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Abstract

Real-Time, Streamable Differentiable DSP Vocoder for Articulatory Synthesis

by

Drake Lin

Master’s of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Gopala Anumanchipalli, Chair

Articulatory synthesis, the process of generating speech from physical movements of human
articulators, offers unique advantages due to its physically grounded and compact input fea-
tures. However, recent advancements in the field have prioritized audio quality without a
focus on streaming latency. In this paper, we propose a real-time streaming differentiable
digital signal processing (DDSP) articulatory vocoder that can synthesize speech from elec-
tromagnetic articulography (EMA), fundamental frequency (F0), and loudness data. Our
best model achieves a transcription word error rate (WER) of 8.9%, which is 4.0% lower
than a state-of-the-art baseline. The same model can also generate 5 milliseconds of speech
in less than 2 milliseconds on CPU in a streaming fashion, opening the door for downstream
real-time low-latency audio applications.
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Chapter 1

Introduction

1.1 Background

Articulatory synthesis is a speech synthesis method that generates speech from articulatory
features, the physical movements of human articulators such as the lips, tongue and jaw.
This method traces its origins to the early 20th century when researchers sought to synthe-
size speech using mechanical models of the vocal tract. As technology improved, researchers
began developing more complex and precise computational models, culminating with the
integration of neural networks in the past couple decades that have brought improvements
to the naturalness and intelligibility of synthesized speech. Unlike speech synthesis methods
that rely on other intermediate speech representations such as Mel spectrograms, articula-
tory synthesis offers several unique advantages. Since the input features to an articulatory
synthesizer are physically grounded [6], it is easily interpretable and controllable, allowing
for nuanced and dynamic adjustments in speech sound production. By closely mimicking
human speech mechanics, the method has the potential to produce more natural-sounding
and expressive speech, especially in languages with complex phonetic and phonological rules.
The parameter space in articulatory synthesis is also more compact compared to other meth-
ods, leading to data processing efficiency and reducing the computational load [2], critical
for real-time speech applications. For instance the dataset [29] contains only 6 x-y points per
sample, in contrast to the 128 Mel bins typically used in Mel spectrogram-based vocoders.

Articulatory synthesis is applicable to a variety of downstream tasks. It has shown
promise in assisting patients with vocal cord disorders communicate better [10, 20] and help
decode brain signals to speech waveforms [4], revolutionizing communication for locked-in
patients. Additionally, articulatory synthesis has applications in silent speech systems, di-
rectly converting articulatory movements into speech without vocalization [10]. Furthermore,
articulatory synthesis can be utilized in voice conversion tasks by manipulating a speaker’s
unique articulatory parameters, potentially enhancing user security and privacy in digital
communications [7].
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Figure 1.1: Electromagnetic articulography (EMA) sensor locations. Diagram from [29].

1.2 Motivations

Many of the aforementioned tasks, such as real-time communication aids and assistive tech-
nologies, depend on the ability to operate in a real-time and streaming fashion. However,
to our knowledge, no current model exists that currently meets these needs while delivering
high-quality performance. Most models, including the state-of-the-art HiFi-CAR model [2],
are designed for high-quality output without an emphasis on the low-latency or streamable
aspects necessary for real-time interaction.

To solve this problem, we utilize Differentiable Digital Signal Processing (DDSP) [11].
DDSP models combines traditional digital signal processing (DSP) techniques with mod-
ern neural network architectures, creating a powerful hybrid model that benefits from the
strength of both domains. The neural network encoder converts input features such as pitch,
loudness, and spectral features, into control signals that dynamically guide the DSP modules
to generate audio. The DSP modules are differentiable such that the model can be trained
end-to-end, hence the name ”Differentiable Digital Signal Processing”. Importantly, these
DSP components are designed based on well-understood signal processing techniques that
inherently model the speech production process, introducing a strong natural inductive bias
that simplifies the model and enhances its efficiency. Thus, DDSP vocoders are ideal for
real-time applications, since they are both lightweight and high-quality.
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1.3 Research Objective

We aim to design a real-time, streamable DDSP articulatory vocoder that leverages the
detailed vocal tract information provided by articulatory data, augmented with F0 and
loudness data to provide source information. This integration would potentially enhance
the naturalness and expressiveness of the synthesized speech while staying lightweight and
streamable. The proposed vocoder must be capable of generating high-quality speech in a
streaming fashion while maintaining a latency of less than 5 milliseconds per sample. This
undercuts the 200Hz sample rate of most articulatory data, crucial for the model to be
considered real-time capable. Additionally, our audio quality must match or exceed the
current state-of-the-art systems.
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Chapter 2

