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Abstract
Learning Efficiently with Trajectory Data for Real World Robotics
by
Philipp Wu
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Pieter Abbeel, Chair

With the technological advancements enabled by Al, the vision of generally capable robots is
now within reach. In this dissertation, I discuss my work on leveraging data-driven learning
approaches for real-world robotic systems, centering on trajectory data—the complex, multi-
modal, time-series information that serves as the core unit of data in robotics. The data
sources in robotics are complex, potentially coming from multiple sources with varying quality.
Additionally, collecting real-world robot data can be expensive and time-consuming, making
efficient use of each data point essential.

I aim to address these challenges through three key research directions: trajectory represen-
tation learning, high-quality data collection, and sample-efficient policy learning. First, we
explore how to learn effective representations from trajectory data, using both reconstruction-
based and contrastive learning methods, and demonstrate how these representations enhance
a variety of downstream robotics tasks. Next, we examine practical methods that can be
used with real-world robotic systems to collect high-quality trajectory data and subsequently
utilize that data to learn new skills. Finally, we investigate how to compose these robot
skills with high-level language models to imbue robots with stronger reasoning and planning
capabilities.

Together, these contributions advance the development of general-purpose robots capable of
operating in complex, unstructured environments.



To my family.
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Chapter 1

Introduction

1.1 Vision

My research goal is to create generally intelligent robotic systems capable of operating in
unstructured environments, spanning the low-level control systems to the high-level intelligence
and learning algorithms. I feel incredibly fortunate to have pursued my Ph.D. during such
an exciting period of technological advancement in Al and robotics. As a child, I spent
hours building robots with my LEGO robotics kit, programming them to perform simple
autonomous behaviors. Now, through my Ph.D., I have had the privilege of contributing to
the scientific community and advancing robotics toward a new frontier of embodied agents
with general capabilities powered by deep learning.

The core of my work centers on trajectory data, the special form of data that we manipulate
for robotics. A trajectory is a form of time-series data, encompassing multiple modalities.
For instance, a humanoid robot might have data in the form of proprioception from joint
encoders, visual observations from cameras, pressure readings from foot sensors, and audio
signals from a microphone. While this diversity and multimodality make trajectory data
both rich and valuable for learning, it also introduces significant complexity. Furthermore,
the hardware requirements and physical constraints of robotics present additional challenges,
particularly in collecting sufficient high-quality data for data-hungry algorithms.

This dissertation explores methods to address these challenges, investigating ways to learn
from trajectory data in the real world and ultimately contributing to the development of
general-purpose robots. We explore three main directions:

1. Develop algorithms that extract the maximum value from each data point through
representation learning.

2. Design methods to gather high-quality trajectory data in the real world and learn robot
policies from that data.

3. Leverage the high-level reasoning priors of language models to coordinate with low-level
control policies.
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1.2 Trajectory Representation Learning

By effectively pretraining representations on trajectory data, we can greatly benefit down-
stream robot learning. However, trajectory data are very complex, coming from a variety
of difference sources with different modalities. In Chapter [2] we explore Masked Trajectory
Models, which address this challenge by learning representations on trajectory data using
a masked training and reconstruction approach. We find this benefits policy learning in
a variety of ways. In Chapter [3] we further investigate how representations help in policy
learning through trajectory clustering, which we apply to a semi-supervised one-shot imitation
learning setting, this time through a contrastive-based approach. This section provides tools
for learning representations from existing trajectory data.

1.3 Low-level Policy Learning on Real-World Robots

This section investigates how to actually collect trajectory datasets in the real world, and
develop algorithms to learn effective policies from these datasets. Real-world data collection for
robotics presents unique challenges. One approach involves enabling robots to autonomously
collect data through trial and error, learning about their environment and tasks. We explore
this in Chapter [4]in the work Daydreamer, where we propose using world models—learned
latent dynamics models that allow agents to predict the outcomes of their actions—to improve
data efficiency. We ultimately learn policies across 4 different robots directly with trajectory
data collected from the robots’ own experience. Despite these advancements, challenges
remain, particularly in robot manipulation tasks, due to the difficulty of acquiring rewards
in the real world. In imitation learning, robots can benefit from expert demonstrations,
circumventing the need for rewards. In Chapter [5] we introduce GELLO, a low-cost and
accessible teleoperation solution, which facilitates high-quality data collection for imitation
learning. This system enables intuitive teleoperation, making demonstration dataset collection
scalable and accessible. Chapter [0 explores further improving this process of imitation learning
by having humans provide corrective feedback during policy execution. Our practical robot
system, RoboCopilot, reduces human effort while improving data efficiency by specifically
targeting failure modes. This section focuses on collecting trajectory data and training useful
real world policies from such data

1.4 Coordinating Robot Policies with Language
Models

This section explores the high-level capabilities of language models and how they can benefit
robot systems by providing an interface for humans to interact with. Large language models
(LLMs) excel at high-level reasoning and task planning, but often struggle with low-level
tasks that are represented in trajectory data, requiring fine motor control and precision.
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This limitation necessitates integration with specialized control systems to achieve a balance
between abstraction and practical execution. Chapter [7] introduces a framework where LLMs
serve as interpreters and planners, generating actionable task plans and coordinating subtasks
with low-level skills. This system facilitates iterative dialogue, ensuring alignment with
user expectations and situational requirements. Chapter |8| further explores this concept
and presents a hierarchical framework that combines the strengths of high-level reasoning
through vision-language models with the precision of low-level control policies through end-
to-end training. This approach achieves seamless coordination between abstract planning
and physical execution. This section advances the potential for human-robot collaboration
through language interfaces, paving the way for more adaptive and interactive robotic systems
that can reason.

1.5 Concluding Thoughts

We conclude this dissertation in Chapter [9] with some closing thoughts on the various
components we explored around trajectory data. We then touch upon the open-ended
problems we need to address to truly develop general robotic systems that can function in
unstructured environments like humans and present an outlook for the future of robotics.



Chapter 2

Trajectory Representations with
Masking

This chapter is based on the paper “Masked Trajectory Models for Prediction, Representation,
and Control” (Wu et all, |2023d), by Philipp Wu, Arjun Majumdar, Kevin Stone, Yizin Lin,
Igor Mordatch, Pieter Abbeel, and Aravind Rajeswaran.

We introduce Masked Trajectory Models (MTM) as a generic abstraction for sequential
decision making. MTM takes a trajectory, such as a state-action sequence, and aims to
reconstruct the trajectory conditioned on random subsets of the same trajectory. By training
with a highly randomized masking pattern, MTM learns versatile networks that can take on
different roles or capabilities, by simply choosing appropriate masks at inference time. For
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Figure 2.1: Masked Trajectory Modeling (MTM) Framework. (Left) The training process
involves reconstructing trajectory segments from a randomly masked view of the same. (Right)
After training, MTM can enable several downstream use-cases by simply changing the masking
pattern at inference time. See Section for discussion on training and inference masking
patterns.
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example, the same MTM network can be used as a forward dynamics model, inverse dynamics
model, or even an offline RL agent. Through extensive experiments in several continuous
control tasks, we show that the same MTM network — i.e. same weights — can match or
outperform specialized networks trained for the aforementioned capabilities. Additionally,
we find that state representations learned by MTM can significantly accelerate the learning
speed of traditional RL algorithms. Finally, in offline RL benchmarks, we find that MTM
is competitive with specialized offline RL algorithms, despite MTM being a generic self-
supervised learning method without any explicit RL components. Code is available at
https://github.com/facebookresearch/mtm.

2.1 Introduction

Sequential decision making is a field with a long and illustrious history, spanning various
disciplines such as reinforcement learning (Sutton & Barto, [2018]), control theory (Bertsekas,
1995; |Astrom & Murrayl, [2010), and operations research (Powell, 2007). Throughout this
history, several paradigms have emerged for training agents that can achieve long-term success
in unknown environments. However, many of these paradigms necessitate the learning and
integration of multiple component pieces to obtain decision-making policies. For example,
model-based RL methods require the learning of world models and actor-critic methods require
the learning of critics. This leads to complex and unstable multi-loop training procedures
and often requires various ad-hoc stabilization techniques. In parallel, the emergence of
self-supervised learning (Devlin et al.; |2018; |Jing & Tian, |2019) has led to the development
of simple training objectives such as masked prediction and contrastive prediction, which
can train generic backbone models for various tasks in computer vision and natural language
processing (NLP). Motivated by this advancement, we explore if self-supervised learning
can lead to the creation of generic and versatile models for sequential decision making with
capabilities including future prediction, imitation learning, and representation learning.

Towards this end, we propose the use of Masked Trajectory Models (MTM) as a generic
abstraction and framework for prediction, representation, and control. Our approach draws
inspiration from two recent trends in Artificial Intelligence. The first is the success of masked
prediction, also known as masked autoencoding, as a simple yet effective self-supervised
learning objective in NLP (Devlin et al., 2018; Liu et al., |2019; Brown et al., |2020)) and
computer vision (Bao et al., 2021} |[He et al 2021)). This task of masked prediction not only
forces the model to learn good representations but also develops its conditional generative
modeling capabilities. The second trend that inspires our work is the recent success of
transformer sequence models, such as decision transformers, for reinforcement (Chen et al.,
2021; Janner et al. 2021)) and imitation learning (Reed et al 2022 Shafiullah et al., 2022).
Motivated by these breakthroughs, we investigate if the combination of masked prediction
and transformer sequence models can serve as a generic self-supervised learning paradigm for
decision-making.


https://github.com/facebookresearch/mtm
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Conceptually, MTM is trained to take a trajectory sequence of the form:

T = (Sky ak7sk+17ak+17 ... St7at>

and reconstruct it given a masked view of the same, i.e.

7 = hy (Masked(T))

where hy(+) is a bi-directional transformer and Masked(7) is a masked view of T generated
by masking or dropping some elements in the sequence. For example, one masked view of the
above sequence could be: (sy, ., axi1,__,...,S;__) where __ denotes a masked element.
In this case, MTM must infill intermediate states and actions in the trajectory as well as predict
the next action in the sequence. A visual illustration of our paradigm is shown in Figure [2.1
Once trained, MTM can take on multiple roles or capabilities at inference time by appropriate
choice of masking patterns. For instance, by unmasking actions and masking states in the
sequence, MTM can function as a forward dynamics model.

Our Contributions Our main contribution is the proposal of MTM as a versatile modeling
paradigm and pre-training method. We empirically investigate the capabilities of MTM on
several continuous control tasks including planar locomotion (Fu et al., 2020)) and dexterous
hand manipulation (Rajeswaran et al.;[2018]). We highlight key findings and unique capabilities
of MTM below.

1. One Model, Many Capabilities: The same model trained with MTM (i.e. the same
set of weights) can be used zero-shot for multiple purposes including inverse dynamics,
forward dynamics, imitation learning, offline RL, and representation learning.

2. Heteromodality: MTM is uniquely capable of consuming heteromodal data and per-
forming missing data imputation, since it was trained to reconstruct full trajectories
conditioned on randomly masked views. This capability is particularly useful when
different trajectories in the dataset contain different modalities, such as a dataset
containing both state-only trajectories as well as state-action trajectories (Baker et al.,
2022). Following the human heteromodal cortex (Donnelly, 2011)), we refer to this
capability as heteromodality.

3. Data Efficiency: Training with random masks enables different training objectives
or combinations, thus allowing more learning signal to be extracted from any given
trajectory. As a result, we find MTM to be more data efficient compared to other methods.

4. Representation Learning: We find that state representations learned by MTM transfer
remarkably well to traditional RL algorithms like TD3 (Fujimoto et al., [2018b), allowing
them to quickly reach optimal performance. This suggests that MTM can serve as a
powerful self-supervised pre-training paradigm, even for practitioners who prefer to use
conventional RL algorithms.

Overall, these results highlight the potential for MTM as a versatile paradigm for RL, and
its ability to be used as a tool for improving the performance of traditional RL methods.
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2.2 Related Work

Autoencoders and Masked Prediction. Autoencoders have found several applications
in machine learning. The classical PCA (Jolliffe & Cadima, [2016]) can be viewed as a linear
autoencoder. Denoising autoencoders (Vincent et al., 2008) learn to reconstruct inputs from
noise corrupted versions of the same. Masked autoencoding has found recent success in
domains like NLP (Devlin et al, 2018; Brown et al., 2020)) and computer vision (He et al.
2021} Bao et al., 2021)). Our work explores the use of masked prediction as a self-supervised
learning paradigm for RL.

Offline Learning for Control Our work primarily studies the offline setting for decision
making, where policies are learned from static datasets. This broadly falls under the paradigm
of offline RL (Lange et al., 2012). A large class of offline RL algorithms modify their online
counterparts by incorporating regularization to guard against distribution shift that stems
from the mismatch between offline training and online evaluation (Kumar et al., [2020; Kidambi
et al., 2020; |[Fujimoto et al., [2018a; Yu et al., [2021; Liu et al., [2020). In contrast, our work
proposes a generic self-supervised pre-training paradigm for decision making, where the
resulting model can be directly repurposed for offline RL. Zheng et al.| (2023) introduces a self
supervised approach for the heteromodal offline RL settings where only a small subset of the
trajectories have action labels. We leverage this setting in the investigation of Heteromodal
MTM, which can be trained without any change to the algorithm.

Self-Supervised Learning for Control The broad idea of self-supervision has been
incorporated into RL in two ways. The first is self-supervised data collection, such as
task-agnostic and reward-free exploration (Pathak et al., 2017} |Laskin et al., 2021; [Burda
et al 2018). The second is concerned with self-supervised learning for control, which is
closer to our work. Prior works typically employ self-supervised learning to obtain state
representations (Yang & Nachum)| 2021} Parisi et al., 2022; Nair et al., [2022; | Xiao et al., 2022)
or world models (Hafner et al.| |2020; Hansen et al., 2022a.b; [Seo et al., 2022), for subsequent
use in standard RL pipelines. In contrast, MTM uses self-supervised learning to train a single
versatile model that can exhibit multiple capabilities.

Transformers and Attention in RL Our work is inspired by the recent advances in Al
enabled by transformers (Vaswani et al., 2017)), especially in offline RL (Chen et al., [2021;
Janner et al., [2021; Jiang et al., |2022)) and imitation learning (Reed et al., 2022; [Shafiullah
et al., [2022; Brohan et al., 2022; \Jiang et al.; 2023; |Zhou et al., 2022). Of particular relevance
are works that utilize transformers in innovative ways beyond the standard RL paradigm.
Decision Transformers and related methods (Schmidhuber, [2019; Srivastava et al.,|2019; (Chen
et al., 2021)) use return-conditioned imitation learning, which we also adopt in this work.
However, in contrast to [Chen et al. (2021) and |Janner et al.| (2021) who use next token
prediction as the self-supervised task, we use a bi-directional masked prediction objective.
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This masking pattern enables the learning of versatile models that can take on different roles
based on inference-time masking pattern.

Recently, Liu et al. (2023a)) and (Carroll et al.| (2022) explore the use of bi-directional
transformers for RL and we build off their work. In contrast to Liu et al. (2023a)) which
studies downstream tasks like goal reaching and skill prompting, we study a different subset
of tasks such as forward and inverse dynamics. Liu et al. (2023a)) also studies offline RL by
applying TD3 and modifying the transformer attention mask to be causal, while we study
the return conditioned behavior cloning setting. In contrast to |Carroll et al.| (2022), we study
the broader capabilities of our model on several high-dimensional control tasks. VPT (Baker
et al., 2022)) also tackles sequential decision making using transformers, focusing primarily
on extracting action labels with a separate inverse dynamics model. Furthermore, unlike
prior work, we also demonstrate that our model has unique and favorable properties like data
efficiency, heteromodality, and the capability to learn good state representations.

2.3 Masked Trajectory Modeling

We now describe the details of our masked trajectory modeling paradigm, such as the problem
formulation, training objective, masking patterns, and overall architecture used.

2.3.1 Trajectory Datasets

MTM is designed to operate on trajectory datasets that we encounter in decision making
domains. Taking the example of robotics, a trajectory comprises of proprioceptive states,
camera observations, control actions, task/goal commands, and so on. We can denote such a
trajectory comprising of M different modalities as

TZ{(X%,X%,...X{W), ...(x%,x%,...x%)}, (2.1)

where x7* refers to the m'" modality in the #'® timestep. In our empirical investigations,
following prior work (Chen et al| 2021; |Janner et al| 2021), we use state, action, and
return-to-go (RTG) sequences as the different data modalities. Note that in-principle, our
mathematical formulation is generic and can handle any modality.

2.3.2 Architecture and Masked Modeling

To perform masked trajectory modeling, we first “tokenize” the different elements in the raw
trajectory sequence, by lifting them to a common representation space using modality-specific
encoders. Formally, we compute

2y = Ej(x") Vte (LT, me[1,M],
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Figure 2.2: Tokenization of the trajectory sequence comprises three components. A
modality specific encoder lifts from the raw modality space to a common representation space,
where we additionally add timestep embeddings and modality type embeddings. Collectively,
these allow the transformer to distinguish between different elements in the sequence.

where Ejy" is the encoder corresponding to modality m. We subsequently arrange the
embeddings in a 1-D sequence of length N = M x T as:

T = (z%,z%,...z{‘”,...zi",...z%).
The self-supervised learning task in MTM is to reconstruct the above sequence conditioned on a
masked view of the same. We denote the latter with Masked(7), where we randomly drop or
“mask” a subset of elements in the sequence. The final self-supervised objective is given by:

T M
max E; > > log Py (z)"| Masked(T)), (2.2)

t=1 m=1

where Py is the prediction of the model. This encourages the learning of a model that can
reconstruct trajectories from parts of it, forcing it to learn about the environment as well
as the data generating policy, in addition to good representations of the various modalities
present in the trajectory.

Architecture and Embeddings We adopt an encoder-decoder architecture similar to
et al.| (2021)) and |Liu et al.| (2023a)), where both the encoder and decoder are bi-directional
transformers. We use a modality-specific encoder to lift the raw trajectory inputs to a
common representation space for tokens. Further, to allow the transformer to disambiguate
between different elements in the sequence, a fixed sinusoidal timestep encoding and a
learnable mode-specific encoding are added, as illustrated in Figure The resulting
sequence is then flattened and fed into the transformer encoder where only unmasked tokens
are processed. The decoder processes the full trajectory sequence, and uses values from the
encoder when available, or a mode-specific mask token when not. The decoder is trained to

predict the original sequence, including the unmasked tokens, using an MSE loss (He et al.|
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Figure 2.3: Masking Pattern for Training and Inference. (Training: box in orange)
MTM is trained to reconstruct trajectory segments conditioned on a masked view of the same.
We use a random autoregressive masking pattern, where elements in the input sequence are
randomly masked, with the added constraint that at least one masked token must have no
future unmasked tokens. This means the last element in the sequence must necessarily be
masked. We note that the input sequence can start and end on arbitrary modalities. In this
illustrated example, R3 is the masked token that satisfies the autoregressive constraint. That
is the prediction of Rj is conditioned on no future tokens in the sequence. (Inference: boxes
in gray) By changing the masking pattern at inference time, MTM can either be used directly
for offline RL using RCBC (Chen et al., [2021)), or be used as a component in traditional RL
pipelines as a state representation, dynamics model, policy initialization, and more. These
different capabilities are shown in gray. Modes not shown at the input are masked out and
modes not shown at the output are not directly relevant for the task of interest.

, which corresponds to a Gaussian probabilistic model. We also note that the length
of episodes/trajectories in RL can be arbitrarily long. In our practical implementation, we
model shorter “trajectory segments” that are randomly sub-selected contiguous segments of
fixed length from the full trajectory.

Masking Pattern Intuitively, we can randomly mask elements in the sequence with
a sufficiently high mask ratio to make the self-supervised task difficult. This has found
success in computer vision (He et al., [2021)). We propose to use a variation of this — a
random autoregressive masking pattern. This pattern requires at least one token in the
masked sequence to be autoregressive, meaning it must be predicted based only on previous
tokens, and all future tokens are masked. This means the last element in each sampled
trajectory segment is necessarily masked. See Figure for an illustration. We note that
the autoregressive mask in our context is not using a causal mask in attention weights, but
instead corresponds to masking at the input and output token level, similar to MAE.

In the case of computer vision and NLP, the entire image or sentence is often available
at inference time. However, in the case of RL, the sequence data is generated as the agent
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interacts with the environment. As a result, at inference time, the model is forced to be
causal (i.e. use only the past tokens). By using our random autoregressive masking pattern,
the model both learns the underlying temporal dependencies in the data, as well as the ability
to perform inference on past events. We find that this simple modification is helpful in most
tasks we study.

2.3.3 MTM as a generic abstraction for RL

The primary benefit of MTM is its versatility. Once trained, the MTM network can take on
different roles, by simply using different masking patterns at inference time. We outline a
few examples below. See Figure 2.3] for a visual illustration.

1. Firstly, MTM can be used as a stand-alone algorithm for offline RL, by utilizing a return-
conditioned behavior cloning (RCBC) mask at inference time, analogous to DT (Chen
et al| [2021) and RvS (Emmons et al., 2021). However, in contrast to DT and RvS,
we use a different self-supervised pre-training task and model architecture. We find in
Section that using MTM in “RCBC-mode” outperforms DT and RvS.

2. Alternatively, MTM can be used to recover various components that routinely feature
in traditional RL pipelines, as illustrated in Figure 2.3 Conceptually, by appopriate
choice of masking patterns, MTM can: (a) provide state representation that accelerates
the learning of traditional RL algorithms; (b) perform policy initialization through
behavior cloning; (c) act as a world model for model-based RL algorithms; (d) act as an
inverse dynamics model to recover action sequences that track desired reference state
trajectories.

2.4 Experiments

Through detailed empirical evaluations, we aim to study the following questions.
1. Is MTM an effective algorithm for offline RL?

2. Is MTM a versatile learner? Can the same network trained with MTM be used for different
capabilities without additional training?

3. Is MTM an effective heteromodal learner? Can it consume heteromodal datasets, like
state-only and state-action trajectories, and effectively use such a dataset to improve
performance?

4. Can MTM learn good representations that accelerate downstream learning with standard
RL algorithms?

See Appendix for additional details about model architecture and hyperparameters.
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2.4.1 Benchmark Datasets

To help answer the aforementioned questions, we draw upon a variety of continuous control
tasks and datasets that leverage the MuJoCo simulator Todorov et al.| (2012)). Additional
environment details can be found in Appendix [A.2]

D4RL (Fu et al., [2020) is a popular offline RL benchmark consisting of several environ-
ments and datasets. Following a number of prior work, we focus on the locomotion subset:
Walker2D, Hopper, and HalfCheetah. For each environment, we consider 4 different dataset
settings: Expert, Medium-Expert, Medium, and Medium-Replay. The Expert dataset is
useful for benchmarking imitation learning with BC, while the other datasets enable studying
offline RL and other capabilities of MTM such as future prediction and inverse dynamics.

Adroit (Rajeswaran et al. 2018]) is a collection of dexterous manipulation tasks with a
simulated five-fingered. We experiment with the Pen, and Door tasks that test an agent’s
ability to carefully coordinate a large action-space to accomplish complex robot manipulation
tasks. We collect Medium-Replay and Expert trajectories for each task using a protocol
similar to D4RL.

ExORL (Yarats et al [2022) dataset consists of trajectories collected using various
unsupervised exploration algorithms. [Yarats et al|(2022) showed that TD3 (Fujimoto et al.)
2018b) can be effectively used to learn in this benchmark. We use data collected by a
ProtoRL agent (Yarats et al., 2021b) in the Walker2D environment to learn three different
tasks: Stand, Walk, and Run.

2.4.2 Offline RL results

We first test the capability of MTM to learn policies in the standard offline RL setting. To do
so, we train MTM with the random autoregressive masking pattern as described in Section
Subsequently, we use the Return Conditioned Behavior Cloning (RCBC) mask at inference

Table 2.1: Results on D4RL. Offline RL results on the V2 locomotion suite of D4RL are
reported here, specified by the normalized score as described in Fu et al. (2020)). We find
that MTM outperforms RvS and DT, which also use RCBC for offline RL.

Environment Dataset BC CQL IQL TT MOPO RsV DT MTM (Ours)
HalfCheetah ~ Medium-Replay  36.6 45.5 44.2 41.9 42.3 38.0 36.6 43.0
Hopper Medium-Replay  18.1 95.0 94.7 91.5 28.0 73.5 82.7 92.9
Walker2d Medium-Replay  26.0 77.2 73.9 82.6 17.8 60.6 66.6 77.3
HalfCheetah ~ Medium 42.6 44.0 47.4 46.9 53.1 41.6 42.0 43.6
Hopper Medium 52.9 58.5 66.3 61.1 67.5 60.2 67.6 64.1
Walker2d Medium 75.3 72.5 78.3 79.0 39.0 717 74.0 70.4
HalfCheetah ~ Medium-Expert  55.2 91.6 86.7 95.0 63.7 92.2 86.8 94.7
Hopper Medium-Expert  52.5 1054 91.5 110.0 23.7 101.7 107.6 112.4
Walker2d Medium-Expert 107.5 108.8 109.6 101.9 44.6 106.0 108.1 110.2

Average 51.9 77.6 77.0 78.9 42.2 71.7 4.7 78.7
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Table 2.2: Evaluation of various MTM capabilities. MTM refers to the model trained with
the random autoregressive mask, and evaluated using the appropriate mask at inference time.
S-MTM (“Specialized”) refers to the model that uses the appropriate mask both during training
and inference time. We also compare with a specialized MLP baseline trained separately
for each capability. Note that higher is better for BC and RCBC, while lower is better for
FD and ID. We find that MTM is often comparable or better than training on specialized
masking patterns, or training specialized MLPs. We use a box outline to indicate that a
single model was used for all the evaluations within it. The right most column indicates if
MTM is comparable or better than S-MTM, and we find this to be true in most cases.

Domain Dataset Task MLP S-MTM (Ours)  MTM (Ours) (MTM) 2> (S-MTM)?
Expert (1) BC 111.14 £ 0.33 111.81 £ 0.18 | 107.35 £ 7.77 v
D4RL Expert (1) RCBC 111.17 £ 0.56 112.64 + 0.47 | 112.49 £ 0.37 4
Hopper  Expert 4) ID 0.009 £ 0.000 0.013 £ 0.000 | 0.050 £ 0.026 X
Expert (}) FD 0.072 £ 0.000  0.517 £ 0.025 | 0.088 +£ 0.049 4
Medium Replay (1) BC 35.63 £ 6.27 36.17 £ 4.09 29.46 £+ 6.74 X
D4RL Medium Replay (1) RCBC 88.61 + 1.68 93.30 £ 0.33 92.95 £ 1.51 v
Hopper ~Medium Replay (1) ID 0.240 + 0.028  0.219 + 0.008 | 0.534 + 0.009 X
Medium Replay (}) FD 2.179 £ 0.052  3.310 + 0.425 | 0.493 £ 0.030 4
Expert (1) BC 62.75 £ 1.43 66.28 £+ 3.28 61.25 £+ 5.06 v
Adroit Expert (1) RCBC 68.41 + 2.27 66.29 £+ 1.39 64.81 £ 1.70 v
Pen Expert 4) ID 0.128 £ 0.001  0.155 £ 0.001 | 0.331 £ 0.049 X
Expert (}) FD 0.048 £ 0.002  0.360 + 0.020 | 0.321 &£ 0.048 4
Medium Replay (1) BC 33.73 £ 1.00 54.84 £ 5.08 47.10 £ 7.13 X
Adroit Medium Replay (1) RCBC  41.26 £+ 4.99 57.50 &+ 3.76 58.76 + 5.63 v
Pen Medium Replay () ID 0.308 £ 0.004 0.238 £ 0.004 | 0.410 £ 0.064 X
Medium Replay (}) FD 0.657 £ 0.023  0.915 + 0.007 | 0.925 £ 0.026 4

time for evaluation. This is inspired by DT (Chen et al., 2021]) which uses a similar RCBC
approach, but with a GPT model.

Our empirical results are presented in Table 2.1} We find that MTM outperforms the closest
algorithms of DT and RvS, suggesting that masked prediction is an effective pre-training
task for offline RL when using RCBC inference mask. More surprisingly, MTM is competitive
with highly specialized and state-of-the-art offline RL algorithms like CQL (Kumar et al.
2020) and IQL (Kostrikov et al., 2021) despite training with a purely self-supervised learning
objective without any explicit RL components.

2.4.3 MTM Capabilities

We next study if MTM is a versatile learner by evaluating it across four different capabilities
on Adroit and D4RL datasets. We emphasize that we test these capabilities for a single
MTM-model (i.e. same weights) by simply altering the masking pattern during inference time.
See Figure for a visual illustration of the inference-time masking patterns.

1. Behavior Cloning (BC): Predict next action given state-action history. This is a
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standard approach to imitation learning as well as a popular initialization method for
subsequent RL (Rajeswaran et al., 2018]).

2. Return Conditioned Behavior Cloning (RCBC) is similar to BC, but additionally
conditions on the desired Return-to-Go. Recent works (Chen et al., 2021; [Emmons
et al., [2021)) have shown that RCBC can leads to successful policies in offline RL.

3. Inverse Dynamics (ID), where we predict the action using the current and future
desired state. This can be viewed as a 1-step goal-reaching policy. It has also found
application in observation-only imitation learning (Radosavovic et al. [2021; Baker et al.,
2022).

4. Forward Dynamics (FD), where we predict the next state given history and current
action. Forward dynamics models are an integral component of several model-based
RL algorithms (Janner et al. 2019; Rajeswaran et al., 2020; Hafner et al.| 2020).

