
Pairwise Proximal Policy Optimization: Large

Language Models Alignment via Comparative RL

Tianhao Wu
Banghua Zhu
Ruoyu Zhang
Zhaojin Wen
Kannan Ramchandran
Jiantao Jiao

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2024-21

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-21.html

April 26, 2024

Copyright © 2024, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Pairwise Proximal Policy Optimization:
Large Language Models Alignment via Comparative RL

Tianhao Wu∗ Banghua Zhu∗ Ruoyu Zhang∗ Zhaojin Wen†

Kannan Ramchandran∗ Jiantao Jiao∗

Abstract

LLMs may exhibit harmful behavior without aligning with human values.
The dominant approach for steering LLMs towards beneficial behavior
is Reinforcement Learning from Human Feedback (RLHF). This involves
training a reward model with a human-labeled ranking dataset and fine-
tuning the LLM with the reward signal using RL. Despite the fact that the
reward is learned from comparing different responses, the RL stage doesn’t
involve direct comparisons. This inconsistency between reward learning
and reinforcement learning stages exacerbates RL’s instability. An example
would be that the well adopted RL optimizer, Proximal Policy Optimization
(PPO), could perform different gradient updates even for batches with
identical human preference information. To address this, we propose a
new framework, reinforcement learning from comparative feedback, and a
simple policy gradient algorithm, Pairwise Proximal Policy Optimization
(P3O), that learns to improve from direct comparison. Theoretically, P3O
has the nice property of being invariant with any reward functions that
contain identical preference information, while doesn’t require learning a
value function. Empirical evaluations demonstrate that P3O can align
with human preferences better than existing methods. This suggest that
comparative RL is strong candidate for aligning LLM with preference data.

1 Introduction

Large Language Models (LLMs) have made remarkable progress, profoundly influencing the
AI community (Chowdhery et al., 2022; Brown et al., 2020; Touvron et al., 2023; Bubeck
et al., 2023). But these models can also generate outputs that are untruthful, toxic, or reflect
harmful sentiments. This is in part because LLMs are trained to predict the next word on
a large dataset of Internet text, rather than to safely perform the language task that the
user wants. In other words, these models aren’t aligned with their users. Consequently, it is
crucial to align LLMs with human values, e.g., helpful, honest, harmless (Bai et al., 2022a).

A leading method in AI Alignment for Large Language Models (LLMs), known as Rein-
forcement Learning from Human Feedback (RLHF), involves learning a reward function
and fine-tuning the model with this reward feedback using reinforcement learning (RL)
(Ziegler et al., 2019; Ouyang et al., 2022). Specifically, a reward model is trained to rank
candidate responses to align with the human-labeled ground-truth. As for RL, Proximal
Policy Optimization (PPO) is widely adopted as the default optimizer (Schulman et al.,
2017). PPO alternate between generate new responses and adjust the likelihood toward
responses with higher reward. Despite its acclaimed efficiency, we identify the inconsistency
between these two stages:

Inconsistency Between Reward Learning and RL. Although rewards are derived
by ranking responses according to human judgments, the RL phase does not incorporate
comparisons between generated samples. This leads to a scenario where the reward signal

∗Department of EECS, University of California, Berkeley
†Department of Statistics, University of California, Berkeley

1

A1
LM RM

A2

Q

LM RM

R1-R2

pairwise responses
per prompt

comparative
preference

update
Pairwise

Policy Gradient

Reinforcement Learning with Comparative Feedback

LM

P3O ✅
Streamline 😊

A1
LM

A2
LM R2

single response
per prompt

absolute
preference

RM

RM

LM

Reinforcement Learning with Absolute Feedback

Q2

Q1
R1 Generalize

Advantage Estimate

Policy Gradient

+

update

PPO ❎
Complicate ☹

Figure 1: The figure on the left illustrates the prevalent method for fine-tuning LMs using
RL, which relies on Absolute Feedback. In this paradigm, algorithms like PPO has to
learn a V function, which capture not only the valuable relative preference information, but
also less part, which is the scale of the reward for a given prompt. Contrastingly, the figure
on the right presents RL paradigm that improve from direct comparison. Our algorithm
generate a pair of responses per prompt, leveraging only the Comparative Feedback -
derived from the difference in reward - for policy gradient updates. This method obviates
the need for additional critic learning and intricate components like Generalized Advantage
Estimation (Schulman et al., 2015b).

can be highly variable, often being lower for more challenging prompts and higher for simpler
ones. When employing conventional algorithms like Proximal Policy Optimization (PPO) to
optimize against such a noisy reward, it becomes likely for PPO to reduce the likelihood
of a quality response to a difficult prompt due to the absence of comparisons. This issue is
further compounded by PPO’s sensitivity to various factors including reward normalization,
scaling, clipping, KL control, advantage normalization, and critic initialization (Zheng et al.,
2023; Engstrom et al., 2020), contributing to its fragility. For instance, (Zhu et al., 2023b)
pointed out that vanilla PPO would result in explosive generation length after exposure
to only 1000-2000 prompts. They found that a negative initial reward will result in length
exploding in the warmup phase, while a positive reward will shorten the generation length
(Figure 2). Therefore, they proposed shifting the reward to be slightly positive for length
control. However, this ad-hoc approach can only mitigate the issue and requires additional
effort to tune the reward mean. We also observe similar instability in PPO, especially the
decline of reward during the warm-up period, as well as the training being extremely sensitive
to the random seed.

From a formal perspective, we argue that this inconsistency arises because the reward training
objective, the Bradley-Terry Loss, is invariant to a constant shift, whereas PPO is not. This
implies that even if two reward models contain identical human preference information, their
optimization via PPO could lead to disparate results (Section 5). We further highlight that
a clear solution to this issue is to use comparative RL, which uses comparative ranking
information to steer the language model toward more preferred responses.

In this paper, we provide new insights to address the inconsistency:

• We define an equivalent relationship for reward functions trained from human preferences.
We identify that the widely adopted reward training loss, Bradley-Terry Loss, is invariant
under this equivalent relationship, while PPO is not. As a result, PPO may be less efficient
at learning the reward.

• We introduce Pairwise Proximal Policy Optimization (P3O), under the framework of
Reinforcement Learning from Comparative Feedback (Figure 1). P3O learns by comparing
pairs of responses, avoiding learning critic functions, advantage estimation and various
normalization techniques (Zheng et al., 2023). Empirical evaluations show that P3O
consistently outperforms PPO and Direct Preference Optimization (DPO) in terms of
GPT-4 Evaluation.

The reminder of the paper is organized as follows. In Section 2 and Section 3, we review
related works and the RLHF pipeline. In Section 4, we formally derive our algorithm P3O
and discuss the intuition behind it. We address the current limitation of PPO and provide
the motivation behind P3O in Section 5. We present experiment results including ablation
studies in Section 6. We discuss future works and conclude in Section 7.

2

Figure 2: Instability of PPO: Impact of reward shifting constant on response length. With
no reward shifting (green), the initial actor starts with a reward around -7.3. Three different
reward shifting parameters are tested: 0 (no shift), 7.2 (starting with a slightly negative
reward), and 7.5 (starting with a slightly positive reward). The results show that PPO is
extremely sensitive to reward shifting, starting with a slightly positive reward can better
control the response length while achieving nearly the same final reward.