Related Work

2.1 Articulatory Synthesis

In the deep learning era, there are generally three different frameworks for articulatory syn-
thesis. The first approach involves predicting the acoustic parameters from articulatory fea-
tures, followed by speech synthesis with traditional signal-processing-based vocoders. This
method leverages existing, well-established vocoders like WORLD [25], which are known for
their efficiency and robustness. These tried and tested vocoders provide a stable baseline
for quality and intelligibility. Several studies have demonstrating its effectiveness in gen-
erating intelligible speech [8, 30]. However, since these models are not trained end-to-end,
their reliance on intermediate acoustic parameter prediction can introduce errors which are
propagated in the synthesized speech.

The second approach focuses on predicting intermediate spectrograms from articulatory
features [10, 18], which are then transformed into speech using Generative Adversarial Net-
work (GAN)-based vocoders [32, 19]. These GAN-based vocoders can generate high-quality
speech from less detailed spectrograms, which is advantageous when dealing with articulatory
data that may be inherently noisy or imprecise. However, this approach faces latency chal-
lenges, since there are two distinct models used: one for spectrogram generation and another
for converting these spectrograms into speech. The computational overhead of maintaining
two complex models also impacts resource efficiency.

The third and most direct approach is the synthesis of speech directly from articulatory
features using models such as HiFi-CAR [19, 26]. This method eliminates the need for
intermediate representations like acoutsic parameters or spectrograms, reducing the synthesis
complexity and error accumulation. Among them, [2] is the state-of-the-art (SOTA) model
in terms of synthesis intelligibility and inference speed. However, direct modeling techniques
such as HiFi-CAR can be computationally expensive and require extensive data as the model
must learn to model the intricate correlations between articulatory movements and resulting
sound.
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2.2 Differentiable Digital Signal Processing

Differentiable Digital Signal Processing (DDSP) is a framework that integrates classical dig-
ital signal processing (DSP) techniques with modern neural network architectures to create
highly efficient and expressive models for audio synthesis [11]. At its core, a DDSP model
consists of two components: a neural network encoder and traditional digital signal process-
ing (DSP) modules, as shown in Figure 2.1 from [11]. The neural network encoder act as
a feature extractor, transforming input features like fundamental frequency (F0), loudness,
and spectral features into control signals. These signals include filter coefficients and am-
plitudes for harmonic synthesis, which dictate the input of the DSP modules that generate
the output audio. The DSP modules, such as filters, oscillators, and noise generators, are
designed to be differentiable to support back-propagation. Thus, the model can be trained
end-to-end.

By utilizing DSP techniques that inherently model the physical and perceptual proper-
ties of audio generation, DDSP models are more lightweight and require less data to train
compared to models that attempt to learn synthesis from scratch. Instead of learning to
model raw waveforms, DDSP models need only to learn to model the control signals, leaving
the synthesis task to the controllable DSP modules. This domain-appropriate inductive bias
results in more natural periodicity and frequency changes, as well as better controllability
as the control signals can directly be manipulated [14, 11].

There are two main architectures of DDSP vocoders: the source-filter model [31, 1, 21]
and the harmonic-plus-noise (H+N) model [27, 12, 28]. The source-filter model is a classical
approach to speech synthesis based on the human vocal system, where the ”source” generates
raw voiced/unvoiced sounds which is then shaped by the ”filter”, which represents the vocal

Figure 2.1: DDSP autoencoder architecture from [11]. Red components are trainable neural
networks, green components are the latent representation, and yellow components are deter-
ministic synthesizers and effects.
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tract. The Harmonic-plus-Noise model divides speech into two components: harmonic tones,
which represent the periodic part of speech produced by vocal cord vibrations, and noise,
which models the aperiodic parts of speech produced by airflow in the vocal tract. The
H+N model is extremely adaptable, which is particularly beneficial when neural networks
are learning the control signals.

