
Structured Representations for Goal-
Directed Decision Making

Vivek Myers

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-208
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-208.html

December 8, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Structured Representations for Goal-Directed Decision Making

by

Vivek Myers

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sergey Levine, Co-chair
Professor Anca Dragan, Co-chair

Fall 2024

i

TABLE OF CONTENTS

Table of Contents i

List of Figures iv

List of Tables xii

1 Introduction 1
1.1 Publications . 1
1.2 Bibliography . 2

I REPRESENTING TASKS AND GOALS 3

2 Goal Representations for Instruction Following 4
2.1 Related Work . 5
2.2 Problem Setup . 6
2.3 Goal Representations for Instruction Following 7
2.4 Experiments . 9
2.5 Scaling of Annotation Supervision . 18
2.6 Conclusion . 18

3 Policy Adaptation via Language Optimization 20
3.1 Related Work . 22
3.2 Policy Adaptation via Language Optimization 22
3.3 Regret Analysis . 26
3.4 Experiments . 33
3.5 Conclusion . 38

II REPRESENTATIONS FOR COMPOSITIONAL DECISION MAKING 42

4 A Metric Structure for Successor Representations 43
4.1 General distances for goal-reaching . 45
4.2 Using our Temporal Distance for RL 49
4.3 One-step Metric Distillation (CMD-1): 51
4.4 Two-step metric distillation (CMD-2) 52
4.5 Experiments . 54
4.6 Hitting Times . 58
4.7 Proofs . 64
4.8 Didactic Examples . 65

TABLE OF CONTENTS ii

4.9 Action-Invariance . 68
4.10 Related Work . 68

5 Temporal Representation Alignment 71
5.1 Temporal Representation Alignment 72
5.2 Experiments . 76
5.3 Additional Visualizations . 83
5.4 Analysis of Compositionality . 83
5.5 Related Work . 85
5.6 Conclusions and Limitations . 87

6 Planning with Contrastive Representations 88
6.1 Preliminaries . 90
6.2 Contrastive Representations Make Inference Easy 92
6.3 Proofs . 95
6.4 Numerical Simulation . 102
6.5 Additional Experiments . 105
6.6 Related Work . 106
6.7 Discussion . 108

7 Invariance to Planning 110
7.1 Preliminaries . 111
7.2 Planning Invariance and Horizon Generalization 112
7.3 Methods for Planning Invariance: Old and New 118
7.4 Experiments . 120
7.5 Definition of Path Relaxation . 123
7.6 Formalizing Planning Invariance . 125
7.7 New Methods for Planning Invariance 131
7.8 Self-Consistent Models . 131
7.9 Evidence from Prior Work . 133
7.10 Conclusion . 134

III REPRESENTATIONS FOR TRACTABLE INTRINSIC MOTIVATION 136

8 Empowerment via Successor Representations 137
8.1 The Information Geometry of Empowerment 139
8.2 Maximizing Empowerment with Contrastive Representations 147
8.3 Experiments . 152
8.4 Additional Ablations and Qualitative Results 155
8.5 Discussion . 157
8.6 Related Work . 158

TABLE OF CONTENTS iii

9 The Representation Geometry of Intrinsic Motivation 160
9.1 Binary NCE . 161
9.2 Symmetric infoNCE with a learned temperature 162
9.3 Euclidean infoNCE . 164

Bibliography 168

A Videos and Code 197

B Language Model Prompting Details 198
B.1 GRIF Instruction Augmentation . 198
B.2 PALO Prompting Details . 198

C Experiment Details 202
C.1 PALO Evaluation Details . 202
C.2 TRA Implementation . 202
C.3 CMD Implementation . 209
C.4 ESR Details . 209
C.5 Planning Invariance and Horizon Generalization 210

iv

LIST OF FIGURES

2.1 Our approach learns representations of instructions that are aligned to
transitions from the initial state to the goal 4

2.2 Left: We explicitly align representations between goal-conditioned and
language-conditioned tasks on the labeled dataset DL through con-
trastive learning. Right: Given the pre-trained task representations,
we train a policy on both labeled and unlabeled datasets. 9

2.3 Comparison of success rates ±SE between the top three methods across
all trials within the three scenes. Two other baselines LCBC and R3M
(not shown) achieved 0.0 success in all evaluation tasks although they do
succeed on tasks that are heavily covered in the training data. Statistical
significance is starred. The initial observation and instructions of each
scene are shown. 10

2.4 Success rates of ablations with one standard error. 13
2.5 Left: Comparison of the top-5 text to image retrieval accuracy of repre-

sentations learned by different ablations. Right: Examples of retrieved
image pairs given instructions. 14

2.6 Scaling of GRIF grounding capability by number of language annotations
available. 18

3.1 An overview of the PALO algorithm for few-shot adaptation with lan-
guage. (Left) We build off a pre-trained policy that has learned to follow
low-level language instructions from a large dataset of expert demonstra-
tions. (Middle) Given a new task and a few expert demonstrations, we
use a VLM to propose candidate decompositions into subtasks. We opti-
mize over these decompositions jointly with the partitions of trajectories
into subtasks, selecting the subtask decomposition that minimizes the
validation error of the learned policy. (Right) At test time, we condition
the pre-trained policy on the selected decomposition to solve the task. . 20

3.2 PALO enables pre-trained generalist policies to adapt new tasks with as
few as five demonstrations by searching in language space instead of
parameter space. 21

3.3 A visualization of an example execution of our method on the long-
horizon task “put the beet toy in the drawer.” The VLM deconstructs
ℓ into candidate high-level subtasks cH

1:K and low-level subtasks cL1 : K
and optimizes over the expert trajectories. The optimal cH

1:K and cL1 : m
are chosen and unrolled in real-world evaluations, which result in suc-
cessful completion of the task (trajectory shown in gray). 25

3.4 Comparison of PALO with baseline methods on different scenes with
one standard error. 35

LIST OF FIGURES v

3.5 An execution of our method on the task “pour the contents of the scoop
into the bowl.” Full breakdown of task and instructions can be seen at
Section 3.4. 36

3.6 Ablation study of PALO on different scenes, plotted with one standard
error. 36

3.7 Performance of PALO with 5 demonstrations compared to finetuning
Octo on different number of demonstrations, plotted with one standard
error. 37

3.8 An execution of our method on the task “Pry out the pot using the ladle.” 38
3.9 An execution of our method on the task “pour the contents of the scoop

into the bowl.”. Note that the high level instruction is ℓ itself, as the best-
proposed language decomposition does not create additional subtasks. . 39

3.10 Failure in execution: while the robot completed every subtask correctly
up until the last subtask, it did not achieve it due to errors within the
policy. 39

3.11 Spatial reasoning failure occurred when masking out low level instruc-
tion. The task was to “sweep the mints using the towel.” Due to the
presence of the pot and the mushroom, being both strong priors within
BridgeData, the policy chose not to follow the high level instruction. . . 40

3.12 Grounding failure occurs when high level instruction is masked out.
While the low level instruction “move the gripper left” correctly predicts
the next reasonable action, masking out the context of the subtask “put
the mushroom in the bowl” causes the policy to overshoot its trajectory. 40

3.13 In this instance, we mask out the high level instructions, and the policy is
only conditioned on the low-level instructions. We see that the low-level
instruction “move the gripper forward and left.” causes the robot to
overshoot its trajectory and causes failure in execution. 41

4.1 An overview of our theoretical distance construction as well as the
concrete implementation with metric distillation 44

4.2 (Left) We collect four types of trajectories on this 2D navigation task. The
large gray arrows depict the direction of motion. Note that navigating
between certain states requires piecing together trajectories of different
colors. (Right) Our proposed temporal distance correctly pieces together
trajectories, allowing an RL agent to successfully navigate between pairs
of states that never occur on the same trajectory. This combinatorial
generalization [1] or “stitching” [2] property is typically associated with
bootstrapping with temporal difference learning, which our temporal
distances do not require. 55

4.3 Metric distillation enables more efficient offline training and long-horizon
compositional generalization . 56

4.4 A simple illustration of a metric over S ×A 65

LIST OF FIGURES vi

5.1 Example rollouts of a task with TRA and GCBC to put all food items in
the bowl. While TRA can implicitly decompose the task into steps and
execute them one by one, GCBC is unable to do that and fails to ground
to any relevant objects. GCBC+AWR on the other hand only grounds
one object, failing to display any compositionality 72

5.2 Aggregated performance on compositional generalization tasks, consist-
ing of instruction-following and goal-reaching tasks. 77

5.3 Example rollouts of a task with TRA and LCBC. While TRA is able
to successfully compose the steps to complete the task, LCBC fails to
ground the instruction correctly. 81

5.4 Aggregated success rate of using AWR as an additional policy learning
metric over all 4 scenes. 81

5.5 In these figures, we see that TRA is able to perform good compositional
generatlization over a variety of tasks seen within BridgeData 83

5.6 Most of the failure cases came from the fact that a policy cannot learn
depth reasoning, causing early grasping or late release, and it has trouble
reconciling with multimodal behavior . 84

5.7 Visualizing the bound (Fig. 5.7 from Theorem 5.1) on the compositional
generalization error. 86

6.1 We apply temporal contrastive learning to observation pairs to obtain
representations (ψ(x0), ψ(xt+k)) such that Aψ(x0) is close to ψ(xt+k).
While inferring waypoints in the high-dimensional observation space
is challenging, we show that the distribution over intermediate latent
representations has a closed form solution corresponding to linear inter-
polation between the initial and final representations. 88

6.2 A parametrization for temporal contrastive learning. 92
6.3 Predicting representations of future states. 93
6.4 Numerical simulation of our analysis. (Top Left) Toy dataset of time-

series data consisting of many outwardly-spiraling trajectories. We apply
temporal contrastive learning to these data. (Top Right) For three initial
observations (■), we use the learned representations to predict the distri-
bution over future observations. Note that these distributions correctly
capture the spiral structure. (Bottom Left) For three observations (⋆), we
use the learned representations to predict the distribution over preceding
observations. (Bottom Right) Given an initial and final observation, we
plot the inferred posterior distribution over the waypoint (Section 6.2).
The representations capture the shape of the distribution. 96

6.5 Using inferred paths over our contrastive representations for control
boosts success rates by 4.5× on the most difficult goals (18%→ 84%). Al-
ternative representation learning techniques fail to improve performance
when used for planning. 103

LIST OF FIGURES vii

6.6 Planning for 39-dimensional robotic door opening. (Top Left) We use a
dataset of trajectories demonstrating door opening from prior work [2] to
learn representations. (Top Right) We use our method and three baselines
to infer one intermediate waypoint between the first and last observation
in a trajectory from a held-out validation set. Errors are measured using
the mean squared error with the true waypoint observation; predicted
representations are converted to observations using nearest neighbors
on a validation set. (Bottom) We visualize a TSNE [3] of the states along
the sampled trajectory as blue circles, with the transparency indicating
the index along the trajectory. The inferred plan is shown as red circles
connected by arrows. Our method generates better plans than alternative
representation learning methods (PCA, VIP). 104

6.7 Our approach enables a goal-conditioned policy to reach farther targets
(red) from the start (green) by planning over intermediate waypoints
(orange). 105

6.8 Planning for 46-dimensional robotic hammering. (Left) A dataset of
trajectories demonstrating a hammer knocking a nail into a board [2].
(Center) We visualize the learned representations as blue circles, with
the transparency indicating the index of that observation along the tra-
jectory. We also visualize the inferred plan (Section 6.2) as red circles
connected by arrows. (Right) Representations learned by PCA on the
same trajectory as (a, left). 106

6.9 Stock Prediction. We apply temporal contrastive learning to time series
data of the stock market. Data are the opening prices for the 500 stocks
in the S&P 500, over a four year window. We remove 30 stocks that
are missing data. For evaluation, we choose a 100 day window from a
validation set, and use Theorem 6.2 to perform “inpainting”, predicting
the intermediate stock prices jointly for all stocks (orange), given the first
and last stock price. The true stock prices are shown in blue. While we
do not claim that this is a state-of-the-art model for stock prediction, this
experiment demonstrates another potential application of our theoretical
results. 107

7.1 Horizon generalization. A policy generalizes over the horizon if optimal-
ity over all start-goal pairs (s, s′) a small temporal distance d(s, s′) < c
apart (say, in the training set) leads to optimality over all possible start-
goal pairs. 110

LIST OF FIGURES viii

7.2 Visualizing planning invariance. Planning invariance (Definition 7.1) means that a
policy should take similar actions when directed towards a goal (purple arrow and
purple star) as when directed towards an intermediate waypoint (brown arrow and
brown star). We visualize a policy with (Right) and without (Left) this property via the
misalignment and alignment of actions towards the waypoint and the goal, where the
optimal path is tan and the suboptimal path is gray. 113

7.3 Invariance to planning leads to horizon generalization. (Left) Invari-
ance to planning maps (s0, {s1, s2, s4}) together in latent space, which
results in a shared optimal action. (Right) After successfully reaching
the closest waypoint s1 in 1 step, the next optimal action is also shared,
meaning any trajectory of length 2 is optimal. We can repeat this ar-
gument for trajectories of length 4, 8, . . . until the entire reachable state
space is covered. 114

7.4 Quantifying horizon generalization and invariance to planning. On
a simple navigation task, we collect short trajectories and train two
goal-conditioned policies, comparing both to a random policy. (Left)
We evaluate on (s, g) pairs of varying distances, observing that metric
regression with a quasimetric exhibits strong horizon generalization.
(Right) In line with our analysis, the policy that has strong horizon
generalization is also more invariant to planning: combining that policy
with planning does not increase performance. Figure 7.7 shows a version
of this plot that also includes the tabular setting. 120

7.5 Measuring horizon generalization in a high-dimensional (27D obser-
vation, 8DoF control) task. (Left) We use an enlarged version of the
quadruped “ant” environment, training all goal-conditioned RL meth-
ods on (start, goal) pairs that are at most 10 meters apart. (Right) We
evaluate several RL methods, measuring the horizon generalization of
each. These results reveal that (i) some degree of horizon generalization
is possible; (ii) the learning algorithm influences the degree of gener-
alization; (iii) the value function architecture influences the degree of
generalization; and (iv) no method achieves perfect generalization, sug-
gesting room for improvement in future work. The ratio of success at
10m vs 5m and 20m vs 10m corresponds to η from Section 7.2. Results
are plotted with standard errors across random seeds. 121

7.6 Impact of horizon generalization on Bellman errors. (Left) Two goal-
reaching methods exhibit different horizon generalization. (Right) De-
spite neither method being trained with the Bellman loss, we observe
that the method with stronger horizon generalization has a lower Bell-
man loss. Thus, understanding horizon generalization may be important
even when using TD methods (which guarantee horizon generalization
at convergence). 123

LIST OF FIGURES ix

7.7 Quantifying horizon generalization and invariance to planning. On
a simple navigation task, we collect short trajectories and train two
goal-conditioned policies, comparing both to a random policy. (Top Left)
We evaluate on (s, g) pairs of varying distances, observing that metric
regression with a quasimetric exhibits strong horizon generalization.
(Top Right) In line with our analysis, the policy that has strong horizon
generalization is also more invariant to planning: combining that policy
with planning does not increase performance. (Bottom Row) We repeat
these experiments using function approximation (instead of a tabular
model), observing similar trends. 124

7.8 Quantifying horizon generalization (x-axis) and planning invariance
(y-axis). See text Section 7.4 for more details. 125

7.9 Evidence of Horizon Generalization and Planning Invariance from
Prior work. (a) Prior work has observed that if policies are trained in
an online setting and perform planning during exploration, then those
policies see little benefit from doing planning during evaluation. This
observation suggests that these policies may have learned to be plan-
ning invariant. While results are not stratified into training and testing
tasks, we speculate that the faster learning of that method (relative to
baselines, not shown) may be explained by the policy generalizing from
easy tasks (which are learned more quickly) to more difficult tasks. (b)
Prior work studies how data augmentation can facilitate combinato-
rial generalization. While the notion of combinatorial generalization
studied there is slightly from horizon generalization, a method that per-
forms combinatorial generalization would also achieve effective horizon
generalization. 133

8.1 We propose an algorithm training assistive agents to empower human
users—the assistant should take actions that enable human users to visit
a wide range of future states, and the human’s actions should exert a
high degree of influence over the future outcomes. Our algorithm scales
to high-dimensional settings, opening the door to building assistive
agents that need not directly reason about human intentions. 137

LIST OF FIGURES x

8.2 The Information Geometry of Empowerment, illustrating the analysis
in Section 8.1. (Left) For a given state st and assistant policy πR, we plot
the distribution over future states for 6 choices of the human policy πH.
In a 3-state MDP, we can represent each policy as a vector lying on the
2-dimensional probability simplex. We refer to the set of all possible state
distributions as the state marginal polytope. (Center) Mutual information
corresponds to the distance between the center of the polytope and the
vertices that are maximally far away. (Right) Empowerment corresponds
to maximizing the size of this polytope. For example, when an assistive
agent moves an obstacle out of a human user’s way, the human user can
spend more time at desired state. 141

8.3 We evaluate our method with and without conditioning on the robot
action aR. Conditioning aids learning significantly, which we theorize is
because it removes uncertainty in the classification. 148

8.4 We compare a greedy policy (γ = 0) against our standard policy (γ = 0.9).149
8.5 Visualizing training empowerment in a 5x5 Gridworld with 10 obstacles.

Our empowerment objective maximizes the influence of the human’s
actions on the future state, preferring the state where the human can
reach the goal to the trapped state. This corresponds to maximizing
the volume of the state marginal polytope, which is proportional to the
number of states that the human can reach from their current position.
To visualize the representations, we set the latent dimension to 3 instead
of 100. 150

8.6 We apply our method to the benchmark proposed in prior work [4],
visualized in Fig. 8.7a. The four subplots show variant tasks of increas-
ing complexity (more blocks), (±1 SE). We compare against AvE [4],
the Goal Inference baseline from [4] which assumes access to a world
model, and Reward Inference [5] where we recover the reward from a
learned q-value. These prior approaches fail on all except the easiest
task, highlighting the importance of scalability. 153

8.7 (a) The modified environment from Du et al. [4] scaled to N = 7 blocks,
and (b, c) the two layouts of the Overcooked environment [6]. 154

8.8 In Coordination Ring, our ESR agent learns to wait for the human to add
an onion to the pot, and then adds one itself. There is another pot at the
top which is nearly full, but the empowerment agent takes actions to
maximize the impact of the human’s actions, and so follows the lead of
the human by filling the empty pot. 154

9.1 KL divergence between conditional and marginal goal distributions as a
function of ∥ϕ(s)∥ for different representation dimensions n with C = 5
(up to a constant). The KL divergence is monotonically increasing with
∥ϕ(s)∥. 164

LIST OF FIGURES xi

9.2 Mutual information I(s; g) between the state and goal representations in
the Euclidean infoNCE setting. Both the representation ratio C and the
marginal precision τ scale monotonically with the mutual information.
The mutual information I(s; g) is positive only when C > 1, and so we
can additionally interpret this as a constraint on the representation ratio. 167

C.1 Sample rollouts using PALO on unseen testing tasks. 206
C.2 S-shaped maze. 211

xii

LIST OF TABLES

2.1 Comparison of Approaches . 11
2.2 Comparison of Ablations . 12
2.3 Evaluation Scenes . 17

3.1 Method Comparisons . 34
3.2 Ablations . 35

4.1 Offline RL benchmarks . 55

5.1 Compositional Generalization Error of Methods 77
5.2 Real-world Language Conditioned Evaluation 79
5.3 Real-world Goal-Conditioned Evaluation 80

7.1 Summary of methods and modifications tested 119

8.1 Overcooked Results . 155

C.1 Task Instructions . 204
C.2 Task Breakdown . 206

1

1 INTRODUCTION

The last decade of advances in AI has been dominated by approaches to scaling deep
learning across large datasets and compute. These advances have led to significant
progress in natural language processing and computer vision, but have not yet
translated to the same level of success in sequential decision-making settings.

One explanation for this discrepancy is that we have not yet figured out how to
leverage the structure of decision-making problems to exploit these advances. In
this thesis, we tackle the question: what is the right way to represent the world for
sequential decision-making?

In Part I, I will discuss work on how we should represent tasks and goals in a
way that lets us leverage the large-scale robotics datasets and pretrained models that
have emerged in recent years. Then, Part II will focus on representations that enable
compositional and long-horizon decision-making in more general settings. Part III
begins to explore how representations can be structured to compute information-
theoretic quantities that enable new intrinsic motivation capabilities.

1.1 PUBLICATIONS

The subsequent chapters are adapted from the following papers. A full list of
collaborators can be found in the references within the bibliography (§1.2).

Chapter 2 : Goal Representations for Instruction Following: A Semi-Supervised
Language Interface to Control [1]

Chapter 3 : Policy Adaptation via Language Optimization: Decomposing Tasks for
Few-Shot Imitation [2]

Chapter 4 : Learning Temporal Distances: Contrastive Successor Features Can
Provide a Metric Structure for Decision-Making [3]

Chapter 5 : Successor Representations Enable Emergent Compositional Instruction
Following [4]

Chapter 6 : Inference via Interpolation: Contrastive Representations Provably En-
able Planning and Inference [5]

sec:mybib

1 INTRODUCTION 2

Chapter 7 : Invariance to Planning in Goal-Conditioned RL [6]

Chapter 8 : Learning to Assist Humans Without Inferring Rewards [7]

1.2 BIBLIOGRAPHY

[1] Vivek Myers, Andre Wang He, Kuan Fang, Homer Rich Walke, Philippe Hansen-
Estruch, Ching-An Cheng, Mihai Jalobeanu, Andrey Kolobov, Anca Dragan,
and Sergey Levine. Goal Representations for Instruction Following: A Semi-
Supervised Language Interface to Control. In Conference on Robot Learning, pp.
3894–3908. 2023.

[2] Vivek Myers, Bill Chunyuan Zheng, Oier Mees, Sergey Levine, and Kuan Fang.
Policy Adaptation via Language Optimization: Decomposing Tasks for Few-
Shot Imitation. In Conference on Robot Learning. 2024.

[3] Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin
Eysenbach. Learning Temporal Distances: Contrastive Successor Features Can
Provide a Metric Structure for Decision-Making. In International Conference on
Machine Learning. 2024.

[4] Vivek Myers, Bill Chunyuan Zheng, Anca Dragan, Kuan Fang, and Sergey
Levine. Successor Representations Enable Emergent Compositional Instruction
Following. 2024.

[5] Benjamin Eysenbach, Vivek Myers, Ruslan Salakhutdinov, and Sergey Levine.
Inference via Interpolation: Contrastive Representations Provably Enable Plan-
ning and Inference. In Neural Information Processing Systems. 2024.

[6] Vivek Myers, Cathy Ji, and Benjamin Eysenbach. Invariance to Planning in
Goal-Conditioned RL. 2024.

[7] Vivek Myers, Evan Ellis, Sergey Levine, Benjamin Eysenbach, and Anca Dragan.
Learning to Assist Humans Without Inferring Rewards. In Neural Information
Processing Systems. 2024.

I
REPRESENTING TASKS AND GOALS

4

2 GOAL REPRESENTATIONS FOR
INSTRUCTION FOLLOWING

Visual goals (i.e., goal images), though less intuitive for humans, provide comple-
mentary benefits for task representation in policy learning. Goals benefit from being
easy to ground since, as images, they can be directly compared with other states.
More importantly, goal tasks provide additional supervision and enable learning
from unstructured data through hindsight relabeling [14–16]. However, compared
to language instructions, specifying visual goals is less practical for real-world
applications, where users likely prefer to tell the robot what they want rather than
having to show it.

Exposing an instruction-following interface for goal-conditioned policies could
combine the strengths of both goal- and language- task specification to enable
generalist robots that can be easily commanded. While goal-conditioned policy

Our Approach (GRIF) Example Rollouts

initial state goalinstruction

“move the towel to
the left”

“put the pepper in
the pan”

“put the spoon on
the towel”

“move the pan to
the front”

“put the pepper on
the towel”

diverse
tasks in

same
scene

diverse
scenes

“put the pan on
the towel”

instruction

z ainitial state

goal

self-supervised:
a LOT of data

language-supervised:
a BIT of data

 π

Figure 2.1: Left: Our approach learns representations of instructions that are aligned
to transitions from the initial state to the goal. When commanded with instructions,
the policy π computes the task representation z from the instruction and predicts
the action a to solve the task. Our approach is trained with a small number of
labeled demonstrations and large-scale unlabeled demonstrations. Right: Our
approach can solve diverse tasks and generalize to vast environment variations.

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 5

learning can help digest unstructured data, non-robot vision-language data sources
make it possible to connect language and visual goals for generalization to diverse
instructions in the real world.

To this end, we propose Goal Representations for Instruction Following (GRIF),
an approach that jointly trains a language- and a goal- conditioned policy with
aligned task representations. We term task representations aligned because our
objective encourages learning similar representations for language instructions
and state transitions that correspond to the same semantic task. GRIF learns this
representation structure explicitly through a contrastive task alignment term. Since
task representations across language and image goal modalities have similar se-
mantics, this approach allows us to use robot data collected without annotations
to improve performance by the agent on image goal tasks when viewed as a goal-
conditioned policy, and thus indirectly improve language-conditioned performance
in a semi-supervised manner. An overview of GRIF is shown in Figure 2.1.

We present an approach for learning a language interface for visuomotor control
without extensive language labels. With this method, we demonstrate that the
semantic knowledge from a pre-trained vision-language model (CLIP [17]) can be
used to improved task representations and manipulation even though such models
perform poorly at task understanding out-of-the-box. Our experiments show that
aligning task representations to scene changes enables improved performance at
grounding and following language instructions within diverse real-world scenes.

2.1 RELATED WORK

Robotic control with language interfaces. Early works in language-conditioned
robotic control use hand-designed parse trees or probabilistic graphical models to
convert instructions into symbolic states to configure the downstream planners and
controllers [18–21] To generalize beyond limited human specifications, a growing
number of works have trained conditional policies end-to-end to follow natural
language instructions [22–28, 26, 29–32]. Combining recent advances large language
models (LLMs) [33] with learned language-conditioned policies as a low-level
API has have paved the way for broad downstream applications with improved
planning and generalization [34–39]. However, most of these methods need high-
capacity policy networks with massive, costly labeled demonstration data. As
a result, the learned policies often generalize poorly to unseen scenarios or can
only handle limited instructions in real-world scenes. Unlike past work, we learn
low-level language-conditioned control from less annotated data.

Vision-language pre-training. Vision-language models (VLMs) enable textual
descriptions to be associated with visual scenes [17, 40]. Through contrastive
learning over internet-scale data, recent large-scale VLMs such as CLIP [17] have
achieved unprecedented zero-shot and few-shot generalization capabilities, with a
wide range of applications.

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 6

Despite these advances, applying pre-trained VLMs to robotic control is not
straightforward since control requires grounding instructions in motions instead
of static images. Through training from scratch or fine-tuning on human trajecto-
ries [41, 42], recent approaches learn representations for visuomotor control [43, 16].
These works use language labels to to learn visual representations for control with-
out directly using language as an interface to the policy. In CLIPort, Shridhar et al.
[29] use pre-trained CLIP [17] to enable sample-efficient policy learning. Their
approach selects actions from high-level skills through imitation, assuming access
to predefined pick-and-place motion primitives with known camera parameters.
In contrast, our approach learns to align the representation of the instruction and
the representation of the transition from the initial state to the goal on labeled robot
data, and uses these representations for control without assumptions about the
observation and action spaces. Other approaches use VLMs to recover reward
signals for reinforcement learning [44–48]. In contrast, our approach directly trains
language-conditioned policy through imitation learning without the need for online
interactions with the environment.

Learning language-conditioned tasks by reaching goals. Alternatively, language-
conditioned policies can be constructed or learned through goal-conditioned poli-
cies [49, 50]. Lynch and Sermanet [51] propose an approach that facilitates language-
conditioned imitation learning by sharing the policy network and aligning the
representations of the two conditional tasks. Based on the same motivation, we
propose an alternative approach which explicitly extends the alignment of VLMs to
specify tasks as changes in the scene. By tuning a contrastive alignment objective,
our method is able to exploit the knowledge of VLMs [17] pre-trained on broad data.
This explicit alignment improves upon past approaching to connecting images and
language [52, 53] by explicitly aligning tasks instead merely jointly training on
conditional tasks. In Section 2.4, we show our approach significantly improves the
performance of the learned policy and enhances generalization to new instructions.

2.2 PROBLEM SETUP

Our objective is to train robots to solve tasks specified by natural language from
interactions with the environment. This problem can be formulated as a conditional
Markov decision process (MDP) denoted by the tuple (S ,A, ρ, P,W , γ), with state
space S , action space A, initial state probability ρ, transition probability P, an
instruction spaceW , and discount γ. Given the instruction ℓ ∈ W , the robot takes
action at ∈ A given the state st at each time step t to achieve success.

To solve such tasks, we train a language-conditioned policy π(a|s, ℓ) on a com-
bination of human demonstrations and autonomously collected trajectories. Since
high-quality natural language annotations are expensive and time-consuming to
obtain, we assume that only a small portion of the trajectories are labeled with the
corresponding instructions. The robot has access to a combination of two datasets—

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 7

a small-scale labeled dataset DL with annotated instructions and a large-scale
unlabeled dataset DU consists of more diverse play data collected in an open-ended
manner. Our goal is to train π(a|s, ℓ) while taking advantage of both the labeled
and unlabeled datasets. We formulate π(a|s, ℓ) as a stochastic policy that predicts
the Gaussian distribution N (µa, Σa).

2.3 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING

We propose Goal Representations for Instruction Following (GRIF) to interface
visuomotor policies with natural language instructions in a semi-supervised fashion
(Fig. 2.2). Although the language-conditioned policy cannot be directly trained on
the unlabeled dataset DU, we can facilitate the training through goal-conditioned
tasks. Solving both types of tasks requires the policy to understand the human
intent, ground it in the current observation, and predict necessary actions. Although
the first steps involve understanding task specifications of different modalities (goal
images and language), the remaining steps of such processes can be shared between
the two settings. To this end, we decouple the language-conditioned policy π(a|s, ℓ)
into a policy network πθ(a|s, z) and a language-conditioned task encoder fφ(ℓ),
where z = fφ(ℓ) is the representation of the task specified by the instruction ℓ. To
solve the goal-conditioned task, we also introduce a goal-conditioned task encoder
hψ. The policy network πθ is shared between the language-conditioned and goal-
conditioned tasks.

This approach relies on the alignment of task representations. While most
existing VLMs align text with static images, we argue that the representation of the
goal-conditioned tasks should be computed from the state-goal pair (s0, g). This
is because the instruction often focuses on the changing factors from the initial
state to the goal rather than directly describing the entire goal image, e.g., “move the
metal pan to the left”. Therefore, the representations of goal-conditioned tasks are
computed as z = hψ(s0, g) and we aim to train the encoders such that for (s0, g, ℓ)
sampled from the same trajectory, the distance between fφ(ℓ) and hψ(s0, g) should
be close and far apart otherwise. We illustrate our high-level approach in Figure 2.2.

Explicit Alignment through Contrastive Learning
We propose explicitly aligning the representations of goal-conditioned and language-
conditioned tasks through contrastive learning [52]. Compared to implicitly align-
ing the task presentations through joint training of the two conditional policies,
contrastive alignment requires that all relevant information for selecting actions
be included in the shared task representation. This improves the transfer between
the action prediction tasks for both goal and language modalities by preventing
the policy from relying on features only present in one task modality in selecting
actions. Using an InfoNCE objective [53], we train the two encoders fφ and hψ to
represent instructions ℓ and transitions (s0, g) according to their task semantics.

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 8

More concretely, for (s0, g) and ℓ that correspond to the same task, we would like
their embeddings zℓ = fφ(ℓ) and zg = hψ(s0, g) to be close in the latent space, while
zℓ and zg corresponding to different tasks to be far apart.

To compute the InfoNCE objective, we define C(s, g, ℓ) = cos(f (ℓ), h(s, g)) with
the cosine similarity cos(·, ·). We sample positive data s+, g+, ℓ+ ∼ DL by selecting
the start state, end state, and language annotation of a random trajectory. We
sample negative examples s−, g− ∼ DL by selecting the start state and end state of
a random trajectory, and sample ℓ− ∼ DL by selecting the language annotation of
another random trajectory. For each positive tuple, we sample k negative examples
and denote them as {s−i , g−i }k

i=1 and {ℓ−i }k
j=1. Then we can define the InfoNCE

Ltask:

Llang→goal = − log
exp(C(s+, g+, ℓ+)/τ)

exp(C(s+, g+, ℓ+)/τ) + ∑k
i=1 exp

(
C(s−i , g−i , ℓ+)/τ

)
Lgoal→lang = − log

exp(C(s+, g+, ℓ+)/τ)

exp(C(s+, g+, ℓ+)/τ) + ∑k
j=1 exp

(
C(s+, g+, ℓ−j)/τ

)
Ltask = Llang→goal + Lgoal→lang (2.1)

where τ is a temperature hyperparameter. Llang→goal and Lgoal→lang represent the
log classification accuracy of our alignment in predicting goals from language and
language from goals respectively.

Weight Initialization with Vision-Language Models
To handle tasks involving objects and instructions beyond those contained in the
limited labeled dataset, we wish to incorporate prior knowledge from broader
sources into the encoders fφ and hψ. For this purpose, we investigate practical
ways to incorporate Vision-Language Models (VLMs) [17] pre-trained on massive
paired images and texts into our encoders. Pre-trained VLMs demonstrate effective
zero-shot and few-shot generalization capability for vision-language tasks [17, 54].
However, they are originally designed for aligning a single static image with its
caption without the ability to understand the changes in the environment that
language tasks correspond to, and perform poorly on compositional generalization
[55, 56], which is key to modeling changes in scene state. We wish to encode the
change between images while still exploiting prior knowledge in pre-trained VLMs.

To address this issue, we devise a mechanism to accommodate and fine-tune the
CLIP [17] model for aligning the transition (s0, g) with the instruction ℓ. Specifically,
we duplicate and halve the weights of the first layer of the CLIP architecture so it
can operate on pairs of stacked images rather than single images. Details on how
we modify the pre-trained CLIP to accommodate encoding changes are presented
in Section 2.4. In practice, we find this mechanism significantly improves the
generalization capability of the learned policy πθ(a|s, g).

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 9

fφ(ℓ) hψ(s0, g)

πθ(s, z) a

s

z

BC Loss

Learn Policy

hψ(s0, g)

fφ(ℓ)

h1 ⋅ f1 h1 ⋅ f2 h1 ⋅ f3 h1 ⋅ f4

h2 ⋅ f1 h2 ⋅ f2 h2 ⋅ f3 h2 ⋅ f4

h3 ⋅ f1 h3 ⋅ f2 h3 ⋅ f3 h3 ⋅ f4

h4 ⋅ f1 h4 ⋅ f2 h4 ⋅ f3 h4 ⋅ f4

⋱

f1 f2 f3 f4

h1

h2

h3

h4

⋮

…

Contrastive Alignment Loss

Learn Task Representations

DL

“place the
spoon on the

towel”

DU

DL
“place the

spoon on the
towel”

Figure 2.2: Left: We explicitly align representations between goal-conditioned and
language-conditioned tasks on the labeled dataset DL through contrastive learning.
Right: Given the pre-trained task representations, we train a policy on both labeled
and unlabeled datasets.

Policy Learning with Aligned Representations
We train the policy jointly on the two datasets DL and DU with the aligned task
representations. By sampling (ℓ, st, at) fromDL, we train the policy network πθ(a|z)
to solve language-conditioned tasks with z = fφ(ℓ). And by sampling (s0, g, st, at)
from DL ∪ DU, πθ is trained to reach goals with z = hψ(s0, g). We train with
behavioral cloning to maximize the likelihood of the actions at.

We investigate two ways to train the policy given the encoders fφ and hψ. The
straightforward way is to jointly train the policy network πϕ and the two encoders
end-to-end. This process adapts the encoders with the policy network to encourage
them to incorporate information that facilitates downstream robotic control, but
can also backfire if the policy learns to rely on visual-only features that are absent
in the language conditioned setting. Alternatively, we can freeze the pre-trained
weights of the two encoders and only train the shared policy network πϕ on the two
datasets. In Section 2.4, we evaluate and discuss the performances of both options.

2.4 EXPERIMENTS

Our work started with the premise of tapping into large, goal-conditioned datasets.
To build a language interface for goal-conditioned policy learning, we proposed
to learn explicitly aligned task representations, and to align instructions to state
changes rather than static goals. Lastly, we advocated for the use of pre-trained

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 10

GRIF LLfP BC-Z

Success Rate

Scene C:Scene B:Scene A:
"put the yellow bell pepper on the cloth"
"move the pan to the front"
"put the pan on the towel"
"move the bell pepper to the left of the table"
"put the bell pepper in the pan"
"put the knife on the purple cloth"
"place the knife in front of the microwave"
"move the pan in front of the cloth"

"put the mushroom in the metal pot "
"put the spoon on the towel"
"place the metal pot on top of the blue
towel"

"move the towel to the left"
"move the towel to the front"
"move the towel next to the cans"
"move the towel next to the
microwave"

Figure 2.3: Comparison of success rates ±SE between the top three methods across
all trials within the three scenes. Two other baselines LCBC and R3M (not shown)
achieved 0.0 success in all evaluation tasks although they do succeed on tasks that
are heavily covered in the training data. Statistical significance is starred. The initial
observation and instructions of each scene are shown.

VLMs to incorporate larger sources of vision-language knowledge. Therefore, we
aim to test the following hypotheses in our experiments:

H1: Unlabeled trajectories will benefit the language-conditioned policy on new
instructions.

H2: Explicitly aligning task representations improves upon the implicit alignment
from LangLfP-style joint training [51].

H3: The prior knowledge in pre-trained VLMs can improve learned task represen-
tations.

H4: Aligning transitions with language enable better use of VLMs compared to
conventional image-language contrastive methods [47, 57].

Our experiments are conducted in an table-top manipulation domain. For
training, we use a labeled datasetDL containing 7k trajectories and an unlabeledDU
containing 47k trajectories. Our approach learns to imitate the 6 DOF continuous
gripper control actions in the data at 5Hz. The evaluation scenes and unseen
instructions are shown in Fig. 2.3. Additional details about the environment, the
dataset, and the breakdown of results are described in Section 2.4.

Comparative Results
We compare the proposed GRIF with four baseline methods on a set of 15 unseen
instructions from all 3 scenes and report the aggregated results in Figure 2.3, with
GRIF attaining the best performance across all scenes. The per-task success rates
can be found in Section 2.4. LCBC [22] uses a behavioral cloning objective to train a

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 11

Table 2.1: Comparison of Approaches

Success Rate

Scene Task GRIF LCBC LLfP R3M BC-Z

.......

A.......

put the yellow bell pepper on the cloth 0.6 0.0 0.0 0.0 0.6

move the pan to the front 1.0 0.0 0.6 0.0 0.0

put the pan on the towel 0.8 0.0 0.3 0.0 0.9

move the bell pepper to the left of the table 0.7 0.0 0.0 0.0 0.8

put the bell pepper in the pan 0.8 0.0 0.1 0.0 0.3

put the knife on the purple cloth 0.7 0.0 0.2 0.0 0.0

place the knife in front of the microwave 0.7 0.0 0.0 0.0 0.1

move the pan in front of the cloth 0.6 0.0 0.3 0.0 0.0

.

B.

put the mushroom in the metal pot 0.9 0.0 0.5 0.0 0.4

put the spoon on the towel 0.9 0.0 0.3 0.0 0.4

place the metal pot on top of the blue towel 0.8 0.0 0.0 0.0 0.2

..

C..

move the towel to the left 1.0 0.0 1.0 0.0 1.0

move the towel to the front 1.0 0.0 1.0 0.0 1.0

move the towel next to the cans 0.6 0.0 0.0 0.0 0.2

move the towel next to the microwave 1.0 0.0 0.2 0.0 0.8

policy conditioned on language from DL, similar to prior methods on instruction-
conditioned imitation learning. LLfP [51] jointly trains a goal conditioned and
language conditioned policy on partially labeled data, but does not learn aligned
task representations. R3M [16] provides pre-trained state representations for robot
manipulation that are predictive of language-conditioned rewards. We use this
approach as a baseline by jointly training goal- and language-conditioned policies
while using R3M state encodings as goal representations (i.e., hψ(s0, g) = R3M(g)).
BC-Z [23] jointly trains language- and video-conditioned policies and uses an ad-
ditional cosine similarity term to align video and language embeddings. This
approach does not transfer directly into our goal-conditioned setting, but we create
a baseline that adapts it to our setting by jointly training goal- and language-
conditioned policies while aligning task representations with a cosine distance loss.
The architecture choices are standardized across all methods for fair comparisons.
Unless stated otherwise, all baselines use a ResNet-18 as the goal encoder hψ(s0, g).
In our preliminary experiments, this architecture was found to give good perfor-
mance when used to train goal-conditioned policies in our setting. For the language
encoder fφ(ℓ), all baselines use a pre-trained and frozen MUSE model [58], as in
previous work [51, 23].

We find that language-conditioned policies must make use of unlabeled tra-
jectories to achieve non-zero success rates when generalizing to new language

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 12

Table 2.2: Comparison of Ablations

Success Rate

Scene Task GRIF (Frozen) GRIF (Joint) GRIF (Labeled)

..........

A..........

put the yellow bell pepper on the
cloth

0.6 0.8 1.0

move the pan to the front 1.0 1.0 0.7

put the pan on the towel 0.8 1.0 0.1

move the bell pepper to the left
of the table

0.7 0.4 0.2

put the bell pepper in the pan 0.8 0.6 1.0

put the knife on the purple cloth 0.7 0.4 0.1

place the knife in front of the mi-
crowave

0.7 0.6 0.5

move the pan in front of the cloth 0.6 0.9 0.2

No Start No Align No CLIP

..........

A..........

put the yellow bell pepper on the
cloth

0.3 0.5 0.0

move the pan to the front 0.6 0.8 0.0

put the pan on the towel 0.6 0.6 0.0

move the bell pepper to the left
of the table

0.4 0.6 0.2

put the bell pepper in the pan 0.7 0.6 0.1

put the knife on the purple cloth 0.2 0.2 0.0

place the knife in front of the mi-
crowave

0.1 0.0 0.0

move the pan in front of the cloth 0.4 0.0 0.3

instructions in support of H1. LCBC does not use unlabeled data and fails to com-
plete any tasks. R3M jointly trains goal- and language-conditioned policies, but it
also fails all tasks. This is likely due to its goal encodings being frozen and unable
to be implicitly aligned to language during joint training. Methods that use implicit
or explicit alignment (GRIF, LLfP, BC-Z), are able to exploit unlabeled goal data to
follow instructions to varying degrees of success. These comparisons suggest that
the combined effect of using pre-trained CLIP to align transitions with language
significantly improves language-conditioned capabilities. Our model significantly
outperformed all baselines on 8 out of 15 tasks, achieving high success rates on
several tasks where the baselines almost completely fail (“place the knife in front of the
microwave”, “move the pan in front of the cloth”, “put the knife on the purple cloth”), while

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 13

achieving similar performance to the next-best baseline on the remaining tasks.
Where baselines failed, we often observed grounding failures. The robot reached
for incorrect objects, placed them in incorrect locations, or was easily distracted by
nearby objects into performing a different task.

Ablation Study

Success Rate

GRIF (Frozen)

GRIF (Joint)

No Start

No Align

No CLIP

Ablation Results (Scene A)

GRIF (Labeled)

Figure 2.4: Success rates of ablations with one
standard error.

We run a series of ablations
to analyze the performance of
GRIF and test the hypothe-
ses. No Align ablates the ef-
fect of explicit alignment by re-
moving the contrastive objec-
tive. We also unfreeze the task
encoders so that they are im-
plicitly aligned via joint train-
ing of the language- and goal-
conditioned policies. No CLIP
ablates the effect of using pre-
trained CLIP by replacing the
image and text encoders with a ResNet-18 and pre-trained MUSE language encoder.
In No Start, the image task representaions only depend on goals as hψ(g), instead of
depending on transitions as hψ(s0, g). This is the conventional way to connect goals
and language with CLIP that is often used in previous work [57, 47]. For GRIF
(Labeled), we exclude DU to study whether using unlabeled data is important for
performance. GRIF (Joint) trains the task alignment and policy losses jointly, taking
gradients through the image encoder and freezing the language encoder. This is the
end-to-end approach discussed in Section 2.3. We refer to our full approach without
joint training as GRIF (Frozen) in the remainder of this section.

As shown in Figure 2.4, explicit alignment, pre-trained CLIP, and transition-
based task representations all play critical roles in achieving high success rates.
Notably, the conventional approach of aligning static goals and instructions with
CLIP (No Start) fails almost completely in our setting. This is in support of H4 and
confirms that transitions, and not goal images, should be aligned to language tasks.
In GRIF (Labeled), dropping DU significantly decreases success rates, further sup-
porting H1. We observe that this is primarily due to a deterioration of manipulation
skills rather than grounding, which is expected as grounding is mostly learned via
explicit alignment on DL. Regarding H2 and H3, we observe that removing either
alignment or CLIP results in a large drop in performance. We also observed that
No Align outperforms its counterpart LLfP by using the pre-trained CLIP model
(after the modification in Section 2.3) in the task encoder. We hypothesize that this
is because CLIP has already been explicitly aligned during pre-training, and some

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 14

“Move the cloth to the
empty table corner”

“Place the spoon on
top of the towel”

Top-5 Text To Image Retrieval Accuracy

Instruction Retrieved ImagesRetrieval Accuracy (%)

s0

g

s0

g

GRIF (Frozen)
GRIF (Joint)

No Start
No Align
No CLIP

Figure 2.5: Left: Comparison of the top-5 text to image retrieval accuracy of repre-
sentations learned by different ablations. Right: Examples of retrieved image pairs
given instructions.

of its knowledge is retained during joint training with the policy even without
GRIF’s task alignment loss. Lastly, deciding to freeze the task encoders during
policy training does not appear to significantly affect our model’s performance.
This is likely because the contrastive learning phase already learns representations
that can represent the semantic task, so there is less to gain from further implicit
alignment during joint training.

Analysis on the Learned Task Representations
For additional analysis, we evaluate our model’s task grounding capabilities inde-
pendently of the manipulation policy and compare it with ablations. Specifically,
we evaluate how well our model can connect new language instructions to correct
goals in a scene. This is important to downstream policy success: if the model
is able to project the language to a representation fφ(l) that is close to that of the
correct (but unprovided) goal hψ(s0, g), then the policy will likely be able to execute
the task since it has been trained on a large amount of goal-conditioned data.

Our task representations are trained with a contrastive objective, offering a
convenient way to compute alignment between language and goals. On an dataset
of labeled held-out trajectories, we compute the similarities between all pairs of
visual task representations hψ(s0, g) and language task representations fφ(ℓ). For
each language instruction, we retrieve the top k most similar (s0, g) transitions
and compute the accuracy for the correct transition being retrieved. We compute
this metric in fixed batches of 256 examples and average over the validation set to
report a text-to-image retrieval accuracy. We compute this metric for representa-
tions from each of our ablations and report the results in Figure 2.5 to analyze why
GRIF outperforms other approaches in our main experiments. Our task represen-
tations show significantly better generalization compared to using a conventional
image-language alignment (No Start), despite it being CLIP’s original pre-training

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 15

objective. The alignment accuracy is also more than 50% higher than when using
non-VLM encoders (No CLIP), suggesting potentially large gains in grounding
capability through using VLMs.

We also study the effect of the number of language annotations on our model’s
grounding capability. Even at less than half the number of language annotations
(3k), GRIF outperforms all the ablations in Figure 2.5, achieving a retrieval accuracy
of 73%. Detailed results for this ablation are presented in Section 2.5, showing our
approach is robust to lower amounts of language supervision.

Environment Details
We provide more details on the real-world environment in this section.

Robot
We use a 6DOF WidowX 250 robot with a 1DOF parallel-jaw gripper. We install the
robot on a tabletop where it can reach and manipulate objects within an environment
set up in front of it. The robot receives inputs from a Logitech C920 RGB camera
installed in an over-the-shoulder view. The images are passed into the policy at a
128 x 128, and the control frequency is 5Hz. Teleoperation data is collected with a
Meta Quest 2 VR headset that controls the robot.

Dataset Details
The dataset consists of trajectories collected from 24 different environments, which
includes kitchen-, sink-, and tabletop-themed manipulation environments. The
dataset features around 100 objects, including containers, utensils, toy food items,
towels, and other kitchen-themed objects. It includes demonstrations of 13 high-
level skills (pick and place, sweep, etc.) applied to different objects. Out of the 54k
total trajectories, 7k are annotated with language instructions. Around 44k of the
trajectories are expert demonstrations and around 10k are collected by a scripted
policy.

Method Details

Policy Network
Our policy network πθ(a|s, z) uses a ResNet-34 architecture. To condition on the
task embedding z, it is first passed through 2 fully connected layers. Then, the
policy network is conditioned on the embedding using FiLM layers, which are
applied at the end of every block throughout the ResNet. The image encoding is
then passed into a fully connected network to predict the action distribution. The
policy network predicts the action mean, and we use a fixed standard deviation.

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 16

CLIP Model Surgery
Instead of separately encoding s0 and g inside fφ, we perform a “surgery” to the
CLIP model to enable it to take (s0, g) as inputs while keeping most of its pre-trained
network weights as intact as possible. Specifically, we clone the weight matrix Win
of the first layer in the pre-trained CLIP and concatenate them along the channel
dimension to be [Win; Win], creating a model that can accept the stacked [s0, g] as
inputs. We also halve the values of this new weight matrix to make it W ′in =
[Win/2; Win/2], ensuring its output 0.5(Wins0 + Wing) will follow a distribution
similar to the output by the original first layer Wins0. While this surgery alone
cannot perfectly close the gap, the resultant modified encoder can serve as a capable
initialization for the transition encoder hψ. We further fine-tune hψ on the labeled
robot dataset DL using the aforementioned method to adapt it for instruction-
following tasks.

Negative Sampling
For training the contrastive objective on DL, our batch sampling strategy is non-
standard. We use 2 dataloaders in parallel; the first samples from shuffled trajecto-
ries, while the second iterates through trajectories in the order that they are stored
in the dataset. Each samples batches of 128 trajectories and they are concatenated to
produce a batch size of 256. The reason for this is that if we were to use a standard
sampling strategy, most examples in a batch would be from different scenes. This is
not useful for the contrastive loss because the representations would just learn to
distinguish tasks based on the set of objects that appear. The robot benefits from
being able to distinguish different tasks in the same scene, so we try to include
many trajectories from the same scene in each batch. Using an unshuffled dataloder
is a convenient way to achieve this since trajectories from the same scene are stored
together. This can be considered a form of negative mining for the contrastive
learning stage.

Goal Relabeling
For unlabeled trajectories in DU , we use a simple goal relabeling strategy: with 50%
probability, we use the final achieved state as the goal, and with 50 % probability
we uniformly sample an intermediate state in the trajectory to use as the goal. We
do not relabel the annotated trajectories in DL.

Hyperparameters
When training the task encoders using the contrastive learning objective, we use a
batch size of 256. We reduce the batch size to 128 when we train the policy network.
We use the Adam optimizer with a learning rate schedule that uses linear warmup
and cosine decay. The peak learning rate is 3e-4 for all parameters except the CLIP
ViT encoders, for which we use 3e-5. We use 2000 warmup steps and 2e6 decay steps

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 17

Table 2.3: Evaluation Scenes

Scene Objects

A knife, pepper, towel, & pot

B mushroom, towel, spoon, & pot

C towel

for the learning rate schedule. When we jointly train the alignment and behavioral
cloning losses, we use a weight of 1.0 on both terms. These hyperparameters were
found through random search. We train our models for 150k steps, which takes
around 13 hours on 2 Google Cloud TPU cores.

Experimental Details
The scenes were constructed with the objects shown in Table 2.3 within a toy kitchen
setup.

During evaluation, we roll out the policy given the instruction for 60 steps. Task
success determined by a human according to the following criteria:

• Tasks that involve putting an object into or on top of a container (e.g. pot, pan,
towel) are judged successes if any part of the object lies within or on top of
the container.

• Tasks that involve moving an object toward a certain direction are judged
successes if the object is moved sufficiently in the correct direction to be
visually noticeable.

• Tasks that involve moving an object to a location relative to another object are
judged successes if the object ends in the correct quadrant and are aligned
with the reference object as instructed. For example, in “place the knife in
front of the microwave,” the knife should be placed in the top-left quadrant,
and be overlapping with the microwave in the horizontal axis.

• If the robot attempts to grasp any object other than the one instructed, and
this results in a movement of the object, then the episode is judged a failure.

Experimental Results
We show per-task success rates for our approaches, the baselines, and the ablations
in this section. The tasks in scenes A and B were evaluated for 10 trials each, while
those in C were evaluated for 5 trials.

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 18

1k 2k 3k 4k 5k 6k 7k

0.4

0.5

0.6

0.7

0.8

0.9

Language Annotations

R
et

ri
ev

al
A

cc
ur

ac
y

(%
)

Ablation of Amount of Language

Figure 2.6: Scaling of GRIF grounding capability by number of language annotations
available.

2.5 SCALING OF ANNOTATION SUPERVISION

We ablate effect of the amount of language supervision on GRIF’s grounding ca-
pabilities. We compute the (top-5) text-to-image retrieval accuracy of GRIF repre-
sentations when trained on 7k, 5k, 3k, and 1k annotations, and find accuracies of
86%, 81%, 73%, and 52% respectively. These accuracies are plotted in Figure 2.6.
By comparing these accuracies with the grounding performance of the ablations
in Figure 2.5, we see GRIF enables more robust grounding with little language
supervision.

2.6 CONCLUSION

Our approach to aligning image goals and language instructions enables a robot to
utilize large amounts of unlabeled trajectory data to learn goal-conditioned policies,
while providing a “language interface” to these policies via aligned language-
goal representations. In contrast to prior language-image alignment methods,
our representations align changes in state to language, which we show leads to
significantly better performance than more commonly used CLIP-style image-
language alignment objectives. Our experiments demonstrate that our approach
can effectively leverage unlabeled robotic trajectories, with large improvements
in performance over baselines and methods that only use the language-annotated
data.
Limitations and future work. Our method has a number of limitations that could

2 GOAL REPRESENTATIONS FOR INSTRUCTION FOLLOWING 19

be addressed in future. For instance, our method is not well-suited for tasks where
instructions say more about how to do the task rather than what to do (e.g., “pour the
water slowly”)—such qualitative instructions might require other types of alignment
losses that more effectively consider the intermediate steps of task execution. Our
approach also assumes that all language grounding comes from the portion of our
dataset that is fully annotated or a pre-trained VLM. An exciting direction for future
work would be to extend our alignment loss to utilize non-robot vision-language
data, such as videos, to learn rich semantics from Internet-scale data. Such an
approach could then use this data to improve grounding on language not in the
robot dataset and enable broadly generalizable and powerful robotic policies that
can follow user instructions.

20

3 POLICY ADAPTATION VIA LANGUAGE
OPTIMIZATION

AdaptationPretraining Evaluation
new task

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

References

1

VLM M
propose

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

References

1

“put the turnip
in the drawer”

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

References

1

“grasp
drawer”

“pull
open”

“open
gripper”

expert teleoperators

scripted policies

human annotators

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

⇡̃(â | s, ck)
LLCBC

minLbc = kâ� ak2

L(1)

bc

L(2)

bc

L(K)

bc

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

⇡̃(â | s, ck)
LLCBC

minLbc = kâ� ak2

L(1)

bc

L(2)

bc

L(K)

bc

References

1

“put the turnip in the drawer”

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D
Dtarget

⌧1 ⌧2 . . . ⌧N

Dprior

ĉ1

ĉ2

...

ĉK

⇡̃(â | s, ck)
LLCBC

minLbc = kâ� ak2

L(1)

bc

L(2)

bc

L(K)

bc

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

c*

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

⇡̃ (13)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

c→1

c*c→2

“move left”

“close gripper”

states actionslanguage

ω̃(s, ck)

aisi

rollout with optimal language
subtask decomposition .c→

c→

minLBC = →âi ↑ ai→2

âiω̃(si, ck)

ck

learn language-conditioned
policy with behavioral cloning freeze policy, optimize over language using a few demonstrations

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

⇡̃ (13)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

Figure 3.1: An overview of the PALO algorithm for few-shot adaptation with lan-
guage. (Left) We build off a pre-trained policy that has learned to follow low-level
language instructions from a large dataset of expert demonstrations. (Middle) Given
a new task and a few expert demonstrations, we use a VLM to propose candidate
decompositions into subtasks. We optimize over these decompositions jointly with
the partitions of trajectories into subtasks, selecting the subtask decomposition
that minimizes the validation error of the learned policy. (Right) At test time, we
condition the pre-trained policy on the selected decomposition to solve the task.