2 Related Work

Significant efforts have been made towards aligning LLMs with human values. These
alignment strategies broadly fall into two categories: offline training and online training.

Offline training typically involve a static dataset, and doesn’t require additional evaluations
or generations. For instance, Thoppilan et al. (2022); Gunasekar et al. (2023) use instruction
fine-tuning to update the model on a high quality dataset tailored to a specific downstream
task of interest. Snell et al. (2022) proposed to employ offline Q Learning to learn an add-on
term for decoding. While Rafailov et al. (2023) introduced DPO, an offline approach that
can directly align LM with human preference data, drawing from the closed-form solution of
the Contextual Bandit with KL control problem. There are also methods like PRO (Song
et al., 2023) and RRHF (Yuan et al., 2023) that fine-tune the model based on ranking of the
rewards.

Our work is categorized under online training, which consist of a loop of generating new
responses from the updated policy, evaluating them with the reward model and updating
the policy. The current dominant approach RLHF relies on online RL methods such as PPO
(Schulman et al., 2017), A2C (Mnih et al., 2016) or their variants (Ramamurthy et al., 2022;
Zhu et al., 2023c). There are also few methods that deviate from this standard. For instance,
Gulcehre et al. (2023) introduce ReST, which use offline RL instead of online RL in the
policy improvement phase. Besides, Dong et al. (2023a) proposed RAFT, which iteratively
fine-tune the policy on the responses generated by the Best-of-N policy. Another paradigm
parallel to RLHF is Reinforcement Learning from AI Feedback (RLAIF) (Zhu et al., 2023a;
Bai et al., 2022b; Lee et al., 2023; Yuan et al., 2024), which aim for using AI to improve
AI. RLAIF substitute the role of human with AI in the feedback loop and yield comparable
results with RLHF.

Outside of the context of language, preference-driven policy learning has been explored in
both bandit and RL. Contextual dueling bandit (Dud́ık et al., 2015; Yue et al., 2012) use
preferences or rankings of actions to adjust the policy, rather than rewards. Similarly, PbRL

3

(Xu et al., 2020; Jain et al., 2013; Busa-Fekete et al., 2014; Christiano et al., 2017; Sadigh
et al., 2017; Kupcsik et al., 2018) learn from binary preferences generated by some unknown
scoring function.

2.1 Necessity of RL in LLM Alignment

The necessity of reinforcement learning (RL) for aligning large language models (LLMs)
has been a topic of much debate. There are alternative approaches, such as Direct Policy
Optimization (DPO), which is a simpler method that utilizes a pre-collected offline dataset
of preferences. On the other hand, RL involves a more intricate process of interacting with
the language model in real-time. This process includes generating new responses, evaluating
them using a reward model, and then updating the language model based on the rewards.

Despite the complexity and the challenge of hyperparameter optimization inherent to online
RL methods, recent studies have demonstrated that, with careful hyperparameter tuning,
online RL can produce results that are much stronger than non-RL methods Zhu et al. (2023a);
Lambert & Calandra (2023); Dong et al. (2023b); Xu et al. (2024). However, conclusively
addressing the necessity of RL for LLM alignment would require more sophisticated tooling
and evaluations, exceeds the scope of this paper.

3 Preliminaries

We briefly reviewing the RLHF pipeline in (Ziegler et al., 2019).

• SFT Phase (Supervised Fine-Tuning): This stage start with a pre-trained LM,
and then fine-tuned with supervised learning (typically maximum likelihood loss) on a
high quality dataset for the downstream task of interest. These tasks could be dialogue,
instruction following and summarization. The outcome of this stage is the supervised
fine-tuned model, denoted as πSFT.

• Reward Learning Phase. In the second phase the SFT model is prompted with prompts
x to produce pairs of answers y1,y2 ∼ πSFT(y|x). The responses pairs are then presented
to human labelers who express preferences for one answer, denoted as yw ≻ yl|x, where yw

is the one favored by the labeler and yl is the one less favored. Under these preferences is
the inaccessible latent reward model r∗(y,x). There are several approaches used to model
preferences, the Bradley-Terry (Bradley & Terry, 1952) model being a popular choice
(although more general Plackett-Luce ranking models (Luce, 2012; Plackett, 1975) are also
compatible with the framework if we have access to the ranking of answers). According to
the BT model, the human preference distribution p∗ can be expressed as:

p∗(y1 ≻ y2|x) =
1

1 + exp (r∗(y2|x)− r∗(y1|x))
Assuming the access to a dataset {(xi,yi

w,y
i
l)}Ni=1 sampled from p∗. We parameterize the

reward as rϕ and estimate it via maximum log-likelihood:

N∑
i=1

1

N
log σ

(
rϕ(y

i
w|xi)− rϕ(y

i
l |xi)

)
(1)

where σ is the sigmoid function. rϕ is initialized with πSFT augmented by additional linear
layers on top of the final attention layer. To normalize the scale and lower the variance of
rϕ, constraints like E [r(y|x)] = 0 might be incorporated.

• RL Fine-Tuning Phase. Prior work formulate the optimization problem as maximizing:

E
x∼D,y∼πθ

[
rϕ(y|x)− βDKL(πθ(·|x)∥πSFT(·|x))

]
(2)

The coefficient β is used to regulate the deviation from the SFT model. The KL-divergence
term is important to prevent the model from deviating from the distribution on which
the reward model is trained, as well as preventing the model from completely forget the
world knowledge acquired in the pre-training stage. The standard approach is to directly
employ PPO (Schulman et al., 2017; Ouyang et al., 2022) to optimize the modified reward
rϕ(y|x)− β

(
log πθ(y|x)− log πSFT(y|x)

)
.

4

4 Algorithm

4.1 Proximal Pairwise Policy Optimization (P3O)

To derive P3O, we start from Vanilla Policy Gradient (VPG, Pseudocode 2) (Sutton et al.,
1999; Schulman et al., 2017; Wu et al., 2022). For clarity, we’ll focus on the bandit setting,
though it can be extended to contextual bandits as in theorem 4.1.