DDSP has seen wide-spread applications in music generation due to the music’s natural
periodicity and structure [11, 34]. The technique has also been applied to timbre transfer
[24, 9, 13], extracting the quality of an instrument or voice and imposing it on another audio
source. DDSP has also been used for singing voice synthesis [3, 33] and speech synthesis [31,
1, 21, 27, 12, 28], where the controllability and fluidity of DDSP is highly valued.
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Chapter 3

Methods

Following [11], our proposed model has two parts: a neural network encoder and a DSP
vocoder. We augment the EMA data, which contains vocal tract filter information, with F0
and loudness, which contains source information, to serve as the model inputs. The model has
two parallel implementations: one for offline training, which processes entire samples at once,
and another for real-time streaming, where samples are inputted one batch at a time. The
overall architecture and performance remains the same, but slight implementation differences
will be noted when relevant. In the real-time streaming mode, the initial forward pass does
not produce any audio output. Subsequent forward passes will output the audio between
[tn−1, tn]. For instance, with the inputs at fmodel = 200 Hz and output audio sampling
frequency set as fs = 16kHz, each forward pass outputs 80 audio samples.

3.1 Encoder

The encoder architecture is shown in Figure 3.1. Its inputs are the speech’s fundamental
frequency F0, loudness, and EMA sampled at fmodel = 200 Hz. The encoder converts the

Figure 3.1: Model architecture. Only the green encoder modules are trainable. The gray
blocks are control signals. F0 is pitch, L is loudness, a[n] is the global amplitude, c[n] is the
harmonic distribution, H[n] is the filter frequency response.
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features into control signals of the same sampling frequency fmodel. Any seq-to-seq model is
viable in place of the LSTM (Long Short-Term Memory) unit; we experimented with GRUs
(Gated Recurrent Unit), BiLSTMs, BiGRUs, convolutional layers, and transformers, but
ended up selecting LSTM for its superior combination of streamability, synthesis quality,
and lightweight nature.

The input features are first concatenated along the channel dimension, then processed
by an MLP (multi-layer perceptron) layer to extract features and project the concatenated
input into a higher-dimensional space. The output of the MLP is then passed into the LSTM
to model the temporal nature of speech. Finally, the output of the LSTM is passed into three
linear heads to produce the control units. The first two heads have K + 1 units, where K
denotes the total number of harmonics used. The first unit’s output is the global amplitude
asin[n] and acos[n] respectively, while the rest of the output corresponds to the time-varying
harmonic distribution csin[n] and ccos[n], which is a vector of length K at each time point
n. Before being fed into the harmonic oscillator, the csin[n] and ccos[n] whose corresponding
harmonic frequencies are greater than Nyquist frequency are set to -1e-10 to avoid aliasing.
The processed csin[n] and ccos[n] are then normalized using softmax. The output of the other
linear head is the frequency response H[n] of the time-varying filters, which is a vector of
size M at each time point n.

For the real-time streaming mode, the LSTM forward pass is modified to include the
previous hidden state alongside each new sample. Since the other components of the en-
coder operate solely on the current sample timestamp, the encoder’s performance remains
consistent whether processing is conducted offline or in real-time.

3.2 Digital Signal Processing (DSP) Generator

For the DSP modules, we iterated on the DSP generators of [11]. The outputs of the
encoder control two DSP modules: a harmonic oscillator and a filtered-noise generator.
The harmonic oscillator generates the voiced components of speech while the filtered-noise
generator synthesizes the unvoiced components. The outputs of these two modules are added
and passed into a reverb module to produce the final synthesized speech.

Harmonic Oscillator

The harmonic oscillator generates a sum of sinusoids whose frequencies are multiples of F0.
The k-th sinusoid xk is controlled by global amplitudes asin[n] and acos[n], harmonic weights
csin,k[n] and ccos,k[n], and a frequency contour fk[n], as shown below in equation 3.1. We
differ from previous DDSP methods by using both cosine and sine waves in the harmonic
oscillator. This is crucial for the GAN training objective, since it makes it more challenging
for the discriminator to distinguish between real and generated speech.

xk[n] = asin[n]csin,k[n] sin(ϕk[n]) + acos[n]ccos,k[n] cos(ϕk[n]) (3.1)
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ϕk[n] = 2π
∑n

m=0 fk[m] is the instantaneous phase and fk[n] = kF0[n] is the integer
multiple of F0. The harmonic distributions c[n] output from the encoder has K values
(c1[n], c2[n], ..., cK [n])

T for each time point n and satisfy

K∑
k=0

ck[n] = 1 and ck[n] ≥ 0 (3.2)