Robot learning promises policies that can adapt and generalize to new behaviors.
However, in practice, today’s robotic policies often struggle to effectively finetune
for truly new tasks [59, 51, 60–62]. For example, consider the task of making a
salad: while a person could likely follow a new recipe with only a few examples
by remembering the key steps, a robot learning approach may need many more

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 21

demonstrations to achieve similar performance, and still recover a more brittle
policy.

A key difference that allows humans to learn tasks so quickly is their semantic
understanding of the world. Human have a symbolic representation of the task,
such as the names of the ingredients and the steps to prepare them, rather than
a series of low-level actions. This representation enables them to understand the
task at a higher level, mapping directly into low-level behaviors they are already
familiar with [63, 64]. How can we enable robots to quickly learn new tasks through
a semantic understanding of the world?

PALO: Policy Adaptation
via Language Optimization

“put the turnip
in the drawer”

Policy Finetuning
in parameter space

VLM

“Grasp drawer”

“Pull open”

“Open gripper”

R
⇡
�
(
⇡
P
A
L
O
;
⇢
t
a
r
g
e
t)

R
⇡
�
(
⇡̂
;
⇢
p
r
io
r)
+

1H

H
Xi
=
1

D
T
V
(
p
t
a
r
g
e
t (
c
i)
,
p
p
r
io
r (
c
i))

+
p
2
D

K
L
(
p
(
c
1
:K
)
,
p
M
)
+

p
M

+
p
n
log(

M
n
)

n
+
1
/
M

+
1
/
K

+
N

�
2
/
K

D
D

t
a
r
g
e
t

⌧
1

⌧
2

.
.
.

⌧
N

R
eferen

ces

1

search over Language

Pretrained Language Policy

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

⇡̃ (13)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

new task:

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Demonstrations

S
u
c
c
e
s
s
R
a
t
e

PALO Finetuning

+

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

⇡̃ (13)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

only 5 demos needed!

optimize over
parameters

minLBC

R⇡� (⇡PALO; ⇢target) R⇡� (⇡̂; ⇢prior) +
1

H

HX

i=1

DTV (ptarget (ci) , pprior (ci)) +
p
2DKL (p (c1:K) , pM) +

p
M +

p
n log(Mn)

n
+ 1/M + 1/K +N

�2/K

D (1)

Dtarget (2)

⌧1 ⌧2 . . . ⌧N (3)

Dprior (4)

⇡̃(â | s, ck) (5)

LLCBC (6)

minLbc = kâ� ak2 (7)

L(1)

bc (8)

L(2)

bc (9)

L(K)

bc (10)

J = L(1)

bc + L(2)

bc + . . .+ L(K)

bc (11)

J = L(1)

bc + . . .+ L(K)

bc (12)

⇡̃ (13)

c
⇤ = argmin

ĉ1:K⇠M
min
partitions

(•,•,...,•)

⇥
J
⇤

References

1

need >100 demos

Figure 3.2: PALO enables pre-trained gen-
eralist policies to adapt new tasks with as
few as five demonstrations by searching
in language space instead of parameter
space.

Language provides a potential bridge
between these task semantics and low-
level control [65]. Recent advances
in large language models (LLMs) and
vision-language models (VLMs) have
shown promise in understanding and
grounding language from a few demon-
strations [33, 66]. We propose Pol-
icy Adaptation via Language Optimiza-
tion (PALO), a method for exploiting
the semantic understanding of VLMs in
combination with a pre-trained robot
policy to enable adaptation to new
tasks with only a few demonstrations
(Fig. 3.1).

Past approaches that fine-tune di-
rectly to new demonstrations are of-
ten overparameterized and sample-
inefficient, due to the cost inherent in
collecting teleoperated trajectories [67].
Instead, we use a few demonstrations
as a calibration set to guide the decom-
position of a new language task into a
sequence of subtasks that can be used
by a language-conditioned policy. Our
approach samples possible decompo-
sitions of the task from a VLM and
chooses the one that minimizes the validation error of the learned policy on the
calibration set.

The key is that in the few-shot setting, a few demonstrations provide a better
signal for adapting to new tasks when used to select the right sequence of lan-
guage subtasks with the help of a VLM, rather than directly fine-tuning the policy
parameters (Fig. 3.2). Unlike prior work, our approach can learn unseen, long-

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 22

horizon behaviors with fewer than 10 demonstrations across a variety of tabletop
manipulation tasks.

3.1 RELATED WORK

Our approach lies at the intersection of few-shot learning and approaches that
leverage language and large pre-trained models for robotics.

Few-shot learning. Broadly speaking, few-shot learning approaches utilize diverse
data to enable rapid test-time adaptation to a new task from a few examples. These
techniques have been applied in various domains, including vision [68–70], natural
language processing [33, 71], and reinforcement learning [72, 73]. Frameworks
for few-shot learning include optimization-based meta-learning [74–76], where a
model is trained to quickly fine-tune to new tasks, nonparametric methods based on
particular modeling assumptions such as metric approaches and Gaussian processes
[77–80], and in-context learning [33, 81–83], where a large model is conditioned
on a context to adapt to a new task. Unlike past approaches to few-shot learning
in robotics [84, 67], we show that language can be used to enable nonparametric
adaptation without fine-tuning.

Language-conditioned robotic control. While early approaches to instruction-
following in robotics relied on manually designed symbolic representations [18, 20,
21], recent work has focused on applying deep learning techniques to understand
natural language instructions [85, 29]. These approaches use learned behavioral
cloning policies on top of language [51, 86, 39], connect language representations to
grounded representations of the environment [7, 87–89], or use the compositional
structure of language to decompose tasks and plan [90, 35, 91–93]. Our approach
is the first to enable few-shot adaptation to new demonstrations in robotics by
leveraging the structure of language.

Foundation models and robotics. Large-scale internet pre-training has seen recent
success in the domains of vision and natural language processing [33, 17, 94, 95, 33,
96]. Recent work has investigated if these models can be trained and/or fine-tuned
for downstream robotics tasks [85, 26, 97, 67, 98, 99]. Other work has investigated if
these models can be used to provide semantic knowledge for downstream robot
learning pipelines [100–106]. Our approach falls into this latter category, but unlike
the past works, we perform few-shot adaptation in language-conditioned robot control
using the semantic knowledge in large pre-trained VLMs.

3.2 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION

Our goal is to enable a learned language-conditioned robot policy to perform new
tasks with only a few demonstrations. The key insight is that the structure of
language can be exploited to enable few-shot adaptation to new demonstrations in

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 23

robotics. Fundamentally, few-shot adaptation to new tasks depends on a policy’s
ability to generalize its existing knowledge to correctly fit to new demonstrations.
One approach for adapting a learned policy is to directly fine-tune to new demon-
strations, but in robotics settings where expert data collection is costly, this is often
infeasible due to overfitting.

We propose Policy Adaptation via Language Optimization (PALO), which
instead uses demonstrations of a task that is outside the training distribution
with the reasoning capabilities of a pre-trained vision-language model (VLM) to
determine the correct sequence of decomposed subtasks that are in-distribution for
the robot policy. Given a language instruction ℓ, we compute a task decomposition
c1:K that is both semantically consistent with the instruction (determined by the
VLM) and feasible in the environment (measured by policy validation loss on expert
demonstrations).

Notation
Formally, we assume a contextual Markov Decision Process (MDP) structure. We
have a state space S , continuous action space A = (0, 1)dA , initial state distribution
p0, transition probabilities P, and free-form language instruction ℓ ∈ L chosen from
the language instruction space L. We use the notation P(X) to denote the set of
probability distributions over a space X.

The robot selects the action at ∈ A based on the observed state st ∈ S at each
time step t ∈ {1 . . . H} over a finite horizon H to achieve states in Sℓ. We denote
a robot policy as a map π(ât | st, ℓ), which maps the state st and instruction ℓ to
a distribution over actions ât. For convenience, we assume actions are selected
under a fixed isotropic Gaussian noise model unless otherwise specified, and will
denote the mode of the distribution π(â | st, •) as π(st, •). A robot policy then
yields a distribution over trajectories

(
{(si, ai)}H

i=1, ℓ
)
∼ T ρ

π given a task distribution
ρ ∈ P(L).

Problem Statement
We want to solve out-of-distribution instruction-following tasks involving unseen
objects and skills given only a few demonstrations. For (pre-)training the instruction-
following policy we assume access to a dataset that has been generated using
language tasks sampled from some distribution ρprior ∈ P(L) with an expert
policy πβ(â | s, ℓ). For training an instruction-following policy π̂(s, ℓ), we assume

a prior dataset Dprior =
{
(τ(i), c(i)1:K, ℓ(i))

}Nprior
i=1 for τ(i), ℓ ∼ T ρprior

πβ
and additional

hierarchically-decomposed subtask instructions c1:K ∈ LK that are distributed
according to p(c1:K | s0, ℓ) for decomposition size K < H.

A target task is sampled from a separate distribution ρtarget ∈ P(L) which
requires interacting with unseen objects in novel ways, so the policy trained on
Dprior performs poorly zero-shot. To solve this new task, we assume there exists

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 24

an additional dataset Dtarget = ({τ1 . . . τn}, ℓ) for τi ∼ T δℓ
πβ
| s0 with s0 ∼ p0 and

ℓ ∼ ρtarget collected by human experts. While a large Dtarget can enable directly
training π(s, ℓ) to solve the target task, we are interested in challenging few-shot
scenarios in which Dtarget only contains a handful of demonstrations (e.g., 5). In
this paper, we tackle this challenge by decomposing the novel target task into a
sequence of subtasks that are solvable by the pre-trained π̃(s, c) using a VLMM.
Notably, we do not assume any ground truth labels for the task decomposition are
given, and aim to generate the optimal language decomposition c1:K based on the
unlabeled demonstration dataset Dtarget collected by human operators.

Our approach makes two assumptions about the structure of the target task.

Assumption 3.1. The target task subtask annotations ci locally match those of the prior
dataset, i.e., are distributed identically for i ∼ Unif(1 . . . H)

Eℓ∼ρtarget,s0∼p0 p(ci | s0, ℓ) ≈ Eℓ∼ρprior,s0∼p0 p(ci | s0, ℓ). (3.1)

Assumption 3.1 states that even if the overall target tasks in ρtarget are unseen,
the low-level manipulation skills (e.g., “close the gripper,” “move the arm right”)
will be represented in the policy training.

Assumption 3.2. The VLMM can approximate the distribution of the subtask annotations
c1:K in the target task, i.e.,

pM(c1:K | s0, ℓ) ≈ p(c1:K | s0, ℓ). (3.2)

Assumption 3.2 states that the VLM can propose candidate task decompositions
that are consistent with the instruction ℓ in new scenes. Qualitatively, these as-
sumptions are consistent with recent advances in robot manipulation training data
[62, 98] and embodied reasoning with VLMs [107] and are empirically validated
in our experiments in Section 3.4 using the BridgeDataV2 dataset [62] and GPT-4o
[94] with prompting described in Appendix B.2.

In Section 3.3 we show that under these assumptions, our PALO algorithm can
achieve low regret on out-of-distribution tasks, and discuss how violating these
assumptions affects performance.

Task Decomposition with Language
To guide the pre-trained policy π̂ to solve the unseen target task, we decompose
the high-level language instruction ℓ of the target task into a sequence of subtask
instructions c1:K = (c1, . . . , cK) for the K subtasks as a set of language decomposition.
Instead of commanding π̂ with the original instruction ℓ, we use a combination of ℓ
and the subtask instructions ck as the input in each subtask to produce the action
as at ← π̃(st, ck). In our methods, we used GPT-4o [94] as a backbone to generate

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 25

“put the turnip in the drawer”

move the
gripper down
towards the
drawer handle

close the gripper
to pick up the
drawer handle

move the gripper
backward to
open the drawer

open
the
gripper

move the gripper right
and down towards the
purple thing

close the
gripper to pick
up the purple
thing

move the gripper
left and forward
towards the
drawer

move the
gripper down
towards the
drawer

open the gripper
to release the
purple thing

ℓ =

cH
1:K =

cL
1:K =

open the drawer pick up the purple thing move the purple thing
to the drawer

place the purple thing
in the drawer

t

Figure 3.3: A visualization of an example execution of our method on the long-
horizon task “put the beet toy in the drawer.” The VLM deconstructs ℓ into can-
didate high-level subtasks cH

1:K and low-level subtasks cL1 : K and optimizes over
the expert trajectories. The optimal cH

1:K and cL1 : m are chosen and unrolled in
real-world evaluations, which result in successful completion of the task (trajectory
shown in gray).

instruction sets. We denote byM(s0, ℓ) the support of possible task decompositions
sampled from this VLM (see details in Appendix B.2).

Aside from the sequential order of the subtasks, the robot needs to decide when
to switch to the next subtask. For this purpose, we introduce an additional variable
u = (u1, . . . , uK) ∼ Unif(U) where U is the space of ordered partitions of {0 . . . H},
so uk denotes the time steps on which the robot is executing the k-th subtask.
Notably, we assume the optimal solution to the target task follows a fixed structure,
i.e., the same subtask sequence c can be used to solve the task, regardless of the
initial state s0. Meanwhile, u can be different in each episode, since the number of
steps needed to complete each subtask depends on s0 as well as stochasticity in the
environment and the policy.

Few-Shot Adaptation through Language Decomposition
We design a simple sampling-based inference algorithm to find the best c∗ for
guiding the policy π̃ to solve the target task. Since the resulting actions depend on
both c and u, as discussed in Section 3.2, we jointly optimize c and u to minimize a
cost function J over all trajectories in Dtarget:

min
c1:K∈M(s0,ℓ)

∑
τ∈Dtarget

(
min

u1:K∈U
J (c, u, τ)

)
. (3.3)

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 26

To measure how well c and u enable the policy π̃ to reproduce each τ, the cost
function is defined with the mean squared error between the predicted action ât
and the ground truth at at each time step t. More specifically, we evaluate the policy
π̃ on the demonstration trajectory given c and u to compute ât ← π̃(st, cmin{k:t∈uk}).
Then the cost function is defined as:

J (c, u, τ) =
K

∑
n=1

∑
t∈un

∥∥at − π̃(st, c)
∥∥2. (3.4)

By minimizing this cost across demonstrations, we compute a decomposition of the
task c that would optimally perform the task by minimizing the loss between the
action of the robot and the expert.

Learning Composable Instruction-Following Primitives
We use language-conditioned behavior cloning [22] to learn a policy π̂(st, ℓ) based
on the expert trajectories of Dprior. To enable conditioning on fine-grained hierar-
chical language instructions, we factorize π̂ through c1:K:

π̂(â | st, ℓ) = ∑
c1:K∈L

p(c1:K | ℓ)
K

∑
k=1

π̃(â | st, ck)p(kt = k) (3.5)

for the subtask index at time t: kt = min{k : t ∈ uk, u1:K ∼ Unif(U)}. We learn
parameters θ for π̃θ by minimizing the following behavioral cloning objective:

LBC(θ) = E(st,at,ck,ℓ)∼Dprior

[H

∑
t=1

∥∥π̃θ(st, ck)− at
∥∥2
]
. (3.6)

The training datasetDprior is an augmented version of BridgeData [62], a dataset
containing a diverse set of manipulation tasks on common household objects.
Details about how the subtask instructions are generated are discussed in Ap-
pendix C.2. Each ci is further partitioned into a high-level component cH

i and a
low-level component cL

i . Our full implementation is described in Appendix C.2.

3.3 REGRET ANALYSIS

Our theoretical results study the regret of this approach on out-of-distribution tasks
in ρtarget, showing that it trades off the performance of the pre-trained policy on
ρprior and the performance of the VLMM in accurately modeling the hierarchical
language decomposition p(c1:K) in ρtarget. We define regret with respect to the
expert policy πβ and a given task distribution in terms of the MSE:

Rπβ
(π; ρ) = ET ρ

πβ

[
1

H
√

dA

H

∑
t=1

∥∥π(st, ℓ)− πβ(st, ℓ)
∥∥2
]

. (3.7)

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 27

Algorithm 1: Policy Adaptation via Language Optimization (PALO)
Require: a VLMM, pre-trained instruction-following policy π(â | st, c),

candidate decompositions to sample M, optimization steps N
Input: new task described by ℓwith n expert demonstrationsDtarget

collected manually
Output: policy π̂(· | st) adapted to the new task ℓ
1: for i = 1 to M do
2: c(i)1:K ∼M(s0, ℓ)
3: for j = 1 to N do
4: u(i,j)

1:K ∼ Unif(U)
5: ĉ1:K ← arg minc1:K∈{c(i)}M

i=1
minu∈{u(i,j)}N

j=1
J (c1:K, u, τ) (eq. 3.4)

6: πPALO(â | st, ℓ)← π(â | st, ĉkt)
7: return πPALO.

Theorem 3.1. The (out-of-distribution) regret of PALO on ρtarget can be bounded as:

Rπβ

(
πPALO; ρtarget

)
≤ Rπβ

(π̂; ρprior) + E
[
DTV

(
ptarget(ckt), pprior(ckt)

)]
+
(
2DKL

[
p(c1:K), pM

])1/2
+
√

M+
√

n log(Mn)
n + 1/M + 1/K + N−2/K (3.8)

where πPALO is from Algorithm 1, π̂(st, ℓ) is trained on Dprior (Section 3.2), and t ∼
Unif(1 . . . H).

The proof is in Section 3.3. Theorem 3.1 shows that in the limit as N, M → ∞,
we can decompose the out-of-distribution regret of PALO into a sum of the in-
distribution regret of the pre-trained policy, and the performance of the VLM in
accurately decomposing language tasks:

Rπβ
(πPALO; ρtarget) ≲ Rπβ

(π̂; ρprior)︸ ︷︷ ︸
pre-training MSE

+
(
2 Eρtarget DKL

[
p(c1:K)

∥∥pM(c1:K)
])1/2︸ ︷︷ ︸

VLM accuracy

+ E
[
DTV

(
ptarget(ckt), pprior(ckt)

)]︸ ︷︷ ︸
local marginal conformity

. (3.9)

Viewing the VLM accuracy and local marginal conformity terms as the extent to
which Assumption 3.1 and Assumption 3.2 are satisfied, we can see that under these
conditions, Theorem 3.1 lets us directly relate the performance of the pre-trained
policy π̂ on the training data Dprior to the performance of the PALO algorithm on
out-of-distribution tasks.

Proof of Theorem 3.1. We will first consider the empirical regret of the MLE esti-
mate of c1:K, and relate it to in-distribution regret of π̃ using PAC techniques (see

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 28

Catoni [108], Alquier [109]). We will then bound the remaining error due to the
approximations made by the PALO algorithm and this empirical regret.

Recall our definition of regret:

Rπβ
(π; ρ) = ET ρ

πβ

[
1

H
√

dA

H

∑
t=1

∥∥π(st, ℓ)− πβ(st, ℓ)
∥∥2
]

. (from eq. 3.7)

We can also define an empirical target regret REMP measuring the fit of some
c ∈ LK to the target distribution ρtarget in terms of Eq. (3.4):

REMP(c1:K) = EDtarget∼ρtarget

[
1

H
√

dA
∑

τ∈Dtarget

min
u1:K
J (c1:K, u1:K, τ)

]
(3.10)

whereJ is the cost function in Eq. (3.4). PALO selects cPALO = arg minc1:K∈LK R̂EMP(c1:K)

to minimize an approximation of this quantity for samples u(1), . . . , u(N) ∼ Unif(U):

R̂EMP(c1:K) = EDtarget∼ρtarget

[
1

H
√

dA
∑

τ∈Dtarget

min
i∈{1...N}

J (c1:K, u(i), τ)

]
. (3.11)

We will also define a distributional notion of conditional regret for our analysis:

R̃πβ
(π̃ | s0, ℓ, c1:K) = E

τ∼T s0
πβ

[
1

H
√

dA
min

u1:K∈U
J (c1:K, u1:K, τ)

]
. (3.12)

We now make use of the following PAC result [110, 109], which follows from
Hoeffding’s inequality:

Lemma 3.2 (Alquier [109, Theorem 1.2]). LetH be a class of functions f : X → [0, 1]
with |H| = M, and let ρ ∈ P(X) be an arbitrary data distribution. Further, suppose D is
a sample of size n drawn i.i.d. from ρ. Then, for any ε ∈ (0, 1), we have

Pr
(
∀ f ∈ H, Ex∼ρ[f (x)]︸ ︷︷ ︸

generalization risk

≤ Ex∼D[f (x)]︸ ︷︷ ︸
empirical risk

+

√
log M−log ε

2n

)
≥ 1− ε. (3.13)

Taking X to be the space of trajectories andH =M(s0, ℓ) for f (c) = minu J (c, u, τ),
we can apply Lemma 3.2 to the empirical regret REMP in Eq. (3.10) to obtain (for any
ε ∈ (0, 1))

Pr
(
∀c1:K ∈ M(s0, ℓ), Rπβ

(π̂ | s0, ℓ, c1:K) ≤ REMP (c1:K) +

√
log M−log ε

2n

)
≥ 1− ε.

(3.14)

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 29

Taking cPALO to be the output of the PALO algorithm, we can relate the true
regret of PALO on the current task (left) to its empirical regret (right):

Pr
(

Rπβ
(π̂ | s0, ℓ, cPALO) ≤ REMP (cPALO) +

√
log M−log ε

2n

)
≥ 1− ε. (3.15)

Since regret is bounded by 1, we can convert to an expectation:

EDtarget

[
Rπβ

(π̂ | s0, ℓ, cPALO)
]
≤ EDtarget

[
REMP (cPALO)

]
+

√
log M−log ε

2n + ε.

Lemma 3.3. Suppose u, u′ ∼ Unif(U) are i.i.d. samples from a uniform distribution over
the ordered K-partitions U of {1 . . . H}. For any ε ∈ [0, 1/K], we have

Pr
(

∑K
k=1|uk ∩ u′k| ≤ Hε

)
≤ e−2H(1

K−ε)2
.

Lemma 3.4. There exists an ε ∈ [0, 1/K] such that

ε + e−2H(1
K−ε)2 ≤ 1/K + N−2/K. (3.16)

Since Algorithm 1 (line 4) only samples N values for u instead of the full space
for the min in Eq. (3.10), we must separately consider the degree of suboptimality in
the decomposition cPALO relative to the optimal c∗ = arg minc∈M(s0,ℓ) REMP(c) that
results from our approach to determine the effect of N on the final bound. Applying
Lemma 3.3, we can say:

EDtarget

[
R̃πβ

(π̂ | s0, ℓ, cPALO)
]

≤ EDtarget

[
REMP (cPALO)

]
+

√
log M−log ε

2n

≤ EDtarget

[
REMP (c∗)

]
+

√
log M−log ε

2n + ε + e−2H(1
K−ε)2

≤ EDtarget

[
REMP (c∗)

]
+

√
log M−log ε

2n + 1/K + N−2/K.

For ε =
√

M/n, we get

EDtarget

[
Rπβ

(π̂ | s0, ℓ, cPALO)
]

≤ EDtarget

[
REMP (c∗)

]
+

√
M +

√
n log(Mn)
n

+ 1/K + N−2/K. (3.17)

So, we have related the true regret of PALO on the current task (left) to its
empirical regret in the limit of infinite samples (right). All that remains is to
compute the empirical regret, for which we make use of the following lemmas.

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 30

Lemma 3.5. Denote the true (unobserved) target decomposition as c1:K. We can relate
the empirical regret of the optimal PALO solution c∗ to the empirical regret of the true
decomposition.

EDtarget

[
REMP (c∗)

]
≤ EDtarget

[
REMP (c1:K) + DTV

(
p(c1:K), pM(c1:K)

)]
+ 1/M

Lemma 3.6. The empirical regret of π̃ can be bounded for i ∼ Unif(1 . . . K) as

EDtarget

[
REMP (c1:K)

]
≤ Rπβ

(π̂; ρprior) + E
[
DTV

(
ptarget(ckt), pprior(ckt)

)]
.

Applying Lemma 3.5 and Lemma 3.6 to Eq. (3.17) yields a bound of the correct
form.

EDtarget

[
REMP (c∗)

]
≤ EDtarget

[
REMP (c1:K)

]
+ DTV

(
p(c1:K), pM

)
+ 1/M

≤ EDprior

[
Rπβ

(π̂; ρprior)
]
+ E

[
DTV

(
ptarget(ckt), pprior(ckt)

)]
+ DTV

(
p(c1:K), pM

)
+ 1/M.

To make the DTV
(

p(c1:K), pM
)

term more interpretable as a VLM accuracy, we
convert to a KL divergence with Pinsker’s inequality [111]:

EDtarget

[
REMP (cPALO)

]
≤ EDprior

[
Rπβ

(π̂; ρprior)
]
E
[
DTV

(
ptarget(ckt), pprior(ckt)

)]
(3.18)

+
√

2DKL
(

p(c1:K), pM
)
+ 1/M. (3.19)

Since EDtarget

[
Rπβ

(π̂ | s0, ℓ, cPALO)
]
= Rπβ

(
πPALO; ρtarget

)
, plugging Eq. (3.19)

into Eq. (3.17) gives the desired result:

Rπβ

(
πPALO; ρtarget

)
≤
[
Rπβ

(π̂; ρprior)
]

+E
[
DTV

(
ptarget(ckt), pprior(ckt)

)]
(3.20)

+
√

2DKL
(

p(c1:K), pM
)
+ 1/M

+

√
M +

√
n log(Mn)
n

+ 1/K + N−2/K. (3.21)

Proof of Lemma 3.3. Define {Xi}H
i=1 to be the unique index k such that i ∈ uk, and

{X′i}H
i=1 to be the unique index k such that i ∈ u′k. We have

Pr
(

∑K
k=1|uk ∩ u′k| ≥ Hε

)
= Pr

(
∑H

i=11{Xi = X′i} ≥ Hε
)

= Pr
(

∑H
i=11{Xi ̸= X′i} ≤ H(1− ε)

)
. (3.22)

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 31

Now, we observe

Pr
(
Xi ̸= X′i

)
=

K

∑
k=1

(
1− pXi(k)

)
pX′i

(k) (3.23)

= 1−
K

∑
k=1

pXi(k)
2. (3.24)

Eq. (3.23) is concave in pXi , and so is maximized when for any δpXi and some λ,

λδpXi(k) = −2
K

∑
k=1

pXi(k)δpXi(k),

i.e., when pXi(k) = const. = 1/K for all k. Thus, we have

E
[
1{Xi ̸= X′i}

]
= Pr

(
Xi ̸= X′i

)
≤ 1− 1/K.

Continuing from Eq. (3.22) with µ = E
[
∑H

i=1 1{Xi ̸= X′i}
]
,

Pr
(

∑H
i=11{Xi ̸= X′i} ≤ H(1− ε)

)
= 1− Pr

(
∑H

i=11{Xi ̸= X′i} ≤ µ + (H(1− ε)− µ)
)

≥ 1− exp
(−2(H(1− ε)− µ)2

H

)
(Hoeffding [112])

≥ 1− exp
(−2H2((1− ε)− (1− 1/K)

)2

H

)
= 1− exp

(
−2H

(
1/K− ε

)2). (3.25)

Taking the complement of Eq. (3.25) yields the desired result:

Pr
(

∑K
k=1|uk ∩ u′k| ≤ Hε

)
≤ e−2H(1

K−ε)2
. (3.26)

Proof of Lemma 3.4. The statement follows from the ansatz

ε =
1
K
−
√

log N
NHK

Plugging in,

ε + e−2H(1
K−ε)2

= N−2/K +
1
K
−
(log N

HKN

)1/2

≤ 1/K + N−2/K.

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 32

Proof of Lemma 3.5. Recall the definition of the optimal PALO solution

c∗ = arg min
c∈M(s0,ℓ)

REMP(c). (3.27)

Now, noting regrets are bounded by 1 from Eq. (3.7), we have

EDtarget

[
REMP (c∗)

]
= EDtarget

[
min

c∈M(s0,ℓ)
REMP(c)

]
= EDtarget

[(
p(c)

pM(c)

)
min

{c(i)}M
i=1∼pc1:K

[
REMP(c(i))

]]
= EDtarget

[
min

{c(i)}M
i=1∼pc1:K

[
REMP(c(i))

]]
+ EDtarget

[(
p(c)

pM(c)
− 1
)

min
{c(i)}M

i=1∼pc1:K

[
REMP(c(i))

]]
≤ EDtarget

[
min

{c(i)}M
i=1∼pc1:K

[
REMP(c(i))

]]
+ EDtarget

∣∣∣∣ p(c)
pM(c)

− 1
∣∣∣∣

≤ EDtarget

[
min

{c(i)}M
i=1∼pc1:K

[
REMP(c(i))

]
+ DTV

(
p(c1:K), pM(c1:K)

)]
= EDtarget

[
Pr
(

REMP(c1:K) < c(i) for {c(i)}M
i=1 ∼ pc1:K

)
+ REMP(c1:K) + DTV

(
p(c1:K), pM(c1:K)

)]
= EDtarget

[
REMP(c1:K) + DTV

(
p(c1:K), pM(c1:K)

)]
+ 1/M.

Proof of Lemma 3.6. We consider the empirical regret of π̃ using the true decomposi-
tion u1:K, c1:K ∼ ptarget, for t ∼ Unif(1 . . . H) and kt defined as in Eq. (3.5):

EDtarget

[
REMP(c1:K)

]
= EDtarget

[1
H
√

dA
∑

τ∈Dtarget

min
u1:K
J (c1:K, u1:K, τ)

]
= EDtarget

[1
H
√

dA
∑

τ∈Dtarget

min
u1:K

K

∑
n=1

∑
t∈un

∥∥at − π̃(st, cn)
∥∥2
]

≤ Eun,cn∼Dtarget

[1
H
√

dA
∑

τ∈Dtarget

K

∑
n=1

∑
t∈un

∥∥at − π̃(st, cn)
∥∥2
]

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 33

≤ 1
H
√

dA
Eptarget

[K

∑
n=1

∑
t∈un

∥∥at − π̃(st, cn)
∥∥2

+ DTV
(

ptarget(cn), pprior(cn)
)]

= Eun,cn∼pprior

[1
H
√

dA

K

∑
n=1

∑
t∈un

∥∥at − π̃(st, cn)
∥∥2
]
+ E

[
DTV

(
ptarget(ckt), pprior(ckt)

)]
= Rπβ

(π̂; ρprior)

+ E
[
DTV

(
ptarget(ckt), pprior(ckt)

)]
.

System Details

We use a ResNet-34 [113] to model the policy π(a | s, c), where c = (cH, cL) is a
concatenation of high- and low-level instructions. The instruction c = (cL, cH) is
passed through a frozen MUSE model [58] to obtain embeddings before being fused
into the ResNet with FiLM layers [114]. Architecture details are presented in ??, and
the overall algorithm is shown in Algorithm 1.

3.4 EXPERIMENTS

In this section, we show that PALO can better adapt to long-horizon and out-of-
distribution tasks from a few expert demonstrations than existing learned language-
conditioned manipulation policies (both zero-shot and when finetuned to demon-
strations), as well as a nonparametric few-shot adaptation method. Ablation studies
also show all components of PALO are necessary.

Experimental Setup
We evaluate on a variety of long-horizon and/or unseen tasks across four scenes
from the Bridge tabletop manipulation setup [62]. These involve manipulating new
combinations of objects and behaviors unseen in the training data to accomplish
long-horizon tasks, such as making a salad or pouring into a bowl. For each task,
we collect a set of five expert demonstrations Dtarget for few-shot learning. Besides
separating by scenes, we can also separate the tasks into 4 long-horizon tasks (put
in, salad, sweep mints, sweep skittles) and 4 unseen-skills tasks (pry away, pour
spoon, rotate marker, rotate spoon). Experimental details and example rollouts are
presented in Appendix C.2.

Baselines
We compare against the following baselines trained on BridgeData:

Octo [67]: A general transformer-based robot manipulation policy with diffusion
action head.

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 34

Table 3.1: Method Comparisons

Scene Task PALO RT-2-X FT-Octo Octo GRIF VINN FT-LCBC LCBC

Drawer put in 0.7 0.0 0.0 0.2 0.1 0.0 0.3 0.1
pry away 0.6 0.2 0.2 0.1 0.0 0.1 0.0 0.0

Bowl salad 0.7 0.5 0.0 0.3 0.4 0.0 0.6 0.0
pour 0.5 0.1 0.2 0.3 0.0 0.0 0.0 0.0

Sweep mints 0.7 0.3 0.1 0.2 0.0 0.0 0.2 0.0
skittles 0.8 0.4 0.0 0.4 0.3 0.0 0.3 0.2

Rotation marker 0.9 0.4 0.0 0.1 0.3 0.4 0.4 0.0
spoon 0.8 0.2 0.1 0.1 0.1 0.5 0.2 0.0

Average 0.71 0.26 0.10 0.21 0.15 0.13 0.25 0.08

GRIF [7]: A language-conditioned robot control method that uses pre-trained
CLIP [17] representations to connect language instructions to goals for the
policy to reach.

RT-2-X [85]: A language-conditioned robot control model with 55B parameters
that transfers knowledge from internet-scale pre-training to manipulation
zero-shot.

LCBC [22]: Language imitation with a ResNet and pretrained MUSE [58] embed-
dings.

VINN [115]: Using k-Nearest Neighbor to select actions from the training data
based on similarity between the task representations of the observation and
training data. We used GRIF’s CLIP encoder for the representations used to
calculate similarity scores.

FT-Octo: Octo transformer finetuned on the few-shot demonstration (see Ap-
pendix C.2 for details).

FT-LCBC: Similar to FT-Octo, but fine-tuning LCBC on the few-shot demonstra-
tions.

Results from the experiments are shown in Fig. 3.4, with detailed per-task
breakdowns in Table 3.1.

Across eight different tasks, our PALO method yielded a success rate of 71.3%,
while the best zero-shot policies only resulted in a success rate of 26.3%. While
most of the zero-shot methods degrade when the task became increasingly more
out-of-distribution for the pretrained policy (for example, tasks in the “salad” scene
achieved a 30% overall performance across the 4 baseline models while pouring

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 35

Table 3.2: Ablations

Scene Task PALO No cH No cL Fixed Times Zero-shot No VLM

Drawer put in 0.7 0.2 0.4 0.4 0.3 0.0
pry open 0.6 0.4 0.2 0.1 0.4 0.1

Bowl salad 0.7 0.4 0.5 0.4 0.2 0.0
pour scoop 0.5 0.1 0.4 0.4 0.2 0.0

Sweep mints 0.7 0.5 0.3 0.5 0.0 0.0
skittles 0.8 0.7 0.2 0.5 0.4 0.2

Rotation marker 0.9 0.6 0.3 0.3 0.1 0.3
spoon 0.8 0.6 0.1 0.2 0.3 0.2

Drawer Bowl Sweep Rotation

0

0.2

0.4

0.6

0.8

S
u
cc
es
s
R
a
te

Comparison of Methods

PALO FT-Octo FT-LCBC RT-2-X Octo GRIF VINN LCBC

Figure 3.4: Comparison of PALO with baseline methods on different scenes with
one standard error.

from scoop only achieved 12% performance across the models), our method re-
mained effective, with all 8 tasks performing at a success rate of 50% or better.

The FT-Octo and FT-LCBC baselines allow us to compare the nonparametric
adaptation of PALO to conventional parametric finetuning. While Octo trained
only on BridgeData achieved moderate zero-shot success, finetuning on only five
demonstrations overfit and worsened performance. The FT-LCBC baseline did ben-
efit from finetuning, but still failed to ever exceed 30% success rate across all tasks.
We observe that the small size of trajectories made these datasets an unfavorable
candidate for finetuning, as any variance brought by the human controller may be
amplified and cause unfavorable movements during evaluation. The nonparametric
VINN baseline performed well on the rotation tasks (45% success rate), but failed
to achieve greater than 5% success rate on the other tasks.

Ablations
We ablate the following components of our method in Fig. 3.6:

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 36

Figure 3.5: An execution of our method on the task “pour the contents of the scoop
into the bowl.” Full breakdown of task and instructions can be seen at Section 3.4.

Drawer Bowl Sweep Rotation
0

0.2

0.4

0.6

0.8

S
u
cc
es
s
R
a
te

Ablation Study

PALO No c
H No c

L Fixed Times Zero-shot No VLM

Figure 3.6: Ablation study of PALO on different scenes, plotted with one standard
error.

Ours: Our full PALO approach

No cH: No high-level cH conditioning for the learned policy via masking.

No cL: No low-level cL instruction conditioning via masking.

Fixed Times: Use fixed u = [H
k , 2H

k , . . . , (k−1)H
k] in each trajectory to evaluate Eq. (3.3).

Zero-Shot Decomposition: Generate c zero-shot without expert demonstrations.

No VLM: No VLM decomposition proposals by using only ℓ with our policy.

While the sweeping and rotation scenes gave comparable performance with
masked high level instructions (No cH), the performance deteriorated in Drawer
and Bowl, which involved more unfamiliar items for the pretrained policy. The
remaining ablations (No cL, Fixed Times, Zero-Shot Decomposition, No VLM)
decreased performance across all scenes. These approaches are discussed in more
depth in Appendix C.1. Overall results in Fig. 3.6 show that all components of the
PALO method are needed. Full evaluations accross 10 trials are in Table 3.2.

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 37

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Number of Demonstrations

Su
cc
es
s
R
at
e

Scaling of PALO and Finetuning Approaches

PALO (Ours) FT-Octo FT-LCBC

Figure 3.7: Performance of PALO with 5 demonstrations compared to finetuning
Octo on different number of demonstrations, plotted with one standard error.

Scaling with Demonstrations
We study the scaling of our nonparametric method and a parametric finetuning
approach with > 5 demonstrations of the skittle sweeping task in Fig. 3.7. We
observe that while Policy Adaptation via Language Optimization achieves the
best performance (80%) using any number of demonstrations, the Octo finetuning
baseline needs at least 80 expert demonstrations to achieve comparable performance,
while LCBC needs at least 120 demonstrations.

Qualitative Results
We show successful task executions in Figs. 3.3 and 3.5. While the full method is
robust to logically unsound instructions generated by the VLM, failures in reasoning
and execution occur when we ablate our methods. Fig. 3.11 and Fig. 3.12 are two
examples in which reasoning break down in ablations.

Inference Details
During inference, we chunk each low-level instruction into length 8 intervals,
switching to the new set of low-level (and high-level, if applicable) after these 8
steps. We chose a fixed interval instead of a dynamically allocated one due to
the policy choosing to mostly stay put after finishing the action prescribed by the
low-level instruction.

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 38

“pry out the pot using the ladle”

move the
gripper right
towards the
ladle

move the gripper
down

close the gripper
to pick up the
ladle

Move the
gripper forward
and left towards
the drawer

move the
gripper left

move the
gripper down
towards the
pot

move the gripper
backward

ℓ =

cH
1:K =

cL
1:K =

Pick up the ladle Move the ladle to the drawer Pry out the pot using
the ladle

open the gripper

t
Figure 3.8: An execution of our method on the task “Pry out the pot using the
ladle.”

Success Cases
We show the full breakdowns of success cases here. Fig. 3.8 and Fig. 3.9 gives
detailed description of the robot’s action primitives generated by PALO during
inference.

Full PALO Failure

While PALO is robust in generating language primitives that help achieve the task,
it does not guarantee a successful execution of the policy as shown in Fig. 3.10.
PALO can fail when the underlying policy fails to execute a low-level motion, after
which the robot may not be able to recover and complete the task.

Ablation Failures

When we ablate the components of PALO, we begin to see more critical failures.
Fig. 3.13 demonstrates a case of grounding failure when cH is masked out, i.e., when
PALO loses half of the optimized task decomposition.

3.5 CONCLUSION

PALOis an approach for few-shot adaptation to unseen tasks that exploits the
semantic understanding of task decomposition provided by vision-language models.
In extensive real world experiments, we find that PALO is able to use language

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 39

“pour the contents of the scoop into the bowl”

Move the gripper
down and right
towards the
scoop

ℓ =

cH
1:K =

cL
1:K =

ℓ

Move the gripper
down

Close the gripper
to pick up the
scoop

Move the gripper
up and left
towards the bowl

Rotate the
gripper
counterclockwise

Rotate the
gripper left

Move the gripper
right away from
the bowl

Open the gripper
to release the
scoop

t
Figure 3.9: An execution of our method on the task “pour the contents of the scoop
into the bowl.”. Note that the high level instruction is ℓ itself, as the best-proposed
language decomposition does not create additional subtasks.

“put the turnip in the drawer”

move the
gripper down
towards the
drawer handle

close the gripper
to pick up the
drawer handle

move the gripper
backward to
open the drawer

open
the
gripper

move the gripper right
and down towards the
purple thing

close the
gripper to pick
up the purple
thing

move the gripper
left and forward
towards the
drawer

move the
gripper down
towards the
drawer

open the gripper
to release the
purple thing

ℓ =

cH
1:K =

cL
1:K =

open the drawer pick up the purple thing move the purple thing
to the drawer

place the purple thing
in the drawer

t
Figure 3.10: Failure in execution: while the robot completed every subtask correctly
up until the last subtask, it did not achieve it due to errors within the policy.

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 40

Figure 3.11: Spatial reasoning failure occurred when masking out low level instruc-
tion. The task was to “sweep the mints using the towel.” Due to the presence of
the pot and the mushroom, being both strong priors within BridgeData, the policy
chose not to follow the high level instruction.

Figure 3.12: Grounding failure occurs when high level instruction is masked out.
While the low level instruction “move the gripper left” correctly predicts the next
reasonable action, masking out the context of the subtask “put the mushroom in
the bowl” causes the policy to overshoot its trajectory.

to adapt to unseen long-horizon robot manipulation tasks across a wide range of
tabletop setups.

Limitations and Future Work. We assume the dataset has a consistent format
of high-level language labels and proprioception, making it more challenging to
generalize our low-level heuristic generation on drastically different embodiments.
The discrete optimization over subtask time steps may also scale poorly with the
number of subtasks and time steps. Future work could explore more efficient
optimization methods for this problem.

3 POLICY ADAPTATION VIA LANGUAGE OPTIMIZATION 41

“make a salad with corn and mushroom”

[MASKED]

ℓ =

cH
1:K =

cL
1:K =

… …

… …
Move the gripper
right and down
towards the
mushroom

Close the gripper
on the mushroom

…

Move the gripper
up

Move the gripper
forward and left

st

Figure 3.13: In this instance, we mask out the high level instructions, and the
policy is only conditioned on the low-level instructions. We see that the low-level
instruction “move the gripper forward and left.” causes the robot to overshoot its
trajectory and causes failure in execution.

II
REPRESENTATIONS FOR

COMPOSITIONAL DECISION MAKING

43

4 A METRIC STRUCTURE FOR
SUCCESSOR REPRESENTATIONS

Graph search is one of the most important ideas in CS, being introduced in almost
every introductory CS class. However, classes often overlook a key assumption: that
transitions be deterministic. With deterministic transitions, shortest-path lengths
obey the triangle inequality. This property, encoded into dynamic programming
algorithms, allows one to search over an exponential number of paths and find the
shortest in polynomial time. This property also allows for generalization, finding
new paths unseen in the data. However, in graphs (or, more generally, Markov pro-
cesses) with stochastic transitions, it is unclear how to define the distance between
two states such that this distance obeys the triangle inequality.

A reasonable solution for goal-reaching is to learn temporal distances, which
reflect some notion of transit time between states [116–120]. However, simply
defining distances as hitting times breaks down in stochastic settings, as shown in
prior work [46]. Stochastic settings are ubiquitous in real-world problems: from
autonomous vehicles navigating around drunk bar-goers, to healthcare systems
rife with unobservable features. Indeed, many advances in ML over the last decade
have been predicated on probabilistic models (e.g., diffusion models, VAEs), so
it seems rather anachronistic that an important control primitive (the notion of
distances) is not well defined in a probabilistic sense.

The key challenge is that the prior notions of temporal distance break down
in stochastic settings. Nonetheless, the triangle inequality holds great appeal as
a strong inductive bias for learning temporal distances: the distance between
two states should be less than the length of a path that goes through a particular
waypoint state. Indeed, prior work has aimed to exploit this notion by learning
“temporal distance metrics” that can broadly generalize from less data.

The starting point for our work is to think about distances probabilistically.
Because the dynamics may be stochastic, the number of steps it takes to traverse
between two states is not a definite quantity, but rather a random variable. To
estimate the (long-term) probabilities of transiting between two states, we will
build on prior temporal contrastive learning [53, 121], a popular and stable class
of time series representation learning methods. Intuitively, these methods learn
representations from time series data so that observations that occur nearby in
time are given similar representations. Importantly, contrastive methods based

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 44

γt

pπ
γ(s

+=g |s0=g)

pπ
γ(s

+=g |s0=s)

0 1 2 3 4 5 6 7 8 · · ·

0

1− γ

Time (t)

Pr
ob

ab
ili

ty

Discounted state occupancy measure at g

(a) Starting at state s, we visualize the (dis-
couted) probability of reaching state g af-
ter exactly t steps (teal). The sum of these
probabilities (■ area) is the probability of
reaching state g at some point in the future.
Our method defines the distance between
states s and g as the difference in these
shaded areas (■ area - ■ area). , which
we prove is non-negative (Lemma 4.3). For
a fixed policy π and state s, we can view
the γ-time-discounted distribution of fu-
ture states as a distribution over reachable
goals pπ

γ (s
+=g |s0=s). For a fixed goal g,

it is always easier to stay in g than it is to
reach g from s, reflected in the fact that the
total mass under the orange curve is greater
than the blue curve (see Lemma 4.3).

s

w

g
πw

πg

pπγ(s
+=w |s0=w)

pπγ(s
+=g |s0=g)

pπγ(s
+=g |s0=w)pπγ(s

+=w |s0=s)

dsd(s, g) ≲ {area in teal} − {area in orange}

s

w

g

(b) Our proposed distance obeys the trian-
gle inequality. Starting at state s, we look at
the distribution over future states (■ area)
and subtract off those states that the pol-
icy would reach starting from w (■ area).
Our distance is defined as the difference in
these areas, dSD(s, w) ≜ ■−■. As seen in
(a), pπ

γ (s
+=g |s0=s) ≤ pπ

γ (s
+=g |s0=g),

so we can view their log ratio as a distance
(see Theorem 4.4). We provide geometric
intuition here. The blue area not covered by
the orange corresponds to the distance. Sub-
tracting the orange area allows distances to
be added to stitch together behaviors.

Figure 4.1: An overview of our theoretical distance construction as well as the
concrete implementation with metric distillation.

on NCE and infoNCE have a probabilistic interpretation, making them ripe for
application to stochastic environments. Like prior work [121, 122], we account for
the arrow of time [123] by using asymmetric representations, allowing the learned
representations reflect the fact that (say) climbing up a mountain is more difficult
from sliding back down. The representations learned by these temporal contrastive
learning methods do not themselves satisfy the triangle inequality. However, we
prove that a simple change of variables results in representations that do satisfy the
triangle inequality. Intuitively, this change of variables corresponds to subtracting
off the “distance” between a state and itself. Note that because the representations
are asymmetric (see above), this extra “distance” is not zero, but rather corresponds
to the likelihood of returning to the current state at some point in the future.

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 45

The main contribution is to propose a notion of temporal distance that provably
satisfies the triangle inequality, even in stochastic settings. Our constructed tempo-
ral distance is easy to learn – simply take the features from (temporal) contrastive
learning and perform a change of variables – no additional training required! After
introducing and analyzing our proposed temporal distance, we demonstrate an
application of our temporal distance to goal-conditioned reinforcement learning,
using the distance function as a value function. We use a carefully controlled syn-
thetic benchmark to test properties such as combinatorial generalization, temporal
generalization, and finding shortest paths; our results here show that the proposed
distance has appealing properties that prior methods lack. We also show that the
RL method based on our distances can scale to 111-dimensional locomotion tasks,
where it is competitive with prior methods on a parameter-adjusted basis.

4.1 GENERAL DISTANCES FOR GOAL-REACHING

In this section, we introduce a novel distance metric for goal-reaching in controlled
Markov processes. We show that this distance is a quasimetric, i.e., a metric that
relaxes the assumption of symmetry. In the subsequent section (4.2), we show that
this distance construction can enable additional generalization capabilities through
a choice of model parameterization for temporal contrastive learning.

Preliminaries
We consider a discrete controlled Markov process M consisting of states s ∈ S , actions
a ∈ A, dynamics P(s′ | s, a), initial state distribution p0(s0 = s0), and a discount
γ ∈ (0, 1).

By augmenting M with the reward for any fixed goal g ∈ S , which we define as

rg(s) = (1− γ) δg(s),

where
δg(s) =

{
1 if s=g
0 otherwise

is the Kronecker delta, we can extend M to a goal-dependent Markov decision
process Mg. Denote by Π the (compact) set of stationary of policies π(a | s) on M.
We also define ΠNM ⊃ Π to be the set of non-Markovian policies π(at | s0 . . . st).
We can then derive the optimal goal-conditioned value function,

V∗g (s) = max
π∈Π

pπ
γ (s

+=g | s0=s), (4.1)

where the discounted state occupancy measure pπ
γ is defined as the discounted distri-

bution over future states s+,

pπ
γ (s

+=s′ |s0=s) = (1− γ)
∞

∑
k=0

γk pπ(sk=s′ |s0=s)

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 46

where pπ(st+1=s′ |st = s)= ∑
a∈A

π(a |s)P(s′ |s, a). (4.2)

i.e., the distribution of s+ ≜ sK for K ∼ Geom(1− γ).
Here, st denotes the state at time t as a random variable, and s+ denotes the

state at a geometrically distributed time in the future. When needed, under a policy
π, we will additionally use the notation at and a+ to denote actions as random
variables, defined analogously to st and s+.

Since (4.1) is the optimal value function corresponding to the reward rg, there
will always be a stationary optimal goal-reaching policy πg ∈ Π that attains the
max in (4.1).

We can additionally view the setting of an uncontrolled Markov process (i.e., a
Markov chain) as a special case of controlled Markov processes where there is a
single action A = {a} with a fixed policy Π = {π}.

To reason about the effects of actions, we can also consider the natural general-
ization of the successor state-action distribution, which is the distribution over future
states and actions s′, a′ given that action a is taken in state s under π:

pπ
γ (s

+=g, a+=a′ |s0=s, a0=a) =

(1− γ)δs,a(g, a′) + (1− γ)γ
[∞

∑
k=0

∑
s′∈S

γk pπ
(
sk = g | s0 = s′

)
π(a′ | g)P(s′ | s, a)

]
. (4.3)

Finally, we recall the definition of a quasimetric space:

Definition 4.1. A quasimetric on S is a function d : S× S→ R satisfying the following
for any x, y, z ∈ S.

Positivity: d(x, y) ≥ 0

Identity: d(x, y) = 0 ⇐⇒ x = y
Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Our Proposed Temporal Distance
With these definitions in place, we can now define the proposed temporal distance.
We will start by describing a “strawman” approach, and then proceed with the full
method.

Motivated by prior work on successor representations [124] and self-predictive
representations [125], a candidate temporal distance is to directly use the critic
function from temporal contrastive learning. When positive examples are sampled
from the discounted state occupancy measure, this critic has the following form:

−d(s, g) = log
(

pπ
γ (s

+=g |s0=s)
p(g)

)
. (not a quasimetric)

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 47

However, a distance defined in this way does not satisfy the identity property
of the quasimetric; namely, the distance between a state and itself can be non-
zero. Our solution is to subtract off the “extra distance" between a state and itself,
d̃(s, g) = d(s, g)− d(g, g).

We now proceed with our main definition, which is a temporal distance that
obeys the triangle inequality (and is a quasimetric) even in stochastic settings.
We provide two definitions, one for controlled Markov processes and one for
(uncontrolled) Markov processes:

Definition 4.2. We define the successor distance for a controlled Markov processes
by:

dSD(s, g) ≜ min
π∈Π

log

(
pπ

γ (s
+=g |s0=g)

pπ
γ (s

+=g |s0=s)

)
, (4.4)

As a special case for an uncontrolled Markov process, we can define:

dSD(s, g) ≜ log

(
pπ

γ [](s
+=g |s0=g)

pπ
γ [](s

+=g |s0=s)

)
. (4.5)

To use these distances for control in model-free settings, we can extend this
notion to include actions, yielding a distance over S ×A.

Definition 4.3. We define the successor distance with actions for a controlled Markov
process by:

dSD

(
(s, a), (g, a′)

)
≜

min
π∈Π

(
log

pπ
γ (s

+=g, a+=a′ |s0=g, a0=a′)
pπ

γ (s
+=g, a+=a′ |s0=s, a0=a)

)
. (4.6)

We make two brief lemmas about this definition; the proofs can be found in
Section 4.6. Within S ×A, we can also say:

Lemma 4.1. dSD

(
(s, a), (s′, a′)

)
is independent of a′ when s ̸= s′.

In light of this independence, we denote dSD

(
s, a, s′

)
≜ dSD

(
(s, a), (s′, a′)

)
where

applicable. Selecting actions that minimizes this distance corresponds to policy
improvement:

Lemma 4.2. Selecting actions to minimize the successor distance is equivalent to selecting
actions to maximize the (scaled and shifted) Q-function:

− dSD(s, a, g) = 1
pg(g)Q(s, a, g) + cψ(g)

=⇒ arg max
a

dSD(s, a, g) = arg max
a

Q(s, a, g).

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 48

Geometric interpretation. Before proceeding to prove that this distance construc-
tion obeys the triangle inequality and the other quasimetric properties (Section 4.1),
we provide intuition for this distance. We visualize this distance construction in
Fig. 4.1 (b). The distribution over states visited starting at s (pπ

γ (s
+=w |s0=s)) is

shown as the teal region; while states visited starting at w (pπ
γ (s

+=w |s0=w)) is
shown as the orange region. Our proposed distance metric is the difference in the
areas of these regions (■−■). The theoretical results in the next section prove
that this difference is always non-negative. Zooming out to look at the s, w, and
g together, we see that these set differences obey the triangle inequality – the area
between s and g is smaller than the areas between s and w and between w and g.
Concrete examples to build intuition for these definitions and results are presented
in Section 4.8.

Hitting times as a special case. To provide additional intuition into our construc-
tion, we consider a special case; the subsequent section shows that the proposed
distance is a valid quasimetric in much broader settings. In this special case, con-
sider a controlled Markov process where the agent can remain at a state indefinitely.
This assumption means that the pπ

γ (s
+=g |s0=g) = 1, so the proposed distance

metric can be simplified to d(s, g) = − log pπ
γ (s

+=g |s0=s). This assumption
also means that the hitting time of g from s has a deterministic value, which we
will call H(s, g). Thus, we can write the discounted state occupancy measure as
pπ

γ (s
+=g |s0=s) = γH(s,g), so the proposed distance metric is equivalent to the

hitting time: d(s, g) = H(s, g). Importantly, and unlike prior work, our proposed
distance continues to be a quasimetric outside of this special case, as we prove in
the following section.

Theoretical results
Before proving this distance is a quasimetric over S , we provide a helper lemma
relating the difficulty of reaching a goal through a waypoint to the difficulty without
the waypoint. The key insight we use here is that the notion of a hitting time can be
generalized to represent distances in terms of discounted state occupancies.

Lemma 4.3. For any s, w, g ∈ S , π ∈ Π,

max
π′∈Π

[pπ
γ [π

′](s+=g |s0=w)pπ
γ [π](s+=w |s0=s)

pπ
γ [π](s+=w |s0=w)

]
≤ max

π′∈Π
pπ

γ [π
′](s+=g |s0=s).

The proof is in Section 4.6. This lemma is the key to proving our main result:

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 49

Theorem 4.4 (Quasimetric). dSD is a quasimetric over S , satisfying the triangle
inequality and other properties from Definition 4.1.

The proof is in Section 4.7. Compared with prior work [126], our result extends
to stochastic settings; we will empirically compare to this and other prior methods
in Section 4.5.

To make this result applicable to settings with unknown dynamics or without
actions, we note the following corollaries:

Corollary 4.4.1. dSD is a quasimetric over S ×A.

Corollary 4.4.2. dSD is a quasimetric over an uncontrolled Markov process as in Eq. (4.5).

