 0.4393 70 2560
MeZO-SVRG (Large batch= 256) 0.4946 71 1536
MeZO-SVRG (Large batch= 128) 0.5502 69 1024

Learning Rate Scheduling
In our implementation, we couple the MeZO-SVRG method with a basic learning rate annealing
schedule. This schedule is shown in Algorithm 6. This scheduling scheme operates on feedback
from training loss values. We compute the average loss values in consecutive epochs. If an in-
creasing trend of average losses is observed, the learning rates are annealed with a factor of α.
Specifically, if the ratio of leading and trailing average losses is above threshold κ, we anneal the
learning rates. In our experiments we set κ = 1.05 and annealing factor α = 5.
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Algorithm 6 Learning Rate Scheduling for MeZO-SVRG
Input: Learning rates η1, η2, annealing factor α, losses L, annealing threshold κ, total number of batches in an
epoch w
begin method
1. m1 ← mean(L[−w, :])
2. m2 ← mean(L[−2w,−w])
if m1

m2
> κ then

3. η1 ← η1

α , η2 ← η2

α
end if
end



CHAPTER 3. ZEROTH-ORDER METHODS FOR FINE-TUNING LANGUAGE MODELS 45

3.13 Additional Results: Fine-tuning DistilBert

Hyperparameter Selection
Table 3.11 shows the hyperparameter grid optimized over in the DistilBert [48] experiment. The
hyperparameter search was done by running the different algorithms for 1K steps on the MNLI
[46] dataset and selecting the best configuration. The chosen configuration was then used for a
longer fine-tuning runs for all considered tasks, i.e. 200K steps for MeZO and 50K steps for
MeZO-SVRG.

Table 3.11: The hyperparameter grid optimized over for the DistilBert [48] experiments. In the
case of MeZO-SVRG we use the learning rate schedule proposed in Algorithm 6. The bold values
indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {32, 64}×
Learning rate {1e−4, 1e−5,1e−6}×
µ {1e−3}×
Total Steps {200K}

MeZO-SVRG Batch size {32,64}×
Learning rate (η1) {1e−3, 1e−4}×
Learning rate (η2) {1e−5,1e−6}×
µ {1e−3}×
q {2, 5, 10}×
Total Steps {50K}

FO-SGD Batch size {32,64}×
Learning rate {1e−2,1e−3, 1e−4}×
Total Steps {1K}

Convergence Performance
We fine-tune Distilbert [48] on the SST-2 [40] dataset. In Figure 3.7a, we show the improved con-
vergence performance of MeZO-SVRG over MeZO. MeZO-SVRG is able to significantly reduce
the convergence gap compared to the FO-SGD baseline. Figure 3.7b shows the evolution of the test
accuracy over time. Observe that MeZO-SVRG achieves a significant improvement over MeZO in
test performance. Moreover, MeZO-SVRG surpasses the peak test accuracy achieved by MeZO in
over an order of magnitude less time.

Additional Results
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Figure 3.7: Performance of MeZO-SVRG and MeZO when fine-tuning Distilbert [48] on the SST-
2 [40] dataset. The dashed line serves as a reference to the training loss/test accuracy achieved
by FO-SGD. (a) MeZO-SVRG is able to significantly reduce the convergence gap to FO-SGD
compared to MeZO. (b) MeZO-SVRG surpasses the peak test performance of MeZO in an order
of magnitude less time.

3.14 Additional Results: Fine-tuning RoBERTa-large

Hyperparameter selection
Table 3.13 presents the hyperparameters searched over in our RoBERTa-large [42] experiment.
The hyperparameter search was done by fine-tuning the model on the MNLI [46] dataset for 1K
steps and selecting the best configuration. This selected configuration was subsequently applied to
extended fine-tuning sessions across all considered tasks. For our final results, MeZO-SVRG was
run for 24K steps and MeZO was run for 96K steps.

Additional Results
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Table 3.12: Experiments on DistilBERT (with 512 fine-tuning examples). FO refers to first-order
methods. Full FT refers to full-parameter fine-tuning and Partial FT refers to partial-parameter
fine-tuning (see Section 3.11 for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 1.0908 36 25600
MeZO-SVRG 0.0757 46 25600
FO-SGD 0.0101 59 64

MNLI (Partial FT) MeZO 1.0925 35 25600
MeZO-SVRG 0.2775 47 25600
FO-SGD 0.2617 48 64

QNLI (Full FT) MeZO 0.6914 50 25600
MeZO-SVRG 0.2335 68 25600
FO-SGD 0.0372 78 64

QNLI (Partial FT) MeZO 0.6929 52 25600
MeZO-SVRG 0.2925 65 25600
FO-SGD 0.4176 59 64

SST-2 (Full FT) MeZO 0.6822 52 25600
MeZO-SVRG 0.0203 72 25600
FO-SGD 0.0121 88 64

SST-2 (Partial FT) MeZO 0.6990 51 25600
MeZO-SVRG 0.1034 74 25600
FO-SGD 0.0507 85 64

CoLA (Full FT) MeZO 0.6408 62 25600
MeZO-SVRG 0.2807 68 25600
FO-SGD 0.0159 70 64

CoLA (Partial FT) MeZO 0.6422 60 25600
MeZO-SVRG 0.3617 67 25600
FO-SGD 0.44719 66 64

3.15 Additional Results: Additional Results for fine-tuning
Autoregressive Models

Hyperparameter Selection
Table 3.16 presents the hyperparameter grid searched over for the experiments on autoregressive
models. The hyperparameter search was conducted by fine-tuning the models on the MNLI [46]
dataset for 100 steps and selecting the best configuration. This selected configuration was used in
extended fine-tuning sessions across all considered tasks. For our final results, MeZO-SVRG was
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Table 3.13: The hyperparameter grid optimized over for the RoBERTa-large [42] experiments. In
the case of ZO-SVRG we use the learning rate schedule proposed in Algorithm 6. The bold values
indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {32,64}×
Learning rate {1e−4, 1e−5,1e−6}×
µ {1e−3}×
Total Steps {96K}

MeZO-SVRG Batch size {32,64}×
Learning rate (η1) {1e−4, 5e−5,1e−5}×
Learning rate (η2) {1e−5,1e−6}×
µ {1e−3}×
q {2, 5, 10}×
Total Steps {24K}

FO-SGD Batch size {32,64}×
Learning rate {1e−3,1e−4, 1e−5}×
Total Steps {1K}

run for 8K steps and MeZO was run for 32K steps.

Convergence Performance
We fine-tune GPT2 [49] and OPT-2.7B [50] on the QNLI [37] dataset. In Figures 3.8a and 3.9a,
we show the improved convergence performance of MeZO-SVRG over MeZO. For both mod-
els, MeZO-SVRG is able to significantly reduce the convergence gap compared to the FO-SGD
baseline. Figures 3.8b and 3.9b show the evolution of the test accuracy over time. As with the
experiments on masked models, MeZO-SVRG achieves a significant improvement over MeZO in
test performance.

Additional Results
Tables 3.17 and 3.18 present extended results on the fine-tuning tasks for GPT2 [49] and OPT-2.7B
[50].
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Table 3.14: Experiments on RoBERTa-large (with 512 fine-tuning examples). Here partial refers
to fine-tuning the last layers of the model (see Section 3.11 for details). FO refers to first-order
methods. Full FT refers to full-parameter fine-tuning and Partial FT refers to partial-parameter
fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 0.9447 43 12288
MeZO-SVRG 0.8125 49 12288
FO-SGD 0.0292 85 64

MNLI (Partial FT) MeZO 1.0729 42 12288
MeZO-SVRG 0.8176 43 12288
FO-SGD 0.9859 52 64

QNLI (Full FT) MeZO 0.5845 59 12288
MeZO-SVRG 0.2750 80 12288
FO-SGD 0.01426 89 64

QNLI (Partial FT) MeZO 0.6885 50 12288
MeZO-SVRG 0.4557 67 12288
FO-SGD 0.5974 72 64

SST-2 (Full FT) MeZO 0.69155 56 12288
MeZO-SVRG 0.1336 84 12288
FO-SGD 0.1086 96 64

SST-2 (Partial FT) MeZO 0.6837 54 12288
MeZO-SVRG 0.5896 72 12288
FO-SGD 0.5786 89 64

CoLA (Full FT) MeZO 0.5062 68 12288
MeZO-SVRG 0.0644 79 12288
FO-SGD 0.0099 85 64

CoLA (Partial FT) MeZO 0.5868 65 12288
MeZO-SVRG 0.3538 79 12288
FO-SGD 0.4075 84 64

3.16 Additional Results: Memory Usage and Computation
Time

Memory Profiling
We performed memory profiling experiments without any advanced memory-saving options such
as lowering bit precision [60] or gradient check-pointing [62]. We used full (f32) floating-point
precision.
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Table 3.15: Experiments on RoBERTa-large (with 512 fine-tuning examples) in the prompted
setting. Here partial refers to fine-tuning the last layers of the model (see Section 3.11 for details).
FO refers to first-order methods. Full FT refers to full-parameter fine-tuning and Partial FT refers
to partial-parameter fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI with Prompt (Full FT) MeZO 0.0076 73 12288
MeZO-SVRG 0.0058 75 12288
FO-SGD 0.0036 96 64

MNLI with Prompt (Partial FT) MeZO 0.4614 65 12288
MeZO-SVRG 0.3177 65 12288
FO-SGD 0.3676 81 64

SST-2 With Prompt (Full FT) MeZO 0.2959 93 12288
MeZO-SVRG 0.3063 92 12288
FO-SGD 0.1578 93 64

SST-2 with Prompt (Partial FT) MeZO 0.3280 89 12288
MeZO-SVRG 0.3393 89 12288
FO-SGD 0.2981 90 64
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Figure 3.8: Convergence performance of MeZO-SVRG, MeZO and FO-SGD when fine-tuning
GPT2 [49] on the QNLI [37] dataset. The dashed line serves as a reference to the training loss
achieved by FO-SGD. MeZO-SVRG is able to surpass the fine-tuning loss obtained by FO-SGD.
It also improves on the test accuracy attained by MeZO.

In the first experiment, we measured the memory requirement needed to run the different
methods on full-parameter fine-tuning tasks. The MNLI [46] dataset was used to fine-tune au-
toregressive models GPT2 [49], OPT-2.7B, OPT-6.7B [50]. We set the input sequence length to
the maximum context length for each model, i.e. 1024 for GPT2 and 2048 for the OPT models.
The batch size was set to 1. Figure 3.3 shows the peak memory consumption in GB as reported
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Table 3.16: The hyperparameter grid optimized over for the GPT2 [49] and OPT-2.7B [50] exper-
iments. In the case of MeZO-SVRG we use the learning rate schedule proposed in Algorithm 6.
The bold values indicate the configuration used to generate the final results for both models.