We consider two variations of MTM. The first variant, S-MTM, trains a specialized model for
each capability using the corresponding masking pattern at train time. The second variant,
denoted simply as MTM, trains a single model using the random autoregressive mask specified
in Section . Subsequently, the same model (i.e. same set of weights) is evaluated for all
the four capabilities. We also compare our results with specialized MLP models for each
capability. We evaluate the best checkpoint across all models and report mean and standard
deviation across 4 seeds, taking the average of 20 trajectory executions per seed. For all
experiments we train on 95% of the dataset and reserve 5% of the data for evaluation. For
BC and RCBC results, we report the normalized score obtained during evaluation rollouts.
For ID and FD, we report normalized loss values on the aforementioned 5% held-out data.

A snapshot of our results are presented in Table for a subset of environments. Please
see Appendix for detailed results on all the environments. The last column of the
table indicates the performance difference between the versatile MTM and the specialized
S-MTM. We find that MTM is comparable or even better than specialized masks, and also
matches the performance of specialized MLP models. We suspect that specialized masks
may require additional tuning of parameters to prevent overfitting or underfitting, whereas
random autoregressive masking is more robust across tasks and hyperparameters.

2.4.4 Impact of Masking Patterns

We study if the masking pattern influences the capabilities of the learned model. Figure [2.4
shows that random autoregressive masking matches or outperforms purely random masking
on RCBC for a spread of environments for offline RL. We note that pure random masking,
as done in MAE and BERT, which focuses on only learning good representations, can lead
to diminished performance for downstream capabilities. Random autoregressive masking
mitigates these issues by allowing the learning of a single versatile model while still matching
or even exceeding the performance of specialized masks, as seen in Table [2.2]
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Figure 2.4: Impact of Masking Patterns. This plot shows MTM RCBC performance trained
with three different masking patterns, random, random autoregressive, and a specialized
RCBC mask. We find that autoregressive random often outperforms random, and in most
cases is even competitive with the specialized (or oracle) RCBC mask. Y-axis normalized
with using RCBC mask.

2.4.5 Heteromodal Datasets

MTM is uniquely capable of learning from heteromodal datasets. This is enabled by the training
procedure, where any missing data can be treated as if it were masked. During training
we apply the loss only to modes that exist in the dataset. For these experiments we take
the Expert subset of our trajectory data and remove action labels from the majority of
the dataset. The training data consists of 1% of the data with all modes (states, actions,
return-to-go) and 95% percent of the data with no action labels. As is done in all experiments,
the remainder is reserved for testing.

From our initial experiments, we found that naively adding in the state only data during
training, and evaluating with the RCBC mask did not always result in improved performance.
This was despite improvement in forward dynamics prediction as a result of adding state-only
trajectories. Based on this observation, we propose a two-stage action inference procedure.
First, we predict future states given current state and desired returns. This can be thought
of as a forward dynamics pass where the desired returns are used instead of actions, which
are masked out (or more precisely, missing). Next, we predict actions using the current state
and predicted future states using the inverse dynamics mask. We refer to this model trained
on heteromodal data, along with the two stage inference procedure, as Heteromodal MTM. We
present the results in Figure [2.5] where we find that Heteromodal MTM consistently improves
performance over the baseline MLP and MTM that are trained only on the subset of data with
action labels.
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Figure 2.5: MIM can effectively learn from heteromodal datasets. Real world data
may not always contain action labels. We simulate this setting by training a MTM models on
Expert datasets across domains where only a small fraction of the data have action labels.
Our Heteromodal MTM model is able to effectively improve task with the additional data over
baseline MTM and MLP that train on only the subset of data with actions. Y-axis normalized
with respect to performance of Heteromodal MTM.

2.4.6 Data Efficiency

Figure not only showed the effectiveness of MTM on heteromodal data, but also that MTM is
able to achieve higher performance than baseline (specialized) MLPs in the low data regimes.
To explicitly test the data efficiency of MTM, we study the performance as a function of the
training dataset size, and present results in Figure [2.6

We observe that MTM is more sample efficient and achieves higher performance for any
given dataset size. Heteromodal MTM also outperforms MTM throughout, with the performance
gap being quite substantial in the low-data regime. We hypothesize that the data efficiency
of MTM is due to better usage of the data. Specifically, since the model encounters various
masks during training, it must learn general relationships between different elements. As a
result, MTM may be able to squeeze out more learning signal from any given trajectory.

2.4.7 Representations of MTM

Finally, we study if the representations learned by MTM are useful for downstream learning
with traditional RL algorithms. If this is the case, MTM can also be interpreted as an offline
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Figure 2.6: Dataset efficiency. We train MTM in the D4RL Hopper and Adroit Door
environments across a range of dataset sizes, measured by the percent of the original
dataset (~ 1 million transitions). We see that MTM is able to consistently outperform
specialized MLP models in the low data regime. Furthermore, we see that Heteromodal
MTM (i.e. MTM trained on heteromodal data containing both state-only and state-action
trajectories) is further able to provide performance improvement in low data regimes.

pre-training exercise to help downstream RL. To instantiate this in practice, we consider the
setting of offline RL using TD3 on the ExORL dataset. The baseline method is to simply
run TD3 on this dataset using the raw state as input to the TD3 algorithm. We compare
this to our proposed approach of using MTM state representations for TD3. To do this, we
first pretrain an MTM model on state-action sequences in the ExORL dataset. Subsequently,
to use state representations from MTM, we simply use the MTM encoder to tokenize and encode
each state individually. This latent representation of the state can be used in the place of
raw states for the TD3 algorithm. The critic of TD3 is conditioned on states and actions.
We additionally test state-action representations of MTM by using the latent representation
of the state and action encoded jointly with MTM. We allow end to end finetuning of the
representations during training. We compare training TD3 on raw states to training TD3
with (a) state representations from the MTM model, and (b) state-action representations from
the MTM model with the offline RL loss (i.e. TD3 objective).

Figure depicts the learning curves for the aforementioned experiment. In all cases
we see significant improvement in training efficiency by using MTM representations — both
with state and state-action representations. In the Walk task, we note it actually improves
over the asymptotic performance of the base TD3 |Fujimoto et al.| (2018b)) algorithm within
10% of training budget. Additionally, we find that the state-action representation from
MTM can provide significant benefits, as in the case of the Walk task. Here, finetuning
state-action representation from MTM leads to better asymptotic performance compared to
state-only representation or learning from scratch. We provide additional plots of MTM frozen

representations in Appendix
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Figure 2.7: MTM Representations enable faster learning. The plot visualizes a walker
agent’s performance as it is trained using TD3 on different representations across 3 tasks
(Stand, Walk, Run). The agent is trained completely offline using data from the ExORL
dataset. For MTM state representations, we encode the raw state with MTM. MTM state-action
representations additionally jointly encode the state and action for the critic of TD3. The
learning curves show that finetuned MTM representations enable the agent to more quickly
learn the task at hand, reaching or exceeding the asymptotic performance of TD3 on raw
states. Both MTM state representations and MTM state-action representations are comparable
in terms of learning speed and performance. In addition, we see that in some cases, like
the Run task, state-action representations from MTM help achieve better performance than
alternatives. We also show the asymptotic performance reached by TD3 on raw states and
actions after training for 100000 iterations and plot the average of 5 seeds.

2.5 Summary

In this chapter, we introduced MTM as a versatile and effective approach for sequential decision
making. We empirically evaluated the performance of MTM on a variety of continuous control
tasks and found that a single pretrained model (i.e. same weights) can be used for different
downstream purposes like inverse dynamics, forward dynamics, imitation learning, offline
RL, and representation learning. This is accomplished by simply changing the masks used
at inference time. In addition, we showcase how MTM enables training on heterogeneous
datasets without any change to the algorithm. Future work includes incorporating training in
online learning algorithms for more sample efficient learning, scaling MTM to longer trajectory
sequences, and more complex modalities like videos.
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Chapter 3

Trajectory Clustering for Imitation
Learning

This chapter is based on the paper “Semi-Supervised One-Shot Imitation Learning” (Wu
et al., |2024a), by Philipp Wu, Kourosh Hakhamaneshi, Yuging Du, Igor Mordatch, Aravind
Rajeswaran, and Pieter Abbeel

One-shot Imitation Learning (OSIL) aims to imbue Al agents with the ability to learn a
new task from a single demonstration. To supervise the learning, OSIL typically requires a
prohibitively large number of paired expert demonstrations — i.e. trajectories corresponding
to different variations of the same semantic task. To overcome this limitation, we introduce
the semi-supervised OSIL problem setting, where the learning agent is presented with a large
dataset of trajectories with no task labels (i.e. an unpaired dataset), along with a small dataset
of multiple demonstrations per semantic task (i.e. a paired dataset). This presents a more
realistic and practical embodiment of few-shot learning and requires the agent to effectively
leverage weak supervision from a large dataset of trajectories. Subsequently, we develop an
algorithm specifically applicable to this semi-supervised OSIL setting. Our approach first
learns an embedding space where different tasks cluster uniquely. We utilize this embedding
space and the clustering it supports to self-generate pairings between trajectories in the large
unpaired dataset. Through empirical results on simulated control tasks, we demonstrate
that OSIL models trained on such self-generated pairings are competitive with OSIL models
trained with ground-truth labels, presenting a major advancement in the label-efficiency of
OSIL.

3.1 Introduction

Humans are capable of learning new tasks and behaviors by imitating others we observe.
Furthermore, we are remarkably data efficient, often requiring just a single demonstration.
One-shot imitation learning (OSIL) (Duan et al., [2017) aims to imbue Al agents with similar
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Figure 3.1: (Left) Depiction of the supervised (classical) OSIL setting, where the encoder and
policy are trained using several trajectories (d) sharing the same task label (t). (Right) Our
semi-supervised OSIL setting instead requires only a large unlabelled dataset of trajectories,
and a small paired dataset. For our method, a teacher trajectory encoder is first trained
using the labeled dataset. This encoder is then used to construct a pseudo-paired trajectory
set by retrieving the k£ nearest neighbors of each trajectory. We can then train a student on
this pseudo-labeled dataset, as in supervised OSIL. Optionally, this relabelling and training
procedure can be repeated iteratively.

capabilities. It takes a meta-learning (Schmidhuber, [1987; Naik & Mammone, 1992; Thrun &
approach and considers several paired demonstrations — i.e. expert trajectories
corresponding to different variations of the semantic task. OSIL learns to reconstruct one
trajectory by conditioning on its paired trajectory, implicitly capturing the task semantics.
At test time, the resulting agent can directly complete a new task by conditioning on a
demonstration of the said task. However, this method often requires prohibitively large
amounts of paired trajectories such that the agent experiences enough task variations in
diverse environment instantiations to learn a generalizable policy. Collecting such a dataset of
demonstrations can be prohibitively expensive, requiring significant engineering effort and/or
human data annotation time. In order to improve the data efficiency of OSIL, and expand
its applicability, we introduce and study a semi-supervised paradigm for OSIL.

In recent years, we have seen an increase in our ability to collect unsupervised trajectory
data in several applications including robotics. This includes access to historical offline
datasets (Levine et al., 2020; Fu et al., 2020; Gulcehre et al., 2020)), teleoperation and play
data in virtual reality (Rajeswaran et al| [2018; [Lynch et al, [2019} Gupta et all, [2019), and
reward-free exploration (Pathak et all, 2017} [Eysenbach et al., 2018} [Liu & Abbeel, 2021]).
Our goal is to leverage these large, abundant, but unlabelled datasets to create a more
scalable pathway for OSIL. A direct and naive application of OSIL would require humans to
manually annotate these datasets with semantic task descriptions, or manually pair together




CHAPTER 3. TRAJECTORY CLUSTERING FOR IMITATION LEARNING 21

similar trajectories, which can be expensive and time consuming. We draw inspiration from
semi-supervised learning (van Engelen & Hoos, 2019) in computer vision and natural language
processing (NLP), which has emerged as a dominant paradigm to utilize a small labeled
dataset in conjunction with large quantities of unlabeled data to train high-quality models
(Yang & Yul, 2020; Xie et al., 2020; |Chen et al., [2020; Devlin et al., 2018). Analogously, we aim
to bring the power of semi-supervised learning to OSIL by learning from both task-agnostic
and unlabelled trajectories as well as a small dataset of annotated (paired) trajectories.

Our algorithmic approach to semi-supervised OSIL is based on self-training (Triguero
et al. [2013; Yarowsky, 1995; Xie et al. [2020), a prominent approach to semi-supervised
learning. In self-training, a teacher network is first trained on a small labeled dataset, and
then used to provide pseudo-labels for a larger unlabeled dataset (Hailat & Chen| |2018]).
This process is repeated multiple times to progressively learn higher quality labels for the
entire dataset, ultimately training models with competitive performance despite considerably
reduced data annotation effort. To adapt this self-training approach to semi-supervised OSIL,
we start with training a teacher encoder-decoder architecture in the standard supervised
OSIL fashion, as illustrated in Figure (a), with the available paired dataset. We show
that even when the teacher does not reach a high task success, the embedding space is
sufficiently structured to distinctly cluster different semantic tasks, enabling the generation of
pseduo-labelled pairings between nearest neighbors in the embedding space. By bootstrapping
on the pseudo-labels obtained from the trajectory clusters in embedding space, we can train
a student architecture that outperforms the teacher.

Our Contributions in this work are summarized below.

1. We introduce and formalize the semi-supervised OSIL setting.

2. We propose a novel label-efficient student-teacher trajectory relabeling approach for
semi-supervised OSIL that extends the ideas of self-training and distillation from CV
and NLP.

3. In a semantic goal navigation task, we find that our method enables an agent trained
with only 15% of labelled data to match a fully supervised agent. In a sequential goal

navigation task our method approaches fully supervised performance with only 5% of
labelled data.

4. We ablate each component of our method, demonstrating their importance to the overall
algorithmic contribution.

After the anonymous review phase, we are committed to providing open source for the
environments and experiments to facilitate reproducibility and future extensions.

3.2 Related work

One-Shot Imitation Learning (OSIL) The OSIL framework was originally introduced by
Duan et al. (2017) to endow Al agents with the capability to learn from a single demonstration.
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OSIL relies on access to “paired” demonstrations — i.e. expert trajectories that correspond
to different variations of the same semantic task. OSIL then learns by conditioning on
one trajectory to reconstruct the paired demonstration, enabling it to implicitly learn the
notion of task semantics. Through this view, OSIL has parallels to meta-learning or learning-
to-learn (Ren et al.| 2018} |[Finn et al., 2017a} [Vinyals et al., 2016} |Chebotar et al., 2021;
Rajeswaran et al. [2019) as studied broadly in (supervised) machine learning and inverse
RL (Das et al 2020; [Yu et al., 2019).

Since the original work of [Duan et al.| (2017)), OSIL has seen several extensions including
extensions to visual observation spaces (Finn et al., |2017b|), improving task-level generaliza-
tion (Mandi et al., |2021]), and architectural innovations like transformers (Dasari & Guptal,
2021). Nevertheless, the need for a large number of paired demonstrations has limited the
broad applicability of OSIL. Our work aims to improve this label efficiency of OSIL by also
effectively utilizing a large number of unlabelled (i.e. unpaired) demonstrations, which are
often substantially easier to obtain, for example through play data collection (Lynch et al.,
2019).

Semi-Supervised Learning The field of semi-supervised learning (Zhu, 2005) studies
methods to simultaneously learn from large unlabelled datasets and small labelled datasets.
Computer vision, NLP, and speech recognition have been exploring ways to utilize large
unlabelled datasets scraped from the internet without expensive and time-intensive human
annotations. This has resulted in a wide array of approaches to semi-supervised learning (Zhu,
2005; van Engelen & Hoos, 2019)). One dominant paradigm involves pre-training visual
representations using unlabelled datasets followed by downstream supervised learning. The
representations can be pre-trained with contrastive learning (Hjelm et al., [2019; |Chen et al.,
2020), generative modeling (Goodfellow et al. 2014), autoencoders (Vincent et al., 2008; |He
et al., |2021; Wu et al., [2023d) and more. However, such representations lack knowledge of
downstream task, and thus might be harder to train, require human priors like appropriate
choice of augmentations, or demand very large quantities of unlabelled data.

An alternative and popular approach to semi-supervised learning is self-training (Triguero
et al., |2013; [Yarowsky, (1995; | Xie et al, 2020), where a supervised “teacher” model is first
trained on a small labelled dataset and used to generate pseudo-labels for the unsupervised
dataset. Subsequently, a student model is trained on both the supervised dataset and the
pseudo-labelled dataset. We refer readers to survey works (van Engelen & Hoos, 2019) on
semi-supervised learning for more discussion. Our algorithmic approach to semi-supervised
OSIL is closer to self-training, and thus has the advantage of being more task-directed in
nature. We also perform contrastive representation learning as an auxiliary task and find
that it plays an important role, but is insufficient by itself.

Semi-Supervised Learning in RL and IL Improving label efficiency for policy learning,
through approaches similar to semi-supervised learning, has been studied in other contexts like
reward and goal labels. Prior works tackle the challenge of learning from data without reward
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or goal labels by either explicitly learning a reward function through inverse reinforcement
learning (Abbeel & Ng 2004; Ziebart et al., [2008; [Finn et al., 2016b), adversarial imitation
learning (Ho & Ermon, 2016; [Fu et al., |2018a; Rafailov et al., [2021)), learning a reward/goal
classifier (Fu et al.l 2018b; [Eysenbach et al. 2021)), or by simply assuming a pseudo baseline
reward (Yu et al.| 2022)). In contrast to such prior work, we focus on improving the label
efficiency of OSIL, where the need for a large number of paired demonstrations has limited
real-world applicability. To our knowledge, our work is the first to study semi-supervised
learning approaches to improve label efficiency for OSIL.

3.3 Problem Formulation

Following Duan et al.| (2017)), in supervised OSIL we denote a set of of tasks as T, each
individual task t € T, and a distribution of demonstrations of task t as D(¢). The supervised
OSIL objective is to train a policy which, conditioned on a demonstration d ~ D(t), can
accomplish a task t. This amounts to learning a goal conditioned policy my(a;|ss, d), parame-
terized by 6, that takes an expert demonstration and the current state of the environment
as input and emits the proper actions at each time-step ¢ (we differentiate time ¢ and task
t, which is in bold). During training, we have access to a large dataset of demonstrations
drein ~ D(Eren), for a set of training tasks "™ € T*" C T, where t; is the i'* task. We
formulate the dataset D as follows

D = {(tz, {dll, dé, }) Vt; € Ttram}, (31)

We further assume the existence of a binary valued function R¢(d) which indicates whether
a given demonstration or policy rollout d successfully accomplishes the task ¢, which we use for
evaluating our method. At test time, the policy is provided with one new test demonstration
d's* ~ D(t) that can be either be a new demonstration of a seen task (i.e. t € T"*") or a
new demonstration of an unseen task (i.e. t € T \ T"%").

Semi-supervised OSIL builds on the supervised OSIL setting, which we formulate as
follows. We similarly assume access to a small labeled dataset of demonstrations D'abeled
where each demonstration has its associated task label. We additionally assume access to a
large dataset of demonstrations D™ab¢led which does not have the associated task label ¢;.
These datasets are defined below:

DR ({1, {5 .) V) o
Dunlabeled — {dla dQ, }

An effective semi-supervised method should be able to leverage both annotated and un-
annotated datasets effectively to maximize the performance of the OSIL agent at test time.
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3.4 Method

At its core, OSIL can be simply construed as two modules that are jointly optimized together:
(1) an encoder network f;(d) which embeds demonstrated trajectories into a latent space z,
and (2) a policy decoder my(a¢|st, z) that is conditioned on the demonstration embedding and
current state of the environment to output actions. The prior state of the art work on OSIL
(Duan et al. 2017; Dasari & Guptal 2021; Mandi et al., 2021)) learn both the demonstration
encoder module and the policy decoder jointly by minimizing the predicted action errors
on the imitated trajectory, possibly with other auxiliary losses. This method works well
when paired trajectories are abundant. In the more realistic semi-supervised OSIL setting,
the question becomes “How can we group sufficently abundant demonstration pairs from the
unlabeled data to train an OSIL agent?” To address this, we propose an iterative student
teacher method.

3.4.1 Student-Teacher Training

The core of our hypothesis is that discriminating or clustering trajectories that share the
same semantic task is easier (and thus more data efficient) compared to generative modeling
of actions to accomplish a task. To instantiate this in practice, we use a teacher-student self-
training paradigm (Xie et al., [2020)) to effectively remove the need for large human-annotation
on task labels. In our setting, a "teacher” is the encoder f,; that embeds trajectories into the
latent space. Using a quality teacher encoder, we can retrieve the k-nearest neighbors of each
trajectory in the dataset using a distance measure (e.g L2 distance) on the embedding space
and use that as a labeled pair for downstream training of a student OSIL policy.

To train the teacher encoder, we proceed with the standard OSIL training procedure on
the smaller labeled dataset, D'*¢’*? The encoder and policy are trained end to end with
an imitation loss on the predicted action from the policy, mg(a|st, 2), where z = fy(dy). To
encourage learning a more structured latent space, we also employ a contrastive InfoNCE
loss (Oord et all 2018), where a positive pair is taken from the labeled subset of data, and
the rest of the goals in the batch are treated as negative examples. This structured latent
space is necessary for teacher relabelling. In general, we also find that the contrastive loss
helps with learning a better OSIL policy with higher task success rate, which is consistent
with the works of |James et al. (2018); Mandi et al.| (2021)).

After training the teacher encoder to convergence, we then generate a set of pseudo
labels for the trajectories in the unlabeled dataset. This is done by embedding all of the
demonstrations of the dataset D*"a%!d with the teacher encoder f;. We then find the k nearest
neighbors of each demonstration in the embedding space, where k is a hyperparameter. Let
kNN(d, D) denote the k nearest neighbors of d in the dataset D using the feature embeddings
from a demonstration encoder f,. If the nearest neighbors are demonstrations associated
with the same semantic task, we can supervise an effective student OSIL policy with this
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Figure 3.2: The architecture used in our algorithm. (a) shows the generic structure of a OSIL
agent, which consists of a generic demonstration encoder f, and the my(a|s;, 2) task latent
conditioned policy, which comprises of image encoder.. (b) shows one potential instantiation
of the demonstration encoder, which leverages a bi direction transformer to encode the
trajectory. This is used for the pinpad sequential navigation task, which requires reasoning
over the entire trajectory.

dataset of pseudo-pairs of trajectories, which we formulate as:

Dpseudo,labeled — {(d“ {kNN(b(dl, Dunlabeled)}) le c Dunlabeled} (34)

Finally, the student policy is trained using both Dpseude-labeled apq Plabeled - Dyyring training

we continue to use the labeled dataset for the imitation and contrastive losses, but additionally
sample batches from the pseudo-labeled dataset, which is trained only with the imitation
loss. We can continue iterating this process by treating the encoder f, of the trained student
as the teacher for the subsequent round and improving the accuracy on the KNN retrievals
from the unlabeled dataset until we get diminishing returns from the process.

3.4.2 Architecture

An overview of the architecture is shown in Figure [3.2a We use the same architecture for
teacher and student with same number of parameters. In general, the demonstration encoder
fs is flexible and can take any form, but should be expressive enough to learn meaningful
representations of the demonstration trajectories. Following conditional policies (Jang et all,
2022), we utilize an MLP policy which takes the demonstration embedding z through FiLM
conditioning (Perez et al., 2018). The focus of our work is on the procedure of making
OSIL more data efficient. We therefore do not consider more complex encoder decoder
architectures, for which we refer to prior work. In this work we also focus our experiments on
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Figure 3.3: Sample goals and corresponding demonstration visualizations for the two tasks.

visual imitation, for which we use a CNN encoder to obtain frame-level visual representations
of 64x64 images with a simple 5 layer CNN.

For many OSIL tasks, the final frame is enough to specify the desired intent, which we
find true for this environment. A commonly used strategy is to form a summary of the
demonstration trajectory by taking a few key frames (Duan et al., 2017; |James et al., 2018).
For these tasks (e.g. goal reaching) we simply use the final frame image embedding as the
representation of the task. Figure [3.2blon the other hand, illustrates a more general solution
to embed the entire demonstrated trajectory. In this model, we treat the embedding of each
frame as a separate token and use a bi-directional transformer to learn the task encoding.
The transformer model has the capacity to learn which frames are important to fully describe
the task. Refer to Appendix for more hyperparameter details.

3.5 Experiments

Through our experiments, we aim to study the effectiveness of the semi-supervised OSIL
setting, as well as the performance of our algorithm. Concretely, we study the following
questions.

o How to train the demonstration encoder to effectively cluster trajectories?

o How to use the learned clusters to effectively improve agent performance?

3.5.1 Environment setup

Semantic Goal Navigation. We construct a custom pointmass-based reaching task using
the MuJoCo simulator (Todorov et al., 2012) with the DMControl suite (Tunyasuvunakool
@, . This task is inspired from the simulated reaching task first introduced in @
et al.L . The task is to navigate the pointmass to a goal of a given color and shape
when also presented with a distractor goal of a different color and shape. Concretely, there
are 2 shapes and 5 possible colors the shapes can take on, totalling 10 variations for each
object, and 100 possible semantic scenes. See Figure for a visual illustration. Note that
within each scene configuration, the locations of the objects can be randomized. We collect
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800 trajectories for each target goal object, resulting in a total training dataset size of 8000
trajectories.

Sequential Goal Navigation. We use a modified version of the discrete pinpad world
environment from Hafner et al. (2022)). This task requires the agent to navigate and press
two buttons out of six in a specified order. The agent is only considered successful if it is
able to correctly reach all the goals in the correct sequence. There are 6 possible goal pads
for the agent to reach, totaling 30 tasks. The agent’s action is one of five possible actions:
up, down, left, right, or no-op. The observation space is the raw pixels in the environment.
See Figure for a visual illustration. We randomize both the color assignments of the pads
and the agent starting location for each task variation. The agent must pay attention to
the entire trajectory to correctly determine the desired task. As such, we parametrize the
demonstration encoder for this environment as a small bi-directional transformer that takes
in a sequence of states and a class token to predict a latent z encoding of the trajectory.

Dataset Collection. We employ a scripted policy to collect demonstrations for each task
variation. Specifically, we reset the initial state of the environment and agent randomly,
then run the scripted expert policy. During training we limit the number of demonstrations
per each task that the agent gets to see for supervision in order to create a semi-supervised
scenario. However, we use the entire collected dataset as a large pool of unlabeled expert
trajectories during training. We evaluate our method on two environments described above.

3.5.2 Metrics

Task Success. Our goal is to maximize task success rate using limited task labeled
demonstrations. For both environments, we report the success rate of the agent as the
performance after 100 trials in the environment, averaged over 3 seeds. We evaluate the agent
on both new instantiations of the training tasks and an unseen test task, which we report as
"Train” and "Test” respectively. We use different numbers of the total labeled trajectories to
show how the number of labeled trajectories effects final task performance.

Trajectory Retrieval (TR) Score For each trajectory in d*** € D, we retrieve the K
nearest neighbors by measuring the L2 distance in the embedding space of the teacher. Let
d:* be the i'" retrieved trajectory and ¢ be the task label of d**st. For each trajectory, the
retrieval accuracy is defined as the percentage of time that Ry(d:®*) = 1. We take an average
of this measure across all samples in the training set.

TRSCOT@ |D| Z Z R dret (3.5)

dED
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Figure 3.4: Task success rates for the Semantic Goal Navigation Task.

3.5.3 Results

For each experiment, we train the OSIL policy using the learned goal embedding and behavior
cloning loss on the labeled subset of data. We report the task success rate and trajectory
retrieval scores for all experiments.

Semantic Goal Navigation First we consider the Semantic Goal Navigation pointmass
task. We consider 5 main settings:

1. An agent trained with only the imitation loss on the demonstrated actions.

2. An agent trained with an additional contrastive loss on the goal embeddings in addition
to to the imitation loss.

3. The same as (2.) but with an added self-supervised loss on the entire dataset (including
unlabeled data).

4. A student model trained by using the demonstration encoder (2.) as a teacher model.

5. A student model trained by using the demonstration encoder of (3.) as a teacher model.

The model trained with the method specified in (3.) acts as an alternative semi-supervised
baseline in the special case of using the final frame as the demonstration representation. In
this setting, we use the supervised labels as in the supervised OSIL case, but further leverage
the unlabeled trajectories through adding an additional self supervised loss contrastive loss on
augmentations of the goal image (Oord et al., [2018). The augmentations we use are restricted
to random flip and random crop.
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Table 3.1: Trajectory Retrieval: Final Frame Semantic Goal Navigation

Retrieval % with k=

% Labeled Data Method 1 10 50 100 200
Imitation 11.3 11. 10.7 10.6 10.5
100% +Contrastive 90.9 91 91.2 90.9 90.7
+Contrastive+Aug 93.5 925 91.7 91.3 90.8
Imitation 11.8 11.8 11.5 114 11.3
30% +Contrastive 88.8 88.5 &8.1 8790 87.8
+Contrastive+Aug 93.7 929 919 914 90.8
+Contrastive+Relabel 91.1 90.6 90.3 89.9 89.6
+Contrastive+Aug+Relabel 93.7 92,5 91.2 90.7 90.3
Imitation 11.6 11.2 11.0 10.9 10.8
15% +Contrastive 63.6 62.8 61.6 61. 60.
+Contrastive+Aug 91.6 90.6 90. 89.9 89.7
+Contrastive+Relabel 74.3 732 T71.9 T71.2 70.4

+Contrastive+Aug+Relabel 91.8 90.7 90.1 89.9 89.6

Figure [3.4] show the task performance across each experiment. As expected, train
and validation performance drops when the amount of labeled data decreases. Without
relabelling, we see some task performance gains from applying both the contrastive loss and
self unsupervised losses. After training a student model using the pseudo-labels from the
representations learned by the teacher encoder, we see a leap in performance, matching an
agent that has access to 100% ground truth labels, even when only using 15% of the labels.