See Section 4.7 for discussion of these results.

4.2 USING OUR TEMPORAL DISTANCE FOR RL
In this section we describe an application of our proposed temporal distance to
goal-conditioned reinforcement learning. The main challenge in doing this will be
(1) estimating the successor distance defined in Eq. (4.4), and (2) doing so with an
architecture that respects the quasimetric properties. Once learned, we will use the
successor distance as a value function for training a policy.

To introduce our methods, Section 4.2 will first discuss how contrastive learning
almost estimates the successor distance. We will then introduce two variants of
our method, Contrastive Metric Distillation (CMD). The first method (CMD 1-step,
Section 4.3) will acquire the successor distance by applying contrastive learning
with an energy function that is the difference of two other functions. The second
method (CMD 2-step, Section 4.4) will acquire the successor distance by taking the
features from contrastive learning and distilling those features into a quasimetric
architecture. In both cases, we then use the learned successor distance to train a
goal-conditioned policy.

We emphasize that the key contribution here is the mathematical construct
of what constitutes a temporal distance, not that we use a certain architecture
to represent this temporal distance. Practically, we will use the Metric Residual
Network (MRN) architecture [127] in our implementation. Pseudocode for the full
algorithms (both one-step and two-step) is provided in Algorithms 2 and 3. We
highlight the differences between the two methods in orange for clarity.

Building block: contrastive learning
Both of our proposed methods will use contrastive learning as a core primitive,
so we start by discussing how we use contrastive learning to learn an energy

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 50

Algorithm 2: 1-step Contrastive Metric Distillation (CMD-1)

1: input: batch size B, number of iterations T
2: initialize potential ψ, quasimetric ϕ, and policy µ parameters
3: define fθ(s, a, g) ≜ cψ(g)− dϕ(s, a, g)
4: for t = 1 . . . T do
5: sample {(si, ai) ∼ ps}B

i=1
6: sample {(gi, a′i) ∼ pπ

γ (s
+=gi |s0=si, ai)}B

i=1
7: ϕ← ϕ− α∇ϕ

[
Lc

ϕ,ψ ({si, ai}, {gi})
]

(4.8, 4.12)
8: ψ← ψ− α∇ψ

[
Lc

ϕ,ψ ({si, ai}, {gi})
]

(4.8, 4.12)
9: µ← µ− α∇µ

[
Lπ

µ ({si, ai}, {gi, a′i})
]

(4.20)
10: output πµ

Algorithm 3: 2-step Contrastive Metric Distillation (CMD-2)

1: input: : batch size B, number of iterations T
2: initialize representations ϕ, ψ, and policy parameters µ
3: initialize quasimetric θ̂, margin λ

4: define fθ(s, a, g) ≜ ϕ(s, a)Tψ(g)
5: for t = 1 . . . T do
6: sample {(si, ai) ∼ ps}B

i=1
7: sample {(gi, a′i) ∼ pπ

γ (s
+=gi |s0=si, ai)}B

i=1
8: ϕ← ϕ− α∇ϕ

[
Lc

ϕ,ψ ({si, ai}, {gi})
]

(4.8, 4.16)
9: ψ← ψ− α∇ψ

[
Lc

ϕ,ψ ({si, ai}, {gi})
]

(4.8, 4.16)
10: µ← µ− α∇µ

[
Lπ

µ ({si, ai}, {gi, a′i})
]

(4.20)
11: θ̂ ← θ − α∇θ̂

[
Ld

θ̂,ϕ,ψ

(
{si, ai}, {gi, a′i}

)]
(4.17)

12: λ← λ + α
(
Cθ̂({si, ai}, {gi, a′i})− ε2) (4.17)

13: output πµ

function fθ(s, a, g), and the relationship between that energy function and the
desired successor distance.

Following prior work [121], we will apply contrastive learning to learn an en-
ergy function fθ(s, a, g) that assigns high scores to (s, a, g) triplets from the same
trajectory, and low scores to triplets where the goal g is unlikely to be visited at
some point after the state-action (s, a) pair. Let psa(s, a) be a marginal distribution
over state-action pairs, and let pg(g) = ∑s∈S ps(s)pπ

γ (s
+=g |s0=s) be the corre-

sponding marginal distribution over future states. Contrastive learning learns the
energy function by sampling pairs of state-action (s, a) and goals g from the joint
distribution si, ai, gi ∼ pπ

γ (s
+=gi |s0=si, ai)psa(si, ai). We will use the symmetrized

infoNCE loss function (without resubstitution) [53, 128, 122], which provides the

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 51

following objective:

min
θ

E{si,ai,gi}B
i=1
Lc

θ

(
{si, ai}, {gi}

)
. (4.7)

given the forward and backward classification losses:

Lc
θ = Lfwd

θ + Lbwd
θ (4.8)

Lfwd
θ

(
{si, ai}, {gi}

)
=

B

∑
i=1

log
(

e fθ(si,ai,gi)

∑B
j=1 e fθ(si,ai,gj)

)

Lbwd
θ

(
{si, ai}, {gi}

)
=

B

∑
i=1

log
(

e fθ(si,ai,gi)

∑B
j=1 e fθ(sj,aj,gi)

)
.

We highlight the indices i and j for clarity. As the batch size B becomes large, the
optimal critic parameters θ∗ then satisfy [52, 129]

fθ∗(s, a, g) = log
(pπ

γ (s
+=g |s0=s, a)
C · pg(g)

)
, (4.9)

where C is a free parameter. Finally, note that we can represent the successor
distance (4.4) as the difference of this optimal critic evaluated on two different inputs:

fθ∗(g, a, g)− fθ∗(s, a, g) =
pπ

γ (s
+=g |s0=g, a)

pπ
γ (s

+=g |s0=s, a)
. (4.10)

The next two section present practical methods for representing this difference,
either via (1) a special parametrization of this critic (Section 4.3) or (2) distillation
(Section 4.4).

4.3 ONE-STEP METRIC DISTILLATION (CMD-1):
In this section, we describe how to directly learn the successor distance using an ar-
chitecture that is guaranteed to satisfy the triangle inequality and other quasimetric
properties.

The key idea is to apply the contrastive learning discussed in the prior section
to a particular parametrization of the energy function, so that the difference in
Eq. (4.10) is represented as a single quasimetric network. We start by noting that
the function learned by contrastive learning (Eq. (4.9)) can be decomposed into the
successor distance plus an additional function that depends only on the future state
g:

fθ∗(s, a, g) = log
(pπ

γ (s
+=g |s0=s, a)
C · pg(g)

)
(4.11)

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 52

= log
(pπ

γ (s
+=g |s0=s, a)

pπ
γ (s

+=g |s0=g)

)
︸ ︷︷ ︸

−dϕ(s,a,g)

− log
(pπ

γ (s
+=g |s0=g)
C · pg(g)

)
︸ ︷︷ ︸

−cψ(g)

.

Thus, we will apply the contrastive objective from Eq. (4.8) to an energy function
fθ=(ϕ,ψ)(s, a, g) parametrized as the difference of a quasimetric network dϕ(s, a, g)
an another learned function cψ : R→ R:

fϕ,ψ
(
s, a, g

)
= cψ(g)− dϕ(s, a, g). (4.12)

The term cψ(g) is important for allowing fθ(s, a, g) to represent positive num-
bers, as −dϕ(s, a, g) is non-positive because it is a quasimetric network. With
this parametrization, we can use Eq. (4.10) to obtain the successor distance as

fθ∗(g, a, g)− fθ∗(s, a, g)

=
�������:0
−dϕ(g, a, g) +

����cψ(g) + dϕ(s, a, g)−
����cψ(g). (4.13)

After contrastive learning, we will discard cψ(g) and use dϕ(s, a, g) as our successor
distance. We conclude by providing the formal result that this approach recovers
the successor distance:

Lemma 4.5. For s ̸= g, the unique solution to the the loss function in Eq. (4.8) with the
parametrization in Eq. (4.12) is

dϕ∗(s, a, g) = log
pπ

γ (s
+=g |s0=s, a0=a)

pπ
γ (s

+=g |s0=g)
. (4.14)

See Section 4.7 for the proof.
One appealing aspect of this approach is that it only involves one learning step.

The next section provides an alternative approach that proceeds in two steps.

4.4 TWO-STEP METRIC DISTILLATION (CMD-2)
In this section we present an alternative approach to estimating the successor
distance with a quasimetric network. While the first approach (CMD 1-step) is
appealing because of its simplicity, this approach may be appealing in settings
where pre-trained contrastive features are already available, but users want to boost
performance by capitalizing on the inductive biases of quasimetric networks.

The key idea behind our approach is that that optimal critic from contrastive
learning (Eq. (4.9)) can be used to estimate the successor distance by performing a
change of variables:

fθ(g, a, g)− fθ(s, a, g)

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 53

= log
pπ

γ (s
+=g |s0=g,a)

Cpg(g) − log
pπ

γ (s
+=g |s0=s,a)
Cpg(g)

= log
pπ

γ (s
+=g |s0=g,a)

pπ
γ (s+=g |s0=s,a) . (4.15)

This final expression is the successor distance; Section 4.9 will discuss why the
action a in the numerator can be ignored. Because the successor distance obeys
the triangle inequality (and the other quasimetric properties), we will distill this
difference into a quasimetric network. We will call this method CMD 2-Step.

Distilling to a quasimetric architecture

The representations in Eq. (4.15) already form a quasimetric on S× A, and could
directly be used for action selection. However, because we know that these rep-
resentations satisfy the triangle inequality, distilling them into a network that is
architecturally-constrained to obey the triangle inequality serves as a very strong
prior: a way of potentially combating overfitting and improving generalization.
To do this, we distill the bound into a distance dϕ parameterized by an MRN
quasimetric [127].

CMD 2-Step works by applying contrastive learning (Eq. 4.8). Following prior
work [121], we will parametrize the energy function as the inner product between
learned representations: fϕ,ψ(s, a, g) = ϕ(s, a)Tψ(g). The critic parameters are
thus θ = (ϕ, ψ). We then distill the quasimetric architecture using Eq. (4.15) as a
constraint. We enforce the constraint with a Lagrange multiplier λ to ensure that
the margin Cθ̂({si, ai}, {gi, a′i}) for Eq. (4.15) satisfies Cθ̂({si, ai}, {gi, a′i}) ≤ ε2 on
pairs of states and future goals sampled from the data:

Cθ̂({si, ai}, {gi, a′i})

≜
B

∑
i,j=1

max
(
0, dθ̂

(
(si, ai), (gi, a′j)

)
− fϕ,ψ(si, ai, gi)

)2

where fϕ,ψ(s, a, g) ≜
(
ϕ(g, a)− ϕ(s, a)

)T
ψ(g). (4.16)

When distilling a distance dSD, subject to the constraint above, we want to be
maximally conservative in determining which goals we can reach. We assume
Eq. (4.15) as a prior, and use dual descent to perform a constrained minimization of
the objective

Ld
θ̂,ϕ,ψ

(
{si, ai}, {gi, a′i}

)
≜

B

∑
i,j=1

max
(
0, fϕ,ψ(si, ai, gj)− dθ̂(si, ai, gj)

)2, (4.17)

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 54

yielding an overall optimization

min
θ̂

max
λ≥0

∑
{si,ai,gi,a′i}B

i=1

[
Ld

θ̂,ϕ,ψ

(
{si, ai}, {gi, a′i}

)
+ λ

(
Cθ̂

(
{si, ai}, {gi, a′i}

)
− ε2)]. (4.18)

Parameterizing the quasimetric

For both methods in Sections 4.3 and 4.4, we learn a distance dθ : (S ×A)2 → R

parametrized with the Metric Residual Network (MRN) architecture [127]. We
apply the square root correction noted by Wang and Isola [130, Appendix C.2] to
ensure that the distance satisfies the triangle inequality. This parameterization can
be expressed using learned representations hθ, gθ : S ×A → Rd:

dθ(x, y) = ∆(hθ(x)− hθ(y)) + ∥gθ(x)− gθ(y)∥
where ∆(x) = maxd

i=1[max(0, xi)]. (4.19)

Policy extraction
Once we extract distance dSD, we learn a goal-conditioned policy πµ to select actions
that minimize the distance successor between states and random goals [50]:

min
µ

Eps(s) pg(g,a′)πµ(â|s,g)
[
Lπ

µ

(
{si, âi}, {gi, a′i}

)]
(4.20)

To prevent the policy from sampling out-of-distribution actions for offline
RL [131–133], we adopt another goal-conditioned behavioral cloning regularization
from Zheng et al. [134] or use advantage weighted regression [135].

With the behavior cloning regularization, the policy extraction loss becomes:

Lπ
µ

(
{si, ai}, {gi, a′i}

)
=

B

∑
i,j=1

Eâ∼πµ(â|si,gj)[
dϕ

(
(si, â), (gj, a′j)

)
+ log πµ(ai | si, gi)

]
. (4.21)

4.5 EXPERIMENTS

Our experiments study a synthetic 2D navigation task to see whether our proposed
temporal distance can learn meaningful distances of pairs of states unseen together
during training (i.e., combinatorial generalization). We also study the efficacy of
extracting policies from this learned distance function, both in this 2D navigation
setting and in a 29-dim robotic locomotion problem from the AntMaze benchmark
suite. As discussed below, for the latter experiment our comparison will be restricted
to small neural network sizes. Additional implementation details are provided in
Appendix C.3.

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 55

10

20

30

40

50

60

70

80

go
al

 d
ist

an
ce

Metric distillation in pointmaze

start goal

Figure 4.2: (Left) We collect four types of trajectories on this 2D navigation task. The
large gray arrows depict the direction of motion. Note that navigating between
certain states requires piecing together trajectories of different colors. (Right) Our
proposed temporal distance correctly pieces together trajectories, allowing an RL
agent to successfully navigate between pairs of states that never occur on the
same trajectory. This combinatorial generalization [1] or “stitching” [2] property is
typically associated with bootstrapping with temporal difference learning, which
our temporal distances do not require.

Table 4.1: Offline RL benchmarks

CMD 1-step CMD 2-step QRL CRL (CPC) GCBC IQL1

umaze 90.3± 4.2 97.0± 0.4 76.8± 2.3 79.8± 1.6 65.4± 87.5 87.5
umaze-diverse 90.3± 4.6 90.5± 1.4 80.1± 1.3 77.6± 2.8 60.9± 62.2 62.2
medium-play 78.0± 4.0 72.3± 2.6 76.5± 2.1 72.6± 2.9 58.1± 71.2 71.2

medium-diverse 83.0± 3.1 71.8± 1.0 73.4± 1.9 71.5± 1.3 67.3± 70.0 70.0
large-play 68.0± 2.1 59.2± 1.8 52.9± 2.8 48.6± 4.4 32.4± 39.6 39.6

large-diverse 74.5± 2.3 63.6± 1.9 51.5± 3.8 54.1± 5.5 36.9± 47.5 47.5

Controlled experiments on synthetic data
We first present results in a simple 2D navigation environment to illustrate how our
approach can recombine pieces of data to navigate between pairs of states unseen
together during training (i.e., combinatorial generalization).

We start by collecting four types of trajectories, identified in Fig. 4.2 (left). We
will be primarily interested in what distances our method assigns to pairs of states
that occur on different types of trajectories. Our hypothesis is that, by virtue of the

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 56

100k 200k 300k 400k

0.2

0.4

0.6

0.8

Step

S
u
cc
es
s
R
a
te

PointMaze

CMD-1 CMD-2 CRL
QRL DDPG GCBC

Figure 4.3: Metric distillation enables more efficient offline training and long-
horizon compositional generalization. Results are plotted with one standard error.

triangle inequality, our method will correctly reason about global distances, despite
only being trained on locally on individual trajectories. Note that the collected data
is directed, so we will also be test whether our learned distance obeys the arrow of
time.

Visualizing the paths. Using these data, we learn the contrastive representations
and distill them into a quasimetric architecture, as described in Section 4.2. In the
subfigures in Fig. 4.2 (right), we visualize these distances using the colormap, with
the goal set to the state identified with the ⋆. This figure also visualizes paths
created using the learned distances. Starting at the state identified as •, greedily
select a next state within an L2 ball that has minimal temporal distance to the goal.
We repeat this process until arriving at the goal. These planned paths demonstrate
that the learned temporal distances perform combinatorial generalization; each of
the subfigures in Fig. 4.2 show examples of inferred paths that require correctly
assigning distances to pairs of states that were unseen together during training.
Note, too, that these paths follow the arrow of time: the small arrows depicting the
paths go in the same direction that the data was collected (large gray arrows in the
left subplot).

Control performance. We next study whether these learned distances can be used
for control, using the same synthetic dataset as above. We will compare with four
baselines. DDPG learns distances using Q-learning with a reward that is −1 at
every transition until the goal is reached [136, 137, 49]; at least in deterministic
settings, these distances should correspond to hitting times. Quasimetric RL [126] is
an extension of this baseline that uses a quasimetric architecture to represent these

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 57

distances. Contrastive RL [121] estimates distances directly using the contrastive
features (the same as used for our method), but without the metric distillation step.
For all these methods as well as our method, a policy is learned using advantage-
weighted maximum likelihood [138, 139]. We also compare with a behavioral
cloning baseline, which predicts the action that was most likely to occur in the
dataset conditioned on state and goal.

We measure performance by evaluating the success rate of each these approaches
at reaching randomly sampled goals. In Fig. 4.3, we plot this success rate over the
course of training. Note that this experiment is done in the offline setting, so the X
axis corresponds to the number of gradient steps. We observe that our temporal
distance can successfully navigate to approximately 80% of goals, while the best
prior method has a success rate of around 50%. Because our method starts with the
same contrastive features as the contrastive RL baseline, the better performance of
ours highlights the importance of the quasimetric architecture (i.e., of imposing the
triangle inequality as an inductive bias). While both our method and quasimetric
RL use a quasimetric architecture to represent a distance, we aim to represent the
proposed distance metric from Section 4.2 while quasimetric RL aims to represent
a hitting time; the better performance of our method highlights the need to use a
temporal distance that is well defined in stochastic settings such as this.

Scaling to higher-dimensional tasks
To study whether our temporal distance learning approach is applicable to higher-
dimensional tasks, we apply it to a 111-dimensional robotic control task (AntMaze [2]).
In this problem setting we additionally condition the temporal distance on the action
and use the learned distance as a value function for selecting actions.

We compare our approach to three competitive baselines. GCBC is a conditional
imitation learning method that learns a goal-conditioned policy directly, without
a value function or distance function [140, 51, 141, 15]. Both our method and
Contrastive RL (CRL) [121] learn representations in the same way (Section 4.2);
the difference is that our method additionally distills these representations into a
quasimetric architecture. Thus, comparing our method to CRL tests the importance
of the triangle inequality as an inductive bias. We consider two variants of CRL
using either rank-based NCE [53, 134] or binary-NCE [142], namely CRL (CPC)
and CRL (NCE). Finally, Quasimetric RL (QRL) [143] represents a different type
of temporal distance with the same quasimetric architecture as our method; it is
unclear whether the temporal distance from QRL obeys the triangle inequality in
stochastic settings. Thus, comparing our method to QRL tests the importance of
using a temporal distance that is well defined in stochastic settings. Prior work [134]
has shown that these baselines are more competitive than other recent alternatives,
including IQL [144] with HER [14] and decision transformer [141].

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 58

Comparisons across random seeds are shown in Table 4.1.

4.6 HITTING TIMES

In this section, we show several lemmas relating the discounted state occupancy
measure (defined in Eqs. (4.2) and (4.3)) to the hitting times of states and goals. We
start by defining a notion of hitting time:

Definition 4.4. For π ∈ Π and s, g ∈ S , define the random variable Hπ
s (g) by

Hπ
s (g) = min{t ≥ 0 : Et} (4.22)

where Et is the event that st = g given s0 = s.

In other words, Hπ
s (g) is the smallest t such that st = g starting in s0 = s, i.e., the hitting

time of g.

Now, we can relate the discounted state occupancy measure to the hitting time
of a goal.

Lemma 4.6. For Hπ
s (g) defined as (4.22),

pπ
γ (s

+=g |s0=s) = E
[
γHπ

s (g)]pπ
γ (s

+=g |s0=g).

Proof. Let pπ(st = g | s0 = s, Hπ
s (g) = h) be the probability of reaching goal g at

time step t when starting at state s given hitting time Hπ
s (g) = h. By the definition

of Hπ
s (g), we have

pπ(st = g | s0 = s, Hπ
s (g) = h) =

{
0 t < h
pπ(st = g | sh = g) t ≥ h

. (4.23)

Thus,

pπ
γ (s

+=g |s0=s) = (1− γ)
∞

∑
t=0

γt pπ(st = g | s0 = s)

= (1− γ)
∞

∑
t=0

∞

∑
h=0

γt pπ(st = g, Hπ
s (g) = h | s0 = s)

=
∞

∑
h=0

p(Hπ
s (g) = h)

(
(1− γ)

∞

∑
t=0

γt pπ(st = g | s0 = s, Hπ
s (g) = h)

)
=

∞

∑
h=0

p(Hπ
s (g) = h)

(
(1− γ)

∞

∑
t=h

γt pπ(st = g | sh = g)
)

(Plug in Eq. 4.23)

1IQL results are taken from Kostrikov et al. [144] which does not report standard errors.

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 59

=
∞

∑
h=0

γh p(Hπ
s (g) = h)

(
(1− γ)

∞

∑
t=h

γt−h pπ(st−h = g | s0 = g)
)

(Stationary property of MDP)

=
∞

∑
h=0

γh p(Hπ
s (g) = h)

(
(1− γ)

∞

∑
t=0

γt pπ(st = g | s0 = g)
)

(Change of variables)

= E
[
γHπ

s (g)]pπ
γ (s

+=g |s0=g),

as desired.

We can generalize this result to account for actions as well.

Definition 4.5. For π ∈ Π, s, g ∈ S , and a, a′ ∈ A, we define the following additional
hitting time random variables

Hπ
s,a(g, a′) = min{t ≥ 0 : Et} (4.24)

where Et is the event that st = g, at = a′ given s0 = s, a0 = a
Hπ

s,a(g) = min{t ≥ 0 : Et} (4.25)
where Et is the event that st = g given s0 = s, a0 = a.

We now show an analogous result for the discounted state-action occupancy
measure.

Lemma 4.7. For Hπ
s,a(g, a) defined as (4.24) and s ̸= g,

pπ
γ (s

+=g, a+=a′ |s0=s, a0=a) = E
[
γHπ

s,a(g,a′)]pπ
γ (s

+=g, a+=a′ |s0=g, a0=a′).

Proof. Let pπ(st = g, at = a′ | s0 = s, a0 = a, Hπ
s,a(g, a′) = h) be the probability of

reaching goal g at time step t then taking action a′, when starting at state s given the
hitting time Hπ

s,a(g) = h and π takes action a′ at time h. By the definition of Hπ
s,a(g),

we have

pπ(st = g, at = a′ | s0 = s, a0 = a, Hπ
s,a(g, a′) = h)

=

0 t < h
1 t = h
π(a′ | g)pπ(st = g | sh = g, ah = a′) t > h.

(4.26)

Thus,

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 60

pπ
γ (s

+=g, a+=a′ |s0=s, a0=a)

= (1− γ)
∞

∑
t=0

γt pπ(st = g, at = a′ | s0 = s, a0 = a)

= (1− γ)
∞

∑
t=0

∞

∑
h=0

γt pπ(st = g, at = a′, Hπ
s,a(g, a′) = h | s0 = s, a0 = a)

=
∞

∑
h=0

p
(

Hπ
s,a(g, a′) = h

)(
(1− γ)

∞

∑
t=0

γt pπ(st = g, at = a′ | s0 = s, a0 = a, Hπ
s,a(g, a′) = h)

)
=

∞

∑
h=0

p
(

Hπ
s,a(g, a′) = h

)
(1− γ)

(
1 +

∞

∑
t=h+1

γtπ(a′ | g)pπ(st = g | sh = g, ah = a′)
)

(Plug in Eq. (4.26))

=
∞

∑
h=0

γh p
(

Hπ
s,a(g, a′) = h

)
(1− γ)

(
1 +

∞

∑
t=h+1

γtπ(a′ | g)pπ(st−h = g | sh = g, ah = a′)
)

(Stationary property of MDP)

=
∞

∑
h=0

γh p
(

Hπ
s,a(g, a′) = h

)
(1− γ)

(
1 +

∞

∑
t=1

γtπ(a′ | g)pπ(st = g | s0 = g, a0 = a′)
)

(Change of variables)

=
∞

∑
h=0

γh p
(

Hπ
s,a(g, a′) = h

)
(1− γ)

(
1 +

∞

∑
t=1

γtπ(a′ | g)pπ(st = g | s1 = s′)P(s′ | s, a)
)

=
∞

∑
h=0

γh p
(

Hπ
s,a(g, a′) = h

)
(1− γ)

(
1 + γ

∞

∑
t=0

γt pπ(st = g | s0 = s′)π(a′ | g)P(s′ | s, a)
)

(Change of variables)

=
∞

∑
h=0

γh p
(

Hπ
s,a(g, a′) = h

)
(1− γ)

(
δg,a′(g, a′) + γ

∞

∑
t=0

γt pπ(st = g | s0 = s′)π(a′ | g)P(s′ | s, a)
)

=
∞

∑
h=0

γh p
(

Hπ
s,a(g, a′) = h

)
pπ

γ (s
+=g, a+=a′ |s0=g, a0=a′)

= E
[
γHπ

s,a(g,a′)]pπ
γ (s

+=g, a+=a′ |s0=g, a0=a′),

Remark 4.8. The hitting times Hπ
s (g) and Hπ

s,a(g) are independent of the distribution
π(· | g).

Remark 4.9. We can write

Hπ
s,a(g, a′) = Hπ

s,a(g) + Eπ(â|g)
[
Hπ

g,â(g, a′)
]
.

These remarks follow from the definitions in Eqs. (4.24) and (4.25) and the
conditional independence of the states before g is reached and the action taken at g.

Lemma 4.1. dSD

(
(s, a), (s′, a′)

)
is independent of a′ when s ̸= s′.

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 61

Proof. Suppose s ̸= g. We have from Eq. (4.6) that

dSD

(
(s, a), (g, a′)

)
= min

π∈Π

[
log

pπ
γ (s

+=g, a+=a′ |s0=g, a0=a′)
pπ

γ (s
+=g, a+=a′ |s0=s, a0=a)

]
= −max

π∈Π

[
log E

[
γHπ

s,a(g,a′)]] (Lemma 4.7)

= −max
π∈Π

log E
[
γ

Hπ
s,a(g)+Eπ(â|g)[Hπ

g,â(g,a′)]]. (Remark 4.9)

Now, from Remark 4.8, the first term Hπ
s,a(g) is independent of π(· | g). Meanwhile,

the second term Eπ(â|g)[Hπ
g,â(g, a′)] is minimized when π(â | g) = δa′(â), i.e., when

the action taken at g is a′. Thus, at the maximum π(· | g) = δa′(·); continuing, we
see

dSD

(
(s, a), (g, a′)

)
= −max

π∈Π
log E

[
γ

Hπ
s,a(g)+Eπ(â|g)[Hπ

g,â(g,a′)]]
= −max

π∈Π
log E

[
γHπ

s,a(g)].
From this last expression we see that dSD

(
(s, a), (g, a′)

)
is independent of the

action at the goal a′, as desired.

Lemma 4.2. Selecting actions to minimize the successor distance is equivalent to selecting
actions to maximize the (scaled and shifted) Q-function:

− dSD(s, a, g) = 1
pg(g)Q(s, a, g) + cψ(g)

=⇒ arg max
a

dSD(s, a, g) = arg max
a

Q(s, a, g).

Proof. As noted in prior work Eysenbach et al. [121, Lemma 4.1], the optimal critic
(Eq. (4.9)) is equivalent to a scaled Q function:

e fθ∗ (s,a,g) =
1

C · pg(g)
pπ

γ (s
+=g |s0=s, a)︸ ︷︷ ︸

Q(s,a,g)

.

Eq. (4.11) then tells us that the successor distance differs from fθ∗(s, a, g) by a term
that depends only on g, so taking the argmin of the successor distance is the same
as taking the argmax of this scaled Q function.

Now, we will prove Lemma 4.3.

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 62

Lemma 4.3. For any s, w, g ∈ S , π ∈ Π,

max
π′∈Π

[pπ
γ [π

′](s+=g |s0=w)pπ
γ [π](s+=w |s0=s)

pπ
γ [π](s+=w |s0=w)

]
≤ max

π′∈Π
pπ

γ [π
′](s+=g |s0=s).

Proof. Define π̃ ∈ ΠNM to be the non-Markovian policy that starts executing π′ and
switches to π after reaching w:

π̃(at | st) =

{
π(at | st) w ∈ {s0, s1, . . . , st}
π′(at | st) otherwise.

We take π′ ∈ Π to be an arbitrary policy. Let E1 be the event where the hitting
time of waypoint w is less than the hitting time of goal g starting from state s, i.e.,
E1 = {Hπ̃

s (w) < Hπ̃
s (g)}. Complementary, let E2 be the event where the hitting

time of waypoint w is greater than or equal to the hitting time of goal g starting
from state s, i.e., E2 = {Hπ̃

s (w) ≥ Hπ̃
s (g)}. We note that E1 and E2 are mutually

exclusive.
We start by rewriting pπ

γ [π̃](s+=g |s0=s):

pπ
γ [π̃](s+=g |s0=s) =

∞

∑
h=0

p(Hπ̃
s (w) = h)

(
(1− γ)

∞

∑
t=0

γt pπ̃(st = g | s0 = s, Hπ̃
s (w) = h)

)

=
∞

∑
h=0

p(Hπ′
s (w) = h)

(
(1− γ)

∞

∑
t=0

γt pπ̃(st = g | s0 = s, Hπ̃
s (w) = h)

)
.

(4.27)
Now, pπ̃(st = g | s0 = s, Hπ̃

s (w) = h) can be written as

pπ̃(st = g | s0 = s, Hπ̃
s (w) = h) =

0 t < h, under E1

pπ̃(st = g | s0 = s, Hπ̃
s (w) = h, Hπ̃

s (g) ≤ h) t < h, under E2

pπ(st = g | sh = w) t ≥ h
.

(4.28)

Dropping the first h terms (which are all non-negative), we get

∞

∑
t=0

γt pπ̃(st = g | s0 = s, Hπ̃
s (w) = h) ≥

∞

∑
t=h

γt pπ̃(st = g | s0 = s, Hπ̃
s (w) = h)

=
∞

∑
t=h

γt pπ(st = g | sh = w)

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 63

Plugging this inequality into Eq. (4.27), we have

pπ
γ [π̃](s+=g |s0=s) ≥

∞

∑
h=0

p(Hπ′
s (w) = h)

(
(1− γ)

∞

∑
t=h

γt pπ(st = g | sh = w)

)

=
∞

∑
h=0

γh p(Hπ′
s (w) = h)

(
(1− γ)

∞

∑
t=h

γt−h pπ(st−h = g | s0 = w)

)
(Stationary property of MDP)

=
∞

∑
h=0

γh p(Hπ′
s (w) = h)

(
(1− γ)

∞

∑
t=0

γt pπ(st = g | s0 = w)

)
(Change of variables)

= E
[
γHπ′

s (w)
]
pπ

γ (s
+=g |s0=w).

Applying Lemma 4.6 to the last step, we see

pπ
γ [π̃](s+=g |s0=s) ≥ E

[
γHπ

s (w)
]
pπ

γ [π
′](s+=g |s0=w)

=
pπ

γ [π
′](s+=g |s0=w)pπ

γ (s
+=w |s0=s)

pπ
γ (s

+=w |s0=w)
.

Since there is a stationary Markovian optimal policy π∗ for rg in M, we know from
Lemma 4.2 that

pπ
γ [π̃](s+=g |s0=s) ≤ max

π′∈Π
pπ

γ [π
′](s+=g |s0=s),

so we have

max
π′∈Π

pπ
γ [π

′](s+=g |s0=s) ≥ pπ
γ [π

′](s+=g |s0=w)pπ
γ (s

+=w |s0=s)
pπ

γ (s
+=w |s0=w)

.

Since π′ on the RHS was arbitrary, we conclude

max
π′∈Π

[pπ
γ [π

′](s+=g |s0=w)pπ
γ (s

+=w |s0=s)
pπ

γ (s
+=w |s0=w)

]
≤ max

π′∈Π
pπ

γ [π
′](s+=g |s0=s).

Lemma 4.10. For any s, w, g ∈ S , as, aw, ag ∈ A, and π ∈ Π, we have

max
π′∈Π

[pπ
γ [π

′](s+=g, a+=ag |s0=w, a0=aw)pπ
γ [π

′](s+=w, a+=aw |s0=s, a0=as)

pπ
γ [π

′](s+=w, a+=aw |s0=w, a0=aw)

]
≤ max

π′∈Π

[
pπ

γ [π
′](s+=g, a+=ag |s0=s, a0=as)

]
.

The proof follows from the same argument as in Lemma 4.3 but applying
Lemma 4.7 instead of Lemma 4.6.

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 64

4.7 PROOFS

Theorem 4.4 (Quasimetric). dSD is a quasimetric over S , satisfying the triangle inequality
and other properties from Definition 4.1.

Proof. We check the conditions of Definition 4.1:
Positivity: Applying Lemma 4.6, we see

dSD(s, g) = min
π∈Π

log pπ
γ (s

+=g |s0=g)− log pπ
γ (s

+=g |s0=s)

= min
π∈Π

log pπ
γ (s

+=g |s0=g)− log E
[
γHπ

s (g)]pπ
γ (s

+=g |s0=g)

≥ min
π∈Π

log pπ
γ (s

+=g |s0=g)− log pπ
γ (s

+=g |s0=g)

= 0.

Identity: We see dSD(s, g) = 0 precisely iff pπ
γ (s

+=g |s0=g) = pπ
γ (s

+=g |s0=s)
for some π ∈ Π. This holds when s = g. For s ̸= g, we have pπ

γ (s
+=g |s0=s) ≤

γpπ
γ (s

+=g |s0=g). Since pπ
γ (s

+=g |s0=g) ≥ 1− γ by construction, dSD(s, g) ̸= 0.

Triangle inequality: We see:

dSD(s, g) = min
π∈Π

log pπ
γ (s

+=g |s0=g)− log pπ
γ (s

+=g |s0=s)

≤ min
π∈Π

log pπ
γ (s

+=g |s0=g)− log
(

max
π′∈Π

[pπ
γ (s

+=g |s0=w)pπ
γ [π

′](s+=w |s0=s)
pπ

γ [π
′](s+=w |s0=w)

])
(Lemma 4.3)

= min
π∈Π

log pπ
γ (s

+=g |s0=g)−max
π′∈Π

log
(pπ

γ (s
+=g |s0=w)pπ

γ [π
′](s+=w |s0=s)

pπ
γ [π

′](s+=w |s0=w)

)
=

(
min
π∈Π

log
pπ

γ (s
+=g |s0=g)

pπ
γ (s

+=g |s0=w)

)
−
(

max
π′∈Π

log
pπ

γ [π
′](s+=w |s0=s)

pπ
γ [π

′](s+=w |s0=w)

)

=

(
min
π∈Π

log
pπ

γ (s
+=g |s0=g)

pπ
γ (s

+=g |s0=w)

)
+

(
min
π′∈Π

log
pπ

γ [π
′](s+=w |s0=w)

pπ
γ [π

′](s+=w |s0=s)

)
= dSD(w, g) + dSD(s, w) (4.29)

as desired.

Consider the following didactic example for why we might want to extend the
successor distance to the state-action space S ×A (Fig. 4.4).

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 65

π1 data : (s,→) (w,⟳) (g ⟳)

π2 data : (s,⟳) (w,→) (g,⟳)

π′ behavior : (s,→) (w,→) (g,⟳)

1
1 1

1

1

≈

1

1 1
1

Figure 4.4: A simple illustration of a metric over S × A. To stitch the behavior
s → w from π1 and w → g from π2 to the behavior s → g that is possible under
some policy π’, we enforce an additional constraint that distances to (w,→) are the
same as distances to (w,⟳).

Corollary 4.4.1. dSD is a quasimetric over S ×A.

This statement follows from the same argument as in Theorem 4.4 but applying
Lemma 4.10 instead of Lemma 4.3 to the triangle inequality.

Corollary 4.4.2. dSD is a quasimetric over an uncontrolled Markov process as in Eq. (4.5).

This statement follows from Theorem 4.4 by taking A = {a} so Π = {π}.

Analysis of CMD-1
Lemma 4.5. For s ̸= g, the unique solution to the the loss function in Eq. (4.8) with the
parametrization in Eq. (4.12) is

dϕ∗(s, a, g) = log
pπ

γ (s
+=g |s0=s, a0=a)

pπ
γ (s

+=g |s0=g)
. (4.14)

Proof. Eq. (4.10) together with Eq. (4.13) tell us that, if f (s, a, g) satisfies Eq. (4.9),
then the learned dϕ(s, a, g) is the successor distance. What remains is to show
that the parametrization in Eq. (4.12) is sufficient to represent Eq. (4.9): Eq. (4.11)
tells us that it is sufficient for (1) we use a universal quasimetric network for
dϕ(s, a, g) [127, 130], and (2) use a universal network cψ(g) (e.g., sufficient layers in
a neural network [145]).

4.8 DIDACTIC EXAMPLES

We present a few examples of how the successor distance defined in Eq. (4.5) yields
a valid quasimetric.

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 66

Example 1: 3-state Markov Process.

1 2 3

Eq. (4.2) Assume that the initial state is “1”, a discount factor of γ, and that state
“3” is absorbing. We assume that the discounted state occupancy measure states at
t = 0, so that it includes the current time step.

p(3 | 3) = 1
p(2 | 2) = 1− γ

p(2 | 1) = γ(1− γ)

p(3 | 2) = γ

p(3 | a) = γ2

d(1, 3) = log p(3 | 3)− log p(3 | 1) = log 1− log γ2 = 0 + 2 log 1
γ

d(1, 2) = log p(2 | 2)− log p(2 | 1) = log(1− γ)− log γ(1− γ) = log 1
γ

d(2, 3) = log p(3 | 3)− log p(3 | 2) = log 1− log γ = log 1
γ

d(1, 2) + d(2, 3) = 2 log 1
γ ≥ d(1, 3) = 2 log 1

γ .✓

In this example, note that the triangle inequality is tight. This is because there is a
single state that we are guaranteed to visit between states “1” and “3.”

Example 2: 4-state Markov Process.

1 2
3 4

From state “1”, states “2” and “3” each occur with probability 0.5.

p(4 | 4) = 1
p(2 | 2) = 1− γ

p(2 | 1) = 1
2(1− γ)γ

p(4 | 1) = γ2

p(4 | 2) = γ

d(1, 2) = log p(2 | 2)− log p(2 | 1)

= log(1− γ)− log 1
2(1− γ)γ = log 1

γ + log 2

d(2, 4) = log p(4 | 4)− log p(4 | 2)

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 67

= log 1− log γ = log 1
γ

d(1, 4) = log p(4 | 4)− log p(1 | 4)

= log 1− log γ2 = 2 log 1
γ

d(1, 2) + d(2, 4) = 2 log 1
γ + log 2 ≥ d(1, 4) = 2 log 1

γ .✓

In this example, the triangle inequality is loose. This is because we have uncertainty
over which states we will visit between “1” and “4.” One way to resolve this
uncertainty is to aggregate states “2” and “3” together; if we did this, we’d be back
at example 1, where the triangle inequality is tight.

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 68

4.9 ACTION-INVARIANCE

Let’s assume that data are collected with a Markovian policy, so p(s′, a′ | s, a) =
β(a′ | s′)p(s′ | s, a). Then CRL will learn

e f (s,a,s′,a′) =
p(s′, a′ | s, a)

p(s′, a′)
(4.30)

= �����β(a′ | s′)p(s′ | s, a)

�����β(a′ | s′)p(s′)
. (4.31)

Thus, if data are collected with a Markovian policy, then the optimal critic will not
depend on the future actions. Note that this remains true for any parametrization
of the critic (including MRN) that can represent the optimal critic.

However, the assumption on a Markovian data collection policy can be violated
in a few ways:

1. In the online setting, data are collected from policies at different iterations. In
this setting, conditioning on a previous state and action can give you a better
prediction of a′ (violating the Markov assumption) because it can allow you
to infer which policy you’re using.

2. In goal-conditioned settings, the data collection policy is conditioned on the
goal. Conditioning on a previous state and action can leak information about
the desired goal.

One way of fixing this is to apply CRL to a different data distribution. Let
p(s′, a′ | s, a) be given, and let β(a) be some distribution over actions (in practice,
we might use the marginal distribution over actions in the dataset). Define

p̃(s′, a′ | s, a) ≜ p(s′ | s, a)β(a′), p̃(s′, a′) ≜ p(s′)β(a′). (4.32)

In practice, this corresponds to augmenting the CRL training examples (s, a, s′, a′)→
(s, a, s′, ã′) by resampling the future actions. Now, consider applying CRL to this
new distribution:

e f (s,a,s′,a′) =
p̃(s′, a′ | s, a)

p̃(s′, a′)
(4.33)

= �����β(a′ | s′) p̃(s′ | s, a)

�����β(a′ | s′) p̃(s′)
. (4.34)

Thus, if we apply CRL to data augmented in this way, we’re guaranteed to learn a
critic function f (s, a, s′, a′) that is invariant to a′.

4.10 RELATED WORK

Our work builds on prior work in learning temporal distances and contrastive
representation learning.

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 69

Learning distances
Within any Markov decision process (MDP), there is an intuitive notion of “distance”
between states as the difficulty of transitioning between them. There are many
seemingly reasonable definitions for distance a priori: likelihood of reaching the
goal at a particular time, expected time to reach the goal, likelihood of ever reaching
the goal, etc. (under some policy). The key mathematical structure for a distance to
be useful for reaching goals is that it must satisfy the triangle inequality d(a, c) ≤
d(a, b) + d(b, c): being able to go from a → b and from b → c means going from
a→ c can be no harder than both of the aforementioned steps. Such a distance is
called a metric over the state space if it is symmetric and more generally a quasimetric
[146].

While prior work on bisimulation [147, 148] use a reward function to construct
such a distance, our aim will be to define a notion of distance that does not require
a reward function.

For the correct choice of distance, learning a goal-conditioned value function
will correspond to selecting a distance metric that best enables goal reaching. Such
a distance can then be learned with an architecture that directly enforces metric
properties, e.g., Euclidean distance, metric residual network (MRN), interval quasi-
metric estimator (IQE), etc. [130, 143, 127]. Since the space of value (quasi)metrics
imposes a strong induction bias over value functions, using the right metric architec-
ture can enable better combinatorial and temporal generalization without requiring
additional samples [126].

In deterministic MDPs, these notions of distance all coincide with distance
d(s, g) being proportional to the (minimum) amount of time needed to reach the
goal g when starting in state s. Approaches like Quasimetric RL [126, 127] learn
this notion of distance, allowing optimal goal reaching in deterministic MDPs. In
general MDPs, alternative notions of distance are required [46, 119, 149, 119, 149–
151]. Existing approaches are often limited by assumptions such as symmetry or fail
to satisfy metric properties. Our contribution is to construct a general formulation
for a quasimetric over MDPs that can be easily learned from discounted state
occupancy measures.

Contrastive Representations
Contrastive learning has seen widespread adoption for learning to represent time
series [152, 153]. These representations can be trained to approximate mutual
information without requiring labels or reconstruction [142, 154, 155, 53, 156], and
are useful for learning self-supervised representations across broad application
areas [17, 157–161].

Within RL, contrastive learning can be used for goal-conditioned control as suc-
cessor features [162, 121, 122]. Approaches that use contrastive representations for
control are typically limited in combinatorial and temporal generalization since they

4 A METRIC STRUCTURE FOR SUCCESSOR REPRESENTATIONS 70

do not bootstrap value functions [163]. Unlike past approaches that use contrastive
learning for decision-making, we show that these generalization capabilities can
be obtained from contrastive successor features by imposing an additional metric
structure.

Goal-conditioned reinforcement learning (GCRL)
Goal-reaching presents an attractive formulation for learning useful behaviors
in unsupervised RL settings [164, 49]. Recent advances in deep reinforcement
learning have renewed interest in this problem as many real-world offline and
online RL problems lack clear reward signals [14, 121, 165, 166, 15]. GCRL methods
can learn goal-conditioned policies [167, 15], value functions [168, 169], and/or
representations that enable goal-reaching [121, 134, 119]. Approaches that recover
goal-conditioned policies can also enable additional capabilities like planning [170,
171], skill discovery [172, 173] and interface with other forms of task specification
like language [46, 7, 97, 87, 174].

These GCRL techniques typically require bootstrapping with a learned value
function, which can be costly and unstable, or struggle with long-horizon com-
binatorial and temporal generalization [1]. Our approach avoids both of these
shortcomings by learning a distance metric that can implicitly combine behav-
iors without bootstrapping or making any assumptions about the environment
dynamics.

71

5
TEMPORAL REPRESENTATION
ALIGNMENT FOR COMPOSITIONAL
INSTRUCTION FOLLOWING

Compositionality is a core aspect of intelligent behavior, describing the ability to
sequence previously learned capabilities and solve new tasks [175]. In domains
involving long-horizon decision-making like robotics, various learning approaches
have been proposed to enable this property, including hierarchical learning [176],
explicit subtask planning [177, 170, 90], and dynamic-programming-based “stitch-
ing” [1, 144]. In practice, these techniques are often unstable and/or data-inefficient
in real-world robotics settings, making them difficult to scale [178].

By contrast, biological learners are adept at quickly composing behaviors to
reach new goals [175]. Possible explanations for these capabilities have been pro-
posed, including the ability to perform transitive inference [179], learn successor
representations and causal models [124, 180], and plan with world models [181]. In
common among these theories is the idea of learning structured representations of
the world, which inference about which actions will lead to certain goals.

How might these concepts translate to algorithms for robot learning? In this
work, we study how adding an auxiliary successor representation learning objective
affects compositional behavior in a real-world tabletop manipulation setting. We
show that learning this representation structure improves the ability of the robot
to perform long-horizon, compositionally-new tasks, specified either through goal
images or natural language instructions. Perhaps surprisingly, we found that this
temporal alignment does not need to be used for training the policy or test-time
inference, as long as it is used as an auxiliary loss over the same representations
used for the tasks. An example of this can be seen in Fig. 5.1.

We evaluate our method, Temporal Representation Alignment (TRA), on a set
of challenging multi-step manipulation tasks in the BridgeData setup [62]. These
tasks specifically test the compositional capabilities of the robot policies: as a whole,
the tasks are out-of-distribution, but each distinct subtask can be described through
a goal image that lies in the training distribution. Adding a simple time-contrastive
alignment loss improves compositional performance on these tasks by >40% across
13 tasks in 4 scenes.

5 TEMPORAL REPRESENTATION ALIGNMENT 72

Goal Image

“put the food
items in drawer”

AWR

TRA (OURS)

TRA aligns state representations with
tasks across time to compose behaviors

t

prior imitation and offline RL methods

Instruction

language
representation

goal
representation

state
representation

temporal
representation

alignment (TRA)

BC

ω(st)

ω(g)

ω(ε)

Figure 5.1: Example rollouts of a task with TRA and GCBC to put all food items
in the bowl. While TRA can implicitly decompose the task into steps and execute
them one by one, GCBC is unable to do that and fails to ground to any relevant
objects. GCBC+AWR on the other hand only grounds one object, failing to display
any compositionality

5.1 TEMPORAL REPRESENTATION ALIGNMENT

Given training on a series of short-horizon goal-reaching and instruction-following
tasks, our goal is to learn a representation space such that our policy can generalize
to a new (long-horizon) task that can be viewed as a sequence of known subtasks.
We propose to structure this representation space by aligning the representations
of states, goals, and language in a way that is more amenable to compositional
generalization.

Notation. We take the setting of a goal- and language-conditioned MDPM with
state space S , continuous action space A ⊆ (0, 1)dA , initial state distribution p0,
dynamics P(s′ | s, a), discount factor γ, and language task distribution pℓ. A policy
π(a | s) maps states to a distribution over actions. We inductively define the k-step
(action-conditioned) policy visitation distribution as:

pπ
1 (s1 | s1, a1) ≜ p(s1 | s1, a1),

pπ
k+1(sk+1 | s1, a1) ≜

∫
A

∫
S

p(sk+1 | s, a)dpπ
k (s | s1, a1)dπ(a | s)

pπ
k+t(sk+t | st, at) ≜ pπ(sk | s1, a1). (5.1)

5 TEMPORAL REPRESENTATION ALIGNMENT 73

Then, the discounted state visitation distribution can be defined as the distribution
over s+, the state reached after K ∼ Geom(1− γ) steps:

pπ
γ (s

+ | s, a) ≜
∞

∑
k=0

γk pπ
k (s

+ | s, a). (5.2)

We assume access to a dataset of expert demonstrations D = {τi, ℓi}K
i=1, where

each trajectory
τi = {st,i, at,i}H

t=1 ∈ S ×A× S (5.3)

is gathered by an expert policy πE, and is then annotated with pℓ(ℓi | s1,i, sH,i). Our
aim is to learn a policy π that can select actions conditioned on a new language
instruction ℓ. As in prior work [62], we handle the continuous action space by both
our policy and the expert policy as an isotropic Gaussian with fixed variance; we
will equivalently write π(a | s, φ) or denote the mode as â = π(s, φ) for a task φ.

Motivation: Representations for Reaching Distant Goals
We learn a goal-conditioned policy π(a | s, g) that selects actions to reach a goal g
from expert demonstrations with behavioral cloning. Suppose we directly selected
actions to imitate the expert on two trajectories in D:

s1 s2 . . . sH w

w s′1 . . . s′H g

τi ∈ D (5.4)

When conditioned with the composed goal g, we would be unable to imitate
effectively as the composed state-goal (s, g) is jointly out of the training distribution.

What would work for reaching g is to first condition the policy on the interme-
diate waypoint w, then upon reaching w, condition on the goal g, as the state-goal
pairs (si, w), (w, g), and (s′i, g) are all in the training distribution. If we condition
the policy on some intermediate waypoint distribution p(w) (or sufficient statistics
thereof) that captures all of these cases, we can stitch together the expert behaviors
to reach the goal g.

Consider the goal-conditioned behavioral cloning [49] loss Lϕ,ψ,ξ
BC conditioned

with waypoints w.

LBC

(
{si, ai, s+i , gi}K

i=1
)
=

K

∑
i=1

log π
(
ai | si, ψ(gi)

)
. (5.5)

Enforcing the invariance needed to stitch Eq. (5.4) then reduces to aligning ψ(g)↔ ψ(w).
The temporal alignment objective ϕ(s) ↔ ϕ(s+) accomplishes this indirectly by
aligning both ψ(w) and ψ(g) to the shared waypoint representation ϕ(w):

5 TEMPORAL REPRESENTATION ALIGNMENT 74

LNCE

(
{si, s+i }K

i=1; ϕ, ψ
)
= log

(
eϕ(s+i)Tψ(si)

∑K
j=1 eϕ(s+i)Tψ(sj)

)
+

K

∑
j=1

log
(

eϕ(s+i)Tψ(si)

∑K
i=1 eϕ(s+i)Tψ(sj)

)
(5.6)

Interfacing with Language Instructions
To extend the representations from Section 5.1 to compositional instruction fol-
lowing with language tasks, we need some way to ground language into the ψ
representation space. We use a similar approach to GRIF [7], which uses an ad-
ditional CLIP-style [17] contrastive alignment loss with an additional pretrained
language encoder ξ:

LNCE

(
{gi, ℓi}K

i=1; ψ, ξ
)
=

K

∑
i=1

log
(

eψ(gi)
Tξ(ℓi)

∑K
j=1 eψ(gi)Tξ(ℓj)

)
+

K

∑
j=1

log
(

eψ(gi)
Tξ(ℓi)

∑K
i=1 eψ(gi)Tξ(ℓj)

)
(5.7)

Temporal Alignment
The Temporal Representation Alignment (TRA) approach structures the represen-
tation space of goals and language instructions to better enable compositional
generalization. We learn encoders ϕ, ψ, and ξ to map states, goals, and language
instructions to a shared representation space.

LNCE({xi, yi}K
i=1; f , h) =

K

∑
i=1

log
(

e f (yi)
Th(xi)

∑K
j=1 e f (yi)Th(xj)

)
+

K

∑
j=1

log
(

e f (yi)
Th(xi)

∑K
i=1 e f (yi)Th(xj)

)
(5.8)

LBC

(
{si, ai, s+i , ℓi}K

i=1; π
)
=

K

∑
i=1

log π
(
ai | si, ξ(ℓi)

)
+ log π

(
ai | si, ψ(s+i)

)
(5.9)

LTRA

(
{si, ai, s+i , gi, ℓi}K

i=1; π, ϕ, ψ, ξ
)

= LBC

(
{si, ai, s+i , ℓi}K

i=1; π, ψ, ξ
)︸ ︷︷ ︸

behavioral cloning

+LNCE

(
{si, s+i }K

i=1; ϕ, ψ
)︸ ︷︷ ︸

temporal alignment

+LNCE

(
{gi, ℓi}K

i=1; ψ, ξ
)︸ ︷︷ ︸

task alignment

(5.10)

Note that the NCE alignment loss uses a CLIP-style symmetric contrastive objec-
tive [17, 11] — we highlight the indices in the NCE alignment loss (5.8) for clarity.

5 TEMPORAL REPRESENTATION ALIGNMENT 75

Our overall objective is to minimize Eq. (5.10) across states, actions, future states,
goals, and language tasks within the training data:

min
π,ϕ,ψ,ξ

E(s1,i,a1,i,...,sH,i,aH,i,ℓ)∼D
i∼Unif(1...H)

k∼Geom(1−γ)

[
LTRA

(
{st,i, at,i, smin(t+k,H),i, sH,i, ℓ}K

i=1; π, ϕ, ψ, ξ
)]

.

(5.11)

Algorithm 4: Temporal Representation Alignment (TRA)

1: input: dataset D = ({st,i, at,i}H
t=1, ℓi)

N
i=1

2: initialize networks Θ ≜ (π, ϕ, ψ, ξ)
3: while training do
4: sample a batch of transitions

{
(st,i, at,i, st+k,i, ℓi)

}K
i=1 ∼ D for k ∼ Geom(1−

γ)
5: Θ← (π, ϕ, ψ, ξ)− α∇ΘLTRA

(
{st,i, at,i, st+k,i, ℓi}K

i=1; Θ
)

6: output: language ℓ-conditioned policy π(at|st, ξ(ℓ))
7: goal g-conditioned policy π(at|st, ψ(g))

A summary of our approach is shown in Algorithm 4.

Temporal Alignment and Compositionality
We will formalize the intuition from Section 5.1 that TRA enables compositional
generalization by considering the error on a “compositional” version of D, denoted
D∗. Using the notation from Eq. (5.3), we can say D is distributed according to:

D ≜ DH ∼
K

∏
i=1

p0(s1,i)pℓ(ℓi | s1,i, sH,i)
H

∏
t=1

πE(at,i | st,i)P(st+1,i | st,i, at,i), (5.12)

or equivalently

DH ∼
K

∏
i=1

p0(s1,i)pℓ(ℓi | s1,i, sH,i)
H

∏
t=1

eσ2∥πE(st,i)−at,i∥2
P(st+1,i | st,i, at,i), (5.13)

by the isotropic Gaussian assumption. We will define D∗ ≜ DH′ to be a longer-
horizon version of D extending the behaviors gathered under πE across a horizon
αH ≥ H′ ≥ H that additionally satisfies a “time-isotropy” property: the marginal
distribution of the states is uniform across the horizon, i.e., p0(s1,i) = p0(st,i) for all
t ∈ {1 . . . H′}.

We will relate the in-distribution imitation error ERR(•;D) to the compositional
out-of-distribution imitation error ERR(•;D∗). We define

ERR(π̂; D̃) = ED̃
[1

H

H

∑
t=1

Eπ̂

[
∥ãt,i − π̂(s̃t,i, s̃H,i)∥2/dA

]]
(5.14)

5 TEMPORAL REPRESENTATION ALIGNMENT 76

for {s̃t,i, ãt,i, ℓ̃i}H
t=1 ∼ D̃. (5.15)

On the training dataset this is equivalent to the expected behavioral cloning loss
from Eq. (5.9).