Algorithm Hyperparameters Values

MeZO Batch size {32,64}×
Learning rate {1e−6,5e−6, 1e−7}×
µ {1e−3}×
Total Steps {32K}

MeZO-SVRG Batch size {32,64}×
Learning rate (η1) {1e−4,5e−5, 1e−5}×
Learning rate (η2) {1e−6}×
µ {1e−3}×
q {2, 5, 10}×
Total Steps {8K}

FO-SGD Batch size {8,16}×
Learning rate {1e−4, 1e−5}×
Total Steps {500}

by the nvidia-smi command. The peak memory consumption was obtained after executing
the methods for at least 100 steps. Table 3.3 presents the largest GPT/OPT model that can be fit
for each method under the aforementioned settings on single Nvidia A100 40GB and H100 80GB
GPUs.

In the second experiment, we measured how the memory usage for the different methods scales
with increasing batch size. We fine-tuned RoBERTa-large [42] on the MNLI [46] dataset. The
input sequence length was set to a constant 128 and we varied the batch size {16, 32, 64}. The
memory consumption was again measured using the nvidia-smi command and measurements
were taken after running the methods for at least 100 steps. Table 3.3 summarizes the results.

We finally also measured how the memory usage varies for the considered algorithms when
using a fixed batch size (64) and changing the context length of the input. We used a similar
setting to the second experiment: fine-tuning RoBERTa-large [42] on the MNLI [46] dataset. The
input context length was varied {128, 256, 512} and the memory consumption was measured using
the nvidia-smi command. Table 3.3 reports the results.

We replicated all experiments in the half-precision (BF16) setting; the results are given in Table
3.25.

Computation Time
We compared the speed of MeZO-SVRG and MeZO [34] by measuring the time taken by each
method to achieve the test performance attained by MeZO. These measurements are based on
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Figure 3.9: Performance of MeZO-SVRG, MeZO and FO-SGD when fine-tuning OPT-2.7B [50]
on the QNLI [37] dataset. The dashed line serves as a reference to the training loss/test accuracy
achieved by FO-SGD. MeZO-SVRG is able to reduce the convergence gap to FO-SGD compared
to MeZO and improve on the test accuracy.

Table 3.17: Experiments on GPT2 (with 512 fine-tuning examples). FO refers to first-order meth-
ods. This table summarizes results for full-parameter fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 0.6526 41 4096
MeZO-SVRG 0.4116 53 4096
FO-SGD 0.5924 69 8

QNLI (Full FT) MeZO 0.3351 58 4096
MeZO-SVRG 0.2372 63 4096
FO-SGD 0.2799 72 8

SST-2 (Full FT) MeZO 0.3240 59 4096
MeZO-SVRG 0.2024 65 4096
FO-SGD 0.2343 72 8

CoLA (Full FT) MeZO 0.3544 68 4096
MeZO-SVRG 0.2455 69 4096
FO-SGD 0.3855 78 8

fine-tuning GPT2 [49] and OPT-2.7B [50] on all considered datasets. Table 3.4 summarizes the
results.
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Table 3.18: Experiments on OPT-2.7B (with 512 fine-tuning examples). FO refers to first-order
methods. This table summarizes results for full-parameter fine-tuning.

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Full FT) MeZO 1.0875 42 4096
MeZO-SVRG 0.8159 52 4096
FO-SGD 0.3305 78 8

QNLI (Full FT) MeZO 0.7026 53 4096
MeZO-SVRG 0.4634 60 4096
FO-SGD 0.1222 91 8

SST-2 (Full FT) MeZO 0.6530 61 4096
MeZO-SVRG 0.5501 65 4096
FO-SGD 0.0167 98 8

CoLA (Full FT) MeZO 0.5823 62 4096
MeZO-SVRG 0.5335 67 4096
FO-SGD 0.1724 94 8

3.17 Additional Results: Half-Precision Experiments
In the section, we run preliminary experiments to evaluate the considered fine-tuning algorithms
on the half-precision (BF16) setting.

Half-Precision Experiments on DistilBert
The hyperparameter grid that was optimized over for the DistilBert experiments in the half-precision
setting is presented in Table 3.19. As each iteration under the half-precision setting is faster than
under the full-precision setting, we run experiments for longer. Specifically, we run MeZO-SVRG
for 80K steps, MeZO for 400K steps and FO-SGD for 2K steps. The results are summarized in
Table 3.20.

Half-Precision Experiments on RoBERTa-large
The hyperparameter grid that was optimized over for the DistilBert experiments in the half-precision
setting is presented in Table 3.21. As each iteration under the half-precision setting is faster than
under the full-precision setting, we run experiments for longer. Specifically, we run MeZO-SVRG
for 40K steps, MeZO for 200K steps and FO-SGD for 1K steps. The results are summarized in
Table 3.22.
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Table 3.19: The hyperparameter grid optimized over for the half-precision DistilBert [48] exper-
iments. In the case of MeZO-SVRG we use the learning rate schedule proposed in Algorithm 6.
The bold values indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {32, 64}×
Learning rate {1e−4,1e−5, 1e−6}×
µ {1e−2}×
Total Steps {400K}

MeZO-SVRG Batch size {32,64}×
Learning rate (η1) {1e−3, 1e−4}×
Learning rate (η2) {1e−5, 1e−6}×
µ {1e−2}×
q {2, 5}×
Total Steps {80K}

FO-SGD Batch size {32,64}×
Learning rate {1e−2, 1e−3, 1e−4}×
Total Steps {2K}

Table 3.20: Half-precision experiments on DistilBERT (with 512 fine-tuning examples). FO refers
to first-order methods. Partial FT refers to partial-parameter fine-tuning (see Section 3.11 for
details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Partial FT) MeZO 1.0892 43 51200
MeZO-SVRG 0.8746 45 51200
FO-SGD 0.3508 51 128

QNLI (Partial FT) MeZO 0.6904 60 51200
MeZO-SVRG 0.5416 64 51200
FO-SGD 0.2998 66 128

SST-2 (Partial FT) MeZO 0.6889 61 51200
MeZO-SVRG 0.3887 79 51200
FO-SGD 0.0555 82 128

CoLA (Partial FT) MeZO 0.6420 66 51200
MeZO-SVRG 0.6170 71 51200
FO-SGD 0.4218 70 128

Half-Precision Experiments on OPT-6.7B
The hyperparameter grid optimized for the OPT-6.7B experiments in the half-precision setting is
detailed in Table 3.23. We conducted the MeZO-SVRG experiments for 8k steps, MeZO for 24k
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Table 3.21: The hyperparameter grid optimized over for the half-precision RoBERTa-large [42]
experiments. In the case of MeZO-SVRG we use the learning rate schedule proposed in Algorithm
6. The bold values indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {64}×
Learning rate {1e−4,1e−5, 1e−6}×
µ {1e−3}×
Total Steps {200K}

MeZO-SVRG Batch size {64}×
Learning rate (η1) {1e−4, 1e−5}×
Learning rate (η2) {1e−5, 1e−6}×
µ {1e−3}×
q {2, 5}×
Total Steps {40K}

FO-SGD Batch size {64}×
Learning rate {1e−2, 1e−3, 1e−4}×
Total Steps {1K}

Table 3.22: Half-precision experiments on RoBERTa-large (with 512 fine-tuning examples). FO
refers to first-order methods. Partial FT refers to partial-parameter fine-tuning (see Section 3.11
for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

MNLI (Partial FT) MeZO 1.0898 42 25600
MeZO-SVRG 1.0695 43 25600
FO-SGD 0.1820 55 64

QNLI (Partial FT) MeZO 0.6835 62 25600
MeZO-SVRG 0.6070 68 25600
FO-SGD 0.3112 67 64

SST-2 (Partial FT) MeZO 0.6630 66 25600
MeZO-SVRG 0.5278 77 25600
FO-SGD 0.1356 93 64

CoLA (Partial FT) MeZO 0.6308 66 25600
MeZO-SVRG 0.5781 69 25600
FO-SGD 0.1537 88 64

steps, and FO-SGD for 1k steps. The outcomes of these experiments are summarized in Table
3.24. We include the BoolQ dataset from the SuperGLUE [38] benchmark to evaluate a more
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challenging fine-tuning task.

Table 3.23: The hyperparameter grid optimized over for the half-precision OPT-6.7B [50] exper-
iments. In the case of MeZO-SVRG we use the learning rate schedule proposed in Algorithm 6.
The bold values indicate the configuration used to generate the final results.

Algorithm Hyperparameters Values

MeZO Batch size {128}×
Learning rate {1e−5,1e−6}×
µ {1e−3}×
Total Steps {24K}

MeZO-SVRG Batch size {128}×
Learning rate (η1) {1e−4, 1e−5}×
Learning rate (η2) {1e−5,1e−6}×
µ {1e−3}×
q {2, 5}×
Total Steps {8K}

FO-SGD Batch size {64}×
Learning rate {1e−3,1e−4}×
Total Steps {1K}

Table 3.24: Half-precision experiments on OPT-6.7B (with 512 fine-tuning examples). FO refers
to first-order methods. Full FT refers to full-parameter fine-tuning (see Section 3.11 for details).

Task Method Fine-tuning Loss ↓ Test Accuracy (%)↑ Queries (×103) ↓

SST-2 (Full FT) MeZO 0.5318 74 6144
MeZO-SVRG 0.5278 77 6144
FO-SGD 0.103 91 128

BoolQ (Full FT) MeZO 0.6259 65 6144
MeZO-SVRG 0.5703 69 6144
FO-SGD 0.2872 84 128



CHAPTER 3. ZEROTH-ORDER METHODS FOR FINE-TUNING LANGUAGE MODELS 57

Memory Profiling with Half-Precision

Memory Usage in GB for RoBERTa-large
Largest OPT/GPT that can fit Fixed context length (cl=128) Fixed batch size (bs=64)

Method A100 (40GB) bs = 16 bs = 32 bs = 64 cl = 256 cl = 512

MeZO 13B 1.03 1.13 1.25 1.39 2.66
MeZO-SVRG 6.7B 2.10 (39%) 2.11 (66%) 2.12 (79%) 2.27 (90%) 3.66
FO-SGD 2.7B 3.42 5.81 9.83 21.87 OOM
FO-Adam 1.3B 5.85 8.07 12.16 24.29 OOM

Table 3.25: Memory profiling with half-precision. Shows the largest AR models that can fit on
single 40 GPUs. We also measure the memory usage under different batch sizes (bs) and context
lengths (cl) when fine-tuning RoBERTa-large. Percentages indicate the memory savings with re-
spect to FO-SGD.
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Part II

Enhancing Training with Differentiable
Optimization
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Chapter 4

Meta-Learning Parameterized First-Order
Optimizers

4.1 Introduction
First-order optimization methods underpin a wide range of modern control and machine learning
(ML) techniques. The field of deep learning, including domains such as computer vision [11], [67],
natural language processing [68], deep reinforcement learning [69], and robotics [70], has yielded
revolutionary results when trained with variants of gradient descent such as stochastic gradient
descent (SGD) [31] and Adam [32]. Algorithms like projected and conditional gradient descent
extend the class of first-order methods to accommodate problems with constraints such as matrix
completion, or training well-posed implicit deep models [3], [71].