Table shows the trajectory retrieval scores across different values of k. Despite having
much less labeled data and decreased task performance, the retrieval scores consistently
remain high. This suggests that we are able to learn a meaningful representation for the
task, allowing us to cluster the trajectories. We find that the contrastive loss is necessary
for learning representations that have high retrieval. Interestingly, we find that relabeling
gives much greater gains for task success while augmentation gives more benefit for retrieval,
which supports the hypothesis that relabeling gives datapoints for the OSIL training and the
contrastive loss (which typically relies on augmented views of data points) helps representation
learning, but in a way thats not directly optimizing for the task objective. We show 2D
visualizations of the learned embedding in Figure 3.5l We additionally explore the effect of
the the number of possible pairs &k in Appendix [B.1.2]

Sequential Goal Navigation Next we examine a task which requires the trajectory encoder
to learn a time-dependent encoding of the trajectory, rather than having the task fully specified
by the final frame. For this we employ the more general trajectory demonstration encoder
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Figure 3.5: TSNE visualizations of the learned embeddings where the only 15% of the dataset
is labeled. (a) shows the embedding trained with imitation loss only. (b) adds the contrastive
loss on the labeled subset of data (c) additionally adds a self supervised loss with images
augmentations.

Table 3.2: Task Success Results: PinPad

Task Success %

% Labeled Method Train Val
100% +Contrastive 92.3+£29 41.7+15.1
10% +Contrastive 70.7+£4.5 18.3+3.3
0 +Contrastive+Relabel 84+4.6  36.3+ 10.6
+Contrastive 49+1.4 7.7+1.6
5%

+Contrastive+Relabel 82.34+10 34.3+22.6

shown in Figure [3.2b| Similarly, we see in Table that our teacher-student relabeling
method allows the agent to improve task performance and almost match the agent trained
with a fully labeled dataset, even in much lower labeled data regimes (5%). This suggests that
the teacher encoder is able to pay attention to the temporal nature of the demonstrations
and generate effective pseudo-labels. Similar to the semantic navigation task, the learned
encoder maintains a high trajectory retrieval score across different choices of k.

3.6 Conclusions

In this chapter, we introduce the problem setting of semi-supervised OSIL, which we believe to
be a more realistic setting for developing OSIL methods that can scale to real world settings.
In semi-supervised OSIL we aim to maximize agent performance in settings where we have
access to a large set of task-agnostic expert demonstrations, but only a small task-labeled



CHAPTER 3. TRAJECTORY CLUSTERING FOR IMITATION LEARNING 31

dataset. We introduce a student teacher training method and show that training a teacher
network based on the limited labeled data and bootstrapping on the resulting task encoder
can allow us to assign effective pseudo-labels to the large unlabeled dataset. Using the
pseudo-labeled dataset to train a student network can result in out-performing its teacher,
reaching task performance parity with a model trained on much more labeled data. We
evaluate our methodology on simulated environments with varying complexity and showed
that this can be a promising direction towards semi-supervised OSIL.

Our work aims to provide agents the ability to quickly imitate a demonstration. The
work does not assume any particular type of demonstration. A malicious actor might be able
to provide nefarious demonstrations to Al agents and safeguards must be considered when
deploying such imitation learning systems in the real world. At a more immediate level, we
do not anticipate any societal risks due to this work.
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Chapter 4

Robot Learning with World Models

This chapter is based on the paper “DayDreamer: World Models for Physical Robot Learning”
(Wu et all, |2022), by Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and

Pieter Abbeel.

(a) Al Quadruped (b) UR5 Visual Pick  (c) XArm Visual Pick  (d) Sphero Navigation
Walking Place Place

Figure 4.1: To study the applicability of Dreamer for sample-efficient robot learning, we apply
the algorithm to learn robot locomotion, manipulation, and navigation tasks from scratch
in the real world on 4 robots, without simulators. The tasks evaluate a diverse range of
challenges, including continuous and discrete actions, dense and sparse rewards, proprioceptive
and camera inputs, as well as sensor fusion of multiple input modalities. Learning successfully
using the same hyperparameters across all experiments, Dreamer establishes a strong baseline
for real world robot learning.

To solve tasks in complex environments, robots need to learn from experience. Deep
reinforcement learning is a common approach to robot learning but requires a large amount
of trial and error to learn, limiting its deployment in the physical world. As a consequence,
many advances in robot learning rely on simulators. On the other hand, learning inside of
simulators fails to capture the complexity of the real world, is prone to simulator inaccuracies,
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and the resulting behaviors do not adapt to changes in the world. The Dreamer algorithm
has recently shown great promise for learning from small amounts of interaction by planning
within a learned world model, outperforming pure reinforcement learning in video games.
Learning a world model to predict the outcomes of potential actions enables planning in
imagination, reducing the amount of trial and error needed in the real environment. However,
it is unknown whether Dreamer can facilitate faster learning on physical robots. In this
chapter, we apply Dreamer to 4 robots to learn online and directly in the real world, without
any simulators. Dreamer trains a quadruped robot to roll off its back, stand up, and walk
from scratch and without resets in only 1 hour. We then push the robot and find that
Dreamer adapts within 10 minutes to withstand perturbations or quickly roll over and stand
back up. On two different robotic arms, Dreamer learns to pick and place objects from
camera images and sparse rewards, approaching human-level teleoperation performance.
On a wheeled robot, Dreamer learns to navigate to a goal position purely from camera
images, automatically resolving ambiguity about the robot orientation. Using the same
hyperparameters across all experiments, we find that Dreamer is capable of online learning in
the real world, which establishes a strong baseline. We release our infrastructure for future
applications of world models to robot learning. Videos are available on the project website:
https://danijar.com/daydreamer

4.1 Introduction

Teaching robots to solve complex tasks in the real world is a foundational problem of robotics
research. Deep reinforcement learning (RL) offers a popular approach to robot learning
that enables robots to improve their behavior over time through trial and error. However,
current algorithms require too much interaction with the environment to learn successful
behaviors. Recently, modern world models have shown great promise for data efficient learning
in simulated domains and video games (Hafner et al 2019a), 2020)). Learning world models
from past experience enables robots to imagine the future outcomes of potential actions,
reducing the amount of trial and error in the real environment needed to learn.

While learning accurate world models can be challenging, they offer compelling properties
for robot learning. By predicting future outcomes, world models allow for planning and
behavior learning given only small amounts of real world interaction (Gal et al., 2016; [Ebert
et al., |2018]). Moreover, world models summarize general dynamics knowledge about the
environment that, once learned, could be reused for a wide range of downstream tasks (Sekar
et al., |2020)). World models also learn representations that fuse multiple sensor modalities
and integrate them into latent states, reducing the need for sophisticated state estimators.
Finally, world models generalize well from available offline data (Yu et al., 2021)), which
further accelerates learning in the real world.

Despite the promises of world models, learning accurate world models for the real world
is a open challenge. In this chapter, we leverage recent advances of the Dreamer world
model for training a variety of robots in the most straight-forward and fundamental problem
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setting: online reinforcement learning in the real world, without simulators or demonstra-
tions. As shown in [Figure 4.2 Dreamer learns a world model from a replay buffer of
past experience, learns behaviors from rollouts imagined in the latent space of the world
model, and continuously interacts with the environment to explore and improve its be-
haviors. Our aim is to push the limits of robot learning directly in the real world and
offer a robust platform to enable future work that develops the benefits of world mod-
els for robot learning. The key contributions of this chapter are summarized as follows:

e Dreamer on Robots We apply Dreamer to
4 robots, demonstrating successful learning di-
rectly in the real world, without introducing new
algorithms. The tasks cover a range of chal-
lenges, including different action spaces, sensory
modalities, and reward structures.

Real World

“
o W
_ ¢

e Walking in 1 Hour We teach a quadruped

from scratch in the real world to roll off its back, 0 o o ) <
stand up, and walk in only 1 hour. Afterwards, (11D
we find that the robot adapts to being pushed

within 10 minutes, learning to withstand pushes
or quickly roll over and get back on its feet.

Replay Buffer

Actor Critic World Model

Figure 4.2: Dreamer follows a simple
pipeline for online learning on robot
hardware without simulators. The
current learned policy collects experi-
ence on the robot. This experience is
added to the replay buffer. The world
model is trained on replayed off-policy
sequences through supervised learn-
ing. An actor critic algorithm opti-
mizes a neural network policy from
imagined rollouts in the latent space
of the world model. We parallelize

e Visual Pick and Place We train robotic
arms to pick and place objects from sparse re-
wards, which requires localizing objects from
pixels and fusing images with proprioceptive in-
puts. The learned behavior outperforms model-
free agents and approaches the performance of
a human teleoperator using the same control
interface as the robot.

e Open Source We publicly release the soft-
ware infrastructure for all our experiments,
which supports different action spaces and sen-

sory modalities, offering a flexible platform for
future research of world models for robot learn-
ing in the real world.

data collection and neural network
learning.
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(a) World Model Learning (b) Behavior Learning

Figure 4.3: Neural Network Training We leverage the Dreamer algorithm (Hafner et al.,
20194, for fast robot learning in real world. Dreamer consists of two main neural
network components, the world model and the policy. Left: The world model follows the
structure of a deep Kalman filter that is trained on subsequences drawn from the replay buffer.
The encoder fuses all sensory modalities into discrete codes. The decoder reconstructs the
inputs from the codes, providing a rich learning signal and enabling human inspection of
model predictions. A recurrent state-space model (RSSM) is trained to predict future
codes given actions, without observing intermediate inputs. Right: The world model enables
massively parallel policy optimization from imagined rollouts in the compact latent space
using a large batch size, without having to reconstruct sensory inputs. Dreamer trains a
policy network and from the imagined rollouts and a learned

4.2 Approach

We leverage the Dreamer algorithm (Hafner et al., 2019a;, |2020)) for online learning on physical
robots, without the need for simulators. [Figure 4.2 shows an overview of the approach.
Dreamer learns a world model from a replay buffer of past experiences, uses an actor critic
algorithm to learn behaviors from trajectories predicted by the learned model, and deploys
its behavior in the environment to continuously grow the replay buffer. We decouple learning
updates from data collection to meet latency requirements and to enable fast training without
waiting for the environment. In our implementation, a learner thread continuously trains the
world model and actor critic behavior, while an actor thread in parallel computes actions for
environment interaction.

World Model Learning The world model is a deep neural network that learns to predict
the environment dynamics, as shown in [Figure 4.3| (left). Because sensory inputs can be
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large images, we predict future representations rather than future inputs. This reduces
accumulating errors and enables massively parallel training with a large batch size. Thus,
the world model can be thought of as a fast simulator of the environment that the robot
learns autonomously, starting from a blank slate and continuously improving its model as
it explores the real world. The world model is based on the Recurrent State-Space Model
(RSSM; Hafner et al.l 2019b), which consists of four components:

Encoder Network:  ency(s; | s4—1, a1, x¢) Decoder Network: decy(s;) ~ x; (4.1)
Dynamics Network: dyng(s; | si—1,a:-1) Reward Network: rewg(s;y1) ~ 1y ‘

Physical robots are often equipped with multiple sensors of different modalities, such as
proprioceptive joint readings, force sensors, and high-dimensional inputs such as RGB and
depth camera images. The encoder network fuses all sensory inputs z; together into the
stochastic representations z;. The dynamics model learns to predict the sequence of stochastic
representations by using its recurrent state h;. The decoder reconstructs the sensory inputs
to provide a rich signal for learning representations and enables human inspection of model
predictions. In our experiments, the robot has to discover task rewards by interacting with
the real world, which the reward network learns to predict. Using manually specified rewards
as a function of the decoded sensory inputs is also possible. We optimize all components of
the world model jointly by stochastic backpropagation (Kingma & Welling, 2013} Rezende
et al., 2014)).

Actor Critic Learning While the world model represents task-agnostic knowledge about
the dynamics, the actor critic algorithm learns a behavior that is specific to the task at
hand. As shown in (right), we learn behaviors from rollouts that are predicted in
the latent space of the world model, without decoding observations. This enables massively
parallel behavior learning with typical batch sizes of 16K on a single GPU. The actor critic
algorithm consists of an actor network 7(a;|s;) and a critic network v(s;).

The role of the actor network is to learn a distribution over successful actions a; for each
latent model state s; that maximizes the sum of future predicted task rewards. The critic
network learns to predict the sum of future task rewards through temporal difference learning
(Sutton & Bartol |2018)). This allows the algorithm to take into account rewards beyond the
planning horizon of H = 16 steps to learn long-term strategies. Given a predicted trajectory
of model states, the critic is trained to regress the return of the trajectory. We compute
A-returns following Hafner et al.| (2020} [2019a):

VA =+ 7((1 — Av(se+1) + /\‘/:I\—l)a Vit = v(sn). (4.2)

While the critic network is trained to regress the A-returns, the actor network is trained to
maximize them. Different gradient estimators are available for computing the policy gradient
for optimizing the actor, such as Reinforce (Williams, 1992)) and the reparameterization trick
(Kingma & Welling, 2013; Rezende et al.| 2014)) that directly backpropagates return gradients
through the differentiable dynamics network (Henaff et al., [2019)). Following Hafner et al.
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(2020), we choose reparameterization gradients for continuous control tasks and Reinforce
gradients for tasks with discrete actions. In addition to maximizing returns, the actor is
also incentivized to maintain high entropy to prevent collapse to a deterministic policy and
maintain some amount of exploration throughout training:

L(m) = — E[Zfil Inm(a; ’ s¢) sg(VA —v(sy)) + nH[W(at ‘ st)” (4.3)

We optimize the actor and critic using the Adam optimizer (Kingma & Ba, [2014)). To compute
the A-returns, we use a slowly updated copy of the critic network as common in the literature
(Mnih et all 2015; Lillicrap et al, [2015). The actor and critic gradients do not affect the
world model, as this would lead to incorrect and overly optimistic model predictions. The
hyperparameters are listed in [Appendix C.5|

4.3 Experiments

We evaluate Dreamer on 4 robots, each with a different task, and compare its performance to
appropriate algorithmic and human baselines. The experiments are representative of common
robotic tasks, such as locomotion, manipulation, and navigation. The tasks pose a diverse
range of challenges, including continuous and discrete actions, dense and sparse rewards,
proprioceptive and image observations, and sensor fusion. The goal of the experiments is
to evaluate whether the recent successes of learned world models enables sample-efficient
robot learning directly in the real world. Specifically, we aim to answer the following research
questions:

e Does Dreamer enable robot learning directly in the real world, without simulators?

e Does Dreamer succeed across various robot platforms, sensory modalities, and action
spaces?

e How does the data-efficiency of Dreamer compare to previous reinforcement learning
algorithms?

Implementation We build on the official implementation of DreamerV2 (Hafner et al.|
2020). We develop an asynchronous actor and learner setup, which is essential in environments
with high control rates, such as the quadruped, and also accelerates learning for slower
environments, such as the robot arms. The actor thread computes online actions for the
robot and sends trajectories of 128 time steps to the replay buffer. The learner thread
samples data from the replay buffer, updates the world model, and optimizes the policy
using imagination rollouts. Policy weights are synced from the learner to the actor every 20
seconds. We use an RSSM with 256 units to speed up the training computation. We use
identical hyperparameters across all experiments, enabling off-the-shelf training on different
robot embodiments.
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Figure 4.4: A1 Quadruped Walking Starting from lying on its back with the feet in the
air, Dreamer learns to roll over, stand up, and walk in 1 hour of real world training time,
without simulators or resets. In contrast, SAC only learns to roll over but neither to stand up
nor to walk. For SAC, we also had to help the robot out of a dead-locked leg configuration
during training. On the right we show training curves for both SAC and Dreamer. The
maximum reward is 14. The filled circles indicate times where the robot fell on its back,
requiring the learning of a robust strategy for getting back up. After 1 hour of training, we
start pushing the robot and find that it adapts its behavior within 10 minutes to withstand
light pushes and quickly roll back on its feet for hard pushes. The graph shows a single
training run with the shaded area indicating one standard deviation within each time bin.

Baselines We compare to a strong learning algorithm for each of our experimental setups.
The Al quadruped robot uses continuous actions and low-dimensional inputs, allowing us to
compare to SAC (Haarnoja et al], 2018alb), a popular algorithm for data-efficient continuous
control. For the visual pick and place experiments on the XArm and UR5 robots, inputs are
images and proprioceptive readings and actions are discrete, suggesting algorithms from the
DQN (Mnih et al., |2015) line of work as baselines. We choose Rainbow (Hessel et al., 2018)
as a powerful representative of this category, an algorithm that combines many improvements
of DQN. To input the proprioceptive readings, we concatenate them as broadcasted planes
to the RGB channels of the image, a common practice in the literature (Schrittwieser et al.|
2019). For the UR5, we additionally compare against PPO (Schulman et al. [2017)), with
similar modifications for fusing image and proprioceptive readings. In addition, we compare
against a human operator controlling the robot arm through the robot control interface. For
the Sphero navigation task, inputs are images and actions are continuous. The state-of-the-art
baseline in this category is DrQv2 (Yarats et al., [2021a), which uses image augmentation to
increase sample-efficiency.

4.3.1 A1l Quadruped Walking

This high-dimensional continuous control task requires training a quadruped robot to roll over
from its back, stand up, and walk forward at a fixed target velocity. Prior work in quadruped
locomotion requires either extensive training in simulation under domain randomization,
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using recovery controllers to avoid unsafe states, or defining the action space as parameterized
trajectory generators that restrict the space of motions (Rusu et al., |2016; Peng et al. [2018;
Rudin et al.| 2021} [Lee et al. [2020; [Yang et al.,[2019). In contrast, we train in the end-to-end
reinforcement learning setting directly on the robot, without simulators or resets. We use
the Unitree Al robot that consists of 12 direct drive motors. The motors are controlled
at 20 Hz via continuous actions that represent motor angles that are realized by a PD
controller on the hardware. Actions are filtered with a Butterworth filter to protect the motor
from high-frequency actions. The input consists of motor angles, orientations, and angular
velocities. Due to space constraints, we manually intervene when the robot has reached the
end of the available training area, without modifying the joint configuration or orientation
that the robot is in.

The reward function is the sum of five terms. An upright reward is computed from the
base frame up vector 27, terms for matching the standing pose are computed from the joint
angles of the hips, shoulders, and knees, and a forward velocity term is computed from the
projected forward velocity %® and the total velocity %v. Without the reward curriculum,
the agent receives spurious reward values due to the velocity estimator’s dependence on
foot-ground contact events. Each of the five terms is active while its preceding terms are
satisfied to at least 0.7 and otherwise set to 0:

PUPT = (ET[O, 0’ 1]_1)/2 ,,,.hip - 1_%1” qhip +0.2 ||1 Tshoulder - 1_%1” qshoulder +0.2 ||1

(4.4)

gl 3 L0 e = 5 max(0, 5, |l - clip(e/03,-1,1) + 1)
As shown in [Figure 4.4] after one hour of training,

Dreamer learns to consistently flip the robot over from
its back, stand up, and walk forward. In the first
5 minutes of training, the robot manages to roll off
its back and land on its feet. 20 minutes later, it
learns how to stand up on its feet. About 1 hour
into training, the robot learns a pronking gait to walk
forward at the desired velocity. After succeeding at
this task, we tested the robustness of the algorithms
by repeatedly knocking the robot off of its feet with
a large pole, shown in Within 10 minutes Figure 4.5: Within 10 minutes of per-
of additional online learning, the robot adapts and turbing the learned walking behav-
withstand pushes or quickly rolls back on its feet. In ior, the robot adapts to withstand-
comparison, SAC quickly learns to roll off its back but ing pushes or quickly rolling over and
fails to stand up or walk given the small data budget. back on its feet.

4.3.2 URSb5 Multi-Object Visual Pick

and Place
Common in warehouse and logistics environments, pick and place tasks require a robot
manipulator to transport items from one bin into another. [Figure 4.6| shows a successful
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Figure 4.6: URS5 Multi Object Visual Pick and Place This task requires learning to
locate three ball objects from third-person camera images, grasp them, and move them into
the other bin. The arm is free to move within and above the bins and sparse rewards are
given for grasping a ball and for dropping it in the opposite bin. The environment requires
the world model to learn multi-object dynamics in the real world and the sparse reward
structure poses a challenge for policy optimization. Dreamer overcomes the challenges of
visual localization and sparse rewards on this task, learning a successful strategy within a
few hours of autonomous operation.

pick and place cycle of this task. The task is challenging because of sparse rewards, the
need to infer object positions from pixels, and the challenging dynamics of multiple moving
objects. The sensory inputs consist of proprioceptive readings (joint angles, gripper position,
end effector Cartesian position) and a 3rd person RGB image of the scene. Successfully
grasping one of the 3 objects, detected by partial gripper closure, results in a +1 reward,
releasing the object in the same bin gives a —1 reward, and placing in the opposite bin gives
a +10 reward. We control the UR5 robot from Universal Robotics at 2 Hz. Actions are
discrete for moving the end effector in increments along X, Y, and Z axes and for toggling
the gripper state. Movement in the Z axis is only enabled while holding an object and the
gripper automatically opens once above the correct bin. We estimate human teleoperation
performance by recording 3 demonstrators for 20 minutes each, controlling the UR5 with a
joystick.

Dreamer reaches an average pick rate of 2.5 objects per minute within 8 hours. The
robot initially struggles to learn as the reward signal is very sparse, but begins to gradually
improve after 2 hours of training. The robot first learns to localize the objects and toggles
the gripper when near an object. Over time, grasping becomes precise and the robot learns
to push objects out of corners. shows the learning curves of Dreamer compared
to Rainbow DQN, PPO, and the human baseline. Both Rainbow DQN and PPO only
learn the short-sighted behavior of grasping and immediately dropping objects in the same
bin. In contrast, Dreamer approaches human-level teleoperation performance after 8 hours.
We hypothesize that Rainbow DQN and PPO fail because they require larger amounts of
experience, which is not feasible for us to collect in the real world.
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Figure 4.7: XArm Visual Pick and Place The XArm is an affordable robot arm that
operates slower than the UR5. To demonstrate successful learning on this robot, we use a
third-person RealSense camera with RGB and depth modalities, as well as proprioceptive
inputs for the robot arm, requiring the world model to learn sensor fusion. The pick and
place task uses a soft object. While soft objects would be challenging to model accurately
in a simulator, Dreamer avoids this issue by directly learning on the real robot without a
simulator. While Rainbow and PPO using R3M visual embeddings converge to the local
optimum of grasping and ungrasping the object in the same bin, Dreamer learns a successful
pick and place policy from sparse rewards in under 10 hours.

4.3.3 XArm Visual Pick and Place

While the UR5 robot is a high performance industrial robot, the XArm is an accessible low-
cost 7 DOF manipulation, which we control at approximately 0.5 Hz. Similar to [Section 4.3.2]
the task requires localizing and grasping a soft object and moving it from one bin to another
and back, shown in We connect the object to the gripper with a string, which
makes it less likely for the object to get stuck in corners at the cost of more complex dynamics.
The sparse reward, discrete action space, and observation space match the URb5 setup except
for the addition of depth image observations.

Dreamer learns a policy that enables the XArm to achieve an average pick rate of 3.1
objects per minute in 10 hours of time, which is comparable to human performance on this
task. shows that Dreamer learns to solve the task within 10 hours, whereas the
Rainbow algorithm, a top model-free algorithm for discrete control from pixels, fails to learn.
We additionally compare Dreamer against a PPO baseline that utilizes R3M
pretrained visual embeddings for the state, but notice no improvement in performance.
Interestingly, we observed that Dreamer learns to sometimes use the string to pull the object
out of a corner before grasping it, demonstrating multi-modal behaviors. Moreover, we
observed that when lighting conditions change drastically (such as sharp shadows during
sunrise), performance initially collapses but Dreamer then adapts to the changing conditions
and exceeds its previous performance after a few hours of additional training, reported in
[Appendix C.1}




CHAPTER 4. ROBOT LEARNING WITH WORLD MODELS 42

Sphero Navigation

== Dreamer
= DrQv2
= ~130 min

0.9 A
0.7 A
0.5 A
0.3 A
0.1 - !

0 3 6 9
Steps (Thousands)

Avg Dist to Goal

Figure 4.8: Sphero Navigation This task requires the Sphero robot to navigate to a
goal location given a top-down RGB image as the only input. The task requires the robot
to localize itself from raw pixels, to infer its orientation from the sequence of past images
because it is ambiguous from a single image, and to control the robot from under-actuated
motors that require building up momentum over time. Dreamer learns a successful policy on
this task in under 2 hours.

4.3.4 Sphero Navigation

We evaluate Dreamer on a visual navigation task that requires maneuvering a wheeled robot
to a fixed goal location given only RGB images as input. We use the Sphero Ollie robot, a
cylindrical robot with two controllable motors, which we control through continuous torque
commands at 2 Hz. Because the robot is symmetric and the robot only has access to image
observations, it has to infer the heading direction from the history of observations. The robot
is provided with a dense reward equal to the negative L2 distance, which is computed using
a oracle vision pipeline that detects the Sphero’s position (this information is not provided
to the agent). As the goal is fixed, after 100 environment steps, we end the episode and
randomize the robot’s position through a sequence of high power random motor actions.

In 2 hours, Dreamer learns to quickly and consistently navigate to the goal and stay near
the goal for the remainder of the episode. As shown in Dreamer achieves an average
distance to the goal of 0.15, measured in units of the area size and averaged across time
steps. We find that DrQv2, a model-free algorithm specifically designed to continuous control
from pixels, achieves similar performance. This result matches the simulated experiments
of [Yarats et al.| (2021a)) that showed the two algorithms to perform similarly for continuous
control tasks from images.

4.4 Related Work

Existing work on robot learning commonly leverages large amounts of simulated experience
before deploying to the real world (Rusu et al., [2016; Peng et al., [2018; |(OpenAl et al. 2018;
Lee et al., 2020; Irpan et al. [2020; Kumar et al, 2021} [Sickmann et al., 2021}, [Escontrela et al.,
2022)), leverage fleets of robots to collect experience datasets (Kalashnikov et all, 2018} Dasari]
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et al.l 2019; Kalashnikov et al., 2021 [Ebert et al., 2021)), or rely on external information
such as human expert demonstrations or task priors to achieve sample-efficient learning (Xie
et al| 2019} |Schoettler et al.| 2019; |James et al., 2021; Shah & Levine] 2022} |Bohez et al.|
2022; [Sivakumar et al., 2022)). However, designing simulated tasks and collecting expert
demonstrations is time-consuming. Moreover, many of these approaches require specialized
algorithms for leveraging offline experience, demonstrations, or simulator inaccuracies. In
contrast, our experiments show that learning end-to-end from rewards in the physical world
is feasible for a diverse range of tasks through world models.

Relatively few works have demonstrated end-to-end learning from scratch in the physical
world. Visual Foresight (Finn et al., 2016a; |Finn & Levine, [2017; [Ebert et al., 2018) learns a
video prediction model to solve real world tasks by online planning, but is limited to short-
horizon tasks and requires generating images during planning, making it computationally
expensive. [Yang et al.| (2019, |2022b) learn quadruped locomotion through a model-based
approach by predicting foot placement and leveraging a domain-specific controller to achieve
them. Ha et al. (2020b) learn a quadruped walking policy by relying on a scripted reset
policy, so the robot does not have to learn to stand up. SOLAR (Zhang et al., 2019) learns a
latent dynamics model from images and demonstrates reaching and pushing with a robot
arm. Nagabandi et al.| (2019) learns manipulation policies by planning through a learned
dynamics model from state observations. In comparison, our experiments show successful
learning across 4 challenging robot tasks that cover a wide range of challenges and sensory
modalities, with a single learning algorithm and hyperparameter setting.

4.5 Discussion

We applied Dreamer to physical robot learning, finding that modern world models enable
sample-efficient robot learning for a range of tasks, from scratch in the real world and without
simulators. We also find that the approach is generally applicable in that it can solve robot
locomotion, manipulation, and navigation tasks without changing hyperparameters. Dreamer
taught a quadruped robot to roll off the back, stand up, and walk in 1 hour from scratch,
which previously required extensive training in simulation followed by transfer to the real
world or parameterized trajectory generators and given reset policies. We also demonstrate
learning to pick and place objects from pixels and sparse rewards on two robot arms in 8-10
hours.

Limitations While Dreamer shows promising results, learning on hardware over many
hours creates wear on robots that may require human intervention or repair. Additionally,
more work is required to explore the limits of Dreamer and our baselines by training for a
longer time. Finally, we see tackling more challenging tasks, potentially by combining the
benefits of fast real world learning with those of simulators, as an impactful future research
direction.
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Chapter 5

Trajectory Data Collection for
Manipulation

This chapter is based on the paper “GELLO: A General, Low-Cost, and Intuitive Teleopera-
tion Framework for Robot Manipulators” (Wu et all, |2025€¢), by Philipp Wu, Yide Shentu,
Zhongke Yi, Xingyu Lin, and Pieter Abbeel.