Assumption 5.1. The policy factorizes through inferred waypoints as:

goals: π(a | s, g) =
∫

π(a | s, w)P(st = w | st+k = g)dw (5.16)

language: π(a | s, ℓ) =
∫

π(a | s, w)P(st = w | st+k = g)P(st+k = g | ℓ)dw dg,

(5.17)

where denote by π(s, g) the MLE estimate of the action a.

Theorem 5.1. Suppose D is distributed according to Eq. (5.12) and D∗ is distributed
according to Eq. (5.12). When γ > 1− 1/H and α > 1, for optimal features ϕ and ψ
under Eq. (5.11), we have

ERR(π;D∗) ≤ ERR(π;D) + α− 1
2α

+
(α− 2

2α

)
1{α > 2}. (5.18)

We can also define a notion of the language-conditioned compositional general-
ization error:

ERRℓ(π;D∗) ≜ ED∗
[1

H

H

∑
t=1

Eπ

[
∥ãt,i − π(s̃t,i, ℓ̃i)∥2]]. (5.19)

Corollary 5.1.1. Under the same conditions as Theorem 5.1,

ERRℓ(π;D∗) ≤ ERRℓ(π;D) + α− 1
2α

+
(α− 2

2α

)
1{α > 2}. (5.20)

The proofs as well as a visualization of the bound are in Section 5.4.

5.2 EXPERIMENTS

Our experimental evaluation aims to answer the following research questions for
TRA:

1. Can TRA enable zero-shot composition of multiple sequential tasks without
additional prompting or planning methods?

2. How well does TRA perform compared to conventional offline RL algorithms
in terms of task generalization and composition?

3. How well does TRA capture skills that are seen at a lower percentage within
the dataset, compared to the numerous entries of object manipulation?

4. Is time alignment by itself sufficient for effective compositional generalization?

5 TEMPORAL REPRESENTATION ALIGNMENT 77

0 0.2 0.4 0.6 0.8

TRA(Ours)
AWR
GRIF
Octo

LCBC

Success Rate

Instruction Following Performance

(a) Language instruction tasks

0 0.2 0.4 0.6 0.8

TRA(Ours)
AWR
GRIF
Octo

GCBC

Success Rate

Goal Reaching Performance

(b) Goal-image conditioned tasks

Figure 5.2: Aggregated performance on compositional generalization tasks, consist-
ing of instruction-following and goal-reaching tasks.

Table 5.1: Compositional Generalization Error of Methods

Modality TRA GRIF LCBC GCBC Octo

image 4.25± 0.37 5.24± 0.34 4.84± 0.11 5.15± 0.41
language 3.82± 0.25 4.95± 0.32 4.84± 0.11 4.56± 0.32

Experimental Details
We evaluate TRA on a collection of held-out compositionally-OOD tasks – tasks for
which the individual substeps are represented in the dataset, but the combination
of those steps is unseen. For example, in a task such as “removing a bell pepper
from a towel, and then sweep the towel”, both the tasks “remove the bell pepper
from the towel” and “sweep the towel” have similar entries within BridgeData, but
such combined trajectory and language description does not exist. We utilize a real-
world robot manipulation interface with a 7 DoF WidowX250 manipulator arm with
5Hz execution frequency. We train on an augmented version of the BridgeDataV2
dataset [62], which contains over 50k trajectories with 72k language annotations. We
augment the dataset by rephrasing the language annotations, as described by [7],
with 5 additional rephrased language instruction for each language instruction
present in the dataset, and randomly sample them during training.

In order to specifically test the ability of TRA to perform compositional general-
ization, we organize our evaluation tasks into 4 scenes that are unseen in BridgeData,
each with increasing difficulty:

Scene A – One-Step Drawer: this is the only scene that are not compositionally-
OOD, as all the tasks are one-step tasks. This scene involves opening, putting an
item in, and closing a drawer. These tasks have been seen in BridgeData, although
at a lower frequency than object manipulation, but the position in which they are

5 TEMPORAL REPRESENTATION ALIGNMENT 78

initialized are unseen. They will be used to compare TRA’s ability to baselines
when solving single-step tasks.

Scene B – Task Concatenation: this scene involves concatenating multiple
tasks of the same nature in sequence, where a robot must be able to perform all
tasks within the same trajectory. During evaluation, we instruct the policy with
instructions such as sweeping multiple objects in the scene that require composition
(though are not sensitive to the order of the composition).

Scene C – Semantic Generalization: Unlike scene B, these tasks require manipu-
lation with different objects of the same class. We test this using various food items
seen within BridgeData and instruct the policy to put various food items within a
container. An example of such task would be to have a table containing a banana, a
sushi, a bowl, and various distractor objects, and instead of using specific language
commands such as “put the banana and the sushi in the bowl”, a more general
statement such as“put the food items in a container” will be used.

Scene D – Tasks with Dependency: This is the most challenging of the set of
tasks: these tasks have subtasks that require previous subtasks being completed for
them to succeed. An example of this would be to open a drawer, and to take out an
item in the drawer, as one cannot take out an item from the drawer if the drawer is
not open.

The complete list of tasks is noted in Appendix C.2.

Baselines
We compare against the following baselines:

GRIF [7] learns a goal- and language- conditioned policy using aligned goal image
and language representations. In our experiments, this becomes equivalent to
TRA when the temporal alignment objective is removed.

GCBC [62] learns a goal-conditioned behavioral cloning policy that concatenates
the goal image with the image observation.

LCBC [62] learns a language-conditioned policy that concatenates the language
with the image observation.

OCTO [67] uses a multimodal transformer to learn a goal- and language-conditioned
policy. The policy is trained on Open-X dataset [98], which incorporates Bridge-
Data in its entirety.

AWR [182] uses advantages produced by a value function to effectively extract a
policy from an offline dataset. In this experiment, we use the difference between
the contrastive loss between the current observation and the goal representation
and the contrastive loss between the next observation and the goal representation
as a surrogate for value function.

We train GRIF, GCBC, LCBC, and AWR using the same augmented Bridge
Dataset as TRA, and we use an Octo-Base 1.5 model for our evaluation. A more

5 TEMPORAL REPRESENTATION ALIGNMENT 79

Table 5.2: Real-world Language Conditioned Evaluation

Task TRA GRIF LCBC Octo AWR

open the drawer 0.80±0.1† 0.20±0.2 0.60±0.2 0.60±0.2 0.40±0.2
mushroom in drawer 0.80±0.1 0.80±0.2 0.40±0.2 0.00±0.0 0.60±0.2

close drawer 0.60±0.2 0.60±0.2 0.40±0.2 0.60±0.2 0.40±0.2

(∗) put the spoons on towels 1.00±0.0 0.40±0.2 0.20±0.2 0.00±0.0 0.20±0.2
(∗) put the spoons on the plates 0.80±0.2 0.20±0.2 0.20±0.2 0.20±0.2 0.00±0.0
(∗) fold cloth into the center 1.00±0.0 0.20±0.2 0.40±0.2 0.40±0.2 0.40±0.2
(∗) sweep to the right 0.80±0.1 0.20±0.2 0.40±0.2 0.40±0.2 0.00±0.0

(∗) put the corn and sushi on plate 0.90±0.1 0.00±0.0 0.40±0.2 0.00±0.0 0.50±0.2
(∗) sushi and mushroom in bowl 0.80±0.2 0.00±0.0 0.60±0.2 0.20±0.2 0.60±0.2
(∗) corn, banana, and sushi in bowl 0.80±0.1 0.00±0.0 0.00±0.0 0.00±0.0 0.20±0.1

(∗) take the item out of the drawer 0.60±0.2 0.00±0.0 0.00±0.0 0.20±0.2 0.00±0.0
(∗) move bell pepper and sweep towel 0.50±0.2 0.00±0.0 0.00±0.0 0.20±0.2 0.00±0.0
(∗) corn on plate then sushi in pot 0.70±0.1 0.00±0.0 0.40±0.2 0.60±0.2 0.20±0.2

∗ indicates task is compositionally-OOD (has multiple steps never seen together in training)
†The best-performing method(s) up to statistical significance are highlighted

detail approach is detailed in Appendix C.2. During evaluation, we give all policies
the same goal state and language instruction regardless of the architecture, as
they are trained on the same language instruction with the exception of Octo,
which doesn’t benefit from paraphrased language data, but does benefit from a
more diverse language annotation set across a larger dataset of varying length and
complexity.

Experimental Evaluation
Does TRA enable compositionality? In Table 5.1, we compare the normalized
mean squared error (MSE) of the TRA method with other methods on held-out
compositionally-OOD image- and goal-specified tasks. These values are derived
from passing the inputs through the policy network and sampling the mode of
the distribution without unnormalizing the outputs based on the dataset. The
validation MSE for these tasks are lower with a statistically significant margin,
demonstrating that in a compositionally-OOD setting, TRA provides a trajectory
closer to expert demonstrations.

Section 5.2 and Section 5.2 show the success rates of the TRA method com-
pared to other methods on real-world robot evaluation tasks. We marked all
policies within the task orange if they achieve the best statistically significant per-

5 TEMPORAL REPRESENTATION ALIGNMENT 80

Table 5.3: Real-world Goal-Conditioned Evaluation

Task TRA GRIF GCBC Octo AWR

open the drawer 0.60±0.2† 0.60±0.2 0.40±0.2 0.50±0.2 0.80±0.2
mushroom in drawer 0.90±0.1 0.40±0.2 0.80±0.2 0.90±0.1 0.60±0.2

close drawer 1.00±0.0 0.40±0.2 0.80±0.2 0.60±0.2 0.40±0.2

(∗) put the spoons on towels 1.00±0.0 0.20±0.2 0.60±0.2 0.40±0.2 0.60±0.2
(∗) put the spoons on the plates 1.00±0.0 0.00±0.0 0.40±0.2 0.00±0.0 0.80±0.2
(∗) fold cloth into the center 1.00±0.0 0.00±0.0 0.00±0.0 0.60±0.2 0.00±0.0
(∗) sweep to the right 0.70±0.1 0.40±0.2 0.00±0.0 0.80±0.2 0.00±0.0

(∗) put the corn and sushi on plate 0.70±0.1 0.00±0.0 0.20±0.2 0.00±0.0 0.30±0.1
(∗) sushi and mushroom in bowl 0.60±0.2 0.00±0.0 0.20±0.2 0.40±0.2 0.60±0.2
(∗) corn, banana, and sushi in bowl 0.50±0.2 0.00±0.0 0.00±0.0 0.40±0.2 0.50±0.2

(∗) take the item out of the drawer 0.40±0.2 0.00±0.0 0.00±0.0 0.20±0.2 0.00±0.0
(∗) move bell pepper and sweep towel 0.60±0.2 0.20±0.2 0.20±0.2 0.40±0.2 0.00±0.0
(∗) corn on plate then sushi in pot 0.30±0.1 0.20±0.2 0.00±0.0 0.00±0.0 0.00±0.0

∗ indicates task is compositionally-OOD (has multiple steps never seen together in training)
†The best-performing method(s) up to statistical significance are highlighted

formance. We first compare the performance against methods in Scene A. We
observe that while TRA performs well with drawer tasks, its performance against
baseline methods are not statistically significant. However, when being evaluated
on compositionally-OOD instruction following tasks, TRA performs considerably
better than that of any baseline methods.

While TRA completed 88.9% of tasks seen in Scene B, 83.3% of evaluations in
Scene C, and 60% of tasks in Scene D with instruction following, the best-performing
baseline for Scene B was 30% with LCBC, 43.3% for Scene C with AWR, and 33.3%
on Scene D with Octo. The same improvement was also present in goal reaching
tasks, although at a lower level, in which Scene C produced 60% success rate and
scene D produced a 43.3% success rate, as compared to 46.7% and 20% for the
best-performing baselines.

Qualitatively, we see that policies trained under TRA provides a much smoother
trajectory between different subtasks while following instructions, while other
cannot replicate the same performance. Take removing the bell pepper + sweep task
for example, with its visualization shown Fig. 5.3, while TRA was able to remove
the bell pepper by grasping it and putting it to the bottom right corner of the table,
LCBC cannot replicate the same performance, choosing to nudge the bell pepper
instead and failed to execute the task.

5 TEMPORAL REPRESENTATION ALIGNMENT 81

“move the bell pepper to the bottom right of the table,
and then move the towel to the top right of the table”

LCBC

TRA

Figure 5.3: Example rollouts of a task with TRA and LCBC. While TRA is able
to successfully compose the steps to complete the task, LCBC fails to ground the
instruction correctly.

TRA (Ours)

AWR+TRA

TRA (Ours)

AWR+TRA

Success Rate

Ablation: Using TRA as Value Signal

Goal Images Language

Figure 5.4: Aggregated success rate of using AWR
as an additional policy learning metric over all 4
scenes.

How well does TRA per-
form against Conventional Of-
fline RL Algorithms? While
offline reinforcement learning
promises good stitching behav-
ior [183], we demonstrate that
TRA still outperforms offline re-
inforcement learning on robotic
manipulation. Overall, TRA
performs better than AWR for
both language and image tasks,
outperforming AWR by 45%
on instruction following tasks,
and by 25% on goal reaching
tasks, showing considerable im-
provement over an offline RL
method that promises composi-
tional generalization via stitching.

Qualitatively, it is often seen that a policy trained with AWR would stop after one
subtask, even though the goal instruction or image demanded all of the subtasks be
completed. We can see this behavior in Fig. 5.1, in which we have the same goal
image being fed in to 3 different policies in which all 3 food items must be put in
the bowl. While TRA successfully completes all 3 subtasks, AWR chose to only
complete one subtask and terminates right after putting the banana in the bowl.

5 TEMPORAL REPRESENTATION ALIGNMENT 82

This is due to the fact that AWR on an offline dataset has a goal-reaching reward
function, in which it does not attempt to align the representations of all trajectories
across time unlike TRA.

Does TRA help capturing rarely-seen skills within the dataset? We also compare
the performance of TRA against AWR across all scenes and compare the perfor-
mance of the policies with all 3 tasks in Scene D as well as folding the towel, all rarely
seen skills within BridgeData, as it mainly focused on object manipulation. When
compared by task within language conditioned set, we discover AWR suffered
a significant drop off in effectiveness, with its average success rate plummeting
from 43.3% in Scene C compared to 6.67% in Scene D, while TRA had a smaller
drop off, from 83.3% to 60%, displaying that TRA generates better understanding
of tasks that are rarely seen in the dataset. Other agents do not nearly achieve
the same performance even as AWR in Scene D, as the lack of such compositional
generalization prevented the policies from achieving all of the tasks at a reliable
rate.

Is TRA sufficient in achieving compositional generalization? We demonstrate
in our real-world experiment that only using temporal alignment is sufficient for
achieving good compositional generalization. We evaluate this by comparing a
policy trained on only temporal alignment loss (our method), and another policy
trained on such loss and have these losses weighed by AWR.

Fig. 5.4 shows that across all evaluation tasks, there exists no statistically sig-
nificant difference between using and not using AWR in addition to temporal
alignment, in fact, using AWR marginally decreases the efficacy of TRA, as com-
pared to showing marginal improvement over vanilla GCBC methods and a similar
performance with vanilla LCBC methods. While TRA qualitatively improve the
smoothness of the execution trajectories, the same cannot be said about using AWR,
in which after executing every subtask, the robot chose to return near the starting
joint angles before executing the next subtask.

Failure Cases
While TRA provides an effective mechanism for compositional generalization, it
is not immune to failures. Qualitatively, we observe that despite showing better
compositional generalization, the policy still fails at a similar rate compared to
other multivariate Gaussian policies when multimodal behavior is observed, other
cases of early grasping and incorrect reaching are also observed at a similar rate.
While TRA did provide marginal improvements as seen in Scene A, it does not
provide full coverage of such scenarios. More analysis of failure cases can be seen
in Section 5.3.

5 TEMPORAL REPRESENTATION ALIGNMENT 83

5.3 ADDITIONAL VISUALIZATIONS

In this section, we show additional visualizations of TRA’s execution on compositionally-
OOD tasks. We use folding, taking mushroom out of the drawer, and corn on plate, then
sushi in the pot as examples, as these tasks require a strong degree of dependency to
complete at Section 5.3.

“open the drawer, and then take the mushroom out of the
drawer”

“fold the towel into center”

“put the corn on the plate, and then put the sushi in the pot”

Figure 5.5: In these figures, we see that TRA is able to perform good compositional
generatlization over a variety of tasks seen within BridgeData

Failure Cases
We break down failure cases in this section. While TRA performs well in com-
positional generalization, it cannot counteract against previous failures seen with
behavior cloning with a Gaussian Policy.

5.4 ANALYSIS OF COMPOSITIONALITY

We prove the results from Section 5.1.

5 TEMPORAL REPRESENTATION ALIGNMENT 84

“open the drawer, and then take the mushroom out of the
drawer”

❌

“put everything in the bowl”

STUCK!

EVAL ENDS!❌

Figure 5.6: Most of the failure cases came from the fact that a policy cannot learn
depth reasoning, causing early grasping or late release, and it has trouble reconciling
with multimodal behavior

Goal Conditioned Analysis
Theorem 5.1. Suppose D is distributed according to Eq. (5.12) and D∗ is distributed
according to Eq. (5.12). When γ > 1− 1/H and α > 1, for optimal features ϕ and ψ
under Eq. (5.11), we have

ERR(π;D∗) ≤ ERR(π;D) + α− 1
2α

+
(α− 2

2α

)
1{α > 2}. (5.18)

Proof. We have from Eq. (5.15) for K ∼ Geom(1− γ):

ERR(π;D∗) ≜ ED∗
[1

H′
H′

∑
t=1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
= ED∗

[H′−2H

∑
t=1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
+ ED∗

[H′−H

∑
H′−2H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
+ ED∗

[H′

∑
t=H′−H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
≤ ED∗

[H′

∑
t=H′−H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
+ ED∗

[H′−H

∑
t=H′−2H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
+
(α− 2

2

)
1{α > 2}

5 TEMPORAL REPRESENTATION ALIGNMENT 85

≤ ED∗
[H′

∑
t=H′−H+1

∥ãt,i−π(s̃t,i,s̃H′ ,i)∥2

ndA

]
+ ED∗

[H′−H

∑
t=H′−2H+1

EK
[∥ãt,i−pπ(s̃t,i|s̃H′−K,i)∥2

ndA

]]
+
(α− 2

2

)
1{α > 2}

≤ ED∗
[H′

∑
t=H′−H+1

∥ãt,i−π(s̃t,i,s̃H′ ,i)∥2

ndA

]
+ ED∗

[H′−H

∑
t=H′−2H+1

EK
[∥ãt,i−pπ(s̃t,i|s̃H′−K,i)∥2

ndA

]]
+
(α− 2

2

)
1{α > 2}

≤ ED∗
[H′

∑
t=H′−H+1

∥ãt,i−π(s̃t,i,s̃H′ ,i)∥2

ndA

]
+ ED∗

[H′−H

∑
t=H′−2H+1

EK
[∥ãt,i−pπ(s̃t,i|ψ(s̃H′−K,i))∥2

ndA

]]
+
(α− 2

2

)
1{α > 2}

≤ ERR(π;D∗) + ED∗
[1− γH

1− γ

]
+
(α− 2

2

)
1{α > 2}

≤ ERR(π;D∗) + α− 1
2α

+
(α− 2

2

)
1{α > 2}. (5.21)

Language Conditioned Analysis
Corollary 5.1.1. Under the same conditions as Theorem 5.1,

ERRℓ(π;D∗) ≤ ERRℓ(π;D) + α− 1
2α

+
(α− 2

2α

)
1{α > 2}. (5.20)

The proof is similar to Section 5.4, but over the predictions of ξ instead of ψ.

Visualizing the Bound
We compare the bound from Theorem 5.1 with the “worst-case” bound of ERR(π;D∗)−
ERR(π;D) in Fig. 5.7. The bound from Theorem 5.1 is tighter than the worst-case
bound, and it shows that the compositional generalization error decreases as α
increases.

5.5 RELATED WORK

Our approach builds upon prior work on goal- and language-conditioned control,
focusing particularly on the problem of compositional generalization.

5 TEMPORAL REPRESENTATION ALIGNMENT 86

1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.2

0.4

0.6

α

E
R

R
(π

;D
∗)
−

E
R

R
(π

;D
)

Compositional Generalization Error Bound

bound (5.7) worst case

Figure 5.7: Visualizing the bound (Fig. 5.7 from Theorem 5.1) on the compositional
generalization error.

Robot manipulation with language and goals. Recent improvements in robot
learning datasets have enabled the development of robot policies that can be com-
manded with image goals and language instructions [90, 62, 29]. These policies
can be trained with goal- and language-conditioned imitation learning from hu-
man demonstrations [184, 26, 51, 86, 85], reinforcement learning [185, 141], or other
forms of supervision [186, 187]. When being trained to reach goals, methods can ad-
ditionally use hindsight relabeling [14, 49] to improve performance [62, 7, 188, 189].
Our work shows how the benefits of goal-conditioned and language-conditioned
supervised learning can be combined with temporal representation alignment to
enable compositionality that would otherwise require planning or reinforcement
learning.

Compositional generalization in sequential decision making. In the context of de-
cision making, compositional generalization refers to the ability to generalize to new
behaviors that are composed of known sub-behaviors [190, 191]. Biological learn-
ing systems show strong compositional generalization abilities [179, 188, 192, 63],
and recent work has explored how similar capabilities can be achieved in artificial
systems [193, 194, 56]. In the context of policy learning, exploiting the composi-
tionality of the behaviors can lead to generalization to unseen and temporarily
extended tasks [1, 195, 196, 170, 197, 198]. Hierarchical and planning-based ap-
proaches also aim to enable compositional behavior by explicitly partitioning a
task into its components [199, 8, 200, 165]. With improvements in vision-language
models (VLMs), many recent works have explored using a pre-trained VLM to

5 TEMPORAL REPRESENTATION ALIGNMENT 87

decompose a task into subtasks that are more attainable for the low-level manipula-
tion policy [90, 35, 91, 107, 8, 38, 201]. Our contribution is to show compositional
properties can be achieved without any explicit hierarchical structure or planning,
by learning a structured representation through time-contrastive representation
alignment.

Representation learning for states and tasks. State and task representations for
decision making aim to improve generalization and exploit additional sources of
data. Recent work in the robotics domain have explored the use of pre-trained repre-
sentations across multimodal data, including images and language, for downstream
tasks [202, 203, 46, 7, 16, 115, 204, 47, 23]. In reinforcement learning problems,
representations are often trained to predict future states, rewards, goals, or ac-
tions [205, 119, 206, 44], and can improve generalization and sample efficiency when
used as value functions [207–211]. Some recent works have explored the use of addi-
tional structural constraints on representations to enable planning [199, 200, 11, 212],
or enforced metric properties to improve compositional generalization [127, 9, 126].

The key distinction between our approach and past contrastive representation
methods for robotics like VIP [119], GRIF [7], and R3M [16] is that we focus on the
real-world compositional generalization capabilities enabled by simply aligning
representations across time in addition to the task modalities, without using the
learned representations for policy extraction or defining a value function.

5.6 CONCLUSIONS AND LIMITATIONS

In this paper, we studied the effects of adding a temporal representation alignment
objective in behavior cloning, and we have discovered that by adding this metric, it
allows a robot policy to perform robust compositional generalization even when
the composition of such tasks are OOD.

Although TRA demonstrates strong performance, there are few limitations re-
main. First, due to restrictions placed by dataloaders, TRA cannot handle extremely
long sequence of language, even though the difficulty of subtasks contained within
the instructions still remain easy. It also needs to be shown that such method
will be helpful for executing long-horizon tasks with bimanual manipulators or
enable cross-embodiment generalization. An interesting future development for
this method would look into these directions and also create such compositional
generalization across multiple embodiments.

88

6 PLANNING WITH CONTRASTIVE
REPRESENTATIONS

Probabilistic modeling of time-series data has applications ranging from robotic
control [213] to material science [214], from cell biology [215] to astrophysics [216].
These applications are often concerned with two questions: predicting future states
(e.g., what will this cell look like in an hour), and inferring trajectories between two
given states. However, answering these questions often requires reasoning over
high-dimensional data, which can be challenging as most tools in the standard
probabilistic toolkit require generation. Might it be possible to use discriminative
methods (e.g., contrastive learning) to perform such inferences?

Many prior works aim to learn representations that are easy to predict while re-
taining salient bits of information. For time-series data, we want the representation
to remain a sufficient statistic for distributions related to time – for example, they
should retain bits required to predict future states (or representations thereof). While
generative methods [217–220] have this property, they tend to be computationally
expensive (see, e.g., [221]) and can be challenging to scale to high-dimensional
observations.

ψ

A Latent Space
• small dim
• easy planning

Observation Space
• large dim
• hard planning

Figure 6.1: We apply temporal contrastive learning to observation pairs to obtain representa-
tions (ψ(x0), ψ(xt+k)) such that Aψ(x0) is close to ψ(xt+k). While inferring waypoints in the high-
dimensional observation space is challenging, we show that the distribution over intermediate latent
representations has a closed form solution corresponding to linear interpolation between the initial
and final representations.

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 89

We will study how contrastive methods (which are discriminative, rather than
generative) can perform inference over times series. Ideally, we want representa-
tions of observations x to be a sufficient statistic for temporal relationships (e.g.,
does x′ occur after x?) but need not retain other information about x (e.g. the
location of static objects). This intuition motivates us to study how contrastive
representation learning methods [152, 128, 222–224] might be used to solve predic-
tion and planning problems on time series data. While prior works in computer
vision [159, 152] and natural language processing (NLP) [225] often study the ge-
ometry of learned representations, our results show how geometric operations such
as interpolation are related to inference. Our analysis will focus on a regularized
version of the symmetrized infoNCE objective [17], generating positive examples
by sampling pairs of observations from the same time series data. We will study
how representations learned in this way can facilitate two inference questions: pre-
diction and planning.1 As a stepping stone, we will build upon prior work [161] to
show that regularized contrastive learning should produce representations whose
marginal distribution is an isotropic Gaussian distribution.

The main contribution of this chapter is to demonstrate how intermediate and
future time steps in a time series can be inferred easily using contrastive representa-
tions. This inference problem captures a number of practical tasks: interpolation,
in-filling, and even planning and control, where the intermediate steps represent
states between a stand and goal. While ordinarily these problems require an itera-
tive inference or optimization procedure, with contrastive representations this can
be done simply by inverting a low-dimensional matrix. In one special case, infer-
ence will correspond to linear interpolation. Our first step is to prove that, under
certain assumptions, the distribution over future representations has a Gaussian
distribution, with a mean that is a linear function of the initial state representation
(Lemma 6.1). This paves the main to our main result (Theorem 6.2): given an initial
and final state, we show that the posterior distribution over an intermediate state represen-
tations also follows a Gaussian distribution. Said in other words, the representations
follow a Gauss-Markov chain,2 wherein any joint or conditional distribution can
be computed by inverting a low-dimensional matrix [230, 231] (See Fig. 6.1). In
one special case, inference will correspond to linearly interpolating between the
representations of an initial state and final state. Section 6.4 provides numerical
experiments.

1Following prior work [226, 227], we will use planning to refer to the problem of inferring
intermediate states, not to refer to an optimal control problem.

2This probabilistic model is equivalent to a discretized Ornstein-Uhlenbeck process [228] and is
also known as an AR(1) model [229, Eq. 3.1.16].

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 90

6.1 PRELIMINARIES

Our aim is to learn representations of time series data such that the spatial ar-
rangement of representations corresponds to the temporal arrangement of the
underlying data: if one example occurs shortly after another, then they should
be mapped to similar representations. This problem setting arises in many areas,
including video understanding and reinforcement learning. To define this prob-
lem formally, we will define a Markov process with states xt indexed by time t:3

p(x1:T | x0) = ∏T
t=0 p(xt+1 | xt). The dynamics p(xt+1 | xt) tell us the immediate

next state, and we can define the distribution over states t steps in the future by
marginalizing over the intermediate states, pt(xt | x0) =

∫
p(x1:t | x0)dx1:t−1. A

key quantity of interest will be the γ-discounted state occupancy measure, which
corresponds to a time-averaged distribution over future states:

pt+(xt+ = x) = (1− γ)
∞

∑
t=0

γt pt(xt = x). (6.1)

Contrastive learning. Our analysis will focus on applying contrastive learning to a
particular data distribution. Contrastive learning [156, 152, 232] acquires representa-
tions using “positive” pairs (x, x+) and “negative” pairs (x, x−). While contrastive
learning typically learns just one representation, we will use two different represen-
tation for the two elements of the pair; that is, our analysis will use terms like ϕ(x),
ψ(x+) and ψ(x−). We assume all representations lie in Rk.

The aim of contrastive learning is to learn representations such that positive pairs
have similar representations (ϕ(x) ≈ ψ(x+)) while negative pairs have dissimilar
representations (ϕ(x) ̸= ψ(x−)). Let p(x, x+) be the joint distribution over positive
pairs (i.e., (x, x+) ∼ p(x, x+)). We will use the product of the marginal distributions
to sample negative pairs ((x, x−) ∼ p(x)p(x)). Let B be the batch size, and note that
the positive samples x+j at index j in the batch serve as negatives for xi for any i ̸= j.
Our analysis is based on the infoNCE objective without resubstitution [128, 152]:

max
ϕ(·),ψ(·)

E{(xi,x+i)}B
i=1∼p(x,x+)

[
B

∑
i=1

log e−
1
2 ∥ϕ(xi)−ψ(x+i)∥22

∑j ̸=i e
− 1

2 ∥ϕ(xi)−ψ(x+j)∥22
+ log e−

1
2 ∥ϕ(xi)−ψ(x+i)∥22

∑j ̸=i e−
1
2 ∥ϕ(xj)−ψ(x+i)∥22

]
(6.2)

We will use the symmetrized version of this objective [17], where the denominator
is the sum across rows of a logits matrix and once where it is a sum across the.

While contrastive learning is typically applied to an example x and an augmen-
tation x+ ∼ p(x | x) of that same example (e.g., a random crop), we will follow
prior work [157, 152] in using the time series dynamics to generate the positive

3This can be extended to controlled Markov processes appending the previous action to the
observations.

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 91

pairs, so x+ will be an observation that occurs temporally after x. While our experi-
ments will sample positive examples from the discounted state occupancy measure
(x+ ∼ pt+(xt+ | x)) in line with prior work [121], our analysis will also apply to
different distributions (e.g., always sampling a state k steps ahead).

While prior work typically constrains the representations to have a constant
norm (i.e., to lie on the unit hypersphere) [152], we will instead constrain the expected
norm of the representations is bounded, a difference that will be important for our
analysis:

1
k Ep(x)

[
∥ψ(x)∥2

2
]
≤ c. (6.3)

Because the norm scales with the dimension of the representation, we have scaled
down the left side by the representation dimension, k. In practice, we will impose
this constraint by adding a regularization term λEp(x)

[
∥ψ(x)∥2

2
]

to the infoNCE
objective (Eq. 6.2) and dynamically tuning the weight λ via dual gradient descent.

Key assumptions
This section outlines the two key assumptions behind our analysis, both of which
have some theoretical justification. Our main assumption examines the distribution
over representations:

Assumption 6.1. Regularized, temporal contrastive learning acquires representations
whose marginal distribution representations p(ψ) ≜

∫
p(x)1(ψ(x) = ψ)dx is an

isotropic Gaussian distribution:

p(ψ) = N (ψ; µ = 0, σ = c · I). (6.4)

In Section 6.3 we extend prior work [161] provide some theoretical intuition
for why this assumption should hold: namely, that the isotropic Gaussian is the
distribution that maximizes entropy subject to an expected L2 norm constraint
(Eq. 6.3) [233–235]. Our analysis also assumes that the learned representations
converge to the theoretical minimizer of the infoNCE objective:

Assumption 6.2. Applying contrastive learning to the symmetrized infoNCE objective
results in representations that encode a probability ratio:

e−
1
2∥ϕ(x0)−ψ(x)∥2

2 =
pt+(xt+ = x | x0)

p(x)C
. (6.5)

This assumption holds under ideal conditions [52, 236] (see Section 6.3),4 but
we nonetheless call this an “assumption” because it may not hold in practice due to
sampling and function approximation error. This assumption means the learned

4While the result of Ma and Collins [52] has C(x) depending on x, the symmetrized version [17]
removes the dependence on x.

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 92

representations are sufficient statistics for predicting the probability (ratio) of future
states: these representations must retain all the information pertinent to reasoning
about temporal relationships, but need not retain information about the precise
contents of the observations. As such, they may be much more compressed than
representations learned via reconstruction.

Combined, these assumptions will allow us to express the distribution over
sequences of representations as a Gauss-Markov chain. The denominator in As-
sumption 6.2, p(x), may have a complex distribution, but Assumption 6.1 tells us
that the distribution over representations has a simpler form. This will allow us to
rearrange Assumption 6.2 to express the conditional distribution over representa-
tions as the product of two Gaussian likelihoods. Note that the left hand side of
Assumption 6.2 already looks like a Gaussian likelihood.

6.2 CONTRASTIVE REPRESENTATIONS MAKE INFERENCE EASY

In this section, our main result will be to show how representations learned by
(regularized) contrastive learning are distributed according to a Gauss-Markov
chain, making it straightforward to perform inference (e.g., planning, prediction)
over these representations. Our proof technique will combine (known) results about
Gaussian distributions with (known) results about contrastive learning. We start
by discussing an important choice of parametrization (Section 6.2) that facilitates
prediction (Section 6.2) before presenting the main result in Section 6.2.

A Parametrization for Shared Encoders

ψ(x0)

ϕ(x0) = Aψ(x0)

A

ψ(xt)

Figure 6.2: A parametrization
for temporal contrastive learn-
ing.

This section describes the two encoders (ψ(·), ϕ(·)) to
compute representations of x and x+. While prior work
in computer vision and NLP literature use the same en-
coder for both x and x+, this decision does not make
sense for many time-series data as it would imply that
our prediction for p(xt | x0) is the same as our prediction
for p(x0 | xt). However, the difficulty of transiting from
x0 to xt (e.g., climbing to the peak of a mountain) might
be more difficult than the reverse (e.g., sledding down
a mountain). Our proposed parametrization will handle
this asymmetry.

We will treat the encoder ψ(·) as encoding the con-
tents of the state. We will additionally learn a matrix A so
that the function ψ 7→ Aψ corresponds to a (multi-step)
prediction of the future representation. To map this onto contrastive learning, we
will use ϕ(x) ≜ Aψ(x) as the encoder for the initial state. One way of interpreting
this encoder is as an additional linear projection applied on top of ψ(·), a design
similar to those used in other areas of contrastive learning [142]. Once learned,

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 93

we can use these encoders to answer questions about prediction (Section 6.2) and
planning (Section 6.2).

Representations Encode a Predictive Model

ψ(x0)

Aψ(x0)

c
c+1Aψ(x0)

Figure 6.3: Predicting repre-
sentations of future states.

Given an initial state x0, what states are likely to occur in
the future? Answering this question directly in terms of
high-dimensional states is challenging, but our learned
representations provide a straightforward answer.

Let ψ0 = ψ(x0) and ψt+ = ψ(xt+) be random vari-
ables representing the representations of the initial state
and a future state. Our aim is to estimate the distribu-
tion over these future representations, p(ψt+ | ψ0). We
will show that the learned representations encode this
distribution.

Lemma 6.1. Under the assumptions from Section 6.1, the
distribution over representations of future states follows a
Gaussian distribution with mean parameter given by the ini-
tial state representation:

p(ψt+ = ψ | ψ0) = N
(

µ =
c

c + 1
Aψ0, Σ =

c
c + 1

I
)

. (6.6)

The main takeaway here is that the distribution over future representations has a
convenient, closed form solution. The representation norm constraint, c, determines
the shrinkage factor c

c+1 ∈ [0, 1); highly regularized settings (small c) move the
mean closer towards the origin and decrease the variance, as visualized in Fig. 6.3.
Regardless of the constraint c, the predicted mean is a linear function ψ 7→ c

c+1 Aψ.
The proof is in Section 6.3. The proof technique is similar to that of the law of the
unconscious statistician.

Planning over One Intermediate State
We now show how these representations can be used for a specific type of planning:
given an initial state x0 and a future state xt+, infer the representation of an inter-
mediate “waypoint” state xw. The next section will extend this analysis to inferring
the entire sequence of intermediate states. We assume x0 → xw → xt+ form a
Markov chain where xw ∼ p(xt+ | x0 = x0) and xt+ ∼ p(xt+ | x0 = xw) are both
drawn from the discounted state occupancy measure (Eq. 6.1). Let random variable
ψw = ψ(xw) be the representation of this intermediate state. Our main result is that
the posterior distribution over waypoint representations has a closed form solution
in terms of the initial state representation and future state representation:

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 94

Theorem 6.2. Under Assumptions 1 and 2, the posterior distribution over waypoint
representations is a Gaussian whose mean and covariance are linear functions of the initial
and final state representations:

p(ψw | ψ0, ψt+) = N
(

ψw; µ= Σ(ATψt+ + Aψ0), Σ−1 = c
c+1 AT A + c+1

c I
)

.

The proof (Section 6.3) uses the Markov property together with Lemma 6.1. The
main takeaway from this lemma is that the posterior distribution takes the form
of a simple probability distribution (a Gaussian) with parameters that are linear
functions of the initial and final representations.

We give three examples to build intuition:

Example 1: A = I and the c is very large (little regularization). Then, the covariance
is Σ−1 ≈ 2I and the mean is the simple average of the initial and final representa-
tions µ ≈ 1

2(ψ0 + ψt+). In other words, the waypoint representation is the midpoint
of the line ψ0 → ψt+.

Example 2: A is a rotation matrix and c is very large. Rotation matrices satisfy
AT = A−1 so the covariance is again Σ−1 ≈ 2I. As noted in Section 6.2, we can
interpret Aψ0 as a prediction of which representations will occur after ψ0. Similarly,
A−1ψt+ = ATψt+ is a prediction of which representations will occur before ψt+.
Theorem 6.2 tells us that the mean of the waypoint distribution is the simple average
of these two predictions, µ ≈ 1

2(ATψt+ + Aψ0).

Example 3: A is a rotation matrix and c = 0.01 (very strong regularization). In this
case Σ−1 = 0.01

0.01+1 AT A + 0.01+1
0.01 I ≈ 100I, so µ ≈ 1

100(ψ0 + ψt+) ≈ 0. Thus, in the
case of strong regularization, the posterior concentrates around the origin.

Planning over Many Intermediate States
This section extends the analysis to multiple intermediate states. Again, we will
infer the posterior distribution of the representations of these intermediate states,
ψw1 , ψw2 , · · · . We assume that these states form a Markov chain.

Theorem 6.3. Given observations from a Markov chain x0 → x1 · · · xt+, the joint distri-
bution over representations is a Gaussian distribution. Using ψ1:n =

(
ψw1 , · · · , ψwn

)
to

denote the concatenated representations of each observation, we can write this distribution
as

p(ψ1:n) ∝ exp
(
−1

2 ψT
1:nΣ−1ψ1:n + ηTψ1:n

)
,

where Σ−1 is a tridiagonal matrix

Σ−1 =

(c
c+1 AT A+ c+1

c I −AT

−A c
c+1 AT A+ c+1

c I −AT . . .

)
and η =

 Aψ0
0...

ATψt+

 .

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 95

This distribution can be written in the canonical parametrization as Σ = Λ−1

and µ = Ση. Recall that Gaussian distributions are closed under marginalization.
Thus, once in this canonical parametrization, the marginal distributions can be
obtained by reading off individual entries of these parameters:

p(ψi | ψ0, ψt+) = N
(

ψi; µi = (Ση)(i), Σi = (Λ−1)(i,i)
)

.

The key takeaway here is that this posterior distribution over waypoints is Gaussian,
and it has a closed form expression in terms of the initial and final representations
(as well as regularization parameter c and the learned matrix A).

In the general case of n intermediate states, the posterior distribution is

p(ψw1 · · ·ψwn | ψ0, ψt+) ∝ e−
1+ 1

c
2 ∑n

i=1 ∥ c
c+1 Aψwi−ψwi+1∥2

2 ,

where ψw0 = ψ0 and ψwn+1 = ψt+. This corresponds to a chain graphical model

with edge potentials f (ψ, ψ′) = e−
1+ 1

c
2 ∥ c

c+1 Aψ−ψ′∥2
2 .

Special case. To build intuition, consider the special case where A is a rotation
matrix and c is very large, so c

c+1 AT A + c+1
c ≈ 2I. In this case, Σ−1 is a (block)

second difference matrix [237]:

Σ−1 =

(
2I −I
−I 2I −I . . .

)
.

The inverse of this matrix has a closed form solution [238, Pg. 471], allowing us to
obtain the mean of each waypoint in closed form:

µi = (1− λ(i))Aψ0 + λ(i)ATψt+, (6.7)

where λ(i) = i
n+1 . Thus, each posterior mean is a convex combination of the

(forward prediction from the) initial representation and the (backwards prediction
from the) final representation. When A is the identity matrix, the posterior mean is
simple linear interpolation between the initial and final representations!

6.3 PROOFS

Marginal Distribution over Representations is Gaussian
The infoNCE objective (Eq. (6.2)) can be decomposed into an alignment term and a
uniformity term [161], where the uniformity term can be simplified as follows:

Ex∼p(x)

[
log Ex−∼p(x)

[
e−

1
2∥Aψ(x−)−ψ(x)∥2

2

]]

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 96

Figure 6.4: Numerical simulation of our analysis. (Top Left) Toy dataset of time-series data consisting
of many outwardly-spiraling trajectories. We apply temporal contrastive learning to these data.
(Top Right) For three initial observations (■), we use the learned representations to predict the
distribution over future observations. Note that these distributions correctly capture the spiral
structure. (Bottom Left) For three observations (⋆), we use the learned representations to predict the
distribution over preceding observations. (Bottom Right) Given an initial and final observation, we
plot the inferred posterior distribution over the waypoint (Section 6.2). The representations capture
the shape of the distribution.

=
1
N

N

∑
i=1

log
(

1
N − 1 ∑

j=1···N,j ̸=i
e−

1
2∥Aψ(xi)−ψ(xj)∥2

2

)

=
1
N

N

∑
i=1

log
(

1
N − 1 ∑

j=1···N,j ̸=i

1
(2π)k/2 e−

1
2∥Aψ(xi)−ψ(xj)∥2

2︸ ︷︷ ︸
N (µ=ψ(xj);Σ=I)

)
+

k
2

log(2π)

=
1
N

N

∑
i=1

log p̂GMM(ψ(xi)) +
k
2

log(2π)

= −Ĥ[ψ(x)] +
k
2

log(2π).

The derivation above extends that in Wang and Isola [161] by considering a Gaussian
distribution rather than a von Mises Fisher distribution. We are implicitly making
the assumption that the marginal distributions satisfy p(x) = p(x−). This difference
corresponds to our choice of using a negative squared L2 distance in the infoNCE
loss rather than an inner product, a difference that will be important later in our
analysis. A second difference is that we do not use the resubstitution estimator
(i.e., we exclude data point xi from our estimate of p̂GMM when evaluating the
likelihood of xi), which we found hurt performance empirically. The takeaway from
this identity is that maximizing the uniformity term corresponds to maximizing (an
estimate of) the entropy of the representations.

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 97

We next prove that the maximum entropy distribution with an expected L2 norm
constraint is a Gaussian distribution. Variants of this result are well known [233–
235], but we include a full proof here for transparency.

Lemma 6.4. The maximum entropy distribution satisfying the expected L2 norm constraint
in Eq. (6.3) is a multivariate Gaussian distribution with mean µ = 0 and covariance
Σ = c · I
Proof. We start by defining the corresponding Lagrangian, with the second con-
straint saying that p(x) must be a valid probability distribution.

L(p) = Hp[x] + λ1

(
Ep(x)

[
∥x∥2

2

]
− c · k

)
+ λ2

(∫
p(x)dx− 1

)
We next take the derivative w.r.t. p(x):

∂L
∂p(x)

= −p(x)/p(x)− log p(x) + λ1∥x∥2
2 + λ2

Setting this derivative equal to 0 and solving for p(x), we get

p(x) = e−1+λ2+λ1∥x∥2
2 .

We next solve for λ1 and λ2 to satisfy the constraints in the Lagrangian. Note that
x ∼ N (µ = 0, Σ = c · I) has an expected norm E[∥x∥2

2] = c · k, so we must have
λ1 = − 1

2c . We determine λ1 as the normalizing constant for a Gaussian, finally
giving us:

p(x) =
1

(2cπ)k/2 e
−1
2c ∥x∥2

2

corresponding to an isotropic Gaussian distribution with mean µ = 0 and covari-
ance Σ = c · I.

Proof of Lemma 6.1
Below we present the proof of Lemma 6.1

Proof. Our proof technique will be similar to that of the law of the unconscious
statistician:

p(ψt+ | ψ0)
(a)
= p(ψt+,ψ0)

���p(ψ0)
∝
∫∫

p(ψt+, xt+, ψ0, x0)dxt+ dx0

(b)
=
∫∫

p(ψt+ | xt+)p(ψ0 | x0)p(xt+ | x0)p(x0)dxt+ dx0

(c)
∝
∫∫

1(ψ(xt+) = ψt+)1(ψ(x0) = ψ0)p(xt+)e−
1
2∥Aψ(x0)−ψ(xt+)∥2

2 p(x0)dxt+ dx0

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 98

(d)
= e−

1
2∥Aψ0−ψt+∥2

2
∫∫

1(ψ(xt+) = ψt+)1(ψ(x0) = ψ0)p(xt+)p(x0)dxt+ dx0

(e)
= e−

1
2∥Aψ0−ψt+∥2

2 (
∫

p(xt+)1(ψ(xt+))dxt+)︸ ︷︷ ︸
p(ψt+)

(
∫

p(x0)1(ψ(x0)dx0)︸ ︷︷ ︸
p(ψ0)

(f)
∝ e−

1
2∥Aψ0−ψt+∥2

2e−
1
2c∥ψt+∥2

2e−
1
2c∥ψ0∥2

2

(g)
∝ e
− 1+ 1

c
2

∥∥ 1
1+ 1

c
Aψ0−ψt+

∥∥2

2

∝ N
(
ψt+; µ = c

c+1 Aψ0, Σ = c
c+1 I

)
.

In (a) we applied Bayes’ Rule and removed the denominator, which is a con-
stant w.r.t. ψt+. In (b) we factored the joint distribution, noting that ψt+ and ψ0
are deterministic functions of xt+ and x0 respectively, so they are conditionally
independent from the other random variables. In (c) we used Assumption 6.2 after
solving for p(xt+ | x0) = p(xt+)e−

1
2∥Aψ(x0)−ψ(x)∥2

2 . In (d) we noted that when the
integrand is nonzero, it takes on a constant value of e−

1
2∥Aψ0−ψt+∥2

2 , so we can move
that constant outside the integral. In (e) we used the definition of the marginal
representation distribution (Eq. 6.6). In (f) we used Assumption 6.1 to write the
marginal distributions p(ψt+) and p(ψ0) as Gaussian distributions. We removed
the normalizing constants, which are independent of ψt+. In (g) we completed the
square and then recognized the expression as the density of a multivariate Gaussian
distribution.

Proof of Theorem 6.2: Waypoint Distribution
Proof.

p(ψw | ψ0, ψt+)
(a)
=

p(ψt+ | ψw)p(ψw | ψ0)

�������
p(ψt+ | ψ0)

(b)
∝ e−

1+ 1
c

2 ∥ c
c+1 Aψw−ψt+∥2

2e−
1+ 1

c
2 ∥ c

c+1 Aψ0−ψw∥2
2

(c)
∝ e−

1
2 (ψw−µ)TΣ−1(ψw−µ) = N (ψw; µ, Σ)

where Σ−1 = c
c+1 AT A + c+1

c I and µ = Σ(ATψt+ + Aψ0).

In line (a) we used the definition of the conditional distribution and then simpli-
fied the numerator using the Markov property. Line (b) uses the Lemma 6.1. Line
(c) completes the square, the details of which are below:

1
2
· c + 1

c

(∥∥∥ c
c + 1

Aψw − ψt+

∥∥∥2

2
+
∥∥∥ c

c + 1
Aψ0 − ψw

∥∥∥2

2

)

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 99

=
1
2
· c + 1

c

(
ψT

w

(c
c + 1

A
)T(c

c + 1
A
)

ψw − 2ψT
t+

(c
c + 1

A
)

ψw +�����
ψT

t+ψt+.

+
(((((((((((((((

ψT
0

(c
c + 1

A
)T(c

c + 1
A
)

ψ0 − 2ψT
0

(c
c + 1

A
)T

ψw + ψT
wψw

)
const.
=

1
2

c + 1
c

(
ψT

w

((c
c + 1

)2
AT A + I

)
ψw − 2

c
c + 1

(
ATψt+ + Aψ0

)T
ψw

)

=
1
2

ψT
w

(
c

c + 1
AT A +

c + 1
c

I︸ ︷︷ ︸
Σ−1

)
ψw −

(
ATψt+ + Aψ0

)T
ψw

const.
= (ψw − µ)TΣ−1(ψw − µ),

where Σ−1 = c
c+1 AT A + c+1

c I and µ = Σ(ATψt+ + Aψ0). Above, we have used
const.
= to denote equality up to an additive constant that is independent of ψw.

Proof of Theorem 6.3: Planning over Many Intermediate States
Proof. We start by recalling that the waypoints form a Markov chain, so we can
express their joint density as a product of conditional densities:

p(ψ1:n) = p(ψ0)p(ψ1 | ψ0)p(ψ2 | ψ1) · · · p(ψn | ψn−1).

The aim of this lemma is to express the joint distribution over multiple waypoints,
given an initial and final state representation:

p(ψ1:n | ψ0, ψt+)
(a)
=

p(ψ1:n | ψ0)p(ψt+ | ψn)

�������
p(ψt+ | ψ0)

(b)
∝ p(ψ1 | ψ0)p(ψ2 | ψ1) · · · p(ψt+ | ψn)

(c)
∝ exp

(
−1

2
c+1

c ∥ c
c+1 Aψ0 − ψ1∥2

2 − 1
2

c+1
c ∥ c

c+1 Aψ1

− ψ2∥2
2 − · · · − 1

2
c+1

c ∥ c
c+1 Aψn − ψt+∥2

2

)
(d)
= exp

(
−

���������
1
2

c
c+1 ψT

0 AT Aψ0 + ψT
0 ATψ1 − 1

2
c+1

c ψT
1 ψ1

− 1
2

c
c+1 ψT

1 AT Aψ1 + ψT
1 ATψ2 − 1

2
c+1

c ψT
2 ψ2

− 1
2

c
c+1 ψT

2 AT Aψ2 + ψT
2 ATψ3 − 1

2
c+1

c ψT
3 ψ3

...

− 1
2

c
c+1 ψT

n AT Aψn + ψT
n ATψt+ −�������1

2
c+1

c ψT
t+ψt+

)

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 100

= exp
(
−1

2 ψT
1:nΣ−1ψ1:n + ηTψ1:n

)
,

where Σ−1 is a tridiagonal matrix

Σ−1 =

c

c+1 AT A+ c+1
c I −AT

−A c
c+1 AT A+(c+1

c I) −AT

−A c
c+1 AT A+ c+1

c I
. . .

 and η =

Aψ0

0
...
0

ATψt+

.

In (a) we applied Bayes’ rule and removed the denominator because it is a constant
with respect to ψ1:n. In (b) we applied the Markov assumption. In (c) we used
Lemma 6.1 to express the conditional probabilities as Gaussians, ignoring the
proportionality constants (which are independent of ψ. In (d) we simplified the
exponents, removing terms that do not depend on ψ1:n

Formalizing Assumption 6.2
Assumption 6.2 states

e−
1
2∥ϕ(x0)−ψ(x)∥2

2 =
p(x | x0)

p(x+)C
(6.5)

when Eq. (6.2) is optimized.
We can justify this assumption by analyzing the general solution to the sym-

metrized version of the Oord et al. [152] infoNCE objective, which we do in
Lemma 6.5. Applying this lemma to our representation learning objective (6.2)
for sufficiently large batch size B then yields Eq. (6.5), with the function approxima-
tor ∥ϕ(x)− ψ(x+)∥2 ≈ f (x, x+).

Lemma 6.5. The solution to the optimization problem

max
f (x,x+)

lim
B→∞

E{(xi,x+i)}B
i=1∼p(x,x+)

[
1
B

B

∑
i=1

log e f (xi ,x
+
i)

∑j ̸=i e
f (xi ,x

+
j)

+ log e f (xi ,x
+
i)

∑j ̸=i e f (xj ,x
+
i)

]
(6.8)

satisfies

f (x, x+) = log
(

p(x+ | x)
p(x+)C

)
(6.9)

for some C.

Proof of Lemma 6.5. We first break down the LHS and RHS of Eq. (6.2):

max
f

lim
B→∞

E{(xi,x+i)}B
i=1∼p(x,x+)

[
1
B

B

∑
i=1

log e f (xi ,x
+
i)

∑j ̸=i e
f (xi ,x

+
j)︸ ︷︷ ︸

J1

+ log e f (xi ,x
+
i)

∑j ̸=i e f (xj ,x
+
i)︸ ︷︷ ︸

J2

]

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 101

J1(f) = lim
B→∞

E{(xi,x+i)}B
i=1∼p(x,x+)

[
1
B

B

∑
i=1

log e f (xi ,x
+
i)

∑j ̸=i e
f (xi ,x

+
j)

]

J2(f) = lim
B→∞

E{(xi,x+i)}B
i=1∼p(x,x+)

[
1
B

B

∑
i=1

log e f (xi ,x
+
i)

∑j ̸=i e f (xj ,x
+
i)

]
We now use the following result from Ma and Collins [52]:

Lemma 6.6. The optimal solutions f1 and f2 for J1 and J2 satisfy

f1(x, x+) = log p(x | x+)− log c1(x) (6.10)

f2(x, x+) = log p(x+ | x)− log c2(x+) (6.11)

for arbitrary c1(x), c2(x+).

For any C, when c1(x) = Cp(x) and c2(x+) = Cp(x+),

f1(x, x+) = log
(

p(x | x+)
p(x)C

)
= log

(
p(x+ | x)
p(x+)C

)
= f2(x, x+). (6.12)

It follows that Eq. (6.12) maximizes both J1 and J2, and is precisely the optimal
solution Eq. (6.9) for Eq. (6.8).

What does C represent? From Eq. (6.9), we can connect C to the mutual information
I(x, x+):

C =
E(x,x+)∼p(x,x+)

[
f (x, x+)

]
I(x, x+)

. (6.13)

Proof of Lemma 6.6. We can first consider J1 without loss of generality. Denoting
g(x, x+) = e f (x,x+), we take the functional derivative:

δJ1(log g) = lim
B→∞

δE{(xi,x+i)}B
i=1∼p(x,x+)

[
1
B

B

∑
i=1

log
g(xi, x+i)

∑j ̸=i g(xi, x+j)

]

= lim
B→∞

E{(xi,x+i)}B
i=1∼p(x,x+)

[
1
B

B

∑
i=1

(∑j ̸=i g(xi,x+j))δg(xi,x+i)−g(xi,x+i)δ(∑j ̸=i g(xi,x+j))

g(xi,x+i)(∑j ̸=i g(xi,x+j))

]
= lim

B→∞
E{(xi,x+i)}B

i=1∼p(x,x+)

[
1
B

B

∑
i=1

δg(xi,x+i)

g(xi,x+i)
− δ(∑j ̸=i g(xi,x+j))

∑j ̸=i g(xi,x+j)

]
= lim

B→∞
E{(xi,x+i)}B

i=1∼p(xi,x+)

[
1
B

B

∑
i=1

∫ ((δg(xi,x+)
g(xi,x+)

)
p(x+ | xi)

−∑
k ̸=i

(δg(xi,x+)
g(xi,x+)−g(xi,x+k)+∑j ̸=i g(xi,x+j)

)
p(x+)

)
dx+

]

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 102

= lim
B→∞

E{(xi,x+i)}B
i=1∼p(x,x+)

[
1
B

B

∑
i=1

∫
δg(xi, x+)

(
p(x+|xi)
g(xi,x+)

−E{(xi,x+i)}B
i=1

[
1

∑j ̸=i g(xi,x+j)

]
︸ ︷︷ ︸

as B→ ∞

p(x+)
)

dx+
]

= lim
B→∞

E{(xi,x+i)}B
i=1∼p(x,x+)

[
1
B

B

∑
i=1

∫
δg(xi, x+)

(
p(x+|xi)
g(xi,x+)

−E{(xi,x+i)}B
i=1

[
1

∑j ̸=i g(xi,x+j)

]
︸ ︷︷ ︸

≜k(xi) indep. of x+

p(x+)
)

dx+
]

= lim
B→∞

E{(xi,x+i)}B
i=1∼p(x,x+)

[
1
B

B

∑
i=1

∫
δg(xi, x+)

(
p(x+|xi)
g(xi,x+)

− k(xi)p(x+)
)

dx+
]

=
∫

δg(x, x+)
(p(x+|x)

g(x,x+) − k(x)p(x+)
)

dx+.