Thus, the output of the harmonic oscillator can be calculated as

x[n] =
K∑
k=1

xk[n] =
K∑
k=1

asin[n]csin,k[n] sin(ϕk[n]) + acos[n]ccos,k[n] cos(ϕk[n]) (3.3)

Since F0[n], asin[n], acosn, csin[n] and ccos[n] are all sampled at fmodel = 200Hz, we need to
first upsample them back to the sampling frequency fs = 16kHz of the speech signals before
calculating the above equations, i.e. upsample by a factor of u = 80. Here u is also the frame
size. We upsample using the traditional signal-processing method by first inserting u − 1
zeros between every two samples and then convolving with a Hann window of size 2u+ 1.

In the real-time streaming mode, we simply save the previous values of F0[n], asin[n],
acosn, csin[n] and ccos[n] and use those values with the new input for upsampling. Additional
care is also taken to ensure phase information is saved between forward passes.

Filtered-Noise Generator

This module generates noise signals and filters them with the learned linear time-varying
finite impulse response (LTV-FIR) filters. The encoder outputH[n] is the frequency response
of the LTV-FIR filters. To avoid dealing with complex numbers, we view H[n] as half of the
transfer function of a zero-phase filter, since the frequency response of a zero-phase filter is
always real and symmetric. We take the inverse FFT to get the zero-phase filter coefficients
in the time domain, and shift it to be a causal, linear-phase filter. Finally, we apply a
Hann window to the linear-phase filter in the time domain to balance the time-frequency
resolution, and denote the processed filters to be h[n]. To get the output of the filtered-noise
generator, each h[n] is convolved with a noise signal of length u, i.e., a frame of noise, and
then overlap-added with a hop size of u. Noise is generated from a uniform distribution
between [−1, 1], and all convolutions are calculated through FFT.

For real-time streaming, we implement the overlap-add method to save and add previous
noise outputs with the current outputs. This approach ensures continuity and coherence in
the resulting audio.

Reverb Module

The outputs of the harmonic oscillator and filtered-noise generator are combined to form
synthesized speech. The combined output is then processed by a reverb module, which



CHAPTER 3. METHODS 10

Figure 3.2: Diagram illustrating the overlap-add method from [5]. In this process, the output
from each step is saved, then overlapped and added to the output of the subsequent step.
This technique achieves the same result as processing the entire sample in one go.

consists of a causal single layer convolution layer that models room reverberation, an es-
sential characteristic of realistic audio. While many neural synthesis algorithms incorporate
reverberation implicitly, we have chosen to separate the reverberation into a distinct post-
synthesis convolution step to enhance interpretability. In addition to room reverberation,
the 1 layer convolution also helps with de-noising and modeling mouth radiation.

For real-time streaming, the weights of the learned reverb filter are directly convolved to
each output frame using FFT. These processed outputs are then stored to overlap-add with
the next input, ensuring seamless audio continuity between frames.

3.3 Loss Functions

Multi-Scale Spectral Loss

We used the multi-scale spectral loss as defined in [11]:

LMSS =
∑
i∈W

||Si − Ŝi||1 + α|| logSi − log Ŝi||1 (3.4)

where S and Ŝ are the magnitude spectrograms of the ground truth audio and the generated
audio respectively. α is chosen to be 1 in this paper. W = [2048, 1024, 512, 256, 128, 64] is
the set of FFT sizes, and the frame overlap is set to be 75%.
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Multi-Resolution Adversarial Loss

As mentioned in [1], training only on multi-scale spectral loss for audio often results in over-
smoothed spectral predictions. L1 / L2 losses aim to reduce large discrepancies and capture
the low-frequency components of the input, averaging out rapid changes in spectral details
which results in muffled-sounding audio.

In order to capture the high-frequency components of the spectrograms, following the
work of [15], we utilize multi-resolution spectrogram discriminators. The architecture of one
sub-discriminator is shown in Figure 3.3.

Figure 3.3: The architecture of one sub-discriminator. There are 6 sub-discriminators in
total, each with the same architecture but different input spectrogram resolutions.