Figure 5.1: We show GELLO teleoperation systems built for three different types of robots:
(A) two URbs, (B) an xArm, and (C) a Franka. The user can teleoperate the robot arms by
controlling the GELLO devices. The bill of materials for each GELLO device is less than
$300.
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Humans can teleoperate robots to accomplish complex manipulation tasks. Imitation learn-
ing has emerged as a powerful framework that leverages human teleoperated demonstrations
to teach robots new skills. However, the performance of the learned policies is bottlenecked
by the quality, scale, and variety of the demonstration data. In this chapter, we aim to lower
the barrier to collecting large and high-quality human demonstration data by proposing a
GEneralL framework for building LOw-cost and intuitive teleoperation systems for robotic
manipulation (GELLO). Given a target robot arm, we build a GELLO controller device that
has the same kinematic structure as the target arm, leveraging 3D-printed parts and econom-
ical off-the-shelf motors. GELLO is easy to build and intuitive to use. Through an extensive
user study, we show that GELLO enables more reliable and efficient demonstration collection
compared to other cost efficient teleoperation devices commonly used in the imitation learning
literature such as virtual reality controllers and 3D spacemouses. We further demonstrate
the capabilities of GELLO for performing complex bi-manual and contact-rich manipulation
tasks. To make GELLO accessible to everyone, we have designed and built GELLO systems
for 3 commonly used robotic arms: Franka, UR5, and xArm. All software and hardware are
open-sourced and can be found on our website: https://wuphilipp.github.io/gello/.

5.1 Introduction

In recent years, robotics has gone through a remarkable transformation driven by the
increasing integration of data-driven methods in every component, ranging from perception
to control. The ability to learn from diverse data helps robots generalize to new scenarios
which would be difficult to achieve by a manually designed system. For manipulation, there
have been great successes in leveraging imitation learning (Schaal, [1999; |Argall et al.l 2009;
Siciliano & Khatib, [2007; Zhang et al., 2018)) where system performance improves with larger
datasets (Brohan et al.| 2022, 2023; Jang et al., |2021; Reed et al., [2022). However, existing
systems are still bottlenecked by the dataset size as well as the complexity and diversity of
the tasks within the dataset.

Human teleoperation has consistently proven to be one of the best ways to control robot
manipulators to collect demonstrations for imitation learning. Teleoperation has a long
history and enabled impressive robot capabilities in a diverse range of challenging situations
such as fine grain manipulation of everyday tasks (Zhao et al.,2023), robot surgery (Guo
et al., 2019a; Pugin et al., 2011; Liang et al., 2017), underwater exploration (Brantner &
Khatib, 2021} Barbieri et al., [2018), and disaster relief (Wang et al., 2015} |[Katyal et al.,
2014)), all of which would be useful skills for a robot to learn. A common feature of the
teleoperation devices used in these systems is their bilateral capability, which enables the
operator to not only direct commands at the robot but also receive force feedback from
the robot’s environment. While performant, these teleoperation systems typically require
high-fidelity sensors due to their strict system requirements, leading to higher costs that
ultimately limit accessibility.
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As a result, a more commonly used approach is to build a teleoperation system that
captures control signals from lower-cost commodity electronic devices like 3D-mouse (Con-
nextion, 2023)), VR controllers (Meta |2024; Vive, [2023) or cameras, which is then converted
to a robot action. However, these systems abstract away the kinematic constraints of the
robot and can be unintuitive to new users. “A Low-cost Open-source Hardware System for
Bimanual Teleoperation” (ALOHA) presents a teleoperation system leveraging an off-the-shelf
servo-based arm to control a manipulator of similar size and kinematics, showing impressive
teleoperation capabilities for fine-grained manipulation tasks despite being unilateral (Zhao
et al., 2023)). Nevertheless, the ALOHA system is tailored to a specific robot arm and has a
higher cost due to having additional robot arms as controllers for the user.

In this chapter, we introduce GELLO, a GEneraL., LOw-cost, and intuitive teleoperation
framework for robot manipulators, targeted towards enabling a scalable way to collect demos
by exploring the limits of affordability and simplicity. GELLO is designed to be low-cost,
easy to build, and intuitive for humans to use. The key principle is to build miniature,
kinematically equivalent controllers with 3D-printed parts and off-the-shelf motors as joint
encoders. We clarify that the ideas behind GELLO are not new, rather our contributions can
be summarized in the three points below:

1. We present practical implementations of GELLO as a teleoperation system for three
commonly used robot arms with simple and low-cost designs.

2. We perform a comprehensive user study demonstrating the system’s effectiveness
compared to other prevalent low-cost teleoperation systems in the literature.

3. We fully open-source the hardware and software needed to replicate and operate GELLO
to ensure accessibility for the research community to build upon, complete with a bill
of materials and assembly instructiond!]

5.2 Related Work

5.2.1 Teleoperation Systems for Manipulation

Low-cost Controllers. Teleoperation systems have a long-standing history and various low-
cost sensors have been used to provide the interface for human-robot interaction. Commonly
used teleoperation systems include joysticks and spacemouses (Liu et al., [2023c; [Lin et al.|
2024} Zhu et al., [2022), commercial VR controllers (Zhang et al., 2018; Rakita et al., [2017;
Shridhar et al., 2023; Arunachalam et al.;|2023)), RGB cameras (Handa et al., [2020; Sivakumar
et al., [2022; |Qin et al., [2023; |Song et al., [2020) or IMU sensors (Laghi et al. 2018 [Kim et al.,
2010; [Wu et al 2019), However due to the morphological differences between these control
devices and the robots, the user often can only perform teleoperation in the more abstracted
end-effector space. The kinematic constraints of the robot arms therefore are not perceived

!'Website https://wuphilipp.github.io/gello/
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by the human operators. This prevents the operator from precisely controlling the arm
near the areas of kinematic singularities and self-collisions, which reduces the demonstration
throughput and increases failures. Moreover, both VR and camera-based solutions can suffer
from occlusion and additional latency.

Notably, the recent ALOHA system showcases impressive fine-grained bi-manual manip-
ulation with Dynamixel-based servo arms, where an additional two arms of similar form
factor function as controllers (Zhao et al,, [2023). Similar to other more conventional but
costly teleoperation systems (Hulin et al., 2011; Katz, [2018b} [Schwarz et al., 2021)), the
teleoperation device is another fully-fledged robot arm, with size and capability comparable to
the manipulator arm, which can increase the cost. In comparison, we use low-cost components
to design a scaled replica of the target arm, resulting in an economical solution that still
maintains the advantages of using a kinematically isomorphic arm as the controller.

Bilateral Teleoperation Systems. In contrast to unilateral teleoperation approaches,
bilateral teleoperation enables the user to feel force feedback from the target arm (Lawrence,
1993; Hannaford, [1989)), an active area of research with a wide range of methodologies. One
such approach uses additional robot arms that are isomorphic to the target robots serving as
controllers (Hulin et al.; 2011; Katz, [2018b; Schwarz et al., 2021} [Elsner et al., |2022; Lenz &
Behnke|, 2021; Whitney et al., 2014). This approach enables environment feedback from the
manipulator to be directly relayed back to the joints of the control device. Also, the user can
easily sense the kinematic constraints of the robot arm, as the controller arm has the same
kinematic constraints. Additionally, there have been efforts to design 1-to-1 exoskeletons for
teleoperation purposes (Jo et al., 2013; [Toedtheide et al., 2023; Ishiguro et al. 2020). These
systems, though effective, are typically bespoke for specific robots, leading to a varied design
approach across different robot types. Another avenue explored in the literature is the use
of special input devices with haptic feedback (Labj, 2023; Dimension, 2023)). While these
devices offer a tangible sense of the robot’s kinematic constraints, they often have a very tight
operation space and additionally require translating the robot’s kinematic constraints into
tangible force feedback increasing system complexity (Zhu et al., 2020; Brantner & Khatib,
2021). In contrast to these approaches, our contribution presents a generalized framework for
designing affordable and easily accessible exoskeleton-like unilateral controllers. We provide
instances of our approach for three widely-used robot arms. Our system, GELLO, stands
out for its affordability, portability, and replicability, reducing the challenges associated with
collecting quality teleoperated human demonstrations.

5.2.2 Learning from Human Demonstrations

Learning from demonstrations has been a popular framework for enabling robots to perform
a wide range of tasks (Brohan et al., 2022 2023; |Jang et al., 2021; Zhang et al., 2018;
Song et al., 2020; |[Pastor et al., 2009; Bousmalis et al. [2023). Prior works have observed
that the performance of the learning system scales with the size of the dataset. As such,
there are substantial ongoing efforts at collecting larger and larger datasets (Walke et al.,
2023; Fang et al., 2023b)). However, collecting human demonstrations can be expensive and
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Teleop Device Approximate Cost
3D Mouse (SpaceNavigator(Connextion, [2023))  $150

GELLO (Ours) $300

VR (Meta Quest 2) (Metal 2024) $300
Robot-to-robot Teleop (e.g. URS) $30,000

Haptic Device (Omega7 (Dimension, 2023)) $40,000

Table 5.1: An approximate cost comparison of the price of commonly used teleoperation
systems for robot learning research. In our user study, we show that GELLO compares
favorably to other low-cost options (e.g. spacemouse and VR) while being orders of magnitudes
cheaper than other options.

time-consuming. For example, the data collection process as done by [Brohan et al.| (2022)
spanned over 17 months with a team of researchers. On the other hand, significant efforts
have been made towards better human-robot interaction to address the bottleneck. Some
examples include sharing control between the human and the robot (Liu et al., [2023c), or
enabling a human to operate multiple robots simultaneously (Dass et al., [2023). These
approaches are complementary to our objective, which is to build teleoperation systems that
are more accessible and intuitive to use. Finally, a promising direction is learning directly
from human videos (Finn et al., 2017b; Smith et al.; 2019; Bahl et al., 2022; Qin et al.| [2022;
Wang et al., 2023a; Wen et al, | 2023). While collecting videos of humans performing the
tasks directly is relatively inexpensive, overcoming the morphology gap between robots and
humans remains challenging.

5.3 Teleoperation Device Design

The focus for the design of GELLO is to create an interface that is both economically
accessible and easy-to-use for users aiming to render high-quality demonstrations in robot
learning. The primary design principles are summarized as follows:

o Low-cost: We aim to show that a capable system can be constructed at an affordable
price, thus minimizing the entry barrier. This is achieved through the use of economical
backdrivable servo motors, 3D printed components, and a minimalist design, making
it possible to construct a teleoperation solution for under $300. A cost comparison is
shown in [Table 5.1 We will show that GELLO outperforms other low-cost options in
our user study while being much cheaper than the other systems.

o Capable: GELLO is designed to be easy to use for human operators. We demonstrate
GELLOQO’s capabilities on a range of complex bi-manual manipulation and contact-rich
tasks.
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Figure 5.2: This figure illustrates the trajectory of GELLO both with and without joint
regularization. Left: Without joint regularization the elbow joint drops. This results in an
unfavorable joint configuration for subsequent tasks or even collision with the table. Right:
With joint regularization in place, the elbow exhibits minimal movement, leading to a more
advantageous joint configuration. We find that simple rubber bands or springs are effective.

o Portable: The diversity of demonstration data collected in different tasks and environ-
ments is critical to the final performance of the learning system. As such, we design
GELLO to be compact, and self-contained, facilitating easy transportation. We show
GELLO performing tasks across both lab and in-the-wild environments.

« Simple to replicate: The sourcing for parts is minimal beyond off-the-shelf motors
and 3D printing components. The assembly process is also straightforward, requiring
minimal technical expertise.

We follow these design principles to make GELLO for three types of robot arms, as shown
in The instantiation of our approach centers around critical components like
motor selection, kinematically equivalent structure, joint regularization, and 3D printed parts.

Servo selection The critical component to enable GELLO’s construction is the availability
of low-cost, fully-featured servos. Specifically, we used the DYNAMIXEL XL330 series
(ROBOTIS, 2023). Despite their affordability, these servos are equipped with high-resolution
12-bit encoders, enabling joint measurements within 0.088 of a mechanical degree. These
encoders provide measurements of the servo’s position, allowing accurate mapping of the
controller’s configuration to the target arm. In principle, a servo is not even necessary for
the construction of GELLO, as we only need to read joint positions. However, in practice, a
servo package provides an easy off-the-shelf, self-contained solution that has an encoder and
communication protocol, simplifying construction, usage, and maintenance, furthering the
goal of easy replication. In addition, the servo actuator provides physical resistance as the
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user backdrives it, which acts as natural damping and improves stability for the user. For
this reason, we use the XL-330-288T, which provides the highest gear ratio offering the most
resistance.

A scaled kinematically equivalent structure We build GELLO as a small-scale ver-
sion of the target arm which possesses a kinematically equivalent structure. This means
that the joints and links of GELLO correspond directly to those of the target arm, al-
lowing the user to control the GELLO manipulator as if they were directly controlling
the target arm, as in kinesthetic teaching (Billard et all 2006). The kinematically equiv-
alent structure is generated by taking the DH parameters of the target arm, and then
scaling the lengths by a factor of a. Although the optimal a for comfort will be user
and robot dependent, we used o = 0.5 in our implementation and found it to be effective.
Joint positions are read from the GELLO
device and directly sent as a joint command
to the target arm for operation, avoiding the
need to compute inverse kinematics. The user
can feel resistance from the controller when
the joints are close to kinematic singularities
or joint limits and is thus more aware of these
failures, leading to more reliable teleopera-
tion. At the same time, the miniature design
makes the controller more portable while still
allowing the user to operate full-scale robot
arms.
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Joint regularization With only passive
servo motors, the arm is constantly dragged
by gravity to undesirable configurations dur-
ing operation. We find that by adding sim-
ple joint regularizers, we can counteract the
force of gravity on the manipulator, making
it easier for the user to control. We employ

Figure 5.3: A quantitative analysis of the ef-
fects of implementing simple joint regulariza-
tion on the force necessary to maintain the
teleoperation device in a stationary position
at various heights. Without the joint regular-
ization, the measured force required to resist
gravity is approximately constant around 1.9N.

rudimentary but effective passive joint regu-
larization that involves the use of mechanical
components such as springs or rubber bands
to ensure that the device maintains a “nat-
ural” posture. This prevents the arm from
adopting other kinematically viable yet un-
conventional positions, as illustrated in Fig-
ure [5.2] which may result in collisions. We
only add joint regularization elements to the

This can make it more difficult for the oper-
ator to feel the kinematic limits of the robot.
With regularization, we see that near the table,
the restorative force helps reduce the required
force to compensate for gravity while when far
away, a higher restorative force is provided,
encouraging the user to avoid singularities.
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Figure 5.4: We design and instantiate GELLO for 3 different robot arms. We experiment with
GELLO across these three arms on a range of tasks to qualitatively observe the teleportation
behavior. GELLO’s portable and self-sufficient design enables us to gather data across a
wide range of environments.

joints that exhibit the most significant resis-

tance against gravity in the arm’s default resting position, which for the UR design, is the
second and third joint. We quantitatively study this in [Figure 5.3} We also find that joint
regularization provides passive force feedback to the user which differs near the extremities
of the joint range. This helps inform the user about the current configuration of the arm.

3D printed parts The use of 3D printed parts in GELLO allows a high degree of cus-
tomization, enabling users to design and print parts that match the specific robot hardware.
3D printing allows us to easily design GELLO systems for 3 kinematically different robots.
3D printing is also a cost-effective method of producing parts, further contributing to the
low-cost nature of GELLO.

Following these simple design principles, we instantiate and test GELLO for three com-
monly used robot arms, the Universal Robot UR5, uFactory xArm7, and Franka Panda.
Example tasks that we can perform with GELLO on the different robots are illustrated in

The control setting of direct joint control results in a very simple software stack. Joint
angles are read directly from the GELLO device using the DYNAMIXEL provided python
APT and are commanded to the follower robot. We use the various python APIs for each robot
type to send commands to the follower robot. We use ZMQ (ZeroMQ@), 2024) for message
passing between processes, and provide a simple protocol for extending to new robot types.
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Figure 5.5: An illustration of the experimental setup for our user study. The primary
workspace of our experiments, indicated in green, showcases the scene of a bimanual robot
station comprising of two URbS robots with the complete task suit. The figure details the five
tasks which are represented by the numerically labelled frames in blue: (1) Place a hat on a
rack, (2) Open a case and fetch the sleeping mask inside, (3) Hand over a banana to the kitchen
area, (4) Fold a towel, and (5) Plug in a USB cable. These tasks are designed to explore
different teleoperation challenges such as articulated object interaction, large workspaces,
deformable objects, and precise insertion. The three different bimanual teleoperation devices
are shown by the letter-labelled images: (A) GELLO, (B) VR (Meta Quest2) controllers,
and (C) 3D Mice (SpaceMouse). Each user attempts to accomplish the 5 tasks with all 3
teleoperation devices.

5.4 Experiments

We conduct experiments to evaluate GELLO as a teleoperation system. Quantitatively, we
compare the performance of GELLO with other common low-cost teleoperation systems used
in the literature across 5 tasks exploring various aspects of manipulation. Qualitatively, we
study GELLO through tests on robots from 3 different manufacturers across a variety of
manipulation tasks in diverse settings.
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5.4.1 User Study Procedure

We conducted a user study involving 12 participants, focusing on bi-manual robot teleoperation
using two UR robots to assess the comparative effectiveness of GELLO, 3D mouses, and VR
controllers under controlled conditions. All participants were volunteers from our university
and none of the participants had professional training in robot teleoperation prior to the study.
An overview of our experimental study is shown in [Figure 5.5 where details of the 5 tasks we
study are provided. These tasks cover a wide range of different manipulation challenges such
as control over large work spaces, deformable objects, and fine-grain manipulation. Control
with a 3D mouse or VR controller requires additional tuning of gain parameters that affect
how sensitive the controller is to human input. A larger gain results in a larger robot motion
for a fixed human control input. We tune each by testing the device across the 5 tasks,
ensuring control is sensitive enough to achieve the fine-grain USB insertion tasks while still
being responsive enough for quickly traversing across the workspace in the banana handoff
task.

Before experimenting with the teleoperation tools, each user was granted a brief 6-minute
orientation session, introducing them to the basics of the robot and teleoperation itself, as
well as the task requirements. To reduce potential biases, no device-specific instructions were
given in this orientation, and video demonstrations of the task do not show any particular
device. This is then followed by the sequential introduction of all 3 different teleoperation
devices. Upon introducing a new device, users were given a 5-minute practice phase, allowing
them to gain familiarity with the device and its usage. During this time, users are allowed to
experiment with the device and practice the tasks however they please. Next, the participants
begin the task execution phase, with a time limit of 45 seconds for the hat task, and 90
seconds for the remaining tasks. This is repeated for all 3 teleoperation devices. The order
in which each participant learns to use the three devices is randomized. This eliminates any
potential bias from a fixed ordering. There are 6 possible orderings that the user can operate
the devices. Each order is seen twice. Users were instructed to solve the task as best they
could while avoiding self-collision (collision between the follower robot with itself or the other
follower robot) or collision with the environment. The robot will be stopped when failure
happens and the current task is terminated immediately. We record the task success and
failure mode or task completion time as applicable. In the end, we have the user accomplish
the same tasks without a robot using their hands. For privacy, no other user-specific data
was collected.

5.4.2 User Study Results

In [Table 5.2 we show the success rate across distinct tasks for each teleoperation device.
Using GELLO consistently results in the top success rate. For the simplest task, which only
requires controlling a single arm, placing the hat on the rack, GELLO and VR perform
comparably with respect to mean completion time. In more complex tasks, such as the
banana handoff which requires both arms to maneuver across the large workspace, using
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Figure 5.6: Comparison with other teleoperation systems on the required duration for each
task. For every combination of task and system, the average completion time (smaller is
better) is plotted only for successful trials. Colored dots indicates the completion time for
each user under each task-system pairing. Human, plotted in blue, gives a lower bound on
teleoperation completion time, where the user directly accomplished each task with their

hands.

Table 5.2: The task success rate for different teleoperation systems. GELLO achieves the top
success rate across the board.

Device Hat Mask Banana Towel USB Avg
Gello 092 092 1.0 092 0.83 0.92
3D Mice 0.75 0.58  0.67 0.58  0.58 0.63
VR 092 0.83 0.75 0.58 0.5  0.72

spacemouse or VR leads to more failures like self-collisions or hitting singularities, suggesting
that GELLO offers easier control in more broad use cases. For the task of towel folding,
GELLO also shows a large advantage over the other two devices. We hypothesize that this is
because GELLO offers more intuitive control and thus better coordination between the two
arms. Interestingly, for the task of plugging in the USB cable, using GELLO also resulted
in a much higher success rate. This is despite VR or spacemouse having the advantage of
simplifying the problem by keeping one controller static while focusing their attention on the
other, a common strategy users employed.

In [Table 5.3, we present a breakdown on the different failure modes for each teleoperation
system. Our observations suggest that, unlike other devices that operate in Cartesian space,
GELLO requires minimal user expertise. This is further corroborated by the lowest timeout
count for GELLO in comparison to other teleoperation systems. Furthermore, GELLO’s
isomorphic joint structure design ensures that teleoperation with GELLO has the least
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Table 5.3: The failure count for each failure mode aggregated across all 5 tasks. Each
X indicates a single failure of that type from our trials. The “Other” category captures all
other irrecoverable task failure modes such as dropping the working item outside the reach of
the robots.

Failure Mode GELLO 3D Mice VR

Timeout X XXXXXXXXX  XXXXX
Self Collision X XXXXX XXXXX
Env Collision XXX XXXXXX XXXXXX
Other XX X

collision risk. Qualitatively we observed that self collisions were a common problem for the
spacemouse and VR controllers due to the teleoperator paying attention only to the end
effector and its relative motion. These devices, unlike GELLO, are unobservant of kinematic
and robot-to-robot constraints which could explain the high amount of self-collisions.

Figure provides a summary of the completion times taken by each device across all
five tasks, given successful task execution. Utilizing GELLO results in consistently faster
completion times. This not only signifies that GELLO is easier to use with a higher success
rate but also indicates its efficiency; faster completion times would enable users to achieve
more successful operations in a given time frame.

5.4.3 Teleoperation System Capabilities

We further demonstrate the capabilities of GELLO on more challenging manipulation tasks,
including in real-world environments across the three different robot platforms. We show
some of them in and put more videos on our project website. These tasks include
contact-rich tasks, long-horizon tasks, and challenging bi-manual coordination tasks. Tasks
like filling water bottles require a certain payload on the robot arm and would be difficult for
smaller arms to perform, such as the ViperX arm used in the ALOHA system (Zhao et al.,
2023)). GELLO is also effective for 7 DOF arms, such as the Panda and xArms, despite the
extra degree of freedom. We find that the kinematically equivalent structure enables a user to
directly manage the arm’s null space if required, which can be advantageous when operating
in cluttered spaces.

5.5 Discussion

Due to limited output torque of the motors used, GELLO does not provide force feedback to
the users, which limits GELLO’s capabilities when teleoperating for more contact-rich tasks.
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We made this compromise to keep GELLO low-cost, more accessible, and more applicable
to all robot arms, as bilateral devices also require force sensing capability for the target
robot. However, we hope to incorporate this as an optional capability in the future for more
advanced usage.

Our user study is limited to inexperienced users who are only briefly taught about
teleoperation and who only practiced for a limited time. Additional training can significantly
improve the user’s proficiency in using teleoperation devices and we leave such study to future
work.

In this chapter, we introduced GELLO, a general low-cost teleoperation platform for
manipulation. Our results demonstrate its effectiveness through a user study on teleoperation
with a bi-manual robot system using two URbHs. To demonstrate versatility and make GELLO
more accessible, we design GELLO for 3 robots. We hope GELLO will lower the barrier
to collecting large and high-quality demonstration datasets, and thus accelerate progress in
robot learning.
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Chapter 6

Robot Policy Learning with
Human-in-the-Loop

This chapter is based on the paper “” (Wu et all 2024b), by Philipp Wu, Yide Shentu,

Qiayuan Liao, Ding Jin, Menglong Guo, Koushil Sreenath, Xingyu Lin, and Pieter Abbeel.

Figure 6.1: A depiction of our RoboCopilot System which consists of a 20 degrees of
freedom mobile bimanual robot and a bilateral teleoperation device. Our system enables easy
teleoperation as well as human take-over at any time, allowing for an effective human-in-the-
loop teleoperation system for interactive learning.

Learning from human demonstration is an effective approach for learning complex manip-
ulation skills. However, existing approaches heavily focus on learning from passive human
demonstration data for its simplicity in data collection. Interactive human teaching has
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appealing theoretical and practical properties, but they are not well supported by existing
human-robot interfaces. This chapter proposes a novel system that enables seamless control
switching between human and an autonomous policy for bi-manual manipulation tasks,
enabling more efficient learning of new tasks. This is achieved through a compliant, bilat-
eral teleoperation system. Through simulation and hardware experiments, we demonstrate
the value of our system in an interactive human teaching for learning complex bi-manual
manipulation skills.

6.1 Introduction

Humans play a critical role in teaching robot skills in robot manipulation. Recent developments
in data-driven methods have shown promising results in learning complex robotic manipulation
skills from human demonstration [Zhao et al. (2023); Chi et al.| (2023); Wu et al.| (2023e);
Brohan et al.| (2022); |Jang et al| (2022); Zhang et al.| (2018). The advantages of learning-
from-demonstration approaches arise partly from their simplicity: humans provide a dataset
of demonstration trajectories and then a policy is trained on the collected dataset to mimic
the human actions. With enough human demonstrated data the policy will eventually learn
to perform the same task like the human demonstrator.

However, this passive imitation learning paradigm suffers from various inefficiencies
that an interactive learning approach could overcome. In an interactive learning setting,
humans take control of the robot when it fails and provide demonstrations for corrective
behaviors. Prior works in Dataset Aggregation (DAgger) have shown, both theoretically
and empirically, that corrective and interactive data improve policy learning performance by
addressing the covariate shift issue |[Ross et al.| (2011); [Pomerleau/ (1988); |Jang et al.| (2021)).
However, existing human teleoperation systems for manipulation are not designed for human
intervention. Remote controllers such as spacemice and VR devices map the relative pose
change to the robot end-effector, which is not intuitive for users, especially in an interactive
setting where the human may need to take over at any time Zhang et al.| (2018]); Wu et al.
(2023¢)). Conversely, while exoskeleton-based devices have been effective in collecting passive
human data Zhao et al.| (2023); [Wu et al.| (2023¢); |[Fang et al.| (2023a), synchronizing the
policy rollout to an exoskeleton can be potentially unsafe for the human operator in a DAgger
setting Kelly et al.| (2019). Despite the recent advances of the easy-to-use teleoperation tools
for multi-joints robot systems Wu et al.| (2023¢]); |Zhao et al.| (2023)), the challenge of enabling
intuitive interactive learning with these tools remains unresolved.

In this chapter, we introduce RoboCopilot, a robot system designed to accommodate
interactive human demonstrations for learning bimanual robotic manipulation skills. We
name our system RoboCopilot as it enables a human and a robot to cooperatively perform
manipulation tasks, where the robot (the copilot) takes an assistive role before a lot of
training. The system has two key components. First, we adopt the algorithmic framework
introduced by Human-Gated DAgger (HG-DAgger) for interactive imitation learning and
adapt it to our manipulation setting. In this pipeline, we alternate between model training
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and data collection with a learned policy, where, during data collection, a human teleoperator
interrupts and provides corrective feedback. This enables the robot to continually improve
performance throughout the teaching process and collect higher-quality interactive data. We
first verify the benefit of this procedure through controlled simulation experiments. Second,
we build custom hardware which consists of a mobile, compliant bimanual manipulator and a
bilateral teleoperation device which enables us to instantiate our interactive learning pipeline.
Our system enables a teleoperator to seamlessly take over robot control from a policy
during the interactive training process. We show that with RoboCopilot, we can successfully
teach the policy to learn long horizon, contact-rich, bimanual mobile manipulation skills.

6.2 Related Work

6.2.1 Imitation Learning from Passive Human Demonstrations

Human demonstrations provide high-quality, action-labeled data for learning complex manip-
ulation skills. Prior works show that behavior cloning is effective for learning from passive
human data |Zhao et al.| (2023); Chi et al.[(2023)); Wu et al.| (2023¢); Brohan et al.| (2022, 2023);
Haldar et al.| (2023), and increasing the number of trajectories consistently leads to better
performance. However, it is challenging to provide performance guarantees for the trained
policies. The number of demonstrations required is task-dependent, ranging from as few as
ten demonstration trajectories for a simple picking skill Mandlekar et al.| (2021)) to up to a
thousand trajectories Bousmalis et al.| (2023). Furthermore, due to the issue of covariate shift,
policies trained from passive offline data are unable to recover from the errors accumulated
during online execution Ross et al. (2011); Spencer et al. (2021). Consequently, learning
robust policies often has a significant hidden cost of an iterative process of data collection
and policy learning. Our proposed system aims to enable interactive human teaching of
complex manipulation skills, allowing the policy to continuously improve from newly collected
demonstration data.