This is zero when

g(x, x+) =
p(x | x+)
k(x)p(x)

,

i.e.,
f (x, x+) = log p(x | x+)− log c1(x)︸ ︷︷ ︸

k(x)p(x)

.

as in Eq. (6.10), and Eq. (6.11) follows similarly, exchanging x and x+.

6.4 NUMERICAL SIMULATION

We include several didactic experiments to illustrate our results. All results and fig-
ures can be reproduced by running make in the source code: https://github.com/
vivekmyers/contrastive_planning. The expected compute time is a few hours
on a A6000 GPU. Figures in this section show error across different training and
dataset split seeds.

Synthetic Dataset
To validate our analysis, we design a time series task with 2D points where inference
over intermediate points (i.e., in-filling) requires nonlinear interpolation. Fig. 6.4
(Top Left) shows the dataset of time series data, starting at the origin and spiraling
outwards, with each trajectory using a randomly-chosen initial angle. We applied
contrastive learning with the parametrization in Section 6.2 to these data and used
the learned representations to solve prediction and planning problems (see Fig. 6.4
for details). Note that these predictions correctly handle the nonlinear structure of

https://github.com/vivekmyers/contrastive_planning
https://github.com/vivekmyers/contrastive_planning

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 103

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Initial ℓ2 Distance to Goal

Su
cc

es
s

R
at

e

Maze Planning Success Rates

contrastive (ours) VIP PCA autoencoder no planning

Figure 6.5: Using inferred paths over our contrastive representations for control boosts success rates
by 4.5× on the most difficult goals (18%→ 84%). Alternative representation learning techniques fail
to improve performance when used for planning.

these data – states nearby the initial state in Euclidean space that are not temporally
adjacent are assigned low likelihood.

Solving Mazes with Inferred Representations
Our next experiment studies whether the inferred representations are useful for
solving a control task. We took a 2d maze environment and dataset from prior work
(Fig. 6.5, Left) [2] and learned encoders from this dataset. To solve the maze, we take
the observation of the starting state and goal state, compute the representations of
these states, and use the analysis in Section 6.2 to infer the sequence of intermediate
representations. We visualize the results using a nearest neighbor retrieval (Fig. 6.5,
Left). Appendix Fig. 6.7 contains additional examples.

Finally, we studied whether these representations are useful for control. We
implemented a simple proportional controller for this maze. As expected, this
proportional controller can successfully navigate to close goals, but fails to reach
distant goals (Fig. 6.5, Right). However, if we use the proportional controller to
track a series of waypoints planned using our representations (i.e., the orange
dots shown in Fig. 6.5 (Left)), the success rate increases by up to 4.5×. To test the
importance of nonlinear representations, we compare with a “PCA” baseline that
predicts waypoints by interpolating between the principal components of the initial
state and goal state. The better performance of our method indicates the importance
of doing the interpolation using representations that are nonlinear functions of the
input observations. While prior methods learn representations to encode temporal
distances, it is unclear whether these methods support inference via interpolation.

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 104

0 2 4 6 8
Waypoint MSE

contrastive planning (ours)

VIP planning

PCA planning

AE planning

no planning

MSE of waypoint prediction for door opening

x0

xT
contrastive planning (ours)

x0

xT
PCA planning

x0

xT
VIP planning

Figure 6.6: Planning for 39-dimensional robotic door opening. (Top Left) We use a dataset of
trajectories demonstrating door opening from prior work [2] to learn representations. (Top Right)
We use our method and three baselines to infer one intermediate waypoint between the first and
last observation in a trajectory from a held-out validation set. Errors are measured using the
mean squared error with the true waypoint observation; predicted representations are converted to
observations using nearest neighbors on a validation set. (Bottom) We visualize a TSNE [3] of the
states along the sampled trajectory as blue circles, with the transparency indicating the index along
the trajectory. The inferred plan is shown as red circles connected by arrows. Our method generates
better plans than alternative representation learning methods (PCA, VIP).

To test this hypothesis, we use one of these methods (“VIP” [119]) as a baseline.
While the VIP representations likely encode similar bits as our representations,
the better performance of the contrastive representations indicates that the VIP
representations do not expose those bits in a way that makes planning easy.

Higher dimensional tasks
In this section we provide preliminary experiments showing the planning approach
in Section 6.2 scales to higher dimensional tasks. We used two datasets from prior
work [2]: door-human-v0 (39-dimensional observations) and hammer-human-v0 (46-
dimensional observations). After learning encoders on these tasks, we evaluated
the inference capabilities of the learned representations. Given the first and last
observation from a trajectory in a validation set, we use linear interpolation (see
Eq. 6.7) to infer the representation of five intermediate waypoint representations.

We evaluate performance in two ways. Quantitatively, we measure the mean
squared error between each of the true waypoint observations and those inferred by
our method. Since our method infers representations, rather than observations, we

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 105

Figure 6.7: Our approach enables a goal-conditioned policy to reach farther targets
(red) from the start (green) by planning over intermediate waypoints (orange).

use a nearest-neighbor retrieval on a validation set so that we can measure errors
in the space of observations. Qualitatively, we visualize the high-dimensional
observations from the validation trajectory using a 2-dimensional TSNE [3] embed-
ding, overlying the infer waypoints from our method; as before, we convert the
representations inferred by our method to observations using nearest neighbors.

We compare with three alternative methods in Fig. 6.6. To test the importance of
representation learning, we first naïvely interpolate between the initial and final
observations (“no planning”). The poor performance of this baseline indicates that
the input time series are highly nonlinear. Similarly, interpolating the principle
components of the initial and final observations (“PCA”) performs poorly, again
highlighting that the input time series is highly nonlinear and that our representa-
tions are doing more than denoising (i.e., discarding directions of small variation).
The third baseline, “VIP” [119], learns representations to encode temporal distances
using approximate dynamic programming. Like our method, VIP avoids reconstruc-
tion and learns nonlinear representations of the observations. However, the results
in Fig. 6.6 highlight that VIP’s representations do not allow users to plan by interpo-
lation. The error bars shown in Fig. 6.6 (Top Right) show the standard deviation over
500 trajectories sampled from the validation set. For reproducibility, we repeated
this entire experiment on another task, the 46-dimensional hammer-human-v0 from
D4RL. The results, shown in Appendix Fig. 6.8, support the conclusions above.
Taken together, these results show that our procedure for interpolating contrastive
representations continues to be effective on tasks where observations have dozens
of dimensions.

6.5 ADDITIONAL EXPERIMENTS

Fig. 6.7 visualizes the inferred waypoints from the task in Fig. 6.5.
Fig. 6.8 visualizes the representations learned on a 46-dimensional robotic ham-

mering task (see Section 6.4).

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 106

(a) Contrastive representations
(b) PCA representa-
tions

Figure 6.8: Planning for 46-dimensional robotic hammering. (Left) A dataset of
trajectories demonstrating a hammer knocking a nail into a board [2]. (Center) We vi-
sualize the learned representations as blue circles, with the transparency indicating
the index of that observation along the trajectory. We also visualize the inferred plan
(Section 6.2) as red circles connected by arrows. (Right) Representations learned by
PCA on the same trajectory as (a, left).

Stock Prediction
We show results on a stock opening price task in Fig. 6.9.

6.6 RELATED WORK

Representations for time-series data. In applications ranging from robotics to
vision to NLP, users often want to learn representations of observations from time
series data such that the spatial arrangement of representations reflects the temporal
arrangement of the observations [152, 225, 158, 168]. Ideally, these representations
should retain information required to predict future observations and infer likely
paths between pairs of observations. Many approaches use an autoencoder, learning
representations that retain the bits necessary to reconstruct the input observation,
while also regularizing the representations to compressed or predictable [202, 239–
241, 218, 242]. A prototypical method is the sequential VAE [217], which is compu-
tationally expensive to train because of the reconstruction loss, but is easy to use for
inference. Our work shares the aims of prior prior methods that attempt to linearize
the dynamics of nonlinear systems [243–248], including videos [249, 250]. Our
work aims to retain uncertainty estimates over predictions (like the sequential VAE)
without requiring reconstruction. Avoiding reconstruction is appealing practically
because it decreases the computational requirements and number of hyperparam-
eters; and theoretically because it means that representations only need to retain
bits about temporal relationships and not about the bits required to reconstruct the
original observation.

Contrastive Learning. Contrastive learning methods circumvent reconstruction by
learning representations that merely classify if two events were sampled from the

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 107

0 500 1000

40

60

pr
ice

 (U
SD

)

A

0 500 1000

20

40

60
AAL

0 500 1000

80

100

120

140

160

180

200
AAP

0 500 1000

60

80

100

120

140

160

180
AAPL

0 500 1000

40

60

80

100

120

pr
ice

 (U
SD

)

ABBV

0 500 1000

60

80

100

120
ABC

0 500 1000

40

60

ABT

0 500 1000

80

100

120

140

160
ACN

0 500 1000
days

40
60
80

100
120
140
160
180
200

pr
ice

 (U
SD

)

ADBE

0 500 1000
days

40

60

80

100
ADI

0 500 1000
days

40

ADM

0 500 1000
days

60

80

100

120

ADP

Figure 6.9: Stock Prediction. We apply temporal contrastive learning to time series
data of the stock market. Data are the opening prices for the 500 stocks in the S&P
500, over a four year window. We remove 30 stocks that are missing data. For
evaluation, we choose a 100 day window from a validation set, and use Theorem 6.2
to perform “inpainting”, predicting the intermediate stock prices jointly for all stocks
(orange), given the first and last stock price. The true stock prices are shown in blue.
While we do not claim that this is a state-of-the-art model for stock prediction, this
experiment demonstrates another potential application of our theoretical results.

same joint distribution [156, 142, 17]. When applied to representing states along tra-
jectories, contrastive representations learn to classify whether two points lie on the
same trajectory or not [152, 157, 121, 158, 251]. Empirically, prior work in computer
vision and NLP has observed that contrastive learning acquires representations
where interpolation between representations corresponds to changing the images
in semantically meaningful ways [252–256, 225].

Our analysis will be structurally similar to prior theoretical analysis on explain-
ing why word embeddings can solve analogies [257–259]. Our work will make a
Gaussianity assumption similar to Arora et al. [258] and our Markov assumption
is similar to the random walks analyzed in Arora et al. [258], Hashimoto et al.
[260]. We build upon and extends these results to answer questions such as: “what
is the distribution over future observations representations?” and “what is the

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 108

distribution over state (representations) that would occur on the path between
one observation and another?” While prior work is primarily aimed at explaining
the good performance of contrastive word embeddings (see, e.g., [258]), we are
primarily interested in showing how similar contrastive methods are an effective
tool for inference over high-dimensional time series data. Our analysis will show
how representations learned via temporal contrastive learning (i.e., without recon-
struction) are sufficient statistics for inferring future outcomes and can be used for
performing inference on a graphical model (a problem typically associated with
generative methods).

Goal-oriented decision making. Much work on time series representations is done
in service of learning goal-reaching behavior, an old problem [261, 164] that has
received renewed attention in recent years [141, 171, 262, 167, 263–265, 151]. Some
of the excitement in goal-conditioned RL is a reflection of the recent success of self-
supervised methods in computer vision [266] and NLP [94]. Our analysis will study
a variant of contrastive representation learning proposed in prior work for goal-
conditioned RL [121, 157]. These methods are widespread, appearing as learning
objectives for learning value functions [168, 121, 267, 268, 119, 46, 16, 127, 126], as
auxiliary objectives [125, 269, 16, 270, 271, 205, 272], in objectives for model-based
RL [243, 273–275], and in exploration methods [276, 277]. Our analysis will highlight
connections between these prior methods, the classic successor representation [124,
207], and probabilistic inference.

Planning. Planning lies at the core of many RL and control methods, allowing
methods to infer the sequence of states and actions that would occur if the agent
navigated from one state to a goal state. While common methods such as PRM [278]
and RRT [279] focus on building random graphs, there is a strong community
focusing on planning methods based on probabilistic inference [227, 280, 281].
The key challenge is scaling to high-dimensional settings. While semi-parametric
methods make progress on this problem this limitation through semi-parametric
planning [170, 282, 200], it remains unclear how to scale any of these methods to
high-dimensional settings when states do not lie on a low-dimensional manifold.
Our analysis will show how contrastive representations may lift this limitation,
with experiments validating this theory on 39-dimensional and 46-dimensional
tasks.

6.7 DISCUSSION

Representation learning is at the core of many high-dimensional time-series mod-
eling questions, yet how those representations are learned is often disconnected
with the inferential task. The precise objective and parametrization we studied is
not much different from that used in practice, suggesting that either our theoretical
results might be adapted to the existing methods, or that practitioners might adopt

6 PLANNING WITH CONTRASTIVE REPRESENTATIONS 109

these details so they can use the closed-form solutions to inference questions. Our
work may also have implications for studying the structure of learned representa-
tions. While prior work often studies the geometry of representations as a post-hoc
check, our analysis provides tools for studying when interpolation properties are
guaranteed to emerge, as well as how to learn representations with certain desired
geometric properties.

110

7 INVARIANCE TO PLANNING

d(s, s′ ′ ′) < 4c

d(s, s′ ′) < 2c

d(s, s′) < c

 optimal for all
 given:

π
(s, s′)

…

s s′ s′ ′ s′ ′ ′

 }c

Figure 7.1: Horizon generalization. A
policy generalizes over the horizon if op-
timality over all start-goal pairs (s, s′) a
small temporal distance d(s, s′) < c apart
(say, in the training set) leads to optimal-
ity over all possible start-goal pairs.

Reinforcement learning (RL) remains al-
luring for its capacity to use data to
determine optimal solutions to long-
horizon reasoning problems. However,
it is precisely this horizon that makes
solving the RL problem difficult — the
number of possible solutions to a con-
trol problem often grows exponentially
in the horizon [283]. Indeed, the require-
ment of collecting long horizon data pre-
cludes several potential applications of
RL (e.g., health care, robotic manipula-
tion). As a result, RL systems tend to
only solve short horizon tasks, or long
horizon tasks characterized by repeti-
tive motion.

The classical solution to the “curse
of horizon” is dynamic programming [284, 285] (i.e., temporal difference learn-
ing [286]): stitching together data to find new solutions. However, TD methods can
be complex to implement and challenging to stabilize in high-dimensional settings.
There is also a more subtle challenge with these methods: adopting TD methods
typically means forgoing mental models associated with “standard” ML problems,
such as generalization and invariance. We will discuss how these tools provide new
ways of thinking about long-horizon problems.

While there is prior work studying generalization in RL, it almost exclusively
focuses on either (i) perceptual changes (e.g., changes in lighting conditions) or (ii)
simple randomizations of simulator parameters. we will discuss a different sort of
generalization: generalization with respect to horizon. We will study this notion
of horizon generalization within the setting of goal-conditioned RL: after training
the RL agent on nearby goals, can the agent succeed at reaching more distant
goals (see Fig. 7.1). While these goals may have been seen in different contexts
before (e.g., reaching this goal from a different state), they have never been used in

7 INVARIANCE TO PLANNING 111

learning long-horizon tasks. Horizon generalization is a type of extrapolation [287];
however, while extrapolation is sometimes seen as alchemy, in some settings horizon
generalization is guaranteed (proof: Dijkstra’s algorithm does this).

Our key mathematical tool for understanding horizon generalization is a notion
of planning invariance (Fig. 7.2): that a RL agent selects similar actions when headed
towards a goal, as when headed towards a subgoal (i.e., a waypoint) along the
route to that goal. In the same way that (say) an image classification model that
is invariant to image brightness will generalize to images of varying brightness,
we will show how RL agents that are invariant to planning will generalize to goal-
reaching tasks of varying horizons. When a policy is invariant to planning, tasks of
length n and length 2n will be mapped to similar internal representations, as will
tasks of length 4n, and 8n, and so on (see Fig. 7.3). This reasoning also explains
how a policy exhibiting horizon generalization must solve problems: by recursion,
mapping a task of length n to an (isomorphic) task of length n/2 to a task of length
n/4 and so on until the task is simple and similar to one seen during training.

7.1 PRELIMINARIES

We consider a controlled Markov processM with state space S , action space A,
and dynamics p(s′ | s, a). The agent interacts with the environment by selecting
actions according to a policy π(a | s), i.e., a mapping from S to distributions over
A. We further assume the state and action spaces are compact.

We equipM with an additional notion of distances between states. At the most
basic level, a distance S × S → R must be positive everywhere except for a zero
diagonal (positive definiteness). We will denote the set of all distances as D:

D ≜ {d : S × S → R : d(s, s) = 0, d(s, s′) > 0 for each s, s′ ∈ S where s ̸= s′}.
(7.1)

A desirable property for distances to satisfy is the triangle inequality. A distance
satisfying this property is known as a quasimetric, and we define the set of all
quasimetric functions as

Q ≜ {d ∈ D : d(s, g) ≤ d(s, w) + d(w, g) for all s, g, w ∈ S}. (7.2)

If we further restrict distances to be symmetric (d(x, y) = d(y, x)), we obtain the
set of traditional metrics over S . However, we wish to preserve this asymmetry
over interchange of start and end states with a quasimetric: navigating s→ g may
be a completely different task from navigating g→ s.

A particular quasimetric of note here is the successor state distance [9], dγ
SD, defined

as

dγ
SD(s, g) ≜ min

π

[
log

pπ
γ (sK = g | s0 = g)

pπ
γ (sK = g | s0 = s)

]
, where K ∼ Geom(1− γ). (7.3)

7 INVARIANCE TO PLANNING 112

where the discounted state occupancy measure pπ
γ (sK = g | s0 = s) is defined as

pπ
γ (sK = g | s0 = s) ≜

∞

∑
t=0

γt pπ(st = g | s0 = s). (7.4)

The distance dγ
SD is interesting because minimizing the distance to the goal dγ

SD(s, g)
with respect to s corresponds to optimal goal reaching with a discount factor γ.
Formally, if we augmentM with the goal-conditioned reward function rg(s) =
δ(s,g), a Kronecker delta function which evaluates to 1 if s = g and 0 otherwise,
we obtain an MDP under which the dγ

SD-minimizing policy is the optimal policy.
The related successor distance with actions dγ

SD(s, a, g) [9] allows us to optimize this
distance over actions, where the dγ

SD(s, a, g)-minimizing action is the optimal action
over the same MDP:

dγ
SD(s, a, g) ≜ min

π

[
log

pπ
γ (sK = g | s0 = g)

pπ
γ (sK = g | s0 = s, a)

]
, where K ∼ Geom(1− γ) (7.5)

where the discounted state occupancy measure with actions is defined as

pπ
γ (sK = g | s0 = s, a) ≜

∞

∑
t=0

γt pπ(st = g | s0 = s, a). (7.6)

7.2 PLANNING INVARIANCE AND HORIZON GENERALIZATION

Our analysis will focus on the goal-conditioned setting. We will start by providing
intuition for our key definitions (planning invariance and horizon generalization)
and then prove that these properties can exist.

Intuition for Planning Invariance and Horizon Generalization
Many prior works have found that augmenting goal-conditioned policies with
planning can significantly boost performance [117, 165]: instead of aiming for the
final goal, these methods use planning to find a waypoint en route to that goal and
aim for that waypoint instead. In effect, the policy chooses a closer, easier waypoint
that will naturally bring the agent closer to the final goal. We say that a policy is
invariant to planning if it takes similar actions when directed towards this waypoint
as when directed towards the final goal (see Fig. 7.2).

Invariance to planning is an appealing property for several reasons. First,
it implies that the policy realizes the benefits of planning without the complex
machinery typically associated with hierarchical and model-based methods. Second,
it implies that the policy will exhibit horizon generalization: given a training dataset
of short trajectories covering some state space S , it will succeed at performing
long-horizon tasks over the same state space S (see Fig. 7.1). Say, for example, a

7 INVARIANCE TO PLANNING 113

given policy exhibits horizon generalization, and the policy succeeds at reaching
a goal that is n steps (“temporal distance”) away from any initial state in S . Then,
the horizon generalization property means that this same policy should be able to
reach any new goal in S for which that original goal is a waypoint, capturing the
set of goal states 2n steps away from the initial state. Importantly, we can apply
this argument again, reasoning that the policy must also be able to reach goals 4n
steps away. This simple recursive argument suggests that a policy with horizon
generalization, assuming it can reach very close goals that span a desired state space,
must also be able to reach the most distant goals available in this space. Taking a
“forward” looking perspective, a policy will generalize from an initial narrow set of
seen tasks to vastly more distant goals with trajectories composed of these seen tasks.

no planning invariance planning invariance

or

Figure 7.2: Visualizing planning invariance. Planning
invariance (Definition 7.1) means that a policy should take
similar actions when directed towards a goal (purple arrow
and purple star) as when directed towards an intermediate
waypoint (brown arrow and brown star). We visualize a
policy with (Right) and without (Left) this property via the
misalignment and alignment of actions towards the way-
point and the goal, where the optimal path is tan and the
suboptimal path is gray.

A similar argument can also
be applied in reverse, provid-
ing intuition on how a planning
invariant policy selects actions.
In the broad context of machine
learning, a model that is invari-
ant to some transformation (i.e.
brightness) assigns similar in-
ternal representations to inputs
that differ by this transforma-
tion (i.e. darkened and bright-
ened version of the same im-
age). The same applies for plan-
ning invariant policies: a start-
goal pair n steps apart and a
start-waypoint pair n/2 steps
apart have the same represen-
tation when the waypoint is
along the shortest path to that
goal (Fig. 7.3). We can repeat-
edly apply this argument until mapping the original start-goal pair to a start-
waypoint pair that is just one action (in deterministic settings) apart from each
other. In short, the “forward” argument predicts what tasks a policy with horizon
generalization can solve, while the “reverse” argument explains how the policy
solves tasks that appear to be out of distribution.

With this motivation in hand, how do we actually construct methods that are
planning invariant and lead to horizon generalization? To answer this question, we
build upon prior work on quasimetric neural network architectures [127, 143, 130]
and show that quasimetric policies, where latents obey the triangle inequality, are
invariant to planning.

7 INVARIANCE TO PLANNING 114

latent space

s0 s1 s2 s4

s′

s3

planplan

∼ ϕ(s0, s1)ϕ(s0, s′)

action spacea0

start at s0

policy

s0 s1 s2 s4s3

plan

∼ ϕ(s1, s2)

a1

after reaching s1

f : Rk æ A fi : S ◊ S æ A

„ : S ◊ S æ Rk

Figure 7.3: Invariance to planning leads to horizon generalization. (Left) Invari-
ance to planning maps (s0, {s1, s2, s4}) together in latent space, which results in a
shared optimal action. (Right) After successfully reaching the closest waypoint s1
in 1 step, the next optimal action is also shared, meaning any trajectory of length 2
is optimal. We can repeat this argument for trajectories of length 4, 8, . . . until the
entire reachable state space is covered.

Definitions of planning invariance and horizon generalization
To construct general definitions of planning invariance and horizon generalization,
we will need to define a general notion of a planning operator which proposes
waypoints at a given state to reach a target distribution of goals.

We denote by

plan ≜ {PLAN : S ×A×P(S) 7→ P(S)} (7.7)

the class of “planning functions” that given a state, action, and goal distribution,
produce a distribution of possible waypoints. In the special case of a fixed waypoint
and goal we write

planFIX ≜ {PLANFIX : S ×A× S 7→ S} ⊂ plan . (7.8)

Our analysis in the rest of this section will focus on the simpler “fixed” setting
of PLANFIX ∈ planFIX .

We will use w or wPLAN to denote the waypoint produced by PLANFIX(s, g).
The proofs and quasimetric objects in the stochastic settings are slightly more
complicated, but carry the same structure and takeaways as this simpler case; the
general stochastic proofs and definitions are presented in Section 7.6.

There are several different types of planning algorithms one might consider (e.g.,
Dijkstra’s algorithm [285], A* [288], RRT [289]). Importantly, the constraints of a
quasimetric (see Section 7.1) and the related idea of path relaxations from Dijkstra’s

7 INVARIANCE TO PLANNING 115

algorithm provide clues for specifying our planning operator later in our analysis.
We use this planning operator in one of our key definitions (visualized in Fig. 7.2):

Definition 7.1 (Planning invariance). Let an MDP with states S , actions A, and
goal-conditioned Kronecker delta reward function rg(s) = δ(s,g) be given. For any given
goal-conditioned policy π(a | s, G) where G ∈ P(S), we say that π(a | s, G) is invariant
under planning operator PLAN ∈ plan if and only if

π(a | s, G) = π(a | s, W), where W ∼ PLAN(s, a, G). (7.9)

In the single-goal, controlled (“fixed”) case,

π(a | s, g) = π(a | s, w), where w = PLANFIX(s, g). (7.10)

Our second key definition is horizon generalization (see Fig. 7.1):

Definition 7.2 (Horizon generalization). In the single-goal, controlled (“fixed") case,
a policy π(a | s, g) generalizes over the horizon if optimality over Bc = {(s, g) ∈
S × S | d(s, g) < c} for some finite c > 0 implies optimality over the entire state space S ,
where d(s, g) is any arbitrary quasimetric over the state and goal distribution space S × S .

We highlight the key base case assumption: optimality over shorter trajectories
where start-goal pairs cover the entire desired state space S can generalize over the
horizon across the same space S (optimal trajectories are contained within S) —
without additional assumptions about the symmetries of the MDP, it is beyond the
scope of this work to consider horizon generalization to completely unseen states.
Rather, we analyze generalization to unseen, long-horizon (s, g) state pairs.

Existence of planning invariance
With these notions of planning invariance and horizon generalization in hand, we
will consider planning algorithms PLANFIX

d ∈ planFIX that acquire a quasimetric
d(s, g) and output a single waypoint w ∈ S :

PLANFIX
d (s, g) = wPLAN ∈ arg min

w∈S
d(s, w) + d(w, g). (7.11)

where, by the triangle inequality, we have d(s, wPLAN) + d(wPLAN, g) = d(s, g).

Theorem 7.1 (Planning invariance exists). Assume a controlled, fixed goal setting.
For every quasimetric d(s, g) over state space S , there exists a policy πFIX

d (a | s, g) and

planning operator PLANFIX
d ∈ planFIX such that πFIX

d (a | s, g) = πFIX
d

(
a | s, w for w =

PLANFIX
d (s, g)

)
.

7 INVARIANCE TO PLANNING 116

The proof is in Section 7.6. In practice, we measure planning invariance by
comparing the relative performance of algorithms with and without planning. For
this condition, we do not necessarily need πd(a | s, g) = πd(a | s, wPLAN); rather,
the weaker condition d(s, πd(a | s, g), g) = d(s, πd(a | s, wPLAN), wPLAN) is sufficient
and necessary for planning invariance when there are no errors from function
approximation, noise, etc. We extend this result to stochastic settings in Section 7.6.

Horizon Generalization Exists
Finally, we prove the existence of horizon generalization using induction, where
the inductive step invokes planning invariance. We begin by defining a quasimetric
policy.

Definition 7.3 (Quasimetric policy). We define the quasimetric policy as some policy
πFIX

d (a | s, g) where

πFIX
d (a | s, g) ∈ OPTd(s, g) ≜ arg min

a∈A
d(s, a, g)

and d(s, a, g) is the successor distance with actions (Eq. 7.5). We can extend this definition
to stochastic settings (see Definition 7.8) where πd(a | s, G) is defined over state-goal
distribution pairs.

Theorem 7.2 (Horizon generalization exists). A quasimetric policy πFIX
d (a | s, g) that is

optimal over Bc = {(s, g) ∈ S × S | d(s, g) < c} for some finite c > 0 implies optimality
over the entire state and goal space S × S .

The idea of the proof is to begin with a ball of states Dc = {s′ ∈ S | d(s, s′) < c}
for some arbitrary s ∈ S ; we assume policy πFIX

d (a | s, ·) is optimal over this ball
by the base case. Then, we use planning invariance and the triangle inequality to
show that policy optimality over Dn = {s′ ∈ S | d(s, s′) < 2nc} implies optimality
over Dn+1, a ball with double the radius. This proof shows that a goal-conditioned,
planning invariant policy with optimality over pairs of close states (with respect to
the quasimetric) covering state space S can be optimal over pairs drawn arbitrarily
from the entire state space S ; the complete proof, extended to stochastic settings
and thus applicable to the fixed setting, is in Section 7.6.

Importantly, this property is not guaranteed for any arbitrary optimal goal-
reaching policy on some restricted horizon:

Remark 7.3 (Horizon generalization is nontrivial). For an arbitrary policy, optimality
over Bc = {(s, g) ∈ S × S | d(s, g) < c} for some finite c > 0 is not a sufficient condition
for optimality over the entire state space S .

7 INVARIANCE TO PLANNING 117

To prove this remark, we construct policies that are optimal over horizon H but
suboptimal over horizon H + 1. The complete proof is in Section 7.6.

Combined, these results show that (1) planning invariance and horizon gener-
alization, as defined in Section 7.2, exist, (2) planning invariance and local policy
optimality and coverage are sufficient conditions to achieve horizon generalization,
and (3) horizon generalization is not a trivially achievable property.

Limitations and Assumptions
Despite our theoretical results proving that both horizon generalization and plan-
ning invariance do exist, we expect that practical algorithms will not perfectly
achieve these properties. This section highlights the assumptions that belie our
key results, and our experiments in Section 7.4 will empirically study the degree to
which current methods achieve these properties.

The main assumption behind our inductive proof is that horizon generalization
is unlikely to be a binary category, but rather exists on a spectrum. As such, each
application of the inductive argument is likely to incur some error, such that the
argument (and, hence, the degree of generalization) will not extend infinitely. To
make this a bit more concrete, define SUCCESS(c) as the success rate for reach-
ing goals in radius c, and assume that we choose constant c0 small enough that
SUCCESS(c0) = 1. Then, let us assume that each time the horizon is doubled
(c0 → 2c0 → 4c0 → · · ·), the success rate decreases by a factor of η. We will refer
to η as the degree of planning invariance. In addition, we assume that SUCCESS(c)
is monotonically decreasing; goals further in time should be harder. We can now
define the REACH as the sum of SUCCESS(c) over c ≥ c0. With the above constraints
on SUCCESS(c), in the worst case,

REACHwc = 1+ η(2− 1)+ η2(4− 2)+ η3(8− 4)+ · · · =
{

1 + η 1
1−2η if 0 < η < 1/2

∞ if η ≥ 1/2
.

(7.12)
When the degree of horizon generalization has a low value of (say) η = 0.1 (i.e., it
generalizes for only 1 out of every 10 goals), the Reach is 1.125, not much bigger
than that of a policy without horizon generalization. Once the degree of horizon
generalization reaches η = 1/2 (i.e., generalizes for 1 out of every two goals), the
Reach is infinite. In short, the potential reach of horizon generalization is infinite,
even when each step of the recursive argument incurs a non-negligible degree of
error.

A second important assumption behind our analysis is that very easy goals that
cover the desired space of possible hard goals (and waypoints to these hard goals) can
be reached 100% of the time. In terms of our induction proof, we need the base
case to hold. If the base case does not hold (poor performance on easy goals, or
easy goals do not have sufficient state coverage to capture harder goals or their

7 INVARIANCE TO PLANNING 118

waypoints) but planning invariance holds, then we should not expect to see opti-
mality over arbitrary harder goals. We will observe this empirically with a random
policy in our experiments (Fig. 7.4): a random policy is invariant to planning (it
always selects random actions, regardless of the goal) yet its performance on nearby
goals is mediocre, so it is not surprising that this policy fails to exhibit horizon
generalization.

7.3 METHODS FOR PLANNING INVARIANCE: OLD AND NEW

In this section we discuss how planning invariance relates to several classes of RL
algorithms. Section 7.7 discusses several new directions for designing RL algorithms
that are invariant to planning. Section 7.9 recalls figures from prior works in search
of evidence for horizon generalization.

Dynamic programming and temporal difference (TD) learning. The capacity for
TD methods to “stitch” [290] together trajectories offers one route for obtaining
policies with horizon generalization. Indeed, our definition of planning invariance
is very closely tied with the optimal substructure property [291, pp. 382-387] of
dynamic programming problems, and likely could be redefined entirely in terms
of optimal substructure. Viewing horizon generalization and planning invariance
through the lens of machine learning allows us to consider a broader set of tools for
achieving invariance and generalization (e.g., special neural network layers, data
augmentation).

Quasimetric Architectures (implicit planning). Prior methods that employ spe-
cial neural networks may have some degree of horizon generalization. For ex-
ample, some prior methods [126, 296, 9] use quasimetric networks to represent
a distance function. As the correct distance function satisfies the triangle in-
equality, it makes sense to use special architectures that are guaranteed to satisfy
the triangle inequality. However, prior work rarely examines the generalization
or invariance properties of these quasimetric architectures. One way of think-
ing about quasimetric architectures is that they are invariant to path relaxation
(d(s, g)← minw d(s, w) + d(w, g)) [291, p. 609]. This path relaxation is exactly the
notion of planning used in our theoretical construction (Theorem 7.1). Thus, these
architectures are, by construction, invariant to planning! We use these architectures
in our experiments in Section 7.4.

While quasimetric architectures are invariant to path relaxation, other prior meth-
ods [297, 298] have proposed architectures that perform value iteration internally
and (hence) may be invariant to the Bellman operator. Because Bellman optimality
implies planning invariance (c.f. optimal substructure), we expect that these value
iteration networks may exhibit some degree of horizon generalization as well.

7 INVARIANCE TO PLANNING 119

Table 7.1: Summary of methods and modifications tested

Method Description Losses Critics

CRL Contrastive RL [121] {Lfwd,Lbwd,Lsym} {dℓ2 , dMLP}
SAC Soft Actor-Critic [292] {Lsac} {QMLP}
CMD-1 Contrastive metric distillation [9] {Lbwd} {dMRN}

(a) Losses

Lfwd InfoNCE loss: predict goal
g from current state-action
(s, a) pair [128]

Lbwd Backward InfoNCE loss:
predict current state and
action (s, a) from future
state g [293]

Lsym Symmetric contrastive loss:
combine the forward and
backward contrastive losses
[17]

Lsac Temporal difference loss
[292]

(b) Architectures

dℓ2 L2-distance parameterized
architecture, uses ∥ϕ(s) −
ψ(g)∥ as a distance/critic
[11]

dMLP Uses multi-layer perceptron
(MLP) to parameterize the
distance/critic [294, 295]

dMRN Metric residual network,
uses a quasimetric archi-
tecture to parameterize the
distance/critic [127]

QMLP MLP-parameterized Q-
function [292]

Explicit planning methods. While our proof of planning used a specific notion of
planning, prior work has proposed RL methods that employ many different styles
of planning: graph search methods [117, 200, 299, 171], model-based methods [300–
304], collocation methods [305], and hierarchical methods [176, 306, 198, 307]. Inso-
far as these methods approximate the method used in our proof, it is reasonable
to expect that they may achieve some degree of planning invariance and horizon
generalization (see Fig. 7.9). Prior methods in this space are typically evaluated on
the training distribution, so their horizon generalization capabilities are typically
not evaluated. However, the improved generalization properties might have still
contributed to the faster learning on the training tasks: after just learning the easier
tasks, these methods would have already solved the complex tasks, leading to
higher average success rates.

Data augmentation. Finally, prior work [1, 171] has argued that data augmenta-
tion provides another avenue for achieving the benefits typically associated with
planning or dynamic programming.

7 INVARIANCE TO PLANNING 120

10 20 30 40 50
0

0.5

1

Goal Distance

Su
cc
es
sR

at
e

Horizon Generalization with Function Approximation

CMD-1 (Lbwd + dMRN) CRL (Lfwd + dℓ2)
CRL (Lbwd + dℓ2) CRL (Lsym + dℓ2)
CRL (Lbwd + dMLP) random

CRL (MLP) CRL (dℓ2) CMD-1
0.0

0.5

1.0

S
u
cc
es
s
R
at
e

Planning with Function Approximation

no planning planning

Figure 7.4: Quantifying horizon generalization and invariance to planning. On a
simple navigation task, we collect short trajectories and train two goal-conditioned
policies, comparing both to a random policy. (Left) We evaluate on (s, g) pairs of
varying distances, observing that metric regression with a quasimetric exhibits
strong horizon generalization. (Right) In line with our analysis, the policy that has
strong horizon generalization is also more invariant to planning: combining that
policy with planning does not increase performance. Figure 7.7 shows a version of
this plot that also includes the tabular setting.

7.4 EXPERIMENTS

The aim of our experiments is to provide intuition into what horizon generalization
and planning invariance are, why it should be possible to achieve these properties,
and to study the extent to which existing methods already achieve these properties.
We also present an experiment highlighting why horizon generalization is a useful
notion even when considering temporal difference methods (Section 7.4).

We start with a didactic, tabular navigation task (Fig. C.2), connecting short
horizon trajectories and evaluating performance on long-horizon tasks. In our
first experiment, we measure the empirical average hitting time distance between
all pairs of states. We define a policy that acts greedily with respect to these
distances, measuring performance of this “metric regression” policy in Fig. 7.7
(Top Left). The degree of horizon generalization can be quantified by comparing
its success rate on nearby (s, g) pairs to more distant pairs. We compare to a
“metric regression with quasimetric” method that projects the empirical hitting
times into a quasimetric by performing path relaxation updates until convergence
(d(s, g)← minw d(s, w) + d(w, g)). Fig. 7.7 (Top Left) shows that this policy achieves
near perfect horizon generalization. While this result makes intuitive sense (this
algorithm is very similar to Dijkstra’s algorithm), it nonetheless highlights one way
in which a method trained on nearby start-goal pairs can generalize to more distant
pairs.

We study planning invariance of these policies by comparing the success rate

7 INVARIANCE TO PLANNING 121

(a) Ant Environment

1m−10m 10m−15m 15m−20m 20m−25m 25m−30m
0.0

0.2

0.4

0.6

0.8

1.0

Distance to goal

Su
cc
es
s
ra
te

Horizon Generalization in Ant Continuous Control Domain
CRL (dℓ2 ,Lfwd) CRL (dℓ2 ,Lbwd)
CRL (dℓ2 ,Lsym) CMD-1 (dMRN,Lbwd)

SAC (QMLP,Ltd)

short train tasks long eval tasks

(b) Success rates stratified by distance to goal

Figure 7.5: Measuring horizon generalization in a high-dimensional (27D obser-
vation, 8DoF control) task. (Left) We use an enlarged version of the quadruped “ant”
environment, training all goal-conditioned RL methods on (start, goal) pairs that
are at most 10 meters apart. (Right) We evaluate several RL methods, measuring
the horizon generalization of each. These results reveal that (i) some degree of
horizon generalization is possible; (ii) the learning algorithm influences the degree
of generalization; (iii) the value function architecture influences the degree of gener-
alization; and (iv) no method achieves perfect generalization, suggesting room for
improvement in future work. The ratio of success at 10m vs 5m and 20m vs 10m
corresponds to η from Section 7.2. Results are plotted with standard errors across
random seeds.

of each policy (on distant start-goal pairs) when the policy is conditioned on the
goal versus on a waypoint. See Appendix C.5 for details. As shown in Fig. 7.7 (Top
Right), the “metric regression with quasimetric” policy exhibits stronger planning
invariance, supporting our theoretical claim that (Theorem 7.1) planning invariance
is possible.

We next study whether these properties exist when using function approxima-
tion. For this experiment, we adopt the contrastive RL method [121] for estimating
the distances, comparing different architectures and loss functions. The results in
Fig. 7.4 (Left) show that both the architecture and the loss function can influence
horizon generalization, with the strongest generalization being achieved by a CMD-
1 [9]. Intuitively this makes sense, as this method was explicitly designed to exploit
the triangle inequality, which is closely linked to planning invariance. Fig. 7.4
(Right) shows the degree of planning invariance for these policies. Supporting our
analysis, the policy most invariant to planning trained over short horizon tasks
shows the strongest horizon generalization.

To better understand the relationship between planning invariance and horizon

7 INVARIANCE TO PLANNING 122

generalization, we used the data from Fig. 7.4 (Left) to estimate the horizon gen-
eralization parameter η, and used the data from the (Right) to compute the ratio
of performance with and without planning. Fig. 7.8 shows these data as a scatter
plot. These two quantities are well correlated, supporting Theorem 7.2’s claim that
horizon generalization is closely linked to planning invariance. Note that methods
that use an L2-distance parameterized architecture demonstrate stronger horizon
generalization and planning invariance than that which uses an MLP, suggesting
that some degree of planning invariance might be had even without a quasimetric
architecture. Intriguingly, these methods using the L2 architecture have a value
of η ≈ 0.5, right at the critical point between bounded and unbounded reach (see
Section 7.2). The CMD-1 method, which is explicitly designed to incorporate the
triangle inequality, exhibits much stronger planning invariance and horizon gener-
alization (η ≈ 0.8≫ 0.5), well above the critical point. Finally, note that the random
policy is an outlier: it achieves perfect planning invariance (it always takes random
actions, regardless of the goal) yet poor horizon generalization. This random policy
highlights a key assumption in our analysis: that the policy always succeeds at
reaching nearby goals (in Fig. 7.4, note that the success rate on the easiest goals is
strictly less than 1).

Empirically Studying Horizon Generalization in a High-dimensional Setting
Our next set of experiments study horizon generalization and planning invariance
in the context of a high-dimensional quadrupedal locomotion task (see Fig. 7.5).
We start by running a series of experiments to compare the horizon generalization
of different learning algorithms (CRL [121] and SAC [292]) and distance metric
architectures (details in Appendix C.5). The results in Fig. 7.5 highlight that both
the learning algorithm and the architecture can play an important role in horizon
generalization, while also underscoring that achieving high horizon generaliza-
tion in high-dimensional settings remains an open problem. See Section 7.3 for a
summary of the methods used in these experiments.

Impact of Horizon Generalization on Bellman Errors
Why should someone using a temporal difference method care about horizon gen-
eralization, if TD methods are supposed to provide this property for free? One
hypothesis is that methods for achieving horizon generalization will also help
decrease the Bellman error, especially for unseen start-goal pairs. We test this hy-
pothesis by measuring the Bellman error throughout training of the contrastive RL
method (same method as Fig. 7.4), with two different architectures. The results in
Fig. 7.6 show that the architecture that exhibits stronger horizon generalization (dℓ2)
also has a lower Bellman error throughout training. Thus, while TD methods may
achieve horizon generalization at convergence (at least in the tabular setting with
infinite data), a stronger understanding of horizon generalization may nonethe-

7 INVARIANCE TO PLANNING 123

nearby
goals

distant
goals

0.0

0.5

1.0

su
cc

es
s

ra
te

0 20000 40000
gradient steps

1.5

be
llm

an
 e

rr
or

CMD (bwd + dMRN) CRL (bwd + dMLP)

nearby
goals

distant
goals

0.0

0.5

1.0

su
cc

es
s

ra
te

0 20000 40000
gradient steps

1.5

be
llm

an
 e

rr
or

Figure 7.6: Impact of horizon generalization on Bellman errors. (Left) Two goal-
reaching methods exhibit different horizon generalization. (Right) Despite neither
method being trained with the Bellman loss, we observe that the method with
stronger horizon generalization has a lower Bellman loss. Thus, understanding
horizon generalization may be important even when using TD methods (which
guarantee horizon generalization at convergence).

less prove useful for designing architectures that enable faster convergence of TD
methods.

7.5 DEFINITION OF PATH RELAXATION

Definition 7.4 (Path relaxation operator). Let PATHd(s, G) be the path relaxation oper-
ator over quasimetric d(s, G). For any triplet of state and state distributions (s, W, G) ∈
S ×P(S)×P(S),

PATHd(s, G) ≜ min
W

d(s, W) + d(W, G). (7.13)

In the controlled, fixed goal setting, define

PATHFIX
d (s, g) ≜ min

w
d(s, w) + d(w, g). (7.14)

Thus, invariance to the path relaxation operator is a form of self-consistency;
any triplet of predictions should satisfy the following identity:

d(s, G) ≤ d(s, W) + d(W, G)

or in the controlled, fixed goal setting

d(s, g) ≤ d(s, w) + d(w, g).

which is the familiar triangle inequality. Conveniently, the quasimetric neural
network architecture [127, 143, 130] innately satisfies the triangle inequality before
seeing any training data.

7 INVARIANCE TO PLANNING 124

10 15 20 25 30 35 40 45 50
0

0.5

1

Goal Distance

Su
cc
es
sR

at
e

Tabular Horizon Generalization

random
metric regression
metric regression + quasimetric

random metric

regression

metric regression

+ quasimetric

0.0

0.5

1.0

S
u
cc
es
s
R
a
te

Tabular Planning

no planning planning

10 20 30 40 50
0

0.5

1

Goal Distance

Su
cc
es
sR

at
e

Horizon Generalization with Function Approximation

CMD-1 (Lbwd + dMRN) CRL (Lfwd + dℓ2)
CRL (Lbwd + dℓ2) CRL (Lsym + dℓ2)
CRL (Lbwd + dMLP) random

CRL (MLP) CRL (dℓ2) CMD-1
0.0

0.5

1.0

S
u
cc
es
s
R
at
e

Planning with Function Approximation

no planning planning

Figure 7.7: Quantifying horizon generalization and invariance to planning. On a
simple navigation task, we collect short trajectories and train two goal-conditioned
policies, comparing both to a random policy. (Top Left) We evaluate on (s, g) pairs
of varying distances, observing that metric regression with a quasimetric exhibits
strong horizon generalization. (Top Right) In line with our analysis, the policy that
has strong horizon generalization is also more invariant to planning: combining that
policy with planning does not increase performance. (Bottom Row) We repeat these
experiments using function approximation (instead of a tabular model), observing
similar trends.

7 INVARIANCE TO PLANNING 125

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

η

P
la
n
n
in
g
In
va
ri
a
n
ce

Horizon Generalization and Planning Invariance

CMD-1 (Lbwd + dMRN) CRL (Lfwd + dℓ2)

CRL (Lbwd + dℓ2) CRL (Lsym + dℓ2)

CRL (Lbwd + dMLP) random

fraction of success rate retained on goals 2× further away

fraction of

success rate

retained

without plan-

ning

Figure 7.8: Quantifying horizon generalization (x-axis) and planning invariance
(y-axis). See text Section 7.4 for more details.

Definition 7.5 (Path relaxation operator with actions). Let PATHd(s, a, G) be the
path relaxation operator over quasimetric d(s, a, G). For any triplet of state and state
distributions (s, W, G) ∈ S × S × S ,

PATHd(s, G) ≜ min
w

d(s, W) + d(W, G). (7.15)

In the controlled, fixed goal setting, define

PATHFIX
d (s, g) ≜ min

w
d(s, w) + d(w, g). (7.16)

7.6 FORMALIZING PLANNING INVARIANCE

In this section, we prove results discussed in Section 7.2 and versions of results in
Section 7.2 for the general stochastic, distributional setting.

Planning invariance exists
Theorem 7.1 (Planning invariance exists). Assume a controlled, fixed goal setting.
For every quasimetric d(s, g) over state space S , there exists a policy πFIX

d (a | s, g) and

planning operator PLANFIX
d ∈ planFIX such that πFIX

d (a | s, g) = πFIX
d

(
a | s, w for w =

PLANFIX
d (s, g)

)
.

Proof. Let s, g ∈ S and the action-free distance function be d(s, g) = mina d(s, a, g);
this statement is true for the constrastive successor distances (Eq. 7.3). Define the

7 INVARIANCE TO PLANNING 126

(deterministic) planned waypoint as

wPLAN ← PLANFIX
d (s, g) ∈ arg min

w∈S
d(s, w) + d(w, g). (7.17)

We can then construct the following policy:

πFIX
d (a | s, g) ∈ OPTd(s, g) ≜ arg min

a∈A
d(s, a, g). (7.18)

and later restrict the selection of the action to reach waypoint wPLAN to get planning
invariance, where wPLAN ∈ arg minw∈S d(s, w) + d(w, g). Applying this policy to
(s, wPLAN),

πFIX
d (a | s, wPLAN) ∈ OPTd(s, wPLAN) ≜ arg min

a∈A
d(s, a, wPLAN)

= arg min
a∈A

d(s, a, wPLAN) + d(wPLAN, g)

= d(s, wPLAN) + d(wPLAN, g)
⊆ arg min

a∈A
d(s, a, g)

= OPTd(s, g). (7.19)

Thus, for a given deterministic planning algorithm defined as in Eq. (7.17), there ex-
ists some deterministic policy πFIX

d (a | s, g) = πFIX
d (a | s, wPLAN) ∈ OPTd(s, wPLAN) ⊆

OPTd(s, g) which is planning invariance.

Quasimetric Over Distributions
Definition 7.6 (Quasimetric over distributions). For a given quasimetric dQM ∈ Q, we
define the quasimetic over distributions as

dQMD(L, M) =
(∫
S×S

pL(l)pM(m)dQM(L, M)dldm
)
×
(

1−
∫
S

√
pL(s)pM(s)ds

)
.

(7.20)

We show Definition 7.6 is a valid quasimetric.
This is a known result given the definition of dQMD as a Wasserstein distance and

cost function dQM(a, b) that is a quasimetric, but we reproduce the proof here for
completeness.

Proof. We check the conditions of a quasimetric for dQMD(A, B) with quasimetric
cost function dQM(a, b).

7 INVARIANCE TO PLANNING 127

Positive semidefiniteness: By definition of γ(a, b) and dQM(a, b), we have dQMD(A, B) ≥
0 for all A, B. To show that dQMD(A, B) = 0 if and only if A = B:

dQMD(A, A) = inf
γ∈Π(A,A)

∫
S×S

dQM(a, b)γ(a, b) da db

≤
∫
S×S

dQM(a, b)γD(a, b)da db (set γ as diagonal matrix γD)

=
∫
S

dQM(a, a)µ(a)da = 0

For the other direction, we have that dQMD(A, B) = 0 implies that γ(a, b) = 0 for
all a ̸= b. Thus, A = B.

Asymmetry: We have that dQMD(A, B) ̸= dQMD(A, B) in general, as the quasimetric
dQM(a, b) is not necessarily symmetric.

Triangle inequality: Let A, B, C be three probability measures. Let γ∗1,2 and γ∗2,3
be minimizers of dQMD(A, B) and dQMD(B, C) respectively. We can construct some
γ1,2,3(a, b, c) such that ∫

X
γ1,2,3(a, b, c)da = γ∗1,2∫

X
γ1,2,3(a, b, c)db = γ∗2,3∫

X
γ1,2,3(a, b, c)dc = γ1,3

where γ1,3 is not necessarily the optimal joint distribution to minimize dQMD(A, C).
Then, we have:

dQMD(A, C) ≤
∫
S×S

dQM(a, c)γ1,3(a, c)da dc

=
∫
S×S

dQM(a, c)γ1,2,3(x, y, z)da db dc

≤
∫
S×S×S

(dQM(a, b) + dQM(b, c)) γ1,2,3(a, b, c)da db dc

(dQM(a, b) satisfies△-ineq)

=
∫
S×S×S

dQM(a, b)γ1,2,3(a, b, c)da db dc

+
∫
S×S×S

dQM(b, c)γ1,2,3(a, b, c)da db dc

= dQMD(A, B) + dQMD(B, C)

as desired. Therefore, dQMD is a quasimetric and we are done.

7 INVARIANCE TO PLANNING 128

Quasimetrics, Policies, and Planning Invariance (Stochastic Setting)
Definition 7.7 (Quasimetric over actions in general stochastic setting). Assume
d(s, g) is the Contrastive Successor Distance [9]. Define the stochastic-setting quasimetric
over actions as

d(s, a, G) ≜ d(s, S′(s,a)) + d(S′(s,a), G)

where S′(s,a) = p(s′ | s, a) is the distribution over next-step states after taking action a from
state s.

Definition 7.8 (Quasimetric policy in general stochastic setting). Extending the
deterministic quasimetric policy to stochastic settings,

πd(a | s, G) ∈ OPTd(s, G) ≜ arg min
a

d(s, a, G).

The existence of planning invariance in stochastic settings follows from these
quasimetric definitions.

Lemma 7.4 (Planning invariance exists in general stochastic setting). For every
quasimetric d(s, G) where G ∈ P(S), there exists a policy

πd(a | s, G) ∈ arg min
a∈A

d(s, a, G)

where πd(a | s, G) = πd(a | s, W), and planning operator

PLANd(s, a, G) = WPLAN ∈ arg min
W∈P(S)

(d(s, a, W) + d(W, G)).

Proof. For any s, G pairs,

min
a

d(s, a, G) = min
a

d(s, S′(s,a)) + d(S′(s,a), G)

= min
a

min
W

d(s, S′(s,a)) + d(S′(s,a), W) + d(W, G) (△-ineq)

= min
a

min
W

d(s, a, W) + d(W, G)

From Definition 7.8, let quasimetric policy π be

πd(a | s, G) ∈ OPTd(s, G) ≜ arg min
a∈A

d(s, a, G).

7 INVARIANCE TO PLANNING 129

Now, applying this policy to state-waypoint pair (s, WPLAN),

π(a|s, WPLAN) ∈ OPTd(s, WPLAN)

≜ arg min
a∈A

d(s, a, WPLAN)

= arg min
a∈A

d(s, a, WPLAN) + d(WPLAN, G)

⊆ arg min
a∈A

d(s, a, G)

as desired. Thus, for the given stochastic planning algorithm, there exists some
policy πd(a | s, G) = πd(a | s, WPLAN) ∈ OPTd(s, WPLAN) ∈ OPTd(s, G).

Horizon generalization exists

Theorem 7.2 (Horizon generalization exists). A quasimetric policy πFIX
d (a | s, g) that is

optimal over Bc = {(s, g) ∈ S × S | d(s, g) < c} for some finite c > 0 implies optimality
over the entire state and goal space S × S .

Proof. We use induction and prove the following more general result for policies
πd(a | s, G) defined over state-goal distribution pairs (s, G). See earlier sections in
Section 7.6 for quasimetric, policy, and planning definitions over distributions:

Lemma 7.5 (Horizon generalization exists, stochastic settings). A quasimetric policy
πd(a | s, G) that is optimal over Bc = {(s, G) ∈ S × P(S) | d(s, G) < c} for some finite
c > 0 implies optimality over the entire state and goal distribution space S × P(S).

Note that we can set G to a Delta function at a single goal g to recover the fixed
policy πd(a | s, G).

Assume optimality over Bn = {(s, G) ∈ S ×P(S) | d(s, G) < 2nc} for arbitrary
n ∈ Z+. Without loss of generality, consider arbitrary state s ∈ S and all goal
distributions Dn = {G ∈ P(S) | d(s, G) < 2nc}.

We can consider the space of distributions D′n that are 2nc distance away from
goal distribution G ∈ Dn:

D′n = {S′ ∈ P(S) | d(G, S′) < 2nc, G ∈ Dn} = {S′ ∈ P(S) | d(s, S′) < 2n+1c}.

where
B′n = {(s, S′) | S′ ∈ D′n} = Bn+1.

Invoking the definition of the quasimetric policy πd(a | S, S′), for some waypoint
distribution WPLAN ∈ arg minW∈D′n(d(s, a, W) + d(W, G)) over distributions G ∈
D′n:

πd(a | s, G) ∈ arg min
a∈A

d(s, a, WPLAN).

7 INVARIANCE TO PLANNING 130

To show that there always exists some planned waypoint distribution WPLAN within
the region of assumed optimality Dn from the inductive assumption, we consider
the case WPLAN /∈ Dn and show that there exists some WPLAN, IN ∈ Dn such that
d(s, a, WPLAN, IN) + d(WPLAN, IN, G) = d(s, a, G). By the triangle inequality,

d(s, a, G) = min
W∈D′n

(d(s, a, W) + d(W, G))

= d(s, a, WPLAN) + d(WPLAN, G)

= min
WOUT∈D′n\Dn

d(s, a, WOUT) + d(WOUT, G)

= min
WOUT∈D′n\Dn

min
WIN∈Dn

(d(s, a, WIN) + d(WIN, WOUT)) + d(WOUT, G)

= min
WIN∈Dn

min
WOUT∈D′n\Dn

d(s, a, WIN) + (d(WIN, WOUT) + d(WOUT, G))

= min
WIN∈Dn

d(s, a, WIN) + d(WIN, G) (△-ineq)

= d(s, a, WPLAN, IN) + d(WPLAN, IN, G),

so there always exists an optimal state-waypoint distribution pair within the as-
sumed optimality region Bn; we can then restrict (s, WPLAN) ∈ Bn. Therefore, with
the previously defined quasimetric policy πd(a | s, G),

πd(a | (s, WPLAN) ∈ Bn) ∈ arg min
a∈A

d(s, a, WPLAN) (inductive assumption)

⊆ arg min
a∈A

d(s, a, G). (Lemma 7.4: planning invariance)

Therefore,e, policy πd(a | s, G) is optimal over Bn+1 following the inductive as-
sumption, and, since d(s, G) is finite for all (s, G) ∈ S × S ′s where goal distribution
G is reachable from state s, Theorem 7.2 follows.