Note that the input spectrograms are calculated from the synthesized speech / ground
truth speech with different parameters, such as window size, hop size, and number of points
for FFT. For each sub-discriminator, the adversarial loss is calculated as Least Squares GAN
(LSGAN) described in [23]:

min
Di

LLSGAN(Di;G) =
1

2
Ex∼pdata(x)[(Di(S(x))− 1)2] +

1

2
Ez∼pz(z)[(Di(S(G(z))))2] (3.5)

min
G

LLSGAN(G;Di) = Ez∼pz(z)[(Di(S(G(z)))− 1)2] (3.6)

where S is the STFT, Di is the i-th sub-discriminator, G is the DDSP vocoder, and z is
the input features, which are the spectrograms of the real and generated audio.
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The overall loss functions for the generator and discriminator are:

L(G) = LMSS +
λ

R

R∑
i=1

LLSGAN(G;Di) (3.7)

L(D) =
1

R

R∑
i=1

LLSGAN(Di;G) (3.8)

where λ controls the weight of the LSGAN loss.
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Chapter 4

Results

We experimented with the MNGU0 EMA dataset [29], which contains 75 minutes of 16
kHz single-speaker speech paired with 200 Hz of EMA. F0 is extracted from the paired
speech using CREPE [17] with a hop size of 80. Loudness is calculated as the absolute
amplitude envelope, where the maximum absolute value of each non-overlapping speech
frame is extracted, with a frame size of 80 [16, 22]. Thus, EMA, F0, and loudness are
all sampled at 200 Hz. During each training epoch, we randomly crop 1 second of the
corresponding waveform, EMA, F0 and loudness for every utterance as the input. We use
the original train-test split with 1129 training utterances and 60 test samples, which are
71.3 minutes and 3.7 minutes respectively. From the training utterances, we choose 60 for
validation.

4.1 Experimental Setup

For our DDSP model, we set the number of harmonics asK = 50 and the number of frequency
bands M = 65. We trained 5 models, varying the hidden dimension of LSTM to be of size
[64, 128, 256, 512, 1024] to examine the tradeoff between model size and performance. We
designated these models as DDSP-64, DDSP-128, DDSP-256, DDSP-512, and DDSP-1024,

Table 4.1: Model sizes.

Model Params.

HiFi-CAR 13.5M
DDSP-64 56K
DDSP-128 191K
DDSP-256 708K
DDSP-512 2.7M
DDSP-1024 10.7M
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respectively. The number of parameters per model are shown in Table 4.1. For the generator,
we use the Adam optimizer with initial learning rate 0.001, β1 = 0.9, β2 = 0.999, a batch size
of 32, and 6400 training epochs. The learning rate is multiplied by 0.3 at epoch milestones
[2400, 4800].

For the multi-resolution discriminators, we use 6 different resolutions: window size =
[64, 128, 256, 512, 1024, 2048]. The number of points for FFT is the same as each of the
window size, and the overlap is 75%. We use the Adam optimizer with initial learning rate
5e-6, β1 = 0.9, β2 = 0.999. The learning rate is multiplied by 0.3 at epoch milestones [2400,
4800].

4.2 Baseline

We train a modified HiFi-CAR from [2] which has EMA, F0 and loudness as its input
(denoted as “HiFi-CAR”) to serve as our baseline.

4.3 Synthesis Results

We used Whisper-Large, a pre-trained automatic speech recognition model, to evaluate the
synthesized test set speech of models and compare the mean character error rate (CER) and
word error rate (WER). The transcription results are shown in Table 4.2. Compared to the
modified HiFi-CAR baseline, the DDSP model performance depends on the encoder size.
The models with LSTM hidden dimension greater than 256 outperform the baseline, with
the biggest model DDSP-1024 achieving a WER of 8.9%, 4.0% lower than baseline. Notably,
this is impressive as the DDSP-256 model is 20x smaller than the baseline, as shown in Table
4.1.

To objectively measure synthesis quality, we use the Mel Cepstral Distortion (MCD)
metric. This metric quantifies the differences between two mel frequency cepstral coefficient
vectors derived from generated and reference speech. Specifically, we use MCD-DTW, an
improved MCD metric that incorporates the Dynamic Time Warping algorithm to find the

Table 4.2: Transcription results using Whisper-LARGE

Model CER (%) WER (%)

HiFi-CAR 7.7 12.9
DDSP-64 9.1 17.4
DDSP-128 8.2 14.7
DDSP-256 6.8 11.8
DDSP-512 6.7 11.3
DDSP-1024 5.8 8.9
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Table 4.3: Mel Cepstral Distortion