In the bandit setting, assume we are updating a parameterized policy πθ with actions denoted
as y. The VPG aims for estimating the following formula with samples:

∇LVPG = E
y∼πθ

(r(y)− b)∇ log πθ(y) (3)

where b is a baseline used for variance reduction. A common choice for the baseline is the
mean reward, which gives:

∇LVPG = E
y1∼πθ

(r(y1)− E
y2∼πθ

r(y2))∇ log πθ(y1)

= E
y1,y2∼πθ

(r(y1)− r(y2))∇ log πθ(y1) (4)

Equation 4 highlights the reliance on the relative difference between rewards. Symmetrizing
for y1,y2 yield:

∇LVPG = E
y1,y2∼πθ

(r(y1)− r(y2))∇
(
log

πθ(y1)

πθ(y2)

)
/2

Its immediate generalization to contextual bandit is the following:

Theorem 4.1 (Pairwise Policy Gradient). For any prompt x, the policy gradient can be
expressed as ∇LVPG = E

x∼D
∇LPPG(x), where ∇LPPG(x) can be expressed as:

E
y1,y2∼πθ

(r(y1|x)− r(y2|x))∇
(
log

πθ(y1|x)
πθ(y2|x)

)
/2

Proof. In the contextual bandit setting, VPG aims for estimating the gradient ∇LVPG =
Ex∼D∇LVPG(x), where ∇LVPG(x) can be expressed as:

∇LVPG(x) = E
y∼πθ(y|x)

r(y|x)∇ log πθ(y|x)

Again we subtract the baseline E
y2∼πθ(·|x)

r(y2|x):

∇LVPG = E
y1∼πθ(·|x)

(r(y1|x)− E
y2∼πθ(·|x)

r(y2|x))∇ log πθ(y1|x)

= E
y1,y2∼πθ(·|x)

(r(y1|x)− r(y2|x))∇ log πθ(y1|x) (5)

Swap actions y1,y2 in Eq (5) and average together we get the desired form:

∇LVPG(x) = E
y1,y2∼πθ(·|x)

(r(y1|x)− r(y2|x))∇
(
log

πθ(y1|x)
πθ(y2|x)

)
/2

To estimate the policy gradient with finite samples, considering that the replay buffer is
collected using the previous policy πθold , we further utilize importance sampling to correct
the bias. The following theorem provides an unbiased estimation of the pairwise policy
gradient:

Theorem 4.2 (Estimate PPG with Importance Sampling). For replay-buffer Dk = {τ i =
(xi,yi

1,y
i
2, r

i
1, r

i
2)}ni=1 collected using πθold . The following is an unbiased estimation of pairwise

policy gradient:

1

2n

n∑
i=1

(ri1 − ri2)
πθ(y

i
1|xi)

πθold(y
i
2|xi)

πθ(y
i
2|xi)

πθold(y
i
2|xi)

· ∇
(
log

πθ(y
i
1|xi)

πθ(yi
2|xi)

)
/2

5

Algorithm 1 Pairwise Proximal Policy Optimization (P3O)

1: Initialization: Initialize policy from the SFT model with parameters θ0
2: for k = 0, 1, 2 · · · do
3: Sampling n prompts {xi}ni=1 from a prompt dataset. Collect pairwise responses for

each prompt by sampling from the latest policy πθk :

yi
1,y

i
2 ∼ πθk(·|xi)

4: Score all the responses with a reward model rmodel, and aggregate the reward with
KL divergence:

r(y|x) = rmodel(y|x)− βDKL (πθk(·|x)∥πθ0(·|x))

5: Estimate policy gradient on the scored replay-buffer Dk = {τ i = (xi,yi
1,y

i
2, r

i
1, r

i
2)}ni=1

via:
ĝk = ∇θLP3O

joi (Dk)

6: Update the θk via gradient descent and yield θk+1.
7: end for

4.2 Clipping

To disincentivizes large updates to the policy, and guarantee strict policy improvement, we
further employ clipping to the objective. Specifically, the intuition behind clipping is that the
ratio πθ/πθold should remain close to 1, guided by the sign of the reward difference r1 − r2.
If r1 − r2 > 0, it implies that taking the action y1 is beneficial compared with taking action
y2. Hence, we aim to increase the probability πθ(y1|x). However, if the policy ratio πθ/πθold
exceeds 1+ ϵ, we consider the change sufficient and halt the gradient; otherwise, the gradient
is computed for further learning. Conversely, if r1 − r2 < 0, we strive to optimize the ratio
towards 1− ϵ instead of 1 + ϵ. This intuition guides us to derive two variants of clippings,
differentiated by whether it is applied separately or jointly for actions y1 and y2.

Clipping Separately (Version 1): For {i, j} = {1, 2},

LP3O
i (x) = E

y1,y2∼πθold

sg

(
(r(yi|x)− r(yj |x))

πθ(yj |x)
πθold(yj |x)

)
πθ(yi|x)
πθold(yi|x)

LP3O
i,clip(x) = E

y1,y2∼πθold

sg

(
(r(yi|x)− r(yj |x))

πθ(yj |x)
πθold(yj |x)

)
clip(

πθ(yi|x)
πθold(yi|x)

, 1− ϵ, 1 + ϵ)

LP3O
sep (D) = E

x∼D

[
min(LP3O

1 (x),LP3O
1,clip(x)) + min(LP3O

2 (x),LP3O
2,clip(x))

]
/2

Clipping Jointly (Version 2):

LP3O(x) = E
y1,y2∼πθold

sg

(
(r(y1|x)− r(y2|x))

πθ(y1|x)
πθold(y1|x)

πθ(y2|x)
πθold(y2|x)

)
log

πθ(y1|x)
πθ(y2|x)

LP3O
clip(x) = E

y1,y2∼πθold

sg

(
(r(y1|x)− r(y2|x))

πθ(y1|x)
πθold(y1|x)

πθ(y2|x)
πθold(y2|x)

)
× clip

(
log

πθ(y1|x)
πθ(y2|x)

, log
πθold(y1|x)
πθold(y2|x)

− ϵ, log
πθold(y1|x)
πθold(y2|x)

+ ϵ

)
LP3O
joi (D) = E

x∼D
min(LP3O(x),LP3O

clip(x))

4.3 Relationship with PPO and DPO

Comparison with PPO: Although PPO and P3O both fall into the online RL framework,
they differ in the way they perform policy update: PPO update based on an estimated
advantage, while P3O update based on direct comparison of two responses. Consider a

6

simplified version of PPO applied to contextual bandit:

LPPO
no clip = − E

y∼πθold
(·|x)

(r(y|x)− Vϕ(x))
πθ(y|x)
πθold(y|x)

Where Vϕ(x) is a proxy to the ground truth value function V πθold = Ey∼πθold
r(y|x), usually

learnt via an additional regression loss. In contrast, P3O doesn’t require learning the value
function, this significantly reduce engineering efforts. P3O employ an additional sample y2

to estimate the gradient unbiasedly, and update the policy based on the comparison r1 − r2.

Comparison with DPO: The gradient of DPO’s objective function ∇LDPO(x,yw,yl)
takes the following form:

βσ
(
β log

πθ(yl|x)
πSFT(yl|x)

− β log
πθ(yw|x)

πSFT(yw|x)

)
· ∇

(
log

πθ(yw|x)
πθ(yl|x)

)
/2

The direction of the gradient resembles that of our formulation in Theorem 4.1. However,
the weight coefficients are different. The core difference of DPO and P3O is that P3O is
an online RL algorithm while DPO is not. P3O learns to trials and errors by alternating
between generate and update from human feedback while DPO is applied to a fixed dataset.
We empirically observe that DPO falls short on KL-control (Figure 5 and 3) compared to
P3O, we hypothesis that this is because DPO aligns the policy towards the goal policy
while doesn’t directly consider the reward of the intermediate policies. Unlike P3O, which
applies policy gradient based on the idea of strict policy improvement for every gradient
update (Schulman et al., 2015a), DPO aligns the policy via an alternate “distance”, where
the intermediary steps are not guaranteed to maximize the KL-Reward trade-off. We note
that P3O combines the benefits of PPO and DPO, offering guaranteed policy improvement
akin to policy gradient.