While this proliferation of methods has facilitated rapid advances across the control and ML
communities, designing update rules tailored to specific problems still remains a challenge. This
challenge is exacerbated by the fact that different domains are tasked with solving distinct prob-
lem types. The deep learning community is, for instance, tasked with solving high-dimensional
non-convex problems whereas the optimal control community often deals with constrained convex
problems where the constraints encode restrictions on the state space and system dynamics. More-
over, even different problem instances within a particular problem class may require significantly
varying update rules. As an example, within deep learning, effective hyperparameter (e.g. learning
rate) selection for algorithms such as Adam and SGD is highly dependent on the underlying model
that is to be trained.

Contributions
This chapter proposes a new data-driven approach for optimization algorithm design based on dif-
ferentiable convex optimization (DCO). This approach enables the use of previous optimization
experience to propose update rules that efficiently solve new optimization tasks sampled from the
same underlying problem class. We start by introducing the notion of DCO as a means to param-
eterize optimizers within the meta-learning framework. We then propose an efficient instantiation
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of meta-training that can be leveraged by the DCO optimizer to learn appropriate meta-parameters.
To illustrate the generality of the DCO meta-learning framework, we then formulate concrete dif-
ferentiable quadratic optimizations to solve unconstrained optimization problems, namely, DCO
Gradient (DCOG), DCO Momentum (DCOM) and DCO General Descent (DCOGD). These DCO
instantiations are generalizations of existing first-order update rules, which in turn demonstrates
that existing methods can be thought of special cases of the DCO meta-learning framework.

DCO also provides sufficient structure conducive to rigorous theoretical analysis for the meta-
learning problem. We establish convergence guarantees for the DCOGD optimizer to the optimal
first-order update rule that leads to one step convergence when considering a family of linear least
squares problems. Finally, we illustrate the potential of our proposed DCO optimizer instanti-
ations by comparing convergence speed with popular existing first-order methods on illustrative
regression and system identification tasks.

Related Works
Meta-Learning

Deep learning has demonstrated exceptional performance in situations where there is an abun-
dance of training data and computational resources [1], [67], [68], [72]. This, however, excludes
many important applications where there is an inherent lack of data or where computation is very
expensive. Meta-learning attempts to address this issue by gaining learning process experience
on similarly structured tasks [73]. This learning-to-learn paradigm is aligned with the human and
animal learning process which tends to improve with greater experience. Moreover, by making
the learning process more efficient meta-learning targets the aforementioned issues of data and
compute scarcity.

Meta-learning methods can be categorized into three broad classes. In [74], authors introduce
a unifying framework that encapsulates a wide class of existing approaches.

Optimizer-focused methods aim to improve the underlying optimizer in the inner loop used
to solve the tasks at hand by meta-learning optimizer initialization or hyperparameters. Within
few-shot learning, Model Agnostic Meta Learning (MAML) and its variants use prior learning
experience to meta-learn a model/policy initialization that requires just a few inner gradient steps
to adapt to a new task [75], [76]. Other works aim to meta-learn optimizer hyperparameters. In
[77], [78], authors attempt to identify optimal learning rate scheduling strategies. Another strategy
within this category is to directly learn a parameterization of the optimizer. Due to the sequential
structure of inner loop parameter updates, recurrent architectures have been considered in this
space [79], [80]. The inner loop optimization has also been viewed as a sequential decision-
making problem and consequently optimizers have also been characterized as policies within an
RL setting [81].

Black-box methods represent the inner loop via a forward-pass of a single model. The learning
process of the inner loop is captured by the activation layers of the underlying model. The inner
loop learning can be instantiated as RNNs [82], [83], convolutional neural networks (CNN) [84] or
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hyper-networks [85]. The meta-learning loop finds the hyperparameters of the inner loop network
yielding good performance.

In non-parametric methods, the inner loop aims to identify feature extractors that enable the
matching of validation and training samples to yield an accurate prediction using the matched
training label. The meta-loop aims to identify the class of feature extractors that transform the data
samples into an appropriate space where matching is viable [86], [87].

Implicit Layers

Recent work has proposed a novel viewpoint wherein deep learning can be instantiated using im-
plicit prediction rules rather than as conventional explicit feedforward architectures [3], [13], [14].
In [3] and [13] authors formalize how deep equilibrium models, characterized by nonlinear fixed
point equations, represent weight-tied, infinite-depth networks. In this framework, [3] demon-
strates how the aforementioned models are able to generalize most of the popular deep learning
architectures. In [14], authors propose neural ordinary differential equations (ODE): an alterna-
tive instantiation of an implicit layer where the layer output is the solution to an ODE. This is
shown to be an expressive model class yielding particularly impressive results when processing
sequential data. Implicit layers have also been characterized as differentiable optimization layers.
The work [88] introduces differentiable quadratic optimization (QP) layers that can be incorpo-
rated within deep learning architectures. In [89] authors develop software to differentiate through
defined convex optimization problems. Some notable applications of differentiable optimization
layers include parameterizing model predictive control policies [90] and representing a maximum
satisfiability (MAXSAT) solver [91].

Notation
Throughout this chapter, we consider the problem of solving a task T which consists of an opti-
mization problem and an evaluation step. The optimization problems are characterized with a loss
function l(θ) over decision variables θ belonging to some parameter space Θ ⊆ Rp. For evalu-
ation, we denote a validation criterion lval that assesses the optimizer θ⋆ found in the associated
problem. We refer to solving the optimization over θ as the inner loop problem. At the meta-level
we consider an algorithm Opt( · ;ϕ) : Θ→ Θ with meta-parameters ϕ which generates a sequence
of parameter updates using first-order information to solve the inner loop problem. We denote the
horizon of the parameter update sequence by T . By meta-training, we refer to the optimization
over the meta-parameters over a training set of N tasks {Ti}Ni=1. For a vector-valued function
f(x) : Rd → Rp we let the operator ∇xf(·) : Rd → Rd×p denote the gradient. If f : Rd → R is a
scalar function, the Hessian of f is denoted by∇2

xf(·) : Rd → Rd×d. We denote that a square sym-
metric matrix A is positive definite (all eigenvalues strictly positive) by A ≻ 0. The vectorization
of a matrix A ∈ Rm×n is denoted by vec(A) ∈ Rmn and is constructed by stacking the columns of
A. The Kronecker product of two matrices A and B is denoted A ⊗ B. For a vector x ∈ Rn and
p ≥ 1, ∥x∥p denotes the ℓp-norm of x. For m ∈ N+, we define [m] to be the set {a ∈ N+ | a ≤ m},
where N+ is the set of positive integer numbers. We define the operator ⊙ as an elementwise mul-
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tiplication. U(a, b) denotes the uniform probability distribution with support [a, b] and N (µ, σ2)
represents a univariate normal distribution centered at µ with standard deviation σ. Finally, we
define ED[·] as the expectation operator over distribution D.

4.2 Background
This section contextualizes our proposed framework. Section 4.2 illustrates how conventional first-
order update rules can be typically expressed as the solution to a convex optimization problem.
Section 4.2 then elaborates on the differentiable convex optimization methods that can be used to
differentiate through the aforementioned inner loop gradient steps to update meta-parameters.

First-order methods
We consider a generic unconstrained optimization problem

min
x

f(x) (4.1)

with differentiable objective f . First-order methods are a popular means to solve optimization
problems of the form (4.1). The first-order property refers to the underlying methods’ use of gra-
dient information to generate a sequence of parameter iterates. Next we briefly survey a subset
of important first-order methods that solve optimization problems of the form (4.1). We high-
light how the update rules of these algorithms can be formulated as convex optimization problems
themselves. This motivates the formulation of a generic parameterized convex optimizer to yield
optimal parameter updates.

Gradient descent

Gradient descent (GD) is a standard first-order method used to solve a variety of unconstrained
optimization problems. For an unconstrained optimization problem, GD updates aim to reconcile
the notion of minimizing a linear approximation of the objective while simultaneously maintaining
proximity to the current parameter iterate. This can be cast as the convex optimization

x(t+1) = argmin
x
{∇f(x(t))⊤(x− x(t)) +

λ

2
||x− x(t)||22} (4.2)

where λ > 0 is the step size. Solving (4.2) in closed-form yields the well-known GD update.

Gradient descent with Momentum

A popular practical variation of GD is to utilize the historical first-order information within the
parameter update rule. This is referred to as GD with momentum. The contribution of historic
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first-order information is captured by the notion of a state. More concretely, we define state update
for t > 1 as

S(t+1) = βS(t) + (1− β)∇f(x(t)), (4.3)

where β ∈ [0, 1] is an averaging parameter and we initialize S(1) := ∇f(x(1)). The convex update
rule in this method substitutes∇f(x(t)) with S(t+1):

x(t+1) = argmin
x
{(S(t+1))⊤(x− x(t)) +

λ

2
||x− x(t)||22} (4.4)

Other notable first-order methods whose updates are defined via convex optimization problems
are the proximal gradient (PG) [92], [93] and mirror descent (MD) [94], [95] methods. The former
addresses unconstrained nondifferentiable problems whose objective is a composite function that
can be decomposed into the sum of a differentiable and nondifferentiable part. The latter targets
potentially constrained problems with updates that simultaneously minimize a linear approxima-
tion of the objective and a proximity term between parameter updates.

Differentiable Optimization Layers
We now present the formulation for a general DCO [89]:

D(x;ϕ) := argmin
y∈Rn

f0(x, y;ϕ)

s.t. fi(x, y;ϕ) ≤ 0 for i ∈ [q],

gj(x, y;ϕ) = 0 for j ∈ [r], (4.5)

where x ∈ Rd is the optimization input and y ∈ Rn is the solution. Here optimization parameters
are defined by a vector ϕ. The functions fi parameterize inequality constraint functions which are
convex in y and gj parameterize affine equality constraints. As with the constraint functions, the
objective f0 is convex in the optimization variable y.

Note that this formulation defines a general parameterized convex optimization problem in the
output y. The solution to the optimization is a function of the input x.

When embedding DCO as a layer within the deep learning context, we require the ability to
differentiate through D with respect to ϕ when performing backpropagation. This is achieved
via implicit differentiation through the Karush-Kuhn-Tucker (KKT) optimality conditions as pro-
posed in [88], [96]. Particular instantiations of DCO, such as parameterized QPs, can enable more
efficient backpropagation of gradients [88].