Model MCD

HiFi-CAR 3.62 ± 0.74
DDSP-64 3.92 ± 0.78
DDSP-128 3.74 ± 0.76
DDSP-256 3.73 ± 0.75
DDSP-512 3.71 ± 0.64
DDSP-1024 3.64 ± 0.65

minimum MCD between two speeches. The results are tabulated in 4.3. None of the DDSP
models are better than the baseline, but the largest model DDSP 1024 achieves comparable
results. This outcome is somewhat expected given that the DDSP model operates under
a causal framework, whereas the baseline HiFi-CAR model is non-causal. The HiFi-CAR’s
ability to leverage future contextual information possibly results in ”smoother” speech, gen-
erating lower MCD values.

We also ran a Mean Opinion Score (MOS) test on the DDSP-1024 model, HiFi-CAR
model, and ground truth to assess subjective perceptions of naturalness, clarity and speech
quality. We randomly selected the same 7 test samples from each model and performed the
conventional 5-scale MOS test with 23 participants, who were asked to rate the quality of
audio samples on a scale from 1 (poor) to 5 (excellent). The results of the MOS test in table
4.4 indicates that the DDSP model performed very well in comparison to HiFi-CAR. The
MOS difference between the DDSP model and the ground truth is 0.34 versus HiFi-CAR’s
difference of 0.99. Thus, we conclude the DDSP model results in more “natural” speech than
HiFi-CAR.

In our subjective evaluation, the DDSP vocoder’s output is very human-like and clear.
However, it does display some limitations upon closer listening. Specifically, as seen in the
lower frequency areas of Figure 4.1, the synthesized speech can occasionally sound muddy
around complex passages where overlapping harmonics can blur the speech. Furthermore,
audio artifacts occasionally appear, particularly with sounds that require precise articulatory
control such as fricatives. These artifacts result in unnatural fluctuations in audio, which
detracts from speech quality. However, these artifacts are brief and minor, and the resulting
speech is still highly intelligible.

Table 4.4: Mean Opinion Score

Model MOS

HiFi-CAR 3.24±0.93
DDSP-1024 3.89±0.75

Ground Truth 4.23±0.75
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Figure 4.1: Spectrogram of model prediction and ground truth for phrase “Graduation is a
rite of passage.”

In summary, the DDSP vocoder achieves a remarkable degree of naturalness and intelli-
gibility despite its shortcomings. The Mean Opinion Score illustrates its naturalness while
the transcription metrics illustrates its intelligibility. This is particularly exciting given the
model’s casual real-time framework.

4.4 Inference Speed

To contextualize the model’s inference speed, we inputted one second of samples (200 samples
at 200 Hz) through the HiFi-CAR and DDSP models and measured the inference speed on a
M2 Max CPU. The results are shown in table 4.5 .The DDSP models are much faster, with
the largest DDSP-1024 model processing 2x faster than baseline while the smallest DDSP-
64 model is nearly 5x faster. The DDSP-1024 model is 18 faster than real-time, while the
DDSP-64 model is 42x faster than real-time. Interestingly, the inference times of DDSP-64,
DDSP-128, and DDSP-256 show minimal variation, suggesting that the encoder is not the
computational bottleneck below a certain parameter count. We explore this later.

To test the real-time streaming performance, we benchmarked the DDSP vocoder’s in-
ference time across different numbers of sample inputs. In practical scenarios, the vocoder
must wait for an upstream model to generate the EMA, F0, and loudness inputs. If the
upstream model cannot deliver per-sample inputs in real-time, the system may need to pro-
cess multiple samples at a time. Thus, we test how the the DDSP vocoder handles batch
streaming processing of samples by inputting 1 to 1024 input samples at time, where each
sample corresponds to 5 ms of audio.

The results are shown in Table 4.6 and Graph 4.2. Notably, processing one sample,
which represents 5 ms of audio, takes under 1 ms for the DDSP-64 model and under 2 ms
for the DDSP-1024 model. This confirms that DDSP models can be effectively used for real-
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time streaming applications, since the DDSP models are faster than real-time even when
processing the minimal number of sample inputs. Since all model sizes achieve this real-time
limitation, applications can prioritize the trade-off between model size and model quality
without compromising inference speed.