6.2.2 Interactive Imitation Learning

In an interactive imitation learning setting, the student policy receives feedback from the
expert policy during policy execution, enabling the student to continually improve and learn
to correct rollout mistakes (Celemin et al.| (2022). Interactive learning approaches such as
Data Aggregation (DAgger) have shown better sample efficiency and robustness compared to
behavior cloning methods, both theoretically and in practice Ross et al.| (2011); |Pomerleau
(1988). However, retroactively relabeling demonstrations, as originally formulated, can be
quite difficult for a human, especially for robot manipulation [Laskey et al.| (2016} |2017)).
Followup works have extended the DAgger framework to various settings to perform human-
in-the-loop data collection Kelly et al.| (2019); Hoque et al.| (2021)); Li et al.| (2022); |Mandlekar
et al.| (2020)); |Liu et al.| (2023c); [Spencer et al. (2020)); Zhang & Chol| (2016). We follow
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(a) Workflow for learning one skill. (b) Dataflow during interactive teaching.

Figure 6.2: Overview for our interactive teaching system. (a) Workflow for learning a single
skill: We start with a set of human demonstrations to pre-train the initial policy. Then in
the interactive teaching stage, the policy is deployed and a human intervenes upon policy
failure. The policy is continually fine-tuned from these new demos. As policy performance
improves, less human intervention is needed. (b) During robot execution, the robot policy
takes sensor observations and outputs actions. The human can decide when to use the policy
switch to teleoperation. This enables the human to interrupt the robot on policy failure and
correct the mistake, storing the data into the dataset. The model is continually training and
being updated.

Human-Gated DAgger (HG-DAgger) |Kelly et al.| (2019) on its data collection phase, where
the human operator determines when to intervene and take control of the student policy and
when to release control back to the policy. However, such an approach requires the human and
the agent to switch control when needed, which can be challenging for a typical teleoperation
device. As such, the DAgger framework has not been widely adopted for complex bi-manual
manipulation. RoboCopilot aims to bridge this gap through a teleoperation system that
enables seamless human take over and continual policy improvement.

6.2.3 Robot Teleoperation Systems

Teleoperation systems have existed from the very beginning of robotics [Lichiardopol| (2007)
and the design for the teleoperation interface heavily impacts the final performance for
modern data driven methods. Controllers such as joysticks and VR controllers Zhang et al.
(2018); Zhu et al.| (2022)); Dass et al.| (2024)); |Qin et al.| (2023), while simple to set up, do not
allow force feedback from the robot to the human operators and hide the kinematic joint
limits of the robot from the human operators. Similarly, portable data collectors such as
Universal Manipulation Interface (UMI) [Song et al.| (2020)); [Young et al.| (2020); Chi et al.
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(2024)); Shafiullah et al.| (2023) also pose a gap by removing the kinematic constraints from
the data collection process. While exoskeleton-based puppeteering solutions have shown
impressive results in collecting and learning fine-grained bimanual manipulation policies Zhao
et al.| (2023)); [Wu et al.| (2023¢)); Fu et al.| (2024); |[Fang et al.| (2023a)), the controllers lose
synchronization during policy execution, making it difficult for human to intervene. Most
related to ours, there has been a body of prior works on bilateral teleoperation [Hulin et al.
(2011); Katz| (2018b)); Schwarz et al.| (2021)); Elsner et al. (2022); Lenz & Behnke (2021));
Whitney et al.| (2014])); Ishiguro et al.| (2020)); Tachi et al.| (2003); |Amini et al.| (2017); [Buamanee
et al.[(2024); Mohsen et al.| (2023)). In this work, we build a compliant, bimanual teleoperation
system and demonstrate its capability for interactive human teaching.

6.3 Continual Interactive Imitation Learning

We aim to enable robots to continually learn from interactive demonstrations, where a
human can take over control of the robot when the autonomous policy fails, as illustrated
in Figure[6.2] As human demonstration, robot execution and skill learning occur in a tight
learning loop, this allows the human operator to understand where and when the autonomous
policy fails, providing more targeted demonstrations on the model failure cases. We will
summarize our interactive learning algorithm in this section and explain how we achieve this
through our proposed RoboCopilot system in the next section.

As shown in Algorithm Algorithm 1 Human-in-the-loop Imitation Learning
we first collect K human

d . . . 1: Input: Init policy mg, human expert 7*, # of iterations NNV,
emonstration t‘ra‘]ectorles' to warmup human demonstration dataset D

warm up the policy. Following 2: Train warmup policy 71 on D with behavior cloning
HG-DAgger Mandlekar et al| 3. for i =2 to N do

(2020), we allow the human ex- 4. for each step in the environment do

pert to determine when to in- 5. if human expert 7* intervenes then
tervene and take control of the 6: Execute expert human action: 7*(s)
robot execution. The interven- 7: Add the intervention data: D <— D U{(s,7*(s))}
tion data from the human ex- 8: else
perts are added to the dataset. 9: Execute robot policy m;(s)
After each round of data col- 10: end if
lection, we fine-tune our pol- 1 end for
icy using all the collected data 1% miv1(s) < finetune(m;, D)
13: end for

by performing several gradient-
based updates to the policy net-
work. Our policy network is parameterized by a diffusion network (Chi et al.| (2023). As the
policy improves, the number of required interventions decreases significantly.

Prior work has shown that continually fine-tuning neural networks on data from non-
stationary distributions causes catastrophic forgetting Goodfellow et al.| (2013); |Kirkpatrick
et al.| (2017)). Despite this, we adopt fine-tuning during the interactive teaching process give

14: Output: Final policy mn
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its multiple advantages over training policies from scratch after the data collection is done:
First, collecting online samples from the current policy alleviates covariate shift, as the human
can intervene when necessary to teach correction skills. Second, as the policy is continually
fine-tuned and executed, the human operator can quickly observe current failure modes and
collect more targeted demonstrations. Finally, online learning reduces the overall training
time.

Practically, once the interactive teaching finishes, we can utilize the online interactive data
and retraining a policy from scratch. Doing so avoids the non-stationarity of the training
distribution but still takes advantage of the interactive data. In practice, we find this approach
to provide the best policy that can be used for deployment. This amounts to restarting
Algorithm [T] with the most up to data dataset D.

6.4 Teleoperation System

We develop a versatile mobile
bi-manual robot with a capa-
ble teleoperation system that
allows us to instantiate human-
in-the-loop interactive teaching s
for a wide range of real world : " »
tasks. Our physical RoboCopi- o N Gripper position 7
lot teleoperation system con- m A\ Human takeover button for each hand /)
sists of the physical robot, the - -
teleoperation device, and the
teleoperation workflow. More Figure 6.3: The comparison of the different end-effector
details about our custom low human interface designs for different teleoperation systems
cost robot hardware can be is shown below: Left: Aloha [Zhao et al. (2023) and GELLO
found in Appendix [D.3] Wu et al.| (2023€)’s handheld interface. Middle: RoboCopilot
Our teleoperation system layout, where we attached the Quest2 controller at the end of
is an effective way to en- our GELLO device. Right: The key map of our end-effector
able human-in-the-loop imita- human input interface. We optimized the layout to allow
tion learning for manipulation. efficient gripper control and interactive human-in-the-loop
A more capable and human in- teaching.
tuitive device enables a user to
more precisely control the robot which offers increased data quality for downstream learning.
While for dynamical systems with a lower dimensional action space like UAVs or cars, one
can more easily apply DAgger algorithms by having a human relabel the data with a joystick
or wheel Ross et al.| (2012); Kelly et al. (2019). In general, there is no obvious way to relabel
trajectories for manipulation trajectory data. This is due in part to the high dimensional
action space and complex environment dynamics.
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Go to preset state

Resel‘) uffer ; Save buffer with custtels




CHAPTER 6. ROBOT POLICY LEARNING WITH HUMAN-IN-THE-LOOP 64

6.4.1 Teleoperation Device

The core principle of the teleoperation leader device is to enable maximal data collection
quality and ease of use for the human during operation and take over. Our puppeteering
teleoperation device is a low cost approximate kinematic replica of our target arm, following
GELLO Wau et al.| (2023€)). More detailed hardware specifications are found in Appendix
We attach a Meta Quest 2 controller [Meta| (2024) at the end of our teleoperation leader arms,
serving as both an ergonomic gripping handle and a multi-input control device. Previous
works have primarily focused on the active portion of controlling the arm, but our approach
also considers the importance of a comprehensive and user-friendly interface. A comparison
of different teleoperation devices is shown in Figure [6.3] While teaching devices like ours are
not new, the focus has largely been in an imitation learning context. Our goal is to show
how to effectively extend the usefulness of these devices in an interactive learning setting.

6.4.2 Active Control

We actively control the motors of the leader arm enabling less user fatigue and smoother
human take over. The weight and inertia of the teleoperation device requires additional
energy input from the user to drive the device. Active gravity compensation using the
manipulator equation alleviates this burden, allowing the operator to maneuver the system
without excessive effort, reducing operator fatigue Siciliano & Khatib (2007); Lynch & Park
(2017)).

Active control also enables a bilateral system, where the leader arm can provide force
feedback to the user felt by the follower arm. This enables a user to understand and feel
the forces that the robot feels, allowing the user to more effectively operate the robot. We
modify the PD control law used in [Katz (2018b)) control law so the user feels a scaled down
version of the forces Katz (2018b)).

T = OJKP(GF — HL) + 5Kd((9F — GL)
T — KP(GL — QF) + Kd(éL — ‘9F)

where L is the leader teleoperation device and F' is the follower, 7 is actuator torques, 6 is
joint position and @ is joint velocity. We add v and 8 constants so that the teleoperation device
does not feel the full inertia of the arm, while still enabling effective control. Additionally, the
use of active motors on our teleoperation device allows us to flexibly vary the «a, 3 bilateral
coefficient in different situations.

6.4.3 Human-in-the-loop Interactive Learning

Our RoboCopilot system is designed to be user-friendly and fully equipped with features
that facilitate both the smooth operation of the robot for task completion and efficient data
collection. The teleoperation device includes multiple buttons dedicated to data collection
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utilities, such as saving data and resetting the robot, streamlining the process of capturing
valuable data during operation. This enables the teleoperator to be explicit about the data
being collected, and can easily control for the data quality.

Control of the leader arm is intuitive, with bilateral control allowing the user to feel the
forces experienced by the robot arm. This feature is particularly beneficial when the robot is
in contact with the environment or handling heavy objects. When the autonomous policy is
executing, the leader-follower relationship is reversed where the teleoperation device matches
the real robot. The teleoperation can then activate take over at any point in time by engaging
with the teleoperation device, without interrupting process flow as the devices are already
synchronized. During robot policy execution, we use stiff gains on the leader to minimize the
state difference, whereas during teleoperation mode, we use lower gains to ease the forces on
the human teleoperator.

6.5 Experiments

We conducted a series of experiments to demonstrate the value of our system for continual,
interactive imitation learning in both simulation and the real world. Our system enables
interactive data collection with a human in the loop. Our primary research question is how
this interactive data collection affects the collected data quality. We measure the quality of the
collected data by evaluating the final policy performance. Specifically, we compare the policy
performance using three data collection and policy learning methods: (1) Offline Behavior
Cloning (BC), (2) Human-in-the-loop interactive learning where the policy is continually
trained and used for collecting the next batch of data (Continual DAgger), and (3) Training a
policy from scratch using all data, including the data collected by Continual DAgger (Batched
Dagger). Through these experiments, we aim to demonstrate that interactive data collection
can accelerate learning, reduce the need for laborious data collection process, and improve
the overall performance. Additionally we demonstrate the effectiveness of our real world
system at learning various tasks.

6.5.1 Simulation

We conduct imitation learning experiments on the standard Robomimic benchmark Mandlekar
et al| (2021)). The benchmark provides human demonstration trajectories and simulation
environments for a set of robotic manipulation tasks including bimanual tasks, showing the
benefit of our approach for manipulation in general. The goal of these experiments is to
validate the effectiveness of the algorithmic approach in a controlled reproducible environment.
We choose the Can, Square, and Transport tasks from the benchmark which are visualized in
Appendix Experiments involving human interaction can be difficult to reproduce due to
the volatile nature of human interaction. To improve reproducibility, we use the pre-trained
expert diffusion policy 7* from (Chi et al.|(2023)) as a human substitute. As this trained expert
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Table 6.1: Simulation results comparing behavior cloning and various DAgger methods on
the robomimic benchmark Mandlekar et al.| (2021). We collect 10 trajectories for warming
up the dataset and training the initial policy. BC-H refers to behavior cloning from a human
demonstration dataset. BC-P refers to behavior cloning from an expert dataset collected
by our expect policy. The expert policy is the same policy that makes interventions in our
DAgger methods. Continual DAgger denotes our continual DAgger method that continually
finetuning with interaction data. Batched DAgger denotes training from scratch with the
Continual DAgger collected data. We see leveraging human in the loop during the data
collection process significantly improves over the baselines. For our DAgger runs, we initialize
with 10 expert demo trajectories. Experiments are run across three seeds.

. Total Number of Continual Batched
Environment Trajectories BC-H BC-P DAgger (Ours) DAgger (Ours)
Can 10 (warmup) 0.2840.04 0.4340.0 — —

Can 15 0.45+0.02 0.57£0.04 0.57%0.02 0.63+0.02
Can 20 0.614+0.04 0.6240.02 0.62+0.02 0.7240.02
Can 30 0.76+£0.01 0.82£0.02 0.85+0.04 0.83+0.02
Can 40 0.83£0.03 0.934+0.01 0.87+0.02 0.9340.02
Square 10 (warmup) 0.26+0.02  0.3040.02 — —

Square 15 0.38+£0.05 0.28%+0.03 0.39£0.02 0.434+0.02
Square 20 0.40+£0.00 0.41£0.03 0.43+0.01 0.444+0.03
Square 30 0.48+0.05 0.46£0.03 0.47+0.02 0.554+0.02
Square 40 0.52+0.01 0.51£0.02 0.53%+0.05 0.57+0.01
Transport 10 (warmup) 0.41£0.10  0.65+0.04 — —
Transport 15 0.55+0.02 0.57£0.05 0.721+0.06 0.87+0.02
Transport 20 0.53+£0.05 0.70£0.02 0.88+0.02 0.974+0.02
Transport 30 0.65+0.04 0.61£0.08 0.90+0.04 0.9240.02
Transport 40 0.77+£0.04 0.83£0.01 0.90+0.04 0.934+0.02

cannot decide when to intervene, we follow Algorithm || but use 7 = (1 — §)m; + 7 as our
rollout policy when |m;(s;) — 7*(s;)| > €. Here, m; is our training policy at the i'" iteration.
The results are shown in Table[6.1] Our DAgger variants use 10 expert demos to initialize,
with the rest being DAgger-corrected trajectories. Our continual learning method achieves
superior performance to behavior cloning baselines, despite the issue of catastrophic forgetting.
Some benefits of continual learning are hard to show with a learned policy trained on the
distribution of human demos, as the policy does not have the ability to give sophisticated
corrective demonstration nor intelligently collect targeted demonstrations in areas of failure.
Even so, our simulation results demonstrate the value of interactive data, as seen by the
performance boost provided by Continual DAgger. This increase in data quality is further
supported by the improvement of the policy in our Batched DAgger training where we train
the policy from scratch using the Continual DAgger data. As expected, Batched DAgger
greatly outperforms the continually trained variant in almost all cases. This greatly motivates
the advantages of DAgger like training for manipulation. Next we test the effectiveness of
our RoboCopilot system in real world settings using a human as the expert demonstrator,
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Table 6.2: Task completion rate of the industrial picking experiment we ran in the real
environment. From this table, we can see that under the human-in-the-loop interactive
learning setting, the policy can achieve higher performance given the same amount of human-
labeled trajectories. With the human-in-the-loop copilot data collection process, the learned
policy achieves a much higher success rate given the same number of training trajectories.
Additionally, since the human operator can allow the policy to take over again once a mistake
is corrected, the number of human-teleoperated timesteps in these DAggered trajectories is
significantly less compared to those in offline BC data.

Task # of Trajectories  Offline BC  Continual DAgger (Ours) Batched DAgger (Ours)
. 12 (warmup) 38.9% — —
Irlgdigljit;lgal 24 61.1% 72.2% 72.2%
36 66.7% 72.2% TTT%
. 10 (warmup) 33.3% — —
Industrial 15 50.0% 66.7% 75.0%

Part Transport 20 58.3% 75.0% 91.7%

leveraging our teleoperation device to interrupt and interact with the scene.

6.5.2 Real World

Our real-world experiments provide similar conclusions to our simulation experiments, where
interactive data collection provides higher quality data than passive data collection from the
expert policy. We consistently observe that the success rate keeps increasing as we collect
more interactive data, and the need for human intervention decreases accordingly. The need
to intervene also serves as a useful signal in practice for when to stop collecting new data.

Part Picking

We test our RoboCopilot system in the real world on an industrial part picking task. The
goal of the robot in this task is to pick up industrial aluminum extrusions and place them
into a bin. We use two different sized aluminum extrusions, a small one which can be picked
up with a single arm, a longer beam should be picked up by both arms. To control the
experiment we define a domain of interest where the 8020 beams are placed. Additionally,
for the placing bin, we mark 3 train locations, as well as 2 test locations. During testing of a
policy, we choose and evaluate the robot of 18 predetermined locations. This task allows us
to study various components of our system. First, the setting is very multimodal, as there
may be different strategies and methods of how to pick up the object. Second we can test
the effectiveness compliance of our system as holding the long beam with both hands is more
straightforward for a compliant system.

We define four “task types”: large bar, small bar left hand, small bar right hand, and
small bar middle both hands. The primary question we aim to address is how effective our
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Pick train boundary Place bin

Long beam Short beam Place bin test
Industrial test location test location location
picking — —

Long beam Place bin test

. Mobile
Industrial
Transport —

test location location

Figure 6.4: An illustration of the evaluation protocol for the industrial part transport
tasks. During training, the beam is placed in different positions within a defined boundary
(highlighted in green). Industrial picking requires the robot to locate and manipulate the long
beam or short beam and place it within the bin. Mobile industrial picking only considers the
long beam, but the bin is further away, requiring the robot to drive the base before placing.
We label the poses of the beams and the bin to ensure consistency during evaluation.

shared autonomy system is for collecting demonstrations to learn new skills. To start the
experiment, we collect 12 trajectories (3 for each subtask) to initialize the policy, ensuring
that it does not behave randomly or completely ineffectively. During the policy rollout, the
human teleoperator has the option to take over from the autonomous system if the policy
fails to complete the task. For each human-in-the-loop DAgger process, we will continue
running the autonomous system until the human operator takes over, three times for each
subtask. We tested our continuous learning pipeline under two different settings: Batched
DAgger and Continual DAgger. For the Batched DAgger setting, every time we collect new
interactive data, we relaunch the training process from scratch. In contrast, for the Continual
DAgger setting, we continuously stream the human interactive data into the training pipeline
to continuously fine-tune the model. All DAgger runs use policies from the warmup offline
BC checkpoint.

Part Transport

In addition to the stationary industrial part pick-and-place task, we applied the RoboCopilot
pipeline to a more challenging industrial part transport task, which requires moving the
robot base while performing manipulation tasks, as shown in Figure [D.1.1} Specifically for
this task, the robot must navigate to the tote, which is placed far from its starting position,
to successfully complete the placing task. See Appendix for a visual depiction the task.
In Table we compare the performances of three methods given the same demonstration
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budget: Offline BC, which trains a policy from passively collected data; Continual DAgger,
which continually fine-tunes a policy after collecting 10, 15, and 20 trajectories; and Batched
DAgger, which uses the final dataset obtained by running Continual DAgger and trains a
policy from scratch. During Continual DAgger, we observe that humans can identify initial
configurations where the current policy fails and reset intelligently. In this way, we find
that Continual DAgger is more data-efficient than Offline BC, thanks to intelligent reset.
However, Continual DAgger keeps fine-tuning the same policy as new demonstrations are
added to the dataset, leading to suboptimal policy optimization. In Batched DAgger, we
train one policy from scratch using this interactively collected dataset and achieve the best
performance, further validating our claim that human-in-the-loop data collection improves
the quality of the collected data.

Kitchen

Lastly we study a long horizon task in a toy kitchen, requiring the robot to execute multiple
individual steps in order to “cook the tomato”. This high level task is broken up into 4
smaller subtasks, where the robot first must open the cabinet door, then pick the tomato,
then put the tomato in the pot, and lastly turn the dial. If the robot fails to accomplish
any one task, we count failure for all the following steps as in the CALVIN long horizon
benchmark (Mees et al., [2022). See Fig for an illustration of this task. We compare

Figure 6.5: An overall illustration of the toy kitchen task. (Subtask 1) The robot needs to
first open the spring-loaded cabinet door and hold the door open. (Subtask 2) The robot can
pick the tomato and transfer it to the stove area. (Subtask 3): At this stage, the robot needs
to put the tomato into the pot. Notice that the pot can be at different locations. (Subtask 4)
Finally, the robot needs to turn the correct dial depending on which stove the pot is at.
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Table 6.3: Experimental results on the long horizon kitchen task. We compare Offline BC
with Batched DAgger for different trajectory dataset sizes, in increments of 15. The size of
the training dataset is shown. For each experiment, we also show the number steps that
required a human to operate the robot to collect the data at each stage. We also show a
detailed breakdown of the task success rate for each subtask in the overall task.

# of Method Dataset Size % intervention Open Grab Place Turn
Trajectories (# Transitions) steps Door Tomato Tomato Dial
15 Offline BC 8491 100% 100% 70% 25% 5%

30 Offline BC 16654 100% 100% 70% 35% 5%
Batched DAgger 15162 65 % 100% 85% 45% 20%

45 Offline BC 25694 100% 100% 85% 40% 0%
Batched DAgger 20844 52% 100% 90% 50% 30%

naive Offline BC to our interactive approach leveraging Batched DAgger. The results are
found in Table [6.3] We find that leveraging human-in-the-loop not only results in better long
horizon performance, but it also decreases the necessary human teleoperated time to reach
that performance. Interestingly we find that more demos for Offline BC does not help the
policy learn to fully complete the task, whereas our Batched DAgger approach enables a
significant success increase in fully completing the sequence of subtasks, despite having a
smaller overall dataset size. Our experiments show that Batched DAgger with one iteration of
data collection and a total of 30 trajectories is able to match or outperform the success rates
of Offline BC with 45 trajectories on all subtasks, with the performance gap being the largest
for completing the full task (i.e. Turn Dial). This shows that our approach is also effective
in learning trajectories that have long time horizons. Lastly we see that Batched DAgger
requires less human collected trajectory steps for a fixed number of training trajectories, as
the human only needs to operate after a policy failure. This reduction in human intervention
steps further underscores the efficiency of our human-in-the-loop system in teaching the robot

6.6 Discussion

Limitations. While our RoboCopilot system shows promising results in enabling interactive
teaching and continual learning for bimanual robotic manipulation, it is not without limitations.
First, the requirement for human intervention during the learning process can be resource-
intensive, as it necessitates a skilled operator to oversee and correct the robot’s actions
continually. This dependency might limit the scalability of our system in environments
where such expertise is not readily available or the task is too difficult to even teleoperate.
Second, although our system aims to be cost-efficient, the initial setup and maintenance costs
might still be prohibitive for smaller organizations or research labs due to the large number
of custom components. Additionally, the use of planetary gearboxes, while beneficial for
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compliance and cost, introduces some degree of backlash, which may affect the precision of
fine manipulation tasks.

Conclusions In this work, we introduced RoboCopilot, a novel system that enables
human-in-the-loop interactive imitation learning for bimanual robotic manipulation tasks.
The RoboCopilot system underscores the potential of seamlessly interfacing a human operator
and an autonomous policy for interactive teaching. Future work will focus on enhancing its
scalability and ease of deployment in diverse real-world environments.
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Chapter 7

Task Planning with Language Models

This chapter is based on the paper “Interactive Task Planning with Language Models” (Wu
et al., |2023d), by Philipp Wu, Boyi Li, Pieter Abbeel, Jitendra Malik.

An interactive robot framework accomplishes long-horizon task planning and can easily
generalize to new goals or distinct tasks, even during execution. However, most traditional
methods require predefined module design, which makes it hard to generalize to different goals.
Recent large language model based approaches can allow for more open-ended planning but
often require heavy prompt engineering or domain specific pretrained models. To tackle this,
we propose a simple framework that achieves interactive task planning with language models
by incorporating both high-level planning and low-level skill execution through function
calling, leveraging pretrained vision models to ground the scene in language. We verify the
robustness of our system on the real world task of making milk tea drinks. Our system is able
to generate novel high-level instructions for unseen objectives and successfully accomplishes
user tasks. Furthermore, when the user sends a new request, our system is able to replan
accordingly with precision based on the new request, task guidelines and previously executed
steps. Our approach is easy to adapt to different tasks by merely substituting the task
guidelines, without the need for additional complex prompt engineering.

7.1 Introduction

The rise of Large Language Models (LLMs) and proliferation of chatbots highlight the
importance of human interaction in Al systems. Beyond merely executing user commands,
an autonomous agent should fluidly receive and incorporate feedback at any step during
the execution process. Consider the seemingly straightforward human task of preparing a
flavorful milk tea, which we study in this work. Such a task, while simple to humans, requires
a robot to decompose it into numerous intermediate steps. Not only does the robot need
to generate and precisely execute the steps, but the robot should also remain receptive to
real-time modifications or feedback to the initial request. For example, the user might request
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Figure 7.1: An overview of ITP. ITP generates high-level plans and executes the low-level
robot skills through LLMs. Our system generates a high-level plan based on user requests
and task guidelines. When the system is interrupted with a new request, the system will
replan, taking into consideration prior completed steps and task guidelines. Each step of the
plan is executed by leveraging an LLM executor, equipped with additional visual grounded
outputs, to call lower-level skills. In the example shown, the user first requests ‘May [ have a
cup of milk with taro?’, a request for which the high-level plan is not provided in the task
guidelines. After the robot has finished the first step, the user wants to revise the order to a
boba milk. Our system is able to replan and make a new set of high-level steps based on the
new request, a history of completed steps, and task guidelines, which can then be completed
by the lower level execution module to successfully.

some boba to be added to their drink. A robot should be able to seamlessly incorporate such
interaction during operation.

In light of these challenges, we propose a simple framework for Interactive Task Planning
with language models, denoted as I'TP. Our framework leverages LLMs to plan, execute,
and adapt to user inputs throughout the task lifecycle. 1] illustrates an exemplary
interaction with our system. Our primary objective is to offer a blueprint for deploying
real-world robotic systems that harness pretrain language models to coordinate the execution
of lower-level skills of a robot in a simple manner. In this work, we utilize GPT-4 (OpenAl,
2023)) as the language model backbone. ITP consists of two primary modules; (1) a high
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level planner, which takes as input a prompt to specify and a user request to output a step
by step plan, and (2) a low level executor which tries to achieve a given step by converting
robots skills into a functional API, which enables GPT-4s function calling capabilities to
directly interact with the robot, abstracting code level details from the system. I'TP does not
require the training of additional value functions such as SayCan (Zeng et al., |2022; Huang
et al., [2023), and does not require code level prompts such as Code as Policies(Singh et al.,
2023) or ProgPrompt (Liang et al., 2022). Furthermore, ITP dynamically generates novel
plans and re-adjusts its plan based on user input. We hope our framework will be useful for
accomplishing a wide range of interactive robot tasks and will release our codebase to foster
advancements in this field. We outline the key features of I'TP below:

1. ITP is a training-free robotic system for interactive task planning with language models
with a focus on simplicity. We showcase I'TP in the context of a real-world boba
drink-making robot that integrates planning, vision and skill execution.

2. ITP leverages a simple prompt format, which we show is effective across simulated and
real settings. Additionally I'TP system converts the lower-level skills into a functional
language-based API that can be leveraged by any function calling LLM (ie. GPT-4).
This enables a user to prompt the system through natural language rather than code,
removing the need for code-level prompt engineering.

3. Our system exhibits robustness in adapting to user requests during execution, allowing
it to consider the updated goals, previously completed steps, and task guidelines in
order to replan new steps.

7.2 Related Work

7.2.1 Task planning

Task planning, the problem of developing a plan to achieve a desired goal, is an integral
component of our work. Traditionally, task planning in robotics commonly leverages symbolic
planners which reduce the planning problem into a search problem (Ghallab et al., |2004; Bonet
& Geftner| 2001). Practitioners often define the problem in a declarative language (Jiang et al.|
2019; |Ghallab et al. 1998 Lifschitz, [2008; Fikes & Nilsson| (1971)), which can be restrictive as it
requires meticulous definitions of the problem parameters, such as actions, their preconditions
and their effects. Task and motion planning (TAMP), takes task planning a step further
and also jointly considers the lower level execution during higher level planning (Garrett
et al., |2020a; Mansouri et al., [2021)). TAMP methods also consider symbolic representations
and leverage search algorithms to extract the final sequence of lower-level primitives and has
seen success in robotic manipulation (Siméon et al., 2004; |Garrett et al., 2017, [2020b). As
the search space can often be prohibitively large, some methods leverage hierarchy and/or
sampling (Bacchus & Yang, (1991} |[Plaku & Hager, [2010; |Kaelbling & Lozano-Pérez, 2011}
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Kaelbling & Lozano-Pérez, |2013). Our approach replaces traditional planning pipelines with
LLMs, offering common-sense reasoning, enhanced interaction capabilities, and the ability to
define the problem’s scope using natural language.