4.3 Meta-Optimization Framework
Consider the setting where we have N training tasks Ti = (li, l

val
i ) for i ∈ [N ], where each task

consists of a tuple containing a training loss function li and an associated performance metric lval
i .
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Each of these tasks is sampled from an underlying distribution D, i.e Ti ∼ D ∀i ∈ [N ]. For task
Ti, we consider the optimization

min
θi∈Θ

li(θi) (4.6)

where we aim to minimize loss li over the decision variable θ constrained to the set Θ ⊂ Rp. We
let ϕ denote the set of meta-parameters that configure the method used to solve optimization (4.6),
e.g. ϕ could include the learning rate in a gradient-based algorithm. The validation loss lval

i is used
to evaluate the final θ⋆i recovered from solving (4.6). As motivation for this setup, we consider
the general training-validation procedure seen in ML. Here li can be seen as the loss on training
data with respect to model parameters θ and lval

i denotes the loss on validation data. Note that
for problems where the metric of interest is in fact the objective of (4.6), we can trivially define
lval
i := li.

In this meta-learning framework, the goal is to perform well on a new task Ttarget = (ltarget, l
val
target) ∼

D using previous experience from tasks {Ti}Ni=1. Since Ttarget is sampled from the same distribution
D as the training tasks, it has structural similarities that can be exploited by meta-learning.

Inner Optimization Loop
Depending on the structure of (4.6), several iterative methods exist to solve the considered prob-
lem. The chosen algorithm has an update rule that yields a sequence of parameter updates {θ(t)i }Tt=1

where T is defines the total number of updates and i indexes the associated task Ti. Within the
class of first-order methods, these update rules require computing or estimating (e.g. within re-
inforcement learning) the gradient G(t)

i := ∇θli(θ
(t)
i ) to solve the inner optimization of task Ti.

The algorithm Opt applies the computed first-order and zeroth-order information at time step t
along with an abstraction of past information encapsulated by state S(t) to yield both an updated
parameter θ(t+1)

i and state S(t+1):

(θ
(t+1)
i , S

(t+1)
i ) := Opt(θ(t)i , S

(t)
i , G

(t)
i ;ϕ). (4.7)

Here we characterize the optimizer with meta-parameters ϕ. Solving the inner loop prob-
lem to completion involves recursively applying (4.7) T times from an initial condition θ

(1)
i and

history state S
(1)
i , which we denote by OptT (θ

(1)
i , S

(1)
i ;ϕ). Note that moving forward, unless

made explicit, we suppress the return argument of the next state, i.e. we utilize the shorthand
θ
(t+1)
i := Opt(θ(t)i , S

(t)
i , G

(t)
i ;ϕ).

Meta-Learning Loop
The meta-learning loop wraps around the inner loop. It aims to find optimal meta-parameters ϕ⋆

that ensure that for each task Ti in distribution D, the inner loop optimizer Opt produces θ⋆i that
performs well on metric lval

i (θ⋆i ):



CHAPTER 4. META-LEARNING PARAMETERIZED FIRST-ORDER OPTIMIZERS 65

min
ϕ

ETi∼D[l
val
i (θ⋆i (ϕ))] (4.8)

where ETi∼D denotes the expectation over task distribution D. An empirical version of this meta-
learning process with training tasks {Ti}Ni=1 can be formulated as

ϕ⋆ = argmin
ϕ

1

N

N∑
i=1

lval
i (θ⋆i )

= argmin
ϕ

1

N

N∑
i=1

lval
i (argmin

θ∈Θ
li(θ))

≈ argmin
ϕ

1

N

N∑
i=1

lval
i (OptT (θ

(1)
i , S

(1)
i ;ϕ)), (4.9)

:= argmin
ϕ

ltotal(ϕ) (4.10)

where the inner optimization is approximated by running algorithm Opt for T time steps. Op-
timization (4.9) can be approximated by another iterative gradient-based scheme that estimates
∇ϕl

val
i (θ⋆i ). This requires differentiation through the inner loop update rule Opt with respect to

meta-parameters ϕ. More specifically, we require differentiation with respect to ϕ through a tra-
jectory of parameter updates with horizon T . The meta-parameters will then be updated using a
meta-optimizer of choice that uses first-order information on the meta-parameters:

ϕ(t+1) := MetaOpt
(
ϕ(t),∇ϕl

total (ϕ(t)
))

. (4.11)

Remark 12. Note that an approximated attempt at meta-learning is ubiquitous in practice. More
specifically, the notion of hyperparameter selection (e.g. learning rate) for a first-order method is
an instance of approximated meta-learning. In this context, we let hyperparameters be viewed as
meta-parameters. Given a task, the goal in hyperparameter selection is to identify these such that
the algorithm Opt generates θ⋆i with low lval

i (θ⋆i ). In practice, the selection of hyperparameters (i.e.
MetaOpt) is restricted to crude rules of thumb or grid search guided by previous experience of
similar problems. It is clear how such approximations can often fall short especially when consid-
ering high-dimensional or even continuous meta-parameter search spaces. Moreover, it does not
accommodate parameterizing Opt to describe novel update rules. The meta-learning framework
in (4.9) generalizes the hyperparameter selection problem and makes it more rigorous.

Meta-Training
The meta-training algorithm for an arbitrary optimizer Opt with meta-parameters ϕ is presented
in Algorithm 7. For each meta-parameter update, average validation losses across training tasks
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Algorithm 7 Meta-Training Framework

Input: Training set consisting of N tasks {Ti}Ni=1

Design choices: Inner loop horizon T , meta-training epochs M , optimizer Opt(·;ϕ), meta-
optimizer MetaOpt(·, ·)
Return: Meta-parameters ϕ

begin training
1. Initialize meta-parameters ϕ(1)

2. Initialize inner loop parameters and initial optimizer states {θ(1)i , S
(1)
i : i ∈ [N ]}

for k ∈ [M ] do
3. Initialize ltotal ← 0
for i ∈ [N ] do

for t ∈ [T ] do
4. Compute inner loop gradient G(t)

i ← ∇θli(θ
(t)
i )

5. (θ(t+1)
i , S

(t+1)
i )← Opt(θ(t)i , S

(t)
i , G

(t)
i ;ϕ)

end for
6. ltotal ← ltotal + lval

i (θ
(T+1)
i )/N

end for
7. ϕ(k+1) ←MetaOpt(ϕ(k),∇ϕl

total)
end for
end training

{Ti}Ni=1 are accumulated in ltotal. For each task Ti, these validation losses are measured after running
the inner loop optimization using Opt(·;ϕ) for T iterations. MetaOpt(·, ·) then uses first-order
information on ltotal with respect to ϕ to update the meta-parameters.

Remark 13. For a specific task Ti, the role of the meta-optimizer can be viewed as trying to learn
the loss landscape of the inner problem locally around θ

(t)
i for t ∈ [T ] and adapt the optimizer

accordingly to encourage efficient descent. Thus, the updates within the inner loop help the meta-
optimizer get a better gauge of the loss landscape. In turn, T should be selected based on how
complicated or spurious the inner problem’s loss landscape is. For more complicated inner prob-
lems, more information (i.e. updates) are necessary to gauge the loss landscape. For simpler
problems, a smaller horizon should suffice.

Remark 14. Algorithm 7 allows for flexibility when choosing MetaOpt. Stochastic first-order
methods can be employed to solve the meta-training problem. That is, rather than using the entire
batch of N tasks {Ti}Ni=1, a random minibatch can be selected to perform a meta-parameter update.
This strategy becomes particularly useful in settings where N is prohibitively large. Furthermore,
adding stochasticity in the MetaOpt procedure may reap some known benefits of SGD such as not
succumbing to local minima.
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4.4 Differentiable Convex Optimizers
We now propose various instantiations of the inner loop optimization step (4.7) as differentiable
convex optimizations. More generally, our proposed DCO meta-learning framework parameterizes
optimizer Opt as a DCO introduced in (4.5):

Opt(·;ϕ) := D(·;ϕ). (4.12)

As discussed in Section 4.2, this formulation contains a range of well-known first-order update
rules as special cases.

To demonstrate the representational capacity of general DCOs as formulated in (4.5) within
the meta-learning context, we focus on the subclass of unconstrained differentiable QPs. Note that
this is a narrower subclass of DCO as we no longer have an arbitrary convex objective but rather
a convex quadratic one. However, as we will demonstrate, this narrower formulation lends itself
naturally to generalize the structure of update rules of existing gradient-based methods. While the
formulations themselves admit closed-form solutions, we treat these as convex optimizations in
our implementations to stay true to the DCO framework.

DCO Gradient

We propose DCO Gradient based on the convex optimization (4.2) that encodes the vanilla GD
update rule. The formulation discards the optimizer state S

(t)
i and simply encodes the update rule:

θ
(t+1)
i := argmin

θ
{
(
G

(t)
i

)⊤
θ +

1

2
||Λ⊙ (θ − θ

(t)
i )||22}, (4.13)

where the parameterization is given by ϕ := Λ ∈ Rp. In this formulation, learning the parameter
Λ can be viewed as optimizing the per-weight learning rate within vanilla GD.

DCO General Descent (DCOGD)

We introduce a generalization of the previous approach that enables a general linear transformation
of the update gradient:

θ
(t+1)
i := argmin

θ
{
(
BG

(t)
i

)⊤
θ +

1

2
||θ − θ

(t)
i ||22}, (4.14)

where ϕ := B ∈ Rp×p.

DCO Momentum (DCOM)

Finally, we extend formulation (4.13) to include momentum information:

S
(t+1)
i := M ⊙G

(t)
i + (1−M)⊙ S

(t)
i , (4.15)

θ
(t+1)
i := argmin

θ
{
(
S
(t+1)
i

)⊤
θ +

1

2
||Λ⊙ (θ − θ

(t)
i )||22}, (4.16)
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where the parameterization is given by ϕ := {Λ,M ∈ Rp}. Here, the DCO learns both the learning
rate and the momentum averaging mechanism on a per-weight basis.

4.5 Theory
We illustrate the potential of the DCO framework by analyzing the meta-learner process for a class
of linear least-squares problems. Specifically, we let the tasks Ti be the least-squares problems

min
θ∈Rp
∥Xθ − (y +X∆i)∥22, (4.17)

where X is a fixed feature matrix with X⊤X invertible and the regression targets vary using task-
specific ∆i. We restrict our task-dependent regression target shifts to lie in the range space of X
for theoretical tractability and concreteness: note that each task assumes a shifted version of the
same loss landscape, with the optimal weights also shifted by ∆i.

Namely, let θ′ = (X⊤X)−1X⊤y be the typical least-squares solution to (4.17) in the case
where ∆i = 0. It is then clear by inspection that θ∗i = θ′ +∆i, and that the minimizing loss li(θ∗i )
is invariant to i; we thus denote the solution to (4.17) by l∗. Note that here we consider the case
where training and validation data are identical for a particular task; i.e. li = lval

i . With some abuse
of notation, our kth meta-optimization step target task loss

l
(k)
target := ltarget(Opt1(θ

(1);ϕ(k))) (4.18)

consists of an identically constructed task (4.17) with a distinct ∆ and θ(1). Concretely, we consider
the performance on the target loss after one inner loop optimizer step using the meta-parameters
ϕ(k) obtained from k meta-optimization steps. Naturally, we expect that increasing both the number
of meta-optimization steps k and the number of training tasks N should help reduce the target loss,
ideally such that l(k)target approaches the optimum l∗. This is formalized in Theorem 6.