In addition to the general performance assessments, we also analyzed the inference times
of specific individual model components, namely the encoder, harmonic, filtered noise, and
reverb modules, to identify processing bottlenecks. The results, shown in Table 4.7 for the
encoder and Table 4.8 for the DSP modules, indicate that the bottleneck is the harmonic
module. The encoder, filtered noise, and reverb modules contribute little latency. Further
investigation into the harmonic module concluded that the bottleneck operation is the har-
monic upsampling process from 200 Hz to 16 kHz. This is currently implemented with a
sparse Hann convolution, which effectively reduces spectral artifacts but is computation-
ally intense. For future work, simplifying the upsampling process could potentially reduce
inference time.

Table 4.6: Model inference times [ms] for different number of input samples

# Input DDSP-64 DDSP-128 DDSP-256 DDSP-512 DDSP-1024

1 0.87 ± 0.03 0.92 ± 0.01 0.95 ± 0.02 1.04 ± 0.03 1.81 ± 0.06
2 1.04 ± 0.01 1.19 ± 0.05 1.31 ± 0.05 2.23 ± 0.07 3.92 ± 0.02
4 1.35 ± 0.01 1.62 ± 0.04 1.69 ± 0.04 2.81 ± 0.19 4.71 ± 0.22
8 2.01 ± 0.03 2.36 ± 0.02 2.38 ± 0.06 3.95 ± 0.14 5.93 ± 0.08
16 3.11 ± 0.03 3.60 ± 0.04 3.45 ± 0.02 5.17 ± 0.15 8.18 ± 0.17
32 4.70 ± 0.02 5.15 ± 0.05 5.39 ± 0.04 6.77 ± 0.11 12.10 ± 0.16
64 7.99 ± 0.04 8.78 ± 0.09 9.89 ± 0.08 11.30 ± 0.15 20.70 ± 0.15
128 15.07 ± 0.11 16.26 ± 0.14 17.13 ± 0.14 21.06 ± 0.13 39.18 ± 0.47
256 27.03 ± 0.21 28.75 ± 0.21 30.73 ± 0.24 37.46 ± 0.38 70.32 ± 0.23
512 50.97 ± 0.65 54.28 ± 1.25 57.96 ± 0.87 70.58 ± 0.28 135.49 ± 0.52
1024 92.93 ± 1.85 97.12 ± 1.84 107.09 ± 1.05 130.68 ± 1.68 260.13 ± 2.65

Table 4.5: CPU inference time for 1s of input.

Model Inference Time [ms]

HiFi-CAR 107.4 ± 7.6
DDSP 64 23.7 ± 0.6
DDSP 128 24.3 ± 0.3
DDSP 256 24.7 ± 0.9
DDSP 512 29.8 ± 0.2
DDSP 1024 57.1 ± 1.0
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Figure 4.2: Model Inference Time vs Number of Input Samples

Table 4.7: Encoder Inference time versus Number of Sample Inputs

# Samples DDSP-64 DDSP-128 DDSP-256 DDSP-512 DDSP-1024

1 0.15 ± 0.00 0.17 ± 0.00 0.19 ± 0.00 0.25 ± 0.00 0.89 ± 0.01
2 0.21 ± 0.00 0.26 ± 0.00 0.41 ± 0.01 1.18 ± 0.08 2.92 ± 0.09
4 0.27 ± 0.00 0.32 ± 0.00 0.42 ± 0.00 1.23 ± 0.07 3.21 ± 0.03
8 0.47 ± 0.00 0.55 ± 0.00 0.76 ± 0.00 1.61 ± 0.01 4.05 ± 0.11
16 0.55 ± 0.00 0.66 ± 0.00 0.96 ± 0.02 1.78 ± 0.01 5.27 ± 0.01
32 0.80 ± 0.01 1.00 ± 0.01 1.43 ± 0.01 2.46 ± 0.04 7.47 ± 0.04
64 1.11 ± 0.01 1.47 ± 0.01 2.50 ± 0.03 3.85 ± 0.06 13.00 ± 0.10
128 1.89 ± 0.06 2.49 ± 0.08 3.84 ± 0.11 6.96 ± 0.07 24.60 ± 0.10
256 3.45 ± 0.07 4.39 ± 0.03 6.78 ± 0.03 12.90 ± 0.10 45.80 ± 0.09
512 6.16 ± 0.13 8.16 ± 0.13 13.02 ± 0.05 24.30 ± 0.08 88.78 ± 0.24
1024 11.19 ± 0.07 15.58 ± 0.17 24.70 ± 0.12 47.94 ± 0.17 174.45 ± 0.45
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Table 4.8: DSP Module Inference Time