7.2.2 Language Models as Planners in Robotics

Due to the popularity of LLMs, there has been a rising interest in leveraging LLMs as a
policy in robot systems. One work in this direction leverages LLMs as zero-shot planners in
simulated embodied settings (Huang et al., 2022) by converting the scene and task definitions
into language, then letting the LLM directly predict actions. Works such as Socratic models,
SayCan, and Grounded decoding (Zeng et al., 2022; Ahn et al [2022; Huang et al., [2023)
follow in this line of work, coordinating many large pre-trained models with a robot to solve
various tasks. In contrast to approaches like SayCan (Zeng et al., 2022)), which necessitate a
pretrained value function to ground actions, we rely on prompting the language model with
task guidelines and robot skills. This implicitly encodes preconditions and effects reminiscent
of traditional declarative task planning approaches but can be done so with natural language,
which is more expressive and easier for the average user to tune. G-PlanET (Lin et al., 2023)
explores using language models for robot task planning by generating high-level subgoals in
simulated environments. Tidy bot (Wu et al., [2023a) shows that LLMs can help a robot
follow a user’s preferences based on a few examples. We also prompt the model with a small
set of examples but explore generalization to new goals. Reflect (Liu et al.| 2023e) uses large
models to make an agent recount their experiences and correct failures. LLMs have also been
used to allow robots to seek help when uncertain (Ren et al., 2023).

A related approach, used in Code as Policies (Liang et al.; [2022)) and ProgPrompt (Singh
et al., [2023)) leverages the code writing capabilities of LLMs to generate code that a robot
agent can execute directly. This often requires heavy prompt engineering of example code
to show the model how to properly use the provided functions to accomplish a directive.
Language-guided Robot Skill Learning (Ha et al., 2023)), like us, takes a hierarchical approach
to LLM planning, but assumes access to the simulator which provides ground truth state
information. Voyager (Wang et al., 2023b) uses LLMs to build a lifelong learning agent
for Minecraft by having the agent explore and solve new tasks through writing code that
interacts with the APL.

Our work falls into this general category of leveraging LLMs to plan, and then execute
actions in the environment. In contrast to prior work, we allow the LLM to generate a
high-level plan based on contextual information. These low-level plans are then executed
directly by an LLM with access to the functional API of the robot using a pre-trained VLM
to ground the visual scene into primitives. Our work focuses on how to instantiate such a
system in the real world.
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7.3 Method

ITP offers a blend of high-level planning and low-level execution, powered by LLMs. In
contrast to prior work (Liang et al., [2022; |Singh et al., [2023)), our approach enables the LLM
to create a high-level plan informed by contextual information in the form of a list of steps.
Each step of this plan is subsequently realized by another LLM with access to the functional
API of the robot. A pre-trained VLM grounds the visual scene into language. Our work
focuses on how to instantiate such a system in the real world. Our framework, shown in

[Figure 7.1 with a more detailed breakdown in [Figure 7.3| consists of a hierarchy of two levels,
the high level and low level.

7.3.1 High-level Planning

LLMs for Planning. We utilize GPT-4 (OpenAl, |2023)) as our language model, one of the
most capable LLMs available at the time of this writing. The high-level planner takes as
input a given prompt, task guidelines, and a user request, and outputs a step-by-step plan to
execute the request. It also retains past user interactions for any necessary replanning.

Simple Prompting Strategy Task guidelines, described using natural language, outline
the scope of the robot’s tasks and are provided to the high-level planner. The prompt contains
the user’s request and task guidelines which contain few-shot prompt examples of plans in
the given domain of interest, and a description of the available materials to the robot. In our
milk tea system, the task guidelines consist of a select set of menu items, their corresponding
preparation steps, and a list of relevant ingredients. This includes the procedures for a few
drinks like ‘pure milk’ and ‘boba milk’. See [Task Guidelines 7.1| for the exact task guidelines
we used in our experiments. Our system utilizes these guidelines to determine the feasibility
of making a new drink based on available materials. Leveraging LLMs’ few-shot learning
capabilities (Brown et al., 2020), ITP can generalize from the baseline guidelines to make
detailed steps for other drinks such as ‘boba strawberry milk’ or ‘taro milk’.

7.3.2 Low-level Execution

The low-level executor takes each generated step and does its best to complete it successfully,
conditioned on additional information about the scene and available robot skills. We use
pretrained vision modules to convert the scene into a language compatible format. Additionally,
we translate robot skills into a functional API, automatically translating the python docstring
of the robot skills into callable functions by the language model.

Visual Scene Grounding. The role of the vision module in our system is to process
the camera inputs into concise language descriptions of the scene, which can further be
processed for planning and task execution downstream. In our drink-making system, the
visual grounding system accepts a list of menu items and generates corresponding bounding
boxes. Using a simple projective mapping, we then approximate the x and y locations of
each item in the robot frame. We employ the pretrained VLM: Grounded-DINO (Liu et al.,
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Options:

Pure milk, Strawberry milk, Boba milk

Instructions:

Pure milk

Material: milk

Steps:

0) get an empty cup and bring it to the working area
1) pour the milk into the working cup

2) put the working cup in the finished location
Strawberry milk

Material: strawberry jam, milk

Steps:

0) get an empty cup and bring it to the working area
1) add strawberry jam to the working cup

2) pour the milk into the working cup

3) put the working cup in the finished location

Boba milk

Material: Dboba, milk

Steps:

0) get an empty cup and bring it to the working area
1) add boba to the working cup

2) pour the milk into the working cup

3) put the working cup in the finished location
Available material we have now:

boba, strawberry jam, mango jam, matcha powder, taro, milk,blueberry

Task Guidelines 7.1: The task guidelines we use for our drink making experiments. Task
guidelines only need contain simple; human interpretable few shot examples and a description
of relevant assets in the scene.

2023d)), a variant of the original DINO model (Caron et all 2021 fine-tuned for extracting
2D bounding boxes given language descriptions. The final text description is represented
as a dictionary of object description to (z, y) location. The vision system gives a holistic
‘understanding’ of the scene, despite the location assignments being imprecise.

Robot Skill Grounding. The language model interfaces with a predefined skill set
in Python that controls the robot. These skills are translated into a functional API by
parsing of function definitions and related doc strings. This can be directly used with GPT’s
function-calling layer (OpenAl, 2023). In contrast to methods like ProgPrompt or Code as
Policies, our system does not require examples or function internals when prompting the
LLM. Instead, more detailed prompting of the language model can be specified via natural
language in the documentation of the functions.

7.3.3 Replanning

Beyond the aforementioned components, ITP considers new requests from the user as human-
in-the-loop feedback. We allow a human to interpret the robot execution at any stage with a
new prompt. This then triggers our replanning pipeline. The system will consider completed
steps, task guidelines, the new request, and the chat history to generate a new plan. The
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details of replanning are see in We also showcase I'TP’s adeptness in planning
and adaptive replanning of the same example in

o8 | We adopt Grounded-DINO for capturing : .
S \ 8 \th e general location of each object New user request: May | change to a taro boba milk
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User request: Can | have a taro milk? Low-level action: (then, we reg!an for the new request) Low-level action: )
grasp_empty_cup_from_stack() Low-level action: place_cup() scoop_boba_to_location()
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High-level step2: High-level step 3: add taro into the cup  High-level step 3: add milk into the cup  High-level step 4: place the cup in the
add boba into the cup Low-level action: grasp_cup(), pour(), Low-level action: grasp_cup(), pour(),  final workspace of the table
Low-level action: place_cup() place_cup() Low-level action: grasp_cup(),
scoop_boba_to_location() " place_cup()

(during execution)
In grasp_cup(), we use Grounded-DINO to locate the objects to grasp accurately

Figure 7.2: An example of ITP to make a cup of taro milk with boba. Our system first
makes a high-level plan based on the user request using GPT-4: step 1) grasp the empty
cup, step 2) add taro into the cup, step 3) add milk into the cup, step 4) place the cup in
the final workspace. For each step in the high-level plan, we feed step into another instance
of GPT-4 and obtain the corresponding low-level actions which is directly executed on the
robot. As for the perception component, ITP uses Grounded-DINO to capture the general
location of each object and locate the object accurately when taking the actions. However,
after grasping the empty cup, the user sends a new request ‘May I change to a taro boba
milk?. Considering the history of completed steps, the system replans and generates the
following high-level steps and low-level executions. The following plan has been changed to:
step 2) add boba into the cup, step 3) add taro into the cup, step 4) add milk into the cup,
step 5) place the cup in the final workspace.
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Prompt .
-
So far the robot has completed these Grounded-DINO | < g
steps: )
{completed_steps}. —

The next step is to

The user has requested:

Completed Steps

High-level Plan

May | have acup of __pr {User_prompt)
ilk with taro? -
milke with taro The the guidelines are:

/'. {task_guidelines}

SetA = all the materials we have now.

‘The current scene looks ke this: Scene Description
{scene_description) < scene = {
Can you use the robot functions to “cup with milk": (0.667, -0.266),
complete: {step}? "bowl with boba": (0535, -0.47),
After completion, respond with a summary “cup with taro": (0.23, -0.46),
of the execution. Make sure to put things "cup with strawberry™: (0.37, -0.865),
back after using them. "cup stack': (0.4, 0.0),

“finished location": (0.15, 0.5),

Step 1: get an empty cup and put it on the table
Step 2: add taro into the empty cup

Step 3: pour the milk into the cup

Step 4: put the cup in the finished location

L

Set B = all the materials we need.
Print Set A in the first line.
Print Set B in the second line.

Print Set C in the third line where Set C are the items in Set B that

are not in SetA "trash_location": (0.6, -0.4)}
If Set C is not empty, provide unique element and respond with "Set 4 -

Cis not empty"; else, respond with a numbered list of steps, where Low-level Actions
each step is in a new line (the steps should closely match one of the

guidelines). GPT-4 GPT-4 grasp_empty_cup_from_stack()

Replan v
Completed Steps l

So far the robot has completed these steps: def grasp_empty_cup_from_stack(self, x: float, y: float) -> Tuple[bool, str]:
Step 1: get an empty cup He-{completed_steps}. ""Grab an emply cup at the given x, y coordinates from the stack
and put it on the table The user has requested some feedback now: Should only be used on a cup stack.

Args:
A

L (new_request} High-level Plan (after replanning) X (float): The x coordinate of the object
y (float): The y coordinate of the object.
Returns:Tuple[bool, str: Whether the grasp was successful and a message
#approach the cup
X_app, y_app = get_x_y_offset(x, y, offset=OFFSET)
users request after their feedback? Then like before l self_robot.command_ee_pos(x_app, y_app, Z_STACK)

May | change to a taro
boba milk?

Step 2: add boba into the empty cup
Step 3: pour the milk into the cup.
Step 4: put the cup in the finished location

If the user wants to add something, directly add one step and keep
the original steps unchanged.
For other requests, can you first print a summary of the current

SetA = all the materials we have now. # grab the cup

Set B = all the materials we need. try:

Print Set A in the first line, description = "cup”

Print Set B in the second line. self._feedback_policy.grasp(

Print Set C in the third line where Set C are the items in Set B that self._robot, “cup’, x, y, Z_STACK, rotz=True)
are not in SetA, except ase

If Set C is not empty, provide unique element and respond with "Set Execute next steps print(e)

Cis not empty”; return False, "Grasp failed: {c}"

else, respond with a new numbered list of steps, where each step is # backup

in a new line (the steps should closely match one of the guidelines) self,_robot.command_ee_pos(Z_STACK + DELTA_Z) # ift

steps already completed should be excluded from the new ist. If self._robot.command_ee_pos(x_app. y_app, Z_ STACK + DELTA_Z)
you need to start from scratch, then put the existing cup in the trash return True, "Grasp successful”

location and get a new empty cup.

Figure 7.3: Detailed diagram of ITP with specific examples of user requests and task guidelines
and replanning. During “Plan”: we feed user requests and task guidelines to complete the
prompt and input it into GPT-4 to obtain a high-level plan. We input the history of completed
steps and next step to prompt into the lower level executor to call the corresponding low-level
actions. Once the lower level executor completes a step, we will maintain the history by
storing it into Completed Steps. GPT-4 directly makes function calls to a predefined robot
skill library (which could be learned or handcrafted). During “Replan”: we feed the completed
steps and new request to create a new prompt, we append this new prompt to the previous
conversation context and input the whole message into GPT-4 to obtain a new high-level
plan. We refer this procedure as replanning, which previous language-based task planning
methods have not considered. The low level executor then completes the next steps based on
the new high-level plan.

7.4 Experiments

7.4.1 Robot Experiments

In our experiments, we focus on a drink-making system. Within the given scene, the robot
is supplied with a set of ingredients that it must combine to produce a specific drink. Our
setup also has an overhead camera that feeds images to Grounded-DINO model for scene
understanding.

For the robot, we provide a predefined set of skills, which include actions like “grasp_cup”,
“pour”, and “scoop_boba_to_location”. The “grasp_cup” skill is implemented with a feedback
policy that centers the gripper on the cup, given the approximate location from the scene
description, enabling the robot to grasp it reliably. The “pour” skill is designed to accept
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User Request Difficulty Level Code as Policies LCB

Planning Success Planning Success

I would like to order a cup of milk. Existed 3/3 v 3/3 v

I want to order a boba milk. Existed 2/4 X 4/4 v

Can I have a cup of strawberry milk? Existed 4/4 v 4/4 v

I want a matcha latte. Zero-shot easy 4/4 v 4/4 v

May I have a cup of milk with taro? Zero-shot easy 3/3 v 3/3 v

I want taro milk with boba. Zero-shot moderate 3/5 X 5/5 v

Can I get a strawberry boba milk? Zero-shot moderate 3/5 X 5/5 v

I want to order a strawberry matcha milk. Zero-shot moderate 5/5 v 5/5 v

I'd order a strawberry matcha milk with boba. Zero-shot hard 3/6 X 6/6 v

I would like a cup of passion fruit milk. Unavailable material - X - v
Total - 80% 5/10 100% 10/10

Table 7.1: Quantitative results with real robots for high-level planning rate and success rate
with various user requests. For high-level planning, we extract planning accuracy by dividing
the number of successful steps by the total number of steps, shown as ‘Successful Steps /
Total Steps’. We determine success by whether the robot successfully accomplishes the task.
To calculate the overall high-level planning score, we average the performance across all user
requests.

a location and a descriptive cue of the ingredient being poured. This level of specification
enables milk to be poured more than specific flavors. For example, when making a matcha
latte, the pour function will be provided “matcha” or “milk” as inputs. When the input
is “matcha”, the controllable tilt angle will be small, while when the input is “mulk”, the
controllable tilt angle will be much larger. This ensures that the robot can pour more milk
and a bit of matcha liquid.

7.4.2 Comparison on Task Planning

We consider Code as Policies as a baseline. Code as Policies provides a formulation for
language model-generated programs executed on real systems by prompting a text completion
model with code examples. For a fair comparison, not only do we provide Code as Policies
with the same information as given in I'TP in the form of comments, but we also provide an
additional 40 lines of code prompts providing example usage, as is done in Code as Policies.
For both ITP and Code as Policies, we provide user requests and task guidelines as inputs.
The task guidelines include 3 instances, along with their associated high-level planning steps,
current available material, and other task-specific conditions. Our task guidelines are shown
in [Task Guidelines 7.11

We evaluate the methods on two criteria: the number of high-level steps correctly generated
and whether the real robot successfully finished the task. We send user requests of varying
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complexity levels, including ‘existed’, ‘zero-shot easy,” ‘zero-shot moderate’, ‘zero-shot hard’
and ‘unavailable material’. ‘Zero-shot’ means the instruction for making the corresponding
drink is not provided in the task guidelines. ‘Unavailable’ indicates that we don’t have the
material for the requested beverage. We show the results in Table [7.I, We could notice that
ITP is robust in high-level plan generation and can easily be generalized to novel instructions
of unseen drinks or unavailable drinks. For example, the user sends the request ‘I would like
a cup of passion fruit milk.” However, passion fruit jam is not available, so the system will
provide the response ‘ Passion fruit jam is not available’ and stop the program. In comparison,
Code as Policies failed to achieve this objective. To understand the failure case of Code as
Policies, we provide some observations: 1) when making a cup of milk with boba, the system
attempted to scoop boba from the working cup, improperly adhering to the correct usage
of the lower-level skill. 2) When the prompt is more complex (9th row), the system adds
milk first and then adds the boba, resulting in an incorrect execution order. 3) When the
material is not available, it cannot justify that passion fruit doesn’t exist. Additionally, since
ITP is built based on task guidelines alone, it demands significantly less prompt engineering
than Code as Policies, which makes our system very easy to use for various task planning
purposes.

7.4.3 Replan with Human-in-the-loop Feedback

Our system is robust to diverse new requests during execution. To verify this point, we assess
the task replanning performance on real robots in response to a user’s new request, referred
to as human-in-the-loop feedback. We display the results in Table We notice that ITP
demonstrates its capacity to effectively handle a range of new requests, even after progressing
through various steps of the task. The last example is of particular note, where ITP adds
one step more (‘Stir the mixture until the matcha powder is well mixed*) before putting the
working cup in the finished location. Here the language model assumes the need to stir the
matcha due to the ambiguity of the correct procedure. Such superfluous steps can be reduced
by adding restrictions in the task guidelines, which can easily be done by a general user of
the system. This contrasts with methods like Code as Policies which require tuning prompts
at the code level.

7.4.4 Comparison on Simulation Tasks

In this section, we aim to verify ITP’s performance for simulation tasks. We compare our
high-level planning module to that of ProgPrompt (Singh et al., 2023) by leveraging the
simulated Virtual Home (VH) Environment (Puig et al., [2018). We would like to emphasize
that ITP provides a user-friendly approach for users to input their high-level guidelines,
which requires little background knowledge, while other approaches such as ProgPrompt
employ a code-like prompting strategy. To make a fair comparison, we obtain high-level
planning from both ITP and ProgPrompt, and use ProgPrompt’s low-level execution, strictly
following the same evaluation protocol: each result is averaged over 5 runs in a single VH
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User Request New Request Step When New Request is Made
1st 2nd 3rd
Can I have a cup of strawberry milk? I want to add boba into the drink. 4/4 3/3 5/5
I want a matcha latte. Sorry, I want boba bilk without matcha instead.  3/3 5/5 5/5
May I have a cup of milk with taro? Can I replace the taro with strawberry? 3/3 5/5 5/5
Can I get a strawberry boba milk . Sorry, can I reorder a strawberry milk? 3/3 5/5 5/5
A strawberry matcha milk with boba. Can I just get matcha boba milk and no strawberry? 4/4 % w

Table 7.2: Replanning performance with real robots given human-in-the-loop feedback. After
the user sends a request, we interrupt the procedure before different steps (1st, 2nd, and 3rd).
Note that our replanning system is robust in handling these new requests. Interestingly, for
the last example, after the 2nd and 3rd step, ITP adds one step more (‘Stir the mixture until
the matcha powder is well mixed’) before putting the working cup in the finished location,
leading to 5 and 7 steps instead of 4 and 6 steps respectively. We assume this is because
GPT-4 assumes matcha powder is hard to mix, while we select water-soluble matcha powder.
Including the instruction ‘matcha powder is water-soluble’ in the task guidelines could address
this issue.

Environment across 10 different tasks. We display the results in Table [7.3] We notice that
ITP is not only a user-friendly approach that allows users to provide high-level guidelines
in more straightforward natural language but is able to match or exceed ProgPrompt on
executable functions on the Virtual Home benchmark.

7.4.5 Discussion

Although many works (Singh et al., 2023} Liang et al., [2022} Skreta et al., 2023; |[Rana et al.
2023) have explored LLMs for understanding feedback and planning, none of these works
both consider user-friendly task guidelines and replan based on a user’s new request. Prog-
prompt (Singh et al., [2023) and Code as Policies focus more on making one plan and executing
the task step by step, while also requiring complicated reference code. CLAIRIFY (Skreta
et al., 2023) provides effective guidance to the language model by generating structured task
plans and incorporating any errors as feedback, and SayPlan (Rana et al., [2023) introduces
an iterative replanning pipeline that refines the initial plan using feedback from a scene
graph simulator. However, these two approaches pay attention more on a task instead of
users’ experience. Our ITP aims to provide a unified vision and language framework that
can provide the best user experience, so the user with minimal specialized knowledge can
still easily ask their robots to execute a task.
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Task Description |A| ProgPrompt ITP
watch tv 3 04240.13 0.83+0.06
turn off light 3 1.00x£0.00 0.75£0.00
eat chips on the sofa 5 5 0.4040.00 0.96+0.05
brush teeth 8 0.74+0.09 0.86+0.12
throw away apple 8 1.00+0.00 1.00=+0.00
make toast 8 1.00+0.00 0.59+4+0.16
put salmon in the fridge 8 1.00+0.00 1.00%+0.00
bring coffeepot and cupcake 8  1.00£0.00 1.00 =£ 0.00
to the coffee table
microwave salmon 11 0.76 £0.13 0.89+0.09
wash the plate 18 0.97£0.04 0.954+0.01
Avg: 0 < |A| <5 0.61£0.29 0.84+0.10

Avg: 6 <|A| <10
Avg: 10 < |A| < 18

0.95+0.11 090+£0.17
0.87+0.14 0.92 +0.07

Table 7.3: Comparison of executability (Exec) on Simulation (Virtual Home) with ProgPrompt.
Exec is the fraction of actions in the plan that are executable in the environment, even if
they are not relevant for the task. I'TP is not only a user-friendly approach that allows users
to provide high-level guidelines, but it can also achieve superior results on varied tasks in the
simulation.

7.5 Conclusion

Conclusion. In this chapter, we propose a simple yet effective system, I'TP, which melds
the capabilities of Large Language Models in an interactive system that constructs plans,
and performs tasks centered around the users needs. Encouragingly, it precisely interprets
user requests, generates pertinent step-by-step plans, and achieves the desired outcome —
a testament to the potential of such systems for real-world applications. We embody our
system in a robot designed to make various drinks according to user preferences and adeptly
demonstrate its ability to respond to feedback during execution. Our system is capable in
the context of interactive task planning and replanning for robotics.

Limitations and Future Work. While ITP provides a working proof of concept of
an interactive robot system, there is room for enhancing its capabilities with more powerful
robot skills to tackle more intricate tasks. Similarly, the integration of more precise visual
information that leverages 3D information would significantly elevate the robot’s proficiency
in understanding, planning, and interacting with its surroundings. We aim for our open-source
system to inspire more research into using both established and emerging models to enhance
real-world robotics.
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Chapter 8

Hierarchical Policies with Language
Models

This chapter is based on the paper “From LLMs to Actions: Latent Codes as Bridges in
Hierarchical Robot Control” (Yide Shentu & Abbeel, 2024), by Yide Shentu, Philipp W,
Aravind Rajeswaran, Pieter Abbeel.

Hierarchical control for robotics has long been plagued by the need to have a well defined
interface layer to communicate between high-level task planners and low-level policies. With
the advent of LLMs, language has been emerging as a prospective interface layer. However,
this has several limitations. Not all tasks can be decomposed into steps that are easily
expressible in natural language (e.g. performing a dance routine). Further, it makes end-to-
end finetuning on embodied data challenging due to domain shift and catastrophic forgetting.
We introduce our method — Learnable Latent Codes as Bridges (LCB) — as an alternate
architecture to overcome these limitations. LCB uses a learnable latent code to act as a bridge
between LLMs and low-level policies. This enables LLMs to flexibly communicate goals in the
task plan without being entirely constrained by language limitations. Additionally, it enables
end-to-end finetuning without destroying the embedding space of word tokens learned during
pre-training. Through experiments on Language Table and Calvin, two common language
based benchmarks for embodied agents, we find that LCB outperforms baselines (including
those w/ GPT-4V) that leverage pure language as the interface layer on tasks that require
reasoning and multi-step behaviors.

8.1 Introduction

The field of robotics has long oscillated between two predominant architectural paradigms
for enabling agents to solve complex tasks. At one end of the spectrum, we have seen
modular hierarchical policies (Liu et al. 2024a) for control that leverage rigid layers like
symbolic planning, trajectory generation, and tracking. On the other end are end-to-end
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Figure 8.1: Illustration of our proposed Latent Code as Bridges architecture. Given
a high-level task description and the observation, a Large Language Model (LLM) generates
a textual description of an action and an <ACT> token. The feature embedding from the
<ACT> token’s last layer serves as a high-level latent goal for the downstream policy network.
Our modular hierarchical approach synergies the LLM’s high-level reasoning with the pre-
trained policy’s responsive low-level control, addressing the limitations of direct action output
by monolithic LLMs. Unlike methods that using a large LLM to directly output agent actions
(Brohan et al., [2023), our approach can run the LLM reasoning and action policy execution
loops asynchronously, mirroring human task execution with immediate low-level feedback
when interacting with the physical world and slower, deliberate reasoning when considering
longer term planning. At test time, the action policy frequently updates actions based on
environment changes, while the LLM updates are less frequent, enabling efficient, real-world
inference.

policies (Levine et al 2016) that directly map sensory observations to actions through
high-capacity neural networks. This dynamic history reflects the ongoing quest to reconcile
the logical human-like reasoning with the flexible dexterity of human motor control.

The advent of large language models (LLMs) (OpenAl, 2023; Touvron et al.; 2023) and
their remarkable language interpretation and reasoning capabilities have reignited interest
in hierarchical control architectures. Recent works (Ahn et al., 2022; Huang et al., [2022;
LLiang et al., 2022) have leveraged LLMs and Multimodal Large Language Model (abbreviated
as LLM in this chapter unless specified otherwise) in place of high-level symbolic planners,
enabling impressive results like mobile rearrangement of objects based on open-vocabulary
instructions. Despite these advances, the core deficiencies of hierarchical architectures remain
— namely the need for a set of clearly defined control primitives and an interface between
layers in the hierarchy. For example, LLMs leverage the semantic meaning of action verbs to
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coordinate low-level primitives like go-to, pick, place etc. However, we humans perform a
variety of movements with our body that contribute to our dexterity and daily function, yet
cannot be easily described using language.

In this backdrop, we present Latent Codes as Bridges, or LCB, a new policy architecture
for control that combines the benefits of modular hierarchical architectures with end-to-end
learning (see Fig. for an illustration). Specifically, not only can LCB directly leverage
LLMs for high-level reasoning and pre-trained skills/policies for low-level control, but it can
also improve these components with end-to-end learning to transcend their initial capabilities.
This is achieved by learning an <ACT> token at the interface layer which can modulate the
low-level policies. As a result of this choice, LCB can overcome the inherent limitations of
solely relying on language as the interface layer, since several behaviors are hard to describe
in language. Secondly, by leveraging a separate <ACT> token, we do not destroy the core
language generation and reasoning capabilities of the LLM during finetuning. We test LCB on
a series of long-horizon and reasoning tasks in Language Table (Lynch et al., 2022)) and
Calvin (Mees et al.; 2022)), two common language based benchmarks for embodied agents. We
find that LCB considerably outperforms baselines that leverage LLMs to sequence low-level
skills using pure language as the interface layer. See our website for more.

8.2 Related Work

Hierarchical Control with LLMs The proliferation of LLM technology, coupled with
their capability to interpret user prompts and perform reasoning, has led to growing interest
in utilizing LLMs for robotics (Zeng et al., [2023; |Vemprala et al., [2023). Of particular
notice and relevance are the use of LLMs for high-level reasoning in hierarchical control
architectures. Prior work has demonstrated this by leveraging the few-shot prompt capa-
bilities of LLMs (Huang et al. 2022; |Ahn et al., |2022)), their ability to code and compose
functions (Liang et al., 2022; |Singh et al., 2023)), or their ability to interact with human
users through language (Wu et al., |2023c). In contrast to these works that attempt to use
LLMs “as-is” and compose low-level skills, our work performs end-to-end fine-tuning through
learnable latent codes. This includes finetuning some layers of the LLM through LoRA (Hu
et al., 2022). Empirically we show that such finetuning can outperform methods that use
LLMs out-of-the-box.

Language Conditioned Imitation Learning To leverage LLMs for task planning and
reasoning, such models need to be able to call lower-level skills to affect change in the
environment. This can be achieve in two ways: (a) by leveraging semantics of the skills
through language descriptions (e.g. go-to, reach etc.) as described above; or alternatively
(b) through language conditioned policies which accept a text description as input to directly
produce an action (Lynch et al., |2022; |Jang et al., [2022; Brohan et al., 2023; |Li et al., [2023b;
Lynch & Sermanet|, 2021). Such policies can typically perform only short horizon tasks and
lack the reasoning and planning capabilities often found in LLMs. Our goal in this work is
to leverage such “simple” or “primitive” language-conditioned policies along with LLMs to
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Figure 8.2: A high level architectural comparison of LLLM-based hierarchical policies. Prede-
fined skills (left) uses a LLM to call predefined primitives. Language as an interface (middle)
uses a LLM to output a simple language command, which is then passed into a language
conditioned policy. LCB (right) utilizes a latent code as a bridge between the LLM and the
low level policy, facilitating hierarchical control and end-to-end learning.

enable a hierarchical system to perform complex tasks that require multi-step planning and
reasoning.

Large Pre-Trained Models for Embodied Agents Recent years have witnessed growing
interest in robotics to re-use large models originally trained for vision or language applica-
tions (Kirillov et al., 2023} [Vemprala et al., 2023) or their architectures (Chen et al., 2021}
Janner et al.| 2021} Wu et al., 2023d} [Liu et al. 2023a)). We are also starting to see large
models and representations custom trained for robotics (Brohan et al., [2023; Nair et al.,
2022; Majumdar et al., 2023; [Yang et al., |2024). In our work, we leverage the recent class of
Multimodal Large language models (Liu et al., 2023b; |Zhu et al., 2023; |Li et al. |2023a)) that
extend the capability of text only LLMs to interpret other modalities like vision through
alignment layers. Specifically, our instantiation of LCB model builds on top of LLaVA
et al. and finetunes the model on a simulated dataset of embodied reasoning and
long-horizon tasks. As the availability of embodied datasets paired with language annotations
grow, we hope that our method can be extended to release generalist models that can be
deployed zero shot in new domains.