Jibberish 6. Consider executing Algorithm 7 with the DCOGD optimizer (4.14) and T = 1 on the
set of shifted least-squares problems {Ti}Ni=1 introduced in (4.17), each with an arbitrary but fixed
initial parameter θ(1)i ∈ Rp. Instantiate MetaOpt as standard GD with step size η > 0. Finally,
define the set of vectors {Zi}Ni=1 by

Zi := θ
(1)
i −∆i − θ′.

Then if {Zi}Ni=1 span Rp, there exists a sufficiently small η such that the one-step target task loss
(4.18) approaches the optimum as the number of meta-steps k →∞; specifically,

l
(k)
target − l∗ ≤ O((1− ϵ)k),

for some 0 < ϵ < 1.
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Proof. We can solve the gradient update from (4.14) in closed form. Doing this yields the follow-
ing weight vector the ith task after one step on the inner problem:

θ
(2)
i := θ

(1)
i −BG

(1)
i . (4.19)

The total loss ltotal with T = 1 can therefore be written as:

ltotal =
1

N

N∑
i=1

∥X(θ
(1)
i −BG

(1)
i )− (y +X∆i)∥22

=
1

N

N∑
i=1

∥XBG
(1)
i −Xθ

(1)
i + y +X∆i∥22. (4.20)

The meta-learning problem aims to minimize this loss over the meta-parameter ϕ = B. We
will proceed with two steps: (1) show that there exists a meta-parameter B∗ for which ltotal equals
the optimal minimizer l∗, and (2) show that B∗ is attained by our meta-learning procedure.

The existence of such a minimizing B∗ can be shown directly by letting B∗ = (1/2)(X⊤X)−1.
Noting that

G
(1)
i = 2X⊤X(θ

(1)
i −∆i)− 2X⊤y

from differentiation of (4.17), we can substitute B∗ and G
(1)
i into (4.20) to yield:

ltotal =
1

N

N∑
i=1

∥(X⊤X)−1X⊤y − y∥22 = l∗. (4.21)

We now show that B∗ is attained by the meta-learning procedure. Namely, we consider our
total loss for each outer meta-learning step in Algorithm 7 to be a function ltotal(B) of our meta-
parameter ϕ = B. We let ltarget(B) be defined similarly. It is easy to verify that the gradient∇Bl

total

is Lipschitz in B; therefore, we aim to show strong convexity of ltotal in B to complete the proof
using standard convex optimization results.

For convenience, define y′i := −Xθ
(1)
i + y +X∆i. Substituting into (4.20), we want to show

that the following is strictly convex:

ltotal(B) =
1

N

N∑
i=1

∥XBG
(1)
i + y′i∥22.

Expanding the square, scaling, and dropping terms which are linear in B and thus do not affect
convexity, we have that ltotal(B) is strictly convex iff f(B) is strictly convex, where

f(B) =
N∑
i=1

(G
(1)
i )⊤B⊤X⊤XBG

(1)
i .
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With some abuse of notation, we aim to compute the Hessian of f(Bv) with respect to the
vectorized Bv = vec(B). Using standard matrix calculus identities [97] gives

∂f

∂B
= 2

N∑
i=1

X⊤XBG
(1)
i (G

(1)
i )⊤

= 2X⊤XB

N∑
i=1

G
(1)
i (G

(1)
i )⊤.

In order to compute the Hessian, we need to express vec( ∂f
∂B

) = ∂f
∂Bv . Using the standard

identity vec(ABC) = (C⊤ ⊗ A) vec(B) yields

∂f

∂Bv
=

(
N∑
i=1

G
(1)
i (G

(1)
i )⊤ ⊗ 2X⊤X

)
Bv.

Note that the gradient of f with respect to Bv is now linear in Bv. It is therefore immediate
that that our desired Hessian is a constant matrix

∇2
Bvf =

N∑
i=1

G
(1)
i (G

(1)
i )⊤ ⊗ 2X⊤X.

Note that the Kronecker product of positive definite matrices is positive definite. Since X⊤X ≻
0 by assumption, ∇2

Bvf ≻ 0 (and therefore ltotal(B) is strictly convex) if
∑N

i=1G
(1)
i (G

(1)
i )⊤ ≻ 0.

This occurs iff the set of vectors {G(1)
i }Ni=1 spans Rp. Invertibility of X⊤X implies that this is

equivalent to the collection of vectors {Zi}Ni=1 spanning Rp, where Zi is as defined in the theorem
statement.

Therefore ∇2
Bvf ≻ 0, and ltotal(B) is strongly convex. Letting B(k) denote the values of

the meta-parameters after k iterations of GD, by standard convex optimization results [98, The-
orem 3.6] we have that for a sufficiently small step size η,

∥B(k) −B∗∥22 ≤ O
(
(1− ϵ)k

)
,

where 0 < ϵ < 1. As ltarget(B) is Lipschitz on any bounded set around B∗, the linear convergence in
parameter space implies linear convergence in value, and we have shown the desired statement.

Note that the condition that {Zi}∞i=1 span Rp is satisfied almost surely for typical random ini-
tializations of θ(1)i . Theorem 6 can thus be interpreted as follows: provided at least N = p sensibly
initialized meta-training tasks, the meta learner will eventually learn to solve any target task to
arbitrary precision with exactly one inner-loop gradient descent step. This is an interesting formal
guarantee that suggests the expressive power of our DCO meta-learning framework. While this
section focuses on a particularly simple and tractable family of shifted least-squares problems as
a proof-of-concept, we expect that the DCO meta-learning framework provides a tractable avenue
for more sophisticated convergence results.
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4.6 Experiments
We verify the effectiveness of the proposed DCO meta-learning framework on some illustrative
tasks. Specifically, we leverage the DCO optimizer instantiations introduced in Section 4.4 to
solve linear least squares, system identification, and smooth function interpolation tasks.

Meta-Training Setup
Meta-parameters ϕ were initialized such that the DCO optimizers resemble existing first-order
update rules. Λ and M were set to constant vectors in (4.13) and (4.15) to mimic the GD update
rules introduced in Section 4.2. Similarly, we initialized B as the identity matrix in formulation
(4.14).

One potential challenge in training DCO optimizers is in ensuring that the proposed formula-
tions remain well-posed for the entirety of the unrolling of the computational graph represented
by Algorithm 7. While the formulations as unconstrained QPs are by themselves well-posed, from
a practical viewpoint potentially ill-posed inputs need to be handled. This is especially true for
the initial meta-training epochs, where suboptimal meta-parameters may give rise to undesirably
small or large inner loop gradients. This was overcome by normalizing inner loop gradients before
feeding them into the DCO optimizers.

In our experiments we set T = 1 with T as defined in Algorithm 7. Restricting T has the effect
of explicitly training the DCO optimizer to perform an aggressive inner loop descent step. From a
computational standpoint, this restriction of T allows to reallocate compute resources from solving
several DCOs in the inner loop to performing more meta-parameter updates.

Note that Algorithm 7 allows for any first-order meta-optimizer to perform updates on ϕ. For
simplicity we restrict ourselves to using RMSProp with default hyperparameter settings as sug-
gested in the PyTorch library.

The DCO optimizers were implemented on a 2.2 GHz single-core CPU using the CVXPYLayers
library [89] and were solved using general-purpose interior-point solvers. While the implementa-
tion could be made more efficient, it suffices to outline the potential of the DCO meta-learning
framework to outperform existing first-order baselines.

Throughout the experiments a comparison baseline of first-order methods Adam, SGD and
RMSProp was considered due to their prevalence in solving unconstrained minimizations. For each
baseline optimizer the learning rate was tuned and the best validation performance was reported.

Least Squares Task
We first focus on solving least-squares problems

min
θ∈R100

∥Xθ − y∥22, (4.22)

where X ∈ R100×100, y ∈ R100 with Xij, yi ∼ N (0, 1) ∀i, j ∈ [100]. The meta-training set was
constructed by sampling 100 tasks according to (4.22). For each task, a LS objective was sampled
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Figure 4.1: Optimization performance on 100-dimensional least-squares tasks. Validation curves
are averaged across 100 tasks.

which acts as both as li and lval
i , i.e. li = lval

i for i ∈ [100]. Meta-training was run for M = 20
epochs. Then 100 new tasks were sampled and the evolution of the average loss across tasks over
30 training epochs was compared with existing first-order methods. Figure 4.1 shows the results.
The DCO optimizers exhibit substantially faster convergence compared to classical baselines.

System Identification Task
Next, we consider the task of identifying the underlying nonlinear discrete-time dynamics for
population growth. We approximate the Beverton–Holt model given by

nt+1 = f(nt) :=
R0nt

K + nt

, (4.23)

where nt represents the population density in generation t, R0 > 0 is the proliferation rate per
generation, and K > 0 is the carrying capacity of the environment. To introduce stochasticity into
the model we include additive disturbance d ∼ N (0, 0.1). In this context, we define a particular
task by sampling a system with R0, K ∼ U(1, 2) and then generating training and validation sam-
ples {n, f(n)} with n ∼ U(0, 10). For each task we sample 500 training points and 100 validation
points. The goal is to learn the underlying discrete nonlinear dynamics using a feedforward archi-
tecture with design (1-5-5-1), i.e. 2 hidden layers with 5 units each. The training of each network is
carried out on the training set sampled for each task, and the final performance for that task is mea-
sured using the mean-square error (MSE) metric on the associated validation set. Meta-training
was run for M = 20 epochs. Figure 4.2 presents the performance comparison between considered
methods on 100 newly sampled tasks. The DCO optimizers continue to outperform baselines.
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Figure 4.2: Optimization performance measured by MSE on approximating the Beverton–Holt
dynamics. Validation curves are averaged across 100 tasks.
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Figure 4.3: Optimization performance measured by MSE on smooth interpolation tasks. Validation
curves are averaged across 10 tasks.