Horizon generalization is nontrivial
Remark 7.3 (Horizon generalization is nontrivial). For an arbitrary policy, optimality
over Bc = {(s, g) ∈ S × S | d(s, g) < c} for some finite c > 0 is not a sufficient condition
for optimality over the entire state space S .

Proof. We restrict our proof to the fixed, controlled setting and let quasimetric d(s, g)
be the successor distance dSD(s, g)— this assumption lets us directly equate the
optimal horizon H to the distance dSD(s, g), but note that similar arguments can be
applied by treating d(s, g) as a generalized notion of horizon.

Consider goal-conditioned policy π∗,H(a | s, g) that is optimal for (s, g) pairs
over some horizon H. Assume there is at least one goal g′ that is optimally H + 1
actions away from s, and that there exists some optimal waypoint s′ en route to

7 INVARIANCE TO PLANNING 131

g′ reachable via actions A′ ⊂ A (where A \ A′, the set of suboptimal actions, is
nonempty).

We can then construct a policy πH+1 where πH+1(a | s, g′) returns an action in
the suboptimal set A \A′, and πH+1 restricted to state-goal pairs horizon H away
is equivalent to π∗,H. Therefore, an arbitrary optimal goal-reaching policy over
some restricted horizon H does not necessarily exhibit horizon generalization.

7.7 NEW METHODS FOR PLANNING INVARIANCE

While our aim is not to propose a new method, we will discuss several new direc-
tions that may be examined for achieving planning invariance.
Representation learning. As shown in Fig. 7.2, planning invariance implies that
some internal representation inside a policy must map start-goal inputs and start-
waypoint inputs to similar representations. What representation learning objective
would result in representations that, when used for a policy, guarantee horizon
generalization?1 The fact that plans over representations sometimes correspond to
geodesics [308, 11] hints that this may be possible.

Flattening hierarchical methods. While hierarchical methods often achieve higher
success rates in practice, it remains unclear why flat methods cannot achieve similar
performance given the same data. While prior work has suggested that hierarchicies
may aid in exploration [309], it may be the case that they (somehow) exploit the
metric structure of the problem. Once this inductive bias is identified, it may be
possible to imbue it into a “flat” policy so that it can achieve similar performance
(without the complexity of hierarchical methods).

Policies that learn to plan. While explicit planning methods may be invariant to
planning, recent work has suggested that certain policies can learn to plan when
trained on sufficient data [171, 310]. Insofar as neural networks are universal func-
tion approximators, they may learn to approximate a planning operator internally.
The best way of learning such networks that implicitly learn to perform planning
remains an open question.

MDP reductions. Finally, is it possible to map one MDP to another MDP (e.g., with
different observations, with different actions) so that any RL algorithm applied to
this transformed MDP automatically achieves the planning invariance property?

7.8 SELF-CONSISTENT MODELS

In machine learning, we usually strive for consistent models: ones that faithfully
predict the training data. Sometimes (often), however, a model that is consistent

1The construction in our proof is a degenerate case of this, where the internal representations
are equal to the output actions.

7 INVARIANCE TO PLANNING 132

with the training data may be inconsistent with other yet-to-be-seen training ex-
amples. In the absence of infinite data, one way of performing model selection is
to see whether a model’s predictions are self-consistent with one another. This is
perhaps most easily seen in the case of metric learning, as discussed in this chap-
ter. If we are trying to learn a metric d(x, y), then the properties of metrics tell us
something about the predictions that our model should make, both on seen and
unseen inputs. For example, even on unseen inputs, our model’s predictions should
obey the triangle inequality. Given many candidate models that are all consistent
with the training data, we may be able to rule out some of those models if their
predictions on unseen examples are not “logically” consistent (e.g., if they violate
the triangle inequality). One way of interpreting quasimetric neural networks is that they
are architecturally constrained to be self-consistent. We will discuss a few implications
of this observation.

Do self-consistent models know what they know? What if we assume that quasi-
metric networks can generalize? That is, after learning that (say) s1 and s2 are 5
steps apart, it will predict that similar states s′1 and s′2 are also 5 steps apart. Because
the model is architecturally constrained to be a quasimetric, this prediction (or
“hallucination”) could also result in changing the predictions for other s-g pairs.
That is, this new “hallucinated” edge s′1 −→ s′2 might result in path relaxation for
yet other edges.

What other sorts of models are self-consistent? There has been much discussion
of self-consistency in the language-modeling literature [311, 312]. Many of these
methods are predicated on the same underlying as self-consistency in quasimetric
networks: checking whether the model makes logically consistent predictions on
unseen inputs. Logical consistency might be used to determine that a prediction is
unlikely, and so the model can be updated or revised to make a different prediction
instead.

There is an important difference between this example and the quasimetrics.
While the axiom used for checking self-consistency in quasimetrics was the triangle
inequality, in this language modeling example self-consistency is checked using
the predictions from the language model itself. In the example of quasimetrics, our
ability to precisely write down a mathematical notion of consistency enabled us to
translate that axiom into an architecture that is self-consistent with this property.
This raises an intriguing question: Can we quantify the rules of logic in such a way that
they can be translated into a logically self-consistent language model? What makes this
claim seem alluringly tangible is that there is abundant literature from mathematics
and philosophy on quantifying logical rules [313].

7 INVARIANCE TO PLANNING 133

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Su
bs

et
 M

in
 D

ist
an

ce

Push-Wall

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Su
bs

et
 M

in
 D

ist
an

ce

Push

0 1 2 3 4 5
Environment Steps 1e5

0.00

0.05

0.10

0.15

0.20

0.25

Su
bs

et
 M

in
 D

ist
an

ce

Reach

5 Waypoints 2 Waypoints 8 Waypoints C-Planning + SoRB

(a) Zhang et al. [200]

umaze medium large
0.00

0.25

0.50

0.75

1.00

su
cc

es
s r

at
e

point-maze

RvS
DT

RvS + state augmentation (ours)
DT + state augmentation (ours)

RvS + only goal augmentation (ours)
DT + only goal augmentation (ours)

umaze medium large
0.000

0.125

0.250

0.375

0.500
ant-maze

umaze medium large
0.00

0.25

0.50

0.75

1.00
point-maze

umaze medium large
0.000

0.125

0.250

0.375

0.500
ant-maze

(b) Ghugare et al. [1]

Figure 7.9: Evidence of Horizon Generalization and Planning Invariance from
Prior work. (a) Prior work has observed that if policies are trained in an online
setting and perform planning during exploration, then those policies see little
benefit from doing planning during evaluation. This observation suggests that
these policies may have learned to be planning invariant. While results are not
stratified into training and testing tasks, we speculate that the faster learning of
that method (relative to baselines, not shown) may be explained by the policy
generalizing from easy tasks (which are learned more quickly) to more difficult
tasks. (b) Prior work studies how data augmentation can facilitate combinatorial
generalization. While the notion of combinatorial generalization studied there
is slightly from horizon generalization, a method that performs combinatorial
generalization would also achieve effective horizon generalization.

7.9 EVIDENCE OF HORIZON GENERALIZATION AND PLANNING

INVARIANCE FROM PRIOR WORK
Not only do the experiments in Section 7.4 provide evidence for horizon generaliza-
tion and planning invariance, but we also can find evidence of these properties in
the experiments run by prior work. This section reviews three such examples, with
the corresponding figures from prior work in Fig. 7.9:

7 INVARIANCE TO PLANNING 134

1. Zhang et al. [200] propose a method for goal-conditioned RL in the online set-
ting that performs planning during exploration. While not the main focus of
the paper, an ablation experiment in that paper hints that their method may
have some degree of planning invariance: after training, the policy produced by
their method is evaluated both with and without planning, and achieves similar
success rates. This experiment hints at another avenue for achieving planning in-
variance: rather than changing the architecture or learning rule, simply changing
how data are collected may be sufficient.

2. Ghugare et al. [1] propose a method for goal-conditioned RL in the offline setting
that performs temporal data augmentation. Their key result, reproduced above,
is that the resulting method generalizes better to unseen start-goal pairs, as
compared with a baseline. While this notion of generalization is not exactly the
same as horizon generalization (unseen start-goal pairs may still be close to one
another), the high success rates of the proposed method suggest that method
does not just generalize to nearby start-goal pairs, but also exhibits horizon
generalization by succeeding in reaching unseen distant start-goal pairs.

7.10 CONCLUSION

Our aim in this chapter is to give a name to a type of generalization that has been
observed before, but (to the best of our knowledge) has never been studied in
its own right: the capacity to generalize from nearby start-goal pairs to distant
goals. Seen from one perspective, this property is trivial — it is an application of the
optimal substructure property, and the original Q-learning method [314] already
achieves this property. Seen from another perspective, this property may seem
magical: how can one guarantee that a policy trained over easy tasks can extrapolate
from easy tasks to hard tasks?

Our contribution in this paper is to provide a theoretical framework for under-
standing this property as a form of self-consistency over model architecture, and
show how we can obtain and measure this property in practice. The experiments
in Section 7.4 then connect these insights to concrete advice for structuring the
representation for goal-reaching.
1. Policies defined over metric architectures that measure state dissimilarity have

planning invariance.
2. Planning invariance is a desirable feature that is correlated with the notion of

horizon generalization.
3. Quasimetric architectures provide a realistic approach to achieve planning in-

variance and horizon generalization.
In Section 7.8, we discuss further implications of these notions of invariance on
self-consistent models for decision-making.

7 INVARIANCE TO PLANNING 135

Limitations and Future Work. Future work should examine how the properties
of planning invariance and horizon generalization are conserved in more complex
decision-making environments, such as robotic manipulation and language-based
agents. Which versions of the distance parameterizations in Section 7.3 are most
effective at scale should be investigated with larger-scale empirical experiments. In
this paper, we assume a goal-conditioned setting, but there are meany alternative
forms of task specification (rewards, language, preferences, etc.) that could similarly
benefit from generalization over long horizons. Future work should explore how
planning-invariant geometry could be extended or mapped onto these task spaces.

III
REPRESENTATIONS FOR TRACTABLE

INTRINSIC MOTIVATION

137

8 EMPOWERMENT VIA SUCCESSOR
REPRESENTATIONS

AI agents deployed in the real world should be helpful to humans. When we know
the utility function of the humans an agent could interact with, we can directly train
assistive agents through reinforcement learning with the known human objective
as the agent’s reward. In practice, agents rarely have direct access to a scalar
reward corresponding to human preferences (if such a consistent model even exists)
[315], and must infer them from human behavior [316, 317]. This inference can be
challenging, as humans may act suboptimally with respect to their stated goals, not
know their goals, or have changing preferences [318]. Optimizing a misspecified
reward function can have poor consequences [319].

Without Empowerment Empowerment

Caption: We propose an algorithm training assistive agents to empower human users – the assistant should
take actions that enable human users to visit a wide range of future states, and the human's actions should
exert a high degree of influence over the future outcomes. Our algorithm scales to high-dimensional settings,
opening the door to building assistive agents that need not directly reason about human intentions.

Without Empowerment Empowerment

Figure 8.1: We propose an algorithm training assistive agents to empower human
users—the assistant should take actions that enable human users to visit a wide
range of future states, and the human’s actions should exert a high degree of
influence over the future outcomes. Our algorithm scales to high-dimensional
settings, opening the door to building assistive agents that need not directly reason
about human intentions.

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 138

An alternative paradigm for assistance is to train agents that are intrinsically
motivated to assist humans, rather than directly optimizing a model of their pref-
erences. An analogy can be drawn to a parent raising a child. A good parent
will empower the child to make impactful decisions and flourish, rather than pro-
scribing an “optimal” outcome for the child. Likewise, AI agents might seek to
empower the human agents they interact with, maximizing their capacity to change
the environment [4]. In practice, concrete notions of empowerment can be difficult
to optimize as an objective, requiring extensive modeling assumptions that don’t
scale well to the high-dimensional settings deep reinforcement learning agents are
deployed in.

What is a good intrinsic objective for assisting humans that doesn’t require
these assumptions? We propose a notion of assistance based on maximizing the
influence of the human’s actions on the environment. This approach only requires
one structural assumption: the AI agent is interacting with an environment where
there is a notion of actions taken by the human agent — a more general setting than
the case where we model the human actions as the outcome of some optimization
procedure, as in inverse RL [320, 321] or preference-based RL [322].

Prior work has studied many effective objectives for empowerment. For instance,
Du et al. [4] approximates human empowerment as the variance in the final states
of random rollouts. Despite excellent results in certain settings, this approach can
be challenging to scale to higher dimensional settings, and does not necessarily
enable human users to achieve the goals the want to achieve. By contrast, our
approach exclusively empowers the human with respect to the distribution of
(useful) behaviors induced by their current policy, and can be implemented through
a simple objective derived from contrastive successor features, which can then
be optimized with scalable deep reinforcement learning (Fig. 8.1). We provide a
theoretical framework connecting our objective to prior work on empowerment
and goal inference, and empirically show that agents trained with this objective can
assist humans in the Overcooked environment [6] as well as the obstacle gridworld
assistance benchmark proposed by Du et al. [4].

Our core contribution is a novel objective for training agents that are intrinsi-
cally motivated to assist humans without requiring a model of the human’s reward
function. Our objective, Empowerment via Successor Representations (ESR), maxi-
mizes the influence of the human’s actions on the environment, and, unlike past
approaches for assistance without reward inference, is based on a scalable model-
free objective that can be derived from learned successor features that encode which
states the human is likely to want to reach given their current action. Our objective
empowers the human to reach the desired states, not all states, without assuming a
human model. We analyze this objective in terms of empowerment and goal infer-
ence, drawing novel mathematical connections between time-series representations,
decision-making, and assistance. We empirically show that agents trained with
our objective can assist humans in two benchmarks proposed by past work: the

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 139

Overcooked environment [6] and an obstacle-avoidance gridworld [4].

8.1 THE INFORMATION GEOMETRY OF EMPOWERMENT

We will first state a general notion of an assistive setting, then show how an empow-
erment objective based on learned successor representations can be used to assist
humans without making assumptions about the human following an underlying
reward function. In Section 8.3, we provide empirical evidence supporting these
claims.

Preliminaries
Formally, we adapt the notation of Hadfield-Menell et al. [316], and assume a “robot”
(R) and “human” (H) policy are training together in an MDP M = (S ,AH,AR, R, P, γ).
The states s consist of the joint states of the robot and the human; we do not have
separate observations for the human and robot. At any state s ∈ S , the robot policy
selects actions distributed according to πR(aR | s) for aR ∈ AR and the human
selects actions from πH(aH | s) for aH ∈ AH. The transition dynamics are defined
by a distribution P(s′ | s, aH, aR) over the next state s′ ∈ S given the current state
s ∈ S and actions aH ∈ AH and aR ∈ AR, as well as an initial state distribution
P(s0). For notational convenience, we will additionally define random variables st
to represent the state at time t, and aR

t ∼ πR(• | st) and aH
t ∼ πH(• | st) to represent

the human and robot actions at time t, respectively.

Empowerment. Our work builds on a long line of prior methods that use informa-
tion theoretic objectives for RL. Specifically, we adopt empowerment as an objective
for training an assistive agent [4, 323, 324]. This section provides the mathematical
foundations for empowerment, as developed in prior work. Our work will build
on the prior work by (1) providing an information geometric interpretation of what
empowerment does (Section 8.1) and (2) providing a scalable algorithm for estimat-
ing and optimizing empowerment, going well beyond the gridworlds studied in
prior work.

The idea behind empowerment is to think about the changes that an agent can
effect on a world; an agent is more empowered if it can effect a larger degree of
change over future outcomes. Following prior work [211, 324, 323], we measure
empowerment by looking at how much the actions taken now affect outcomes in
the future. An agent with a high degree of empowerment exerts a high degree of
control of the future states by simply changing the actions taken now. Like prior
work, we measure this degree of control through the mutual information I(s+; aH)
between the current action aH and the future states s+. Note that these future states
might occur many time steps into the future.

Empowerment depends on several factors: the environment dynamics, the
choice of future actions, the current state, and other agents in the environment.

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 140

Different problem settings involve maximizing empowerment using these different
factors. In this work, we study the setting where a “human” agent and a “robot”
agent collaborate in an environment; the robot will aim to maximize the empow-
erment of the human. This problem setting was introduced in prior work [4].
Compared with other mathematical frameworks for learning assistive agents [325],
framing the problem in terms of empowerment means that the assistive agent need
not infer the human’s underlying intention, an inference problem that is typically
challenging [326, 327].

We now define our objective. To do this, we introduce random variable s+,
which corresponds to a state sampled K ∼ Geom(1− γ) steps into the future under
the behavior policies πH and πR. We will use ρ(s+ | st) to denote the density of
this random variable; this density is sometimes referred to as the discounted state
occupancy measure. We will use mutual information to measure how much the
action at at time t changes this distribution:

I(aH
t ; s+ | st) ≜ Est,st+k,aH

t ,aR
t

[
log

P(st+K = st+k | st = st, aH
t = at)

P(st+K = st+k | st = st)

]
. (8.1)

Our overall objective is empowerment, E(πH, πR): the mutual information between
the human’s actions and the future states s+ while interacting with the robot:

E(πH, πR) = E
[∞

∑
t=0

γt I(aH
t ; s+ | st)

]
. (8.2)

Note that this objective resembles an RL objective: we do not just want to maximize
this objective greedily at each time step, but rather want the assistive agents to
take actions now that help the human agent reach states where it will have high
empowerment in the future.

Intuition and Geometry of Empowerment
Intuitively, the assistive agent should aim to maximize the number of future out-
comes. We will mathematically quantify this in terms of the discounted state oc-
cupancy measure, ρπ(s+ | s). Intuitively, an agent has a large empowerment if the
future states for one action are very different from the future actions after taking a
different action; i.e., when ρ(at = a1; s+ | st) is quite different from ρ(at | s2; s+ | st)
for actions a1 ̸= a2. The mutual information (Eq. (8.1)) quantifies this degree of
control: I(at; s+ | st).

One way of understanding this mutual information is through information geom-
etry [328, 329, 329, 330]. For a fixed current state st, assistant policy πR and human
policy πH, each potential action at that the human takes induces a different distri-
bution over future states: ρπR,πH(s+ | st, at). We can think about the set of these
possible distributions: {ρπR,πH(s+ | st, at) | at ∈ A}. Figure 8.2 (Left) visualizes

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 141

0.0
0.2

0.4
0.6

0.8
1.0

Ω(s1)

0.0
0.2

0.4
0.6

0.8
1.0

Ω(s2)

0.0

0.2

0.4

0.6

0.8

1.0

Ω(s3)

(a) State marginal polytope

28% 28%

44%

(b) Mutual information (c) Maximizing empower-
ment

Figure 8.2: The Information Geometry of Empowerment, illustrating the analysis
in Section 8.1. (Left) For a given state st and assistant policy πR, we plot the distri-
bution over future states for 6 choices of the human policy πH. In a 3-state MDP, we
can represent each policy as a vector lying on the 2-dimensional probability simplex.
We refer to the set of all possible state distributions as the state marginal polytope.
(Center) Mutual information corresponds to the distance between the center of
the polytope and the vertices that are maximally far away. (Right) Empowerment
corresponds to maximizing the size of this polytope. For example, when an assistive
agent moves an obstacle out of a human user’s way, the human user can spend
more time at desired state.

this distribution on a probability simplex for 6 choices of action at. If we look at
any possible distribution over actions, then this set of possible future distributions
becomes a polytope (see orange polygon in Fig. 8.2 (Center)).

Intuitively, the mutual information I(at; s+ | st) used to define our empower-
ment objective corresponds to the size or volume of this state marginal polytope. This
intuition can be formalized by using results from information geometry [331–333].
The human policy πH(at | st) places probability mass on the different points in
Figure 8.2 (Center). Maximizing the mutual information corresponds to “picking
out” the state distributions that are maximally spread apart (see probabilities in
Fig. 8.2 (Center)). To make this formal, define

ρ(s+ | st) ≜ Eπ(at|st)[ρ(s
+ | st, at)] (8.3)

as the average state distribution from taking the human’s actions (see green square
in Fig. 8.2 (Center)).

Remark 8.1. Mutual information corresponds to the distance between the average state
distribution (Eq. 8.3) and the furthest achievable state distributions:

I(at; s+ | st) = max
at

DKL
(
ρ(at; s+ | st)

∥∥ ρ(s+ | st)
)
≜ dmax. (8.4)

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 142

This distance is visualized as the black lines in Fig. 8.2. When we talk about the
“size” of the state marginal polytope, we are specifically referring to the length of
these black lines (as measured with a KL divergence).

This sort of mutual information is a way for measuring the degree of control
that an agent exerts on an environment. This measure is well defined for any
agent/policy; that agent need not be maximizing mutual information, and could
instead be maximizing some arbitrary reward function. This point is important
in our setting: this means that the assistive agent can estimate and maximize the
empowerment of the human user without having to infer what reward function the
human is trying to maximize.

Finally, we come back to our empowerment objective, which is a discounted
sum of the mutual information terms that we have been analyzing above. This
empowerment objective says that the human is more empowered when this set has
a larger size — i.e., the human can visit a wider range of future state (distributions).
The empowerment objective says that the assistive agent should act to try to max-
imize the size of this polytope. Importantly, this maximization problem is done
sequentially: the assistive agent wants the size of this polytope to be large both
at the current state and at future states; the human’s actions should exert a high
degree of influence over the future outcomes both now and in the future. Thus, our
overall objective looks at a sum of these mutual informations.

Not only does this analysis provides a geometric picture for what empowerment
is doing, it also lays the groundwork for formally relating empowerment to reward.

Relating Empowerment to Reward
In this section we take aim at the question: when humans are well-modeled as
optimizing a reward function, when does maximizing empowerment help humans
maximize their rewards? Answering this question is important because for empow-
erment to be a safe and effective assistive objective, it should enable the human to
better achieve their goals. We show that under certain assumptions, empowerment
yields a provable lower bound on the average-case reward achieved by the human
for suffiently long-horizon empowerment (i.e., γ→ 1).

For constructing the formal bound, we suppose the human is Boltzmann-
rational [334, 290] with respect to some reward function R ∼ R, whereR is some
distribution that could be interpreted as a prior over the human’s objective, a set of
skills the human may try and carry out, or a population of humans with different
objectives that the agent could be interacting with. Our quantity of interest, the
average-case reward achieved by the human with our empowerment objective, is
given by

J γ
πR
(πH) = E R∼R

s0∼p0

[
VπH,πR

R,γ (s0)
]

(8.5)

where VπH,πR
R,γ (s0) is the value function of the human policy πH under the reward

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 143

function R when interacting with πR. Recalling Eq. (8.2), we will express the overall
empowerment objective we are trying to relate to Eq. (8.5) as

Eγ(πH, πR) = E
[
∑∞

t=0 γt I(s+; aH
t | s̃t)

]
. (8.6)

The two key assumptions used in our analysis are Assumption 8.1, which states
that the human will optimize for behaviors that uniformly cover the state space,
and Assumption 8.2, which simply states that with infinite time, the human will be
able to reach any state in the state space.

Assumption 8.1 (Skill Coverage). The rewards R ∼ R are uniformly distributed over
the scaled |S|-simplex ∆|S| such that:(

R + 1
|S|
)(1

1−γ

)
∼ Unif

(
∆|S|

)
= Dirichlet(1, 1, . . . , 1︸ ︷︷ ︸

|S| times

). (8.7)

Assumption 8.2 (Ergodicity). For some πH, πR, we have

PπH,πR(s+ = s | s0) > 0 for all s ∈ S , γ ∈ (0, 1). (8.8)

Our main theoretical result is Theorem 8.2, which shows that under these as-
sumptions, maximizing empowerment yields a lower bound on the (squared)
average-case reward achieved by the human for sufficiently large γ. In other words,
for a sufficiently long empowerment horizon, the empowerment objective Eq. (8.2)
is a meaningful proxy for reward maximization.

Theorem 8.2. Under Assumption 8.1 and Assumption 8.2, for sufficiently large γ and
any β > 0,

Eγ(πH, πR)
1/2 ≤ (β/e)J γ

πR
(πH). (8.9)

To the best of our knowledge, this result provides the first formal link between
empowerment maximization and reward maximization. This motivates us to
develop a scalable algorithm for empowerment maximization, which we introduce
in the following section.

Notation for Analysis
To connect our empowerment objective to reward, we will extend the notation in
Section 8.1 to include a distribution over possible tasks the human might be trying
to solve, R, such that each R ∼ R defines a distinct reward function R : S → R.
We assume πR tries to maximize the γ-discounted empowerment” of the human,
defined as

Eγ(πH, πR) = E
[
∑∞

t=0 γt I(sγ
+; aH

t | s̃t)
]

(Eq. 8.6)

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 144

for
sγ
+ ≜

{
sk for k ∼ Geom(1− γ)

}
. (8.10)

We additionally define s̄t to be the full history of states up to time t and āH
t to be the

full history of human actions up to time t,

s̄t = {si}t
i=0,

āH
t = {aH

i }t
i=0. (8.11)

Then, s̃t is the full history of states and past human actions up to time t,

s̃t = s̄t ∪ āH
t−1. (8.12)

Note that the definition of empowerment in Eq. (8.6) differs slightly from the
original construction Eq. (8.2) — we condition on the full history of human actions,
not just the most recent one. This distinction becomes irrelevant in practice if our
MDP maintains history in the state, in which case we can equivalently use st in
place of s̃t.

Meanwhile, for any fixed πR and β > 0, the human is Boltzmann-rational with
respect to the robot’s policy:

πH(aH
t | s̃t) ∝ exp

(
βQπH,πR

R,γ (st, aH
t)
)

(8.13)

where QπH,πR
R,γ (st, aH

t) = E
[
∑∞

k=0 γkR(st+k)
∣∣∣ st, aH

t

]
. (8.14)

Equivalently, we can define the human’s (soft) Q-function and value as

QπH,πR
R,γ (st, aH

t) = R(st) + γE
[
VπH,πR

R,γ (st+1)
∣∣∣ st, aH

t

]
for VπH,πR

R,γ (st) = E
[

R(st) + γR(st+1) + γ2R(st+2) + . . .
∣∣∣ st, aH

t

]
. (8.15)

The overall human objective is to maximize the expected soft value:

J γ
πR
(πH) = E R∼R

s0∼p0

[
VπH,πR

R,γ (s0)
]
. (Eq. 8.5)

Note that this definition of πH depends on R and πR and is bounded 0 ≤
J γ

πR
(πH) ≤ 1. As in the CIRL setting [316], we assume robot is unable to access the

true human reward R : S → R. One way to think of the robot’s task is as finding a
Nash equilibrium between the objectives Eq. (8.6) and the human best response in
Eq. (8.13).

For convenience, we will also define a multistep version of QπH,πR
R,γ ,

QπH,πR
R,γ (st, aH

t , . . . , aH
t+K) = E

[
∑∞

k=0 γkR(st+k)
∣∣∣ st, aH

t , . . . , aH
t+K

]
. (8.16)

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 145

Proof of Theorem 8.2

Our approach will be to first relate the empowerment (influence of aH
t on sγ

+) to the
mutual information between aH

t and the reward R.
Then, we will connect this quantity to a notion of “advantage” for the human

(Eq. 8.23), which in turn can be related to the expected reward under the human’s
policy. In its simplest form, this argument will require an assumption over the
reward distribution:

Assumption 8.1 (Skill Coverage). The rewards R ∼ R are uniformly distributed over
the scaled |S|-simplex ∆|S| such that:(

R + 1
|S|
)(1

1−γ

)
∼ Unif

(
∆|S|

)
= Dirichlet(1, 1, . . . , 1︸ ︷︷ ︸

|S| times

). (8.7)

In other words, Assumption 8.1 says our prior over the human’s reward function
is uniform with zero mean. This is not the only prior for which this argument works,
but for generalR we will need a correction term to incentivize states that are more
likely across the distribution ofR. Another way to view Assumption 8.1 is that the
human is trying to execute diverse “skills” z ∼ Unif(∆|S|).

We also assume ergodicity (Assumption 8.2). In the special case of an MDP that
resets to some distribution with full support over S , this assumption is automatically
satisfied.

Assumption 8.2 (Ergodicity). For some πH, πR, we have

PπH,πR(sγ
+ = s | s0) > 0 for all s ∈ S , γ ∈ (0, 1). (8.8)

Our main result connects empowerment directly to a (lower bound on) the
human’s expected reward.

Theorem 8.2. Under Assumption 8.1 and Assumption 8.2, for sufficiently large γ and
any β > 0,

Eγ(πH, πR)
1/2 ≤ (β/e)J γ

πR
(πH). (8.9)

Theorem 8.2 says that for a long enough horizon (i.e., γ close to 1), the robot’s
empowerment objective will lower bound the (squared, MaxEnt) human objective.

We make use of the following lemmas in the proof.

Lemma 8.3. For t ∼ Geom(1− γ) and any K ≥ 0,

lim inf
γ→1

I(sγ
+; aH

t , . . . , aH
t+K | s̃t) ≤ I(R; aH

t , . . . , aH
t+K | s̃t). (8.17)

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 146

Proof. For sufficiently large γ, sγ
+ will approach the stationary distribution of PπH,πR

for a fixed πH, πR, irrespective of s̃t and aH
t , . . . , aH

t+K from Assumption 8.2. So,

lim inf
γ→1

I(sγ
+; aH

t , . . . , aH
t+K | s̃t) ≤ I

(
lim

γ→∞
sγ
+ ; aH

t , . . . , aH
t+K

∣∣∣ s̃t

)
(8.18)

Since each R, πR, γ defines a human policy πH via Eq. (8.13), we can express the
dependencies as the following Markov chain:

ât R lim
γ→1

sγ
+. (8.19)

Applying the data processing inequality [328], we get

I
(

lim
γ→∞

sγ
+ ; aH

t , . . . , aH
t+K

∣∣∣ s̃t

)
≤ I
(

R; aH
t , . . . , aH

t+K | s̃t
)
, (8.20)

from which Eq. (8.17) follows.

Lemma 8.4. Suppose we have k logits, denoted by the map α : {1 . . . k} → [0, 1]. For any
β > 0, we can construct the (softmax) distribution

pβ(i) ∝ exp
(

βα(i)
)
.

Then,

H(pβ) ≥ log k−
(β

e

)2
. (8.21)

Proof. We lower bound the “worst-case” of the RHS, α = (1, 0, . . . , 0):

H(pβ) =
(1− n) log

(1
k+eβ−1

)
k + eβ − 1

−
eβ log

(eβ

k+eβ−1

)
k + eβ − 1

=
(k + eβ − 1) log

(
k + eβ − 1

)
− eβ log

(
eβ
)

k + eβ − 1

= log
(

k + eβ − 1
)
− eβ log

(
eβ
)

k + eβ − 1
≥ log k− (β/e)2. (8.22)

Lemma 8.5. For any t and K ≥ 0,

I(R; aH
t , . . . , aH

t+K | s̃t) ≤ lim
γ→1

(β

e
E
[
QπH,πR

R,γ (st, aH
t , . . . , aH

t+K)
])2

. (8.23)

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 147

Proof. Denote by âH
t . . . ât+K ∼ Unif(AH) a sequence of K random actions. From

Lemma 8.4:

I(R;aH
t , . . . , aH

t+K | s̃t) = H(aH
t , . . . , aH

t+K | s̃t)−H(aH
t , . . . , aH

t+K | R, s̃t)

≤ log
(
K|A|

)
−H

(
aH

t , . . . , aH
t+K

∣∣ R, s̃t
)

≤ lim
γ→1

(β

e
E
[
QπH,πR

R,γ (st, aH
t , . . . , aH

t+K)−QπH,πR
R,γ (st, âH

t , . . . , âH
t+K)

])2
, (8.24)

where the last inequality follows from Lemma 8.4 and QπH,πR
R,γ (. . .) ≤ 1. We also

have
0 ≤ QπH,πR

R,γ (st, âH
t , . . . , âH

t+K) ≤ QπH,πR
R,γ (st, aH

t , . . . , aH
t+K) ≤ 1, (8.25)

which lets us conclude from Eq. (8.24) that

I(R; aH
t , . . . , aH

t+K | s̃t) ≤
(β

e
E
[
QπH,πR

R,γ (st, aH
t , . . . , aH

t+K)
])2

. (Eq. 8.23)

We can now prove Theorem 8.2 directly by combining Lemmas 8.3 and 8.5.

Proof of Theorem 8.2. Simplifying the limit in Eq. (8.9), we get

lim inf
γ→1

Eγ(πH, πR) ≤ lim inf
γ→1

(
∑∞

t=0 γt I(sγ
+; aH

t | s̃t)
)

≤ lim inf
γ→1

I(sγ
+; aH

t , . . . , aH
t+K | s̃t) (chain rule)

≤ I(R; aH
t , . . . , aH

t+K | s̃t) (Lemma 8.3)

≤ lim
γ→1

(β

e
E
[
QπH,πR

R,γ (st, aH
t , . . . , aH

t+K)
])2

(Lemma 8.5)

≤ lim
γ→1

(
βJ γ

πR
(πH)

e

)2

. (8.26)

It follows that for sufficiently large γ,

Eγ(πH, πR)
1/2 ≤ (β/e)J γ

πR
(πH). (Eq. 8.9)

8.2 MAXIMIZING EMPOWERMENT WITH CONTRASTIVE REPRESEN-
TATIONS

Directly computing Eq. (8.2) would require access to the human policy, which we
don’t have. Therefore, we want a tractable estimation that still performs well in

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 148

50k 100k 150k 200k 250k

10

20

30

R
ew

ar
d

2 obstacles

100k 200k 300k 400k

10

20

5 obstacles

200k 400k 600k

5

10

15

20

Step

R
ew

ar
d

7 obstacles

500k 1M 1.5M

5

10

Step

10 obstacles

ESR (Ours) ESR (−aR)

Figure 8.3: We evaluate our method with and without conditioning on the robot
action aR. Conditioning aids learning significantly, which we theorize is because it
removes uncertainty in the classification.

large environments which are more difficult to model due to the exponentially
increasing set of possible future states. To better-estimate empowerment, we learn
contrastive representations that encode information about which future states are
likely to be reached from the current state. These contrastive representations learn
to model mutual information between the current state, action, and future state,
which we then use to compute the empowerment objective.

Estimating Empowerment
To estimate this empowerment objective, we need a way of learning the probability
ratio inside the expectation. Prior methods such as Du et al. [4] and Salge et al. [323]
rollout possible future states and compute a measure of their variance as a proxy
for empowerment, however this doesn’t scale when the environment becomes
complex. Other methods learn a dynamics model, which also doesn’t scale when
dynamics become challenging to model [335]. Modeling these probabilities directly
is challenging in settings with high-dimensional states, so we opt for an indirect

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 149

50k 100k 150k 200k 250k

10

20

30

R
ew

ar
d

2 obstacles

200k 400k 600k

10

20

5 obstacles

200k 400k 600k

5

10

15

20

Step

R
ew

ar
d

7 obstacles

500k 1M 1.5M

5

10

Step

10 obstacles

ESR (Ours) ESR (Greedy)

Figure 8.4: We compare a greedy policy (γ = 0) against our standard policy
(γ = 0.9).

approach. Specifically, we will learn representations that encode two probability
ratios. Then, we will be able to compute the desired probability ratio by combining
these other probability ratios.

Our method learns three representations:
1. ϕ(s, aR, aH)— This representation can be understood as a sort of latent-space

model, predicting the future representation given the current state s and the
human’s current action aH as well as the robot’s current action aR.

2. ϕ′(s, aR)— This representation can be understood as an uncontrolled model,
predicting the representation of a future state without reference to the current
human action aH. This representation is analogous to a value function.

3. ψ(s+)— This is a representation of a future state.
We will learn these three representations with two contrastive losses, one that aligns
ϕ(s, aR, aH)↔ ψ(s+) and one that aligns ϕ′(s, aR)↔ ψ(s+)

max
ϕ,ϕ′,ψ

E{(si,ai,s′i)∼P(st,aH
t ,st+k)}N

i=1

[
Lc(
{

ϕ(si, ai)
}

, {ψ(s′j)}) + Lc(
{

ϕ′(si)
}

, {ψ(s′j)})
]
,

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 150

Figure 8.5: Visualizing training empowerment in a 5x5 Gridworld with 10 obstacles.
Our empowerment objective maximizes the influence of the human’s actions on the
future state, preferring the state where the human can reach the goal to the trapped
state. This corresponds to maximizing the volume of the state marginal polytope,
which is proportional to the number of states that the human can reach from their
current position. To visualize the representations, we set the latent dimension to 3
instead of 100.

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 151

where the contrastive loss Lc is the symmetrized infoNCE objective [152]:

Lc({xi}, {yj}) ≜
N

∑
i=1

[
log
(

exT
i yi

∑N
j=1 exT

i yj

)
+ log

(
exT

i yi

∑N
j=1 exj

Tyi

)]
. (8.27)

We have colored the index j for clarity. At convergence, these representations encode
two probability ratios [236], which we will ultimately be able to use to estimate
empowerment (Eq. 8.2):

ϕ(s, aR, aH)Tψ(g) = log
[

P(st+K = g | st = s, aH
t = aH, aR

t = aR)

C1 P(st+K = g)

]
(8.28)

ϕ′(s, aR)Tψ(g) = log
[

P(st+K = st+k | st = st, aR
t = aR)

C2 P(st+K = g)

]
. (8.29)

Note that our definition of empowerment (Eq. 8.2) is defined in terms of similar
probability ratios. The constants C1 and C2 will mean that our estimate of empow-
erment may be off by an additive constant, but that constant will not affect the
solution to the empowerment maximization problem.

Estimating Empowerment with the Learned Representations
To estimate empowerment, we will look at the difference between these two inner
products:

ϕ(st+K, aR, aH)Tψ(g)− ϕ(st+K, aR)Tψ(g) (8.30)

= log P(st+K | s, aH)− log C1 −�������
log P(st+K)

− log P(st+K | s) + log C2 +�������
log P(st+K) (8.31)

= log
P(st+K | s, aH)

P(st+K | s)
+ log

C2

C1
. (8.32)

Note that the expected value of the first term is the conditional mutual information
I(st+K; aH | s). Our empowerment objective corresponds to averaging this mutual
information across all the visited states. In other words, our objective corresponds
to an RL problem, where empowerment corresponds to the expected discounted
sum of these log ratios:

E(πH, πR) = EπH,πR

[∞

∑
t=0

γt I(s+; aH
t | st)

]
(8.33)

≈ EπH,πR

[∞

∑
t=0

γt(ϕ(st, aR, aH)− ϕ(st, aR))Tψ(g)− log
C2

C1

]
. (8.34)

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 152

Algorithm 5: Empowerment via Successor Representations (ESR)

Input: Human policy πH(a | s)
Randomly initialize assistive agent policy πR(a | s), and representations
ϕ(s, aR, aH), ψ(s, aT), and ψ(g).
Initialize replay buffer B.
while not converged do

Collect a trajectory of experience with human policy and assistive agent policy,
store in replay buffer B.
Update representations ϕ(s, aR, aH), ψ(s, aT), and ψ(g) with the contrastive
losses in Eq. (8.27).
Update πR(a | s) with RL using reward function r(s, aR, aH) = (ϕ(s, aR, aH)−
ϕ′(s, aR))Tψ(g).

Return: Assistive policy πR(a | s).

The approximation above comes from function approximation in learning the Bayes
optimal representations. Again, note that the constants C1 and C2 do not change
the optimization problem. Thus, to maximize empowerment we will apply RL to
the assistive agent πR(a | s) using a reward function

r(s, aR) =
(
ϕ(st, aR, aH)− ϕ(st, aR)

)T
ψ(g). (8.35)

Algorithm Summary
We propose an actor-critic method for learning the assistive agent. Our method will
alternate between updating these contrastive representations and using them to
estimate a reward function (Eq. (8.35)) that is optimized via RL. We summarize the
algorithm in Algorithm 5. In practice, we use SAC [292] as our RL algorithm. In
our experiments, we will also study the setting where the human user updates their
policy alongside the assistive agent.

8.3 EXPERIMENTS

We seek to answer two questions with our experiments. First, does our approach
enable assistance in standard cooperation benchmarks? Second, does our approach
scale to harder benchmarks where prior methods fail?

Our experiments will use two benchmarks designed by prior work to study
assistance: the obstacle gridworld [4] and Overcooked [6]. Our main baseline is
AvE [4], a prior empowerment-based method. Our conjecture is that both methods
will perform well on the lower-dimensional gridworld task, and that our method
will scale more gracefully to the higher dimensional Overcooked environment. We
will also compare against a naïve baseline where the assistive agent acts randomly.

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 153

50k 100k 150k 200k 250k
0

10

20

30

R
ew

ar
d

2 obstacles

100k 200k 300k 400k
0

10

20

5 obstacles

200k 400k 600k
0

10

20

Step

R
ew

ar
d

7 obstacles

500k 1M 1.5M
0

5

10

Step

10 obstacles

ESR (Ours) AvE Random
ESR-Norm Goal Inference Reward Inference

Figure 8.6: We apply our method to the benchmark proposed in prior work [4], vi-
sualized in Fig. 8.7a. The four subplots show variant tasks of increasing complexity
(more blocks), (±1 SE). We compare against AvE [4], the Goal Inference baseline
from [4] which assumes access to a world model, and Reward Inference [5] where
we recover the reward from a learned q-value. These prior approaches fail on all
except the easiest task, highlighting the importance of scalability.

Do contrastive successor representations effectively estimate empowerment?
We test our approach in the assistance benchmark suggested in Du et al. [4]. The
human (orange) is tasked with reaching a goal state (green) while avoiding the
obstacles (purple). The AI assistant can move blocks one step at a time in any direc-
tion [4]. While the original benchmark used N = 2 obstacles, we will additionally
evaluate on harder versions of this task with N = 5, 7, 10 obstacles. We show results
in Fig. 8.6. On the easiest task, both our method and AvE achieve similar asymptotic
reward, though our method learns more slowly than AvE. However, on the tasks
with moderate and high degrees of complexity, our approach (ESR) achieves signifi-

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 154

(a) Obstacle Gridworld (b) Cramped Room (c) Coordination Ring

Figure 8.7: (a) The modified environment from Du et al. [4] scaled to N = 7 blocks,
and (b, c) the two layouts of the Overcooked environment [6].

Onions

= robot (ESR)πR = human πH

Human
Adds Onion

Robot
Adds Onion

Empty Pot

Figure 8.8: In Coordination Ring, our ESR agent learns to wait for the human to add
an onion to the pot, and then adds one itself. There is another pot at the top which
is nearly full, but the empowerment agent takes actions to maximize the impact of
the human’s actions, and so follows the lead of the human by filling the empty pot.

cantly higher rewards than AvE, which performs worse than a random controller.
These experiments support our claim that contrastive successor representations
provide an effective means for estimating empowerment, and hint that ESR might
be well suited for solving higher dimensional tasks.

Does our approach scale to tasks with image-based observations?
Our second set of experiments look at scaling ESR to the image-based Overcooked
environment. Since contrastive learning is often applied to image domains, we
conjectured that ESR would scale gracefully to this setting. We will evaluate our
approach in assisting a human policy trained with behavioral cloning taken from
Laidlaw and Dragan [336]. The human prepares dishes by picking up ingredients
and cooking them on a stove, while the AI assistant moves ingredients and dishes

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 155

around the kitchen. We focus on two environments within this setting: a cramped
room where the human must pass ingredients and dishes through a narrow corridor,
and a coordination ring where the human must pass ingredients and dishes around
a ring-shaped kitchen (Figs. 8.7b and 8.7c). As before, we compare with AvE as
well as a naïve random controller. We report results in Table 8.1. On both tasks,
we observe that our approach achieves higher rewards than AvE baseline, which
performs no better than a random controller. In Fig. 8.8, we show an example of one
of the collaborative behaviors learned by ESR. Taken together with the results in the
previous setting, these results highlight the scalability of ESR to higher dimensional
problems.

Table 8.1: Overcooked Results

Layout ESR (Ours) Reward Inference AvE Random

Asymmetric Advantages 72.00± 5.37 60.33± 0.26 36.71± 1.71 59.36
Coordination Ring 8.40± 0.69 5.96± 0.20 5.69± 0.93 6.02
Cramped Room 91.33± 4.08 39.24± 0.35 5.13± 1.31 69.26

Additional Ablations and Details
See Appendix C.4 for additional ablations and details on the experiments.

8.4 ADDITIONAL ABLATIONS AND QUALITATIVE RESULTS

In this section we evaluate additional ablations and qualitative results for the
ESR method.

Learning Representations without the Robot Action

In our estimation of empowerment (Eq. 8.29) we supply the robot action aR when
learning both ϕ and ϕ, however, the theoretical empowerment formulation in
Section 8.1 does not require it.

To evaluate the impact of including aR, we run an additional ablation without
it on the gridworld environment, shown in Fig. 8.3. This ablation shows that the
inclusion of aR is most impactful in more challenging (higher number of boxes)
environments. We hypothesize that conditioning the representations on the robot
action reduces the noise in the mutual information estimation, and also reduces the
difficulty of classifying true future states.

Greedy Empowerment Policy
All of our experiments used Soft-Q learning to learn a policy from the empowerment
estimation. Here, we additionally study a greedy empowerment policy which takes

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 156

the most empowering action at each step. We model this by setting the q-learning
gamma to 0 to fully discount future rewards.

Results for this ablation are shown in Fig. 8.4. Unsurprisingly, the greedy
optimization vastly underperforms the policy with γ = 0.9.

ESR Training Example
In Fig. 8.5, we show the mutual information during training of the ESR agent in the
gridworld environment with 5 obstacles. he mutual information quickly becomes
positive and remains so throughout training. As long as the mutual information is
positive, the classifier is able to reward the agent for taking actions that empower
the human.

Simplifying the Objective
The reward function in Eq. (8.35) is itself a random variable because it depends on
future states g. This subsection describes how this randomness can be removed. To
do this, we follow prior work [161, 11] in arguing that the learned representations
ψ(g) follow a Gaussian distribution:

Assumption 8.3 (Based on Wang and Isola [161]). The representations of future states
ψ(g) learned by contrastive learning have a marginal distribution that is Gaussian:

P(ψ) =
∫

P(g)δ(ψ = ψ(g))dg d
= N (0, I). (8.36)

With this assumption, we can remove the random sampling of g from the
reward function. We start by noting that the learned representations tell us the
relative likelihood of seeing a future state Eq. (8.29)). Assumption 8.3 will allow us
to convert these relative likelihoods into likelihoods.

EP(s+|s,aR,aH)[r(s, aR)] = EP(s+)

[
P(s+|s,aR,aH)

P(s+) r(s, aR)

]
= EP(s+)

[
C1eϕ(s,aR,aH)Tϕ(s+)r(s, aR)

]
= C1Eψ∼P(ϕ(s+))

[
eϕ(s,aR,aH)Tψ(ϕ(s, aR, aH)− ϕ(s, aR))Tψ

]
= C1

(
ϕ(s, aR, aH)− ϕ(s, aR)

)T∫
1

(2π)d/2 e−
1
2∥ψ∥2

2+ϕ(s,aR,aH)Tψψ dψ

= C1
(
ϕ(s, aR, aH)− ϕ(s, aR)

)Te
1
2∥ϕ(s,aR,aH)∥2

2∫
1

(2π)d/2 e−
1
2∥ψ∥2

2+ϕ(s,aR,aH)Tψ− 1
2∥ϕ(s,aR,aH)∥2

2ψ dψ

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 157

= C1
(
ϕ(s, aR, aH)− ϕ(s, aR)

)T

e
1
2∥ϕ(s,aR,aH)∥2

2Eψ∼N (µ=ϕ(s,aR,aH),Σ=I)
[
ψ
]

= C1e
1
2∥ϕ(s,aR,aH)∥2

2
(
ϕ(s, aR, aH)− ϕ(s, aR)

)T
ϕ(s, aR, aH).

(8.37)

This simplification may be attractive in in cases where the computed empower-
ment bonuses have high variance, or when the empowerment horizon is large (i.e.,
γ→ 1, as in Section 8.1). Empirically, we found this version of the objective to be
less effective in practice due to the additional representation structure required by
Assumption 8.3.

8.5 DISCUSSION

One of the most important problems in AI today is equipping AI agents with the
capacity to assist humans achieve their goals. While much of the prior work in this
area requires inferring the human’s intention, our work builds on prior work in
studying how an assistive agent can empower a human user without inferring their
intention. Relative to prior methods, we demonstrate how empowerment can be
readily estimated using contrastive learning, paving the way for deploying these
techniques on high-dimensional problems.

Limitations. One of the main limitations of our approach is the assumption that
the assistive agent has access to the human’s actions, which could be challenging
to observe in practice. Automatically inferring the human’s actions remains an
important problem for future work. A second limitation is that the method is
currently an on-policy method, in the sense that the assistive agent has to learn by
trial and error. A third limitation is that the ESR formulation assumes that both
agents share the same state space. In many cases the empowerment objective will
still lead to desirable behavior, however, care must be taken in cases where the agent
can restrict the information in its own observations, which could lead to reward
hacking. Finally, our experiments do not test our method against real humans,
whose policies may differ from the simulated policies. In the future, we plan to
investigate techniques from off-policy evaluation and cooperative game theory to
enable faster learning of assistive agents with fewer trials. We also plan to test the
ESR objective in environments with partial observability over the human’s state.

Safety risks. Perhaps the main risk involved with maximizing empowerment is
that it may be at odds with a human’s agents goal, especially in contexts where the
pursuit of that goal limits the human’s capacity to pursue other goals. For example,
a family choosing to have a kid has many fewer options over where they can travel
for vacation, yet we do not want assistive agents to stymie families from having
children.

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 158

One key consideration is whom should be empowered. The present paper as-
sumes there is a single human agent. Equivalently, this can be seen as maximizing
the empowerment of all exogenous agents. However, it is easy to adapt the pro-
posed method to maximize the empowerment of a single target individual. Given
historical inequities in the distribution of power, practitioners must take care when
considering whose empowerment to maximize. Similarly, while we focused on
maximizing empowerment, it is trivial to change the sign so that an “assistive” agent
minimizes empowerment. One could imagine using such a tool in policies to
handicap one’s political opponents.

8.6 RELATED WORK

Our approach broadly connects ideas from contrastive contrastive representation
learning and intrinsic motivation to the problem of assisting humans.

Assistive Agents. There are two lines of past work on assistive agents that are most
relevant.

The first line of work focuses on the setting of an assistance game [316], where a
robot (AI) agent tries to optimize a human reward of which it is initially unaware.
Practically, inverse reinforcement learning (IRL) can be used in such a setting
to infer the human’s reward function and assist the human in achieving their
goals [317]. The key challenge with this approach is that it requires modeling the
human’s reward function. This can be difficult in practice, especially if the human’s
behavior is not well-modeled by the reward architecture. Slightly mispecified
reward functions can lead to catastrophic outcomes (i.e., directly harmful behavior
in the assistance context) [337–339]. By contrast, our approach does not require
modeling the human’s reward function.

The second line of work focuses on empowerment-like objectives for assistance
and shared autonomy. Empowerment generally refers to a measure of an agent’s
ability to influence the environment [323, 340]. In the context of assistance, Du et al.
[4] show one such approximation of empowerment (AvE) can be approximated
in simple environments through random rollouts to assist humans. Meanwhile,
empowerment-like objectives have been used in shared autonomy settings to assist
humans with teleoperation [341] and general assistive interfaces [342]. A key limi-
tation of these approaches for general assistance is they only model empowerment
over one time step. Our approach enables a more scalable notion of empowerment
that can be computed over multiple time steps.

Intrinsic Motivation. Intrinsic motivation broadly refers to agents that accomplish
behaviors in the absence of an externally-specified reward or task [343]. Com-
mon applications of intrinsic motivation in single-agent reinforcement learning
include exploration and skill discovery [344–346], empowerment [340, 323], and
surprise minimization [347, 348, 340]. When applied to settings with humans, these

8 EMPOWERMENT VIA SUCCESSOR REPRESENTATIONS 159

objectives may lead to antisocial behavior [319]. Our approach applies intrinsic
motivation to the setting of assisting humans, where the agent’s goal is an empow-
erment objective—to maximize the human’s ability to change the environment.

Information-theoretic Decision Making. Information-theoretic approaches have
seen broad applicability across unsupervised reinforcement learning [236, 340,
344]. These methods have been applied to goal-reaching [211], skill discovery
[349, 335, 345, 350, 351], and exploration [346, 352, 353]. In the context of assisting
humans, information-theoretic methods have primarily been used to reason about
the human’s goals or rewards [354–356].

Our approach is made possible by advances in contrastive representation learn-
ing for efficient estimation of the mutual information of sequence data [152]. While
these methods have been widely used for representation learning [159, 224] and
reinforcement learning [357, 121, 124, 358], to the best of our knowledge prior work
has not used these contrastive techniques for learning assistive agents.

160

9 THE REPRESENTATION GEOMETRY OF
INTRINSIC MOTIVATION

When learning contrastive representations for decision making, we typically try
and construct state representations ϕ and goal representations ψ such that the dot
product ϕ(s)Tψ(g) can classify future goals from other states. Wang and Isola [161]
argue that contrastive representations learn uniform marginal distributions when
the goal representation is constrained to lie on the unit hypersphere Sn−1. This is
a useful property for decision-making, as well-structured marginal distributions
for states and goals enable easy planning and inference [11], reasoning about
information-theoretic quantities like surprise [359], and allow for easy sampling of
goals and states.

In this section, I’ll discuss some ideas on how to make time-contrastive represen-
tations compatible with satisfying analytic marginal properties. This structure lets
us reason about the relationship between the state and attainable goals geometrically.
We focus on two quantities that are relevant for exploration and skill-discovery:

DKL [p(g | s)∥p(g)] and I(s; g). (9.1)

Depending on the geometry of our contrastive representations, we can derive
closed-form expressions for these quantities in terms of the representation norms
and/or the learned temperature.

Notation. We consider the setting of an infinite-horizon controlled Markov process
{st}∞

t=0 ∈ S that starts at its stationary distribution (i.e., the marginal p(st) =
p(s0) for each t). We say the state and goal are jointly distributed as p(s, g) =
Pr(s0 = s, s+ = g) for s+ = sk, k ∼ Geom(1− γ). We will use ϕ(s) and ψ(g) to
denote the state and goal representations, respectively, and Pr(s+ = g | s0 = s) to
denote the conditional probability of the goal given the state.

In practice, none of the math in this note uses the Markov / time-series struc-
ture, though the derived properties are most relevant for decision making (e.g.,
Eysenbach et al. [11]). Given the assumptions about the marginal structure of the
representations we make below, the results will hold for any joint distribution
p(s, g) modeled with contrastive learning.