8.3 Method

We wish to develop a hierarchical policy architecture that can enable robots to perform a
variety of manipulation tasks when provided with free-form language descriptions. Specifically,
we seek an architecture that can handle low-level actions for fine-grained or contact-rich
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tasks (e.g. pushing, 6D object manipulation) while also having the capability to reason and
plan without any external step-by-step instructions. Before we present our architecture for
this purpose, we first survey two other families of approaches and their deficiencies, which
provides the intuition and basis for our method. These approaches are shown in [Figure 8.2

LLMs Leveraging Predefined Skills First we can consider a hierarchical approach where
LLMs perform high-level task planning by calling a set of pre-defined skills or APIs (Ahn
et al., [2022; [Liang et al., [2022). These APIs (e.g. go-to, push) are described and provided
to the LLM as part of the main prompt. This approach suffers from two primary drawbacks.
Firstly, for an LLM to plan with skills, they need to have semantics attached to them that
make linguistic sense. Secondly, this constrains the set of skills to a closed vocabulary, and
prevents any form of generalization to new skills or capabilities. Furthermore, code-writing
proficiency demands a high-quality LLM, a criterion met chiefly by proprietary commercial
models such as GPT-4 (Liu et al., 2024a). Additionally, end-to-end fine-tuning is challenging
since the LLM cannot adapt or compensate for limited prowess of the low-level skills (Ahn
et al., 2022).

Language as Interface The second class of approaches can leverage language-conditioned
low-level policies as opposed to a finite set of low-level skills. Such policies can take a simple
language command as input (e.g. pickup the red block) and produce actions that can
(hopefully) accomplish the task. Since these policies can accept free-form text as input, at least
theoretically, they have the capability to generalize to new instructions. Furthermore, they
are amenable to end-to-end fine-tuning from high-level instructions, through an LLM, to the
language conditioned policy, and ultimately the action. Nevertheless, this class of approaches
also suffer from key limitations. Firstly, not all high level tasks can be decomposed into sub-
tasks in simple language. For example, imagine trying to describe step-by-step instructions
to make a robot dance to a song. Secondly, end-to-end fine-tuning with such an architecture
can destroy planning and reasoning capabilities that the LLM originally had (Luo et al., 2023)).

Latent Codes as a Bridge (Ours) Finally we describe our method which can overcome
the key limitations outlined above. Our key insight is that we can introduce an additional
latent code to act as a bridge between the high-level LLM and low-level language conditioned
policy. We augment the LLM’s tokenizer by adding a specialized <ACT> token, prompting the
model to predict this token in response to actionable questions. The last layer embedding
of the <ACT> token is then utilized as a latent goal for the downstream policy network.
This learnable <ACT> token’s embedding facilitates the transmission of abstract goals and
nuances to the low-level policy — details that are not easily conveyed through language alone.
Furthermore, by using this additional learnable token, we preserve the embedding space for
language tokens, thus preventing any catastrophic forgetting during end-to-end fine-tuning.
We describe more specific details of our architecture and implementation below.
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8.3.1 Architecture and Implementation Details of LCB

LCB unifies the capabilities of a slow but powerful pretrained Multimodal Large Language
Models (LLMs) with a fast and simpler decision-making policies to create a model that
ingests vision and language inputs to output low-level actions. This integration involves
a two-component system: a pretrained LLM, denoted as fy, and a pretrained policy, 7,
parameterized by ¢ and 6 respectively. The LLM consists of a text only large language
model and a vision encoder, which projects images into the text only large language models
embedding space, facilitating a multimodal understanding of textual and visual inputs. In
this work, we leverage LLaVA(Liu et al., 2023b)) as our pretrained LLM. f, takes in text
tokens x;;; and images @,y and outputs text tokens. The pretrained policy my takes as input
environment observations at the current time step o;, with conditioning latent 2z, and outputs
the action at the current time step ay.

We introduce an additional <ACT> token into the vocabulary of the language model, which
is a special token that enables the language model to generate an action embedding to control
the lower level policy. The model is trained to output <ACT> tokens when executable requests
are provided to the model. We extract out the last-layer embedding features from the model
of at the <ACT> token, following the approach used in Language Instructed Segmentation
Assistant (LISA) (Lai et al., [2023). This embedding is projected into the policy latent
conditioning space by a linear layer to extract the latent feature z<ycr> which is then fed into
the policy my.

8.3.2 Data Processing

The LCB framework necessitates diverse and strategically curated datasets to make the policy
effective for language-guided action execution in varied contexts. We cater the data collection
and preprocessing steps towards this goal, creating a small instruction tuning dataset.

We convert in domain text conditioned policy data into the chat format of LLM assistants.
Typical language conditioned trajectory datasets contain one language instruction and a list
of (observation, action) pairs [T, (0o, ag, ..., 0¢, ay, ...)] per trajectory. We programmatically
generate text data in the format of chat interactions using templates. A simple example
of this user-assistant interaction, is “User: can you help me x;,,7 Assistant: yes, <ACT>.
Specific templates for chat data generation are provided in Appendix [E.2] This trains the
model to recognize and respond to direct action requests, fostering a conversational interface
that seamlessly transitions from dialogue to action.

Moreover, we enrich our training material with additional datasets designed to prompt
specific behaviors from the language model. One such data source is reasoning data, where
the model is tasked with a more abstract goal and must reason about the scene to accomplish
the goal. Such examples are framed within a chat-like interaction, encouraging the model to
articulate its reasoning process before executing the <ACT> command. For example, “User:
Timg Can you @y, ? Assistant: I will 24, <ACT>". Where x;,; does not explicitly specify the
target object and location. If x,,; is “move the block closest to the bottom right to the block
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R{ There is a block closest to the top right. Push that block to the block of the same color ]

Sort the red blocks into the bottom right corner ]

> |

R{ Open the drawer ] R{ Rotate the red cube to the right ]
= — -

Language Table

CALVIN

Figure 8.3: A visualization of the two environments along with exemplar tasks that we train
and evaluate on. The top depicts the Language Table environment (Lynch et all [2022).
We study reasoning tasks (first trajectory) and long horizon tasks (second trajectory). The
bottom depicts the CALVIN long horizon benchmark (Mees et al. |2022)), in which the agent

must sequentially accomplish tasks.

of a similar color”, the assistant’s response, 4,4, provides an explanation of the task, such
as “I will move the blue cube on the bottom right to the blue moon”.

We also study long-horizon tasks and incorporate training sequences that require the
model to plan and execute multiple steps to achieve a goal. This is achieved by defining task
stages (start, regular, transition, stop) and incorporating the previous action as context in
the language model’s input. This strategy trains the model to recognize task progression and
adapt its actions accordingly, enabling it to manage tasks with evolving objectives. Through
this dataset strategy, our model is finely tuned as a versatile tool capable of understanding
and executing a wide range of language-guided actions.

8.3.3 Training

The training of LCB employs a combination of techniques to integrate the LLM and policy
components. We leverage Low Rank Adaptation(Hu et all 2022) (LoRA) for fine-tuning
the LLM, allowing for more efficient training. We adopt a cold start approach to policy
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(a) Long Horizon Success rate for the multi- (b) Reasoning: Success rate for the reasoning
step tasks on Language Table. The task requires tasks on Language Table. The reasoning task is
sorting blocks based on color or shape. The en- specified as a variant of "There is a block that
vironment only provides the high level objective is closest to i.e., top right corner. Push that
to each method. This task requires the policy block to the other block of the same shape/color.”
to have more long term planning capabilities, This task requires the agent to understand object
whether explicitly or implicitly. semantics and spacial relationships.

Figure 8.4: Task success rates on Language table. The tasks are drawn from the higher
level Language Table tasks from PALM-E (Driess et al. |2023). LangTable refers to the
original language table policy (Lynch et al., [2022)). +LLaVA (frozen) refers to composing
the original language table with a frozen LLaVA model and few shot prompting. +GPT-4V
similarly refers to composing the original policy with GPT-4V. +LLaVA (finetuned) refers to
finetuning the LLaVA policy on our mixture dataset on the language only, then composing
it with the policy. Our results show that leveraging LCB is effective on tasks that require
additional reasoning and planning. Note that the same model is evaluated between the long
horizon and reasoning tasks.

training, reminiscent of staged training strategies seen in prior works, by first freezing the
action decoder and only fine-tuning the language model. This preliminary phase focuses on
aligning the embeddings produced by the LLM with the feature space of the policy. We find
that adding an additional CLIP loss to regularize the latent embedding z«cr> is necessary,
ensuring that the embeddings from the language model remain well aligned with the lower
level ground truth text description g;,; of the objective for the pre-trained policy. In total,
our loss function is comprised of 3 terms, and can be expressed as follows:

L :Alﬁpolicy<7r9> Ot, G, Z<ACT>)
+>\2£LM(f¢a Txt, %mg) (8-2>
+A3Lcrip (2<actss Gext)
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Table 8.1: Comparison on the original Language Table benchmark tasks. LangTable is the
original language table policy Lynch et al. (2022). LCB is our method applied only to the
original Language Table dataset. We see that LCB can help improve task performance by
leveraging the vision language model for feature extraction. The tasks are: Block to Block
(B2B), Block to Block Relative Location (B2RL), Seprate (S), Block to Relative Location
(B2RL), and Block to Absolute Location (B2AL).

Model B2B B2BRL S B2RL B2AL Avg
LangTable 0.88 0.70 0.94 0.68 0.65 0.77
LCB 0.90 0.66 0.99 0.73 0.71 0.80

8.4 Results

We systematically evaluated LCB across a diverse set of environments and tasks to demonstrate
the efficacy of integrating a pretrained Large Language Model (LLM) with a domain-specific,
pretrained low-level policy. Our primary objective was to study the capabilities of the
policy, specifically its high-level language understanding and low-level control. Through our
experiments, we aim to answer the following questions:

e Does LCB enable learning a bridge between the LLM and the policy more effectively
than pure language?

o Can LCB leverage the pretrained capabilities of LLLMs to solve long horizon tasks by
decomposing the high level goals into the step by step latent commands?

« Can LCB outperform other baseline methods that leverage close-sourced state of the art

LLMs such as GPT-4V?

To answer these questions, we study how LCB performs under various reasoning and long
horizon settings in both the Language Table and CALVIN benchmarks. See for a

visualization of the environments and example tasks.

8.4.1 Evaluation on Language Table

Language Table offers a simulated tabletop environment for executing language-conditioned
manipulation tasks (Lynch et al., 2022)). The environment features a flat surface populated
with blocks of various colors and shapes, alongside a robot with 2D action space. Language
Table provides observations in the form of the robot end effector position and third-person
camera images. Despite its simplicity, it provides a reproducible and comprehensive environ-
ment to study challenges at the interface of high level language and low level contact-rich
dynamics and feedback control.
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We investigate the benefit of using LCB on the original Language Table benchmark. Here
we apply our method using the same dataset that the original language table model was
trained on, translating the original language instructions into chat interactions with action
tokens as specified in [section 8.3] As shown in[Table 8.1 with the end to end optimization
with the pretrained LLM, the success rate across the benchmark matches or exceeds the
baseline Language Table approach. This signifies that LCB is able to seamlessly adapt a
pretrained LLM and policy together. We suspect that this is due to the flexibility in the latent
representation zqcrs, allowed for by our approach as well as additional capacity afforded my
the language model.

We next investigate more complex language tasks that require reasoning and planning
capabilities. We collect a small dataset for each capability, training models to compare the
following approaches:

o LangTable: The original Language Table Policy, as provided by (Lynch et al., [2022]).

o LangTable + LLaVA (Frozen): The combination of the original policy and a
non-fine-tuned LLaVA model interfacing through language. We prompt LLaVA to
output language commands in the format and style as expected by LangTable.

o LangTable + GPT-4V: The integration of LangTable with the state-of-the-art
proprietary Vision Language Model (GPT-4V). In order to bootstrap the spatial
understanding of GPT-4V, we also incorporate the Set of Marker (SOM) (Yang et al.|
2023) technique to enhance the GPT-4V’s capability. We further include multi-modal
few show contexts including language explanation of the tasks and image examples.
More details are provided in Appendix

« LangTable + LLaVA (Fine-tuned): The original policy augmented by a LLaVA
model that has been fine-tuned on the exact language needed for the action policy for
the given task.

o LCB: We take a pretrained LLaVA model and the pre-trained LangTable policy and
apply LCB, learning a latent interface between the two on the respective instruction
dataset.

Results for long horizon performance are provided in [Figure 8.4a] In this task, the agent
must sort blocks based on shape or color into a specified corner of the board, requiring
a long sequence of actions from which the agent could greatly benefit through high-level
planning. We see that LCB exhibits a competency for handling such tasks, as indicated by the
heightened success rates, improving on pure language interface baselines. This is attributable
to the method’s ability to generate a coherent sequence of latent action embeddings that guide
the policy through the task’s duration, facilitating a more consistent and accurate alignment
with the sequential nature of the task. During evaluation we run the higher level language
model at a slower rate than the lower level policy, only updating the language models output
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Few Shot Can you move all the
Prompt green blocks into the
bottom left corner?
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Figure 8.5: A comparison of the flow from a high level language task to the policy for different
approaches. (Left) LangTable 4+ GPT-4V requires a prompt to understand the task and
desired output format. GPT-4V can provide language reasoning to allow the user to introspect
the decision process of the language model, but requires additional parsing to extract the
relevant language instruction to provide to the model. (Middle) LangTable + LLaVA
(Fine-tuned) fine-tunes the language model to output the exact language instruction as
in the training data, effectively acting as a language interface converter. This approach,
while effective, removes the chat like capability from the language model. (Right) LCB
fine-tunes the language model with a chat like interface and action token. The policy is
directly conditioned on the latent feature from the action token provided by the model,
enabling effective policy conditioning without losing the chat like language model interface.

every 40 environment steps. We find that this increases computational efficiency without
compromising task performance suggesting the effectiveness of the model hierarchy.
Results for reasoning performance are provided in [Figure 8.4b, Tasks here are of the
form “There is a block that is closest to {corner}. Push that block to the other block of the
same {shape/color}”. In order to successfully accomplish this task, the agent must identify
which block is located closest to a given corner, identify the relevant property (i.e. shape or
color) and consolidate that understanding into an executable instruction. We see that our
approach is able to outperform baselines that involve zero-shot prompting as well as naively
fine-tuning the language model to output the translated robot task. We see that fine-tuning
the language model to output the ground truth language primitive is effective in reaching
parity with the oracle language baseline, but that LCB is able to match and even exceed that.
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We provide a qualitative assessment of the language output from the various top performing
approaches in [Figure 8.5 LangTable + GPT-4V requires heavy prompt engineering and
additional string parsing to extract out the final policy. LangTable 4+ LLaVA is effectively
fine-tuned by outputting the direct low level text command to the policy, but no longer is able
to maintain a chat like interface to the user. In contrast, LCB is able to output an effective
embedding for the low level policy while also verbalizing its reasoning. This decouples the low
level policy conditioning from the language models text outputs, offering increased flexibility
during instruction fine-tuning.

8.4.2 FEvaluation on CALVIN

CALVIN(Mees et al., 2022) is an open-source simulated benchmark designed for learning
long-horizon tasks conditioned by language. The environment features a 7-DOF Franka
Emika Panda robotic arm equipped with a parallel gripper, situated at a desk with a variety
of articulated furniture and objects for interaction. In each experiment, the robot needs to
solve a sequence of complex full 6D manipulation tasks governed by real-world physics and
guided by a series of language instructions. Each subtask is paired by a specific language
instruction; upon successful completion, the robot proceeds to the next subtask accompanied
by a new instruction. CALVIN encompasses four distinct environments A, B, C and D, with
a shared set of language instructions and subtasks.

Table 8.2: Task completion rates for various methods on CALVIN(Mees et al., [2022)) long-
horizon tasks. All methods were trained exclusively on the ABC split of Calvin with the
original language annotations and tested on split D with GPT-4 enriched language annotations,
following the RoboFlamingo enriched instruction evaluation setting(Liu et al. 2024b). *RF
denotes our own training of the RoboFlamingo model on the ABC Calvin split. 3DDA
denotes the policy from 3D Diffuser Actor (Ke et al., [2024)).

Model RF(Li et al., 2023b) 3DDA(Ke et al 2024) LCB

T
58
RN 1/5  0.620 0.652 0.736
O% &% 2/5  0.330 0.391 0.502
=2 § 3/5  0.164 0.203 0.285
S8R 4/5 0086 0.117 0.160
5/5  0.046 0.061 0.099
Avg Len  0.40 1.42 1.78

In order to demonstrate the generalization capabilities of LCB cross various environments
as well as its ability to comprehend and act upon the same instructions phrased differently in
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the CALVIN long horizon full 6D manipulation setting, we compare the following approaches:

« RoboFlamingo (RF): RoboFlamingo(Li et al., 2023b) adapts OpenFlamingo(Awadalla
et al., 2023)) by fine-tuning solely the cross-attention layer to directly output actions,
thus maintaining its language comprehension. However, this approach requires exe-
cuting the entire LLM anew with each progression to a subsequent state, leading to
inefficiencies.

« 3D Diffusion Actor (3DDA): Incorporating a diffusion policy with 3D scene rep-
resentation and CLIP(Radford et al., [2021) language embedding, the 3D Diffusion
Actor (Ke et all [2024) sets the current SOTA on the Calvin benchmark when provided
with standard language instruction inputs. However, a notable limitation stems from
the constraints of the CLIP text model it employs. 3DDA can not generalize well on
language instruction outside of its training distribution.

« LCB: LCB for Calvin integrates a pre-trained LLaVA (Liu et al.,|2023b)) as the Multimodal
Large Language Model backbone with a pre-trained 3D Diffusion Actor serving as the
action policy. This combination leverages the SOTA capabilities of the 3D Diffusion
Actor to achieve a synergistic effect: LCB for Calvin excels in both language compre-
hension and low-level manipulation. Since RoboFlamingo runs the entire LLM on
every environment step, in order to make a fair comparison, we also run the LLM part
of LCB synchronously with the downstream policy, although we notice no significant
performance difference for Calvin.

"Table 8.2 presents results for the CALVIN long-horizon, language-conditioned benchmark.
In this setting, the robot executes a series of tasks in unfamiliar environments based on novel
GPT-4 enriched(Awadalla et al., [2023) instructions not encountered during training. The
experimental outcomes demonstrate our approach’s distinct advantage over baseline methods.
LCB significantly surpasses all baselines in terms of task success rate at every stage and in
average completed trajectory length.

8.5 Conclusion

In this chapter, we introduce a novel approach, Latent Codes as Bridges, or LCB, that combines
the abstract reasoning capabilities of large language models with low-level action policies.
Our methodology does not merely stack these capabilities as in prior works but integrates
them in an end-to-end fashion through a learned latent interface. The empirical evidence
from our evaluations on the Language Table and CALVIN benchmarks shows the model’s
adeptness in interpreting and executing various reasoning and long horizon objectives. The
flexibility and effectiveness of the hierarchy enabled by LCB shows promise for real world
robotic applications.
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Chapter 9

Conclusion

This dissertation explores developing efficient learning methods for robotics, focusing on
leveraging trajectory data of real-world robotic systems. By investigating representation
learning, data collection strategies, policy learning frameworks, and the role of language models
in robotics, this dissertation contributes to the advancement of scalable general-purpose
robotic systems.

We started by exploring trajectory representation learning in Chapters [2] and 3] By
introducing Masked Trajectory Models (MTM) and Semi-Supervised One-Shot Imitation
Learning, this dissertation demonstrates how meaningful representations can be learned from
trajectory data. These representations can facilitate a variety of downstream tasks, such
as return-conditioned behavior cloning, trajectory clustering, and inverse dynamics. We
also explore how to learn such representations from heterogeneous and multi-modal datasets
effectively. These findings highlight the important role of trajectory representations in the
advancement of robot learning systems.

We then address the practical real-world challenges of trajectory data collection and
policy learning in Chapters [4 [5| and [6] We introduce DayDreamer as a generic method
for sample-efficient policy learning in the real world by leveraging world models. Next, we
explore GELLO as a teleoperation device to enable scalable, high-quality data collection for
manipulation. RoboCopilot then further improves the applicability of GELLO by integrating
iterative feedback into policy learning, demonstrating how human-in-the-loop strategies can
enhance performance while targeting failure modes. These contributions emphasize the
importance of quality data collection and sample efficient algorithms.

Finally, Chapters [7] and [§] examine the coordination of low-level control with high-level
reasoning, integrating modular architectures with large language models. The methods
employed in Interactive Task Planning and Latent Code as Bridges illustrate how vision
language models can be combined with control policies to bridge the gap between abstract
planning and precise execution. This hierarchical approach highlights the potential of
leveraging high-level reasoning to inform low-level control, advancing the field of adaptive
and interactive robotic systems.

Together, these contributions present a cohesive pathway toward scalable and general-
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purpose robotics. Looking ahead, the findings in this dissertation inspire confidence in
the development of robotic systems capable of operating autonomously in unstructured,
human-centric environments. Continued progress will require addressing challenges such
as refining the interaction between high-level reasoning and low-level execution and scaling
these systems to diverse real-world applications. Additionally, having scalable methods
that enable improving beyond human imitation also remains an open problem. As robotics
continues to benefit from advances in hardware and algorithmic sophistication, the methods
and frameworks presented here serve as a foundation for future research and application.

This work represents an important step toward the realization of robotic systems that
go beyond task-specific solutions to become integral components of human life. I hope the
insights gained herein will contribute to shaping the next generation of robotics, laying the
groundwork for systems that are adaptive, efficient, and capable of meeting the complex
demands of the real world.
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Appendix A

Chapter 2 Appendix

A.1 Additional MTM Results

Table A.1.1: Evaluation of MTM capabilities on Adroit.

Domain  Dataset Task MLP S-MTM (Ours)  MTM (Ours)
Expert BC 62.75 + 1.43 66.28 + 3.28 61.25 + 5.06
Adroit Expert RCBC 68.41 + 2.27 66.29 + 1.39 64.81 + 1.70
Pen Expert ID 0.128 + 0.001  0.155 + 0.001 | 0.331 £ 0.049
Expert FD 0.048 4+ 0.002  0.360 + 0.020 | 0.321 £ 0.048
Medium Replay BC 33.73 £ 1.00 54.84 £+ 5.08 47.10 £ 7.13
Adroit Medium Replay RCBC 41.26 4+ 4.99 57.50 + 3.76 58.76 + 5.63
Pen Medium Replay ID 0.308 £ 0.004 0.238 £ 0.004 | 0.410 £ 0.064
Medium Replay FD 0.657 £ 0.023  0.915 + 0.007 | 0.925 + 0.026
Expert BC 147.68 £ 0.25 149.46 + 0.29 | 149.19 + 0.72
Adroit Expert RCBC 148.81 +£0.32 150.50 + 0.14 | 149.93 £ 0.19
Door Expert ID 0.385 4+ 0.001  0.427 4+ 0.003 | 0.484 + 0.024
Expert FD 0.199 4+ 0.011  0.541 4+ 0.020 | 0.618 + 0.210
Medium Replay BC 27.75 + 5.03 49.24 + 26.85 | 16.30 £ 10.10
Adroit Medium Replay RCBC 71.51 + 8.62 75.41 £ 8.20 51.92 + 9.13
Door Medium Replay 1D 0.532 £ 0.001  0.589 £ 0.005 | 0.629 £ 0.014
Medium Replay FD 0.976 + 0.033  2.225 + 0.061 | 2.251 + 0.230
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Table A.1.2: Evaluation of MTM capabilities on D4RL.

Domain Dataset Task MLP S-MTM (Ours)  MTM (Ours)
Expert BC 111.14 £ 0.33 111.81 £ 0.18 | 107.35 £ 7.77
D4RL Expert RCBC 111.17 £ 0.56 112.64 £ 0.47 | 112.49 4+ 0.37
Hopper Expert ID 0.009 £+ 0.000 0.013 £ 0.000 | 0.050 £ 0.026
Expert FD 0.072 £ 0.000  0.517 £ 0.025 | 0.088 £ 0.049
Medium Expert BC 58.75 £ 3.79 60.85 £+ 3.14 54.96 £+ 2.44
D4RL Medium Expert RCBC 110.22 £ 0.99 113.00 &+ 0.39 | 112.41 + 0.23
Hopper Medium Expert ID 0.015 &£ 0.000  0.015 £+ 0.001 | 0.053 £ 0.003
Medium Expert FD 0.139 £ 0.001  0.938 £ 0.062 | 0.077 £ 0.005
Medium BC 55.93 + 1.12 56.74 £+ 0.56 57.64 £+ 3.37
D4RL Medium RCBC 62.20 &+ 3.41 69.20 + 1.60 70.48 £ 4.62
Hopper Medium ID 0.022 &£ 0.001  0.030 £ 0.001 | 0.143 £ 0.035
Medium FD 0.153 £ 0.002 1.044 £+ 0.061 | 0.206 + 0.064
Medium Replay BC 35.63 £+ 6.27 36.17 £+ 4.09 29.46 £ 6.74
D4RL Medium Replay RCBC 88.61 &+ 1.68 93.30 £ 0.33 92.95 £ 1.51
Hopper Medium Replay ID 0.240 £ 0.028  0.219 £+ 0.008 | 0.534 £ 0.009
Medium Replay FD 2.179 £ 0.052  3.310 £ 0.425 | 0.493 £+ 0.030
Expert BC 109.28 £ 0.12  108.76 + 0.32 | 107.08 £ 1.47
D4RL Expert RCBC 112.21 +£0.31 109.83 £ 0.58 | 110.08 £+ 0.82
Walker2D Expert 1D 0.021 £ 0.000  0.055 £+ 0.001 | 0.233 £ 0.038
Expert FD 0.077 £ 0.001  0.233 £ 0.012 | 0.177 + 0.031
Medium Expert BC 108.45 £ 0.31  108.49 &£ 1.00 | 75.64 £ 7.78
D4RL Medium Expert RCBC 110.47 £ 0.38 110.43 £+ 0.30 | 110.21 + 0.31
Walker2D Medium Expert ID 0.019 &£ 0.000 0.038 £ 0.001 | 0.213 £ 0.030
Medium Expert FD 0.088 + 0.001  0.221 £ 0.013 | 0.167 £ 0.032
Medium BC 75.91 £ 1.87 75.87 £ 0.44 59.82 £ 7.06
D4RL Medium RCBC 78.76 + 2.26 78.64 + 2.05 78.08 + 2.04
Walker2D Medium 1D 0.026 &£ 0.001  0.055 £ 0.002 | 0.214 £ 0.145
Medium FD 0.116 + 0.002  0.236 £ 0.012 | 0.175 £ 0.162
Medium Replay BC 23.39 £ 2.75 48.45 + 2.84 21.98 £ 2.77
D4RL Medium Replay RCBC 72.85 + 5.23 78.33 £ 2.11 77.32 £ 1.79
Walker2D Medium Replay ID 0.532 £ 0.017  0.493 £ 0.018 | 0.921 £ 0.032
Medium Replay FD 1.224 £ 0.011  0.883 £ 0.011 | 0.446 £ 0.016
Expert BC 93.14 £+ 0.16 95.21 £+ 0.44 94.19 £+ 0.21
D4RL Expert RCBC 94.16 + 0.35 95.12 + 0.64 94.83 £ 0.72
HalfCheetah Expert 1D 0.001 £+ 0.000  0.003 £ 0.000 | 0.009 £ 0.001
Expert FD 0.009 £ 0.000 0.018 £ 0.003 | 0.005 + 0.001
Medium Expert BC 68.04 + 1.57 77.88 £ 7.21 65.73 £+ 5.69
D4RL Medium Expert RCBC 93.49 4+ 0.29 94.85 £ 0.32 94.78 £ 0.39
HalfCheetah Medium Expert ID 0.001 £+ 0.000 0.001 £ 0.000 | 0.012 £ 0.002
Medium Expert FD 0.014 £ 0.000  0.043 £ 0.008 | 0.009 + 0.001
Medium BC 42.87 £ 0.11 43.37 £ 0.14 43.19 £+ 0.34
D4RL Medium RCBC 44.43 + 0.26 43.83 £ 0.22 43.65 £ 0.08
HalfCheetah Medium ID 0.001 £+ 0.000 0.005 £ 0.000 | 0.027 £ 0.017
Medium FD 0.020 £ 0.000  0.053 £ 0.011 | 0.020 &+ 0.010
Medium Replay BC 36.81 + 0.52 39.03 £ 0.78 19.64 £ 11.26
D4RL Medium Replay RCBC  40.55 4+ 0.18 42.94 + 0.33 43.08 £ 0.43
HalfCheetah Medium Replay ID 0.003 &+ 0.000  0.005 £ 0.000 | 0.036 £ 0.012
Medium Replay FD 0.059 £ 0.000  0.058 £ 0.010 | 0.028 £+ 0.007
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A.2 Additional Environment Details

(a) D4RL: HalfCheetah (b) Adroit: Pen (c) DM-Control: Walker2D
Figure A.2.1: Continues Control Evaluation Settings.

Here we provide additional details on each experiment setting. In general, our empir-
ical evaluations are based on the standard versions of D4RL, Adroit, and ExORL. These
benchmarks and setups are widely used in the community for studying various aspects of
offline learning. The raw state space provided by these benchmarks typically comprise a mix
of positions and velocities of different joints, bodies, and objects in the environment. We
preprocess each dataset by normalizing the data before training.