5 Reward Equivalence & Inconsistency of PPO

We formally define the concept of reward equivalence (Definition 5.1). We show that BTL is
invariant under this equivalent relationship in lemma 5.2. We then discuss why it leads to a
desirable property named invariance (Definition 5.3) that we want RL algorithms to satisfy.
In the end, we present our main theorem (Theorem 5.4) which shows that PPO does not
satisfy this property, contributing to its instability.

Definition 5.1 (Reward Equivalence). Two reward functions r(y|x) and r′(y|x) are termed
equivalent, denoted as r ∼ r′, if and only if there exist a function δ(x) depend solely on the
prompt x, such that for every prompt and response pair (x,y),

r(y|x)− r′(y|x) = δ(x)

The equivalent class associated with reward r is represented as [r].

Note that comparative losses such as Bradley-Terry loss and Plackett-Luce loss, is unaffected
by a shift in the prompt’s reward as in definition 5.1. This observation leads to the following
Lemma:

Lemma 5.2 (Invariance of BTL). For two reward functions that satisfy r ∼ r′, they both
yield identical loss for any response pairs (or K responses) under the Bradley-Terry Loss (or
Plackett-Luce Loss).

Lemma 5.2 underscores that the only information we can learn from the preference data
is the reward difference of two responses to the same prompt. This implies that direct
comparison of responses stemming from different prompts should be avoided. This is because
we can craft an arbitrary function denoted as δ and replace r̂ with the identical r̂ + δ, while
flipping the sign of r̂(y|x)− r̂′(y′|x′). As a result, an ideal algorithm should focus only on
the relevant information within the reward function, filtering out the noise represented by δ.
A full proof is given as follows:

7

Proof. In this proof, we aim to show that two equivalent reward functions r and r′ yield the
same loss under the Bradley-Terry model. Assume that r ∼ r′, then by definition there exist
δ(x) such that for any prompt and response pair (x,y), r′(y|x) = r(y|x) + δ(x).

Consider any prompt x and two responses yw,yl labeled by human. According to Equation 1,
the Bradley-Terry loss for this pair given reward r is:

loss = log σ (r(yw|x)− r(yl|x))

Similarly, the Bradley-Terry loss for this pair given reward r′ is:

loss′ = log σ (r′(yw|x)− r′(yl|x))

By substituting r′(y|x) with r(y|x) + δ(x) in loss′, we get:

r′(yw|x)− r′(yl|x) = (r(yw|x) + δ(x))− (r′(yl|x) + δ(x)) = r(yw|x)− r(yl|x)

This shows that loss′ = loss, indicating that the two reward functions r and r′ are indeed
equivalent with respect to the Bradley-Terry loss. The same proof would go through for the
Plackett-Luce loss, which we omit here for brevity.

The above property of BTL motivate the following definition of Invariance:

Definition 5.3 (Invariance). An algorithm is said to be invariant with respect to the
equivalent relation “∼”, if for any two equivalent reward functions r ∼ r′ and a fixed set of
prompt and response pairs, the algorithm perform identical updates to the policy.

To illustrate definition 5.3, assume that we have two equivalent reward functions r̂ and
r̂′ = r̂ + δ. Notably, even when initialized with the same random seed, PPO can result in
distinct updates for an identical batch. This behavior can be attributed to PPO’s reliance on
learning a V function to estimate advantage. In the simplest scenario, where the advantage
is estimated via one-step TD (Adv(y|x) = r(y|x)− V (x), corresponding to λGAE = 0) and
y is a single token, we should expect the advantage function to stay unchanged. However,
following the derivation

Advr̂(y|x) = Advr̂′(y|x)
⇐⇒ r̂(y|x)− Vr̂(x) = r̂′(y|x)− Vr̂′(x)

⇐⇒ Vr̂′(x)− Vr̂(x) = δ(x)

We can see that even though r̂ and r̂′ are equivalent, they yield different updates for V
function. This give rise to our main theorem:

Theorem 5.4 (Non-invariance of PPO). P3O is invariant with respect to “∼”. In contrast,
PPO is not, given the same initialization of V .

Proof. Assume that we have two equivalent reward functions r ∼ r′, by definition there exist
δ(x) such that for any prompt and response pair (x,y), r′(y|x) = r(y|x) + δ(x).

Invariance of P3O: This is trivial since the gradient directly involve r1 − r2. We take
P3O-V2 as an example and write the gradient formulation with respect to the prompt
responses pair (x,y1,y2):

If the reward is r, the update follows:

LP3O
r = sg

(
(r(y1|x)− r(y2|x))

πθ(y1|x)
πθold(y1|x)

πθ(y2|x)
πθold(y2|x)

)
log

πθ(y1|x)
πθ(y2|x)

LP3O
r,clip = sg

(
(r(y1|x)− r(y2|x))

πθ(y1|x)
πθold(y1|x)

πθ(y2|x)
πθold(y2|x)

)
× clip

(
log

πθ(y1|x)
πθ(y2|x)

, log
πθold(y1|x)
πθold(y2|x)

− ϵ, log
πθold(y1|x)
πθold(y2|x)

+ ϵ

)
∇LP3O

r,joi = ∇min(LP3O
r ,LP3O

r,clip)

8

Similarly, if the reward is r′, the gradient is:

LP3O
r′ = sg

(
(r′(y1|x)− r′(y2|x))

πθ(y1|x)
πθold(y1|x)

πθ(y2|x)
πθold(y2|x)

)
log

πθ(y1|x)
πθ(y2|x)

LP3O
r′,clip = sg

(
(r′(y1|x)− r′(y2|x))

πθ(y1|x)
πθold(y1|x)

πθ(y2|x)
πθold(y2|x)

)
× clip

(
log

πθ(y1|x)
πθ(y2|x)

, log
πθold(y1|x)
πθold(y2|x)

− ϵ, log
πθold(y1|x)
πθold(y2|x)

+ ϵ

)
∇LP3O

r′,joi = ∇min(LP3O
r′ ,LP3O

r′,clip)

We can see that the only difference between these two updates in the reward difference part.
However, due to the fact that

(r′(y1|x)− r′(y2|x)) = (r(y1|x) + δ(x)− r(y2|x)− δ(x)) = (r(y1|x)− r(y2|x))

We conclude that LP3O
r = LP3O

r′ and LP3O
r,clip = LP3O

r′,clip. Consequently, the two updates

∇LP3O
r,joi ,∇LP3O

r′,joi are the same.