9 THE REPRESENTATION GEOMETRY OF INTRINSIC MOTIVATION 161

9.1 BINARY NCE
In the binary NCE setting, we learn to classify future goals from other states with a
dot product that represents normalized log-likelihood ratios:

max
ϕ,ψ

Ep(s,g)p(g−)

[
log σ

(
ϕ(s)Tψ(g)

)
+ log σ

(
−ϕ(s)Tψ(g−)

)]
. (9.2)

Eysenbach et al. [121] argue that contrastive representations learn to satisfy the
following property when learned with this loss:

ϕ(s)Tψ(g) = log
Pr(s+ = g | s0 = s)

Pr(s+ = g)
. (9.3)

If we restrict ψ to lie on the unit hypersphere Sn−1, Wang and Isola [161] separately
argue that contrastive learning should produce representations that are uniform
over the unit hypersphere Sn−1, i.e.,

Pr
(
ψ(st)

)
= C (const.) (9.4)

We then run into an issue. For simplicity, suppose ϕ, ψ are diffeomorphisms
with inverses ϕ−1, ψ−1. We will convert to an expectation to make the change of
variables clear, using the fact that the marginal p(ψ(g)) is uniform over Sn−1:

DKL[p(g)∥p(g | s)] =
∫
S

log
p(g)

p(g | s)
p(g)dg

= −
∫
S

log
p(g | s)

p(g)
p(g)dg

= −
∫
S

(
ϕ(s)Tψ(g)

)
p(g)dg

= −
∫
S

(
ϕ(s)Tψ(g)

)
d
(

p(g)
)

= −
∫

Sn−1

(
ϕ(s)Tψ(g)

)
d
(

p(ψ(g))
)

= −C
∫

Sn−1
ϕ(s)Tψ(g) d

(
ψ(g)

)
= −C

2

∫
Sn−1

ϕ(s)Tψ(g)C d
(
ψ(g)

)
− C

2

∫
Sn−1

ϕ(s)Tψ(g) d
(
−ψ(g)

)
(symmetry)

= −C
2

∫
Sn−1

ϕ(s)Tψ(g)C d
(
ψ(g)

)
+

C
2

∫
Sn−1

ϕ(s)Tψ(g) d
(
ψ(g)

)
= 0. (9.5)

But this implies that p(g | s) = p(g) everywhere, i.e., I(s; g) = 0 and states have
no influence on the future states, a contradiction. This suggests our construction is

9 THE REPRESENTATION GEOMETRY OF INTRINSIC MOTIVATION 162

over-constrained in the dot-product parameterization of contrastive RL (if we also
want nice marginal distributions over the goal representation). How can we solve
this?

9.2 SYMMETRIC INFONCE WITH A LEARNED TEMPERATURE

One idea is to add an additional degree of freedom to the contrastive critic, switching
to a (symmetrized) infoNCE loss, constraining both ϕ and ψ to lie on the unit
hypersphere Sn−1, and applying a learned precision τ to the dot product, similar to
the CLIP loss [17, 11, 53]:

max
ϕ,ψ

E{p(si,gi)}N
i=1

[
N

∑
i=1

log
(

eτϕ(si)
Tψ(gi)

∑N
j=1 eτϕ(si)Tψ(gj)

)
+ log

(
eτϕ(si)

Tψ(gi)

∑N
j=1 eτϕ(sj)Tψ(gi)

)]
. (9.6)

We then recover the following property at convergence for some constant C in
the limit N → ∞:

τϕ(s)Tψ(g) = log
Pr(s+ = g | s0 = s)

C Pr(s+ = g)
. (9.7)

We can compute DKL [p(g | s)∥p(g)] by integrating over the hypersphere:

DKL
[
p(g | s)∥p(g)

]
=
∫
S

p(g | s) log
p(g | s)

p(g)
dg

=
∫
S

p(g | s)
p(g)

log
(

p(g | s)
p(g)

)
p(g)dg

=
∫
S

Ceτϕ(s)Tψ(g)(τϕ(s)Tψ(g) + log C
)

p(g)dg

=
∫
S

Ceτϕ(s)Tψ(g)(τϕ(s)Tψ(g) + log C
)

d
(

p(g)
)

= C
∫

Sn−1
eτϕ(s)Tψ(g)(τϕ(s)Tψ(g) + log C

)
d
(

p
(
ψ(g)

))
(change of variables)

= C
∫

Sn−1
eτϕ(s)Tψ(g)(τϕ(s)Tψ(g) + log C

)
C0 d

(
ψ(g)

)
.

(uniform marginal (9.4))

We then convert to spherical coordinates relative to ϕ(s) by defining a rotation
matrix R whose first row is ϕ(s)/∥ϕ(s)∥, and coordinates

Rψ(g) =

cos(θ1)

sin(θ1) cos(θ2)
sin(θ1) sin(θ2) cos(θ3)

...
sin(θ1) sin(θ2) · · · sin(θn−2) cos(θn−1)

 ,

9 THE REPRESENTATION GEOMETRY OF INTRINSIC MOTIVATION 163

For some du that is orthogonal to dθ1 and dr, we can write [360]

d
(

Rψ(g)
)
= sinn−2(θ1) dθ1 ∧ du.

Continuing from the previous expression, we have

= C
∫

Sn−1
eτϕ(s)Tψ(g)(τϕ(s)Tψ(g) + log C

)
C0 d

(
ψ(g)

)
= C

∫
Sn−1

eτϕ(s)Tψ(g)(τϕ(s)Tψ(g)
)
C0 d

(
ψ(g)

)
+ C

∫
Sn−1

eτϕ(s)Tψ(g)C0 log C d
(
ψ(g)

)
= C

∫
Sn−1

eτϕ(s)Tψ(g)(τϕ(s)Tψ(g)
)
C0 d

(
ψ(g)

)
+ C0C log C

(
(2π)n/2 In/2−1(τ)

τn/2−1

)
= C0C log C

(
(2π)n/2 In/2−1(τ)

τn/2−1

)
+ C

∫
Sn−1

eτ cos θ1
(
τ cos θ1

)
C0 d

(
ψ(g)

)
= C0C log C

(
(2π)n/2 In/2−1(τ)

τn/2−1

)
+ C

∫
Sn−1

eτ cos θ1
(
τ cos θ1

)
C0 d

(
Rψ(g)

)
(rotational symmetry of Sn−1)

= C0C log C
(
(2π)n/2 In/2−1(τ)

τn/2−1

)
+ C

∫
Sn−1

eτ cos θ1
(
τ cos θ1

)
C0 sinn−2(θ1) dθ1 ∧ du

= C0C log C
(
(2π)n/2 In/2−1(τ)

τn/2−1

)
+ C0C vol(Sn−2)

∫ π

0
eτ cos θ

(
τ cos θ

)
sinn−2(θ) dθ

= C0C log C
(
(2π)n/2 In/2−1(τ)

τn/2−1

)
+ C0C

(2π(n−1)/2

Γ((n−1)/2)

) ∫ π

0
eτ cos θ

(
τ cos θ

)
sinn−2(θ) dθ

= C0C log C
(
(2π)n/2 In/2−1(τ)

τn/2−1

)
+ C0C

(2π(n−1)/2

Γ((n−1)/2)

)(2
n
2−1√πΓ

(n−1
2

)
In/2(τ)

τn/2−2

)
= C0C log C

(
(2π)n/2 In/2−1(τ)

τn/2−1

)
+ C0C

(
(2π)n/2 In/2(τ)

τn/2−2

)
∝

In/2−1(τ) log C + τ In/2(τ)

τn/2−1 . (9.8)

where In/2, In/2−1 are modified Bessel functions of the first kind. We can see that this
last expression is independent of s, implying that DKL [p(g | s)∥p(g)] is independent
of s. This is also undesirable, as this quantity is determined by the underlying
Markov process — some states may be more informative about the future than
others.

Since we only used the assumption of uniformity for the goal representation over
Sn−1, one possible solution is to relax ϕ(s) to lie anywhere in Rn. This is equivalent
to making the learned temperature τ a function of the state representation s —
specifically τ(s) = ∥ϕ(s)∥. With this adjustment, we can say

DKL [p(g | s)∥p(g)] ∝
In/2−1(∥ϕ(s)∥) log C + ∥ϕ(s)∥In/2(∥ϕ(s)∥)

∥ϕ(s)∥n/2−1 . (9.9)

Now, DKL [p(g | s)∥p(g)] is a monotonic function of ∥ϕ(s)∥. As ∥ϕ(s)∥ → ∞, the
conditional distribution p(g | s) more distinct from the marginal (see Figure 9.1).

9 THE REPRESENTATION GEOMETRY OF INTRINSIC MOTIVATION 164

n = 50

n = 30

n = 20

2 4 6 8 10

2

4

6

8

10

12

∥ϕ(s)∥

D
K

L
[p(

g
|s
)∥

p(
g)
]

KL divergence by ∥ϕ(s)∥

Figure 9.1: KL divergence between conditional and marginal goal distributions as a
function of ∥ϕ(s)∥ for different representation dimensions n with C = 5 (up to a
constant). The KL divergence is monotonically increasing with ∥ϕ(s)∥.

9.3 EUCLIDEAN INFONCE

Another option is to switch to an ℓ2 parameterization ∥ϕ(s)− ψ(g)∥ and assume
Gaussian marginals. We train the following loss for ϕ(s), ψ(g) ∈ Rn learned:

max
ϕ,ψ

E{p(si,gi)}N
i=1

[
N

∑
i=1

log
(

e−∥ϕ(si)−ψ(gi)∥2

∑N
j=1 e−∥ϕ(si)−ψ(gj)∥2

)
+ log

(
e−∥ϕ(si)−ψ(gi)∥2

∑N
j=1 e−∥ϕ(sj)−ψ(gi)∥2

)]
.

(9.10)
This loss will converge to the following [11]:

∥ϕ(s)− ψ(g)∥2 = log
(

C Pr(s+ = g)
Pr(s+ = g | s0 = s)

)
. (9.11)

We additionally structure the marginals as Gaussians with precision controlled by
τ [11]:

Pr
(
ψ(st)

)
=
(

τ
π

)n/2e−τ∥ψ(st)∥2

Pr
(
ϕ(st)

)
=
(

τ
π

)n/2e−τ∥ϕ(st)∥2
. (9.12)

We can now compute:

DKL [p(g | s)∥p(g)] =
∫
S

p(g | s) log
p(g | s)

p(g)
dg

9 THE REPRESENTATION GEOMETRY OF INTRINSIC MOTIVATION 165

=
∫
S

p(g | s)
p(g)

log
p(g | s)

p(g)
p(g)dg

=
∫
S

p(g | s)
p(g)

log
p(g | s)

p(g)
d(p(g))

= C
∫

Rn
e−∥ϕ(s)−ψ(g)∥2

(
log C− ∥ϕ(s)− ψ(g)∥2

)
p
(
ψ(g)

)
d
(
ψ(g)

)
= C

∫
Rn

e−∥ϕ(s)−ψ(g)∥2
(

log C− ∥ϕ(s)− ψ(g)∥2
) (

τ
π

)n/2e−τ∥ψ(g)∥2
d
(
ψ(g)

)
=
(

τ
π

)n/2C
∫

Rn
e2ϕ(s)Tψ(g)−ϕ(s)Tϕ(s)−(1+τ)ψ(g)Tψ(g)

(
log C− ∥ϕ(s)− ψ(g)∥2

)
d
(
ψ(g)

)
=
(

τ
π

)n/2C
∫

Rn
e−(1+τ)∥ ϕ(s)

1+τ−ψ(g)∥2
e
−τ

1+τ ∥ϕ(s)∥2
(

log C− ∥ϕ(s)− ψ(g)∥2
)

d
(
ψ(g)

)

=
(

τ
π

)n/2Ce
−τ

1+τ ∥ϕ(s)∥2
(∫

Rn

→0 as ∥ψ(g)∥→∞︷ ︸︸ ︷
∇ψ(g) ·

((2τϕ(s)−(1+τ)ψ(g)
2(1+τ)2

)
e−(1+τ)∥ ϕ(s)

1+τ−ψ(g)∥2
)

d
(
ψ(g)

)
+
∫

Rn

(
τ(τ−2)
(1+τ)2 ∥ϕ(s)∥2 + n

2(1+τ)
+ log C

)
e−(1+τ)∥ ϕ(s)

1+τ−ψ(g)∥2
d
(
ψ(g)

))
=
(

τ
π

)n/2Ce
−τ

1+τ ∥ϕ(s)∥2
∫

Rn

(
τ(τ−2)
(1+τ)2 ∥ϕ(s)∥2 + n

2(1+τ)
+ log C

)
e−(1+τ)∥ ϕ(s)

1+τ−ψ(g)∥2
d
(
ψ(g)

)
=
(

τ
π

)n/2Ce
−τ

1+τ ∥ϕ(s)∥2
(

τ(τ−2)
(1+τ)2 ∥ϕ(s)∥2 + n

2(1+τ)
+ log C

) ∫
Rn

e−(1+τ)∥ ϕ(s)
1+τ−ψ(g)∥2

d
(
ψ(g)

)
=
(

τ
π

)n/2Ce
−τ

1+τ ∥ϕ(s)∥2
(

τ(τ−2)
(1+τ)2 ∥ϕ(s)∥2 + n

2(1+τ)
+ log C

) ∫
Rn

e−(1+τ)∥ψ(g)∥2
d
(
ψ(g)

)
=
(

τ
π

)n/2Ce
−τ

1+τ ∥ϕ(s)∥2
(

τ(τ−2)
(1+τ)2 ∥ϕ(s)∥2 + n

2(1+τ)
+ log C

)(
π

1+τ

)n/2

=
(

τ
τ+1

)n/2Ce
−τ

1+τ ∥ϕ(s)∥2
(

τ(τ−2)
(1+τ)2 ∥ϕ(s)∥2 + n

2(1+τ)
+ log C

)
(9.13)

∝ ∥ϕ(s)∥2e
−τ

1+τ ∥ϕ(s)∥2
.

Now, we have a term that depends on the norm of ϕ(s), which is more reasonable.
This suggests that the Euclidean parameterization of the contrastive critic may be
more appropriate for learning contrastive representations with a well-structured
goal marginal.

When ∥ϕ(s)∥ is small, the conditional distribution p(g | s) is close to the
marginal p(g), and the state is less informative about the future.

We can also reason directly about the mutual information between the state and
goal:

I(s; g) = Ep(s,g)

[
log

p(s, g)
p(s)p(g)

]
= Ep(s)DKL [p(g | s)∥p(g)]

THE REPRESENTATION GEOMETRY OF INTRINSIC MOTIVATION 166

=
∫

Rn

((
τ

1+τ

)n/2Ce
−τ

1+τ ∥ϕ(s)∥2
(

τ(τ−2)
(1+τ)2 ∥ϕ(s)∥2 + n

2(1+τ)
+ log C

))
d(p(ϕ(s)))

=
(

τ
1+τ

)n/2
∫

Rn

(
Ce

−τ
1+τ ∥ϕ(s)∥2

(
τ(τ−2)

(1 + τ)2∥ϕ(s)∥2 + n
2(1+τ)

+ log C
))(

τ
π

)n/2e−τ∥ϕ(s)∥2
d(ϕ(s))

=
(

τ
π

)n/2(τ
1+τ

)n/2
∫

Rn

(
Ce
−2τ−τ2

1+τ ∥ϕ(s)∥2
(

τ(τ−2)
(1+τ)2 ∥ϕ(s)∥2

+ n
2(1+τ)

+ log C
))

d(ϕ(s))

= C
(

τ
π

)n/2(τ
1+τ

)n/2 τ(τ−2)
(1+τ)2

∫
Rn
∥ϕ(s)∥2e

−2τ−τ2
1+τ ∥ϕ(s)∥2

d(ϕ(s))

+ C
(

τ
π

)n/2(τ
1+τ

)n/2
(

n
2(1+τ)

+ log C
) ∫

Rn
e−(

2τ+τ2
1+τ)∥ϕ(s)∥2

d(ϕ(s))

= C
(

τ
π

)n/2(τ
1+τ

)n/2 τ(τ−2)
(1+τ)2

∫
Rn

→0 as ∥ϕ(s)∥→∞︷ ︸︸ ︷
∇ϕ(s) ·

(1+τ
−2τ−τ2

)
ϕ(s)e

−2τ−τ2
1+τ ∥ϕ(s)∥2

d(ϕ(s))

− C
(

τ
π

)n/2(τ
1+τ

)n/2 τ(τ−2)
(1+τ)2

∫
Rn

n
(1+τ
−2τ−τ2

)
e
−2τ−τ2

1+τ ∥ϕ(s)∥2
d(ϕ(s))

+ C
(

τ
π

)n/2(τ
1+τ

)n/2
(

n
2(1+τ)

+ log C
) ∫

Rn
e−(

2τ+τ2
1+τ)∥ϕ(s)∥2

d(ϕ(s))

= C
(

τ
π

)n/2n
(

τ
1+τ

)n/2
(

τ(τ−2)
(1+τ)2

(1+τ
2τ+τ2

)
+ 1

2(1+τ)
+ log C

)
∫

Rn
e−(

2τ+τ2
1+τ)∥ϕ(s)∥2

d(ϕ(s))

= C
(

τ
π

)n/2n
(

τ
1+τ

)n/2
(

τ2+2τ+2τ(τ−2)
2τ(τ2+3τ+2) + log C

) ∫
Rn

e−(
2τ+τ2

1+τ)∥ϕ(s)∥2
d(ϕ(s))

= C
(

τ
π

)n/2n
(

τ
1+τ

)n/2
(

τ2+2τ+2τ(τ−2)
2τ(τ2+3τ+2) + log C

) (
π(1+τ)
τ(2+τ)

)n/2

= Cn
(

τ
τ+2

)n/2
(

τ2+2τ+2τ(τ−2)
2τ(τ2+3τ+2) + log C

)
. (9.14)

We plot I(s; g) in Figure 9.2 for n = 20 as a function of τ and C.
How can we pick C? Equation (9.14) seems to indicate that for a fixed temper-

ature τ, the representation ratio C has a fixed value. If we jointly tune τ with the
representations though in general we can pick C to be any positive value. To use
an equation like Equation (9.13) in practice, it may be worthwhile constraining C
to be related to τ or directly learned so there is a consistent relationship between
DKL [p(g | s)∥p(g)] and the representation norm ∥ϕ(s)∥.

THE REPRESENTATION GEOMETRY OF INTRINSIC MOTIVATION 167

5 10 15 20

0.2

0.4

0.6

0.8

1.0

1.2

representation ratio C

I(
s;

g)

2 4 6 8

5

10

15

marginal precision τ

I(
s;

g)

I(s; g) with C ∈ [0, 20], n = 20, τ = 2 I(s; g) with τ ∈ [0, 8], n = 20, C = 5

Figure 9.2: Mutual information I(s; g) between the state and goal representations in
the Euclidean infoNCE setting. Both the representation ratio C and the marginal
precision τ scale monotonically with the mutual information. The mutual informa-
tion I(s; g) is positive only when C > 1, and so we can additionally interpret this as
a constraint on the representation ratio.

168

BIBLIOGRAPHY

[1] Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing
the Gap Between TD Learning and Supervised Learning – a Generalisation
Point of View. In International Conference on Learning Representations. 2024.

[2] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine.
D4RL: Datasets for Deep Data-Driven Reinforcement Learning. 2020.
arXiv:2004.07219.

[3] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data Using T-Sne.
Journal of Machine Learning Research, 9(11):2579–2605, 2008.

[4] Yuqing Du, Stas Tiomkin, Emre Kiciman, Daniel Polani, Pieter Abbeel, and
Anca Dragan. Ave: Assistance via Empowerment. In Neural Information
Processing Systems, volume 33, pp. 4560–4571. 2020.

[5] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Ste-
fano Ermon. Iq-Learn: Inverse Soft-Q Learning for Imitation. In Neural
Information Processing Systems, volume 34, pp. 4028–4039. 2021.

[6] Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia,
Pieter Abbeel, and Anca Dragan. On the Utility of Learning About Humans
for Human-Ai Coordination. In Neural Information Processing Systems. 2019.

[7] Vivek Myers, Andre Wang He, Kuan Fang, Homer Rich Walke, Philippe
Hansen-Estruch, Ching-An Cheng, Mihai Jalobeanu, Andrey Kolobov, Anca
Dragan, and Sergey Levine. Goal Representations for Instruction Following:
A Semi-Supervised Language Interface to Control. In Conference on Robot
Learning, pp. 3894–3908. 2023.

[8] Vivek Myers, Bill Chunyuan Zheng, Oier Mees, Sergey Levine, and Kuan
Fang. Policy Adaptation via Language Optimization: Decomposing Tasks for
Few-Shot Imitation. In Conference on Robot Learning. 2024.

[9] Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin
Eysenbach. Learning Temporal Distances: Contrastive Successor Features Can
Provide a Metric Structure for Decision-Making. In International Conference on
Machine Learning. 2024.

[10] Vivek Myers, Bill Chunyuan Zheng, Anca Dragan, Kuan Fang, and Sergey
Levine. Successor Representations Enable Emergent Compositional Instruc-
tion Following. 2024.

BIBLIOGRAPHY 169

[11] Benjamin Eysenbach, Vivek Myers, Ruslan Salakhutdinov, and Sergey Levine.
Inference via Interpolation: Contrastive Representations Provably Enable
Planning and Inference. In Neural Information Processing Systems. 2024.

[12] Vivek Myers, Cathy Ji, and Benjamin Eysenbach. Invariance to Planning in
Goal-Conditioned RL. 2024.

[13] Vivek Myers, Evan Ellis, Sergey Levine, Benjamin Eysenbach, and Anca
Dragan. Learning to Assist Humans Without Inferring Rewards. In Neural
Information Processing Systems. 2024.

[14] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. Hindsight Experience Replay. In Neural Information Processing
Systems, volume 30. 2017.

[15] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Manon
Devin, Benjamin Eysenbach, and Sergey Levine. Learning to Reach Goals via
Iterated Supervised Learning. 2020. OpenReview.net:arXiv:1912.06088.

[16] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav
Gupta. R3m: A Universal Visual Representation for Robot Manipulation. In
Conference on Robot Learning, pp. 892–909. 2022.

[17] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning Transferable Visual Models
From Natural Language Supervision. In International Conference on Machine
Learning, arXiv:2103.00020. 2021.

[18] Terry Winograd. Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language. 1971.

[19] Kai-yuh Hsiao, Stefanie Tellex, Soroush Vosoughi, Rony Kubat, and Deb Roy.
Object Schemas for Grounding Language in a Responsive Robot. Connection
Science, 20(4):253–276, 2008.

[20] M. Skubic, D. Perzanowski, S. Blisard, A. Schultz, W. Adams, M. Bugajska,
and D. Brock. Spatial Language for Human-Robot Dialogs. IEEE Transactions
on Systems, 34(2):154–167, 2004.

[21] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew Walter, Ashis
Banerjee, Seth Teller, and Nicholas Roy. Understanding Natural Language
Commands for Robotic Navigation and Mobile Manipulation. AAAI Confer-
ence on Artificial Intelligence, 25(1):1507–1514, 2011.

[22] Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta
Baral, and Heni Ben Amor. Language-Conditioned Imitation Learning for
Robot Manipulation Tasks. Neural Information Processing Systems, 33:13139–
13150, 2020.

BIBLIOGRAPHY 170

[23] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey
Lynch, Sergey Levine, and Chelsea Finn. BC-Z: Zero-Shot Task Generalization
With Robotic Imitation Learning. Conference on Robot Learning, p. 12, 2021.

[24] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph
Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, et al. RT-1:
Robotics Transformer for Real-World Control at Scale. In Robotics - Science and
Systems. 2023.

[25] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowd-
hery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, et al. PaLM-E: An
Embodied Multimodal Language Model. In International Conference on Ma-
chine Learning. 2023.

[26] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou,
Yanjun Chen, Li Fei-Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan.
VIMA: General Robot Manipulation With Multimodal Prompts. In Interna-
tional Conference on Machine Learning. 2023.

[27] Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette
Bohg. Text2Motion: From Natural Language Instructions to Feasible Plans.
2023. arxiv:2303.12153.

[28] Weiyu Liu, Chris Paxton, Tucker Hermans, and Dieter Fox. StructFormer:
Learning Spatial Structure for Language-Guided Semantic Rearrangement
of Novel Objects. International Conference on Robotics and Automation, pp.
6322–6329, 2021.

[29] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. CLIPort: What and Where
Pathways for Robotic Manipulation. In Conference on Robot Learning. 2021.

[30] Hongyuan Mei, Mohit Bansal, and Matthew Walter. Listen, Attend, and Walk:
Neural Mapping of Navigational Instructions to Action Sequences. AAAI
Conference on Artificial Intelligence, 30(1), 2016.

[31] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko
Sünderhauf, Ian Reid, Stephen Gould, and Anton van den Hengel. Vision-
And-Language Navigation: Interpreting Visually-Grounded Navigation In-
structions in Real Environments. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3674–3683. 2018.

[32] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas,
Louis-Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. Speaker-Follower Models for Vision-And-Language
Navigation. In Neural Information Processing Systems, volume 31. 2018.

[33] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language Models Are Few-Shot Learners. 2020.

BIBLIOGRAPHY 171

[34] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,
Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, et al. Do as I Can, Not as I Say: Grounding Language in Robotic
Affordances. 2022. arxiv:2204.01691.

[35] Maria Attarian, Advaya Gupta, Ziyi Zhou, Wei Yu, Igor Gilitschenski, and
Animesh Garg. See, Plan, Predict: Language-Guided Cognitive Planning
With Video Prediction. 2022. arXiv:2210.03825.

[36] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,
Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. ALFRED: A Bench-
mark for Interpreting Grounded Instructions for Everyday Tasks. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10740–10749. 2020.

[37] Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran
Song, Jeannette Bohg, Szymon Rusinkiewicz, and Thomas A. Funkhouser.
TidyBot: Personalized Robot Assistance With Large Language Models. 2023.
arXiv:2305.05658.

[38] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu,
Jonathan Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. Prog-
Prompt: Generating Situated Robot Task Plans Using Large Language Models.
In International Conference on Robotics and Automation. 2023.

[39] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard.
CALVIN: A Benchmark for Language-Conditioned Policy Learning for Long-
Horizon Robot Manipulation Tasks. IEEE Robotics and Automation Letters,
7(3):7327–7334, 2022.

[40] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini,
and Yonghui Wu. CoCa: Contrastive Captioners Are Image-Text Foundation
Models. 2022. arxiv:2205.01917.

[41] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, An-
tonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu,
Xingyu Liu, et al. Ego4D: Around the World in 3,000 Hours of Egocentric
Video. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022.

[42] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna
Materzyńska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fru-
end, Peter Yianilos, Moritz Mueller-Freitag, et al. The "Something Something"
Video Database for Learning and Evaluating Visual Common Sense. 2017.
arxiv:1706.04261.

[43] Ilija Radosavovic, Tete Xiao, Stephen James, P. Abbeel, Jitendra Malik, and
Trevor Darrell. Real-World Robot Learning With Masked Visual Pre-Training.
2022. arXiv:2210.03109.

BIBLIOGRAPHY 172

[44] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang,
Haoyi Zhu, Andrew Tang, De-An Huang, Yuke Zhu, and Anima Anandku-
mar. MineDojo: Building Open-Ended Embodied Agents With Internet-Scale
Knowledge. In Neural Information Processing Systems. 2022.

[45] Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang, and Jeannette Bohg.
Concept2Robot: Learning Manipulation Concepts From Instructions and Hu-
man Demonstrations. International Journal of Robotics Research, 40(12-14):1419–
1434, 2021.

[46] Yecheng Jason Ma, William Liang, Vaidehi Som, Vikash Kumar, Amy Zhang,
Osbert Bastani, and Dinesh Jayaraman. LIV: Language-Image Representations
and Rewards for Robotic Control. In International Conference on Machine
Learning. 2023.

[47] Yuchen Cui, Scott Niekum, Abhinav Gupta, Vikash Kumar, and Aravind
Rajeswaran. Can Foundation Models Perform Zero-Shot Task Specification
for Robot Manipulation? In L4DC. 2022.

[48] Suraj Nair, Eric Mitchell, Kevin Chen, Brian Ichter, Silvio Savarese, and
Chelsea Finn. Learning Language-Conditioned Robot Behavior From Offline
Data and Crowd-Sourced Annotation. In Conference on Robot Learning, pp.
1303–1315. 2022.

[49] Leslie Pack Kaelbling. Learning to Achieve Goals. In International Joint
Conference on Artificial Intelligence. 1993.

[50] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal Value
Function Approximators. In International Conference on Machine Learning, pp.
1312–1320. 2015.

[51] Corey Lynch and Pierre Sermanet. Language Conditioned Imitation Learning
Over Unstructured Data. In Robotics: Science and Systems XVII. 2021.

[52] Zhuang Ma and Michael Collins. Noise Contrastive Estimation and Negative
Sampling for Conditional Models: Consistency and Statistical Efficiency. 2018.
arXiv:1809.01812.

[53] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning
With Contrastive Predictive Coding. 2019. arXiv:1807.03748.

[54] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual Instruc-
tion Tuning. 2023. arxiv:2304.08485.

[55] Kenan Jiang, Xuehai He, Ruize Xu, and Xin Eric Wang. ComCLIP: Training-
Free Compositional Image and Text Matching. 2022. arxiv:2211.13854.

[56] Martha Lewis, Nihal V. Nayak, Peilin Yu, Qinan Yu, Jack Merullo, Stephen H.
Bach, and Ellie Pavlick. Does CLIP Bind Concepts? Probing Compositionality
in Large Image Models. In Conference of the European Chapter of the Association
for Computational Linguistics. 2024.

BIBLIOGRAPHY 173

[57] Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco, Ludwig Schmidt,
and Shuran Song. CoWs on Pasture: Baselines and Benchmarks for Language-
Driven Zero-Shot Object Navigation. 2022. arxiv:2203.10421.

[58] Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax Law, Noah Constant,
Gustavo Hernandez Abrego, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. Multilingual Universal Sentence Encoder for
Semantic Retrieval. In ACL. 2020.

[59] Annie Xie, Lisa Lee, Ted Xiao, and Chelsea Finn. Decomposing the Gen-
eralization Gap in Imitation Learning for Visual Robotic Manipulation. In
International Conference on Robotics and Automation. 2024.

[60] Oier Mees, Lukas Hermann, and Wolfram Burgard. What Matters in Lan-
guage Conditioned Robotic Imitation Learning Over Unstructured Data. IEEE
Robotics and Automation Letters, 7(4):11205–11212, 2022.

[61] Oier Mees and Wolfram Burgard. Composing Pick-And-Place Tasks by
Grounding Language. In International Symposium on Experimental Robotics.
2021.

[62] Homer Rich Walke, Kevin Black, Tony Z. Zhao, Quan Vuong, Chongyi Zheng,
Philippe Hansen-Estruch, Andre Wang He, Vivek Myers, et al. BridgeData
V2: A Dataset for Robot Learning at Scale. In Conference on Robot Learning, pp.
1723–1736. 2023.

[63] Brenden M. Lake, Tal Linzen, and Marco Baroni. Human Few-Shot Learning
of Compositional Instructions. In CogSci. 2019.

[64] Kevin Ellis. Human-Like Few-Shot Learning via Bayesian Reasoning Over
Natural Language. In International Conference on Neural Information Processing
Systems. 2023.

[65] Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan
Klein, and Anca Dragan. Learning to Model the World With Language. In
Forty-First International Conference on Machine Learning. 2024.

[66] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian
Wong, Stefan Welker, Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas
Sindhwani, et al. Socratic Models: Composing Zero-Shot Multimodal Rea-
soning With Language. 2022. arXiv:2204.00598.

[67] Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, et al. Octo: An Open-Source Generalist
Robot Policy. In Robotics: Science and Systems. 2024.

[68] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin
Huang. A Closer Look at Few-Shot Classification. In International Conference
on Learning Representations. 2019.

[69] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and

BIBLIOGRAPHY 174

Daan Wierstra. Matching Networks for One Shot Learning. In Neural Informa-
tion Processing Systems, volume 29. 2016.

[70] Yisheng Song, Ting Wang, Puyu Cai, Subrota K. Mondal, and Jyoti Prakash
Sahoo. A Comprehensive Survey of Few-Shot Learning: Evolution, Appli-
cations, Challenges, and Opportunities. ACM Comput. Surv, 55(13s):271:1–
271:40, 2023.

[71] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr,
Yana Hasson, Karel Lenc, Arthur Mensch, et al. Flamingo: A Visual Language
Model for Few-Shot Learning. In Neural Information Processing Systems. 2022.

[72] Ali Ghadirzadeh, Xi Chen, Petra Poklukar, Chelsea Finn, Mårten Björkman,
and Danica Kragic. Bayesian Meta-Learning for Few-Shot Policy Adaptation
Across Robotic Platforms. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1274–1280. 2021.

[73] Yurong Guo, Ruoyi Du, Yuan Dong, Timothy Hospedales, Yi-Zhe Song, and
Zhanyu Ma. Task-Aware Adaptive Learning for Cross-Domain Few-Shot
Learning. In IEEE/CVF International Conference on Computer Vision, pp. 1590–
1599. 2023.

[74] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In International Conference
on Machine Learning. 2017.

[75] Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-
Learning Algorithms. 2018. arXiv:1803.02999.

[76] Dong Chen, Lingfei Wu, Siliang Tang, Xiao Yun, Bo Long, and Yueting
Zhuang. Robust Meta-Learning With Sampling Noise and Label Noise via
Eigen-Reptile. In International Conference on Machine Learning, pp. 3662–3678.
2022.

[77] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical Networks for
Few-Shot Learning. In Neural Information Processing Systems, volume 30. 2017.

[78] Marcin Sendera, Jacek Tabor, Aleksandra Nowak, Andrzej Bedychaj, Mas-
similiano Patacchiola, Tomasz Trzcinski, Przemysl aw Spurek, and Maciej
Zieba. Non-Gaussian Gaussian Processes for Few-Shot Regression. In Neural
Information Processing Systems, volume 34, pp. 10285–10298. 2021.

[79] Petru Tighineanu, Lukas Grossberger, Paul Baireuther, Kathrin Skubch, Stefan
Falkner, Julia Vinogradska, and Felix Berkenkamp. Scalable Meta-Learning
With Gaussian Processes. In International Conference on Artificial Intelligence
and Statistics, pp. 1981–1989. 2024.

[80] Ze Wang, Zichen Miao, Xiantong Zhen, and Qiang Qiu. Learning to Learn
Dense Gaussian Processes for Few-Shot Learning. In Neural Information
Processing Systems, volume 34, pp. 13230–13241. 2021.

BIBLIOGRAPHY 175

[81] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An
Explanation of In-Context Learning as Implicit Bayesian Inference. In Interna-
tional Conference on Learning Representations. 2022.

[82] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang,
Xu Sun, Jingjing Xu, Lei Li, and Zhifang Sui. A Survey for In-Context Learning.
2023. arXiv:2301.00234.

[83] Jiaqiang Ye Zhu, Carla Gomez Cano, David Vazquez Bermudez, and Michal
Drozdzal. InCoRo: In-Context Learning for Robotics Control With Feedback
Loops. 2024. arXiv:2402.05188.

[84] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph
Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Her-
zog, Jasmine Hsu, et al. RT-1: Robotics Transformer for Real-World Control
at Scale. 2023. Curran Associates, Inc.:arXiv:2212.06817.

[85] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen,
Krzysztof Choromanski, Tianli Ding, Danny Driess, et al. RT-2: Vision-
Language-Action Models Transfer Web Knowledge to Robotic Control. In
Conference on Robot Learning. 2023.

[86] Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker,
Robert Baruch, Travis Armstrong, and Pete Florence. Interactive Language:
Talking to Robots in Real Time. IEEE Robotics and Automation Letters, pp. 1–8,
2023.

[87] Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya, Homer Walke, Chelsea
Finn, Aviral Kumar, and Sergey Levine. Zero-Shot Robotic Manipulation
With Pre-Trained Image-Editing Diffusion Models. In International Conference
on Learning Representations. 2024.

[88] Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. MOKA: Open-
Vocabulary Robotic Manipulation Through Mark-Based Visual Prompting. In
Robotics: Science and Systems. 2024.

[89] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and
Li Fei-Fei. VoxPoser: Composable 3D Value Maps for Robotic Manipulation
With Language Models. 2023. arXiv:2307.05973.

[90] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,
Byron David, Chelsea Finn, Chuyuan Fu, et al. Do as I Can, Not as I Say:
Grounding Language in Robotic Affordances. In Conference on Robot Learning.
2022.

[91] Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong,
Jonathan Tompson, Yevgen Chebotar, Debidatta Dwibedi, and Dorsa Sadigh.
RT-H: Action Hierarchies Using Language. 2024. arXiv:2403.01823.

[92] Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z. Zhao, Archit Sharma, Karl Pertsch,

BIBLIOGRAPHY 176

Jianlan Luo, Sergey Levine, and Chelsea Finn. Yell at Your Robot: Improving
On-the-Fly From Language Corrections. 2024. arXiv:2403.12910.

[93] Oier Mees, Jessica Borja-Diaz, and Wolfram Burgard. Grounding Language
With Visual Affordances Over Unstructured Data. In IEEE International Con-
ference on Robotics and Automation. 2023.

[94] OpenAI, Josh Achiam, Steven Adler, et al. GPT-4 Technical Report. 2024.
arXiv:2303.08774.

[95] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, An-
tonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, et al. Ego4D:
Around the World in 3,000 Hours of Egocentric Video. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2022.

[96] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran
Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, et al. On the
Opportunities and Risks of Foundation Models. 2022. arXiv:2108.07258.

[97] Rutav Shah, Roberto Martín-Martín, and Yuke Zhu. MUTEX: Learning Uni-
fied Policies From Multimodal Task Specifications. In Conference on Robot
Learning. 2023.

[98] Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Ab-
hishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, et al. Open
X-Embodiment: Robotic Learning Datasets and RT-X Models. In International
Conference on Robotics and Automation. 2024.

[99] Ria Doshi, Homer Walke, Oier Mees, Sudeep Dasari, and Sergey Levine.
Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation,
Locomotion and Aviation. 2024. arXiv:2408.11812.

[100] Tianhe Yu, Ted Xiao, Austin Stone, Jonathan Tompson, Anthony Bro-
han, Su Wang, Jaspiar Singh, Clayton Tan, Dee M, Jodilyn Peralta, et al.
Scaling Robot Learning With Semantically Imagined Experience. 2023.
arxiv:2302.11550.

[101] Qiuyu Chen, Shosuke Kiami, Abhishek Gupta, and Vikash Kumar. GenAug:
Retargeting Behaviors to Unseen Situations via Generative Augmentation. In
Robotics: Science and Systems XIX. 2023.

[102] Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Audio
Visual Language Maps for Robot Navigation. In International Symposium on
Experimental Robotics. 2023.

[103] Jesse Zhang, Karl Pertsch, Jiahui Zhang, and Joseph J. Lim. SPRINT:
Scalable Policy Pre-Training via Language Instruction Relabeling. 2023.
arXiv:2306.11886.

[104] William Chen, Oier Mees, Aviral Kumar, and Sergey Levine. Vision-Language
Models Provide Promptable Representations for Reinforcement Learning.
2024. arXiv:2402.02651.

BIBLIOGRAPHY 177

[105] Dhruv Shah, Blazej Osinski, Brian Ichter, and Sergey Levine. LM-Nav: Robotic
Navigation With Large Pre-Trained Models of Language, Vision, and Action.
In Conference on Robot Learning. 2022.

[106] Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual
Language Maps for Robot Navigation. In IEEE International Conference on
Robotics and Automation. 2023.

[107] Minae Kwon, Hengyuan Hu, Vivek Myers, Siddharth Karamcheti, A. Dra-
gan, and Dorsa Sadigh. Toward Grounded Commonsense Reasoning. In
International Conference on Robotics and Automation. 2023.

[108] O. Catoni. A PAC-Bayesian Approach to Adaptive Classification. 2004.
[109] Pierre Alquier. User-Friendly Introduction to PAC-Bayes Bounds. Foundations

and Trends in Machine Learning, 17(2):174–303, 2024.
[110] L. G. Valiant. A Theory of the Learnable. Commun. ACM, 27(11):1134–1142,

1984.
[111] Imre Csiszár and János Körner. Information Theory: Coding Theorems for Discrete

Memoryless Systems. Cambridge University Press, 2011.
[112] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random

Variables. Journal of the American Statistical Association, 58(301):13–30, 1963.
[113] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual

Learning for Image Recognition. In Computer Vision and Pattern Recognition.
2016.

[114] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron
Courville. FiLM: Visual Reasoning With a General Conditioning Layer. In
AAAI Conference on Artificial Intelligence. 2018.

[115] Jyothish Pari, Nur Muhammad (Mahi) Shafiullah, Sridhar Pandian Arunacha-
lam, and Lerrel Pinto. The Surprising Effectiveness of Representation Learn-
ing for Visual Imitation. In Robotics: Science and Systems XVIII. 2022.

[116] Srinivas Venkattaramanujam, Eric Crawford, Thang Doan, and Doina Pre-
cup. Self-Supervised Learning of Distance Functions for Goal-Conditioned
Reinforcement Learning. 2019. arXiv:1907.02998.

[117] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-Parametric
Topological Memory for Navigation. In International Conference on Learning
Representations. 2018.

[118] Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversar-
ial Intrinsic Motivation for Reinforcement Learning. In Neural Information
Processing Systems. 2021.

[119] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani,
Vikash Kumar, and Amy Zhang. VIP: Towards Universal Visual Reward
and Representation via Value-Implicit Pre-Training. In International Conference
on Learning Representations. 2023.

BIBLIOGRAPHY 178

[120] Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine.
Dynamical Distance Learning for Semi-Supervised and Unsupervised Skill
Discovery. In International Conference on Learning Representations. 2020.

[121] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhut-
dinov. Contrastive Learning as Goal-Conditioned Reinforcement Learning.
Neural Information Processing Systems, 35:35603–35620, 2022.

[122] Benjamin Eysenbach, Vivek Myers, Sergey Levine, and Ruslan Salakhutdinov.
Contrastive Representations Make Planning Easy. In NeurIPS 2023 Workshop
on Generalization in Planning. 2023.

[123] K. R. Popper. The Arrow of Time. Nature, 177(4507):538–538, 1956.
[124] Peter Dayan. Improving Generalization for Temporal Difference Learning:

The Successor Representation. Neural Computation, 5(4):613–624, 1993.
[125] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron

Courville, and Philip Bachman. Data-Efficient Reinforcement Learning With
Self-Predictive Representations. In International Conference on Learning Repre-
sentations. 2021.

[126] Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Opti-
mal Goal-Reaching Reinforcement Learning via Quasimetric Learning. In
International Conference on Machine Learning. 2023.

[127] Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric Residual Network
for Sample Efficient Goal-Conditioned Reinforcement Learning. In AAAI
Conference on Artificial Intelligence, volume 37, pp. 8799–8806. 2023.

[128] Kihyuk Sohn. Improved Deep Metric Learning With Multi-Class N-Pair Loss
Objective. In Neural Information Processing Systems, volume 29. 2016.

[129] Ben Poole, Sherjil Ozair, Aaron van den Oord, Alexander A. Alemi, and
George Tucker. On Variational Bounds of Mutual Information. 2019.
arxiv:1905.06922.

[130] Tongzhou Wang and Phillip Isola. Improved Representation of Asymmetrical
Distances With Interval Quasimetric Embeddings. In NeurIPS 2022 NeurReps
Workshop Proceedings Track. 2022.

[131] Scott Fujimoto and Shixiang Shane Gu. A Minimalist Approach to Offline
Reinforcement Learning. Neural Information Processing Systems, 34:20132–
20145, 2021.

[132] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conserva-
tive Q-Learning for Offline Reinforcement Learning. In Neural Information
Processing Systems, volume 33, pp. 1179–1191. 2020.

[133] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing Off-
Policy Q-Learning via Bootstrapping Error Reduction. 2019. arXiv:1906.00949.

BIBLIOGRAPHY 179

[134] Chongyi Zheng, Ruslan Salakhutdinov, and Benjamin Eysenbach. Contrastive
Difference Predictive Coding. In International Conference on Learning Represen-
tations. 2023.

[135] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. AWAC:
Accelerating Online Reinforcement Learning With Offline Datasets. 2021.
arxiv:2006.09359.

[136] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous Control
With Deep Reinforcement Learning. In International Conference on Learning
Representations. 2016.

[137] Xingyu Lin, Harjatin Singh Baweja, and David Held. Reinforcement Learning
Without Ground-Truth State. 2019. arXiv:1905.07866.

[138] Gerhard Neumann and Jan Peters. Fitted Q-Iteration by Advantage Weighted
Regression. Neural Information Processing Systems, 21, 2008.

[139] Jan Peters and Stefan Schaal. Reinforcement Learning by Reward-Weighted
Regression for Operational Space Control. In International Conference on
Machine Learning, pp. 745–750. 2007.

[140] Wenhao Ding, Haohong Lin, Bo Li, and Ding Zhao. Generalizing Goal-
Conditioned Reinforcement Learning With Variational Causal Reasoning.
2023. arxiv:2207.09081.

[141] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision Trans-
former: Reinforcement Learning via Sequence Modeling. In Neural Information
Processing Systems, volume 34, pp. 15084–15097. 2021.

[142] Xinlei Chen and Kaiming He. Exploring Simple Siamese Representation
Learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 15750–15758. 2021.

[143] Tongzhou Wang and Phillip Isola. On the Learning and Learnability of
Quasimetrics. In International Conference on Learning Representations. 2022.

[144] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learn-
ing With Implicit Q-Learning. In International Conference on Learning Represen-
tations. 2022.

[145] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer Feedfor-
ward Networks Are Universal Approximators. Neural Networks, 2(5):359–366,
1989.

[146] Maciej Paluszyński and Krzysztof Stempak. On Quasi-Metric and Metric
Spaces. American Mathematical Society, 137:4307–4312, 1931.

[147] Philippe Hansen-Estruch, Amy Zhang, Ashvin Nair, Patrick Yin, and Sergey
Levine. Bisimulation Makes Analogies in Goal-Conditioned Reinforcement
Learning. In International Conference on Machine Learning, pp. 8407–8426. 2022.

BIBLIOGRAPHY 180

[148] Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation Metrics
for Continuous Markov Decision Processes. SIAM Journal on Computing,
40(6):1662–1714, 2011.

[149] Steve N’Guyen, Clément Moulin-Frier, and Jacques Droulez. Decision Making
Under Uncertainty: A Quasimetric Approach. Plos ONE, 8(12):e83411, 2013.

[150] Charline Le Lan, Marc G. Bellemare, and Pablo Samuel Castro. Metrics
and Continuity in Reinforcement Learning. AAAI Conference on Artificial
Intelligence, 35(9):8261–8269, 2021.

[151] Joey Hejna, Jensen Gao, and Dorsa Sadigh. Distance Weighted Supervised
Learning for Offline Interaction Data. In International Conference on Machine
Learning, pp. 12882–12906. 2023.

[152] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning
With Contrastive Predictive Coding. 2018. arXiv:1807.03748.

[153] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed Representations of Words and Phrases and Their Compositionality.
In Neural Information Processing Systems, volume 26. 2013.

[154] Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bach-
man, and R Devon Hjelm. Deep Reinforcement and InfoMax Learning. In
Neural Information Processing Systems, volume 33, pp. 3686–3698. 2020.

[155] Chuhan Wu, Fangzhao Wu, and Yongfeng Huang. Rethinking InfoNCE: How
Many Negative Samples Do You Need? 2021. arXiv:2105.13003.

[156] Michael Gutmann and Aapo Hyvärinen. Noise-Contrastive Estimation: A
New Estimation Principle for Unnormalized Statistical Models. In Thirteenth
International Conference on Artificial Intelligence and Statistics, pp. 297–304. 2010.

[157] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang,
Stefan Schaal, Sergey Levine, and Google Brain. Time-Contrastive Networks:
Self-Supervised Learning From Video. In IEEE International Conference on
Robotics and Automation, pp. 1134–1141. 2018.

[158] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang,
Serge Belongie, and Yin Cui. Spatiotemporal Contrastive Video Representa-
tion Learning. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 6964–6974. 2021.

[159] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A
Simple Framework for Contrastive Learning of Visual Representations. In
International Conference on Machine Learning. 2020.

[160] Ting Chen, Calvin Luo, and Lala Li. Intriguing Properties of Contrastive
Losses. In Neural Information Processing Systems, volume 34, pp. 11834–11845.
2021.

BIBLIOGRAPHY 181

[161] Tongzhou Wang and Phillip Isola. Understanding Contrastive Representa-
tion Learning Through Alignment and Uniformity on the Hypersphere. In
International Conference on Machine Learning, pp. 9929–9939. 2020.

[162] Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo
Hessel, Daniel Mankowitz, Augustin Zidek, and Remi Munos. Transfer in
Deep Reinforcement Learning Using Successor Features and Generalised
Policy Improvement. In International Conference on Machine Learning, pp.
501–510. 2018.

[163] Chongyi Zheng, Benjamin Eysenbach, Homer Walke, Patrick Yin, Kuan Fang,
Ruslan Salakhutdinov, and Sergey Levine. Stabilizing Contrastive RL: Tech-
niques for Robotic Goal Reaching From Offline Data. In International Confer-
ence on Learning Representations. 2024.

[164] John E Laird, Allen Newell, and Paul S Rosenbloom. Soar: An Architecture
for General Intelligence. Artificial Intelligence, 33(1):1–64, 1987.

[165] Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. HIQL:
Offline Goal-Conditioned RL With Latent States as Actions. In Neural Informa-
tion Processing Systems. 2023.

[166] Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang.
What Is Essential for Unseen Goal Generalization of Offline Goal-Conditioned
RL? In International Conference on Machine Learning, pp. 39543–39571. 2023.

[167] Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li,
Lei Han, and Chongjie Zhang. Rethinking Goal-Conditioned Supervised
Learning and Its Connection to Offline RL. In International Conference on
Learning Representations. 2022.

[168] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-Learning:
Learning to Achieve Goals via Recursive Classification. In International Con-
ference on Learning Representations. 2021.

[169] Dibya Ghosh, Chethan Bhateja, and Sergey Levine. Reinforcement Learning
From Passive Data via Latent Intentions. 2023. arxiv:2304.04782.

[170] Kuan Fang, Patrick Yin, Ashvin Nair, Homer Walke, Gengchen Yan, and
Sergey Levine. Generalization With Lossy Affordances: Leveraging Broad
Offline Data for Learning Visuomotor Tasks. In Conference on Robot Learning.
2022.

[171] Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-Conditioned
Reinforcement Learning With Imagined Subgoals. In International Conference
on Machine Learning, pp. 1430–1440. 2021.

[172] Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and
Deepak Pathak. Discovering and Achieving Goals via World Models. In
Neural Information Processing Systems, volume 34, pp. 24379–24391. 2021.

BIBLIOGRAPHY 182

[173] Seohong Park, Oleh Rybkin, and Sergey Levine. METRA: Scalable Unsu-
pervised RL With Metric-Aware Abstraction. In International Conference on
Learning Representations. 2024.

[174] Ahmed Touati and Yann Ollivier. Learning One Representation to Optimize
All Rewards. In Neural Information Processing Systems, volume 34, pp. 13–23.
2021.

[175] K. S. Lashley. The Problem of Serial Order in Behavior. In Cerebral Mechanisms
in Behavior, pp. 112–136. 1951.

[176] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction
and Intrinsic Motivation. In Neural Information Processing Systems, volume 29.
2016.

[177] Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin
Barekatain, Ioannis Antonoglou, and David Silver. Online and Offline Rein-
forcement Learning by Planning With a Learned Model. In Neural Information
Processing Systems, volume 34, pp. 27580–27591. 2021.

[178] Cassidy Laidlaw, Banghua Zhu, Stuart Russell, and Anca Dragan. The Effec-
tive Horizon Explains Deep RL Performance in Stochastic Environments. In
International Conference on Learning Representations. 2024.

[179] Simon Ciranka, Juan Linde-Domingo, Ivan Padezhki, Clara Wicharz,
Charley M. Wu, and Bernhard Spitzer. Asymmetric Reinforcement Learning
Facilitates Human Inference of Transitive Relations. Nature Human Behaviour,
6(4):555–564, 2022.

[180] Alison Gopnik, Shaun O’Grady, Christopher G. Lucas, Thomas L. Griffiths,
Adrienne Wente, Sophie Bridgers, Rosie Aboody, Hoki Fung, and Ronald E.
Dahl. Changes in Cognitive Flexibility and Hypothesis Search Across Human
Life History From Childhood to Adolescence to Adulthood. National Academy
of Sciences, 114(30):7892–7899, 2017.

[181] Oliver M. Vikbladh, Michael R. Meager, John King, Karen Blackmon, Orrin
Devinsky, Daphna Shohamy, Neil Burgess, and Nathaniel D. Daw. Hippocam-
pal Contributions to Model-Based Planning and Spatial Memory. Neuron,
102(3):683–693, 2019.

[182] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-
Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning.
2019. arXiv:1910.00177.

[183] Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should I Run
Offline Reinforcement Learning or Behavioral Cloning? In International
Conference on Learning Representations. 2021.

[184] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gau-

BIBLIOGRAPHY 183

rav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, et al. PaLM:
Scaling Language Modeling With Pathways. In J. Mach. Learn. Res. 2023.

[185] Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan,
Aviral Kumar, Tianhe Yu, et al. Q-Transformer: Scalable Offline Reinforcement
Learning via Autoregressive Q-Functions. In Conference on Robot Learning.
2023.

[186] Andreea Bobu, Yi Liu, Rohin Shah, Daniel S. Brown, and Anca D. Dragan.
SIRL: Similarity-Based Implicit Representation Learning. In ACM/IEEE Inter-
national Conference on Human-Robot Interaction, pp. 565–574. 2023.

[187] Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya Shivakumar, Percy
Liang, and Dorsa Sadigh. No, to the Right: Online Language Corrections
for Robotic Manipulation via Shared Autonomy. In ACM/IEEE International
Conference on Human-Robot Interaction, pp. 93–101. 2023.

[188] Stanislas Dehaene, Fosca Al Roumi, Yair Lakretz, Samuel Planton, and Math-
ias Sablé-Meyer. Symbols and Mental Programs: A Hypothesis About Human
Singularity. Trends in Cognitive Sciences, 26(9):751–766, 2022.

[189] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-
Conditioned Imitation Learning. Neural Information Processing Systems, 32,
2019.

[190] Valerio Rubino, Mani Hamidi, Peter Dayan, and Charley M. Wu. Composi-
tionality Under Time Pressure. In Cognitive Science Society, volume 45. 2023.

[191] Mark Steedman. Where Does Compositionality Come From? In AAAI
Technical Report. 2004.

[192] David W. Dickins. Transitive Inference in Stimulus Equivalence and Serial
Learning. European Journal of Behavior Analysis, 12(2):523–555, 2011.

[193] Ekin Akyürek, Afra Feyza Akyürek, and Jacob Andreas. Learning to Recom-
bine and Resample Data for Compositional Generalization. In International
Conference on Learning Representations. 2021.

[194] Takuya Ito, Tim Klinger, Doug Schultz, John Murray, Michael Cole, and Mattia
Rigotti. Compositional Generalization Through Abstract Representations in
Human and Artificial Neural Networks. Neural Information Processing Systems,
35:32225–32239, 2022.

[195] Aviral Kumar, Anikait Singh, Frederik Ebert, Yanlai Yang, Chelsea Finn, and
Sergey Levine. Pre-Training for Robots: Offline RL Enables Learning New
Tasks From a Handful of Trials. 2022. arXiv:2210.05178.

[196] Kuan Fang, Yuke Zhu, Animesh Garg, Silvio Savarese, and Li Fei-Fei. Dy-
namics Learning With Cascaded Variational Inference for Multi-Step Manipu-
lation. Conference on Robot Learning, 2019.

BIBLIOGRAPHY 184

[197] Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Silvio Savarese, and
Li Fei-Fei. Learning to Generalize Across Long-Horizon Tasks From Human
Demonstrations. 2021. arXiv:2003.06085.

[198] Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning
With Goal-Conditioned Policies. Neural Information Processing Systems, 32,
2019.

[199] Kuan Fang, Patrick Yin, Ashvin Nair, and Sergey Levine. Planning to Prac-
tice: Efficient Online Fine-Tuning by Composing Goals in Latent Space. In
International Conference on Intelligent Robots and Systems. 2022.

[200] Tianjun Zhang, Benjamin Eysenbach, Ruslan Salakhutdinov, Sergey Levine,
and Joseph E Gonzalez. C-Planning: An Automatic Curriculum for Learning
Goal-Reaching Tasks. In International Conference on Learning Representations.
2022.

[201] Zichen Zhang, Yunshuang Li, Osbert Bastani, Abhishek Gupta, Dinesh Ja-
yaraman, Yecheng Jason Ma, and Luca Weihs. Universal Visual Decomposer:
Long-Horizon Manipulation Made Easy. 2023. arXiv:2310.08581.

[202] Siddharth Karamcheti, Suraj Nair, Annie S. Chen, Thomas Kollar, Chelsea
Finn, Dorsa Sadigh, and Percy Liang. Language-Driven Representation
Learning for Robotics. In Robotics - Science and Systems. 2023.

[203] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chun-
yuan Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang,
Kai-Wei Chang, and Jianfeng Gao. Grounded Language-Image Pre-Training.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10955–
10965. 2022.