Smooth Function Interpolation Task
We finally consider the task of interpolating a real, nonlinear, smooth, univariate function via
regression. As an illustrative example, we consider the smooth function

g(x) = a cos(bx)exp(−c|x|) (4.24)

where a, b, c ∼ U(0, 1). A particular task is constructed by sampling 500 training points and
100 validation points from an instance of g(x). The goal of the task was to learn a feed-forward
network (FFN) with architecture (1-10-10-1) consisting of 2 hidden layers with 10 units each that
yields low validation MSE. As before, meta-training was run for M = 20 epochs. The performance
comparison with first-order methods on a new set of tasks is shown in Figure 4.3. The validation
loss learning curves are averaged over 10 tasks. Similar to previous settings, we have obtained an
improved convergence of DCO optimizers over baselines.
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4.7 Conclusion
This chapter introduces a novel DCO-based approach for optimizer design within the context of
meta-learning. The DCO meta-learning framework remains loyal to the inherent convex nature of
existing first-order update rules. We demonstrate that DCO-based optimizers not only generalize
existing first-order methods but also have the potential of representing novel update rules. Theoret-
ically, we show rapid convergence to the optimal update rule when meta-training DCOGD optimiz-
ers for a family of linear least-squares tasks. Experimentally, we demonstrate faster convergence
of the DCO instantiations as compared to existing first-order methods on a range of illustrative
tasks. Exciting future work involves finding a more general instantiation of DCO optimizers and
scaling this approach to more complex networks.
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Chapter 5

Revisiting Vector Quantization via Convex
Optimization

5.1 Introduction
Over the past years, architectural innovations and computational advances have both contributed
to the spectacular progress in deep generative modeling [2], [99], [100]. Key applications driving
this field include image [2], [100], [101] and speech [102] synthesis.

State-of-the-art generative models couple autoencoder models for compression with autore-
gressive (AR) or diffusion models for generation [2], [100], [101], [103], [104]. The autoencoder
models are trained in the first stage of the generation pipeline and aim to extract compressed yet
rich latent representations from the inputs. The AR or diffusion models are trained in the sec-
ond stage using latents obtained from the pre-trained autoencoder and are used for generation.
Throughout this work, we refer to the autoencoder models as first-stage models while the actual
generative models trained on the latent space are referred to as second-stage models. Therefore,
the effectiveness of the entire generation approach hinges upon the extraction of informative la-
tent codes within the first stage. One of the pervasive means of extracting such latent codes is by
embedding a vector quantization (VQ) bottleneck [99], [101] within the autoencoder models.

Motivated by the domain of lossy compression and techniques such as JPEG [105], VQ is a
method to characterize a discrete latent space. VQ operates as a parametric online K-means al-
gorithm: it quantizes individual input features with the “closest” learned codebook vector. Prior
to VQ, the latent space of variational autoencoders (VAEs) was continuous and regularized to ap-
proximate a normal distribution [106], [107]. The VQ method was introduced to learn a robust
discrete latent space that doesn’t suffer the posterior collapse drawbacks faced by VAEs regular-
ized by Kullback-Leibler distance [101]. Having a discrete latent space is also supported by the
observation that many real-world objects are in fact discrete: images appear in categories and
text is represented as a set of tokens. An additional benefit of VQ in the context of generation is
that it accommodates learning complex latent categorical priors. Due to these benefits, VQ un-
derpins several image generation techniques including vector-quantized variational autoencoders
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(VQVAEs) [99], [101], vector-quantized generative adversarial networks (VQGANs) [100], and
vector-quantized diffusion (VQ Diffusion) [104]. Notably it also has application in text-to-image
[108] and speech [102] generation.

While VQ has been applied successfully across many generation tasks, there still exist short-
comings in the method. One practical issue pertains to backpropagation when learning the VQ
model: the discretization step in VQ is non-differentiable. Currently, this is overcome by ap-
proximating the gradient with the straight-through estimator (STE) [109]. The VQ method is also
plagued by the “codebook collapse” problem, where only a few codebook vectors get trained due
to a “rich getting richer” phenomena [110]. Here codebook vectors that lie closer to the distribu-
tion of encoder outputs get stronger training signals. This ultimately leads to only a few codebook
vectors being used in the quantization process, which impairs the overall learning process. An-
other limitation with VQ is that inputs are quantized with exactly one (nearest) codebook vector
[101]. This process is inherently lossy and puts heavy burden on learning rich quantization code-
books. Several works have aimed at mitigating the aforementioned issues with heuristics [102],
[111]–[115]. While the recent works have demonstrated improvements over the original VQ im-
plementation, they are unable to fully attain the desired behavior: exact backpropagation through
a quantization step that leverages the full capacity of the codebook.

In view of the shortcomings of existing VQ techniques, we propose a technique called soft con-
vex quantization (SCQ). Rather than discretizing encoder embeddings with exactly one codebook
vector, SCQ solves a convex optimization in the forward pass to represent each embedding as a
convex combination of codebook vectors. Thus, any encoder embedding that lies within the convex
hull of the quantization codebook is exactly representable. Inspired by the notion of differentiable
convex optimization (DCO) [88], [89], this approach naturally lends itself to effectively backprop-
agate through the solution of SCQ with respect to the entire quantization codebook. By the means
of this implicit differentiation, stronger training signal is conveyed to all codebook vectors: this
has the effect of mitigating the codebook collapse issue.

We then introduce a scalable relaxation to SCQ amenable to practical codebook sizes and
demonstrate its efficacy with extensive experiments: training 1) VQVAE-type models on CIFAR-
10 [4] and German Traffic Sign Recognition Benchmark (GTSRB) [5] datasets, and 2) VQGAN-
type models [100] on higher-resolution LSUN [6] datasets. SCQ outperforms state-of-the-art VQ
variants on numerous metrics with faster convergence. More specifically, SCQ obtains up to an
order of magnitude improvement in image reconstruction and codebook usage compared to VQ-
based models on the considered datasets while retaining a comparable quantization runtime. We
also highlight SCQ’s improved performance over VQ in low-resolution latent compression, which
has the potential of easing the computation required for downstream latent generation.
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5.2 Background

Vector Quantization Networks
Vector quantization (VQ) has risen to prominence with its use in generative modeling [2], [99],
[101]. At the core of the VQ layer is a codebook, i.e. a set of K latent vectors C := {cj}Kj=1 used
for quantization. In the context of generative modeling, an encoder network Eϕ(·) with parameters
ϕ maps input x into a lower dimensional space to vector ze = E(x). VQ replaces ze with the
closest (distance-wise) vector in the codebook:

zq := Q (ze) = ck, where k = argmin
1≤j≤K

∥ze − cj∥, (5.1)

and Q(·) is the quantization function. The quantized vectors zq are then fed into a decoder network
Dθ(·) with parameters θ, which aims to reconstruct the input x. Akin to standard training, the
overarching model aims to minimize a task specific empirical risk:

min
ϕ,θ,C

E
x∼Pdist

[Ltask(D(Q(E(x))), x)] (5.2)

where Ltask could be a reconstruction [99], [101] or perceptual loss [2], [100] and Pdist is the un-
derlying data distribution. Training is performed using standard first-order methods via backprop-
agation [33]. As differentiation through the discretization step is ill-posed, the straight-through-
estimator (STE) [109] is used as a gradient approximation.

To ensure an accurate STE, a commitment loss is introduced to facilitate learning the codebook:

Lcommit(Eϕ, C) = (1− β)d(sg[ze], zq) + βd(ze, sg[zq]), (5.3)

where d(·, ·) is a distance metric, β > 0 is a hyperparameter and sg[·] is the stop gradient operator.
The first term brings codebook nearer to the encoder embeddings, while the second term optimizes
over the encoder weights and aims to prevent fluctuations between the encoder outputs and its
discretization. Combining Ltask and Lcommit yields a consolidated training optimization:

min
ϕ,θ,C

E
x∼Pdist

[Ltask(Dθ(Q(Eϕ(x))), x) + Lcommit(Eϕ, C)] . (5.4)

A concrete example of this framework is the loss used to train the VQVAE architecture [99],
[101]:

LVQ(Eϕ, Dθ, C) = ∥x− x̂∥22 + (1− β)∥sg[ze]− zq∥22 + β∥ze − sg[zq]∥22. (5.5)

where x̂ := Dθ(Q(Eϕ(x))) is the reconstruction.
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Vector Quantization Challenges
Gradient Approximation. As mentioned in 5.2, differentiation through the discretization step is
required to backpropagate through a VQ-embedded network. Taking the true gradient through the
discretization would yield zero gradient signal and thus deter any useful model training potential.
To this end, the STE is used to approximate the gradient. From the perspective of the discretization
function, the upstream gradient is directly mapped to the downstream gradient during backpropa-
gation, i.e. the non-differentiable discretization step is effectively treated as an identity map. While
prior work has shown how a well-chosen coarse STE is positively correlated with the true gradient
[116], further effort has been put into alleviating the non-differentiability issue. In [111], [112],
the Gumbel Softmax reparameterization method is introduced. This method reparameterizes a cat-
egorical distribution to facilitate efficient generation of samples from the underlying distribution.
Let a categorical distribution over K discrete values have associated probabilities πi for i ∈ [K].
Then we can sample via the reparameterization

sample ∼ argmax
i
{Gi + log πi}, (5.6)

where Gi ∼ Gumbel(0, 1) are samples from the Gumbel distribution. Since the argmax operator
is not differentiable, the method approximates it with a Softmax operator during backpropagation.

Codebook Collapse. In the context of VQ, codebook collapse refers to the phenomenon where
only a small fraction of codebook vectors are used in the quantization process [110]. While the un-
derlying cause is not fully understood, the intuition behind this behavior is that codebook vectors
that lie nearer to the encoder embedding distribution receive more signal during training and thus
get better updates. This causes an increasing divergence in distribution between embeddings and
underused codebook vectors. This misalignment is referred to as an internal codebook covariate
shift [114]. Codebook collapse is an undesired artefact that impairs the overarching model’s per-
formance as the full codebook capacity is not used. Thus, there have been many concerted efforts
to mitigate this issue. One line of work targets a codebook reset approach: replace the dead code-
book vectors with a randomly sampled replacement vector [102], [113]. This approach requires
careful tuning of iterations before the replacement policy is executed. Another direction of work
aims to maintain stochasticity in quantization during the training process [110], [117]. This body
of work is based on observations that the quantization is stochastic at the beginning of training and
gradually convergences to deterministic quantization [117]. In [114], authors introduce an affine
reparameterization of the codebook vectors to minimize the divergence of the unused codebook
vectors and embedding distributions.

Lossy quantization. As mentioned previously, VQ-embedded networks are trained with the
STE that assume the underlying quantization function behaves like an identity map. Therefore,
effective training relies on having a good quantization function that preserves as much information
as possible of the encoder embeddings. Given an encoder embedding ze, the quantized output can
be represented as zq = ze + ϵ where ϵ is a measure of the residual error. Since STE assumes the
quantization is an identity map, the underlying assumption is that ϵ = 0. In practice, however,
the quantization process with a finite codebook is inherently lossy and we have ϵ > 0. Therefore,
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the underlying quantization function should make the quantization error as small as possible to
guarantee loss minimization with the STE. For large residuals, no loss minimization guarantees
can be made for the STE. Recent work has proposed an alternating optimization scheme that aims
to reduce the quantization error for VQ [114]. In [115], authors introduce residual quantization
(RQ) which performs VQ at multiple depths to recursively reduce the quantization residual. While
RQ has shown improved empirical performance, it is still plagued with the same core issues as VQ
and trades-off additional computational demands for executing VQ multiple times within the same
forward pass.