D4RL (Fu et all, [2020) is a popular offline RL benchmark. As mentioned in Section [2.4.1]
we test MTM on the locomotion suit of D4RL. The locomotion suite uses the Walker, Hopper,
and HalfCheetah environments provided by OpenAl Gym (Brockman et al. 2016). We
consider 4 different dataset settings: Expert, Medium-Expert, Medium, and Medium-Replay.
These datasets are collected by taking trajectories of a SAC [Haarnoja et al| (2018a) agent at
various points in training.

Adroit (Rajeswaran et all 2018) is a collection of dexterous manipulation tasks with a
simulated five-fingered. Our MTM experiments use the Pen, and Door tasks. To match the
setup of D4RL, we collect Medium-Replay and Expert trajectories for each task. This is
done by training an expert policy. The Expert dataset comprises of rollouts of the converged
policy with a small amount of action noise. The Medium-Replay dataset is a collection of
trajectory rollouts from various checkpoints during training of the expert policy, before policy
convergence. The original Adroit environment provides a dense reward and a sparse measure
of task completion. For MTM experiments, we use the task completion signal as an alternative
to reward, which provides a more grounded signal of task performance (a measure of the
number of time steps in the episode where the task is complete).

ExORL (Yarats et al., [2022)) dataset consists of trajectories collected using various
unsupervised exploration algorithms. ExORL leverages dm_control developed by
nakool et al.| (2020]). We use data collected by a ProtoRL agent (Yarats et al., 2021b)) in the
Walker2D environment to evaluate the effectiveness of MTM representations on three different
tasks: Stand, Walk, and Run. As the pretraining dataset has not extrinsic reward, MTM is
trained with only states and actions. During downstream TD3 learning, all trajectories are
relabeled with the task reward.
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A.3 Model and Training Details

A.3.1 MLP Baseline Hyperparameters

Table A.3.1: MLP Hyperparameters

Hyperparameter Value

129

MLP
Nonlinearity GELU
Batch Size 4096
Embedding Dim 1024
# of Layers 2
Adam Optimizer
Learning Rate 0.0002
Weight Decay 0.005
Warmup Steps 5000
Training Steps 140000
Scheduler cosine decay

A.3.2 MTM Model Hyperparameters

Table A.3.2: MTM Hyperparameters

Hyperparameter Value
General

Nonlinearity GELU

Batch Size 1024

Trajectory-Segment Length 4

Scheduler cosine decay

Warmup Steps 40000

Training Steps 140000

Dropout 0.10

Learning Rate 0.0001

Weight Decay 0.01
Bidirectional Transformer

# of Encoder Layers 2

# Decoder Layers 1

# Heads 4

Embedding Dim 512
Mode Decoding Head

Number of Layers 2

Embedding Dim 512




APPENDIX A. CHAPTER 2 APPENDIX 130

A.3.3 MTM Training Details

In this section, we specify additional details of MTM for reproduction. Numerical values of
the hyperparamters are found in table The architecture follows the structure of (He
et al., 2021) and (Liu et al., 2023a), which involves a bidirectional transformer encoder and a
bidirectional transformer decoder. For each input modality there is a learned projection into
the embedding space. In addition we add a 1D sinusoidal encoding to provide time index
information. The encoder only processes unmasked tokens. The decoder processes the full
trajectory sequence, replacing the masked out tokens with mode specific mask tokens. At
the output of the decoder, we use a 2 Layer MLP with Layer Norm (Ba et al., 2016]). For
training the model we use the AdamW optimizer (Kingma & Bay, [2014; [Loshchilov & Hutter),
2019) with a warm up period and cosine learning rate decay.

As we rely on the generative capabilities of MTM which can be conditioned on a variety of
different input tokens at inference time, we train MTM with a range of mask ratios that are
randomly sampled. We use a range between 0.0 and 0.6. Our random autoregressive masking
scheme also requires that at least one token is predicted without future context. This is done
by randomly sampling a time step and token, and masking out future tokens.

A.4 Effect of training trajectory length
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Figure A.4.1: Effect of Trajectory Training Length. This plot depicts the effect of
changing the training trajectory length on RCBC performance, all other hyperparameters
held constant. The left side shows the performance of D4RL Walker2D and the right on
Adroit Door, both using their corresponding Medium-Replay Dataset.

Figure illustrates the effect of training trajectory length on performance. We
observe that increased trajectory length has benefits in training performance. We hypothesize
that with longer trajectory lengths, MTM is able to provide richer training objectives, as the
model now must learn how to predict any missing component of a longer trajectory. This
is especially apparent in the Adroit Door task, where we see RCBC performance increasing
strongly with trajectory training length. This suggests that better results could be achieved
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with longer horizon models. We see that this benefit provides diminishing returns for much
longer trajectories (and additionally increases training time), which is most apparent in the
D4RL Walker2D task. However, for practicality, we fix the trajectory length to 4 for all other
experiments, and tune hyperparameters for this trajectory training length. Factors such as
mask ratio could be tuned to optimize performance and training time for longer trajectory
lengths, but we leave this exploration for future work.

A.5 Additional plots

A.5.1 Masking Patterns

100 A

80
P Rrandom (BERT/ MAE)

- Random Autoregressive (Ours)
[ ReBC (Specialized)

60 -

Return

40

20 A

Hopper Hopper Walker2D Walker2D
Expert Medium Replay Expert Medium Replay

Environment

Figure A.5.1: Impact of Masking Patterns. This plot shows MTM RCBC performance
trained with three different masking patterns, random, random autoregressive, and a special-
ized RCBC mask. This is a repeat of Figure , except the Y-axis is unscaled.
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A.5.2 Heteromodal MTM
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Figure A.5.2: MTM can effectively learn from heteromodal datasets. This figure, which
shows the performance of our Heteromodal MTM model, is a repeat of Figure [2.5] except the
Y-axis is unscaled. Instead we observe the absolute return for each environment. In addition
we provide the performance of BC trained on the entire training set (95% of the provided
dataset) as reference for the oracle performance that can be achieved.

A.5.3 Representation Learning
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Figure A.5.3: Finetuned and frozen MTM representations. Here we additionally provide
the learning curves for frozen MTM representations on top of those provided in Figure
Both frozen MTM features and finetuned MTM features enable faster learning, but we do see
that finetuning offers the best learning benefits across tasks.
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Chapter 3 Appendix

B.1 Appendix

B.1.1 Hyperparameters

In both experiments the image observations are first encoded with a 5 layer CNN with
ReLU activiations. The CNN encoder is shared across embedding the current state and the
demonstration trajectory. The policy network is also the same, which consists of 3 FiLM
blocks using GELU nonlinearities and using 128 hidden units per layer. For all experiments
that use the contrastive objective across paired trajectories, a weighting of 10 is used on the
contrastive loss. For all experiments using pseudo-labeled trajectories, a weighting of 0.5 is
used on the imitation loss with pseudo-labeled trajectories.

Semantic Goal Navigation For this task we adopt the oracle trajectory encoder, which
takes the final frame of the trajectory (which fully specifies the task) and encodes it with
CNN. The images are 64x64. The policy is trained with a learning rate of le-3 with 4000
warm up steps.Frame stacking of 2 is employed on the observations. For each experiment we
train for 200k iterations.

For the self supervised augmentations, we employ random resizing, cropping, horizontal
flip, and vertical flip. An additional one layer projection is applied before applying the self
supervised contrastive loss, which we employ with a weight of 0.05.

Sequential Goal Navigation For this task, we make no assumptions on what frames are
important and use a bidirectional transformer that attends over all states in the trajectory.
The transformer has 2 hidden layers and 2 attention heads, and the goal encoding is extracted
with an additional class token. Images are 16x16. We use a learning rate of 3e-4 and train
for 60k iterations.
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B.1.2 Effect of more pseudo label pair value k&

Here we study how choosing different values of k£ and different iterations of relabeling effect
final performance. In the pseudo-labeling stage, we fix k controls the number of possible
pairs each unlabeled trajectory can use for training. In addition, we experiment with using
the student model as a teacher model for one additional iteration of training. We use the
Semantic Goal reaching task, with 15% of the full dataset size. The results are summarized
in Table [B.1.1] Results are mixed overall, and it seems the exact choice of k£ does not have a
significant impact on results. In addition it seems that repeating the pseudo labeling process
for additional iterations does not have any significant gains on performance. This could be
due to the simplicity of the task, as well as the already high trajectory retrieval scores across
all k. We suspect that for more difficult tasks, these parameters will have a more significant
impact on final performance.

Table B.1.1: Iterative Relabeling on Semantic Goal Navigation

Test Success rate % with k=
Iteration 10 50 100 200

1 82+1.4 88.7+6.9 833£174 954412
2 88£21 875+£45 785+25 86.5£0.5
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Chapter 4 Appendix

C.1 Adaptation
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Figure C.1.1: The left two images are raw observations consumed by Dreamer. The leftmost
image is an image observation as seen by the XArm at night, when it was trained. The next
image shows an observation during sunrise. Despite the vast difference in pixel space, the
XArm is able to recover, and then surpass, the original performance in approximately 5 hours.
Even after 24 hours when the lighting shifts to night time conditions, the XArm is able to
maintain performance.

Real world robot learning faces practical challenges such as changing environmental
conditions and time varying dynamics. We found that Dreamer is able to adapt to the current
environmental conditions with no change to the learning algorithm. This shows promise
for using Dreamer in continual learning settings (Parisi et al., |2019). Adaptation of the
quadruped to external perturbations is reported in [Section 4.3.1] and [Figure 4.5]

The XArm, situated near large windows, is able to adapt and maintain performance under
the presence of changing lighting conditions. The XArm experiments were conducted after
sundown to keep the lighting conditions constant throughout training. |[Figure C.1.1|shows
the learning curve of the XArm. As expected, the performance of the XArm drops during
sunrise. However, the XArm is able to adapt to the change in lighting conditions in about 5
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hours time and recover the original performance, which is faster than it would be to train
from scratch. A careful inspection of the image observations at these times, as shown in

igure C.1.1] reveals that the robot received observations with strong light rays covering the
scene which greatly differs from the original training observations.

C.2 Imagination

Figure C.2.1: To introspect the policy, we can roll out trajectories in the latent space of
Dreamer, then decode the images to visualize the intent of the actor network. Each row is an
imagined trajectory, showing every 2nd frame. Top: Latent rollouts on the UR5 environment.
Multiple objects introduce more visual complexity that the network has to model. Note the
second trajectory, which shows a static orange ball becoming a green ball. Bottom: Latent
rollouts on the XArm environment.
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C.3 Detailed Related Work

RL for locomotion A common approach is to train RL agents from large amounts of
simulated data under domain and dynamics randomization (Peng et al.; 2018} |Lee et al.,
2020; Rudin et al. 2021} Siekmann et al., 2021; Escontrela et al.| [2022; Miki et al., 2022;
Kumar et al} 2021; Rusu et al., 2016; |[Bohez et al.; 2022)), then freezing the learned policy and
deploying it to the real world. Smith et al. (2021) explored pre-training policies in simulation
and fine-tuning them with real world data. [Yang et al.| (2019) investigate learning a dynamics
model using a multi-step loss and using model predictive control to accomplish a specified
task. [Yang et al. (2022a)) train locomotion policies in the real world but require a recovery
controller trained in simulation to avoid unsafe states. In contrast, we use no simulators
or reset policies and directly train on the physical robot. While prior work in locomotion
has successfully learned walking behaviors in the real world, these works generally required
several domain-specific assumptions or pretraining with simulators. |Ha et al.| (2020a)) achieved
successful walking on the Minitaur robot in 90 minutes. However, the authors manually
programmed a reset policy that was used when the robot fell on its back, while in our work
the robot must learn to flip over and stand up. Additionally, the Minitaur robot is simpler
than the A1l as it has 8 actuators compared to 12 on the Al. In recent work, Smith et al.
(2022) utilize a high update-to-data ratio (UTD) RL algorithm to learn walking from 20
minutes of robot training data. However, their work assumes the availability of a reset policy
and therefore comprises of a different learning problem compared to the problem we tackle of
learning to flip over and walk from scratch. Additionally, we show our approach generalizes
to environments with image observations and sparse rewards.

RL for manipulation Learning promises to enable robot manipulators to solve contact rich
tasks in open real world environments. One class of methods attempts to scale up experience
collection through a fleet of robots (Kalashnikov et al.l 2018, 2021; |[Ebert et al., |2021} [Dasari
et al., |2019; |Levine et al., 2018)). In contrast, we only leverage one robot, but parallelize
an agent’s experience by using the learned world model. Another common approach is to
leverage expert demonstrations or other task priors (Pinto & Guptal 2015; Ha & Song, 2021;
Xie et all 2019; [Schoettler et al., 2019; Sivakumar et al.| [2022)). James & Davison| (2021);
James et al.| (2021) leverages a few demonstrations to increase the sample-efficiency of Q
learning by focusing the learner on important aspects of the scene. Other approaches, as
in locomotion, first utilize a simulator, then transfer to the real world (Tzeng et al., [2015;
Akkaya et al.; 2019; |OpenAl et al., 2018} Irpan et al., [2020). Our work focuses on single-robot
environments where the agent must learn through a small amount of interaction with the
world. Meanwhile, the Google Arm Farm line of work by Levine et al. leverages over 580k
grasp attempts gathered by 7 robots and collected over 4 months. We believe that a method
such as Dreamer could benefit greatly from this scale of training data, however it is unlikely
that works such as MT-OPT/QT-OPT Kalashnikov et al.| (2018, 2021)) would work well in
the low data regime that Dreamer excels in.
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Model-based RL Due to its higher sample-efficiency over model-free methods, model-
based RL is a promising approach to learning on real world robots (Deisenroth et al., [2013)).
A model based method first learns a dynamics model, which can then be used to plan actions
(Nagabandi et al., 2019; Hafner et al., [2019b; |Chua et al., 2018; Nagabandi et al. 2017}
Becker-Ehmck et al.| [2020), or be used as a simulator to learn a policy network as in Dreamer
(Hafner et al., |2019a; [2020]). One approach to tackle the high visual complexity of the world
is to learn an action conditioned video prediction model (Finn & Levine, |2017; Ebert et al.
2018; |[Finn et al., [2016al). One downside of this approach is the need to directly predict high
dimensional observations, which can be computationally inefficient and easily drift. Dreamer
learns a dynamics model in a latent space, allowing more efficient rollouts and avoids relying
on high quality visual reconstructions for the policy. Another line of work proposes to learn
latent dynamics models without having to reconstruct inputs (Deng et al. 2021 Okada &
Taniguchi, 2021; Bharadhwaj et al. 2022; Paster et al., [2021; |Li et al., 2021)), which we see as
a promising approach for supporting moving view points in cluttered environments.

C.4 Environment and Hardware Details

For every robot setup that involved vision (UR5, XArm, Sphero), we used a RealSense D435
camera positioned to offer a fixed 3rd person view of the scene.

A1 We used the Al quadrupedal robot by Unitree. The RL policy outputs actions at a
frequency that is too high for the PD controller to track, which we overcome by lowpass
filtering the action sequence. The joint range allows the legs to self-collide with the body,
which can be damaging to the motors and increase battery consumption. We limited the joint
range to decrease self-collisions. Finally, the EKF velocity estimator relies on foot-ground
contact events to prevent significant drift in the estimates, so we employ a curriculum reward
function that does not reward the robot for forward velocity until the robot is upright with
extended legs. We also designed a shell which we 3D printed in order to better protect the
cables and hardware and provide a smoother rolling over.

XArm & URS5 We utilized slanted bins to prevent objects from leaving the work area
during the long-running pick and place experiments on the UR5, which is common practice
Levine et al.| (2018); |[Kalashnikov et al. (2018)). We also added a partition behind the setup
to keep the background constant. It would be interesting to study how a gripper-mounted
camera would impact policy performance Hsu et al| (2022), however we report strong results
without this design choice. For the XArm we use the uFactory xArm Gripper. For the UR5,
we use the Robotiq 2F-85 parallel jaw gripper. The bin locations are predetermined and
provided as part of the environment to prevent the robot from colliding with the bin. In
addition, movement in the Z axis is only enabled while holding an object and the gripper
automatically opens once above the other bin.
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Sphero We used a rectangular enclosure of 0.8 x 0.8m? to keep the sphero robot within
the camera view. We used a simple OpenCV script to estimate the L2 distance between
the Sphero and the goal position to provide a dense reward for policy optimization. This
positional information was not provided to the agent, which it had to learn from the raw
top-down images.

C.5 Hyperparameters

Name Symbol Value
General

Replay capacity (FIFO) — 108
Start learning — 10
Batch size B 32
Batch length T 32
MLP size — 4 x 512
Activation — LayerNorm + ELU
World Model

RSSM size — 512
Number of latents — 32
Classes per latent — 32
KL balancing — 0.8
Actor Critic

Imagination horizon H 15
Discount v 0.95
Return lambda A 0.95
Target update interval — 100
All Optimizers

Gradient clipping — 100
Learning rate — 1074

Adam epsilon € 1076
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Chapter 6 Appendix

D.1 Additional Real-world Task Visualization
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Figure D.1.1: A step-by-step illustration of the industrial part transport task. The robot first
needs to pick up the heavy industrial part from the floor using both hands. It then searches
for and moves towards the tote. Finally, the robot must accurately drop the industrial part
into the tote. The first two rows display the left and right wrist camera views along one
autonomous trajectory. The bottom row shows a third-person view of the entire robot system
during task execution.
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D.2 Simulation Task Visualizations
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Figure D.2.1: An illustration of the three manipulation tasks we use in Robomimic (Mandlekar
, 2021): Pick up a can and place it in a bin; insert a square object into a pole; coordinate
two arms to transport a tool.

D.3 Robot Hardware Details

The design space for such a complex system is large. Thus we utilize the following three key
principles the development for our RoboCopliot system:

o Safe: The robot hardware must be safe for humans, the environment, and itself. Compli-
ance, a mechanical property that describes the ability of the robot to respond to external
forces, is critical to achieving this safety.

« Easy to Use: To facilitate efficient interactive learning, our system needs a capable
teleoperation system that allows human operators to perform complex and contact-rich
tasks. Additionally, this system must enable the human operator to take control of the
robot seamlessly when necessary.
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e Accessible: Our design aims to be cost-efficient and simple while still being able to
perform a wide range of daily tasks. We believe accessibility is crucial for scaling up data
collection and robot deployment in real-world scenarios.

Our robot, guided by the key principles above, is a custom low-cost mobile bimanual
manipulator designed for everyday tasks. It consists of 7 DOF arms with parallel jaw grippers,
an actuatable torso, and an omnidirectional base, totaling 20 degrees of freedom. We use two
realsense D405 cameras [Intel (2024) mounted on the wrist which are used to provide camera
observations to the robot.

Compliance from Quasi-Direct Drive Actuators. Compliance allows the robot to
feel when it is perturbed by an external force, which is crucial for the robot to safely work
with humans and perform complicated tasks in environments where there is high uncertainty:.
Compliance can be achieved with the addition of force torque sensors by measuring and
responding to external forces in a tight control loop [Pratt & Williamson! (1995)); /Albu-Schaetfer
et al. (2007)). Compliance can also be achieved passively through a backdrivable transmission,
where the system can be easily driven by external force without active control Wyrobek et al.
(2008); |Gealy et al.[(2019); Quigley et al.| (2011)). Taking cost and simplicity into consideration
we achieve compliance with off-the-shelf mini-cheetah style Katz (2018a)) quasi direct drive
(QDD) transmissions which achieve backdrivability through a low gear ratio planetary gearbox.
In this setup, external forces applied at the gearbox output are transmitted to the motor
and can be detected by measuring motor currents, where the motor can effectively act as a
torque sensor.

Actuator Selection. We use off-the-shelf mini-cheetah style Katz (2018a) brushless
actuators with integrated planetary gearboxes Quasi Direct Drive (QDD) actuator as our
robot joint modules. These QDDs typically have gear reduction ratios smaller than 10. With
high torque brushless motors, these actuators provide sufficient torque for robotic applications
while maintaining backdrivability. Although planetary gearboxes have backlash compared to
gearboxes such as harmonic drives and cycloid drives, which may reduce precision, recent
work utilizing end-to-end imitation learning with tight feedback loops suggests that low
precision hardware can still be used for fine-grained tasks with feedback control Myers et al.
(2023)); Fang et al| (2023c). Furthermore, with the rise of legged robots applications, there
are now widely available, affordable, and high-performing QDD options on the market. We
are using 20Nm gear ratio of 9 actuators for the shoulder joints and 12Nm gear ratio of 40
actuators for the upper arm rotation and elbow joint and 3Nm gear ratio 10 actuators for
the lower arm joints as well as the gripper joints, giving an approximate continuous payload
of 1kg. The total cost of all 8 QDDs on each arm cost less than $2000 for our design. For a
more detailed cost breakdown, see Table

Arm Design. Shows the dimensions of the robot and the teleoperation
device. The specs of our robot and teleoperation device are shown in [Table D.3.2l The
bimanual system consists of replicating the robot arm and teleoperation device. We mount
them at a 45 degree angle so that the first 2 joints can share the load of gravity. Following
(Wu et al.| 2023¢]), we build a scaled kinematic replica of the arm as a teleoperation device
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Table D.3.1: Robot cost breakdown per arm. Our 7 degrees of freedom arm consists of two
20Nm gear ratio 9:1 QDD(quasi-direct-drive) motors as the two shoulder actuators, two
12Nm gear ratio 40:1 QDD as the upper arm rotate and the elbow actuators and three 3Nm
gear ratio 10:1 QDD for the lower arm rotate and the wrist yaw and pitch joints.

Part Name QDD 20nm 9:1 QDD 12nm 40:1 QDD 3nm 10:1 Connectors Total Price

Price Each  $320 $126 $95 $634
Quantity 2 2 3 1 set
Price $640 $252 $285 $634 $1811

and use the same motors we used for the robot arm for the teleoperation device. We set the
scale to be 70% of the original size for easier human teleoperation. This however results in a
design constraint, as the distance between joint 6 and joint 7 is 60mm, and with a motor
diameter of 57mm, there leaves almost no room to scale down the teaching device. For this
DOF we did not scale the kinematics, and found that despite not matching exactly, still
resulted in a very capable and intuitive device.

Table D.3.2: Various specifications about the robot and teleoperation device.

Robot

Mass 4.6kg
Reach (Full Range)  572mm
Upper Arm Length 279mm
Lower Arm Length 252mm
Payload continuous ~ 1.5kg
Payload peak ~ 3.5kg
Degrees of Freedom 7

Teleoperation Device

Mass 2.6kg
Upper Arm Length 195mm
Lower Arm Length 191mm
Degrees of Freedom 7

Gripper Design. Our high-speed gripper features an offset slider-crank linkage design.
This design was chosen for simplicity and robustness over other low cost hands which have
more complex mechanisms such as those presented by |Guo et al.| (2019b)); Ma & Dollar| (2017));
Shaw et al.| (2023)). The finger is designed to grasp on everyday sized objects. We implement
layer jamming, leveraging 3D the printer slicer to generate Finray like geometry from our
simple finger shape Elgeneidy et al.| (2019); |Crooks et al.| (2016]); Shan & Birglen| (2023)). This
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Figure D.3.1: A to scale drawing of our robot arm (left) and teleoperation device (right),
with dimensions shown in millimeters.

design allows for efficient and reliable grasping of various objects. We leverage the same QDD
actuators as our arm, which have a nominal RPM of 120, enabling us to achieve a continuous
max gripping force of 25 N while being able to close and open under 1 second.

Mobility. A fully self contained mobile robot solution is important for ease of use and
deployment in real world situations as well as the massive expansion of the robots workspace.
Oftentimes, mobility in manipulation is achieved through using a mobile robot base, and
mounting the rest of the robot system on top of it [Holmberg & Khatib| (2000)); [Wu et al.
(2023b); (Wyrobek et al. (2008). In line with the omni-directional base setup described in
Xiong et al. (2024)), we integrated our system with the off the shelf AgileX Ranger Mini 2
base, facilitating mobile bimanual manipulation. To expand the robot’s vertical operational
space and enable the robot to pick up objects on the ground, the bimanual robot is mounted
on a gantry, enabling vertical movement. The robot includes an onboard computer and router
for Ethernet connectivity without Internet access. The entire mobile platform is powered by
the Ranger Mini 2’s internal battery and an onboard 24v battery to make it truly wireless.
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D.4 Teleoperation Capabilities

Our proposed RoboCopilot system not only enables efficient interactive teaching but also
enhances teleoperation capabilities beyond the unilateral teleoperation devices Zhao et al.
(2023); Wu et al| (2023¢). This improvement is achieved through active joint motor selection,
which provides inertia compensation and bilateral feedback. Additionally, our fully compliant
arm design allows for contact-rich bimanual tasks without compromising safety or risking
damage to the robot hardware. In below, we demonstrate several daily kitchen
tasks performed via teleoperation to showcase our system’s capabilities.

Serve hot water

Figure D.4.1: Teleoperated Execution of Various Contact-Rich and Whole-Body Control
Tasks. The RoboCopilot system demonstrates its proficiency in performing a range of daily
kitchen tasks under human teleoperation. These tasks include serving hot water, preparing
food, unloading the dishwasher, and opening doors. The robot’s fully compliant design
enables safe and effective handling of contact-rich interactions, showcasing its ability to
perform a wide range of complicated tasks.
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Chapter 8 Appendix

E.1 GPT-4V Prompting Details

GPT-4/GPT-4V is often used zero-shot in robotic applications, due to its strong general
understanding. We tuned our prompt for the language table tasks to achieve the best possible
performance, using various prompting strategies. The prompt is seen in detail below in

Figure E.1.1L We use a descriptive task prompt, Set-of- Mark (Yang et al., 2023)), structured
outputs, in context examples, and chain of thought prompting (Wei et al.; 2023).

GPT-4V Prompt

Here is a sim robot environment which contains a robot and 8 blocks with 4
different colors and 4 different shapes.

The eight blocks are: red pentagon, red moon, yellow pentagon, yellow star, Task description and objectives
green star, green cube, blue cube, blue moon.

You can control a robot action policy with detailed language instruction. For
example: "move the red pentagon to the yellow star", "move the green cube to
the red moon" to interact with the environment | will give you the high level Set of Mark
goal | want you to achieve which will involve multiple low level steps to finish,
and you need to analysis the task based on the image observation to find
what block you should move and where you should move it to to accomplish
the task.

Some extra information about the table environment:
* mark A: top left corner

* mark B: top right corner

* mark C: bottom left corner

* mark D: bottom right corner

All high level tasks will be in this format: sort (color, shape) blocks to (corner),
please reply in Json format.

Here are some examples:
Task: {example[‘task'l}
Reasoning: {example[reasoning’]}
when you see image, you should reply: {ex_image_result1[1]}
when you see image, you should reply: {ex1_image_result2[1]}
when you see image, you should reply: {ex1_image_result3[1]}

Structured outputs

Y

Few Shot Examples

Y

Now please analysis the last image, | want you to give me the detailed
instruction for the following task: {task_descrip} step by step

Chain of Thought

Y

J

Figure E.1.1: Prompt for using GPT-4V on Language Table as a pretrained VLM. “.”
indicates truncation for brevity, but follows the rest of the text in the section.



APPENDIX E. CHAPTER 8 APPENDIX 147

E.2 Dataset Details For Language Table

Language table contains a low level text description for each trajectory. We convert this data
into chat-like interactions using programmatic templates, common in language based robotics
(Lynch & Sermanet], [2021; Shridhar et al., [2021; |Jiang et al., |2023). Below in
we provide the pseudocode with (truncated) examples for how we generate chat question
answer pairs for training.

QUESTION_LIST = ["Can you control the robot to {instruction}?",
"Can you {instruction}?",
"Please {instruction}.",
"Given the current observation, how can you {instruction}?."]

def followup():
start = np.random.choice([None, "first, ", "please, "])
verb = np.random.choice(["explain", "verbalize"])
core = np.random.choice(["how you would accomplish this task",
"the desired action",
"the next step you are going to do"])

n

act = np.random.choice(["before acting", "prior to acting"l)
if start is None:
sentence = verb + " " + core
else:
sentence = start + verb + " " + core
if np.random.rand() > 0.5:
sentence = sentence + " " + act + "."
else:
sentence = act + ", " + sentence + "."

sentence = sentence[0].upper() + sentence[1:]
return sentence

def process_instruction(instruction_string, use_extra=True):
i_string = instruction_string.lower ()
question = np.random.choice(QUESTION_LIST).format(instruction=i_string)
if use_extra:
extra_instruction = followup()
question = question + " " + extra_instruction
return question

ANSWER_LIST = ["Sure, [ACT].", "[ACT].", "Let’s move the robot [ACT]."]
ANSWER_DETAILED_LIST = ["I will {detailed_instuction} [ACT].",
"Sure, I will {detailed_instuction} [ACT].",
"I should {detailed_instuction} [ACT]."]

def process_ans_and_ques(instruction_string):

# sometimes add more details to instruction and privde mode details to the answer

if np.random.rand() > 0.8:
question = process_short_horizon_instruction(instruction_string, use_extra=True)
answer = np.random.choice(ANSWER_LIST)
answer = answer.format(detailed_instuction=instruction_string)

else:
question = process_short_horizon_instruction(instruction_string, use_extra=False)
answer = np.random.choice(PLANNER_ANSWER_LIST)

return question, answer

Figure E.2.1: Example programmatic generation for LCB training with language table data.
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