[204] Rutav Shah and Vikash Kumar. RRL: Resnet as Representation for Reinforce-
ment Learning. In International Conference on Machine Learning. 2021.

[205] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre
Côté, and R. Devon Hjelm. Unsupervised State Representation Learning in
Atari. In Neural Information Processing Systems. 2019.

[206] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey
Levine. Learning Invariant Representations for Reinforcement Learning
Without Reconstruction. In International Conference on Learning Representations.
2021.

[207] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul,
Hado P van Hasselt, and David Silver. Successor Features for Transfer in
Reinforcement Learning. In Neural Information Processing Systems, volume 30.
2017.

[208] Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning Successor
States and Goal-Dependent Values: A Mathematical Viewpoint. 2021.
arXiv:2101.07123.

BIBLIOGRAPHY 185

[209] Peter Dayan. Improving Generalisation for Temporal Difference Learning:
The Successor Representation. Neural Computation, 1993.

[210] Alexey Dosovitskiy and Vladlen Koltun. Learning to Act by Predicting the
Future. In International Conference on Learning Representations. 2017.

[211] Jongwook Choi, Archit Sharma, Honglak Lee, Sergey Levine, and Shixi-
ang Shane Gu. Variational Empowerment as Representation Learning for
Goal-Conditioned Reinforcement Learning. In International Conference on
Machine Learning, pp. 1953–1963. 2021.

[212] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,
Honglak Lee, and James Davidson. Learning Latent Dynamics for Planning
From Pixels. 2018. arXiv:1811.04551.

[213] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A Generalized Path
Integral Control Approach to Reinforcement Learning. Journal of Machine
Learning Research, 11:3137–3181, 2010.

[214] Hannes Jónsson, Greg Mills, and Karsten W Jacobsen. Nudged Elastic Band
Method for Finding Minimum Energy Paths of Transitions. In Classical and
Quantum Dynamics in Condensed Phase Simulations, pp. 385–404. World Scien-
tific, 1998.

[215] Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A
Comparison of Single-Cell Trajectory Inference Methods. Nature Biotechnology,
37(5):547–554, 2019.

[216] Steven R Majewski, Ricardo P Schiavon, Peter M Frinchaboy, Carlos Allende
Prieto, Robert Barkhouser, Dmitry Bizyaev, Basil Blank, Sophia Brunner,
Adam Burton, Ricardo Carrera, et al. The Apache Point Observatory Galactic
Evolution Experiment (APOGEE). Astronomical Journal, 154(3):94, 2017.

[217] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Towards Deeper Under-
standing of Variational Autoencoding Models. 2017. arXiv:1702.08658.

[218] Yizhe Zhu, Martin Renqiang Min, Asim Kadav, and Hans Peter Graf. S3vae:
Self-Supervised Sequential VAE for Representation Disentanglement and
Data Generation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6538–6547. 2020.

[219] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and
Brendan Frey. Adversarial Autoencoders. 2015. arXiv:1511.05644.

[220] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky,
Olivier Mastropietro, and Aaron Courville. Adversarially Learned Inference.
In International Conference on Learning Representations. 2016.

[221] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating Diverse
High-Fidelity Images With Vq-VAE-2. Neural Information Processing Systems,
32, 2019.

BIBLIOGRAPHY 186

[222] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved Baselines
With Momentum Contrastive Learning. 2020. arXiv:2003.04297.

[223] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive Multiview
Coding. In Computer Vision–ECCV 2020: 16th European Conference, pp. 776–794.
2020.

[224] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised Fea-
ture Learning via Non-Parametric Instance Discrimination. In IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3733–3742. 2018.

[225] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estima-
tion of Word Representations in Vector Space. 2013. arXiv:1301.3781.

[226] Matthew Botvinick and Marc Toussaint. Planning as Inference. Trends in
Cognitive Sciences, 16(10):485–488, 2012.

[227] Hagai Attias. Planning by Probabilistic Inference. In International Workshop
on Artificial Intelligence and Statistics, pp. 9–16. 2003.

[228] George E Uhlenbeck and Leonard S Ornstein. On the Theory of the Brownian
Motion. Physical Review, 36(5):823, 1930.

[229] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung.
Time Series Analysis: Forecasting and Control. John Wiley & Sons, 2015.

[230] Dmitry M Malioutov, Jason K Johnson, and Alan S Willsky. Walk-Sums and
Belief Propagation in Gaussian Graphical Models. Journal of Machine Learning
Research, 7:2031–2064, 2006.

[231] Yair Weiss and William Freeman. Correctness of Belief Propagation in Gaus-
sian Graphical Models of Arbitrary Topology. Neural Information Processing
Systems, 12, 1999.

[232] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis,
and Nikunj Saunshi. A Theoretical Analysis of Contrastive Unsupervised
Representation Learning. 2019. arXiv:1902.09229.

[233] Claude Elwood Shannon. A Mathematical Theory of Communication. Bell
System Technical Journal, 27(3):379–423, 1948.

[234] E. T. Jaynes. Information Theory and Statistical Mechanics. Physical Review,
106(4):620–630, 1957.

[235] Keith Conrad. Probability Distributions and Maximum Likelihood. 2010.
[236] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker.

On Variational Bounds of Mutual Information. In International Conference on
Machine Learning. 2019.

[237] Nick Higham. What Is the Second Difference Matrix? https://nhigham.com/
2022/01/31/what-is-the-second-difference-matrix/, 2022.

https://nhigham.com/2022/01/31/what-is-the-second-difference-matrix/
https://nhigham.com/2022/01/31/what-is-the-second-difference-matrix/

BIBLIOGRAPHY 187

[238] Morris Newman and John Todd. The Evaluation of Matrix Inversion Pro-
grams. Journal of the Society for Industrial and Applied Mathematics, 6(4):466–476,
1958.

[239] Seongmin Park and Jihwa Lee. Finetuning Pretrained Transformers Into
Variational Autoencoders. 2021. arXiv:2108.02446.

[240] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-Training of Deep Bidirectional Transformers for Language Understanding.
2019. arXiv:1810.04805.

[241] Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David
Bignell, Stephanie Milani, Katja Hofmann, Matthew Hausknecht, Anca Dra-
gan, et al. UniMASK: Unified Inference in Sequential Decision Problems.
2022. arXiv:2211.10869.

[242] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C
Courville, and Yoshua Bengio. A Recurrent Latent Variable Model for Se-
quential Data. In Neural Information Processing Systems, volume 28. 2015.

[243] Rui Shu, Tung Nguyen, Yinlam Chow, Tuan Pham, Khoat Than, Mohammad
Ghavamzadeh, Stefano Ermon, and Hung Bui. Predictive Coding for Locally-
Linear Control. In International Conference on Machine Learning, pp. 8862–8871.
2020.

[244] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller.
Embed to Control: A Locally Linear Latent Dynamics Model for Control From
Raw Images. Neural Information Processing Systems, 28, 2015.

[245] Ershad Banijamali, Rui Shu, Hung Bui, Ali Ghodsi, et al. Robust Locally-
Linear Controllable Embedding. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1751–1759. 2018.

[246] Brandon Cui, Yinlam Chow, and Mohammad Ghavamzadeh. Control-Aware
Representations for Model-Based Reinforcement Learning. In International
Conference on Learning Representations. 2020.

[247] Tung D Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. Tem-
poral Predictive Coding for Model-Based Planning in Latent Space. In Inter-
national Conference on Machine Learning, pp. 8130–8139. 2021.

[248] Tung Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. Non-
Markovian Predictive Coding for Planning in Latent Space. 2020.

[249] Ross Goroshin, Michael F Mathieu, and Yann LeCun. Learning to Linearize
Under Uncertainty. Neural Information Processing Systems, 28, 2015.

[250] Dinesh Jayaraman and Kristen Grauman. Slow and Steady Feature Analysis:
Higher Order Temporal Coherence in Video. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3852–3861. 2016.

[251] Mengda Xu, Zhenjia Xu, Cheng Chi, Manuela Veloso, and Shuran Song.
XSkill: Cross Embodiment Skill Discovery. 2023. arXiv:2307.09955.

BIBLIOGRAPHY 188

[252] Laurenz Wiskott and Terrence J. Sejnowski. Slow Feature Analysis: Unsuper-
vised Learning of Invariances. Neural Computation, 14(4):715–770, 2002.

[253] Jia-Wei Yan, Ci-Siang Lin, Fu-En Yang, Yu-Jhe Li, and Yu-Chiang Frank Wang.
Semantics-Guided Representation Learning With Applications to Visual Syn-
thesis. In International Conference on Pattern Recognition, pp. 7181–7187. 2021.

[254] Alon Oring, Zohar Yakhini, and Yacov Hel-Or. Autoencoder Image Interpola-
tion by Shaping the Latent Space. 2020. arXiv:2008.01487.

[255] Ying-Cong Chen, Xiaogang Xu, Zhuotao Tian, and Jiaya Jia. Homomorphic
Latent Space Interpolation for Unpaired Image-to-Image Translation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2403–
2411. 2019.

[256] Xiaofeng Liu, Yang Zou, Lingsheng Kong, Zhihui Diao, Junliang Yan, Jun
Wang, Site Li, Ping Jia, and Jane You. Data Augmentation via Latent Space
Interpolation for Image Classification. In International Conference on Pattern
Recognition, pp. 728–733. 2018.

[257] Omer Levy and Yoav Goldberg. Linguistic Regularities in Sparse and Explicit
Word Representations. In Eighteenth Conference on Computational Natural
Language Learning, pp. 171–180. 2014.

[258] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A
Latent Variable Model Approach to Pmi-Based Word Embeddings. Transac-
tions of the Association for Computational Linguistics, 4:385–399, 2016.

[259] Carl Allen and Timothy Hospedales. Analogies Explained: Towards Under-
standing Word Embeddings. In International Conference on Machine Learning,
pp. 223–231. 2019.

[260] Tatsunori B Hashimoto, David Alvarez-Melis, and Tommi S Jaakkola. Word
Embeddings as Metric Recovery in Semantic Spaces. Transactions of the Associ-
ation for Computational Linguistics, 4:273–286, 2016.

[261] Allen Newell. Report on a General Problem-Solving Program. In IFIP Congress.
1959.

[262] Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Intrin-
sically Motivated Goal-Conditioned Reinforcement Learning: A Short Survey.
2021.

[263] Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani.
How Far I’ll Go: Offline Goal-Conditioned Reinforcement Learning via F-
Advantage Regression. 2022.

[264] Yannick Schroecker and Charles Isbell. Universal Value Density Estimation
for Imitation Learning and Goal-Conditioned Reinforcement Learning. 2020.

[265] Michael Janner, Qiyang Li, and Sergey Levine. Offline Reinforcement Learn-
ing as One Big Sequence Modeling Problem. Neural Information Processing
Systems, 34:1273–1286, 2021.

BIBLIOGRAPHY 189

[266] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-Resolution Image Synthesis With Latent Diffusion Mod-
els. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10684–10695. 2022.

[267] Chongyi Zheng, Benjamin Eysenbach, Homer Walke, Patrick Yin, Kuan Fang,
Ruslan Salakhutdinov, and Sergey Levine. Stabilizing Contrastive RL: Tech-
niques for Offline Goal Reaching. 2023. arXiv:2306.03346.

[268] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement
Learning: Theory and Algorithms. CS Dept, pp. 10–4, 2019.

[269] Yunhao Tang, Zhaohan Daniel Guo, Pierre Harvey Richemond,
Bernardo Ávila Pires, Yash Chandak, Rémi Munos, Mark Rowland,
Mohammad Gheshlaghi Azar, Charline Le Lan, Clare Lyle, et al. Understand-
ing Self-Predictive Learning for Reinforcement Learning. In International
Conference on Machine Learning. 2023.

[270] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling
Representation Learning From Reinforcement Learning. In International Con-
ference on Machine Learning, pp. 9870–9879. 2021.

[271] Homanga Bharadhwaj, Mohammad Babaeizadeh, Dumitru Erhan, and Sergey
Levine. Information Prioritization Through Empowerment in Visual Model-
Based RL. In International Conference on Learning Representations. 2022.

[272] Pablo Samuel Castro, Tyler Kastner, P. Panangaden, and Mark Rowland.
MICo: Improved Representations via Sampling-Based State Similarity for
Markov Decision Processes. In Neural Information Processing Systems. 2021.

[273] Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach, Sergey Levine,
and Ruslan Salakhutdinov. Simplifying Model-Based RL: Learning Represen-
tations, Latent-Space Models, and Policies With One Objective. In International
Conference on Learning Representations. 2023.

[274] Cameron S. Allen. Learning Markov State Abstractions for Deep Reinforce-
ment Learning. In Neural Information Processing Systems. 2021.

[275] Bogdan Mazoure, Benjamin Eysenbach, Ofir Nachum, and Jonathan Tomp-
son. Contrastive Value Learning: Implicit Models for Simple Offline RL. In
Conference on Robot Learning, pp. 1257–1267. 2023.

[276] Zhaohan Daniel Guo, Shantanu Thakoor, Miruna Pislar, Bernardo Ávila
Pires, Florent Altch’e, Corentin Tallec, Alaa Saade, Daniele Calandriello, et al.
BYOL-Explore: Exploration by Bootstrapped Prediction. In Neural Information
Processing Systems. 2022.

[277] Yilun Du, Chuang Gan, and Phillip Isola. Curious Representation Learning
for Embodied Intelligence. In IEEE/CVF International Conference on Computer
Vision, pp. 10388–10397. 2021.

BIBLIOGRAPHY 190

[278] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Prob-
abilistic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[279] Steven M LaValle, James J Kuffner, BR Donald, et al. Rapidly-Exploring
Random Trees: Progress and Prospects. Algorithmic and Computational Robotics:
New Directions, 5:293–308, 2001.

[280] Sep Thijssen and H. J. Kappen. Path Integral Control and State-Dependent
Feedback. Physical Review E, 91(3):032104, 2015.

[281] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model Predic-
tive Path Integral Control Using Covariance Variable Importance Sampling.
2015. arXiv:1509.01149.

[282] Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the
Replay Buffer: Bridging Planning and Reinforcement Learning. Neural Infor-
mation Processing Systems, 32, 2019.

[283] Sham Machandranath Kakade. On the Sample Complexity of Reinforcement
Learning. University of London, University College London (United King-
dom), 2003.

[284] Richard Bellman. Dynamic Programming. Science, 153(3731):34–37, 1966.
[285] Ew Dijkstra. A Note on Two Problems in Connexion With Graphs. Numerische

Mathematik, 1:269–271, 1959.
[286] Richard S. Sutton. Reinforcement Learning: An Introduction. A Bradford Book,

2018.
[287] Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun,

and Dawn Song. Assessing Generalization in Deep Reinforcement Learning.
2018. arXiv:1810.12282.

[288] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[289] Steven M. LaValle and James J. Kuffner. Randomized Kinodynamic Planning.
International Journal of Robotics Research, 20(5):378–400, 2001.

[290] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al.
Maximum Entropy Inverse Reinforcement Learning. In AAAI, volume 8, pp.
1433–1438. 2008.

[291] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to Algorithms. MIT press, 2022.

[292] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-
Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning With a
Stochastic Actor. In International Conference on Machine Learning. 2018.

BIBLIOGRAPHY 191

[293] Michal Bortkiewicz, Wladek Palucki, Vivek Myers, Tadeusz Dziarmaga,
Tomasz Arczewski, Lukasz Kuciński, and Benjamin Eysenbach. Accelerating
Goal-Conditioned RL Algorithms and Research. 2024. arXiv:2408.11052.

[294] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books, 1961.

[295] David J. Burr. A Neural Network Digit Recognizer. Proc. IEEE SMC, pp.
1621–1625, 1986.

[296] Silviu Pitis, Harris Chan, Kiarash Jamali, and Jimmy Ba. An Inductive
Bias for Distances: Neural Nets That Respect the Triangle Inequality. 2020.
arXiv:2002.05825.

[297] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value
Iteration Networks. Neural Information Processing Systems, 29, 2016.

[298] Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan
Salakhutdinov. Gated Path Planning Networks. In International Conference on
Machine Learning, pp. 2947–2955. 2018.

[299] Onur Beker, Mohammad Mohammadi, and Amir Zamir. PALMER:
Perception-Action Loop With Memory for Long-Horizon Planning. Neu-
ral Information Processing Systems, 35:34258–34271, 2022.

[300] Richard S Sutton. Dyna, an Integrated Architecture for Learning, Planning,
and Reacting. ACM Sigart Bulletin, 2(4):160–163, 1991.

[301] Kurtland Chua, Roberto Calandra, Rowan Mcallister, and Sergey Levine.
Deep Reinforcement Learning in a Handful of Trials Using Probabilistic
Dynamics Models. In Neural Information Processing Systems. 2018.

[302] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine.
Neural Network Dynamics for Model-Based Deep Reinforcement Learning
With Model-Free Fine-Tuning. In IEEE International Conference on Robotics and
Automation. 2018.

[303] Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and
Igor Mordatch. Plan Online, Learn Offline: Efficient Learning and Exploration
via Model-Based Control. 2018. arXiv:1811.01848.

[304] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg,
Byron Boots, and Evangelos A Theodorou. Information Theoretic MPC for
Model-Based Reinforcement Learning. In International Conference on Robotics
and Automation. 2017.

[305] Oleh Rybkin, Chuning Zhu, Anusha Nagabandi, Kostas Daniilidis, Igor
Mordatch, and Sergey Levine. Model-Based Reinforcement Learning via
Latent-Space Collocation. In International Conference on Machine Learning, pp.
9190–9201. 2021.

[306] Giambattista Parascandolo, Lars Buesing, Josh Merel, Leonard Hasenclever,
John Aslanides, Jessica B Hamrick, Nicolas Heess, Alexander Neitz, and

BIBLIOGRAPHY 192

Theophane Weber. Divide-And-Conquer Monte Carlo Tree Search for Goal-
Directed Planning. 2020. arXiv:2004.11410.

[307] Karl Pertsch, Oleh Rybkin, Jingyun Yang, Shenghao Zhou, Konstantinos
Derpanis, Kostas Daniilidis, Joseph Lim, and Andrew Jaegle. Keyframing the
Future: Keyframe Discovery for Visual Prediction and Planning. In Learning
for Dynamics and Control, pp. 969–979. 2020.

[308] Joshua B Tenenbaum, Vin de Silva, and John C Langford. A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science, 290(5500):2319–
2323, 2000.

[309] Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and
Sergey Levine. Why Does Hierarchy (Sometimes) Work So Well in Reinforce-
ment Learning? 2019. arXiv:1909.10618.

[310] Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir
Nachum, and Emma Brunskill. Supervised Pretraining Can Learn In-Context
Reinforcement Learning. Neural Information Processing Systems, 36, 2024.

[311] Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang,
Hongkun Yu, and Jiawei Han. Large Language Models Can Self-Improve.
2022. arXiv:2210.11610.

[312] Geoffrey Irving, Paul Christiano, and Dario Amodei. AI Safety via Debate.
2018. arXiv:1805.00899.

[313] Alfred North Whitehead and Bertrand Russell. Principia Mathematica to* 56,
volume 2. Cambridge University Press, 1927.

[314] Christopher JCH Watkins and Peter Dayan. Q-Learning. Machine Learning,
8:279–292, 1992.

[315] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy
Scheurer, Javier Rando, Rachel Freedman, Tomasz Korbak, David Lindner,
Pedro Freire, et al. Open Problems and Fundamental Limitations of Rein-
forcement Learning From Human Feedback. 2023. arXiv:2307.15217.

[316] Dylan Hadfield-Menell, Stuart J. Russell, Pieter Abbeel, and Anca Dragan.
Cooperative Inverse Reinforcement Learning. Neural Information Processing
Systems, 29, 2016.

[317] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J. Russell, and
Anca Dragan. Inverse Reward Design. Neural Information Processing Systems,
30, 2017.

[318] Micah Carroll, Dylan Hadfield-Menell, Stuart Russell, and Anca Dragan.
Estimating and Penalizing Preference Shift in Recommender Systems. In
ACM Conference on Recommender Systems, RecSys ’21, pp. 661–667. 2021.

[319] Alexander Matt Turner, Logan Smith, Rohin Shah, Andrew Critch, and Prasad
Tadepalli. Optimal Policies Tend to Seek Power. In Neural Information Process-
ing Systems. 2023.

BIBLIOGRAPHY 193

[320] Stuart Russell. Learning Agents for Uncertain Environments (Extended
Abstract). In Conference on Computational Learning Theory, pp. 101–103. 1998.

[321] Saurabh Arora and Prashant Doshi. A Survey of Inverse Reinforcement
Learning: Challenges, Methods and Progress. Artificial Intelligence, 297:103500,
2021.

[322] Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz.
A Survey of Preference-Based Reinforcement Learning Methods. Journal of
Machine Learning Research, 18(136):1–46, 2017.

[323] Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment–an
Introduction. Guided Self-Organization: Inception, pp. 67–114, 2014.

[324] Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empower-
ment: A Universal Agent-Centric Measure of Control. In IEEE Congress on
Evolutionary Computation, volume 1, pp. 128–135. 2005.

[325] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Shared Autonomy via
Deep Reinforcement Learning. 2018. arXiv:1802.01744.

[326] Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maximum
Margin Planning. In Rd International Conference on Machine Learning - ICML
’06, pp. 729–736. 2006.

[327] Pieter Abbeel and Andrew Y Ng. Apprenticeship Learning via Inverse Re-
inforcement Learning. In International Conference on Machine Learning, p. 1.
2004.

[328] Thomas M Cover. Elements of Information Theory. John Wiley & Sons, 1999.
[329] Nihat Ay, Jürgen Jost, Hông Vân Lê, and Lorenz Schwachhöfer. Information

Geometry, volume 64 of Ergebnisse Der Mathematik Und Ihrer Grenzgebiete 34.
Springer International Publishing, 2017.

[330] Frank Nielsen. An Elementary Introduction to Information Geometry. Entropy,
22(10):1100, 2020.

[331] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. The Infor-
mation Geometry of Unsupervised Reinforcement Learning. In International
Conference on Learning Representations. 2022.

[332] Robert G. Gallager. Source Coding With Side Information and Universal
Coding. 1979.

[333] Boris Yakovlevich Ryabko. Coding of a Source With Unknown but Ordered
Probabilities. Problems of Information Transmission, 15(2):134–138, 1979.

[334] R. Duncan Luce. Individual Choice Behavior. Individual Choice Behavior. John
Wiley, 1959.

[335] Tobias Jung, Daniel Polani, and Peter Stone. Empowerment for Continuous
Agent—Environment Systems. Adaptive Behavior, 19(1):16–39, 2011.

BIBLIOGRAPHY 194

[336] Cassidy Laidlaw and Anca Dragan. The Boltzmann Policy Distribution:
Accounting for Systematic Suboptimality in Human Models. In International
Conference on Learning Representations. 2022.

[337] Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The Effects of Reward
Misspecification: Mapping and Mitigating Misaligned Models. In International
Conference on Learning Representations, arXiv:2201.03544. 2022.

[338] Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D. Dragan, and
Daniel S. Brown. Causal Confusion and Reward Misidentification in
Preference-Based Reward Learning. In International Conference on Learning
Representations. 2023.

[339] Cassidy Laidlaw, Shivam Singhal, and Anca Dragan. Preventing Reward
Hacking With Occupancy Measure Regularization. 2024. arXiv:2403.03185.

[340] Ildefons Magrans de Abril and Ryota Kanai. A Unified Strategy for Imple-
menting Curiosity and Empowerment Driven Reinforcement Learning. 2018.
arXiv:1806.06505.

[341] Sean Chen, Jensen Gao, Siddharth Reddy, Glen Berseth, Anca D. Dragan,
and Sergey Levine. ASHA: Assistive Teleoperation via Human-in-the-Loop
Reinforcement Learning. In International Conference on Robotics and Automation.
2022.

[342] Siddharth Reddy, Sergey Levine, and Anca Dragan. First Contact: Unsuper-
vised Human-Machine Co-Adaptation via Mutual Information Maximization.
Neural Information Processing Systems, 35:31542–31556, 2022.

[343] Andrew G. Barto. Intrinsic Motivation and Reinforcement Learning. In Gian-
luca Baldassarre and Marco Mirolli, editors, Intrinsically Motivated Learning in
Natural and Artificial Systems, pp. 17–47. Springer, 2013.

[344] Arthur Aubret, Laetitia Matignon, and Salima Hassas. A Survey on Intrinsic
Motivation in Reinforcement Learning. In Entropy. 2023.

[345] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Di-
versity Is All You Need: Learning Skills Without a Reward Function. 2018.
arXiv:1802.06070.

[346] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Explo-
ration by Random Network Distillation. International Conference on Learning
Representations, 2019.

[347] Karl Friston. The Free-Energy Principle: A Unified Brain Theory? Nature
Reviews Neuroscience, 11(2):127–138, 2010.

[348] Glen Berseth, Daniel Geng, Coline Devin, Nicholas Rhinehart, Chelsea Finn,
Dinesh Jayaraman, and Sergey Levine. Smirl: Surprise Minimizing Rein-
forcement Learning in Unstable Environments. In International Conference on
Learning Representations. 2019.

BIBLIOGRAPHY 195

[349] Shakir Mohamed and Danilo Jimenez Rezende. Variational Information
Maximisation for Intrinsically Motivated Reinforcement Learning. In Neural
Information Processing Systems, volume 28. 2015.

[350] Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran,
and Pieter Abbeel. CIC: Contrastive Intrinsic Control for Unsupervised Skill
Discovery. 2022. arXiv:2202.00161.

[351] Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, and Gunhee
Kim. Lipschitz-Constrained Unsupervised Skill Discovery. In International
Conference on Learning Representations. 2021.

[352] Susanne Still and Doina Precup. An Information-Theoretic Approach to
Curiosity-Driven Reinforcement Learning. Theory in Biosciences, 131:139–148,
2012.

[353] Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause.
Information-Directed Exploration for Deep Reinforcement Learning. In Inter-
national Conference on Learning Representations. 2019.

[354] Erdem Biyik, Dylan P. Losey, Malayandi Palan, Nicholas C. Landolfi, Gleb
Shevchuk, and Dorsa Sadigh. Learning Reward Functions From Diverse
Sources of Human Feedback: Optimally Integrating Demonstrations and
Preferences. In Int. J. Robotics Res. 2022.

[355] Vivek Myers, Erdem Biyik, Nima Anari, and Dorsa Sadigh. Learning Multi-
modal Rewards From Rankings. In Conference on Robot Learning, pp. 342–352.
2021.

[356] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel.
Bayesian Active Learning for Classification and Preference Learning. 2011.
arXiv:1112.5745.

[357] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive
Unsupervised Representations for Reinforcement Learning. In International
Conference on Machine Learning, pp. 5639–5650. 2020.

[358] Ida Momennejad, Evan M Russek, Jin H Cheong, Matthew M Botvinick,
Nathaniel Douglass Daw, and Samuel J Gershman. The Successor Rep-
resentation in Human Reinforcement Learning. Nature Human Behaviour,
1(9):680–692, 2017.

[359] K. Friston, L. Da Costa, N. Sajid, Robert Conor Heins, K. Ueltzhoffer, G. A.
Pavliotis, and T. Parr. The Free Energy Principle Made Simpler but Not Too
Simple. Physics Reports-Review Section of Physics Letters, 1024:1–29, 2023.

[360] Angel Muleshkov and Tan Nguyen. Easy Proof of the Jacobian for the N-
Dimensional Polar Coordinates. Pi Mu Epsilon Journal, 14(4):269–273, 2016.

[361] D. P. Kingma. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations. 2014.

BIBLIOGRAPHY 196

[362] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2017. arXiv:1412.6980.

[363] Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei
Lupu, Gardar Ingvarsson, Timon Willi, Akbir Khan, et al. Jaxmarl: Multi-
Agent RL Environments in JAX. In International Conference on Autonomous
Agents and Multiagent Systems. 2024.

[364] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier Nonlineari-
ties Improve Neural Network Acoustic Models. In International Conference on
Machine Learning, volume 30, p. 3. 2013.

197

A VIDEOS AND CODE

Videos and code for the following chapters can be found at the provided links:

Chapter 2: Goal Representations for Instruction Following

Website and code: https://rail-berkeley.github.io/grif/.

Chapter 3: Policy Adaptation via Language Optimization

Code: https://github.com/vivekmyers/palo-robot.

Chapter 4: A Metric Structure for Successor Representations

Code and experiments: https://github.com/vivekmyers/contrastive_metrics.

Chapter 6: Planning with Contrastive Representations

Code and experiments: https://github.com/vivekmyers/contrastive_planning.

Chapter 8: Empowerment via Successor Representations

Website and code: https://empowering-humans.github.io.

https://rail-berkeley.github.io/grif/
https://github.com/vivekmyers/palo-robot
https://github.com/vivekmyers/contrastive_metrics
https://github.com/vivekmyers/contrastive_planning
https://empowering-humans.github.io

198

B LANGUAGE MODEL PROMPTING
DETAILS

This section contains the prompts used for the various methods (Chapters 2, 3 and 5)
that require language model prompting.

B.1 GRIF INSTRUCTION AUGMENTATION

In order to increase the diversity of language annotations, we augment our natural
language annotations using GPT-3.5. Through the API, we query the gpt-3.5-turbo
model to generate paraphrases of instructions in our dataset. We generate 5 para-
phrases per instruction and sample from them randomly during training. An exam-
ple prompt and response are shown below. We found in preliminary experiments
that using augmented instructions slightly improved language generalization, so
we keep this augmentation for all models and baselines.

Prompt:
Generate 5 variations of the following command:
"put the mushroom in the metal pot"
Number them like 1. 2. 3.
Be concise and use synonyms.

Response:
1. Place the fungus in the metallic container.
2. Insert the mushroom into the steel vessel.
3. Set the toadstool inside the iron cauldron.
4. Position the champignon within the tin pot.
5. Place the fungi in the metallic kettle.

B.2 PALO PROMPTING DETAILS

We employ a keyword decomposition prompt in our augmentation method and a
planning prompt to generate VLM outputs. They are listed below:

User: "You are presented with a text for high level instruction for
a robot , and you need to extract keywords in the task description
text.

B LANGUAGE MODEL PROMPTING DETAILS 199

In this instruction , the first keyword is the object being moved ,
and the second keyword , if applicable , what is the moving taking
this to (either another object or a location) within the
instruction.

Only return the first and second keyword , and they should be
separated by a comma. If the instruction is in another language ,
write your response in English.

For example , if the text instruction says "Pick up the silver lid on
the left to the middle of two burners", return "silver lid ,

middle of two burners ".
Or if the instruction says: "Move the object to the top middle side

of the table.", your response should be "object , top middle side
of the table".

Or if the instruction says : "Move the red greenish thing on the
towel to the right.", return "red greendish thing on the towel ,
the right ".

Try your best to find the two key phrases , but if you can ’t find the
second keyword within the instruction sentence , write "N/A".

For example , if the instruction is "Move the pot lid.", the response
should be "pot lid , N/A".

There might be some other description regarding confidence at the
end , you are safe to ignore it.\n The specific task description
for you to analyze is: \n {instruction} \n "

User: Here is an image observed by the robot in a tabletop robot
manipulation environment. The gripper situated at the top of the
center of table and perpendicular to it.
Now plan for the list of subtasks and skills the robot needs to

perform in order to {instrs }.

Each step in the plan can be selected from the available skills
below:

*movement direction:
*forward. This skill moves the robot gripper away from the

camera by a small distance.
*backward. This skill moves the robot gripper towards the

camera by a small distance.
*left. This skill moves the robot gripper to the left of the

image by a small distance.
*right. This skill moves the robot gripper to the right of

the image by a small distance.
*up. This skill moves the robot gripper upward until a safe

height.
*down. This skill moves the robot gripper downward to the

table surface.

*rotation direction:
*left. This skill tilts the gripper to an angle to the left.

B LANGUAGE MODEL PROMPTING DETAILS 200

*right. This skill tilts the gripper to an angle to the
right.

*down. This skill tilts the gripper to an angle facing up.
*up. This skill tilts the gripper to an angle facing down.
*clockwise. This skill rotates the gripper and the objcet it

is holding clockwise.
*counterclockwise. This skill rotates the gripper and the

object it is holding counterclockwise.

*gripper movement:
*close the gripper. This skill controls the robot gripper to

close to grasp an object.
*open the gripper. This skill controls the robot gripper to

open and release the object in hand.

You may choose between using one of movement direction. rotation
direction , or gripper movement.

If you were to choose to use movement direction , you may use one
or two directions and include a target object , and you

should format it like this:
"move the gripper x towards z" or "move the gripper x and y

towards z" where x and y are the directions and z is the
target object.

You also must start your command with "move the gripper ".
Therefore , instead of saying something like "down" or "up",
you should phrase it like "move the gripper down" and "move
the gripper up". Make sure to include at least one direction
in your command since otherwise this command format won ’t
make sense.

If you were to choose to use gripper movement , you should format
the command as "close the gripper to pick up x" or "open the
gripper to release x", where x is the target object.

You may discard the target object if necessary. In that case use
"close the gripper" or "open the gripper ".

If you think the gripper is close to the target object , then you
must choose to use gripper movement to grasp the target

object to maintain efficiency.

If you were to choose gripper rotation , you should format the
command as "rotate the gripper x", where x is the target
rotation direction. You need to make sure that in pouring
tasks , the opening of the container is aligned with the pot.

For example , if the object is aligned vertically but you want it
to align it horizontally , then you should call "rotate the

gripper counterclockwise ". If you want to tilt the object in
the gripper to pour it, you should call "rotate the gripper
left"

Pay close attention to these factors:

B LANGUAGE MODEL PROMPTING DETAILS 201

*Which task are you doing.
*Whether the gripper is closed.
*Whether the gripper is holding the target object.
*How far the two target objects are. If they are across the

table , then duplicate the commands with a copy of it.
*Where the gripper is. After the end of each subtask , it is

reasonable to assume that the gripper will not be at where it
originally was in the image , but somewhere close to the last
target object.

Especially pay attention to the actual direction between the
gripper and the target object. Remember that the robot ’s
angle is roughly the same as the camera ’s angle.

To determine whether the gripper should move forward or backward
, look into the edge of the table. If the target object is
closer to the edge of the table that is near the top of the
image , you should move forward , and if it is closer to the
edge that is near the bottom of the image , you should move
backward.

At the end of each subtask , you need to use the skill "move the
gripper back to neutral. This will move the gripper back to
the original position of the image after completing the task.

Start by looking at what objects are in the image , and then plan
with the direction of the objects in mind. The tasks should

be completed sequentially , therefore you need to consider the
position of the gripper after each task before planning the

next task.
You should return a json dictionary with the following fields:
- subtask: this should be the key of the dictionary. It should

contain the only the verbal description of the subtask the
robot needs to perform sequentially in order to finish the
task , and they should be ordered in the same way the task is
completed.

- list of skills: this should be the value of the dictionary. It
should be a list of skills the robot needs to perform in

order to finish the corresponding subtask.
Be concise , and do not return any other comments other than the

dictionary mentioned above. Do not put "subtask: " or "lsit
of skills: " in the key and value of the dictionary you
generate. Remember only the description and list should be
returned.

202

C EXPERIMENT DETAILS

This chapter contains additional details for the experiments in the main text.

C.1 PALO EVALUATION DETAILS

Experimental details for Chapter 3 are provided below.

Ablation Details
We ablate our experiment in progressive manners, going from full implementation
to using only the barebone hierarchical policy network.

• PALO without high level instruction: while running PALO, we derive both
high and low level instruction sets. However, during inference on robot, we
mask out the high level instruction and feed in zero embeddings.

• PALO without low level instruction: mask out the low level instruction and
replace them with zero embeddings during inference.

• Fixed Time During Optimization: for each trajectory that has corresponding
length H1, H2, . . . , Hi, we choose fixed ui = [Hi

k , 2Hi
k , . . . , (k−1)Hi

k] during opti-
mization. We implement no u sampling, which reduce PALO into an arg max
operation.

• Zero-Shot Plan Generation: instead of sampling 15 plans, we sample only one
plan from VLM and examine the behavior of the robot using that specific plan.

• No VLM Guidance: We use only ℓ as our high level instruction, and mask out
low level instruction with zero embeddings during inference.

C.2 TRA IMPLEMENTATION

In this section, we provide some details on the implementatinon of temporal repre-
sentation alignment (TRA) and its training process.

C EXPERIMENT DETAILS 203

Dataset Curation
We use an augmented version of BridgeData. We augment the dataset by generating
5 additional paraphrased instruction per language instruction. During training
process, we randomly sample the instructions for each trajectory to ensure an equal
coverage of texts.

During data loading process, for each observation that is being sampled with
timestep k, we also sample k+ ≜ min(k + x, H), x ∼ Geom(1− γ), and load sk
along with sk+ . We employ random cropping, resizing, and hue changes during
training process image robustness.

Policy Training
We use a ResNet-34 architecture for the policy network. We train our policy with
one Google V4-8 TPU VM instance for 150,000 steps, which takes a total of 20 hours.
We use a learning rate of 3× 10−4, 2000 linear warmup steps, and a MLP head of 3
layers of 256 dimensions after encoding the observation representations as well as
goal representations.

Baseline Implementations
We summarize the implementation details of the baselines discussed in Section 5.2.

Octo. We use the Octo-base 1.5 model publicly available on HuggingFace for
evaluating Octo baselines. We use inference code that is readily available for
both image- and language- conditioned tasks. During inference, we use an action
chunking window of 4 and an execution horizon window of 4.

Behavior Cloning. We use the same architecture for LCBC as in Walke et al. [62],
Myers et al. [7]. During the training process we use the same hyperparameters as
TRA.

Advantage Weighted Regression. In order to train an AWR agent without sep-
arately implementing a reward critic, we follow Eysenbach et al. [121] and use a
surrogate for advantage:

A(st) = LNCE
(

f (st), f (g)
)
−LNCE

(
f (st+1), f (g)

)
. (C.1)

Here, f can be any of the encoders ϕ, ξ, ψ. L is the same InfoNCE loss defined
Section 5.1, and g is defined as either the goal observation or the goal language
instruction, depending on the modality.

And we extract the policy using advantage weighted regression (AWR) [138]:

π ← arg max
π

Es,a∼D
[
log π(a|s, z) exp

(
A(s, a)/β

)]
. (C.2)

During training, we set β to 1, and we use a batch size of 128, the same value as
policy training for our method.

C EXPERIMENT DETAILS 204

Experiment Details
In this section, we go through our experiment details and how they are set up.
During evaluation, we randomly reset the positions of each item within the table,
and perform 5 to 10 trials on each task, depending on whether this task is important
within each scene. We examine tasks that are seen in BridgeData, which include
conventionally less challenging tasks such as object manipulation, and challenging
tasks to learn within the dataset such as cloth folding and drawer opening.

List of Tasks. Table C.1 describes each task within each scene, and the language
annotation used when the policy is used for inference. Every task that is outside of
the drawer scene are multiple step, and require compositional generalization.

Table C.1: Task Instructions

Scene Count Task Description Instruction

Drawer
10 open the drawer “open the drawer”

10 put the mushroom in the drawer “put the mushroom in the drawer”

10 close the drawer “close the drawer”

Task Generalization

5 put the spoons on the plates “move the spoons onto the plates.”

5 put the spoons on the towels “move the spoons on the towels”

6 fold the cloth into the center from all corners “fold the cloth into center”

10 sweep the towels to the right “sweep the towels to the right of the table”

Semantic Generalization
10 put the sushi and the corn on the plate “put the food items on the plate”

5 put the sushi and the mushroom in the bowl “put the food items in the bowl”

10 put the sushi, corn, and the banana in the bowl “put everything in the bowl”

Tasks With Dependency

10 take mushroom out of drawer “open the drawer and then take the mush-
room out of the drawer”

10 move bell pepper and sweep towel
“move the bell pepper to the bottom right
corner of the table, and then sweep the
towel to the top right corner of the table”

10 put the corn on the plate, and then put the sushi in the pot “put the corn on the plate and then put
the sushi in the pot”

Inference. During inference, we use a maximum of 200 timesteps to account for
long-horizon behaviors, which remains the same for all policies. We determine a
task as successful when the robot completes the task it was instructed to within the
timeframe. For evaluating baselines, we use 5 trials for each of the tasks.

Validation MSE. In addition to rolling out the policy on real-world robot settings,
we additionally collected 9 additional tasks that are compositionally OOD for 5
trajectories each, and we use 3 randomly selected seeds to train policies to evaluate
the MSE on the validation trajectories.

Environment Details
We evaluate our method in a real-world tabletop manipulation setup. We use a
6DOF WidowX-250 robot interacting with various objects both inside and outside
of our training distribution at 5 Hz. We use one 640×480 RGB camera mounted on
top of the model as set up in BridgeData [62]. When computing observations we
downsample images to 224× 224.

C EXPERIMENT DETAILS 205

We evaluate our method in the following scenes, which include:

Sweep: This scene involves an object manipulation as well as sweeping task unseen
in the BridgeData’s initial training trajectories.

mint: Placing the mushroom in the pot, then sweep the mints on the right
using the towel.

skittles: Instead of using mints and towel for sweeping, we use a swiffer and
skittles instead.

Drawer: This scene involves using a drawer and perform manipulation within the
space of the drawer.

put in: Open the drawer, and then put a purple object (beet/sweet potato)
inside the drawer.

pry away: A pot is stored inside the drawer space, and the robot must use a
ladle to pry away the pot within drawer.

Bowl: This scene involves object manipulation to a bowl and perform long-horizon
or 6DOF manipulation.

salad: This task requires sequential object manipulation by putting a corn cob
and a mushroom in the bowl.

pouring: This task requires the robot to grasp a scoop and pour almonds
inside the scoop into the bowl.

Rotation: This scene involves rotating a spoon and a marker to fit into a white
container not aligned with the pen/marker, and naive pick-and-place will not
correctly align the object into the container.

spoon: Placing the spoon in the container placed on the left side of the table.

marker: Replacing the spoon with the marker and randomize location of the
container while being misaligned.

We summarize the evaluation tasks in Table C.2, and show example rollouts in
Fig. C.1.

Training Details
We train on an augmented version of the BridgeDataV2 dataset [62], which features
over 50k trajectories with 72k language annotations. We algorithmically augment
the dataset with low-level instructions using heuristics designed over the proprio-
ceptive states of the robot and incorporate language context by parsing the language

C EXPERIMENT DETAILS 206

Instruction

“put the marker into the
box while aligning it”

“put the spoon into the
cleaner while aligning it”

“put the beet toy/purple
thing into the drawer”

“pry out the pot in the
drawer using the ladle”

“make a salad bowl with
corn and mushroom”

“pour the contents of the
scoop into the bowl”

“sweep the mints to the
right after putting the
mushroom in the bowl”

“sweep the skittles into the
bin after putting the
mushroom in the container”

Instruction
t = 0 t = 0t = 180 t = 180

Figure C.1: Sample rollouts using PALO on unseen testing tasks.

Table C.2: Task Breakdown

Scene Task Long-Horizon? 6DOF? Instruction

Drawer
put in Yes Yes “put the beet toy/purple thing

into the drawer.”

pry away Yes Yes
“pry out the pot in the drawer
using the ladle.”

Bowl
salad Yes No “make a salad bowl with corn

and mushroom.”

pour scoop No Yes “pour the contents of the scoop
into the bowl.”

Sweep

mints Yes No
“sweep the mints to the right
after putting the mushroom in
the bowl.”

skittles Yes No
“sweep the skittles into the bin
after putting the mushroom in
the container.”

Rotation
marker No Yes

“put the marker into the box
while aligning it.”

spoon No Yes
“put the spoon into the cleaner
while aligning it.”

C EXPERIMENT DETAILS 207

instruction using a language model. We use the Adam optimizer [361] to minimize
the loss function in Eq. (C.3).

Instead of naively looping through Algorithm 1, we batch our implementation
with the exception of the outermost for loop, thus reducing time consumption
during optimization by a significant margin via vectorization. We record an em-
pirical time consumption of 470 seconds for our language optimization module on
computations ran on a V4 TPU module, in which only 200 seconds are required
for sampling 20000 different partitions to complete the optimization for all of the
15 sets of language instructions. We save our optimal plans for future use, thus
reducing overhead even more.

We encode both language instructions using a frozen MUSE model [58] before
passing them into the main ResNet with FiLM layers [114].

Hyperparameter Selection
We discuss the hyperparameters used in our method and baselines.

Policy Training. We set our learning rate for our Adam Optimizer [361] to 3 · 10−4

and a dropout rate of 0.1 in our policy head. We employ random resizing and
cropping, contrast, brightness, saturation, and hue for input images. We train our
policy for 300,000 steps, in which we use the checkpoint with the lowest validation
MSE. The total training time takes 12 hours when trained on 4 TPU pods.

Language Decomposition Optimization. During optimization, we sample M = 15
random instruction sets from GPT4-o, and we use N = 20, 000 sampling steps in
order to find the best subtask decomposition.

In order to batch across demonstrations, which have different trajectory lengths,
we pad our trajectories to a certain length H (200 for long-horizon tasks, 150 for
non long-horizon tasks). We sum the squared difference between generated action
and oracle action in evaluation, thus giving a consistent error metric analogous to
Eq. (3.7).

Baseline Details.
We finetune an Octo-small [67] model that is trained on BridgeData with a learning
rate of 3 · 10−4 and finetune our model’s action head for 5000 steps. We use the
hyperparameters set by Octo for the rest of the settings.

In order to perform tasks in long-horizon, we assign a language label for each
task in order to transplant semantic understanding from human into Octo. The
same language instruction for PALO evaluation is also used for Octo finetuning.

C EXPERIMENT DETAILS 208

Augmentation Details.
We train the policy by maximizing the likelihood of actions given high- and low-
level instructions in the dataset Dprior:

J (θ) = EDprior

[
∥at − πθ

(
st, (cH, 0)

)
∥2

+ ∥at − πθ

(
st, (0, cL)

)
∥2 + ∥at − πθ

(
st, (cH, cL)

)
∥2] (C.3)

where s1 . . . sH ∈ S , a1 . . . aH ∈ A, cL, cH ∈ L ∪ {0}, and θ are the parameters of
the policy network, 0 is an additional point representing the absence of a high- or
low-level instruction, which will be represented as an embedding vector of zero
during training, and τ = (s0, a0, . . . , sH, aH) is a trajectory sampled from the dataset.

This objective encourages the policy to learn to follow instructions at both levels
of abstraction, marginalizing over missing instructions. We chunk actions within
training data into segments of length 4 and evaluate the low level instruction within
these segments and append them into the training data.

Heuristics for Language Augmentation

We algorithmically enhance our training data by using heuristics generated by
the proprioception of the robot and language context, which generates the low-
level instructions. The labeled language instruction is passed into a language
model to obtain manipulation keywords, and we combine the keywords with the
proprioceptive information within that time span including translation, rotation,
and gripper movement into coherent language commands.

Proprioception. We use standard deviation of each action against the metadata of
BridgeData [62] and determine how to describe the proprioception of the label. We
determine the largest direction in which the gripper is moving (up, down, left, right,
forward, backward) and the orientation it is rotating (up, down, left, right, clockwise,
counterclockwise), and determine whether the movement is unambiguous enough
by checking the largest z-score in translation and rotation. We then combine the
movement as well as the keywords extracted to form language primitive commands.

Target Object. We identify the target object using a prompt heuristic to be fed
into GPT3.5-Turbo [33] by taking advantage of the fact that BridgeData consists
of mainly object manipulation data. We extract two keywords: the object to be
manipulated and the destination of the object, based on the fact that much of
BridgeData is focused on object manipulation. The precise prompt can be found at
Appendix B.2

Data Filtering. We filter low-level instruction on two occasions: when the move-
ment itself is ambiguous and when the language model gives inconsistent results.
We check the former by looking up the norm of the translation and the norm of

C EXPERIMENT DETAILS 209

rotation, and we check the latter by using regular expression to see if the result
was against the desired format and manually filtering out some common keywords
of inadmissible GPT query. On the former occasion, we use an empty string as
the low level instruction, and on the second occasion, we use only proprioceptive
information for low-level instruction.

Additional High-Level Language Augmentation. We additionally augment the
high-level language annotations by generating context-free rephrasings with GPT-
3.5 [33]. For each trajectory with crowdsourced language annotations in the Bridge-
Data v2 dataset, we generate 5 such augmented language strings following the
approach of Myers et al. [7].

C.3 CMD IMPLEMENTATION

We implement CMD, CRL (CPC / NCE), and GCBC using JAX building upon
the official codebase of contrastive RL [121]. For the QRL baseline, we use the
implementation provided by the author [143]. Whenever possible, we used the
same hyperparameters as contrastive RL [121] and match the number of parameters
in the model for different algorithms. We used 4 layers of 512 units of MLP as
our neural network architectures and set batch size to 256. We find that using a
smaller learning rate 5 · 10−6 for the contrastive network is useful for improving
performance. In light of Lemma 4.1, when learning the dSD critic in Eq. (4.14), we
use a dummy action a′ sampled from the marginal distribution over geometrically-
discounted future actions.

We compared approaches in the offline settings across the best performance
from 500k steps of training, consistent with past work [134, 121]. All approaches
were tested with similar model sizes and runtime, and used tuned hyperparam-
eters. Our code at https://github.com/mnm-anonymous/qmd features the precise
configurations for the experiments.

C.4 ESR DETAILS

We provide implementation details for the Empowerment via Successor Represen-
tations (ESR) method from Chapter 8.

Implementation Details
We ran all our experiments on NVIDIA RTX A6000 GPUs with 48GB of memory
within an internal cluster. Each evaluation seed took around 5-10 hours to complete.
Our losses (Eqs. 8.27 and 8.35) were computed and optimized in JAX with Adam
[362]. We used a hardware-accelerated version of the Overcooked environment from
the JaxMARL package [363]. The experimental results described in Section 8.3 were
obtained by averaging over 5 seeds for the Overcooked coordination ring layout,
15 for the cramped room layout, and 20 for the obstacle gridworld environment.

https://github.com/mnm-anonymous/qmd

C EXPERIMENT DETAILS 210

Specific hyperparameter values can be found in our code, which is available at
https://github.com/vivekmyers/empowerment_successor_representations.

Network Architecture. In the obstacle grid environment, we used a network with 2
convolutional and 2 fully connected layers and SiLU activations. In Overcooked, we
adapted the policy architecture from past work [318], using 3 convolutional layers
followed by 4 MLP layers with Leaky ReLU activations [364]. We concatenate in aR

and aH to the state as one-hot encoded channels, i.e. if the action is 5, 6 additional
channels will be concatenated to the state with all set to 0s except the 5th channel
which is set to 1s.

C.5 PLANNING INVARIANCE AND HORIZON GENERALIZATION

We provide details for the environments studied in the figures within Chapter 7.

Figure 7.2
This task is a gridworld of size 30 x 30, with walls shown as in Fig. 7.2. The dynamics
are deterministic. There are 5 actions, corresponding to the cardinal directions and
a no-op action.

For this plot, we generated data from a random policy, using 1000 trajectories
of length 200. We estimated distances using Monte Carlo regression. The left two
subplots were generated by selecting actions uses these Monte Carlo distances.
We computed the true distances by running Dijkstra’s algorithm. The right two
subplots show actions selected using Dijkstra’s algorithm.

Figure 7.7 (Top)
This plot used the same environment as described in Appendix C.5. For this plot,
we generated 3000 trajectories of length 50 using a random policy. Only 14% of
start-goal pairs have any trajectory between them, meaning that the vast majority
of start-goal pairs have never been seen together during training. Thus, this is a
good setting for studying generalization.

We first estimated distances using Monte Carlo regression. We select actions
using a Boltzmann policy with temperature 0.1 (i.e., π(a | s, g) ∝ e−0.1d(s,g)). Evalu-
ation is done over 1000 randomly-sampled start-goal pairs. The X axis is binned
based on the shortest path distance. The data are aggregated so that start-goal pairs
with distance between (say) 20 and 30 get plotted at x = 30. The “metric regression
+ quasimetric” distances are obtained by performing path relaxation on these Monte
Carlo distances until convergence. The corresponding policy is again a Boltzmann
policy with temperature 0.1.

For the Top Right subplot, we perform planning using Dijkstra’s algorithm. We
first identify a set of candidate midpoint states where d(s, w) and d(w, g) are both

https://github.com/vivekmyers/empowerment_successor_representations

C EXPERIMENT DETAILS 211

within one unit of half the shortest path distance. We then randomly sample a
midpoint state. This planning is done anew at every timestep.

Figure 7.7 (Bottom)
This plot used the same environment as described in Appendix C.5. The CRL
method refers to [121] and CMD refers to [9]. We used a representation dimension
of 16, a batch size of 256, neural networks with 2 hidden layers of width 32 and
Swish activations, γ = 0.9, and Adam optimizer with learning rate 3e-3. The loss
functions and architectures are based on those from [293].

For the Bottom Right subplot, we performed planning in the same way as for
the Top Right subplot.

Figure 7.5
For this task we directly used the ant maze task as well as loss functions and
architectures from Bortkiewicz et al. [293]. All other hyperparameters are kept as
the defaults from that paper. Training is done for 100M steps

Figure 7.6

Figure C.2: S-shaped maze.

For this experiment we used an S-
shaped maze, shown in Fig. C.2.1 The
dynamics are the same as those of
Fig. 7.2.

We collected 3000 trajectories of
length 10 and applied CRL with a repre-
sentation dimension of 16, a batch size of 256, neural networks with 2 hidden layers
of width 32 and Swish activations, the backward NCE loss [293], γ = 0.9, using the
Adam optimizer with learning rate 3e-3. We measured the Bellman error as follows,
where x0, x1, xT are the current, immediate next, and future states:

pdist = metric_fn.apply(params, x0[:, None], xT[None])
pdist1 = metric_fn.apply(params, x1[:, None], xT[None])
td_target = (1 - gamma) * (x1 == xT[None, :, 0])

+ gamma * jax.nn.softmax(pdist1, axis=1)
bellman = optax.kl_divergence(

td_target, jax.nn.softmax(pdist, axis=1)
).mean()

For the success rates in the Left subplot, we stratify goals into “easy” (less than
100 steps away, under an optimal policy) and “distant” (more than 100 steps away).

We repeated this experiment 10 times for generate the standard errors shown in
both the Left and Right subplots.

1We used this maze in preliminary versions of other experiments, but opted for the larger maze
in the other paper experiments because the results were easier to visualize.

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Publications
	Bibliography

	I Representing Tasks and Goals
	Goal Representations for Instruction Following
	Related Work
	Problem Setup
	Goal Representations for Instruction Following
	Experiments
	Scaling of Annotation Supervision
	Conclusion

	Policy Adaptation via Language Optimization
	Related Work
	Policy Adaptation via Language Optimization
	Regret Analysis
	Experiments
	Conclusion

	II Representations for Compositional Decision Making
	A Metric Structure for Successor Representations
	General distances for goal-reaching
	Using our Temporal Distance for RL
	One-step Metric Distillation (CMD-1):
	Two-step metric distillation (CMD-2)
	Experiments
	Hitting Times
	Proofs
	Didactic Examples
	Action-Invariance
	Related Work

	Temporal Representation Alignment
	Temporal Representation Alignment
	Experiments
	Additional Visualizations
	Analysis of Compositionality
	Related Work
	Conclusions and Limitations

	Planning with Contrastive Representations
	Preliminaries
	Contrastive Representations Make Inference Easy
	Proofs
	Numerical Simulation
	Additional Experiments
	Related Work
	Discussion

	Invariance to Planning
	Preliminaries
	Planning Invariance and Horizon Generalization
	Methods for Planning Invariance: Old and New
	Experiments
	Definition of Path Relaxation
	Formalizing Planning Invariance
	New Methods for Planning Invariance
	Self-Consistent Models
	Evidence from Prior Work
	Conclusion

	III Representations for Tractable Intrinsic Motivation
	Empowerment via Successor Representations
	The Information Geometry of Empowerment
	Maximizing Empowerment with Contrastive Representations
	Experiments
	Additional Ablations and Qualitative Results
	Discussion
	Related Work

	The Representation Geometry of Intrinsic Motivation
	Binary NCE
	Symmetric infoNCE with a learned temperature
	Euclidean infoNCE

	Bibliography
	Videos and Code
	Language Model Prompting Details
	GRIF Instruction Augmentation
	PALO Prompting Details

	Experiment Details
	PALO Evaluation Details
	TRA Implementation
	CMD Implementation
	ESR Details
	Planning Invariance and Horizon Generalization