# Samples Harmonic Module [ms] Noise Module [ms] Reverb Module [ms]

1 0.50 ± 0.01 0.09 ± 0.00 0.07 ± 0.00
2 0.57 ± 0.00 0.10 ± 0.00 0.06 ± 0.00
4 0.93 ± 0.04 0.10 ± 0.00 0.07 ± 0.00
8 1.58 ± 0.02 0.10 ± 0.00 0.07 ± 0.00
16 2.46 ± 0.05 0.11 ± 0.00 0.08 ± 0.00
32 3.81 ± 0.06 0.14 ± 0.00 0.08 ± 0.00
64 6.55 ± 0.14 0.25 ± 0.00 0.12 ± 0.00
128 12.40 ± 0.07 0.42 ± 0.00 0.19 ± 0.02
256 22.73 ± 0.21 0.78 ± 0.00 0.35 ± 0.01
512 41.78 ± 0.08 1.39 ± 0.01 0.80 ± 0.00
1024 72.58 ± 0.33 2.87 ± 0.03 1.60 ± 0.02

4.5 Discussion

The DDSP model demonstrates increased synthesis intelligibility and quality with signifi-
cantly lower inference time compared to the HiFi-CAR model. These advances underscores
the effectiveness of DDSP’s inductive bias towards audio production. The capability of the
DDSP vocoder to operate in real-time streaming applications sets it apart from current
models and enables downstream real-time applications. Additionally, our benchmarks show
that the DDSP vocoder offers a flexible tradeoff between model size and latency, allowing
for tailored application deployments that can optimize for either audio quality or latency.
For instance, the DDSP-256 model is around 4x faster than the baseline while maintaining
similar audio quality. In contrast, larger models like DDSP-1024 are 2x faster than the
baseline but have much better audio quality. Since the DDSP-1024 is still 2.5x faster than
real-time when processing one sample at a time, there still exists opportunity to improve
audio quality at the expense of latency, either with increased parameters in the encoders and
DSP modules or through a more complex model architecture.
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Chapter 5

Conclusion

5.1 Conclusion

This paper presents a DDSP articulatory vocoder based on the harmonic-plus-noise model.
With the strong inductive bias of DDSP, the model is fast, light-weight, and capable of syn-
thesizing highly intelligible speech from EMA, F0 and loudness in a real-time and streaming
fashion.

5.2 Real-time Streaming Takeaways

We summarize our takeaways for real-time streaming models as follows:

• More complex architectures often result in better performance, but for real-time stream-
ing applications, simpler architectures tend to be more efficient. In this work, we found
that MLP+LSTM performed sufficiently while maintaining faster processing times that
other seq2seq methods such convolution networks and transformers.

• We observed that decreasing model parameter amount doesn’t always lead to a signif-
icant reduction in model inference time. For instance, we observed a 50% decrease
in inference time from DDSP-512 to DDSP-256, but didn’t see the same drop from
DDSP-256 to DDSP-128 and DDSP-64. Careful consideration must be put into bal-
ancing model complexity and inference quality.

• While libraries provide convenience, manually implementing standard functions may
provide speedups given specific data atributes. Our implementation of sparse convolu-
tion was 10x faster than FFT convolve for our use case.

• In-place memory reallocation helps lower inference time in streaming applications by
reducing memory overhead. In this work, we cut 5% of our inference time by reusing
all vectors in each forward pass.
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5.3 Future Work

There are many opportunities to improve and extend this work. First, we’d like to ex-
plore the multi-speaker capabilities of our system. This can be achieved by incorporating
a speaker embedding feature and training the model on more diverse datasets to handle
multiple speakers effectively. Additionally, we plan to work on real-time streaming fea-
ture extraction to develop sequence-to-sequence model. While loudness extraction can be
easily done in a real-time streaming manner, there currently lacks options for EMA and
pitch extraction. Addressing this gap would enable the implementation of various sequence-
to-sequence applications such as style transfer and voice anonymization. Another area of
exploration is replacing the harmonic-plus-noise model with the source-filter model. While
the harmonic-plus-noise model well represents audio, the source-filter is closer to the mech-
anisms of human speech production. This also enables more precise control over the speech
output, which could in turn better model individual speaker characteristics.
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