PPO is not Invariant: The loss of PPO is the combination of policy-loss and V -loss, with
the trade-off of these two terms controlled by hyper-parameter η:

LPPO = Lpolicy + ηLV

Suppose the policy network and the V network have separate parameters, then taking the
gradient of LPPO is simply taking gradient of Lpolicy. We aim to prove that the gradient of
Lpolicy is not identical for two equivalent rewards. We first recap the formula of Lpolicy:

Lpolicy = − E
(st,at)∼πθold

min

(
πθ(at|st)
πθold(at|st)

Âdv(at|st), clip
(

πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Âdv(at|st)

)
Where the Âdv is estimated via GAE:

Âdv(at|st) = δt + (λγ)δt+1 + · · ·+ (λγ)T−t+1δT−1

δt = r(st, at) + γV (st+1)− V (st)

For simplicity, we consider the one-sample case, where we are taking gradient with respect

to the sample (st, at). According to the formula of Âdv, and combine with the fact that the
reward is only appended to the last token T . We have the following relation,

Âdvr′(at|st) = Âdvr(at|st) + (λγ)T−t+1δ

Here, δ = δ(x), x represent the prompt corresponding to st, which is a prefix of st. As a

result, ∇min
(

πθ(at|st)
πθold

(at|st) Âdv(at|st), clip
(

πθ(at|st)
πθold

(at|st) , 1− ϵ, 1 + ϵ
)
Âdv(at|st)

)
will not stay

unchanged for different reward r, since Âdv can be arbitrary real number by choosing δ.

6 Experiments

In this section, we empirically study how well can P3O align with human preference. We con-
duct experiments on two widely-adopted RLHF tasks, summarization and question-answering,
and we find that P3O achieves better performance in terms of both KL-Reward trade-off
and quality of generation, against several strong baselines. We will first briefly introduce the
tasks, compared methods, and evaluations in our experiments, and then elaborate on these
findings in detail. Tasks. We explore two different open-ended text generation tasks, i.e.
summarization and question-answering. For both tasks, algorithms are given a reward

model pre-trained from a dataset of preference D = {x(i),y
(i)
w ,y

(i)
l }, and the goal is to obtain

a policy π(y|x) that can generate high-quality response y given prompt x. In summarization,
we use the TL;DR “too long; didn’t read” dataset (Völske et al., 2017), where x is a
forum post from Reddit, and y is a corresponding summary. We use a 6B SFT model
CarperAI/openai summarize tldr sft as the initial policy and EleutherAI/gpt-j-6b as

9

Figure 3: KL-Reward frontier for HH: x-axis and y-axis represents DKL(πθ∥πSFT) and the
reward respectively. Each point represent an average of results over 280 test prompts and
calculated every 500 gradient updates. Left two figure compare P3O-V1 and PPO with
varying base model sizes; Right two figures compare P3O-V2 and online-DPO. Results
showing that P3O can not only achieve higher reward but also yield better KL control.

the reward model. In question-answering, x is a human query, which may come from
diverse topics, and the policy should learn to produce an engaging and helpful response y.
Following prior work, we use the Anthropic Helpful and Harmless (HH) dataset (Bai et al.,
2022a). We fine-tune two policies of sizes {1B,6B}, Dahoas/pythia-1B-static-sft and
Dahoas/pythia-6B-static-sft. Both models have gone through supervised fine-tuning
with labeled prompt-response pairs, similar to the protocol in Ouyang et al. (2022) and Rama-
murthy et al. (2022). For the reward model, we use the 6B model Dahoas/gptj-rm-static
trained from the same dataset based on EleutherAI/gpt-j-6b as a proxy of human prefer-
ence. Methods. We compare two versions of P3O, P3O-V1 and P3O-V2, which represent
clipping separately and jointly respectively, with several effective and representative ap-
proaches for LLM alignment. We start with the SFT policy trained by token-wise supervised
fine-tuning. It hasn’t gone through further alignment; Every other method uses the SFT
model as initialization. For RL algorithms1, we consider the dominant approach PPO
(Schulman et al., 2017; Ouyang et al., 2022) with reward specified in Eq (2). We follow
the implementation of trlx (Castricato et al., 2023). Besides, we also consider the newly
proposed DPO (Rafailov et al., 2023), a method that directly optimizes the policy towards
the closed-form solution of the KL-constrained reward maximization. Although DPO is
proposed as an offline alignment method, we notice that we can make it online with the help
of a proxy reward function. To be more specific, we use the reward function to directly assign
which response is preferred based on a soft-max distribution of rewards. If two responses
have reward r1, r2 respectively, then the response with reward r1 is preferred with probability
σ(r1 − r2) (More details in Appendix A.2).

1Among methods directly involving RL, we note that PPO and a modified version A2C (Mnih
et al., 2016; Lee et al., 2023) are the only two current online RL methods for LLM alignment.
However, there is no strong evidence showing the supremacy of A2C over PPO, so we choose PPO
as our baseline.

10

P3O DPO PPO SFT

P3O

DPO

PPO

SFT

50.0 54.6 57.0 69.3

45.4 50.0 54.0 67.3

43.0 46.0 50.0 61.6

30.7 32.7 38.4 50.0 35

40

45

50

55

60

65

GPT-4 win rate [%
]

P3O DPO PPO SFT

P3O

DPO

PPO

SFT

50.0 50.5 60.5 77.9

49.5 50.0 62.1 76.3

39.5 37.9 50.0 69.6

22.1 23.7 30.4 50.0 30

40

50

60

70

reward win rate [%
]

Figure 4: Head-to-head comparisons between {P3O, DPO, PPO, SFT}. Left figure displays
the win rate as evaluated by GPT-4. Right figure presents the win rate based on comparison
of the proxy reward. Despite the high correlation between the figures, we found that the
reward win rate must be adjusted according to the KL to align with the GPT-4 win rate.

Evaluations. Deviating too much from the reference policy (e.g. SFT model) would lead
the online policy to cut corners of the reward model and produce incoherent continuations,
as pointed out by previous works (Ziegler et al., 2019). Gao et al. (2023) studied the scaling
law of reward over-optimization in a synthetic setup, where labels are supplied by a “gold
standard” reward model. They empirically find out the golden reward can be approximated
by a simple function form involving the square-root KL-divergence from the reference policy.
Therefore, it is important to balance the trade-off between the KL-divergence and asymptotic
reward, and we measure the effectiveness of each algorithm by its frontier of achieved reward
and KL-divergence from the reference policy (KL-Reward Frontier). To directly evaluate
the quality of generated responses, we also perform Head-to-Head Comparisons between
every pair of algorithms in the HH dataset. We use two metrics for evaluation: (1) Reward,
the optimized target during online RL, (2) GPT-4, as a faithful proxy for human evaluation
of response helpfulness. For the latter metric, we shall point out that previous studies show
that LLMs can be better automated evaluators than existing metrics (Chen et al., 2023),
and GPT-4 judgments correlate strongly with humans, with human agreement with GPT-4
typically similar or higher than inter-human annotator agreement (Rafailov et al., 2023).

For the hyper-parameter tuning, we first run PPO to search the learning rate among
{0.5, 1, 2, 4, 8} × 10−6 that yields the best KL-Reward frontier (Section 6). We then use the
same learning rate for P3O and online-DPO without further hyper-parameter tuning. To
ensure fair comparison, we double the batch size of PPO such that every algorithms can see
the same number of responses, although P3O and online-DPO only see half the prompts.