Differentiable Convex Optimization (DCO) Layers
DCO is an instantiation of implicit layers [88] that enables the incorporation of constrained convex
optimization within deep learning architectures. The notion of DCO layers was introduced in [88]
as quadratic progamming (QP) layers with the name OptNet. QP layers were formalized as

zk+1 := argmin
z∈Rn

z⊤R(zk)z + z⊤r(zk)

s.t. A(zk)z +B(zk) ≤ 0,

Ā(zk)z + B̄(zk) = 0 (5.7)

where z ∈ Rn is the optimization variable and layer output, while R(zk), r(zk), A(zk), B(zk),
Ā(zk), B̄(zk) are optimizable and differentiable functions of the layer input zk. Such layers can
be naturally embedded within a deep learning architecture and the corresponding parameters can
be learned using the standard end-to-end gradient-based training approach prevalent in practice.
Differentiation with respect to the optimization parameters in (5.7) is achieved via implicit differ-
entiation through the Karush-Kuhn-Tucker (KKT) optimality conditions [88], [96]. On the com-
putational side, [88] develop custom interior-point batch solvers for OptNet layers that are able to
leverage GPU compute efficiency.

5.3 Methodology
In this section, we introduce the soft convex quantization (SCQ) method as an instantiation of a
DCO. SCQ acts as an improved drop-in replacement for VQ that addresses many of the challenges
introduced in Section 5.2.

Soft Convex Quantization with Differentiable Convex Optimization
SCQ leverages convex optimization to perform soft quantization. As mentioned previously, SCQ
can be treated as a direct substitute for VQ and its variants. As such, we introduce SCQ as a
bottleneck layer within an autoencoder architecture. The method is best described by decompos-
ing its workings into two phases: the forward pass and the backward pass. The forward pass is
summarized in Algorithm 8 and solves a convex optimization to perform soft quantization. The
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backward pass leverages differentiability through the KKT optimality conditions to compute the
gradient with respect to the quantization codebook.

Forward pass. Let X ∈ RN×F×H×W denote an input (e.g. of images) with spatial dimension
H ×W , depth (e.g. number of channels) F and batch size N . The encoder Eϕ(·) takes X and
returns Ze := Eϕ(X) ∈ RN×F×H̃×W̃ where F is the embedding dimension and H̃ × W̃ is the
latent resolution. Ze is the input to the SCQ. The SCQ method first runs VQ on Ze and stores
the resulting one-hot encoding as P̃ ∈ RK×NH̃W̃ . The codebook used to obtain P̃ is the same
codebook used throughout the SCQ process; P̃ represents the output of the VQ method given the
SCQ codebook. P̃ is detached from the computational graph and treated as a constant, i.e. no
backpropagation through P̃ . Then Ze is passed into a DCO of the form

P ⋆ := argmin
P∈RK×NH̃W̃

∥Zflattened
e − CP∥2F + λ∥P − P̃∥2F

s.t. P ≥ 0,

P⊤1K = 1NH̃W̃ , (5.8)

where Zflattened
e ∈ RF×NH̃W̃ is a flattened representation of Ze, C ∈ RF×K represents a randomly

initialized codebook matrix of K latent vectors, λ > 0 is a regularization parameter and P ∈
RK×NH̃W̃ is a matrix we optimize over. SCQ solves convex optimization 5.8 in the forward pass:
it aims to find weights P ⋆ that best reconstruct the columns of Zflattened

e with a convex combination
of codebook vectors. The regularization term in the objective biases the SCQ solution towards the
one-hot VQ solution, i.e. we observe that limλ→∞ P ⋆ = P̃ . This shows that VQ is a particular
instantiation of SCQ for λ←∞. When keeping λ finite, we obtain a balance between the one-hot
VQ solution compatible with downstream autoregressive generative processes and the improved
backpropagation, codebook collapse prevention capabilities of the DCO.

The constraints in optimization 5.8 enforce that the columns of P lie on the unit simplex, i.e.
they contain convex weights. The codebook matrix C is a parameter of the DCO and is updated
with all model parameters to minimize the training loss. It is randomly initialized before training
and is treated as a constant during the forward pass. The SCQ output is given by Zflattened

q := CP ⋆.
This is resolved to the original embedding shape and passed on to the decoder model.

Backward pass. During the forward pass SCQ runs VQ and then solves optimization 5.8 to
find a sparse, soft convex quantization of Ze. The underlying layer parameters C are treated as
constants during the forward pass. C is updated with each backward pass during training. As C is
a parameter of a convex optimization, DCO enables backpropagation with respect to C via implicit
differentiation through the KKT conditions [89].

Improved backpropagation and codebook coverage with SCQ. During the forward pass of
SCQ, multiple codebook vectors are used to perform soft quantization on Ze. Optimization 5.8
selects a convex combination of codebook vectors for each embedding in Ze. Therefore, SCQ
is inclined to better utilize the codebook capacity over VQ where individual codebook vectors
are used for each embedding. Owing to the DCO structure of SCQ, we can also backpropagate
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Algorithm 8 Soft Convex Quantization Algorithm
Design choices: Quantization regularization parameter λ > 0, embedding dimension F , codebook size K

Input: Encodings Ze ∈ RN×F×H̃×W̃

Return: Convex quantizations Zq ∈ RN×F×H̃×W̃

Parameters: Randomly initialize codebook C ∈ RD×K

begin forward
1. Zflattened

e ∈ RF×NH̃W̃ ← Reshape(Ze)

2. P̃ ∈ RK×NH̃W̃ ← VQ(detach(Zflattened
e ))

3. P ⋆ := argmin
P∈RK×NH̃W̃ ∥Zflattened

e − CP∥2F + λ∥P − P̃∥2F : P ≥ 0, 1⊤KP = 1NH̃W̃

4. Zflattened
q ∈ RF×NH̃W̃ ← CP ⋆

5. Zq ∈ RN×F×H̃×W̃ ← Reshape(Zflattened
q )

end

effectively through this soft quantization step, i.e. training signal is distributed across the entire
codebook.

Improved quantization with SCQ. We consider how the quantization error is incurred for
VQ: the error is measured between the input feature and the “closest” codebook vector. For SCQ,
any individual input feature can be exactly reconstructed if it lies within the convex hull of the set
of codebook vectors. This is a consequence of the formulation of optimization 5.8. Thus, for any
input feature that does not coincide exactly with a codebook vector and lies within the convex hull
of codebook vectors, we incur no quantization error in SCQ whereas we incur nonzero error in the
VQ method. For input features outside the convex hull of the set of codebook vectors, we again
incur smaller error for SCQ as we measure the error with respect to the projection onto the convex
hull. This intuitively suggests SCQ’s propensity for low quantization errors during the forward
pass as compared to VQ variants that are inherently more lossy.

Scalable Soft Convex Quantization
As proposed in [88], optimization 5.8 can be solved using interior-point methods which give the
gradients for free as a by-product. Existing software such as CVXPYLayers [89] is readily avail-
able to implement such optimizations. Solving 5.8 using such second-order methods incurs a cubic
computational cost of O((NKH̃W̃ )3). However, for practical batch sizes of N ≈ 100, codebook
sizes K ≈ 100 and latent resolutions H̃ = W̃ ≈ 50, the cubic complexity of solving 5.8 is
intractable.

To this end we propose a scalable relaxation of the optimization 5.8 that remains performant
whilst becoming efficient. More specifically, we approximate 5.8 by decoupling the objective and
constraints. We propose first solving the regularized least-squares objective with a linear system
solver and then projecting the solution onto the unit simplex. With this approximation, the overall
complexity decreases from O((NKH̃W̃ )3) for the DCO implementation to O(K3). In practice
(K ≈ 103) this linear solve adds negligible overhead to the wall-clock time as compared to standard
VQ. This procedure is outlined in our revised scalable SCQ method shown in Algorithm 9. The
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Algorithm 9 Practical Soft Convex Quantization Algorithm
Design choices: Regularization parameter λ > 0, number of projection steps m, embedding dimension F , codebook size K

Input: Encodings Ze ∈ RN×F×H̃×W̃

Return: Convex quantizations Zq ∈ RN×F×H̃×W̃

Parameters: Randomly initialize codebook C ∈ RF×K

begin forward
1. Zflattened

e ∈ RF×NH̃W̃ ← Reshape(Ze)

2. P̃ ∈ RK×NH̃W̃ ← VQ(Zflattened
e )

3. P ∈ RK×NH̃W̃ ← LinearSystemSolver(C⊤C + λI, C⊤Zflattened
e + λP̃ )

for i ∈ [m] do
4. P ← max(0, P )

5. P:,k ← P:,k −
∑

j Pj,k−1

K
1K , ∀k ∈ [NH̃W̃ ]

end for
6. P ⋆ ← P
7. Zflattened

q ∈ RF×NH̃W̃ ← CP ⋆

8. Zq ∈ RN×F×H̃×W̃ ← Reshape(Zflattened
q )

end

projection onto the unit simplex is carried out by iterating between projecting onto the nonnegative
orthant and the appropriate hyperplane.

5.4 Experiments
This section examines the efficacy of SCQ by training autoencoder models in the context of gener-
ative modeling. Throughout this section we consider a variety of datasets including CIFAR-10 [4],
the German Traffic Sign Recognition Benchmark (GTSRB) [5] and higher-dimensional LSUN [6]
Church and Classroom. We run all experiments on 48GB RTX 8000 GPUs. Details on hyperpa-
rameter configurations and convergence plots can be found in Sections 5.6 and 5.7.

Training VQVAE-Type Models
We consider the task of training VQVAE-type autoencoder models with different quantization
bottlenecks on CIFAR-10 [4] and GTSRB [5]. This autoencoder architecture is still used as a
first stage within state-of-the-art image generation approaches such as VQ Diffusion [104]. The
autoencoder structure is depicted in [118] and is trained with the standard VQ loss 5.5.

We compare the performance of SCQ against existing methods VQVAE [101], Gumbel-VQVAE
[111], RQVAE [115], VQVAE with replacement [102], [113], VQVAE with affine codebook trans-
formation and alternating optimization [114]. For reference, we also include results for a non-
quantized autoencoder; this model is not compatible with downstream generative applications due
to the missing latent structure provided by a quantization bottleneck. The autoencoder and quanti-
zation hyperparameters used for each dataset are detailed in [118]. The performance is measured
using the reconstruction mean square error (MSE) and quantization error. The reconstruction error
measures the discrepancy in reconstruction at the pixel level, while the quantization error measures
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the incurred MSE between the encoder outputs Ze and quantized counterpart Zq. We also measure
the perplexity of each method to capture the quantization codebook coverage. Larger perplexity
indicates better utilization of the codebook capacity. In this experiment, the results on the test
datasets were averaged over 5 independent training runs for 50 epochs. Table 5.1 presents the
results.

Table 5.1: Comparison between methods on an image reconstruction task for CIFAR-10 and GT-
SRB over 5 independent training runs. All metrics are computed and averaged on the test set.