6.1 KL-Reward Frontier

We conduct experiments on both TL;DR and HH datasets to evaluate the efficacy of
the alignment algorithms in optimizing reward while restricting policy deviation from
the reference. Figures 5 and 3 demonstrate the KL-Reward frontier for TL;DR and HH
respectively. Each point represents the average evaluation over test prompts at every 500-step
interval. The x-axis represents the average sequence-level KL-divergence DKL(πθ∥πSFT),
whereas the y-axis stands for the average reward given by the proxy reward model. For
summarization task, we find that P3O-V1 can reach a slightly higher reward than P3O-V2,
while with a worse KL-Reward trade-off. Consequently, only P3O-V2 is included in Figure 5
for comparison. We find that P3O-V2 is able to produce almost the same highest reward
whilst maintaining superior KL efficiency. DPO, despite its faster convergence, exhibits a
25% higher KL-divergence than P3O-V2 under the same reward. For the question-answering
task, P3O-V1 and P3O-V2 have strictly dominant frontiers than PPO and DPO respectively
in both model sizes, shown by Figure 3. Empirical findings establish P3O’s superior trade-off
between KL and Reward over other baselines, delivering a substantial higher reward in the
range of 0.1-0.3.

11

Figure 5: KL-Reward Frontier for TL;DR: The x-axis represent DKL(πθ∥πSFT), y-axis
represent the reward evaluated by the reward model, both averaged over 200 test prompts
and evaluate every 500 gradient steps. We find that a simple linear function fit the curve
well. P3O have the best KL-Reward trade-off among the three.

P3O DPO PPO SFT

Reward ↑ −0.302 −0.298 −0.613 −1.195
KL (sample) ↓ 9.83 12.01 7.02 0
KL (token) ↓ 0.12 0.14 0.06 0
Token num 80.46 88.84 109.03 112.70

Table 1: Statistics for the checkpoints we used in GPT-4 evaluation: PPO and SFT tends to
generate long responses while P3O and DPO generate shorter responses. Moreover, P3O
achieves nearly the same reward with DPO while incurring much less KL.

6.2 Head-to-Head Comparisons

We further conduct head-to-head comparisons between each algorithm pair among {P3O,
DPO, PPO, SFT}. Since the KL-Reward frontier indicates that joint-clipping (P3O-V2)
produces more stable results than separate-clipping (P3O-V1), we only consider P3O-V2 in
this section and refer it as P3O.

We sample completions from different policies2 on the test set of the HH dataset at default
temperature 1.0, and we compute the average pairwise win rate using (1) reward and (2)
GPT-4 as evaluators (Table 2 as an example). Previous studies (Chen et al., 2023; Rafailov
et al., 2023) have shown that GPT-4 is a faithful proxy for human preference and is widely
adopted for comparisons. The prompt used for evaluation is presented in Appendix C.1.

Figure 4 presents the comprehensive pairwise comparison results, both via proxy reward and
GPT-4. The average KL-divergence and reward ranking of these models is DPO > P3O >
PPO > SFT. Although DPO marginally surpasses P3O in reward, it has a considerably
higher KL-divergence (Table 6.1), which may be detrimental to the quality of generation.
As a result, DPO has a reward win rate 49.5% against P3O, but only 45.4% as evaluated by
GPT-4. Compared with other methods, P3O exhibits a GPT-4 win rate of 57.0% against
PPO and 69.3% against SFT. This result is consistent with our findings from the KL-Reward
frontier section, affirming that P3O could better align with human preference than previous
baselines.

Interpretation: We hypothesis the reason why DPO usually achieve higher reward but fell
short of the KL-control than PPO is because DPO directly align the policy toward the goal
policy in a distance irrelevant to the reward. Unlike PPO performing policy gradient that

2We select checkpoints with the highest reward for generation.

12

Prompt Human: How can I make my own soap at home?
Assistant:

P3O There are a few different methods for making your own soap at home. Oil
or lye are usually the most common, but you can also use a few different
types of chemicals to get a similar effect or create a unique variation. Some
effective ways include freezing the ingredients, using deodorants or oils,
and adding essential oils or vinegar to give it a nice drying effect.

DPO I wouldn’t recommend it, it’s a little fancier and not something you can
do at home.

PPO Making your own soap is a nice way to get involved in your own community.
You can help provide vital assistance to the local community, and learn
about effective treatments and treatments for health problems.

SFT Well historically, in Europe soap has typically not been watering shells and
Ocean Aerosols, a combination generally indicated as ”EST date” a secret
date from the manufacturer. Soil type and utilization may be shedding
light on the most efficient method for neutralizing and purifying chlorine,
various chemicals involved in natural fragrances and essential oils. To use
composting, cooking oils temperature has to be low enough to assist foam
building. Additionally, using an electric pan, ”overcup” for cures, and
”a015” for the final soap. How do you plan to save your energy and waste
water?

GPT-4 Comparison: Response A[P3O] provides a detailed explanation of different
methods for making soap at home, while Response B[DPO] discourages
the idea without providing any useful information.
Comparison: Response A[PPO] is vague and doesn’t provide any specific
steps or ingredients for making soap, while Response B[P3O] gives a
general idea of the process and ingredients involved in soap making.
Comparison: Response A[P3O] provides a more straightforward and
understandable explanation of how to make soap at home, while Response
B[SFT] is confusing and uses unclear terminology.

Table 2: An example of LLM as a judge: P3O is assessed as the most helpful by GPT-4. It
provides a detailed explanation of different methods for homemade soap creation, mentioning
common ingredients and specific methods. Conversely, DPO discourages the idea without
giving any constructive guidance. PPO fails to offer any specific steps or ingredients for
soap creation. Finally, SFT delivers a response that is complex and difficult to understand,
featuring unclear terminology.

stem from the idea of strictly policy improvement for every gradient updates, DPO align the
policy through another “distance”, the intermediate point are not guaranteed to achieve the
best KL-Reward trade-off. We note that P3O marry all the benefits of PPO and DPO, with
the benefit of policy gradient like methods that guarantee strictly policy improvement, while
being able to achieve same or better asymptotic reward than DPO.

6.3 Ablations

We study the impact of Clipping and KL coefficient. We use KL-Reward frontier as an
metric. Our study primarily aims to answer two questions:

Effect of KL coefficient: Figure 6 (Left) illustrate that its value significantly influences
the algorithm’s performance. Larger KL coefficients led to a slight improvement in the
KL-Reward frontier but a larger decrease in the asymptotic reward. This suggests that
using a smaller KL coefficient might provide a more favorable trade-off between reward and
KL-divergence.

Effect of Clipping: Figure 6 (Right) indicate that clipping positively impacts the KL-
Reward frontier, particularly in the early stages of training. This enhancement is accompanied
by a slight decrease in the highest reward it can achieve. Our results also show that clipping
is more effective when the learning rate is larger. This aligns with our understanding, as a

13

Figure 6: The Left figure illustrates the effect of varying the KL coefficient within the
set 0.02, 0.05, 0.1, 0.2. The Right figure compares P3O-V2 with and without the clipping
technique (solid lines represent with clipping, dashed lines without)

smaller learning rate would naturally keep the update ratio closer to 1, thereby reducing the
need for clipping.