Method MSE (10−3)↓ Quant Error↓ Perplexity↑ Avg Quant Time (ms)↓
VQVAE 41.19 70.47 6.62 4.45
VQVAE + Rep 5.49 4.13× 10−3 106.07 5.56
VQVAE + Affine + OPT 16.92 25.34× 10−3 8.65 5.74

CIFAR-10 VQVAE + Rep + Affine + OPT 5.41 4.81× 10−3 106.62 5.78
Gumbel-VQVAE 44.5 23.29× 10−3 10.86 0.84
RQVAE 4.87 44.98× 10−3 20.68 12.4
SCQVAE 1.53 0.15× 10−3 124.11 7.42
Non-Quantized AE (Reference) 0.44 - - -

VQVAE 39.30 70.16 8.89 11.61
VQVAE + Rep 3.91 1.61× 10−3 75.51 11.93
VQVAE + Affine + OPT 11.49 13.27× 10−3 5.94 11.71

GTSRB VQVAE + Rep + Affine + OPT 4.01 1.71× 10−3 72.76 11.70
Gumbel-VQVAE 56.99 47.53× 10−3 4.51 0.85
RQVAE 4.96 38.29× 10−3 10.41 25.84
SCQVAE 3.21 0.24× 10−3 120.55 12.93
Non-Quantized AE (Reference) 1.25 - - -

SCQVAE outperforms all baseline quantization methods across all metrics on both datasets: the
model yields significantly improved quantization errors and perplexity measures. The improved
quantization error suggests better information preservation in the quantization process, while im-
proved perplexity indicates that SCQ enables more effective backpropagation that better utilizes
the codebook’s full capacity. These improvements were attained whilst maintaining training wall-
clock time with the VQ baselines. The RQVAE method, on the other hand, did incur additional
training time (approximately 2×) due to its invoking of multiple VQ calls within a single forward
pass.

Figures 5.1 (a) and (b) illustrate SCQVAE’s improved convergence properties over state-of-
the-art RQVAE [115] and VQVAE with replacement, affine transformation and alternating opti-
mization [114]. For both datasets, SCQVAE is able to converge to a lower reconstruction MSE
on the test dataset (averaged over 5 training runs). We next considered the higher-dimensional
(256 × 256) LSUN [6] Church dataset. Figure 5.2 visualizes the reconstruction of SCQVAE in
comparison with VQVAE [101] and Gumbel-VAE [111], [112] on a subset of test images after
1, 10 and 20 training epochs. This visualization corroborates previous findings and further show-
cases the rapid minimization of reconstruction MSE with SCQVAE. A similar visualization for
CIFAR-10 is given in [118].
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Figure 5.1: SCQVAE’s improved reconstruction convergence on CIFAR-10 (a) and GTSRB (b).

LSUN Church Original Images

SCQVAE Reconstruction VQVAE Reconstruction Gumbel-VQVAE Reconstruction

Epoch 1

Epoch 10

Epoch 20

Figure 5.2: Comparison of LSUN [6] Church reconstruction on the test dataset.

Training VQGAN-Type Models
In this section, we focus on training first-stage models used within image synthesis methods such
as unconditional latent diffusion models (LDM). We use the LSUN [6] Church and Classroom
datasets and train VQGAN-type architectures trained with the associated VQGAN loss [100]. We
refer to the SCQ-embedded architectures as SCQGAN models.

The hyperparameter configurations used for both the VQ and SCQGAN architectures are sum-
marized in [118]. The performance of both architectures was measured on the test set with the
VQGAN loss [100] referred to as LVQGAN, and LPIPS [119]. To examine the efficacy of both
methods at different latent compression resolutions we train different architectures that compress
the 256 × 256 images to 64 × 64, 32 × 32 and 16 × 16 dimensional latent resolutions. Table 5.2
summarizes the results. SCQGAN outperforms VQGAN on both datasets across both metrics on
all resolutions. This result highlights the efficacy of SCQ over VQ in preserving information dur-
ing quantization - especially at smaller resolution latent spaces (greater compression). This result
is particularly exciting for downstream generation tasks that leverage latent representations. More
effective compression potentially eases the computational burden on the downstream tasks whilst
maintaining performance levels. In [118], we include plots that further illustrate faster convergence



CHAPTER 5. REVISITING VECTOR QUANTIZATION VIA CONVEX OPTIMIZATION 85

for SCQGAN on both metrics across all resolutions.

Table 5.2: Comparison between SCQGAN and VQGAN on LSUN image reconstruction tasks.
The same base architecture is used for all methods and metrics are computed on the test set.

LSUN Church LSUN Classroom
Method LVQGAN (10−1)↓ LPIPS (10−1)↓ LVQGAN (10−1)↓ LPIPS (10−1)↓
VQGAN (64-d Latents) 4.76 4.05 3.50 3.28

SCQGAN (64-d Latents) 3.93 3.88 3.29 3.23

VQGAN (32-d Latents) 6.60 6.22 8.01 7.62
SCQGAN (32-d Latents) 5.53 5.48 6.76 6.53

VQGAN (16-d Latents) 8.32 8.18 9.87 9.68
SCQGAN (16-d Latents) 7.86 7.84 9.19 9.15

5.5 Conclusion
This chapter proposes soft convex quantization (SCQ): a novel soft quantization method that can
be used as a direct substitute for vector quantization (VQ). SCQ is introduced as a differentiable
convex optimization (DCO) layer that quantizes inputs with a convex combination of codebook
vectors. SCQ is formulated as a DCO and naturally inherits differentiability with respect to the
entire quantization codebook. This enables overcoming issues such as inexact backpropagation
and codebook collapse that plague the VQ method. SCQ is able to exactly represent inputs that lie
within the convex hull of the codebook vectors, which mitigates lossy compression. Experimen-
tally, we demonstrate that a scalable relaxation of SCQ facilitates improved learning of autoen-
coder models as compared to baseline VQ variants on CIFAR-10, GTSRB and LSUN datasets.
SCQ gives up to an order of magnitude improvement in image reconstruction and codebook usage
compared to VQ-based models on the considered datasets while retaining comparable quantization
runtime. In future work, we aim to couple the improved SCQ autoencoder models with latent gen-
erative processes and investigate how SCQ can be used to enhance the performance of downstream
applications.
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5.6 Additional Results: VQVAE Experiments
In Figure 5.3 we illustrate the autoencoder architecture used in experiments described in Section
5.4. The hyperparameters described in [101] were adjusted for the considered datasets. Table
5.3 describes the hyperparameters used in the experiment. Figure 5.4 visualizes the reconstruc-
tion of CIFAR-10 [4] test images by the SCQVAE, VQVAE [101] and Gumbel-VQVAE [111],
[112] architectures. The visualization shows significantly improved reconstruction performance of
SCQVAE over the baselines.

Conv + ReLU ConvTranspose +
ReLU

Residual Block

Quantizer

Encoder Decoder

Image Reconstuction

Residual Block

Figure 5.3: Autoencoder architecture for the reconstruction experiments on the CIFAR-10 [4] and
GTSRB [5] datasets.

Table 5.3: Hyperparameters of autoencoder used for CIFAR-10 [4], GTSRB [5] and LSUN [6]
Church experiments. λ and m are only applicable to the SCQ architecture.

CIFAR-10 GTSRB LSUN Church

Image size 32× 32 48× 48 256× 256

Latent size 16× 16 24× 24 64× 64

β (def. in (5.5)) 0.25 0.25 0.25
Batch size 128 128 128
Conv channels 32 32 128
Residual channels 16 16 64
Nr of residual blocks 2 2 2
Codebook size 128 128 128
Codebook dimension 16 16 32
λ (in Algorithm 9) 0.1 0.1 0.1
m (in Algorithm 9) 20 20 20
Training steps 19550 10450 7850
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Original CIFAR-10 Images

SCQVAE Reconstruction VQVAE Reconstruction Gumbel-VQVAE Reconstruction

Epoch 10

Epoch 30

Epoch 50

Figure 5.4: Comparison of CIFAR-10 [4] reconstruction on the validation dataset.
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Figure 5.5: SCQGAN outperforms VQGAN on LVQGAN (AE loss) and LPIPs on the LSUN Church
(a) and Classroom (b) datasets. These results are for a latent resolution of 64× 64.

5.7 Additional Results: VQGAN Experiments

Table 5.4: Hyperparameters of VQ/SCQGAN models trained on the LSUN [6] Church and Class-
room datasets. Images were center-cropped to a size 256× 256. Models were trained to compress
latents to different resolutions. λ and m are only applicable to the SCQ architecture.

16× 16 Latents 32× 32 Latents 64× 64 Latents

β (def. in (5.5)) 0.25 0.25 0.25
Batch size 64 64 64
Base residual channels (C) 128 128 128
Residual channels at different resolutions [C, 2C, 4C, 8C, 8C] [C, 2C, 4C, 8C] [C, 2C, 4C]
Nr of residual blocks 2 2 2
Codebook size 512 512 1024
Codebook dimension 10 8 3
λ (in Algorithm 9) 0.1 0.1 0.1
m (in Algorithm 9) 2 2 2
Total Params (106) 339 225 58
Training steps 9384 9384 9384
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Figure 5.6: SCQGAN outperforms VQGAN on LVQGAN (AE loss) and LPIPs on the LSUN Church
(a) and Classroom (b) datasets. These results are for a latent resolution of 32× 32.
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Figure 5.7: SCQGAN outperforms VQGAN on LVQGAN (AE loss) and LPIPs on the LSUN Church
(a) and Classroom (b) datasets. These results are for a latent resolution of 16× 16.
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Chapter 6

Conclusion

In conclusion, this thesis makes significant contributions to the field of machine learning by tack-
ling the complex training and optimization challenges inherent to prevalent neural network archi-
tectures.

The work starts by focusing on the development of innovative algorithms specifically designed
to reduce the computational and memory demands of training implicit deep learning models and
transformer-based language models. We begin by introducing an efficient sequential training
method for implicit equilibrium models, which significantly simplifies the training process by
eliminating the need for solving fixed-point equations and projection steps. Next, we propose a
variance-reduced zeroth-order method that enables the fine-tuning of language models using only
memory-efficient inference passes.

The second half of this work extends into the utility of differentiable optimization, showcasing
its potential to refine training methodologies within meta-optimization and vector quantization. By
leveraging the structured approach of differentiable convex optimization, we present a novel way
of parameterizing first-order optimizers in the context of meta-optimization. Then, we demonstrate
how differentiable optimization can be used to improve upon the issues of backpropagation faced
in a vector quantization layer.

This thesis stands as a testament to the evolving nature of machine learning research, empha-
sizing the necessity for ongoing innovation in training strategies to keep pace with architectural
advancements. Through our contributions, we aim to enrich the academic discourse and provide a
robust foundation for future investigations into efficient training methods for deep learning.
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