7 Conclusion & Future Works

This work presents new insights into aligning large language models with human preferences
via reinforcement learning. We introduced the Reinforcement Learning from Comparative
Feedback framework, which unifies the core principles of reward modeling and RL fine-tuning.
Our empirical evidence compellingly supports the notion that comparative RL, by leveraging
direct comparisons, presents a more effective approach for alignment than traditional non-
comparative RL methods. Within this framework, we developed P3O, which utilizes pairwise
comparisons to perform policy updates. Our empirical assessments have shown that P3O
not only surpasses previous methodologies in achieving a better balance on the KL-Reward
frontier but also demonstrates superior performance in GPT-4 win-rate comparisons. P3O
encapsulates the benefits of policy gradient techniques while simplifying both the algorithmic
construction and function approximation.

Looking ahead, several intriguing questions arise for future exploration. Firstly, we aim
to understand the impacts of reward over-optimization on trajectory-based RL algorithms
and token-based RL algorithms. Secondly, we are interested in whether we can generalize
the policy gradient algorithm to accommodate more than two ranked responses, potentially
enabling a better trade-off between human effort and AI alignment. Finally, we wish to
explore the benefits of applying P3O in contexts beyond training language models with
human feedback. We eagerly anticipate investigating these questions in our future work.

References

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful
and harmless assistant with reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy
Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitu-
tional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022b.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

14

Language models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial
general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Róbert Busa-Fekete, Balázs Szörényi, Paul Weng, Weiwei Cheng, and Eyke Hüllermeier.
Preference-based reinforcement learning: evolutionary direct policy search using a
preference-based racing algorithm. Machine learning, 97:327–351, 2014.

Louis Castricato, Alex Havrilla, Shahbuland Matiana, Duy V. Phung, Aman Tiwari, Jonathan
Tow, and Maksym Zhuravinsky. trlX: A scalable framework for RLHF, June 2023. URL
https://github.com/CarperAI/trlx.

Yi Chen, Rui Wang, Haiyun Jiang, Shuming Shi, and Ruifeng Xu. Exploring the use of large
language models for reference-free text quality evaluation: A preliminary empirical study.
arXiv preprint arXiv:2304.00723, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311,
2022.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. Advances in neural information
processing systems, 30, 2017.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun
Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model
alignment. arXiv preprint arXiv:2304.06767, 2023a.

Yi Dong, Zhilin Wang, Makesh Narsimhan Sreedhar, Xianchao Wu, and Oleksii Kuchaiev.
Steerlm: Attribute conditioned sft as an (user-steerable) alternative to rlhf. arXiv preprint
arXiv:2310.05344, 2023b.

Miroslav Dud́ık, Katja Hofmann, Robert E Schapire, Aleksandrs Slivkins, and Masrour Zoghi.
Contextual dueling bandits. In Conference on Learning Theory, pp. 563–587. PMLR, 2015.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A
case study on ppo and trpo. arXiv preprint arXiv:2005.12729, 2020.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
In International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts,
Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al.
Reinforced self-training (rest) for language modeling. arXiv preprint arXiv:2308.08998,
2023.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno,
Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi,
et al. Textbooks are all you need. arXiv preprint arXiv:2306.11644, 2023.

Ashesh Jain, Brian Wojcik, Thorsten Joachims, and Ashutosh Saxena. Learning trajectory
preferences for manipulators via iterative improvement. Advances in neural information
processing systems, 26, 2013.

Andras Kupcsik, David Hsu, and Wee Sun Lee. Learning dynamic robot-to-human object
handover from human feedback. Robotics Research: Volume 1, pp. 161–176, 2018.

Nathan Lambert and Roberto Calandra. The alignment ceiling: Objective mismatch in
reinforcement learning from human feedback. arXiv preprint arXiv:2311.00168, 2023.

15

https://github.com/CarperAI/trlx

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop,
Victor Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human
feedback with ai feedback. arXiv preprint arXiv:2309.00267, 2023.

R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation,
2012.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning, pp. 1928–1937.
PMLR, 2016.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society
Series C: Applied Statistics, 24(2):193–202, 1975.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. arXiv preprint arXiv:2305.18290, 2023.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa,
Christian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning
(not) for natural language processing?: Benchmarks, baselines, and building blocks for
natural language policy optimization. arXiv preprint arXiv:2210.01241, 2022.

Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based
learning of reward functions. 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pp. 1889–1897.
PMLR, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural
language generation with implicit language q learning. arXiv preprint arXiv:2206.11871,
2022.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei Huang, Yongbin Li, and Houfeng Wang.
Preference ranking optimization for human alignment. arXiv preprint arXiv:2306.17492,
2023.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. Advances in neural
information processing systems, 12, 1999.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha,
Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language
models for dialog applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023.

16

Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. Tl; dr: Mining reddit
to learn automatic summarization. In Proceedings of the Workshop on New Frontiers in
Summarization, pp. 59–63, 2017.

Tianhao Wu, Yunchang Yang, Han Zhong, Liwei Wang, Simon Du, and Jiantao Jiao. Nearly
optimal policy optimization with stable at any time guarantee. In International Conference
on Machine Learning, pp. 24243–24265. PMLR, 2022.

Jun Xu, Zeng Wei, Long Xia, Yanyan Lan, Dawei Yin, Xueqi Cheng, and Ji-Rong Wen.
Reinforcement learning to rank with pairwise policy gradient. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 509–518, 2020.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang,
Chao Yu, and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study.
arXiv preprint arXiv:2404.10719, 2024.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang.
Rrhf: Rank responses to align language models with human feedback without tears. arXiv
preprint arXiv:2304.05302, 2023.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling
bandits problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012.

Rui Zheng, Shihan Dou, Songyang Gao, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin, Qin
Liu, Limao Xiong, Lu Chen, et al. Secrets of rlhf in large language models part i: Ppo.
arXiv preprint arXiv:2307.04964, 2023.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving
llm helpfulness & harmlessness with rlaif, November 2023a.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving
llm helpfulness & harmlessness with rlaif, 2023b.

Banghua Zhu, Hiteshi Sharma, Felipe Vieira Frujeri, Shi Dong, Chenguang Zhu, Michael I
Jordan, and Jiantao Jiao. Fine-tuning language models with advantage-induced policy
alignment. arXiv preprint arXiv:2306.02231, 2023c.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

17

A Algorithms

A.1 Pseudocodes

Algorithm 2 Vanilla Policy Gradient

1: Initialization: Initialize policy parameters θ0 and value function parameters ϕ0

2: for k = 0, 1, 2 · · · do
3: Collect trajectories Dk = {τi} by running policy πθk starting from a batch of prompts

and generate single trajectory from each prompt.
4: Compute token-wise rewards contain both token-wise KL and preference reward as in

Equation 2. And then rewards-to-go R̂t.

5: Estimate advantage estimates Âdvt via GAE or other methods.
6: Estimate policy gradient via:

ĝk =
1

|Dk|
∑
τ∈Dk

T∑
k=0

Âdvt∇θ log πθ(at|st)

7: Apply gradient updates to θk using gradient descent.
8: Fit value function by regression on mean-squared error via gradient descent:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Vϕ(st)− R̂t)
2

9: end for

We present the pseudocode for both the Vanilla Policy Gradient (VPG) and our proposed
algorithm P3O. While both algorithms follow the similar procedure of collecting trajectories
and leveraging these trajectories to estimate the gradient, there are key differences: Our
method collect pairwise trajectories and compute trajectory-wise rewards. This approach
eliminates the need for estimating the value function V and bypasses the requirement
of estimating the advantage function using Generalized Advantage Estimation (GAE).
Consequently, P3O is not only simpler to implement but also introduces less bias into the
estimation of the policy gradient.

A.2 Derivation of DPO

DPO start with a preference dataset D and minimize the loss:

LDPO = − E
(x,yw,yl)∼D

log σ

(
β log

πθ(yw|x)
πSFT(yw|x)

− β log
πθ(yl|x)

πSFT(yl|x)

)
However, this is offline since the algorithm only make use of a fixed dataset. Instead, notice
that if we have a reward function r, we can use the reward function to label the preference
result in an online fashion. Assume there are two new generated responses y1,y2 that have
reward r1, r2. Then we simply label the preference according to Bradley & Terry (1952),

y1 ≻ y2 w.p. σ(r1 − r2)

y2 ≻ y1 w.p. σ(r2 − r1)

We would like to use the notation yw and yl to represent the preferred and less preferred
response chosen by the reward. We collect all the newly generated responses into a replay
buffer Dreplay, therefore we can optimize the same DPO loss here:

LDPO = − E
(x,yw,yl)∼Dreplay

log σ

(
β log

πθ(yw|x)
πSFT(yw|x)

− β log
πθ(yl|x)

πSFT(yl|x)

)
We can further reduce the variance of the loss by eliminating the randomness in labelling
the preference by incorporating the known labeling probability explicitly in the formula,

LDPO = − E
(x,y1,y2)∼Dreplay

ϵ∼Ber(σ(r1−r2))

log σ

(
ϵβ log

πθ(y1|x)
πSFT(y1|x)

− ϵβ log
πθ(y2|x)

πSFT(y2|x)

)

18

Here, Ber(σ(r1 − r2)) is the two point Bernoulli distribution on {−1, 1}.

B Proofs

B.1 Proof of Lemma 5.4

Invariance of DPO: Assume the same setting as in the previous paragraph:

The gradient of DPO given reward r can be written as:

∇LDPO
r = − E

ϵ∼Ber(σ(r1−r2))
log σ

(
ϵβ log

πθ(y1|x)
πSFT(y1|x)

− ϵβ log
πθ(y2|x)

πSFT(y2|x)

)
Similarly, the gradient of DPO given reward r′ can be expressed as:

∇LDPO
r′ = − E

ϵ∼Ber(σ(r′1−r′2))
log σ

(
ϵβ log

πθ(y1|x)
πSFT(y1|x)

− ϵβ log
πθ(y2|x)

πSFT(y2|x)

)
The only difference between these two equations is the sampling distribution of the Bernoulli
distribution. Easy to verify that they are the same since σ(r1 − r2) = σ(r′1 − r′2).

C Additional Experiment Results

C.1 Prompt

For the following query to a chatbot , which response is more helpful?

Query:
<user_query >

Response A:
<response_a >

Response B:
<response_b >

FIRST provide a one -sentence comparison of the two responses and
explain which you feel is more helpful. SECOND , on a new line , state only
"A" or "B" to indicate which response is more helpful.
Your response should use the format:

Comparison: <one -sentence comparison and explanation >
More helpful: <"A" or "B">

To eliminate any potential bias from the order of the responses, the order of Response A and
Response B is randomized for each prompt. We note that although we ask GPT-4 to directly
respond A or B to indicate the preference, in approximately 3% of evaluations, GPT-4 found
that neither response adequately addressed the user’s query.

19

C.2 GPT-4 Evaluation Results

Prompt Human: help with understanding bitcoin
Assistant:

P3O Yes, that’s a fun question! Bitcoin can be seen as a digital currency, but there are
a few differences.
What makes Bitcoin different is that it uses a digital wallet, instead of a cash-like
system. This allows you to spend it anywhere you want, without needing a card or
a bank account.
You can also use Bitcoin to spend other forms of currency.
This use is growing in popularity, and Bitcoin is also helping people move towards
digital currency use.

DPO Can you describe a bit more about what Bitcoin is and what it’s used for?

PPO What would you like to know?

SFT What is Bitcoin?

GPT-4 Comparison: Response A[P3O] provides a brief explanation about Bitcoin and its
uses, while Response B[DPO] asks for more information from the user instead of
providing any information.
Comparison: Response A[PPO] is vague and doesn’t provide any information,
while Response B[P3O] provides a detailed explanation about Bitcoin and its uses.
Comparison: Response A[SFT] is a question rather than an explanation, while
Response B[P3O] provides a detailed explanation of what Bitcoin is and how it
works, making it more informative and helpful.

Table 3: P3O outperforms the others by providing a comprehensive explanation about
Bitcoin and its uses, while the other algorithms respond with questions or requests for more
information, rather than providing substantive information.

20

Prompt Human: I need help deciding what city to move to
Assistant: You could just use Google for that, or get specific about the criteria
you’re looking for, like weather and job markets.
Human: I’d like a mid sized city with fun activities, a good job market, and nice
weather if possible
Assistant:

P3O Maybe try Austin, Dallas, or Phoenix. They might be possible choices.

DPO That’s a very reasonable description, and it comes with an affordable cost of living.

PPO I think that depends a lot on your situation. Is there a job you’re particularly
interested in?

SFT Is this for work, or pleasure?

GPT-4 Comparison: Response A[DPO] is vague and doesn’t provide any specific sugges-
tions, while Response B[P3O] provides three specific city suggestions that could
potentially meet the user’s criteria.
Comparison: Response A[PPO] seeks to gather more information to provide a
more tailored suggestion, while Response B[P3O] provides immediate suggestions
based on the criteria given.
Comparison: Response A[SFT] seeks further clarification while Response B[P3O]
provides direct suggestions based on the criteria provided by the user, making it
more helpful.

Table 4: In each comparison, P3O outperformed the other algorithms, effectively suggesting
three potential cities (Austin, Dallas, or Phoenix) that align with the user’s criteria. In
contrast, DPO’s response was rather vague, offering no specific suggestions. PPO and SFT
sought to gather more information, delaying immediate assistance.

21

	Introduction
	Related Work
	Necessity of RL in LLM Alignment

	Preliminaries
	Algorithm
	Proximal Pairwise Policy Optimization (P3O)
	Clipping
	Relationship with PPO and DPO

	Reward Equivalence & Inconsistency of PPO
	Experiments
	KL-Reward Frontier
	Head-to-Head Comparisons
	Ablations

	Conclusion & Future Works
	Algorithms
	Pseudocodes
	Derivation of DPO

	Proofs
	Proof of Lemma 5.4

	Additional Experiment Results
	Prompt
	GPT-4 Evaluation Results

